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Abstract. Consider the following problem: You have a device that is supposed to compute a linear
combination of its inputs, which are taken from some finite field. However, the device may be faulty
and compute arbitrary functions of its inputs. Is it possible to encode the inputs in such a way that
only linear functions can be evaluated over the encodings? l.e., learning an arbitrary function of the
encodings will not reveal more information about the inputs than a linear combination.

In this work, we introduce the notion of algebraic restriction codes (AR codes), which constrain ad-
versaries who might compute any function to computing a linear function. Our main result is an
information-theoretic construction AR codes that restrict any class of function with a bounded num-
ber of output bits to linear functions. Our construction relies on a seed which is not provided to the
adversary.

While interesting and natural on its own, we show an application of this notion in cryptography.
In particular, we show that AR codes lead to the first construction of rate-1 oblivious transfer with
statistical sender security from the Decisional Diffie-Hellman assumption, and the first-ever construction
that makes black-box use of cryptography. Previously, such protocols were known only from the LWE
assumption, using non-black-box cryptographic techniques. We expect our new notion of AR codes to
find further applications, e.g., in the context of non-malleability, in the future.

1 Introduction

In this work, we consider leakage problems of the following kind: Assume we have a device which takes
an input x and is supposed to compute a function f(z) from a certain class of legitimate functions F. For
concreteness, assume that the class F consists of functions computing linear combinations, e.g., f(z1,z2) =
a1x1 + asxs. However, the device might be faulty, and instead of computing f it might compute another
function g. We want to find a way to encode x into an & such that the following two properties hold:

— If the device correctly implements a linear function f, then we can efficiently decode the output y to
f(@).

— If, on the other hand, the device implements a non-linear function g, then the output g(#) does not
reveal more information about x than f(x) for some linear function f.

First, note that this notion is trivially achievable if F includes the identity function, or in fact any
invertible function, as in this case we can simulate ¢g(Z) from f(x) by first recovering = from f(x), encoding
x to & and finally evaluating g on . For this reason, in this work, we will focus on function classes F whose
output-length is smaller than their input-length, such as the linear combination functions mentioned above.
In general, we will allow both the encoding and decoding procedure to depend on a secret seed, which is not
given to the evaluating device/adversary.

It is worthwhile comparing the type of security this notion provides to tamper-resilient primitives such as
non-malleable codes (NM-codes) [DPW10, DKO13, ADL14] and non-malleable extractors [DW09, DLWZ11,
Lil2, CG14]. Such notions are geared towards prohibiting tampering altogether. Moreover, a central aspect



for security for such notions is that the decoder tries to detect if some tampering happened, and indeed the
decoder plays a crucial role in modelling the security of non-malleable codes. In contrast, AR codes do and
should allow manipulation by benign functions from the class F. Furthermore, we only require a decoder for
correctness purposes, whereas security is defined independently of the decoder.

One motivation to study the above problem comes from cryptography, specifically secure computation,
where this is, in fact, a natural scenario. Indeed, a typical blueprint for secure two-party computation [Yao82]
in two rounds proceeds as follows: One party, called the receiver, encrypts his input y under a homomorphic
encryption scheme [Pai99, Gen09, BV11, GSW13] obtaining a ciphertext ¢, and sends both the public key
pk and the ciphertext ¢ to the other party, called the sender. The sender, in possession of an input x
homomorphically performs a computation f on input x and ciphertext ¢, obtaining a ciphertext ¢’ which
encrypts f(x,y). The ciphertext ¢’ is sent back to the receiver who can then decrypt it to f(z,y).

For the case of a malicious receiver, the security of this blueprint breaks down completely: A malicious
receiver can choose both the public key pk and the ciphertext ¢ maliciously, i.e. they are generally not
well-formed. Effectively, this means that the sender’s homomorphic evaluation will result in some value f(x)
(where f will be specified by the receiver’s protocol message) instead of an encryption of f(z,y). Critically,
the value f (z) might reveal substantially more information about x than f(z,y) and compromise the sender’s
security.

Generally speaking, in this situation, there is no direct way for the sender to enforce which information
about x the receiver obtains. A typical cryptographic solution for achieving malicious security involves using
zero-knowledge proofs to enforce honest behavior for the receiver. This technique, however, is typically
undesirable as it often leads to less efficient protocols (due to these tools using non-black-box techniques)
and the need for several rounds of interaction or a trusted setup. We aim to upgrade such protocols to achieve
security against malicious receivers without additional cryptographic machinery.

To see how algebraic restriction codes will help in this scenario, consider the following. Upon receiving a
public key pk and a ciphertext ¢ from the receiver (who potentially generated them in a malicious way) the
sender proceeds as follows. First, he encodes his own input z into & using a suitable AR code with a fresh seed
s. Next, also then sender evaluates the function f(Z,-) homomorphically on the ciphertext ¢ (which encrypts
the receiver’s input y), resulting in a ciphertext ¢/ = Eval(pk, f(%,-),¢). For simplicity’s sake, assume that
the sender now sends ¢’ and the seed s back to the receiver, who decrypts ¢’ to 2 = f(&,y) and uses the seed
s to decode % to his output z using the decoding algorithm of the AR code.

How can we argue that even a malicious receiver cannot learn more than the legitimate output 2?7 Let’s
take a closer look on the computation which is actually performed on the encoding . The output ciphertext
¢’ is computed via ¢’ = Eval(pk, f(Z, ), c). Thus, if we can assure that the function ¢(z) = Eval(pk, f(Z,), )
is in the class G which is restricted by the AR code, then security of the AR code guarantees that ¢’ does
not leak more than z = f(xz,y) about z, irrespective of the choice of pk and c.

1.1 Our Results

In this work, we formalize the notion of algebraic restriction codes and provide constructions which restrict
general function classes to linear functions over finite fields. Let G and F be two function classes. Roughly,
a G-F AR code provides a way to encode an x in the domain of the functions in F into a codeword Z in the
domain of the functions in G, in a way that any function f € F can still be evaluated on z, by evaluating a
function f’ € G on Z. Furthermore, given f’(Z) we can decode to f(x). Security-wise, we require that for any
g € G there exists a function f € F, such that g(Z) can be simulated given only the legitimate output f(x).
AR codes provide an information-theoretic interface to limit the capabilities of an unbounded adversary in
protocols in which some weak restrictions (characterized by the class G) are already in place. In this way, AR
codes will allow us to harness simple structural restrictions of protocols to implement very strong security
guarantees.

In this work we consider seeded AR codes, where both the encoding and decoding procedures of the AR
code have access to a random seed s, which is not provided to the function g.

Our first construction of AR-codes restricts general linear functions to linear combinations.



Theorem 1 (Formal: Theorem 4, Page 14). Let F, be a finite field, let F be the class of functions
k . .

Fy x IF’; — ]F’; of the form (x,y) v ax +y, and let G be the class of all linear functions Fy x Fy — Fy of

the form (x,y) — Ax +y. There exists a seeded AR code ARy which restricts G to F.

Our main contribution is a construction of seeded AR codes restricting arbitrary functions with bounded
output length to linear combinations.

Theorem 2 (Formal: Theorem 5, Page 19). Let F, be a finite field, let F be the class of functions
FyxFy — Fy of the form (x,y) — ax +by, and let G be the class of all functions Fy x Fy — {0, 1}15mlog(a),
There exists a seeded AR code ARy which restricts G to F.

We note that the constant 1.5 in the theorem is arbitrary and can in fact be replaced with any constant
between 1 and 2.

The main ingredient of this construction is the following theorem, which may be of independent interest
and which we will discuss in some greater detail. The theorem exhibits a new correlation-breaking property
of the inner-product extractor.

In essence, it states that for a suitable parameter choice, if X1, ...,x; are uniformly random vectors in
a finite vector space and s is a random seed (in the same vector space), then anything that can be inferred
about the (x1,s),...,(X¢,s) via a joint leak f(xi,...,%:) of bounded length can also be inferred from a
linear combination ), a;(x;,s), i.e. f(x1,...,%;) does not leak more than ), a;(x;,s).

Theorem 3 (Formal: Theorem 5, Page 19). Let g be a prime power, let t,s be positive integers, and
e >0 and n = O(t+ s/log(q) + (log 1)/ log(q)). Let x1,...,x; be uniform in F and s is uniform in F} and
independent of the x;. For any f : IFZ" — {0, 1}l ats there exists a simulator Sim and random variables
ai,...,at € Fq such that

Saf(xla"'axt),<xlas>7"'a<Xt>s>7ala"'7at
t
oo Sim | s,aq,...,a, E QUi | ULy Uy Qe e e, Ot
i=1
where uy, ..., u; are uniform and independent random variables in F,, independent of (aq,...,a).

One way to interpret the theorem is that the inner product extractor breaks all correlations (induced by
aleak f(x1,...,%¢)), except linear ones. Recall that our notion of AR codes it is crucial that linear relations
are preserved.

We then demonstrate an application of AR codes in upgrading the security of oblivious transfer (OT)
protocols while simultaneously achieving optimal communication, a question that had remained opened
due to insurmountable difficulties, explained later. Specifically, we obtain the first rate-1 OT protocol with
statistical sender privacy from the decisional Diffie Hellman (DDH) assumption. While our motivation to
study AR codes is to construct efficient and high rate statistically sender private OT protocols, we expect
AR codes and in particular the ideas used to construct them to be useful in a broader sense.

2 Technical Outline

In what follows, we provide an informal overview of the techniques developed in this work.

