Post-Quantum Signal Key Agreement with SIDH

Samuel Dobson and Steven D. Galbraith

Mathematics Department, University of Auckland, New Zealand.
samuel.dobson.nz@gmail.com, s.galbraith@auckland.ac.nz

March 3, 2022

Abstract

In the effort to transition cryptographic primitives and protocols to quantum-resistant alternatives, an
interesting and useful challenge is found in the Signal protocol. The initial key agreement component of
this protocol, called X3DH, has so far proved more subtle to replace—in part due to the unclear security
model and properties the original protocol is designed for. This paper defines a formal security model
for the original Signal protocol, in the context of the standard eCK and CK+ type models, which we call
the Signal-adapted-CK model. We then propose a secure replacement for the Signal X3DH key exchange
protocol based on SIDH, and provide a proof of security in the Signal-adapted-CK model, showing
our protocol satisfies all security properties of the original Signal X3DH. We call this new protocol SI-
X3DH. Our protocol refutes the claim of Brendel, Fischlin, Giinther, Janson, & Stebila [Selected Areas in
Cryptography (2020)] that SIDH cannot be used to construct a secure X3DH replacement due to adaptive
attacks. Unlike the generic constructions proposed in the literature, our protocol achieves deniability
without expensive machinery such as post-quantum ring signatures. It also benefits from the efficiency
of SIDH as a key-exchange protocol, compared to other post-quantum key exchange protocols such as
CSIDH.

1 Introduction

Signal is a widely-used secure messaging protocol with implementations in its namesake app (Signal Private
Messenger), as well as others including WhatsApp, Facebook Messenger and more. Due to its popularity, it
is an interesting problem to design a post-quantum secure variant of the protocol. However, some difficulty
arises due to the lack of a formally-defined security model or properties for the original protocol itself.

The Signal protocol consists of two general stages: the first is the initial key agreement, which is then
followed by the double ratchet protocol [MP16a]. The initial key agreement is currently done via a protocol
known as Extended Triple Diffie-Hellman (X3DH) [MP16b]. While Alwen, Coretti, and Dodis [ACDI19]
construct a version of the double ratchet component using key encapsulation mechanisms (KEMs), which
can be made post-quantum secure, the X3DH stage has proven to be more subtle and challenging to replace
in an efficient way with post-quantum solutions. Recent work by Brendel, Fischlin, Giinther, Janson, and
Stebila [BFG™20] examines some of these challenges and suggests that SIDH cannot be used to make X3DH
post-quantum secure due to its vulnerability to adaptive attacks when static keys are used.

Specifically, Brendel et al. are referring to an adaptive attack on SIDH given by Galbraith, Petit, Shani,
and Ti [GPST16] (henceforth referred to as the GPST attack), which uses specially crafted points in a user’s
public key to extract bits of information about the isogeny path (and thus the secret key) of the other
participant. The Signal X3DH protocol is an authenticated key exchange (AKE) protocol, requiring keys
from both parties involved. Without a secure method of validating the correctness of the other party’s keys,
it would be insecure to perform a naive SIDH key exchange with them. For example, the initiator of a

key exchange could adaptively modify the ephemeral public keys they use, in order to learn the receiver’s
long-term identity private key via this GPST attack.

Known methods of validation used to prevent adaptive attacks in SIDH are not well-suited to solving this
issue in the Signal X3DH context. One proposed method of overcoming the GPST attack, known as k-
SIDH [AJLI7], has both parties use k different SIDH public keys, and runs k? instances of SIDH in parallel
with pairwise combinations of these keys, combining all the shared secrets using a hash function in the final
step of the protocol. The GPST attack was extended to k-SIDH in [DGLT20] and shown to be feasible for
small k£ (an attack on k = 2 is demonstrated concretely). Due to the possibility of attacking k-SIDH for
small k, it has been suggested that k of at least 92 would be required to achieve security against quantum
adversaries. Unfortunately, this makes the protocol very inefficient. An alternative which is commonly used,
as in SIKE |[CCH™], is to convert the key exchange into a key encapsulation mechanism (KEM) using the
Fujisaki-Okamoto (FO) transform or its variants [HHKI17], and verify that the public key is well-formed
and honestly generated [Peildl KLM™15]. The idea of the FO-transform is that the initiator, A, of the key
exchange can encrypt the randomness they used in the exchange (for example, to generate their secret key)
under the symmetric shared key K they derived, and send it to their partner B. If the encryption method
is one-time secure, then because only A and B know K, only they can decrypt this randomness. B can
then check that A performed the exchange protocol correctly, and in particular, that the public key they
generated is indeed derived from the randomness they provided, to prove that A’s public key is well-formed.
Because B learns the secret key of A in every exchange, A can only do this with ephemeral keys. Hence,
while extremely useful, the FO-transform does not provide a solution in cases where both parties use static
keys. We cannot exclude the possibility that participants use their long-term (static) keys as part of an
attack: a dedicated or well-resourced attacker could certainly register many new accounts whose identity
keys are maliciously crafted, and initiate exchanges with an unsuspecting user (perhaps by marauding as
their friends or colleagues) to learn their secret key. For these reasons, Brendel et al. disregard SIDH
as a contender and suggest using CSIDH |[CLM™18]| for an isogeny-based variant of Signal. However, this
primitive is much less efficient than SIDH—in part due to sub-exponential quantum attacks that lead to
much larger parameters.

One of the primary goals of this paper is to show that SIDH can indeed be used to construct a post-quantum
X3DH replacement that satisfies the same security model as the original X3DH protocol—despite the claim
by Brendel et al. [BFGT20).

In order to design good post-quantum replacements for the Signal protocol, a clear security model is required.
This is an area of difficulty because the original Signal protocol did not define a security model—it appears to
be designed empirically. There have since been a few efforts to formalise the security properties of the Signal
protocol and X3DH. Notably, the work by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [CGCD™20)
was the first to propose a security model and prove the security of Signal in it. The recent work of Hashimoto,
Katsumata, Kwiatkowski, and Prest [HKKP21] also proposes a generic security model for the Signal initial
key agreement (specifically, for what they call Signal-conforming AKEs), and gives a generic construction
from KEMs and signature schemes (as mentioned above, KEMs do not allow static—static key exchange, so a
signature scheme is required to provide explicit authentication of the initiating party). From these analyses
of the protocol, the following security properties have been identified as important, which any post-quantum
replacement should therefore also satisfy:

1. Correctness: If Alice and Bob complete an exchange together, they should derive the same shared
secret key.

2. Secrecy (also known as key-indistinguishability): Under the corruption of various combinations of
the participants’ secret keys, the shared secret for the session should not be recoverable, or even
distinguishable from a random key. The combinations are defined by the specific security model used,
for example, the CK model [CKOT] or the model in [CGCD™20|. This is, of course, a basic requirement
for any secure key exchange.

3. (Implicit) authentication: Both participants should know who they are talking to, and be able to verify
their partner’s identity.

4. Perfect forward secrecy (PFS): Past communication should remain secure and unreadable by adversaries
even if the participants’ long-term keys are compromised in the future.

5. Asynchronicity: The protocol can be made non-interactive by hosting participants’ public keys on a
third-party server, which is untrusted. In the security model, the only possible malicious ability the
server should have is that it could deny Alice the retrieval of Bob’s keys (or, say, not give out his one-
time keys). This property is also called receiver obliviousness by Hashimoto et al. [HKKP21], because
the uploaded public keys are not intended for any particular user, but can be retrieved and used by
anyone.

6. (Offline) deniability [VGIK20], also known as identity-hiding: The transcript of an exchange session
should not reveal the participants of the exchange (in a non-repudiable way).

We propose a new, efficient, post-quantum key exchange protocol using SIDH, modelled after X3DH, which
we call SI-X3DH. This new protocol solves the problem of adaptive attacks by using a variant of the FO
transformation to prove that the initiator’s ephemeral key is honestly generated, and a Proof of Knowledge
to ensure the long term public keys are well-formed—something which only needs to be verified once (and
could be offloaded to the PKI server depending on the trust model used). We prove security of the SI-X3DH
protocol formally in the random oracle model (ROM) using a new key-indistinguishability model we call the
Signal-adapted-CK model. We show the security of SI-X3DH reduces to the hardness of the supersingular
isogeny CDH (SI-CDH) assumption in the ROM.

Because SIDH is an efficient post-quantum key exchange proposal with very small key sizes (although still
larger than classical elliptic curve keys used in the original X3DH), and because SI-X3DH requires only
three or four SIDH exchanges (unlike k-SIDH), our protocol is also efficient and practical. For example,
SIDH is much faster than CSIDH—suggested in the proposal by Brendel et al. [BEG™20]—because CSIDH
uses larger-prime degree isogenies while SIDH commonly uses only isogenies of degree (a power of) two
and three. Our scheme also does not rely on expensive machinery such as post-quantum ring signatures to
achieve deniability (as [HKKP21] does). However, a large drawback of our scheme is that it relies on proving
knowledge of the secret long-term identity keys, by using the SIDH Proof of Knowledge from [DDGZ21] for
example. This only needs to be done once per contact (or could be offloaded to the keyserver, depending
on the trust model), but for users who add many new contacts regularly, this may create an unacceptable
overhead. The efficiency of our scheme is discussed more in Section [7]

Another disadvantage of our scheme, as discussed in Section [5] is that SI-X3DH suffers from the possibility
of more permanent key compromise impersonation (KCI) than the original Signal X3DH protocol does.
Technically, neither Signal X3DH nor SI-X3DH satisfy the KCI resistance requirement of the eCK and CK+
security models, but there is a practical difference between the schemes. Impersonation was possible with
the compromise of the semi-static key in Signal X3DH, whereas in SI-X3DH, impersonation is possible with
compromise of the long-term identity key. Thus, cycling the semi-static key is no longer sufficient to prevent
long-term impersonation. This is worth considering, but we believe the change is acceptable, as medium-
term impersonation seems just as damaging as long-term, and corruption of an identity key is a severe break
in security anyway.