2.1 Warmup: Algebraic Restriction Codes for General Linear Functions

Before discussing the ideas leading up to our main result, we will first discuss the instructive case of AR
codes restricting general linear functions to simple linear functions. Specifically, fix a finite field F, and let
G be the class of linear functions Fﬁm — " of the form g(X1,%2) = AX) + X9, where A € IF;"X’” is an



arbitrary matrix. We want to restrict G to the class F consisting of linear functions Fg" — F™ of the form
f(x1,%x2) = a - %1 + Xo, where a € Fy is a scalar.

Our construction proceeds as follows. The seed s specifies a random matrix R € Fy*™, such a matrix
has full rank except with probability < 2~(™=")_ To encode a pair of input vectors x1,xy € [y, the encoder
samples uniformly random X;,Xs g IFZ1 such that RXx; = x; and RXs = x5, and outputs the codeword
(X1,%2). To evaluate a scalar linear function given by a € F; on such a codeword, we (unsurprisingly)
compute ¥y = ax; + X2. To decode ¥ we compute y = Ry. Correctness of this AR code construction follows
routinely:

Yy = Ry = R(afcl + )A(Q) = R&)Ail + R)ACQ =aRx + R)ACQ = aX1 + Xo.

i.e. correctness holds as the scalar a commutes with the matrix R.

In this case it will also be more convenient to look at the problem from the angle of randomness extraction;
Specifically, assume that X1, %2 <—5 Fy" are chosen uniformly random. We want to show that for any matrix
A € F"*™ anything that can be learned about Rx; and Rxy from Ax; + X2 can also be learned from
a-R%x; + Rx%; for some a € F,.

How can we find such an a for any given A? First notice that if X; happens to be an eigenvector of
A with respect to an eigenvalue a;, then it indeed holds that Ax; 4+ x5 = a;x; + x2. Thus, a reasonable
approach is to set the extracted scalar a € F, to one of the eigenvalues of A (or 0 if there are no eigenvalues).
If the matrix A has several distinct eigenvalues a;, we will set a to be the eigenvalue whose eigenspace V;
has maximal dimension. Note that since the sum of the dimensions of all eigenspaces of A is at most n,
there can be at most one eigenspace whose dimension is larger than m/2. Furthermore, the eigenvalue a;
corresponding to this eigenspace will necessarily be the extracted value a.

Rather than showing how we can simulate ¥ = AX; + X5 in general, in this sketch we will only briefly
argue the following special case. Namely, if all the eigenspaces of A have dimension smaller than or equal to
m/2, then with high probability over the choice of the random matrix R <—g Fy*™ it holds that x; = R%;
and x = RXs are uniform and independent of y. Thus assume that y = AX; + X2 was not independent
of x; = RX; and x2 = RxXs. Since these three variables are linear functions of the uniformly random
x1 and Xp there must exist a non-zero linear relation given by vectors u,v € Fj and w € Fy* such that
u'x; +v'xy+w'y =0 for all choices of X; and %X,. But this means that it holds that u' R +w'A =0
and v R +w' = 0. Eliminating w ', this simplifies to the equation u' R = v' RA.

We will now argue that for any such matrix A € Fj"™*™ (whose eigenspaces all have dimension < m/2)
with high probability over the choice of the random matrix R, such a relation given by (u,v) # 0 does not
exist. We will take a union bound over all non-zero u, v and distinguish the following cases:

— If u and v are linearly independent, then u' R and v' R are uniformly random and independent (over
the random choice of R). Thus the probability that u' R and v RA collide is 1/¢™.

— If u and v are linearly dependent, then (say) u = av. In this case u' R = v'RA is equivalent to
av'R = v RA, i.e. the uniformly random vector v' R is an eigenvector of the matrix A with respect
to the eigenvalue «. However, since all eigenspaces of A have dimension at most m/2, the probability
that v' R lands in one of the eigenspaces bounded by m/q™/?.

Since there are ¢®" possible choices for the vectors u,v € [y, choosing m sufficiently large (e.g. m > 5n)
implies that the probability that such u,v € Fy exist is negligible. The full proof is provided in Section 6.

2.2 Algebraic Restriction Codes for Bounded Output Functions

We will now turn to algebraic restriction codes for arbitrary functions with bounded output length. Now let
F, be the finite field of size ¢, let G be the class of all functions from F2" — {0, 1}15" 1o8(@) and let F be the
class of linear functions Fg — g, i.e. all functions of the form f(z1,x2) = a1x1 + azxy for some a1, as € Fy.
Our AR code construction follows naturally from the inner product extractor. The seed s consists of a
random vector s <—g IFZ, to encode x1,x2 € IFy we choose uniformly random x;,x2 € IFZ with (x1,8) = 1
and (xa,8) = xo. Likewise, to decode a value y we compute y = (y,s), correctness follows immediately as
above. To show that this construction restricts G to F, we will again take the extractor perspective. Thus,



assume that x1,x2 € Fy are distributed uniformly random and let g : Fy x Fy — {0,1}1:57108(P) bhe an
arbitrary function.

We need to argue that for any g € G there exist exist a1, a2 € Fy such that g(x1,x2) can be simulated
given y = a1 (X1, 8)+az2(X2,s), but no further information about (x1,s) and (x2,s). Our analysis distinguishes
two cases.

— In the first case, both (x1,s) and (x2, s) are statistically close to uniform given g(x1, X2). In other words, it
directly holds that g(x1,X2) contains no information about (x1,s) and (xa3,s). We can simulate g(x;,Xz2)
by choosing two independent x} and x} and computing g(x],x5).

— In the second case (x1,s) and (x2,s) are (jointly) statistically far from uniform given g(x1,xs2). In this
case we will rely on a variant of the XOR Lemma [Vaz86] to conclude that there must exist a1, a2 € F,
such that a1x1 + aszo is also far from uniform given g(x1,x2). Roughly, the XOR Lemma states that
if it holds for two (correlated) random variables z1, zo that for all a1, as € Fy (such that one of them is
non-zero) that ayz; + asze are statistically close to uniform, then (z1, z2) must be statistically close to
uniform in Fg. Consequently, the existence of such aq,as € F, in our setting follows directly from the
contrapositive of the XOR Lemma. But this implies that a1x; 4+ asx, must have very low min-entropy
given g(x1,x2). Otherwise, the leftover hash lemma would imply that a1x1 + asze = (a1X;1 + asxa,s) is
close to uniform given g(x1,x2), in contradiction to the conclusion above. But this means that a;x;+asxs
is essentially fully specified by g(x1,%2). In other words g(x1, X2) carries essentially the entire information
about a1x1 + asx2. But now recall that the bit size of g(x1,x32) is 1.5nlog(g) bits and the bit size of
a1X1 + azX9 is nlog(q) bits. Thus, there is essentially not enough room in g(x1,x3) to carry significant
further information about x; or x. Again relying on the leftover hash lemma, we then conclude that
given g(x1,x2), (X1,s) and (xa,s) are statistically close to uniform subject to a;(x1,s) + az(x2,8) = y.

While this sketch captures the very high level ideas of our proof, the actual proof needs to overcome
some additional technical challenges and relies on a careful partitioning argument. The proof can be found
in Section 7.

2.3 From AR Codes to Efficient Oblivious Transfer

We display the usefulness of AR codes in cryptography by constructing a new oblivious transfer (OT) [Rab05,
EGLS82] protocol. OT is a protocol between two parties, a sender, who has a pair of messages (mg, m1), and a
receiver who has a bit b, where at the end, the receiver learns m;, while the sender should learn nothing. OT
is a central primitive of study in the field of secure computation: Any multiparty functionality can be securely
computed given a secure OT protocol [Yao86, Kil88]. In particular, statistically-sender private (SSP) [NP01,
ATRO1] 2-message OT has recently received a lot of attention due to its wide array of applications, such as
statistical ZAPs [BFJ*20, GJJM20] and maliciously circuit-private homomorphic encryption [OPP14]. While
the standard security definitions for OT are simulation-based (via efficient simulators), SSP OT settles for a
weaker indistinguishability-based security notion for the receiver and an inefficient simulation notion for the
sender. On the other hand, SSP OT can be realized in just two messages, without a setup and from standard
assumptions, a regime in which no OT protocols with simulation-based security are known®. In this work,
we obtain the first OT protocol that simultaneously satisfies the following properties:

(1) It is round-optimal (2 messages) and it does not assume a trusted setup.

(2) It satisfies the notion of statistical sender privacy (and computational receiver privacy). That is, a receiver
who may (potentially) choose her first round message maliciously will be statistically oblivious to at least
one of the two messages of the sender.

(3) It achieves optimal rate for information transfer (i.e., it is rate-1).

(4) Tt makes only black-box use of cryptographic primitives, in the sense that our protocol does not depend
on circuit-level implementations of the underlying primitives.

5In fact, it can be shown that any simulator for such a protocol would need to make non-black-box use of
the adversary, as it would immediately imply a two-message zero-knowledge protocol, which was shown black-box
impossible in [GO94]



Prior to our work, we did not know any OT protocol that simultaneously satisfied all of the above properties
from any assumption. The only previous construction was based on LWE (using expensive fully-homomorphic
encryption techniques), which only satisfies the first three conditions, but not the last one. (See Section 3.)
We obtain constructions that satisfy all the above conditions from DDH/LWE. Optimal-rate OT is an
indispensable tool in relazing various MPC functionalities with sublinear communication [IP07]. As direct
corollaries, we obtain two-message maliciously secure protocols for keyword search [IP07] and symmetric
private information retrieval (PIR) protocols [KO97] with statistical server privacy and with asymptotically
optimal communication complexity from DDH/LWE. Our scheme is the first that makes only black-box use
of cryptography, which we view as an important step towards the practical applicability of these protocols.

Packed ElGamal. Before delving into the description of our scheme, we recall the vectorized variant of
the ElGamal encryption scheme [EIG84]. Let G be an Abelian group of prime order p and let g be a
generator of G. In the packed ElGamal scheme, a public key pk consists of a vector h = (hy,...,h,) € G"
where h; = g% for random z; <g Z,. The secret sk is the vector x = (z1,...,2,) € Z;‘. To encrypt a
m = (my,...,my) € {0,1}", we choose a uniformly random r <+—g Z, and set the ciphertext c to

¢ = (do,d) = (9", h" - g™)

where both exponentiations and group operations of vectors are component-wise. We call dy the header
of the ciphertext and d = (di,...,d,) the payload of ¢, we further call dy,...,d, the slots. To decrypt
a ciphertext ¢, we compute m = dlog,(d;™ - d). If we disregard the need for efficient decryption, we can
encrypt arbitrary Zj vectors rather than just binary vectors. For such full range plaintexts the rate of packed
ElGamal, i.e. the ratio between plaintext size and ciphertext size comes down to (1 — 1/(n + 1)) log(p)/A,
assuming a group element can be described using A bits. If A =~ log(p), as is the case for dense groups, the
rate approaches 1, for sufficiently large n. Finally, for a matrix X € {0,1}"**, we encrypt X column-wise,
to obtain a ciphertext-matrix C.

Homomorphism and Ciphertext Compression. Packed ElGamal supports two types of homomorphism.
It is linearly homomorphic with respect to Z,-linear combinations. Namely, if c¢ is an encryption of a vector
m € Zjy and ¢’ is an encryption of a vector m’ € Zj, then for any a, 8 € Z, it holds that ¢ = ¢ ' is a well-
formed encryption of am + Sm’ (again, disregarding the need for efficient decryption for large plaintexts).
This routinely generalizes to arbitrary linear combinations, namely we can define a homomorphic evaluation
algorithm Eval; which takes as input a public key pk, a ciphertext matrix C encrypting a matrix X € Zy*™,
and two vectors a € Z;" and b € Z; and outputs an encryption of Xa + b. By re-randomizing the resulting
ciphertext this can be made function private, i.e. the output ciphertext leaks nothing beyond Xa + b about
a and b.

The second type of homomorphism supported by packed ElGamal is a limited type of homomorphism
across the slots. Specifically, let ¢ = (dp,d) be an encryption of a message m € Zy and let M € Z7*" be a
matrix. Then there is a homomorphic evaluation algorithm Evals which takes the public key pk, the ciphertext
c and a matrix M € Z;**" and outputs a ciphertext ¢, such that ¢’ encrypts the message m’ = Mm under
a modified public key pk’ = ¢gM*. Furthermore, if the decrypter knows the matrix M, it can derive the
modified secret sk’ = Mx and decrypt ¢’ to m’ (given that m’ € {0,1}™).

Finally, the packed ElGamal scheme supports ciphertext compression for bit-encryptions [DGI*19]. There
is an efficient algorithm Shrink which takes a ciphertext ¢ = (dp,d) and produces a compressed ciphertext
¢ = (do, K,b), where K is a (short) key and b € {0,1}" is a binary vector. Consequently, compressed
ciphertexts are of size n + poly(A) bits and therefore have rate 1 — poly(\)/n, which approaches 1 for a
sufficiently large n (independent of the description size of group elements). Such compressed ciphertexts can
then be decrypted using a special algorithm ShrinkDec, using the same secret key sk. Compressed ciphertexts
generally do not support any further homomorphic operations, so ciphertext compression is performed after
all homomorphic operations.

Semi-Honest Rate-1 OT from Packed ElGamal. The packed ElGamal encryption scheme with ci-
phertext compression immediately gives rise to a semi-honestly secure OT protocol with download rate 1.
Specifically, the receiver whose choice-bit is b generates a key-pair pk, sk, encrypts the matrix b - I to a ci-
phertext matrix C, and sends ot; = (pk, C) to the sender. The sender, whose input are two strings mg and



m; € {0,1}" uses Eval; to homomorphically evaluate the function
f(X) = X(m; —myp) +my

on the ciphertext C, obtaining a ciphertext c. It then compresses the ciphertext ¢ to a compressed ciphertext
¢ and sends ot; = ¢ back to the receiver who can decrypt it to a value m’ using the ShrinkDec algorithm.
By homomorphic correctness it holds that b- I - (m; — mg) + mg = my,.

However, note that the sender privacy of this protocol completely breaks down against malicious receivers.
Specifically, a malicious receiver is not bound to encrypting the scalar matrix b-I, but could instead encrypt
an arbitrary matrix A € Zj*", thereby learning A(m; — mg) + my instead of m;. By e.g. choosing

.

the receiver could learn half of the bits of mg and half of the bits of m, thus breaking sender privacy.

Malicious Security via AR Codes. Next we show how to make the above protocol statistically sender
private against malicious receivers using AR codes. The protocol follows the same outline as above, except
that the sender samples a seed R for an AR code and encodes its inputs

%1 = Encode(R, m; — my) and %X = Encode(R, my).

Then it computes a ciphertext ¢ = Evaly (pk, C, X1, %2). If the sender were to transmit directly this ciphertext,
the rate of the scheme would degrade (due to the size of the encodings) and the decryption would not be
efficient, since ¢ contains an encoding y € Z;'. To deal with this issue, we observe that decoding y to y
via y = Ry is exactly the type of operation supported by the homomorphic evaluation Evals. Thus, we let
the sender further compute ¢’ = Evals(pk, ¢, R). By homomorphic correctness of Evaly, it holds that ¢’ is
an encryption of Ry =y = m; € {0,1}" under a modified public key pk’ (which depends on R). Since ¢’
encrypts a binary message, the sender can further use the ciphertext compression algorithm Shrink to shrink
¢’ into a rate-1 ciphertext €. The sender now sends R and ¢ back to the receiver, who derives a key from sk
and R, and uses it to decrypt ¢ via ShrinkDec.

If we were to do things naively, the protocol would still not achieve rate-1 since we have to also attach to
the OT second message a potentially large matrix R. This can be resolved via a standard trick: By reusing
the same matrix R in several parallel instances of the protocol, we can amortize the cost of sending the
matrix R. Note that R can be reused as we only need to ensure that the matrix A does not depend on R.
Thus, we have achieved a rate-1 protocol.

There is one subtle aspect that we need to address before declaring victory: The security of AR codes
only guarantees that a malicious receiver may learn a(m; — myg) + mg for some a € Z,, rather than b(m; —
my) + mgy = my for b € {0,1}. To address this last issue, we let the sender compute %X; and X5 by

x1 = Encode(R, x1)

X2 = Encode(R, x2),

m; —mg-+r m .
where x; = ! 0 %) and X9 = 0 and rg,r; are uniformly random.
m; —mg+ 1 my—r;

Consequently, instead of a(m; — mg) + mg the ciphertext ¢ now encrypts

B m; —mg +ro my
Flxixz) = a <m1 —mg + I"1) + (mo - P1) ’
and by the security of the AR code ¢ does not leak more information about x; and x5 then f(x1,x2). Now,

note that if a = 0, then
m
o) = (™).



where we note that r{ = mgy — r; is uniformly random. On the other hand, if a = 1, then

f(Xl Xg) _ (m1 + 1'0)

m;

where we note that r{, = my + rg is uniformly random. Finally, if a ¢ {0,1}, then

_ (mi—mg+ro mg _ {am; 4+ (1 —a)mg a-ry
f(xo0,x1) = a (m1 —m0+r1) + <m0—r1> o (aml—i—(l—a)mo + (1—a)-r )’
which is uniformly random as the last term is uniformly random. Le. if a ¢ {0,1} the receiver will learn

nothing about mgy and m;. Thus, we can conclude that even for a malformed public key pk and ciphertext
C the view of the receiver can be simulated given at most one my, and statistical sender privacy follows.

Back to Rate-1. Note that now the ciphertext c is twice as long as before, which again ruins the rate of
our scheme. However, note that in order to get a correct scheme, if a = 0 the receiver only needs to recover

the first half zy of the vector f(x1,x2) = (zo>’ whereas if a = 1 she needs the second part z;. Our final
1

idea is to facilitate this by additionally using a rate-1 OT protocol OT' = (0T}, OT,, OT3) with semi-honest
security (e.g. as given in [DGIT19]). We will further use the fact that the packed ElGamal ciphertext ¢ can
be written as (h, €p, €1), where h is the ciphertext header, €y is a rate-1 ciphertext encrypting zy and ¢; is
a rate-1 ciphertext encrypts z; (both with respect to the header h).

We modify the above protocol such that the receiver additionally includes a first message ot} computed
using his choice bit b. Instead of sending both €y and €; to the receiver (which would ruin the rate),
we compute the sender message ot for OT’ as ot} < OTa(ot}, €y, €1) and send (h,oth) to the receiver.
The receiver can now recover ¢, from oty and decrypt the ciphertext (h,€;) as above. Note that now the
communication rate from sender to receiver is 1. Note that we do not require any form of sender security
from the rate-1 OT. Finally, note that as discussed above the the protocol can be made overall rate-1 by
amortizing for the size of the receiver’s message (i.e. repeating the protocol in parallel for the same receiver
message but independent blocks of the sender message).

Certified vs Uncertified Groups. We conclude this overview by discussing two variants of groups where
we can implement the OT as specified above. In certified groups, we can assume that G in fact implements a
group of prime order p, even if maliciously chosen. In these settings, our simpler variant of AR codes suffices,
since we are warranted that a malicious receiver can only obtain information of the form Ax; + x5 (for an
arbitrarily chosen matrix A). In non-certified groups, the linearity of the group is no longer checkable by
just looking at its description G. Here we can only appeal to the fact that have a bound on the size of the
output learned by the receiver, enforced by the fact that our OT achieves rate-1: The second OT message is
too short to encode both X; and X5. In these settings, we need the full power of bounded-output AR codes,
in order to show the statistical privacy of the above protocol.