As we will soon see, the SI-X3DH protocol we propose has some structural differences from X3DH. In
particular, SI-X3DH performs an SIDH exchange between the two parties’ identity keys (IK4 and IKp),
whereas previously, X3DH used IK4 and SKp instead (involving Bob’s semi-static key, rather than his
identity key). Due to the asymmetry between the degrees of the isogenies the two parties in SIDH use, our
protocol requires parties to register two keys rather than one: a receiving key and a sending key. Finally,
in order to prevent adaptive attacks, SI-X3DH uses a single FO-proof per exchange, and a once-off proof of
well-formedness of each party’s identity keys (see Section [5| for discussion of this). Despite these differences,
the structure of the protocol more closely resembles X3DH than any of the other post-quantum proposals

presented to date. For example, our protocol allows Bob the balance between one-time keys and medium-
term (semi-static) keys—where the former may be exhausted, leading to denial of service, while the latter
provide less security in some attack scenarios. These properties and differences are discussed further in
Section [

1.1 Related work

Brendel et al. [BEGT20] proposed a new model for post-quantum X3DH replacements using a primitive
they call split-KEMs. Their construction is a theoretical work, as they leave it an open question whether
post-quantum primitives such as CSIDH satisfy the security definitions of their split-KEM.

Recently, Hashimoto et al. [HKKP21] presented their Signal-Conforming AKE (SC-AKE) construction, also
using post-quantum KEMs to construct a generic Signal X3DH replacement. To achieve deniability, their
scheme requires a post-quantum ring signature scheme. Independently, but following a very similar approach
to Hashimoto et al., Brendel et al. [BEGT22| also proposed a deniable AKE using post-quantum KEMs
(which they call “Signal in a Post-Quantum Regime” (SPQR)) and a designated verifier signature (DVS)
scheme. As they mention, little work has been done to date in constructing DVS schemes from post-quantum
assumptions, so Brendel et al. also propose using a two-party post-quantum ring signature scheme for the
same purpose.

We briefly outline the differences between these works and that presented in this chapter using Table[I] with
the original Signal X3DH protocol included as a reference.

Scheme PQ-secure Deniable Requires sig | Long-term data | Exchanged data
Original Signal]
X3DH protocol X v v K 3 keys

Split-KEM based 3 keys
?)
X3DH [BFG'20) v ' v K, K, 4 ciphertexts
Signal-Conforming *with PQ . 1 key,
AKE [HKKP21] v ring signature v (x2) K Ko Ko 3 ciphertexts
— -
= with PQ ring " 2 keys,
SPQR [BFGT22) v signature or DVS v (x2) K Ko, Kg 4 ciphertexts
SI-X3DH v v v Ky, K3, K, 3 keys,
(this work) + PoK 1 ciphertext

Table 1: Comparison of post-quantum Signal X3DH replacements. Long-term data refers to the size of the
initial registration cost for each user (the “offline” data). Fzchanged data gives the amount of ephemeral
data sent in a single exchange (by both parties combined), that is, the size of the “online” transcript. Note
that all schemes require a signature scheme (Requires sig) to obtain PFS—post quantum schemes use a
separate signature verification key K, while Signal X3DH reused the same key K for both exchange and
signature verification (ECDH and XEdDSA [Perld]).

The original Signal X3DH scheme requires Bob to sign his semi-static keys, to prevent a malicious keyserver
from providing its own keys and compromising the perfect forward secrecy guarantee of the scheme. This
requirement must still hold in any post-quantum replacement too. The Split-KEM protocol [BEG™20] does
not discuss the requirement for a signature scheme on the semi-static keys, but the same attack on PFS
applies to their scheme as it does to the original Signal X3DH protocol if the semi-static keys are not signed—
a malicious server or tampering man-in-the-middle can insert their own semi-static key rather than Bob’s,
and later compromise Bob’s long-term identity key, thus allowing recovery of the shared secret. The Signal-
Conforming AKE protocol and SPQR. protocol require this signature for PFS too, for the same reason. These
latter two schemes also use a second (ring/DVS) signature (discussed below)—two signatures per exchange.
Because ring signatures and DVS schemes are much more expensive than standard signatures, for efficiency

it would likely be preferable to use two separate schemes, hence the two signing keys K,, K} in Table
Our construction, as mentioned above, requires a single signature on the semi-static key. Because there
are no efficient post-quantum constructions with a public key that can be used in both a signature scheme
and a key exchange, requiring a separate signature scheme (and verification key) seems unavoidable for any
post-quantum X3DH replacement. In general, these X3DH replacements (including SI-X3DH) are agnostic
to the signature scheme used for this purpose, so any efficient post-quantum signature scheme may be used
alongside them—there is no restriction to use an isogeny-based signature scheme with SI-X3DH.

For deniability, SC-AKE requires the initiator of the key exchange to sign the session ID. This signature
creates non-repudiable evidence of the initiator’s involvement in the exchange. Hashimoto et al. [HKKP21]
and Brendel et al. [BEGT22] suggest using a ring signature to attain deniability. Specifically, a signature
under a two-party ring involving just the sender and receiver is sufficient to authenticate the other party in
the exchange (since one party knows the signatures that they themselves generated), but to a third party,
the signature could have been generated by either participant. Unfortunately, however, a post-quantum
ring signature scheme is a much more expensive construction than a standard signature. Deniability of the
split-KEM construction is not discussed by the 2020 work of Brendel et al. [BEG™20], and would appear to
depend on how the split-KEM is instantiated. We emphasise that the signature on Bob’s semi-static keys
mentioned above does not have any impact on deniability, as that signature exists independently of any
particular exchange session or counterparty. These deniability drawbacks are only caused by signatures on
session-specific information like the session ID, for the sake of authentication.

Finally, it is important to note that the SC-AKE protocol does not use a semi-static key—only long-term
and ephemeral keys. This means that unlike in Signal X3DH, if a receiver is offline for an extended period
of time, it is possible for all the ephemeral keys they uploaded to the server to be exhausted (either due to
popularity or a malicious attempt to do so). This creates an opportunity for denial of service which is not
present when semi-static keys are used and the ephemeral component is optional. Brendel et al. [BEG™T22]
address this by using a semi-static and an ephemeral KEM encapsulation key if available, as in Signal’s
X3DH.

In other recent work, Fouotsa and Petit [FP21] propose a protocol similar to SIDH which they claim is not
vulnerable to adaptive attacks. They call this protocol HealSIDH (“healed” SIDH). This protocol operates
by requiring participants to also reveal the action of their isogenies on points of larger order than in SIDH.
However, this protocol is interactive and would not allow a key exchange to take place while one participant is
offline—it requires the receiver to send certain points back to the initiator for validation before the exchange
can be completed. Specifically, this fails the requirement of asynchronicity, so would not be suitable for use
in a Signal X3DH replacement. It is for the same reason that proposals for post-quantum TLS handshake
replacements, including by Schwabe, Stebila, and Wiggers [SSW20], also fail to be applicable in the Signal
context—these protocols involve messages sent by both parties sequentially over multiple rounds, and often
do not authenticate one of the two parties (the client).

1.2 Outline

We shall begin in Section [2| by reviewing the existing X3DH protocol used as Signal’s initial key agreement.
We will then review the supersingular isogeny Diffie-Hellman key exchange (SIDH) in Section In Section
we shall discuss the security properties of an appropriate Signal key agreement protocol in more detail and
define a security model to be used. This is followed by our construction of a new protocol in Section [f]
using SIDH, which we propose is an efficient post-quantum replacement for X3DH. Section [6] gives a proof of
security for this construction, and Section [7] discusses the efficiency of our protocol and the key differences
between our proposal and the original X3DH scheme.

1.3 Acknowledgements

We thank the anonymous reviewers for their helpful comments and feedback. We also thank Jason LeGrow
for his feedback and advice.

2 The Signal X3DH protocol

The basic process of the X3DH protocol is given in Figure [T where Alice is the initiator and Bob is the
responder. Let DHp,(g%, g°) = g°° (mod N) denote the result of a Diffie-Hellman key exchange between
keys A and B (at least one of the private keys is needed to compute this, but the result is unambiguous),
with public parameters pp including g and N. Because we assume fixed public parameters, we will usually

may be omitted.

Alice Bob

register IKp

upload SK g, Sigg (SKg), {EKS

request prekey bundle S

=
bS
m
)
>
-
=
=}
o)
¢}
=
kel
=.
B
o+
m
)
%

dh; = DH(IK 4, 5K
dhy = DH(EK 4, IK
dhs = DH(EK 4, SK
r-- - - - T TS T T T T T il

dhy = DH(EK 4, EKp) |

~— —

K = KDF(dhy || dhy || dhs '|| dhy)
Figure 1: The X3DH protocol [MP16b]. dhy is optional on the basis of one-time key availability.

Because the X3DH protocol is designed to work when the recipient (Bob) is offline, Alice obtains his public key
information from a server. IK4 and IKp are the fixed long-term identity keys of Alice and Bob respectively.
Bob additionally uploads a semi-static public key SKp signed by him to the server, which he rotates semi-
regularly. He also uploads a number of one-time keys EK g, but the use of these is optional as the supply on
the server may run out.

After Alice has received Bob’s identity, semi-static, and (optional) one-time keys from the server, she performs
a three- or four-part key exchange with her own identity key and ephemeral key. These three or four shared
keys are specified in the figure (denoted by dh;), and are combined using some sort of secure hash or key
derivation function (KDF'). We shall assume they are simply concatenated and hashed with a cryptographic
hash function. This results in the master shared secret for the exchange, which is then used in subsequent
protocols such as Signal’s Double Ratchet protocol.

Finally, Alice sends to Bob identifiers of which of his semi-static and one-time public keys she used (for
example, short fingerprint), as well as her own identity and ephemeral keys. This allows Bob to also compute
the same shared master secret.

Verification of the long-term identity keys is out-of-scope for the protocol, and may be done either by
trusting a third party (e.g. the server) as a PKI, or verifying the keys in-person or out-of-band in some other
way.

3 SIDH

We now provide a brief refresher on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol
[JDF11l DEJP14] by De Feo, Jao, and Plit.

As public parameters, we have a prime p = ¢5' €52 f £ 1, where £y, {5 are distinct small primes, f is an integer
cofactor, and £{' ~ (5. We work over the finite field 2. Additionally we fix a base supersingular elliptic
curve Ey and a basis { P;, Q;} for both the ¢; and /5 torsion subgroups of E(F,2) (such that Ey[(%] = (P;, Q).
Typically ¢; = 2 and ¢5 = 3, and this will be assumed from here forward in this paper. We will use both the
index 1 and the subscript A to represent Alice’s information, while B ~ 2 will be used interchangeably for
Bob’s, for clarity in various situations and for consistency with existing literature.