2.4 Roadmap

We discuss some related works in Section 3. The preliminaries are provided in Section 4. We will introduce
algebraic restriction codes in Section 5. In Section 6 we show that canonic AR codes restrict general linear
functions to simple linear functions. In Section 7 we show that canonic AR codes restrict output-bounded
functions to simple linear combinations, where the main result of this section is stated in Theorem 5. In
Section 8 we provide our construction of rate-1 SSP OT from DDH and we discuss novel applications in
Section 9.

3 Related Work

A recent line of works [DGIT19] proposed a new approach to constructing semi-honest OT with a rate ap-
proaching 1. This framework can be instantiated from a wide range of standard assumptions, such as the



DDH, QR and LWE problems. The core idea of this approach is to construct OT from a special type of
packed linearly homomorphic encryption scheme which allows compressing ciphertexts after homomorphic
evaluation. Pre-evaluation ciphertexts in such packed encryption schemes typically need to encrypt a struc-
tured plaintert containing redundant information to guarantee correctness of homomorphic evaluation. In
the context of statistical sender privacy, this presents an issue as a malicious receiver may deviate from the
structure required by the protocol to (potentially) learn correlated information about mgy and m;.

Regarding the construction of SSP OT, all current schemes roughly follow one of three approaches
sketched below.

The Two Keys Approach [NP01, ATR01, HK12, BD18]. In this construction blueprint, the re-
ceiver message ot specifies two (correlated) public keys pk, and pkj under potentially different public
key encryption schemes. The sender’s message of; now consists of two ciphertexts ¢g = Enc(pkg,mo)
and ¢; = Enc’(pk},m1). Statistical sender privacy is established by choosing the correlation between the
keys pko and pkj in such a way that one of these keys must be lossy, and that this is either directly en-
forced by the underlying structure or checkable by the sender. Here, lossiness means that either ¢y or ¢y
loses information about their respective encrypted message. In group-based constructions following this
paradigm [NPO1, ATR01, HK12], the sender must trust that the structure on which the encryption schemes
are defined actually implements a group in order to be convinced that either pk, or pk] is lossy. We say that
the group G must be a certified group. This is problematic if the group G is chosen by the receiver, as the
group G could e.g. have non-trivial subgroups which prevent lossiness.

Furthermore, note that since the sender’s message ots contains two ciphertexts, each of which should,

from the sender’s perspective be potentially decryptable, this approach is inherently limited to rates below
1/2.
The Compactness Approach [BGIT17]. The second approach to construct SSP OT is based on high
rate OT. Specifically, assume we are starting with any two round OT protocol with a (download) rate greater
than 1/2, say for the sake of simplicity with rate close to 1. This means that the sender’s message oty is
shorter than the concatenation of mg and m1. But this means that, from an information theoretic perspective
ots must lose information about either mg or m;. This lossiness can now be used to bootstrap statistical
sender privacy as follows. The sender chooses two random messages 7o and r; and uses them as his input to
the OT. Moreover, he uses a randomness extractor to derive a key kg from ry and k; from r; respectively.
Now the sender provides two one-time pad encrypted ciphertexts co = kg @ mg and ¢; = k1 ® my to the
receiver. A receiver with choice bit b can then recover 1, from the OT, derive the key k; via the randomness
extractor and obtain my by decrypting cp.

To argue statistical sender privacy using this approach, we need to ensure that one of the keys kg or kq is
uniformly random from a malicious receivers perspective. Roughly speaking, due to the discussion above the
second OT message oty needs to lose either half of the information in ry or r1. Thus, in the worst case, the
receiver could learn half of the information in each rg and r; from ots. Consequently, we need a randomness
extractor which produces a uniformly random output as long as its input has n/2 bits of min-entropy. Thus,
we can prove statistical sender privacy for messages of length smaller than n/2.

But in terms of communication efficiency, this means that we used a high rate n-bit string OT to
implement a string OT of length < n/2, which means that the rate of the SSP OT we’ve constructed is
less than 1/2. This is true without even taking into account the addition communication cost required to
transmit the ciphertexts ¢y and c;. Thus, this approach effectively trades high rate for statistical sender
privacy at the expense of falling back to a lower rate. We conclude that this approach is also fundamentally
stuck at rate 1/2.

The Non Black-Box Approach [BDGM19, GH19]. While the above discussion seems to imply that
there might be an inherent barrier in achieving SSP OT with rate > 1/2, there is in fact a way to convert any
SSP OT protocol into a rate-1 SSP OT protocol using sufficiently powerful tools. Specifically, using a rate-1
fully-homomorphic encryption (FHE) scheme [BDGM19, GH19], the receiver can delegate the decryption of
oty to the sender. In more detail, assume that OT3(st,ots) is the decryption operation which is performed
by the receiver at the end of the SSP OT protocol. By providing an FHE encryption F'HE.Enc(st) of the
OT receiver state st along with the first message ot, the receiver enables the sender to perform OTj3(st, ots)



homomorphically, resulting in an FHE encryption ¢ of the receivers output m;. Now the receiver merely has
to decrypt ¢ to recover my. In terms of rate, note that the OT sender message now merely consists of ¢, which
is rate-1 as the FHE scheme is rate-1. Further note that this transformation does not harm SSP security,
as from the sender’s view the critical part of the protocol is over once oty has been computed. L.e. for the
sender performing the homomorphic decryption is merely a post-processing operation. On the downside, this
transformation uses quite heavy tools. In particular, this transformation needs to make non black-box use of
the underlying SSP OT protocol by performing the OTj3 operation homomorphically.

In summary, to the best of our knowledge, all previous approaches to construct SSP OT are either
fundamentally stuck at rate 1/2 or make non black-box usage of the underlying cryptographic machinery,
making it prohibitively expensive to run such a protocol in practice.

Finally, we mention that if one wishes to settle on a computational instead of statistical privacy for the
sender, it is possible to build rate-1 OT using existing techniques by relying on super-polynomial hardness
assumptions. The idea is that the parties will first engage in a (low-rate) OT protocol OTy, so that the
receiver will learn one of the two random PRG seeds (sg, s1) sampled by the sender. In parallel, the sender
prepares two ciphertexts (cto := PRG(sg)@myg, cty := PRG(s1)@®m;) for his two input messages (mg, m1), and
communicates one of them to the receiver using a semi-honest rate-1 OT protocol. Even given both (ctg, ct1)
the receiver cannot recover both mgy and mq, because OT; will guarantee at least one of the seeds remains
computationally hidden to the receiver. The above protocol is rate-1 because the added communication of
obliviously transferring (so, s1) is independent of the size of mg. The main drawback of this above protocol
is that, since we do not rely on a trusted setup, we cannot extract the choice bit in polynomial time from the
receiver, and hence we will have to rely on complexity leveraging to establish sender security. In particular, the
best we can guarantee is that a malicious computationally-bounded receiver cannot compute both messages
of the sender. This notion will fall short in replacing rate-1 SSP OT in the aforementioned applications.

4 Preliminaries

We will denote finite fields of unspecified size by F, and for any prime-power ¢ we will denote the finite field
of size ¢ by F,. We will use ur to denote a uniform and independent random variable over I, and likewise
up: to denote a uniform and independent random variable over F?.

Z are the integers and Z, = Z/qZ are the integers modulo ¢g. Vectors are small, bold letter (i.e. a,b)
while matrices are big, bold letters (i.e. A,B). For sets of functions we use big, italic letters (i.e. F,G). We
also use [n] instead of {1,...,n}.

For a cyclic group we use G and usually call its generator g. As a shorthand for the matrix of group
elements (g™ )i.je[n] We write g™ where M is a matrix is from Z"" and similarly for vectors and rectangular
matrices. This allows for notations such as (g™)¥ = ¢gMY where M is a n x n matrix of group elements and
v is a n vector of group elements.

We use span(M) to indicate the column span of matrix M and LKer(M) its kernel.

Definition 1 (Computational Indistinguishability). Two random variables B and C' are computation-
ally indistinguishable if for every polynomial adversary A

[Prop[A(b) = 1] — Preac[A(e) = 1]]
s negligible in the security parameter

Sometimes we denote this with A ~ B.

4.1 Statistical Measures

We introduce some standard concepts for statistical measures.
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Definition 2 (Statistical Distance). We define the statistical distance between two discrete random vari-
ables A, B to be

A(A;B) = %Z|Pr[A:U] —PrB = ]

We use A(A ; B|C) as a shorthand for A((A, C) ; (B, C)). Sometimes we write A ~. B instead of A(A ; B) <
€.

We call two random variables statistically indistinguishable if their statistical distance is negligible in
some the security parameter. We denote this as = or ~,. Since = by itself is ambiguous we will make it clear
from the context.

Definition 3 (Min-Entropy). We define the min-entropy of a random variable A to be

H,(A) =- log(mgx Pr[A = v])

Definition 4 (Average Conditional Min-Entropy). We define the average conditional min-entropy of
random variable A given the random variable B

H..(A|B) = —log (EbNB [mgx Pr[A=a|B = b]D

We will make use of the following simple Lemma.

Lemma 1 (See e.g. [VLWO1]). Let F be a finite field and m > n be integers. A uniformly random matrix
R g F"*"™ has full rank, except with probability 2~ (=),

We will use the following variant of the leftover hash lemma.

Lemma 2. Letr be uniform in F", and 1 be a random variable in ", Z € Z such that (1, Z) is independent
of r. If

~ 1

012 > g+ 2105 (1)
then

A((I‘, Z7 <la I'>) ; (I', Za U]F)) <e )
where (-,-) is the inner product over F.

We will need the following simple lemma from [AO20]. Variants of this lemma have been used in the past to
prove the security of various non-malleable code constructions (such as [DKO13, ADL14]).

Lemma 3. Let S be some random variable distributed over a set S, and let Sv,...,S; be a partition of S.
Let ¢ : & — T be some function, and let D, ..., D; be some random variables over the set T. Assume that
foralll <i<j,
A(B(9)lses, 5 Di) < &

Then

A(p(S); D) <> ePriSe s,
for some random variable D € T such that for all d Pr[D =d] = 3. Pr[S € §;] - Pr[D; = d|. In particular, if
g, <efori=1,...,j—1, and Pr[S € S;] <0, then

j—1
A(p(9)|ses; ; Di) < sz PriSe S| +PriSeS;]<e+46,.

i=1
The following is a fundamental property of statistical distance.

Lemma 4. For any, possibly random, function «, if A(A; B) <e, then A(a(4) ; a(B)) <e.
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We will need the following lemma.

Lemma 5. [ADL14, Claim 4] Let X1, X5,Y1,Ys be random variables such that (X1, Xs) =, (Y1,Y2). Then,
for any non-empty set A, we have:

2€

. <.
Al Valvied) < prre— 1

5 Algebraic Restriction Codes

In this section, we will define our main technical tool: Algebraic Restriction Codes. An algebraic restriction
code allows encoding a linear function so that any (suitably bounded) malicious evaluation algorithm cannot
exfiltrate information that could not have been obtained via a valid evaluation of the function. We will use
algebraic restriction codes as a powerful interface to achieve circuit privacy without sacrificing other crucial
properties such as high rate. Algebraic restriction codes can be seen as a specific type of secret sharing which
allows for certain homomorphic operations while inhibiting others.

In particular, algebraic restriction codes will become useful in striking a balance between seemingly
conflicting goals: Relying on additional structure to achieve advanced functionality while not making this
additional structure a potential avenue to attack function privacy. Generally, we allow AR-codes to be seeded,
i.e. all operations take as additional input a seed s. We now will define algebraic restriction codes as follows.

Definition 5. An algebraic restriction code consists of three algorithms Encode, Eval and Decode with the
following syntazx.

— Encode(s, z): Takes as input a seed s, an input x and outputs an encoding ¢
— Eval(c, f): Takes as input an encoding ¢, a function f € F and outputs an encoding d
— Decode(s,d): Takes as input a seed s, an encoding d and outputs a value y

In terms of correctness, we require that for all seeds s, all inputs x and all functions f € F that

Decode(s, Eval(Encode(s, x), f)) = f(z).

In terms of security we require that AR codes restrict a potentially larger class G of functions to F.
Specifically, we require that for any malicious evaluation function g € G that evaluating ¢ on an encoding
of an input z corresponds to an honest evaluation of a function f € F on x. We formalize this via a
simulation-based security notion.

Definition 6 (Restriction Security). We say that a code AR is G-F restriction secure, if there exists a
(randomized) extractor £, which takes as input a function g € G and outputs a function f € F and auziliary
information aux, and a simulator S such that for every x and every function g € G it holds that

(s, g(Encode(s, x)), aux) ~ (s,S(s,aux, f(z)), aux),

where s is a uniformly random seed and (f,aux) < E(g). Here, = is either computational or statistical
indistinguishability.

A crucial aspect of algebraic restriction codes will be the complexity of both evaluation and decoding.
Specifically, we will be interested in algebraic restriction codes for which both Eval and Decode are linear
functions.
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5.1 Concatenating AR Codes

Concatenation is a powerful concept in coding theory, allowing to combine properties of different codes. We
will now briefly show that concatenating AR codes has the expected effect: If ARy restricts a class H to a
class G’ and AR, restricts a class G O G’ to another class F, then the code AR3 obtained by first encoding
with ARy and then with AR; restricts H to F.

Lemma 6. Let ARy be an AR code which restricts a class H to a class G. Let further ARy be an AR code
which restricts the class G to a class F. Let ARg be the AR code obtained by first encoding with ARs and then
with ARy, i.e. ARs.Encodes, s,(x) = ARy.Encodeg, (AR2.Encodeg, (m)). Then the code ARg3 restricts H to F.

Proof. Let S1 be the simulator for AR; and Ss be the simulator for ARy;. We define the extractor in the
canonic way via & via E3(h) = (f, (auxy,auxz)) where (f,auxs) = &2(g) and (g,aux;) = E(h). Furthermore,
we define the simulator Sz via S3((auxy, auxs),y) = S1(auxy, Sz2(auxa, y)). Let h € H be a tampering function.
We get that

(h(AR;.Encodes, (AR2.Encodes, (2))), auxy, auxs) ~ (S1(auxy, g(ARs.Encodeg, (x))), auxy, auxz)

(S1(auxy, Sa(auxg, f())), auxy, auxz)

Q

~ (S3((auxy,auxs),y), auxy, auxs).

While Lemma 6 provides a general concatenation theorem for AR codes, in our applications we will rely
on a slight variant for specific function classes where AR; is a H — G AR code and AR5 is a G’ — F AR code
for which the classes G and G’ are not identical, but rather G’ is a subclass of G. In the following, we will
identify the extension field F x with F’; as a vector space.

Lemma 7. LetFy be a finite field and let Fx be its extension field of degree k. Let G be the class of functions
Fyr x Fgr — Fyr of the form (x,y) — ax + by (for a,b € Fyi ), and let H be a class of functions containing
G. Let G’ be the class of functions IF"; X IFZ — IE"Q‘(c of the form (x,y) — Ax+y (for AinF’;Xk), Finally, let
F be the class of functions Fy x Fy — By which are either of the form (x,y) = a-x+y (for a € F,) or
(x,y) = x. If ARy is a H — G AR code and ARy is a G' — F AR code, then the concatenation of ARy and
ARy is a H — F AR code AR3.

Proof. Let £ and S; be the extractor and simulator for ARy, and let £ and S, be the extractor and simulator
for AR,. We start by constructing the extractor £ for AR3. On input h € H, &35 proceeds as follows:

— Compute (g,aux;) < £1(h), and parse g as a function (x,y) — ax + by for a,b € Fx.
— If b=0, set f to be the function (x,y) — x and set auxy = .
— Otherwise:
e Let A/B € IF’;X’“ be the multiplication matrices corresponding to a,b € F,x (Notice that B is
invertible as b # 0) and set ¢’ to be the function (x,y) — B™1Ax +y.
e Compute (f,auxs) < E2(g’)
Set auxs = (auxy, auxs)
Output (f,auxs).

Now the simulator S3 is given as follows. On input (s = (s1, $2), auxs, z), Sz proceeds as follows:

— If auxg = 0, set 2’ + ARy.Encodey, (z,0). Otherwise, compute z’ < b - Sa(s2,auxa, 2).
— Compute and output z” < S1(s1,auxy, 2’).

Now fix a function h € H and let (g,auxy) < &1 (h), where we parse g as a function (x,y) — az + by for
a,b € Fy . We will distinguish two cases, b = 0 and b # 0.

1. In the first case, conditioned on b = 0 it holds that
((s1,82), h(AR1.Encode,, (AR2.Encodes, (x,y))), auxy, auxs)
~ ((s1,52),S1(s1,auxi, g(ARz.Encode, (x,y))), auxi, auxz)
= ((s1,82),51(s1,auxy, g(AR2.Encodes, (x,0))), auxy , auxz)

((s1,52),83((s1,82), (auxy,auxs), f(X,¥)), auxy, auxa).

Q
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2. In the second case, conditioned on b # 0 it holds that

((s1,52), h(AR;.Encode,, (AR2.Encode, (x,y))), auxy, auxz)

~ ((s1,52),S81(s1,auxy, g(AR2.Encodes, (x,y))), auxy, auxs)

= ((s1,52),S1(s1,auxy, b ¢ (AR2.Encodes, (x,y))), auxy, auxa)
~ ((s1, $2),S1(81,auxy, b - Sa(s2,auxs, f(x,y))), auxy, auxs)

~ ((s1,52),S3((s1,82), (auxy,auxs), f(x,y)), auxy, auxa).

Overall, we conclude that
((s1,52), h(ARy.Encode,, (AR2.Encodes, (x,y))), auxy, auxs) =~ ((s1, s2), S5((s1, $2), (auxy, auxa), f(x,y)), auxy, auxs),

which concludes the proof.

6 From Arbitrary Linear to Simple Linear Functions

In this section, we will show a simple construction of AR codes which constrain an adversary from arbitrary
linear functions to simple linear functions. Specifically, we consider the following two classes of functions:

— The class F consists of all functions f : Fy x Fy' — Fy of the form f(x,y) = ax +y, where a € F,
— The class G consists of all functions g : Fg* x Fi* — F¢* of the form g(x,y) = Ax+y, where A € Fgm.

Note that the functions in the class the class F have two degrees of freedom, whereas the functions in
class G have 2n? degrees of freedom.
Let s = R <—g [ ™ be a uniformly random matrix. The AR code AR is given as follows.

Encode(s, x1,x2):
— Choose X1,X2 <3 F" uniformly at random under the restriction that RX; = x; and RXs = x».
— Output ¢ + (X1,%3)
Eval(c, a1, az):
— Parse ¢ = (%X1,%2)
— Compute and output y < Xjaq + Xaas
Decode(s,y):
— Compute and output y + Ry.