It is well known that knowledge of an isogeny (up to equivalence, i.e., post-composition with an isomor-
phism) and knowledge of its kernel are equivalent, and we can convert between them at will, via Vélu’s
formulae [VEIT1]. In SIDH, the secret key of Alice (respectively Bob) is an isogeny ¢ : E(Fj2) — Ea(Fp2) of
degree 2t (respectively 3¢2). These isogenies are generated by randomly choosing a secret integer « € K 4
and computing the isogeny whose kernel K = (P4 + [o]Q A>|H We thus unambiguously refer to the isogeny,
its kernel, and such an integer «, as “the secret key.” Figure 2| depicts the commutative diagram making up
the SIDH key exchange.

oy

E—— Ea

9B daB

Ep ———— EapB
BA

Figure 2: Commutative diagram of SIDH, where ker(¢pa) = ¢p(ker(¢a)) and ker(¢pap) = ¢pa(ker(ép)).

In order to make the diagram commute, Alice and Bob are required to not just give their image curves E4
and Ep in their respective public keys, but also the images of the basis points of the other participant’s
kernel on E. That is, Alice provides Ea, P; = ¢a(Pg),Q5 = ¢4(Qp) as her public key. This allows
Bob to “transport” his secret isogeny to E4 and compute ¢ap whose kernel is (P + [5]Q’5). Both Alice
and Bob will arrive along these transported isogenies at distinct, but isomorphic, image curves Eap, Epa.

Two elliptic curves are isomorphic over F,» if and only if their j-invariants j(Eap) = j(Epa), hence this
j-invariant may be used as the shared secret of the SIDH key exchange.

Throughout this paper, we will use the function SIDHp,(-,) to represent this protocol with respect to public
parameters pp, outputting the final j-invariant. Generally, the public parameters will be clear from context,
so they may be omitted for ease of notation. The arguments to SIDH will be the two public keys of the
participants, because clearly the result is independent of which participant computed the value (using their
secret key). Specifically, if 8 is the secret key corresponding to the public key Kp = (Ep, P, Q’), then
SIDH,p((Ea, P, Q). Ki) = j(Ea/(Pp + [8)Q})).

3.1 SIDH assumptions

Let pp denote the public parameters pp = (p, ¢1, lo, €1, €2, Eg, P1, Q1, P2, Q2). The standard computational
and decisional hardness assumptions associated with the SIDH key exchange are as follows. Let

SSECopp,i = {(Ei, ¢i(Ps—i), ¢(Q3—3)) | ¢i: Eo = E;, degpy = £;'}

IThis uses the idea of equivalent keys from Galbraith et al. [GPST16], and only uses keys of the form (1,), of which there
are 2°1 and 3°2 respectively. Restricting to such keys is standard in SIDH-based schemes, including SIKE.

be the set of all possible public keys for participant ¢ in the SIDH protocol with public parameters pp.
Let
SSJpp = {j(E;) : E; defined over F, and supersingular}

be the set of all supersingular j-invariants over the field F, established by the public parameters pp. Every
shared secret arising from an SIDH key exchange with public parameters pp is therefore contained in this
set.

Definition 1 (Computational Supersingular-Isogeny Diffie-Hellman (SI-CDH) Problem.). Given the public
parameters pp, and two public keys K1 = (E1, P{,Q}) € SSEC,p.1, Ko = (Ea, Py, Q%) € SSEC,p.2, compute
the j-invariant j = j(E12) = j(E21) = SIDHpp (K7, K2).

We define the advantage of a probabilistic polynomial-time (PPT) adversary A solving the SI-CDH problem
as
Adveedt(A) = Pr[j’ = SIDH,, (K1, K2) | ' + A(pp, K1, K2)].

The SI-CDH assumption states that for any PPT adversary A, /—\dei'th(A) < negl. In other words, given
the two keys involved in an SIDH exchange, it should be infeasible to compute the resulting shared secret of
the exchange.

Definition 2 (Decisional Supersingular-Isogeny Diffie-Hellman (SI-DDH) Problem.). Let pp be SIDH public
parameters. Define two distributions:

e Dy ={(K1,Ks,j) | Ki € SSECyp;, j = SIDHp, (K1, K2)},

o Dy ={(K1,K>,j) | K; € SSECpp4, j < SSJIpp},
The SI-DDH problem is to distinguish between the distributions Dy and D;.
We define the advantage of a PPT adversary A solving the SI-DDH problem as

) 1
Advi (A = [Pr (b= | b « A(pp, K1, K3,), b+ {0,1}] — 5
where (K7, Ko, j,) € Dp. The SI-DDH assumption states that for any PPT adversary A, Adei‘ddh(A) <
negl.

3.2 New SI-CDH-based assumptions

We now present two new computational assumptions, both based on the standard SI-CDH problem from
Definition[I] We sketch proofs that the SI-CDH problem can be reduced to both, in the random oracle model.
These two assumptions are simply tools to simplify the proof of security of our new SI-X3DH protocol.

As usual, let pp be fixed SIDH public parameters. For ease of notation, let K; (the i-keyspace) be the set of
possible isogenies of degree ¢;* from the fixed SIDH base curve Ey. Equivalently, K; is the set of points of
exact order ;' on Ejy, acting as isogeny kernel generators, where two generators are identified as the same
key if they generate the same kernel. Let H; : {0,1}* — K; be a pseudorandom generator (PRG) whose
codomain is this secret isogeny keyspace. We also let Hy : {0,1}* — {0,1}" be a PRG. Both H; and Hs are
modelled as random oracles. PubkeyFromSecret is a function taking a secret isogeny or kernel generator and
outputting the codomain curve of that isogeny (or the isogeny with that kernel, via Vélu’s formulae).

The first new SI-CDH-type assumption we define adds a “check” oracle to the SI-CDH assumption, which
is provided by the challenge generator. This lets the adversary “verify” their answer before returning it to
the challenger, so we call this the Verifiable SI-CDH problem.

Definition 3 (Verifiable SI-CDH (VCDH) problem). Let pp be SIDH public parameters, and K, € SSEC pp, 1
Ky € SSECpp, 2 be two SIDH public keys. Let Ok, K, be a truth oracle defined as

) 1 if 7/ =SIDH,,(K3, K>),
OKI;K2(-7/) = . PP
0 otherwise.

The Verifiable SI-CDH problem is to compute the j-invariant j = SIDHp, (K1, K2), given pp, K1, K, and
OKI Ko -

Essentially oracle Ok, i, confirms if the answer to the SI-CDH challenge is correct or not. Ergo, intuitively
we should learn no extra information from this oracle—on all except one j-invariant the oracle will return
0, so in polynomially-many queries, the likelihood of guessing the correct j-invariant is negligible (as in the

SI-CDH problem). We show that, in the random oracle model, this problem is hard if the SI-CDH problem
is.

Theorem 1. Let B be an adversary solving the VCDH problem with advantage € after making q queries to
the oracle Ok, k,. Then B can be used to solve the SI-CDH problem with probability at least €/2q.

Proof. Without loss of generality, we assume all ¢ queries are made with distinct inputs. Let (K, K2) be an
SI-CDH challenge instance. We define two different oracles O° and O!. Oracle O will return 0 regardless
of the query made. To define oracle O', we select a random index 0 < ¢ < ¢ and let ©@? return 1 on the
¢-th unique query (and 0 on all other queries). We run the adversary B in two settings, giving instance
(K1, Ko, 0% to B in setting i € {0,1}. Define found to be the event that B makes a query to the oracle O it
is given with the correct j-invariant (the solution to the SI-CDH instance). We can consider the probability
of B succeeding against the VCDH problem as

e =Pr[B wins | found occurs] - Pr[found occurs]

+ Pr[B wins | found does not occur| - Pr[found does not occur .

If found does not occur, then B running in setting 0 (where oracle O° always returns 0) will be unable to
distinguish the simulated oracle from the true one, and will win with advantage e. Hence,

Pr[B wins in setting 0] > Pr[B wins | found does not occur |.

On the other hand, if found occurs, then we correctly simulated the oracle in setting 1 with probability 1/¢
(the probability that we guessed ¢ correctly). Therefore,

1
Pr[B wins in setting 1] > — Pr[B wins | found occurs].
q

We uniformly sample b < {0, 1} and return the solution from B running in setting b to the SI-CDH challenger.
Because 0 < Pr[found occurs| < 1, we solve the SI-CDH instance with overall probability

1 1
3 Pr[B wins in setting 0] + 3 Pr[B wins in setting 1]

Y

1 1
3 Pr[B wins | found does not occur] 4+ % Pr[B wins | found occurs]
q

1
— (Pr[B wins | found does not occur | 4+ Pr[B wins | found occurs])

>
< %
S 1
—e€
- 2q)
which is non-negligible if € is (since ¢ must be polynomially-sized). O

We call the second of our new SI-CDH-type problems the Honest SI-CDH problem (HCDH). This
problem models an SI-CDH instance with an additional FO-like proof that the first key in the instance, K7,
was honestly generated.

Definition 4 (Honest SI-CDH (HCDH) problem). Let pp be SIDH public parameters, and s < {0,1}™ be a
random seed, where n is the security parameter. Then, let

K, = PubkeyFromSecret(H;(s))

be a public key derived from s, where Hi(s) is an isogeny of degree £5*. Let Ko € SSEC,, 2 be a second public
key. Finally, let m be an FO-proof of the form

m™T=S8 @D HQ(SIDHPP(Kl,KQ)).

The Verifiable SI-CDH problem is, given pp, K1, K2, and w, to compute the j-invariant j = SIDHp, (K7, K»).

We argue that the FO-like proof leaks no information because we obviously assume that SIDH,,(K7, K3) is
unknown (since it is the answer to the SI-CDH problem) and s is random. Thus, if the SI-CDH problem
is hard, then so too is this problem. We sketch a reduction in the random oracle model. Treat H, as a
random oracle. Let B be an adversary making g queries to Hy and winning with advantage € against the
HCDH problem. Obtain an SI-CDH challenge (K7, K3). Choose 7 to be a random binary string, and provide
(Kl, Kg,ﬂ') to B.

In order to distinguish the simulated 7= from an honest FO-proof, B must query Hs(j) for the correct j-
invariant solution of the SI-CDH instance. If this occurs, we can return one of the ¢ queries made to Hy
and win with probability 1/q. Otherwise, the output of B wins with advantage € despite 7 being uniformly
random, by a simple hybrid argument.

Thus, the reduction can simply return one of the g queries to H or the output of B to the SI-CDH challenger
with equal probability. In either case, there is a non-negligible chance that the returned value wins the SI-
CDH challenge, if € is non-negligible.

4 Security model

Authenticated key exchange (AKE) security is a complex field of security properties and models. Of pri-
mary interest is the notion of key indistinguishability, sometimes simply known as AKE security due to its
universality. The seminal work by Bellare and Rogaway [BR93| defined a security model for authenticated
key exchange (known as the BR model). Security in the BR model is based on the indistinguishability of
true session keys from random, even when the adversary is given certain powers to control protocol flow,
interactions, and to reveal long-term secret keys and states. A number of other models have since been
developed, based on this original BR model, including the CK [CKO01], CK+ [Kra05] and eCK [LLMO07]
models. These models all differ based on the powers of the adversary in the key-indistinguishability game
(as well as other differences such as how partner sessions and session IDs are defined). The main difference
between the CK/CK+ models and the eCK model is that the latter uses ephemeral-key reveal queries while
the former use session-state reveal queries. These models are incomparable [Cre09].

The eCK and CK+ models are generally viewed as the strongest and most desirable models, as they capture
attacks which are outside the scope of the CK model: weak perfect forward secrecy (wPFS), key compromise
impersonation (KCI), and maximal exposure (MEX). All of these properties relate to certain combinations
of long-term and ephemeral keys being compromised by an adversary. Security in these models relies on
allowing the adversary all non-trivial combinations of exposure—i.e. any combination of keys from both
parties that does not form a vertex cover on the graph of Diffie-Hellman exchanges in the protocol (the
graph whose nodes are keys, and edges represent that a DH key exchange between the two incident keys
is used in the protocol). A vertex cover would trivially allow the adversary to compute the shared secret,

10

because at least one secret is known to the adversary in every DH exchange (edge). But if the adversary does
not have a vertex cover, at least one DH exchange cannot be computed, because the adversary does not have
either of the secret keys involved. In this case, the overall session key of the protocol should remain hidden.
We refer the reader to the work of Fujioka et al. [FSXY12] for a more detailed analysis of the difference
between these models.

Unfortunately, Signal X3DH does not meet the definition of security required by all these models. This was
observed by Cohn-Gordon et al. [CGCD™'20]. Precisely, there do not exist edges in the exchange graph for
every possible pair of keys—for example, there is no DH exchange between Alice’s identity key and Bob’s
identity or ephemeral keys. Our benchmark for security is that a replacement protocol should meet at least
the same security definition as that of the original protocol, so we must observe where exactly the original
protocol breaks down in the eCK model. This allows us to propose a slightly weaker model, though still
stronger than the CK model, that successfully represents the security goals of Signal X3DH. This gives a more
formal and well-defined security model than the one Cohn-Gordon et al. [CGCD™20| used to prove security
of the original Signal X3DH protocol. We call our new security model the Signal-adapted-CK model.

The recent work of Hashimoto et al. [HKKP21] provided a similar security model, for what they call a Signal-
conforming AKE protocol. Their security model differs from ours in the fact that it does not take semi-static
keys into account (their proposed construction does not use semi-static keys). They also use the language
of state-reveals rather than ephemeral-key-reveals. Their model is stronger than the Signal-adapted-CK
model—in fact, the original Signal X3DH protocol would not satisfy their model (it requires security against
the two events F, and Eg in Table [3] discussed further below). However, our goal is to propose a model
that exactly captures the security properties of the original Signal X3DH protocol, which was not the goal
of their model. In other words, we wish to analyse Signal, not some stronger protocol.

Before we begin, let us briefly recall the meanings of the security notions mentioned above:

e Perfect forward secrecy (PFS) implies that an adversary who corrupts one or both of the participants’
long-term secret keys should not be able to reveal the session key of previous sessions executed by
those participants—the past remains secure. This is achieved by the use of ephemeral keys whose
corresponding secrets are erased on successful completion of the exchange protocol. Weak PFS implies
that this PFS is only achieved if adversaries cannot interfere with the protocol during the exchange
(e.g., man-in-the-middle attacks), they can only attack it after the fact.

e Key compromise impersonation (KCI) resistance captures the scenario where an adversary reveals or
corrupts the long-term secret key of a participant A: the adversary should be unable to impersonate
other parties to A (but of course, can still impersonate A to other parties). For example, if Carol has
compromised Alice’s secret keys, she should be unable to send messages to Alice that Alice believes
came from an uncorrupted third party, Bob.

e The maximal exposure (MEX) property states that, when given any one (long-term or ephemeral)
secret key of each party in an exchange, the adversary should still be unable to distinguish the real
session key from random. This property essentially takes into account all other combinations of keys
that may be compromised in practice, hence the “maximal” denomination.

Standard security models generally define keys to be either long-term or ephemeral. As a recipient in the
Signal protocol uses up to three keys, including a semi-static (medium-term) key, it is not at first obvious
how to integrate this semi-static key into such two-key models. We choose to consider it as both long-term
and ephemeral in different situations. This is discussed further in Remark

We define the formal Key Indistinguishability Experiment now. We then provide a proof of security of our
construction in this model in Section [l

11

4.1 Key indistinguishability experiment

Let K denote the space of all possible session keys that could be derived in an exchange between two parties.
We model n parties Py, ..., P, through oracles IIZ, denoting the j-th session run by participant P;. We
limit the number of sessions per party by 1 < j < S. Each oracle has access to the secret key of the
corresponding party P;’s fixed long-term identity key IK;, as well as the secrets for each of the m semi-static
keys SK}7 ..., SKI". Each oracle also has the following local variables:

e ITJ.rand: The fixed randomness of oracle i for its j-th session (where IT/ is deterministic based on this
randomness).

. H{.role € {L, init, resp}: The role of participant ¢ in their j-th exchange.
. Hg .sk_id: The index ¢ of the semi-static key SKf that participant ¢ uses in their exchange j.
o HZ .peer_id: The index k of the alleged peer Py in the j-th exchange of oracle 1.

e II/ peer_sk_id: The index ¢ of the alleged peer’s semi-static key SKf;eeLid used in the exchange.

K2

. Hz .sid: The session 1D, explained further below.

. Hz.status € {L, accept, reject}: Indicates whether the oracle has completed this session of the key
exchange protocol and computed a session key from the exchange.

° Hg .session_key € K: The computed session key.

These values are all initialised to L at the start of the security experiment, except rand, which is initialised
with random coins for each oracle. The oracle status is set to accept or reject on the computation of
session_key.

The session ID is a feature of the security experiment, not the real protocol. We define the session ID to

be a tuple (I, IKz, IKg, SKgz, EKI,[EKR]) where Z, R denote the initiator and responder respectively, II is
a protocol identifier, and EKg is optional (so may be null). We say two sessions with the same sid are
matching. This is done to restrict the adversary from making queries against any session matching the test
session for the game—to avoid trivialising security. For a session II we also define a partner session to be
any session Hf; for which Hg.peer,id = k and Hi.peer,id =1, Hg.role #* Hf;.role, and Hg.sid = Hf;.sid. We
say any two such sessions are partners. Note that if two sessions are partners, they are also, by definition,
matching.

Setup The security game is played between challenger C and a probabilistic polynomial-time (PPT) adver-
sary A. C will generate identity keys for the n participants, IKy, ..., 1K,,, and for each participant i, generate
m semi-static keys SK}7 ..., SK}". C will finally choose a uniformly random secret bit b < {0,1}, and provide
A with access to the oracles IT.

Game Adversary A can adaptively make the following queries in the game:

e Send(i,j,1): Send an arbitrary message u to oracle HZ . The oracle will behave according to the key
exchange protocol and update its status appropriately.

ReveallK(i): Return the secret long-term key of participant i. After this, participant i is corrupted.

RevealSK(i, £): Return the ¢-th secret semi-static key of participant i. After this, SKf is said to be
revealed.

RevealEK (i, j): Return the ephemeral key (i.e., the random coins) of the j-th session of participant
i. After this, EK] and II].rand are said to be revealed.

e RevealSessionKey(i, j): Return Hz .session_key. After this, session H{ is said to be revealed.

12

Test At some point in the game, A will issue a special Test(i, j) query exactly once. C will return Kj
to the adversary, where Ky := II] session_key and K; < K (a random key from the keyspace). After this

query is made, session Hg is said to be tested. A can continue to adaptively make queries to the above game
functions after the Test query has been issued. Finally, A outputs a bit b* € {0,1} as their guess.

At this point, the tested session Hg must be fresh. Freshness is defined in Definition |5, and the cases for
freshness are also summarised in Table [2| for clarity.

Definition 5 (Freshness). A session I, with Hg.peer,id =k, is fresh if none of the following hold:

i
. Hg.status # accept.
e The session_key of H{, or any matching session, is revealed.
If Hg.role = init:

— Both ReveallK(i) and RevealEK(i,j) are issued.

— HZ has a partner 1% for some £, RevealIK(k) is issued, and either
RevealSK(k, T/ .peer_sk_id) (x) or RevealEK(k,{) are issued.
See Remark [

If Hg.role = resp:

- H? has a partner I1%, for some £ and both RevealIK(k) and
RevealEK(k, () are issued.

— RevealIK(i) and either RevealSK(i, T .sk_id) (x) or
RevealEK(i, j) are issued. See Remark|l]

. H{ has no partner session and Re’vealIK(Hg.peer,id) 15 1ssued.

To define security in this model, we require correctness and soundness. Soundness ensures that, if the
adversary is restricted to making only reveal queries that keep the test session fresh, then its advantage in
distinguishing the session key from random is negligible. Let fresh(session) return true if session is fresh,
and false otherwise.

Definition 6. Let A be a PPT adversary. We define the advantage of A in winning the above key indistin-
guishability experiment kie with n parties, m semi-static keys per party, and S sessions per party, as

n,m,S

- 1
AdvE® ((A) = |Pr[b=b" A fresh(test_session)] — 3|

An authenticated key exchange protocol Il is secure in the Signal-adapted-CK model if it is:

e Correct: Any two parties following the protocol honestly derive the same sid, session_key, and both
arrive at an accept state.

e Sound: The advantage of any PPT adversary A is Advi® ¢(A) < negl.

n,m,S

We emphasise that Table [2] and our definition of freshness in Definition [5] are strictly weaker than the
standard eCK/CK+ cases and definitions—specifically, we have removed the adversary’s ability to perform
two specific cases of KCI attack. Both of these removed cases are given in Table 3] and correspond to
the extra restrictions on freshness marked with a (x) in Definition [5| These are the cases that weaken the
eCK/CK+ models to our Signal-adapted-CK model.