The technical core of this section is Lemma 8.

Lemma 8. Let ¢ > 0 be a modulus and n > 0. Let A € F**™ be a square matriz. Let a € F, be the
eigenvalue of A for which the dimension of the corresponding eigenspace V, is mazimal. Let x1,Xo,u $—g
Fy* be chosen uniformly at random. Let further R <—g Fg*™ be chosen uniformly at random. Given that
m > 2n + 2 + 2t it holds that

(R,Rx1,Rx2, Ax; + x2) = (R, Rx1, Rx2,ax; + x2 + (A — a - T)u), (1)

—t over the choice of R.

except with probability 2q
Using Lemma 8, we will establish the main result of this section, Theorem 4.

Theorem 4. Let F, G be the two classes defined above. The AR code ARy restricts G to F.
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Proof (of Theorem 4). Let g(%X1,%2) = A%y + X2, and let a € F, be the eigenvalue of A for which the
corresponding eigenspace has the largest dimension, if no non-zero eigenvalue exists set a = 0. By Lemma 1
the matrix R has full rank, except with negligible probability 2~ (™). By Lemma 8, for uniformly random
X1 and X9 it holds that

(R, R)A(hR)A(Q,A)A(l + )ACQ) = (R, R)Ail, R)ACQ, CL)A(1 + )fg + (A —a- I)u), (2)

except with negligible probability over the choice of R. Thus fix a R which has both full rank and for
which (2) holds, and fix two vectors x1,xs € IFZL. Since R has full rank, we can condition on Rx; = x; and
Rxs = x5 and obtain that

A)A(l +)ACQEG)A(1 +XAQ+(A7(Z'I)U. (3)

This implies that for all but a negligible fraction of the R we can simulate g(X1,%X2) from y = ax; + X3
by choosing a uniformly random random y with Ry =y, and a uniformly random u € Fy* and outputting
z=y + (A —a-I)u. By (3) it holds that z and g(%X;,%2) are identically distributed.

Proof (Proof of Lemma 8). First note that leaving out R, the lefthandside of (1) can be written as My -
(x1,%2) T where
R
M, = R,
Al

whereas the righthandside of (1) (again leaving out R) can be written as M - (x1,X2,u) " where

R
M; = R
al T A—al

Consequently, since x1,x2 and u are chosen uniformly random from Fy", it holds that the two distributions
on the lefthand side and the righthand side are identically distributed, if and only if the columns of M and
M; span the same space. First observe that span(Mj) C span(M;), as My - (x1,%2) " = My (x1,X2,%1) .

To show the other inclusion, note that span(M;) C span(My), if and only if LKer(My) C LKer(Mjy).
Therefore, let (vy,va, w) be a vector in LKer(IMj), i.e. it holds that viR +wA = 0 and voR +w = 0. This
immediately implies that viR = voRA. We will show that this implies that voR is an eigenvector of A.
As R is chosen uniformly from Fp*™, it holds by Theorem 4 that R has full rank, except with negligible
probability 2-(™=")_ Now recall that a is the eigenvalue of A with the eigenspace of highest dimension and
recall that voRA = viR. We will show that this implies that viRA = a - voR, except with negligible
probability over the choice of R. That is, we will show that

Pre[3vi, vz # 0 s.t. vaRA = viR and vaRA # avaR] < negl. 4)

In other words, it holds for all vi,vy # 0 that voRA = v;R implies voRA # av3R, except with
negligible probability over the choice of R. From this is follows immediately that LKer(Mj) C LKer(M;), as
w = —v2R and therefore w(A — al) = —avaR 4 avaR = 0. We will establish (4) via a union-bound over
the v1, vy, and towards this goal we will distinguish two cases.

1. In the first case, vi and vy are linearly dependent, i.e. there exists an o € F, such that vi = avs. If
«a = a then the probability of the event is 0. Thus consider a # a, and let V, be the eigenspace of
A corresponding to the eigenvalue «, where V, = {0} if « is not an eigenvalue of A. Observe that it
must hold that the dimension of V,, is at most m/2, as otherwise o would be the eigenvalue with the
eigenspace of the largest dimension and therefore o = a. Consequently, it holds that

Pr[viR = voaRA] = PrlavaR = voRA]
= Pr[voR € V,] < ¢™/2,
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as voR is distributed uniformly random over IF‘;” and the dimension of V,, is at most m/2.
We further note that there are at most ¢™ choices for vo and ¢ choices for «, thus in this case there are
are ¢" ! possible choices for the pair (v1,va).

2. In the second case, vi and vy are linearly independent. In this case viR and voR are distributed
independently and uniformly random. Consequently, it holds that

Prr[viR = voRA and v3RA # avoR] < Prg[viR = voRA] < 1/¢™.
Note that in this case there are less than ¢®" choices for the pair vy, va.
We can conclude that
Pre[3vi, vz s.t. viR = voRA and vaRA # avaR] < ¢ tg ™2 ¢ g™,

As m > 2n + 2 + 2t, we can bound this probability by 2¢.

7 From Output-Bounded Functions to Linear Combinations

In this section, we will show that the AR code induced by the inner product extractor restricts arbitrary
functions of bounded output length to linear functions. Specifically, consider the following two classes of
functions:

— The class F consists of all functions f : (F,)! — F, of the form f(z1,...,2;) = Y.r_, aiz;, where
ai,...,a €y
— The class G consists of all functions g : (Fy)* — {0, 1} leg(@+s (for some s < nlog(q)).

Let s = s <—3 Fy/ be a uniformly random vector. The AR code AR is given as follows.

Encode(s, z1, ..., 2):
— Choose xi, . ..,X; +¢ Fy uniformly at random under the restriction that (x;,s) = x; for all 7 € [t].
— Output ¢ = (x1,...,X¢)

Eval(c, a):
— Parse ¢ = (x1,...,%¢) and a = (a,...,a).

— Compute and output y < Z§=1 a;X;
Decode(s,y):
— Compute and output y + (y,s).

Restriction security of this construction follows immediately from Corollary 1 at the end of this section.

7.1 A Conditional XOR Lemma

The following is straightforward from a Markov-like argument.

Lemma 9.
— For any € > 0, and any correlated random variables X € S and E if
AX,E; UE)<e,
then for any 6 > 0, with probability at least 1 — 5 over the choice of i < E,
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— For any 6 > 0, if
AX|p=i; U) <9

holds with probability at least p over the choice of i < E, then
AX,E; U E)<d6+(1—-0)-(1—p).

Lemma 10. Let X € S be a random variable for some set S. Assume that A(X ; Ug) =e. Then if X' is
an i.1.d copy of X then

2
1 D 42
Pr— || ==
= S| |S]

) 2
Dz — o = 4%,
|5D

Lemma 11. Let X € S, Z € T be correlated random variables for some sets S, T. Assume that A(X,Z ; Ug, Z) =
€. Then if (X', Z") is an i.i.d copy of (X, Z) then

no 1 RN
PrX =X~ g = 3 (e 137 Z||<Z
Also,

x-S ) = (%

zeS

a

1 42
42 >PrX =X Z=2"1—- =Pr(Z2=2]> :
5] S| - [T

Proof. Let p, = Pr[Z = 2], and let p, , = Pr[X =z, Z = z]. Then

1 2
PX =X, Z2=2]— = -PlZ2=2]= Y (pm,z - pz)

5 e T
1 2
Pz
= Tao 17 Z pa:,z — Tor
ST 17 (S 5] )
o 4e?
|S|- 171

Also,

1 2
PUX = X'\Z2= 2]~ Pz =21 = S (e 52)
|S| z€S,ze€T |S|

(b )

zes
= 4.

The following is a variant of the well known Vazirani’s XOR lemma. This was proved in [ACLV19] in the

quantum setting.

It
T,z ‘S|

O
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Lemma 12. Let x = (z1,...,2¢) € F* be a random variable, and E be some correlated random variable.
Assume that for all aq,...,ap € F not all zero, A(Z’;:l oz, E; up, E) <e. Then

A, E ; upe, E) < 3p3/4 /e .
Proof. We start by choosing E and fixing it. By Lemma 9 and the union bound, we have that with probability

at least 1 — pt% over the choice of E, we have that for all aq,...,a; € F not all zero,
t
A(Z a;x;; up) <0,
i=1
where the distribution of z;’s is conditioned on the choice of E. Let x’ = (f, ..., x}) be i.i.d. as x conditioned
on the choice of E. By Lemma 10, we have that for all aq,...,a; € F not all zero,
: 1
Pr(z ai(z; —xf) =0) < - +46% .
i=1 p

Let a = (ay,...,a;) be uniform in F* and independent of x,x’. Then,

Pr[z a;(z; —x}) = 0]

= Pr[z a;(x; — x}) = 0la # 0] - Prla # 0] + Pr[a = 0]

§(1+452>-(1—1t>+1t.

p p p
(1+452>-(1—‘E>+1t
p p p

> Pr[z a;(z; —x}) = 0]
i=1

Thus,

¢
= Pr[z a;(z; — x}) = 0]x # x| - Pr[x # x] + Pr[x = x]
i=1

Simplifying, we get,
1
< — 4867,
p P
Using the inequality in Lemma 10, we get that
A(x; upe) < 1/282pt <26 2
te

Recall that this is conditioned on the correct choice of EZ which we have with probability at least 1 — p"%
Using Lemma 9 with § = pt/4ﬁ, we have that

A(x,E ; upe, E) < 25 - pt/? ert% — 3t/ 7
O

We remark here that if there is no side information E, then there is no union bound in the first step, and
§ = ¢ so that the statistical distance is 2p*/2e¢.
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7.2 Combinatorial Simulator

We now prove our main technical result, which yields algebraic restriction codes for functions of bounded
output length.