The reason for these exclusions from our model is that the original Signal X3DH protocol does not satisfy
these properties, and our goal is to precisely model the security of that original protocol. Hence, these cases
should be removed. The KCI attack on the original protocol is as follows: if Bob’s semi-static key SKp

13

is compromised, an adversary can impersonate anyone to Bob. This is because Alice is only authenticated
through dh; (the exchange with SKp), so an adversary can claim the use of any other public key IKg
and calculate the correct Diffie-Hellman value with SKp. As SKp is periodically replaced by Bob, the
impersonation to Bob can last only as long as he accepts exchanges with that particular SKg. However,
we consider this a failure of the KCI property because SKp is not ephemeral. This is discussed further in
Remark [

Bvent | MACHDE SSSON e | gk | K | SKe | EKg || Attack
E No v X X v - KCI
Ey No X v X x* - MEX
FEs No X - X x* v MEX
FEs Yes v X v X X wPFS
Eg Yes X v X x* v MEX
Er Yes v X X v v KCI

Table 2: Behaviour of the adversary in our model, corresponding to the various freshness conditions in
Definition [5} Z and R denote whether the key belongs to the initiator or responder respectively. “v’” means
the corresponding secret key is revealed or corrupted, “x” means it is not revealed, and “-” means it does
not exist or is provided by the adversary.

*Discussed further in Remark

M t h “paal
Event | ¢ ef;é tzem’n IK; | EK7 || IK | SKr | EKz || Attack
E, No X - v v X KCI
Eg Yes X v v v X KCI

Table 3: The two cases of the eCK/CK+ model which are NOT satisfied by Signal’s X3DH, and so are not
included in our model. This lack of KCI is exactly where these protocols break down.

Remark 1. In the original Signal X3DH protocol, the semi-static keys SKp are used to strike a balance
between perfect forward secrecy and key-exhaustion denial of service. To correctly model the purpose of this
key, we assume it is “ephemeral enough” to have been replaced some time before a PFS attack (event E5 in
Table [2) takes place—this is generally a longer-term attack and the cycling of the semi-static key is designed
to prevent this precise attack.

Because the semi-static key is reused and not actually ephemeral, we do not assume it is simply a long-term
key in the other events of Table In the KCI attacks, we allow it to be revealed as both ephemeral and
long-term, to properly capture various forms of key-leakage that could lead to that attack and to strengthen
the model (as mentioned above).

The MEX cases are more interesting, however. The original Signal X3DH protocol is not secure if the semi-
static key can be revealed in cases Fs, E3, and Eg. Hence, they are set to x in Table [2| due to our goal of
accurately capturing the security of this original Signal protocol. In the spirit of the MEX property, the
protocol would ideally be secure even when these three cases allowed SK to be revealed—there is no reason
to treat the semi-static key as long-term in these cases. As we will show later, our new protocol (SI-X3DH)
is secure even if these three cases marked by asterisks are changed to v'.

14

4.2 Further security properties

We briefly discuss (full) perfect forward secrecy (PFS) as opposed to just weak PFS, which is proved in the
model above. Krawczyk [Kra05] shows that any two-message key exchange protocol authenticated via public
keys (without a secure shared state already established) cannot achieve true perfect forward secrecy. Despite
this, it is claimed in [MP16b] that X3DH can be considered to have PFS, assuming that the identities of
the users can be trusted via some means outside the protocol. In this specific case, Bob’s signature on the
semi-static key can be used to verify that the semi-static key does indeed belong to Bob, preventing even an
active attacker from tampering with the keys Bob provides to defeat PFS (in particular, the server cannot
maliciously provide semi-static keys to Alice while pretending they came from Bob). The same holds for our
proposed scheme, but will not be discussed further in this thesis—the situation is identical to the original
Signal X3DH.

Another very important property of X3DH, which isn’t captured by the above security model (or in general by
the eCK or CK+ models), is that of deniability. Deniability has two flavours: offline and online deniability. A
protocol is offline-deniable if an adversary can gain no non-repudiable evidence of message authorship from a
transcript even if the long-term keys involved are compromised. On the other hand, online deniability means
that even by interacting with the target (or colluding with another user with whom the target interacts),
the adversary cannot gain any such evidence. A protocol satisfying both offline and online deniability is
known as strongly-deniable. Unfortunately, the Signal protocol fails to achieve online-deniability, as shown
by Unger and Goldberg [UG18]—although this notion is very difficult to obtain and arguably less important
that offline-deniability. The first formal proof that offline-deniability is indeed achieved by Signal was given
by Vatandas et al. [VGIK20].

The proof of offline-deniability for Signal carries over to our protocol in an essentially identical manner,
because of how similar the two protocols are. The proof reduces to the Knowledge of DH (KDH) assumption
and its variants (K2DH and EKDH) which informally state that it should be infeasible for an adversary,
given as input public keys for which the secret keys are unknown, to output DH values and other public
keys they do not know the secret key to, yet still satisfy relationships of the form dh; = DH(K7, K5) (where
K1, K5 are public keys). We will not formally define the assumptions here, but refer the reader to [VGIK20].
We give a brief, informal outline of this proof in Section [6.4]

5 Using SIDH for post-quantum X3DH

Suppose, first, that we naively drop in SIDH as a replacement for DH in Figure In order to prevent
adaptive attacks from either party, it suffices to require proof that certain public keys are honestly generated
(for example, requiring proof that said member knows the corresponding private key). In the case of EK 4,
this could easily be done through an FO-like transformation [HHKI17], as was done in the KEM known as
SIKE |[CCHT].

However, upon further examination we notice that Bob’s semi-static public key poses an issue. As Bob may
be offline at the time of exchange, and this key will be reused across multiple iterations of the protocol, he
cannot reveal the secret key to Alice. Even if EK4 is proven to be honestly generated, this would allow a
concrete attack here in the CK security model despite Galbraith’s [Gall8| A.3] claim that using an ephemeral
key in the exchange introduces enough randomness to prevent information about the long-term secret being
leaked. Precisely, in CK-type models, the adversary can use a reveal query on the private key of EK4 to
essentially remove the protection it provides, and then perform an adaptive attack using a malicious semi-
static key. The best we can hope for then is that he also provides a non-interactive proof of honest generation
of SKp. Unfortunately, because the key SKp is regularly rotated, such a proof would have to be regenerated
and reverified every time, and these proofs are not (currently) efficient enough to make this an attractive
course of action.

Instead, we opt to modify the original X3DH protocol somewhat, so that SKp is not used in a key exchange

15

with IK4 (temporarily removing dh; from Figure [1} which we shall soon replace). This means that even if
Bob maliciously adapts SKp in order to learn Alice’s key, the only key he will learn is the secret to EK 4,
which is ephemeral and revealed to him using the FO transform anyway. The other components, dhs, dhs,
and dhy, all involve only Alice’s provably honest ephemeral key, so neither party can learn anything in these
exchanges. Therefore, the only thing left to resolve is how to replace dh; so that 1K, is still used safely
to implicitly authenticate Alice. We cannot use an exchange SIDH(IK 4, EKp) for a symmetrical reason to
above, even if we ignored the fact that EKp is only optional. Thus, to include the key IK4 in the exchange
to authenticate Alice, we are left only with one option: dhy = SIDH(IK 4, IKp).

In this case, we must prove that the long-term keys IK 4, |IKp are honestly generated, to ensure an adaptive
attack cannot be performed by registering multiple fake users with adaptive public identity keys. Because
these keys are fixed and registered (or even authenticated) in advance, we do not encounter the efficiency
degradation of using a more expensive proof to prove knowledge of the corresponding secret keys—a proof
would have to be verified only once per new contact. In fact, depending on the trust model we use for the
server, the verification of these proofs could be offloaded to the server at registration time and would have
no impact on users. If we do not wish to place such trust in the server, it is simple to verify these proofs out-
of-band at the time of first communication with any new contact. In fact, the Signal X3DH protocol already
assumes that participants will authenticate each other’s identity public key via some unspecified external
channel, depending on the desired trust model [MP16b]. The Signal Private Messenger app presents “safety
numbers” and QR codes that can be used to verify contacts in-person. Thus, the introduction of these proofs
does not change the trust model of Signal. Proving SIDH public keys are honestly generated can be done
using a non-interactive zero-knowledge (NIZK) Proof of Knowledge (PoK) of the corresponding secret key.
De Feo, Dobson, Galbraith, and Zobernig [DDGZ21] present such a proof protocol and show that using it
as part of a non-interactive key exchange is much more efficient than resorting to other protocols such as
k-SIDH (in terms of isogeny computations) or generic NIZK proof systems. Thus, this SIDH PoK is perfectly
suitable for our situation.

Exactly as in Signal’s X3DH, we still also require a signature by Bob on SKpg, to ensure that the server does
not fake SK and break perfect forward secrecy by later corrupting IKp (one of the adversarial abilities in our
security model). This poses another obstruction to efficiency, because using an SIDH signature here would
require sending and verifying such a signature regularly—every time Bob replaces his semi-static key. SIDH
signatures are inefficient, and we do not recommend their use for practical systems where signatures need to
be regularly created and verified. Instead, we suggest using another post-quantum signature scheme, such as
a hash-based signature. The ability to use any post-quantum signature scheme for this purpose was already
discussed in Section Whichever verification key Bob uses for these signatures should be registered (and
verified) in advance, just as the identity keys are.

If IK4 and IKp are proven to be honestly generated then we can use dh; = SIDH(IK 4,IKg) in the exchange
without risk of adaptive attack. Historically, H(Eap, Exy) type protocols are referred to as the “unified
model”. A naive scheme of this form was shown to be vulnerable to interleaving and known-key attacks by
Blake-Wilson, Johnson, and Menezes [BWJMO97, Protocol 3]. Essentially, the adversary starts two sessions
with the same user: II7 ; and I}, (participant ¢ thinking they are communicating with j for the s- and u-th
time, respectively). In each of these two sessions, the ephemeral key E,, (or E) provided by i is forwarded
to the other session, and given back to i (as if coming from j). Then the shared key of both sessions
will be H(E;j, Eyus). Revealing either of the two session keys will reveal the session key of the other. For
comparison, a protocol of the form H(E4y, Epx) has that H(E;s, E;y,) # H(Eju, Eis), so the attack would
not be possible. Including the ephemeral keys F; and FE, individually in the hash too would prevent this
attack, because the ordering would differ between the two sessions. Jeong, Katz, and Lee [JKL04] prove this
to be secure (7S82) in the ROM provided knowledge of the secret keys is proven. In the Signal case, because
we additionally have dhy = SIDH(EK 4, Kp) in the exchange, this symmetry between sender and receiver is
already broken. Therefore, we claim that our modified dh; computation is secure.

One other disadvantage of this modification is that it impacts the KCI resistance of the scheme. That is, if

16

the adversary corrupted IKpg, they could pretend to be Alice by choosing any ephemeral key they like, and
calculating dh; using the known secret key, so Bob would accept it as coming from Alice herself. However,
as above, this was the case with the original Signal X3DH anyway (if SKp was corrupted). It is important to
note that due to this modification, the impersonation can persist for longer than in X3DH, since corruption is
no longer repaired by the regular replacement of SKg. While worthy of consideration, we believe the change
is acceptable. As mentioned in the introduction of this chapter, medium-term impersonation seems just as
damaging as long-term, and corruption of an identity key is a severe break in security anyway. Because
neither scheme can claim to have KCI resistance, we still assert that SI-X3DH satisfies the same security
requirements as Signal X3DH, despite this practical difference.

Unlike traditional Diffie-Hellman, where both participants’ keys are of the form ¢g*, in SIDH we have an
asymmetric setup—one user uses a degree-¢{' isogeny, while the other uses a degree-£5? isogeny. In order
to make this work in X3DH where users can be both initiators and receivers, we require that each user has
two long-term identity keys: one of each degree. For concreteness, we shall assume that ¢; = 2 and £y = 3,
therefore the isogenies used by Alice and Bob have degree 2°! and degree 3°2 respectively. The 3°2-isogeny
key is used when initiating a key exchange (that is, by Alice), and the 2¢1-isogeny key is used by the receiver
(Bob), so that there is no ambiguity or incompatibility. This arrangement is chosen so that the sender has
a slightly higher computational burden than the receiver.

All the semi-static keys Bob uploads to the third-party keyserver should thus be generated from 2¢*-isogenies,
as should his one-time (ephemeral) keys be. Whenever Alice initiates a key exchange, her ephemeral key
should be a 3°2-isogeny key. Then all three (or four) SIDH exchanges used in the protocol will work as
usual.

Thus, we arrive at our modified protocol, which we call SI-X3DH (Supersingular Isogeny X3DH). The
protocol is given in Figure [3] In each instance of the protocol, Alice requests Bob’s public key package
from the server, as before. This key package includes Bob’s signature verification key VK g, which is used to
validate the signature on his semi-static key SKp. Alice will then generate a random seed s and use a preimage
resistant hash function H; to compute an ephemeral secret key sk, <— Hi(s). The corresponding public key
is EK4 = Eo/(P1 + [sk,]Q1) (where Ey, P1,Q; are the base curve and ¢7'-torsion basis from the SIDH public
parameters). She will then compute the pre-shared key PSK, and an FO-proof 7 as follows:

dhy = SIDH(IK 4, 1K),
dhs = SIDH(EK 4, IK5),
dh3 = SIDH(EKA,SKB)

H; and Hy are the same PRGs used in Section The reason 7 takes this form will be clear from the
security proof we present in Section [6]

Alice then sends (EK4,7) to Bob, along with an identifier for herself, and information about which of his
ephemeral keys she used in the exchange (if any). Bob can check 7 is valid and honest by re-computing
PSK’ using IK4 and EKy4, computing s’ from 7 by XORing with the values Hy(dh;) (for j = 1,2,3, and if
used, 4), then recomputing sk, <+ H;(s’), and checking that the corresponding public key is equal to EK 4.
He computes PSK as in Equation If the verification of m succeeded, both Alice and Bob can compute
the shared secret K = KDF(s || EK4 || PSK). However, if verification failed, Bob should instead choose a
random r < {0,1}" and compute K = KDF(r || EK4 || PSK). This way, his key will not match the one Alice
derives with overwhelming probability, and the exchange fails, with Alice learning no information about the
cause of failure (or about Bob’s secret keys).

17

Alice Bob

: T R
register 1K, 1K, VK4 register IK%, KX, VKp

|
|
7
| upload SKg, Sigs (SKg), {EKS }4

request prekey bundle S

- - = |
IKE,SKB,SigB(SKB),[EKB] ;

Alice verifies Sigg(SKp) using VKp.
s < {0,1}™; derive EK4 from s.
Compute PSK and 7 as in Eq

r A
IKa, EK 4,7, fingerprint(EKp) 1
L 4

Bob verifies m and recovers s.
Compute PSK as in Eq

Both Alice and Bob compute shared secret K = KDF(s || EK4 || PSK).

Figure 3: The SI-X3DH protocol.

6 Proof of security

Theorem 2. The SI-X3DH protocol presented in Section @ is secure (correct and sound) in the Signal-
adapted-CK model of Definition @ in the random oracle model (where Hqi, Hy and KDF are modelled as
random oracles), assuming the SI-CDH problem is hard.

Proof sketch We briefly outline the proof methodology. The proof is similar to the one given by Cohn-Gordon
et al. [CGCD™20], refitted to our Signal-adapted-CK model and using the Verifiable and Honest SI-CDH
assumptions from Section instead of the standard DDH oracle in the gap assumption. Cases Fs, F3, and
Eg require IK4 and IKp not to be revealed, so we use that as the basis for security in those cases. Similarly,
cases 1 and E7 will use the fact that EK 4 and IKg are not revealed, and case Ej5 relies on EK4 and SKg not
being revealed. Informally, the proof begins by forming a game in which the challenger guesses in advance
which session will be tested, as well as the peer ID of that session. The challenger then simulates the game
and inserts a VCDH or HCDH challenge into that predicted session, showing that an adversary winning the
game can be used to successfully solve the respective hard problem. Once the cases are combined, this gives
a proof of soundness of the SI-X3DH protocol.

Proof. 1t is clear that two parties following the protocol honestly will become partners. It is also clear that
they will both successfully derive the same session key and enter an accept state, as an SIDH protocol has
no failure probability if both parties are faithful. Thus the SI-X3DH protocol is correct.

To prove soundness, we will use a series of game hops. The proof will require splitting into cases following
Table 2 Games 0 to 3 are common to all cases; we then break into a case-by-case proof.

Game 0. This game equals the security experiment in Section The advantage of the adversary in this
game is Adv,. All queries to the random oracles (Hy, Ho, KDF) are simulated in an on-the-fly manner, and
a table of (query, result) pairs is stored.

Game 1. We ensure all honestly generated SIDH keys are unique, or in other words, that there are no key
collisions. If a key is generated that collides with any previously generated key, the challenger aborts and
the adversary loses the game. With at most n parties, S sessions per party, m medium-term (semi-static)

18

keys per party, we have at most n + nm + nS receiving (2°!-isogeny) keys, and at most n + nS sending
(3°2-isogeny) keys. A collision among these keys is an instance of the generalised birthday problem, which
we now briefly recall.

If M is the size of the domain from which N < M objects are uniformly drawn, the generalised birthday
problem shows that the probability of a collision between two objects is

MNJ@:l—%T(l—ﬁ). (2)

k=1

So,
Adv, < p(n+ nm + nS; |Ks|) + p(n + nS; |K3|) + Adv,.

To be explicit, the size of an ¢¢-isogeny keyspace is
((+1)- 71, (3)

s0 |[Ka| = 3-2¢171 and |K3] = 4-3°2~L. Note that the difference between Adv, and Adv; is therefore negligible,
since the numerator in the collision probability is polynomially-sized while the denominator is exponential.

Game 2. We guess in advance which session IT{, the adversary will call the Test query against, and abort if
this guess is incorrect. Note that we abort with high probability—there is only a 1/n.S chance of success—but
the advantages still only differ by a polynomial factor.

Adv; = nSAdv,.

Game 3. In this game, we guess in advance the index of the peer of the test session II!—we guess a
v € {1,...,n} and abort if II? .peer_id # v. The probability of guessing v correctly is 1/n, so

Adv, < nAdvs.

We now split into cases based on Table[2] The cases will be grouped by the approach we take to reduce each
case to the VCDH and HCDH hard problems. Specifically, in each scenario, we consider which of the SIDH
exchanges is not compromised by reveal queries (that is, which of the edges in the exchange graph is not
covered by the revealed vertices), and embed the hard problem into that pair of keys. Firstly, we address
the MEX events, where neither IK4 nor IKg are revealed—cases Fso, E3, and Eg. We then treat the KCI
events, cases F1 and F;, where EK4 and IKg remain unrevealed. Finally, we come to the wPFS event, Ej,
in which the adversary does not reveal either EK4 or SKp.

We shall have, overall, that
Advy = Advy®® + Advy ™ + Advj.

6.1 Cases E,, Es, Eg (MEX)

As mentioned above, the three cases Es, F3, and Fg all rely on IK 4 and IKg not being revealed—the adversary
should thus be unable to compute SIDH(IK 4,1Kg). This is the basis for the following part of the security
proof.

19

Game 4. In this game, we abort if the adversary queries dh; = SIDH(IK 4, 1K) as the first component of
a call to the KDF oracle. We call this event abort,.

Whenever aborty occurs, we show that we can construct an algorithm B that can solve the Verifiable SI-CDH
problem (VCDH) in Definition As per that problem, B receives a triple (E4, Eg,O). B will simulate
Game 3, except that it replaces IK, with F4 and IK, with Ep. It is guaranteed by freshness that B will never
have to output the corresponding (unknown) secret keys. However, these two keys may be used in other
sessions, so B must be able to behave in a consistent manner even when these keys are involved. Specifically,
there are only two cases in which B is unable to compute the session key:

1. A non-tested session between the same users u, v where u is the initiator and v is the responder.
2. A non-tested session between any user other than u, and v, where v is the responder.

In the first of these two cases, the simulator does not know SIDH(E 4, Ep), which is needed for two reasons:
B needs it to compute the session key, but it is also the solution to the VCDH challenge. In the second case,
the simulator does not know SIDH(EK g, E'g) for potentially malicious ephemeral key EK g, whose secret key
is unknown to B. In all other situations, B will know at least one of the secret keys involved in each SIDH
exchange because they were all generated by the challenger.

We begin with the first case. If a session key or ephemeral key reveal query is made on such a session, B
returns a random key. B also maintains a list of these random keys it generated, and correspondingly the
public keys which should have been used to compute each one. Then, to ensure that other KDF queries made
are consistent with these replaced keys, we do the following on receipt of a query KDF(dhy || dhy || dhs):
B will query O(dhy), and if 1 is returned, this is exactly the case where aborty occurs—then B can return
dh; as the answer to the VCDH challenge. Otherwise, B samples a new random key to return as the KDF
response, and updates its list accordingly.

In the second case, we involve the FO-proof mg also sent as part of the key exchange—a proof of honest
generation for EKg. In such a session, B will check through the output table of queries A has made to oracle
H, (which can only have polynomially-many entries). Let IK,, be the identity key of the initiator. For each
pair of entries (h,h’), we check whether Hy(rg @ h @ ' & Hy(SIDH(IK,,, EB))) is the secret key of EKp.
The simulator can always compute SIDH(IK,,, Eg) when w # u because it knows the private key for IK,,.
In order for mg to be valid, it must have the form

TE = SE D HQ(SIDH(le, EB)) D Hg(dhg) D Hg(dhg,)

so the only way for the adversary to have honestly generated mwg is for it to have queried Hs on inputs
dhg, dhs. Therefore, searching through all pairs (h, h’) of queries will always result in recovery of sg if g
is valid, and if no such pair exists, the receiver would reject the FO-proof and fail the exchange. If such a
pair is found, we can use the computed secret key to also compute SIDH(EKg, Fg). B can now use this
j-invariant in a query to KDF to compute a consistent session key.