Theorem 5. Let g be a prime power, let n,t, s be positive integers and € > 0 such that

1
nlogqg — (9t + 3)logg — s — 2logt — 28 > 161og — .
€

Let x1,...,x¢ be uniform in Fy and s is uniform in Fy and independent of the x;. For any f : FfI" —
{0,1}nlo8a+s there exists a simulator Sim and random variables ai, . .., a; € Fg, such that
S?f(Xh' .. 7Xt)a <X1,S>,. ) <Xtas>7a17' -y At
t
9. 8,S5im | s, aq,...,a, E Qi | ULy U, A1y, G
i=1
where u1,...,u; are uniform and independent random variables in Fy, independent of (a1,...,a).

We will use the XOR lemma (Lemma 12) to prove this theorem. We will begin by showing that if we
start with x3,...,x; being uniform in any large enough set 7, then there exists a large subset 7/ C T and
some fixed a1, ...,a; in F, such that conditioned on (x1,...,x;) being in this subset, the only information
about (x1,8),...,(X:,s) obtained by learning f(xi,...,x¢) and S is 25:1 a;(x;,s). More formally,

Lemma 13. Let q be a prime power, let n,t,s be positive integers and € > 0 such that
1
nlogqg — (9t + 3)logg — s — 2logt — 28 > 16log — .
€
Let T C FL" such that |T| > e - ¢'™. For any f : Fi* — {0,1}"1°89%s there exist as,...,a; € Fy, non-empty

set T C T, and a simulator Sim, such that for the tuple (x1,...,%x¢) distributed uniformly in T' and s
uniformly and independently in in Fy,

t
A(S,f(xl,...,Xt),<X1,S>,...,<Xt,S> ) SaSim (S,ZCLiUi),Uh...,Ut) SE,
i=1

where uy,...,us are uniform and independent random variables in IFy.

Proof. Let x1,...,x; be uniform in 7. Consider the following cases.

CASE 1: A(x, f(X1,--+,%X¢t), (X1,8), .., (Xt,8) 5 8, f(X1,...,X¢),u1,...,u) < €.
In this case, let 71 = T. The simulator Sim ignores the inputs and just samples s, xq,...,x; according
to the given input distribution, and outputs s, f(x1,...,%;). Thus, the given statement implies

A<s,f(x1,...,xt),(xl,s>,...,<xt,s ; s,Sim(s z:aluZ ul,...,ut>§€,

Notice that since the simulator ignores the input, the above statement holds for any choice of ay, ..., a;.
CASE 2: A(s, f(X1,---,Xt), (X1,8), -+, (X¢,8) 5 8, f(X1, .00, Xe), UL,y ..., U) > E.

Lemma 12 shows that if all non-trivial linear combinations of (x;,s) are close to uniform given E =

(s, f(x1,...,8¢)), then the joint distribution (x1,s),..., (x,s) is close to uniform given E. Applying the

contrapositive, we get that there exists ay,...,a; € Fg, not all 0, such that

2
€
Zazxz, o8, f(xa, %) u,s, f(xa, ..., %)) > 0P
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Notice that this implies that there is a non-trivial correlation between S'_ | a;(x;,s) and (s, f(x1,...,%t)).

We will show that for this choice of aq, ..., as, and an appropriate choice of the subset 7", this correlation

is essentially the only correlation between the joint distribution ((x1,s),. .., (Xt,s)) and (s, f(x1,...,X¢)).
2

By the Markov inequality, with probability at least RST/Q over the choice of y < f(x1,...,x;) iy holds

that

52

¢
A(<Z @iXi58), 8| f(xy,.. xs)=y 5 UsS) > 18617/2 . (5)
i=1

Let Y be the set of all y which satisfy the above. For all y € Y, let T, be the preimage of y for the
function f, i.e., the set of all (x1,...,%;) such that f(xy,...,x%;) = y. We have that an element chosen

uniformly at random from 7 is in 7, for some y € Y with probability at least 18;%/2. This implies that

2 3

3 9
]y>7-|”>7~qtn,
U = 3t/2 = 3t/2
yey 18¢q 18¢q

Let y be some element in ). By the contrapositive of the leftover hash lemma (Lemma 2), we have that
the min-entropy of 22:1 a;x; conditioned on f(x1,...,x;) =y is at most log ¢ + 2log %, where

62

t
A= A((Zl aixi,s>,s|f(th7xt):y ;u,s) > W ,

using the inequality in 5. Thus

¢
1
HOO(Zaixi|f(x1, o xy) =y) <logq+ 4logg + 3tlog g+ 2log18 . (6)
i=1
This implies that for each y € Y, there is a large number of elements (xi,...,%x;) € 7T, such that

Z§=1 a;x; is fixed. We now select only those elements from 7, which correspond Z§=1 a;x; being fixed.
For each y € ), let ¢(y) be the most frequently occurring value of 22:1 a;x; for (x1,...,%¢) € Ty, and

let ,
> aix; = ¢(Z/)} :
=1

= {m e

By the inequality in 6, we have that

! 54
LART AR o
which implies that
3 4 7
/ € tn € € tn
U7 = 18572 1 " 30443441 = DIEPCIPES I (7
yeY
Notice that for any (x1,...,x;) in Uyey 4> it holds that Z§=1 a;x; is equal to ¢(f(x1,...,%y¢)), L.e., it
is uniquely determined given f(x1,...,X).
Intuitively, since Zle a;x; carries roughly nlogp bits of information, and it is a deterministic function
of f(x1,...,%x¢), we expect that f(x1,...,%;) can be uniquely determined with (a little more than an)
additional s bits of information. We will now remove those elements for which it requires a large number
of bits to determine f(xy,...,x;) given 22:1 a;X;.
Let )’ be the set of all y such that
B 2qtn
[0~ ()] < Uo7l 2.
yeyY 'y
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Forye Y\ )Y
2qtn

|Uy€)/ yl

The total number of elements in Y \ )’ is at most the size of the image of f, i.e., ¢" - 2°. Hence the
number of distinct values of ¢(y) for y € Y\ V' is at most

6~ (e(w)] > "2

gt -2°- |Uyey y/| _ |Uyey yl‘
thn . 9s - 2q(t—1)n
Notice that for any element z € IFZ;, there are at most q(t_l)" values of (X1, ...,X;) such that 22:1 a;iX; =

z. Thus, the number of elements in Uy€¢,1(z) T, is at most ¢~V This implies that

U T’ <q(t71)n. |Uy€y yl| _ |Uy€y y/|
g = .

2q(t71)n - 9

yeV\Y’

Thus,

U 7-/ yey y| )

yey’

We let the set 7' be U,y 7, and let x1,Xs,...,%; be uniform in 7. We have the following two
properties satisfied by (xl, .. xt).

— The random variable Z§=1 a;X; is a deterministic function of f(x1,...,xy).

— The random variable f(x1,...,%;) is uniquely determined given

t
O(f(x1,...,%x¢)) = Zaixi and (x1,...,X)

i=1

for some function ¢ : Fi" — {0, 1}s+14+01/2+1) log g+Tlog 2 7
Since not all aq,...,a; are 0, we assume without loss of generality that a; # 0. Then, notice that

HOO(X1'|X1, ey X1y X1y e - ,xt_l,Zaixi)

>log|T'| — (t —1)nlogq

>log | U | —1—(t—1)nlogq
yey’

1

>tnlogq— Tlog— — 14 — (9t/2+ 1)logq — (t — 1)nloggq
€
1

=nlogq — 710gg —14—(9t/24+1)logq,

where we used the inequality (7). Additionally, considering the additional leakage from t(x1,...,x¢), we
get that

ﬁoo<Xi|X1,...,Xifl,Xi+1,...7Xt,1,¢)(f(X1,...,Xt)>,'(/J(X17...,Xt))

1
=nlogq — 14logg —28—(9t+2)logg — s
t
Zlogq+2logg ,

"Since for y € V' we get log ¢~ (#(y))| < log (m . 23) <s+14+(9t/2+ 1)logq+ Tlog L.
y
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where we used the fact that the length of ¢(x,...,%;) is at most s+ 14 + (9¢t/2+ 1)logq + Tlog 1, and
also the bound on nlog g as given in the lemma statement. Restating with ¢, 1 replaced by the function
f, we get the following.

~ t
Hoo (%i[%1, -+, Xim1, Xig1, - Xem1, f(X1, -0, %)) > log g + 210gg :
By the leftover hash lemma (Lemma 2), we have that

(x1,8), (X2,8), ..., (X¢—1,8), f(X1,...,%X¢),8

zs/t Uy, <X27S>,...,<Xt71,S>,f(X1,... th)7x .

Similarly, for i =2,3,4,...,t —1

ULyeonyUj—1, <X7;7S>, <Xi+las>a ey <thlas>7 f(le e 7Xt)7s

R‘st/t ULy vy Uj—1, Us, <Xi+las>a AR <Xt—lvs>a f(Xla cee aXt)as .

By the triangle inequality, we get that

<Xla S>’ ) <Xt—1a S>7 f(Xla S 7Xt)a S
Re(t—1)/t Uly-- -, Ut—1, f(Xl7 . 7X,g), S.
Let Z be the additional randomness needed to sample f(x1,...,%),S given <ZZ:1 a;X;, s), i.e., for some

o, f(X1,..,%¢),8 = 0(Z, (3 1_, aixi,s)). By the leftover hash lemma (Lemma 2), we have that

t
(Z aiXi,s), f(X1,...,%X¢),8 ey u, Sim(u, Z) .
i=1
Again by the triangle inequality, we have that
t
<X17S>7 RN <Xt—17s>a <Z X, S>7 f(X17 s 7Xt)a S
i=1
~e Uy, Ui, U, 0(U, 2) .