Thus, Adv(abort,) = Adv'***(B) and

Advy®® < Adv'™®(B) + Adv,.

Game 5. In this game, we replace the session key of the test session with a uniformly random key. Because
Game 4 aborts whenever a KDF oracle query is made involving dh;, we know in this game that the adversary
never queried KDF to get the true session key. Hence, the advantage of winning this game is

Adv, = Advy; = 0.

Therefore, we have
Advy*® < Adv'ei®(B).

20

6.2 Cases E1, E;

These two cases rely on EK 4 and IKg not being revealed. Then dhy = SIDH(EK 4, IK5) should be unknown
to the adversary. The proof is very similar to the first cases above, but now relies on the Honest SI-CDH
assumption from Definition[d] The main difference is that now, we must guess which of the signed semi-static
keys will be used in the test session.

Game 4'. In this game, the challenger guesses the index j € {1,...,m}, such that signed semi-static key
SKY is used in the test session, and aborts if this guess is wrong. Consequently,

Advy™ < mAdv,,.

Game 5 and 6. In Game 5, we abort if the adversary queries the KDF oracle with second component
dhs, equal to the test session’s dhs component (derived from EK, and IK,). Once again, B will simulate
Game 4’. After receiving an HCDH instance triple (E4,m, Eg), B will replace the ephemeral key of the
test session with E4, and IK, with Ep. B will then also replace the test session FO-proof with 7y :=
m @ Ho(SIDH(E 4,SK])) @ H2(SIDH(IK,, E)). Recall from the definition of the HCDH problem, that
already includes the component Ho(SIDH(E 4, Eg)), as required, so 7 has the correct form.

There are two cases in which B will not be able to compute valid session keys for non-tested sessions. The
first is for a session where any user initiates with EKg # EK,, and v is the responder. This is because
SIDH(EK g, Ep) is unknown when the secret key of EKg is unknown. The second case is a special case of
the first, when EK, is reused in an exchange with v as the responder. As above, at least one secret key is
known in all other situations, so these are the only two SIDH exchanges unable to be computed by B.

In the first case, B will look up all pairs (h, h’) in the polynomial-length output table of queries A has made
to Ha. Suppose IK,, is the identity key of the initiator, and 7g is the FO-proof sent along with the ephemeral
key EKg. B will check whether Hy(mg @ h & h' @ Ho(SIDH(IK,,, Ep))) is the secret key of EKg. As above,
SIDH(IKy, Fg) is known to B since the secret key of 1K, is. Also as above, the only way for the adversary
to have generated a valid proof 7g is if they had made queries Ha(dhs) and Hz(dhg)—otherwise, even if the
adversary guessed the outputs of Hy correctly (with negligible probability), they would not be able to verify
that the mp they created was actually correct without making the required queries to Hs anyway. Hence,
the only case the proof 7 is accepted is when a valid pair (h, k') exists in the query list of Hs, and if such
a pair is found, we can use the secret key to compute the needed j-invariant SIDH(EKg, Ep). B can now
use this j-invariant in a query to KDF to compute a consistent session key. If no pair is found, the receiver
would reject the FO-proof and fail the exchange.

In the second case, we cannot compute the output of KDF because dhy = SIDH(E 4, E) is unknown. So B
will return a random key and keep a table for consistency as in the previous cases. Whenever the adversary
makes a query to the KDF oracle, we check if Hy(m @ Ha(dhs)) corresponds to the secret key of Ey4, and
if it does, B has learned dhy as the SI-CDH value of E4 and Ep, this is also the case in which the game
aborts. Note that the 7 used here is the one from the HCDH challenge, not from the exchange (7g) or the
test session (mr). There is a negligible probability 1/2™ that the adversary guessed the correct output of
H, without making a query of the form Hy(dhs) (leading to an abort without recovering the answer to the
HCDH challenge).

Game 6’ is identical to Game 5 in the previous section. We therefore have

Advy” < m(Adv"*™®(B) +1/2").

6.3 Case E5 (WPFS)

This case relies on EK4 and SKp not being revealed (wPFS assumes that, in the future, these secrets are
unrecoverable). Alternatively, this proof could be reduced to EK4 and EKp which are both purely ephemeral.

21

However, because EKp is optional in the Signal protocol (to avoid key exhaustion DoS), we reduce to the
former scenario. In this case, we must again guess which of the signed semi-static keys will be used in the
test session.

Game 4”. In this game, the challenger guesses the index j € {1,...,m}, such that signed semi-static key
SK? is used in the test session. The game aborts if this guess is wrong. Hence,

Advi < 1y Advy.

Game 5" and 6”. These proceed exactly as in Games 5" and 6’ of cases E; and E; above, but with the
HCDH challenge keys inserted into EK, and SK?. Furthermore, exactly as in the previous subsections, B
knows the secret keys needed to compute the SIDH values of all exchanges except in two cases: an exchange
with v as the responder using semi-static key SK% (because EKg is unknown and potentially maliciously
chosen), and the specific subcase where EKg = EK,,. This is essentially identical to cases F; and E;. We
conclude that

Advi < m(Adv*™®(B) +1/27).
Finally, bringing all the game hops and cases together, we have

Advfﬁms < p(n+nm+nS;|Ks)
+ p(n +nS; [KCs]) (4)
+n%S [Adv"th + 2mAdv It 4 m/2" 1,

where n is the number of participants, m is the number of semi-static keys per participant, and S is the
maximum number of sessions run per party.

Because the VCDH and HCDH problems are hard if the SI-CDH problem is (shown in Section, it directly
follows that SI-X3DH is secure if the standard SI-CDH problem is hard. O

6.4 Deniability

As mentioned in Section [£.2] the proof of offline-deniability of SI-X3DH is almost identical to that of the
original Signal X3DH protocol (given in [VGIK2(]), due to the similarity between the schemes. We just give
a brief informal outline of the proof below.

Proof outline: Intuitively, for Bob to prove Alice’s involvement, he would have to provide a Diffie-
Hellman value DH(A, -) which he could not possibly have generated himself—it must therefore have been
generated by Alice. Because no DH values are exchanged between Alice and Bob in X3DH or SI-X3DH, and
because the KDH, K2DH and/or EKDH assumptions hold, this is impossible. On top of this, because neither
protocol uses a signature on session-specific information (unlike [HKKP21]), there is no loss of deniability
there either. Proof of offline-deniability proceeds as an argument about simulatability, which we shall now
sketch.

In the case of deniability for the initiator, given Alice’s public key IK4, the simulator Sim will generate
x + K3 and compute EK 4. Sim will then send this to Bob, who outputs keys IKg, SKp, EKg. The simulator
can compute dhy = SIDH(EK 4, IKp), dhg = SIDH(EK 4,SKg), and dhy = SIDH(EK 4,EKg) because z is
known, but cannot compute SIDH(IK 4, IKg). Under the KDH-type assumptions, there must be an extractor
B for Bob’s key IKp—let us call it B. If B outputs Z then the shared key is KDF(Z || dhy || dhs || dhy)—the
real shared key. On the other hand, if B outputs L, then Sim chooses a session key at random. In either

22

case, Sim also computes the FO-proof m using the session key it computed. In the second case, no PPT
algorithm can compute SIDH(IK 4, 1K) without knowing IKp, so the random key is indistinguishable from
the real key.

We come now to the case of deniability for the responder, given Bob’s public key IKp, and also a signed
semi-static key SKp,Sig(SKp). The simulator will send these two public keys to Alice, who outputs a
key EK4. Under the KDH-type assumptions, there exists an extractor A for Alice which will either output
the required SIDH values needed to compute the real key or will fail to output, in which case a random
key will be indistinguishable from the real one as above. Thus, either way, assuming the KDH, K2DH and
EKDH assumptions hold in the SIDH setting (which we claim they do), our SI-X3DH protocol is offline-
deniable.

7 Efficiency

SIDH is a practically efficient post-quantum key exchange proposal. SIKE, derived from SIDH, is an alternate
candidate in round 3 of NIST’s post-quantum standardization competition. Duits [Duil9] examined the
practical efficiency of using SIDH in the Signal protocol (though note that the implementation is not SI-
X3DH, but the naive implementation, vulnerable to adaptive attacks), and found it entirely practical.

The SI-X3DH protocol uses three or four SIDH exchanges as part of the process to derive the shared key—a
reflection of how Signal X3DH also uses three or four DH exchanges. In a single SI-X3DH exchange, the
only other information sent (on top of the SIDH public keys) is the FO-proof . This is simply n bits, which
does not have a significant impact on the efficiency of the protocol. Thus, using SIDH for a post-quantum
X3DH replacement is efficient at exchange time.

One of the main drawbacks of the SI-X3DH protocol is that it requires registering two keys rather than
one on the server—a receiving key and a sending key. This is due to the inherent asymmetry of the SIDH
protocol. However, SIDH has among the shortest key sizes of any post-quantum key exchange scheme, so
this is not an issue. Note, too, that to initiate a conversation with a peer, only one key is required to be
retrieved (the peer’s sending key is not needed if they are the responder).

The second major drawback is that these keys also require an SIDH Proof of Knowledge or proof of honest
generation, such as the one given by De Feo et al. [DDGZ21]. Depending on the trust model, this can be
offloaded to the server at registration time or verified out-of-band, and only needs to be verified once. The
best case is that a user verifies the proof for a contact once and then continues creating sessions with that
same contact over a long period of time. However, if users regularly add new contacts, this could create a
large overhead by requiring verification of such a proof for each. In the worse case, if a proof is required on
nearly every new key exchange session, the overhead would be very large, and our scheme would no longer
be efficient.

As discussed earlier, it appears that any post-quantum Signal X3DH replacement requires a post-quantum
signature scheme to achieve perfect forward secrecy, and our scheme is no different. However, we empha-
sise that the use of a single signature is much more efficient than the generic schemes by Hashimoto et
al. [HKKP21] and Brendel et al. [BFGT22|, which both require two signatures per exchange—one of which
must be a more expensive ring or DVS signature to attain deniability.

We now consider the exchange-time efficiency of our protocol compared to the others proposed in the lit-
erature. By exchange-time, we mean the protocol occurring after the identity keys of the peer have been
retrieved and verified (thus not taking into account the SIDH PoK on the identity keys). We consider the
exchange-time efficiency because we assume a scenario in which we are beginning a new exchange with an
already-verified peer, or a peer whose keys were verified in-person some time in advance.

As mentioned previously, our protocol is more efficient in terms of computation at exchange-time than
Brendel et al.’s Split-KEM based X3DH [BFG™20] protocol using CSIDH (assuming CSIDH does even

23

satisfy the security properties needed for their split-KEM scheme, which they leave as an open problem).
Based on NIST security level 1, we compare the fast, constant-time CTIDH [BBC™21] implementation of
CSIDH-512 with the SIKEp434 parameter set. According to Banegas et al. [BBCT21], the cost of computing
the CSIDH action is approximately 125 million Skylake clock cycles, while Cervantes et al. [COR21] state
that STIKEp434 key generation and agreement takes around 5 million Skylake clock cycles—roughly 25 times
faster. The split-KEM protocol proposed by Brendel et al. would require two CSIDH actions for each of the
four encapsulations and decapsulations. SI-X3DH, on the other hand, requires only four SIDH exchanges,
so in total would be around 50 times faster.

While the Signal-conforming AKE scheme proposed by Hashimoto et al. [HKKP21] and the SPQR protocol
by Brendel et al. [BEGT22] can be instantiated using efficient KEMs such as SIKE or other NIST post-
quantum KEM candidates, the need for a post-quantum secure ring signature or DVS scheme is a large
drawback to the efficiency of these protocols. Instantiating with the ring signature schemes of Beullens,
Katsumata, and Pintore [BKP20], and choosing the lattice-based instantiation (Falafl) to optimise for speed
(rather than signature and key size), would require around 78 million clock cycles for signing. Therefore, the
signing time alone is already four times slower than the full SI-X3DH key exchange, and such a signature
would be around 30 KB in size. The smaller isogeny-based instantiation (Calamari), whose signatures are
around 3.6 KB, would take on the order of 10! clock cycles—many orders of magnitude slower.

Thus, concretely, when performing an exchange with a user whose identity key has been verified via an
SIDH Proof of Knowledge in advance or out-of-band, SI-X3DH is the fastest exchange-time post-quantum
alternative to Signal’s X3DH protocol currently in the literature.

Finally, to summarize the key differences with the original Signal X3DH protocol in a short form:
e Users must register two long-term public keys rather than one—a receiving and a sending key.

e Key compromise impersonation attacks (KCI) can no longer be rectified by replacing the semi-static
key. Bob needs to switch to a new long-term key if his long-term key is compromised.

e Long-term key registration requires a proof of honest generation (such as [DDGZ21]), to avoid adaptive
attacks by registering many fake users with malicious long-term keys.

e The signatures on Bob’s semi-static keys can use any post-quantum signature scheme, and Bob should
additionally register his signature verification public key so these can be validated.

e When initiating a new key exchange, Alice must also send a small FO-proof (n bits in size) along with
her ephemeral public key, and Bob must check this proof on its receipt.

8 Conclusion

An SIDH key exchange is still safe for use if we have sufficient guarantee by both parties that their keys are
honestly generated. This important observation allows us to use SIDH in a secure post-quantum replacement
for Signal’s X3DH protocol. We show that Brendel et al. [BEGT20] were too rushed in dismissing SIDH as
a candidate for this reason. While a naive drop-in use of SIDH into X3DH would be insecure as they claim,
by tweaking the protocol to use a novel FO-like transform and a proof of knowledge for identity keys, we
can make SIDH safe for use in the Signal X3DH protocol. Our new protocol, SI-X3DH, provides an efficient,
post-quantum secure replacement for X3DH which closely resembles the original protocol.

References
[ACD19] Joél Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs,

and modularization for the Signal protocol. In Advances in Cryptology — EUROCRYPT 2019,
pages 129-158, Cham, 2019. Springer International Publishing.

24

[AJL17)

[BBC+21]

[BFG+20]

[BFG+22]

[BKP20]

[BR93]
[BWJIM97]

[CCH*]

[CGCD*20]

[CKO1]

[CLM+18]

[COR21]

[Cre09]
[DDGZ21]

[DFJP14]

Reza Azarderakhsh, David Jao, and Christopher Leonardi. Post-quantum static—static key
agreement using multiple protocol instances. In International Conference on Selected Areas in
Cryptography, pages 45-63. Springer, 2017.

Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer,
Benjamin Smith, and Jana Sotdkova. CTIDH: faster constant-time CSIDH. Cryptology ePrint
Archive, Report 2021/633, 2021. https://ia.cr/2021/633!

Jacqueline Brendel, Marc Fischlin, Felix Giinther, Christian Janson, and Douglas Stebila. To-
wards post-quantum security for Signal’s X3DH handshake. In Selected Areas in Cryptography—
SAC 2020, 2020.

Jacqueline Brendel, Rune Fiedler, Felix Giinther, Christian Janson, and Douglas Stebila. Post-
quantum asynchronous deniable key exchange and the Signal handshake. In Public-Key Cryp-
tography - PKC 2022 - 25th IACR International Conference on Practice and Theory of Public
Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part II, volume 13178 of
Lecture Notes in Computer Science, pages 3—34. Springer, 2022.

Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 464-492. Springer, 2020.

Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In CRYPTO
’93, volume 773 of Lecture Notes in Computer Science, pages 232—249. Springer, Springer, 1993.

Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their
security analysis, 1997.

Matthew Campagna, Craig Costello, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, David Urbanik, et al. Supersingular isogeny key
encapsulation.

Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A
formal security analysis of the Signal messaging protocol. Journal of Cryptology, 33(4):1914—
1983, 2020.

Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In International conference on the theory and applications of cryptographic
techniques, pages 453—-474. Springer, 2001.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An
efficient post-quantum commutative group action. In Advances in Cryptology — ASIACRYPT
2018, pages 395-427, Cham, 2018. Springer International Publishing.

Daniel Cervantes-Vazquez, Eduardo Ochoa-Jiménez, and Francisco Rodriguez-Henriquez. Ex-
tended supersingular isogeny Diffie-Hellman key exchange protocol: Revenge of the SIDH. IET
Information Security, 2021.

Cas J. F. Cremers. Formally and practically relating the CK, CK-HMQV, and eCK security
models for authenticated key exchange. JACR Cryptol. ePrint Arch., 2009:253, 2009.

Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig. SIDH proof of knowl-
edge. Cryptology ePrint Archive, Report 2021,/1023, 2021. https://ia.cr/2021/1023.

Luca De Feo, David Jao, and Jérome Plat. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209-247, 2014.

25

https://ia.cr/2021/633
https://ia.cr/2021/1023

[DGL*20]

[Duil9]

[FP21]

[FSXY12]

[Gall8]

[GPST16]

[HHK17]

[HKKP21]

[JDF11]

[TKL04]

[KLM*15]

[Kra05]

[LLMO7]
[MP16a]
[MP16b)]

[Peil4]

Samuel Dobson, Steven D. Galbraith, Jason LeGrow, Yan Bo Ti, and Lukas Zobernig. An adap-
tive attack on 2-SIDH. International Journal of Computer Mathematics: Computer Systems
Theory, 5(4):282-299, 2020.

Ines Duits. The post-quantum Signal protocol: Secure chat in a quantum world. Master’s
thesis, University of Twente, 2019.

Tako Boris Fouotsa and Christophe Petit. SHealS and HealS: Isogeny-based PKEs from a key
validation method for SIDH. In Adwvances in Cryptology - ASIACRYPT 2021 - 27th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6-10, 2021, Proceedings, Part IV, volume 13093 of Lecture Notes in Com-
puter Science, pages 279-307. Springer, 2021.

Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure
authenticated key exchange from factoring, codes, and lattices. In Public Key Cryptography —
PKC 2012, pages 467-484, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Steven D. Galbraith. Authenticated key exchange for SIDH. Cryptology ePrint Archive, Report
2018/266, 2018. https://eprint.iacr.org/2018/266.

Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of
supersingular isogeny cryptosystems. In Advances in Cryptology — ASIACRYPT 2016, pages
63-91. Springer Berlin Heidelberg, 2016.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis of the Fujisaki—
Okamoto transformation. In Theory of Cryptography Conference, pages 341-371. Springer,
2017.

Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. An efficient
and generic construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure,
and deniable. In Public-Key Cryptography — PKC 2021, pages 410-440, Cham, 2021. Springer
International Publishing.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In Post-Quantum Cryptography, pages 19-34, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. One-round protocols for two-party authen-
ticated key exchange. In Applied Cryptography and Network Security, pages 220-232, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley, Jerome A. Solinas, and David
Tuller. Failure is not an option: Standardization issues for post-quantum key agreement. Work-
shop on Cybersecurity in a Post-Quantum World, 2015.

Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Annual In-
ternational Cryptology Conference, pages 546-566. Springer, 2005.

Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key
exchange. In International conference on provable security, pages 1-16. Springer, 2007.

Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm. https://signal.org/
docs/specifications/doubleratchet/, 2016. Revision 1, 2016-11-20.

Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol. https://signal.
org/docs/specifications/x3dh/, 2016. Revision 1, 2016-11-04.

Chris Peikert. Lattice cryptography for the internet. In Post-Quantum Cryptography, pages
197-219, Cham, 2014. Springer International Publishing.

26

https://eprint.iacr.org/2018/266
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/

[Per16]

[SSW20)]

[UG1S]
[VélT1]

[VGIK20]

Trevor Perrin. The XEADSA and VXEdDSA signature schemes. https://signal.org/docs/
specifications/xeddsa/}, 2016. Revision 1, 2016-10-20.

Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake
signatures. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages 1461-1480. ACM, 2020.

Nik Unger and Tan Goldberg. Improved strongly deniable authenticated key exchanges for
secure messaging. Proceedings on Privacy Enhancing Technologies, 2018(1):21-66, 2018.

Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273:A238—
A241, 1971.

Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On the crypto-
graphic deniability of the Signal protocol. In Applied Cryptography and Network Security, pages
188-209, Cham, 2020. Springer International Publishing.

27

https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/

	Introduction
	Related work
	Outline
	Acknowledgements

	The Signal X3DH protocol
	SIDH
	SIDH assumptions
	New SI-CDH-based assumptions

	Security model
	Key indistinguishability experiment
	Further security properties

	Using SIDH for post-quantum X3DH
	Proof of security
	Cases E2, E3, E6 (MEX)
	Cases E1, E7
	Case E5 (wPFS)
	Deniability

	Efficiency
	Conclusion