Writing (x;,s) as * ((Zi:l a;X;,s) — Zf;i a;(xi, s>) and applying Lemma 4, we have that

t

<X1,S>, ey <Xta S>7 f(xla s 7Xt)a s
1 t—1
R Upy ey U1, — (U — Zaiui), Sim(s,u, Z),s .
at i=1
Notice that u; := a—lt(u — Ef;i a;u;) is uniform in F, and independent of g, ..., u;—1. Rearranging, we

have that u = 22:1 a;u;. Thus, we obtain

t
(X1,8), ...y (X¢,8), f(X1, -, Xg), S R U, - .- ,ut,l,ut,Sim(s,Zaiui, Z),s,
i=1

as needed.

We are now ready to complete the proof of Theorem 5.
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Proof (Proof of Theorem 5). From Lemma 1, there exists a set 77, simulator Sim; and a(ll), .. .,aﬁl) such

that for (x(ll)7 .. ,xgl)) distributed uniformly in 77,

t

~ D).

e 01 Q; "Uq | ULy, Ut -
i=1

(1) (1)

Since a; ’,...,a; ~ are fixed and public we can rewrite above as:
S, f(xgl), . ,Xgl)), (xgl), S)y.nny <x§1),s>, agl), . ,agl)
R 01 <zt: az(»l)ui> JUL, ey Ugs agl), Cah
i=1
If [F," \ T1| > €¢™™, then we again apply Lemma 1 to obtain a set 73, simulator Simy and ag2), ey aﬁz) such

that for (x§2)7 .. ,x§2)) distributed uniformly in 73,

2 2 2 2 2 2
s,f(xg ),...,x§ ))7<x§ ),s>,...,<xg ),s>,a§ ),...,ag )

t
~ }: (2) (2) (2)
NEO'2< Q; “Ug | ULy ey Uty @y "y e e ey Gy 7 s
i=1

We continue to obtain sets T, Tz, ..., Tz by applying Lemma 1, until |7;| < ¢*”. Let the random variable

(ai1,...,a;) and the simulator o be the tuple (agj), ce, agj)) and o; with probability proportional to the size
of T;, i.e., % Then, by Lemma 3, we obtain the desired result. g
Corollary 1. Let q be a prime power, let n,t,s be positive integers and € > 0 such that

1
nlogq — (25t + 3)logg — s — 2logt — 60 > 1610g§ .

Let my,...,my € Fy. Let s be uniform in Fy and let x1,...,x; be sampled uniformly in Fy conditioned on

the event that for all i € [t], (x;,8) = m;. For any f : Fi* — {0,1}"1°8 9% there exists a simulator Sim and
random variables a1, ...,a; € Fy such that

Saf(Xla"'aXt>7a17"',at
t
R 8, Sim (s,al, e ,at,ZaimZ) N S
i=1
where u1,...,u; are uniform and independent random variables in F,, independent of (a1,...,a).
Proof. Applying Lemma 5 to Theorem 5, and conditioning on u; = myq,...,u; = my, we get that if
1
nlogq— (9t +3)logq — s —2logt — 28 > 16log — , (8)
€
then
S7f(xl7"’7xt)7a17"'7a/t
t
/e s, Sim (s,al,...,at,Zaimi> /S P, PO
i=1
where ¢ = 4eq?, or in other words, € = %. Substituting e in Equation (8) gives the desired result. a
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8 Rate-1 SSP OT from DDH

In this section, we discuss the standard definition of rate-1 statistical sender-private oblivious transfer (rate-
1 SSP OT) and then go over our construction using algebraic restriction codes. We start by providing the
necessary cryptographic definitions.

8.1 Decisional Diffie-Hellman Assumption

These assumptions below are with regard to a group-generator scheme while most protocols just consider the
group. This however, is just to make the notation in the protocol easier. Each protocol-participating party
just chooses the group G according to the publicly known group-generator scheme G and security parameter
A and proceeds as detailed in the protocol.

We recall the definition of the decisional Diffie-Hellman assumption [DH76] (DDH).

Definition 7 (DDH). Let G be a group-generator scheme, which on input 1* outputs (G,p,g). The deci-
sional Diffie-Hellman assumption holds for group-generator scheme G if for all polynomial time adversaries

A
|PriA(g, g b,ab) = 1] — Pr [A(g, 9% ¢",9°) = 1]

is negligible in X for (G,p, g) < G(1*) and uniformly random a,b,c € Z,

8.2 Public-Key Encryption Schemes

A public-key encryption scheme uses two keys, a public key pk and a secret key sk. We use the public key to
encrypt messages, the result of which is called ciphertext. Without knowledge of the secret key, it is virtually
impossible to calculate the message from the ciphertext. The secret key, however, enables the holder to
reliably retrieve the message from the ciphertext.

Definition 8 (Public-Key Encryption). The following algorithms describe a public-key encryption scheme:

KeyGen(1*) : The key-generation algorithm takes the security parameter X as input and outputs a key pair
(pk, sk).

Enc(pk,m) : The encryption algorithm takes a public key pk and a message m as input and outputs a ci-
phertext c.

Dec(sk,c) : The decryption algorithm takes a secret key sk and a ciphertext ¢ as input and outputs a message
m. It rarely requires randomness.

In the rest of the document, every encryption scheme will be public key. Therefore we will not mention it
again.

Definition 9 (Correctness). An encryption scheme (KeyGen, Enc, Dec) is correct if for all message m and
security parameters \

Pr [m = Dec(sk, Enc(pk, m))|(pk, sk) « KeyGen(l/\)] =1
The most popular notion of security for encryption schemes is IND-CPA security.

Definition 10 (IND-CPA Security). An encryption scheme (KeyGen, Enc,Dec) is ind-cpa secure if for
all adversary pairs (A1, As)

(pk, sk) < KeyGen(1%)

(mo, m1,0) < A1 (1%, pk) 1

b+g {0,1} 2

b — Az(mp, 0)

Pr|b="¥

s negligible in A
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The rate is trying to capture the size comparison between a ciphertext and its corresponding plaintext.

Definition 11 (Rate). An encryption scheme (KeyGen, Enc,Dec) has rate p if there exists a polynomial u
such that for all security parameters X\, possible outputs of KeyGen(1*) called (pk,sk), and messages m with

lm| > p(X) ml

Enciok )] = "W

We call an encryption scheme high rate if it has a rate greater than 1/2 and we call it rate-1 if for A — oo
the rate p(\) approaches 1.

8.3 Homomorphic Encryption

In homomorphic encryption the decryption algorithm is a homomorphism. Certain changes on a ciphertext
change the underlying plaintext in a structured way.

Definition 12 (Homomorphic Encryption). These four algorithms describe a homomorphic encryption
scheme:

KeyGen(1*) : The key-generation algorithm takes the security parameter X as input and outputs a key pair
(pk, sk).

Enc(pk,m) : The encryption algorithm takes a public key pk and a message m as inputs and outputs a
ciphertext c.

Eval(1*, pk, f,c1,...,¢n) : The evaluation algorithm takes a security parameter \, a public key pk, a string
representation of a function f and n where n is the input size of f ciphertexts cq,...,c, as inputs and
outputs a new ciphertext c.

Dec(sk,c) : The decryption algorithm takes a secret key sk and a ciphertext ¢ as input and outputs a message
m. It rarely requires randomness.

Definition 13 (Homomorphic Correctness). Let F be a set of functions and f be an arbitrary element
of F. An F-homomorphic encryption scheme (KeyGen, Enc, Eval, Dec) is correct if (KeyGen, Enc,Dec) is a
correct encryption scheme, and for all messages m, security parameters X, and (pk,sk) from the support of
KeyGen(1%)

Pr [ f(m) = Dec(sk, Eval(1*, pk, f, Enc(pk,m)))] =1

8.4 Oblivious Transfer

Two-round oblivious transfer is a protocol in which a receiver encodes a choice bit b and transmits it to a
sender. The sender then responds to that transmission using its two messages mo and m;. In the end the
receiver learns my, but not mi_; and the sender learns nothing.

Definition 14 (Oblivious Transfer). A (string) 1-out-of-2 OT consists of three algorithms: OTy, OTx,
and OTs3.

OT.1(1*,b): Takes as inputs the security parameter X € N and a choice bit b € {0,1} to produce a request ot
and a state st.

OTa(ot1, (mg,m1)): Uses the request oty, and the two sender inputs mg,my € {0,1}* of same length to
create a response ots.

OTs(ota, st): Calculates a result y from the state st and the response ots.

We define correctness in the following.

Definition 15 (Correctness). An OT is correct if for all security parameters A, bits b € {0,1}, and sender
inputs mo,my € {0,1}* the following holds:

ot1, st < OTl(].)\,b)
Pr |y = s |ota < OTa(ot1, (mg,m1)) | = 1.
Y o—|—3(01527 St)
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As standard for 2-round OT, we require that the bit of the receiver is hidden in an indistinguishability sense.

Definition 16 (Receiver Security). An OT is receiver secure if for all security parameters A\ and PPT
adversaries A the following holds:

’Pr [A(ot1)]ot1, st < oT, (1%, 0)] — Pr [A(ot1)]oty, st < oT, (1%, 1)] |
is negligible in \.
We define (malicious) statistical sender privacy for 2-round OT.

Definition 17 (Statistical Sender Privacy). An OT is statistically sender private if the exists a un-
bounded simulator Sim such that for all requests oty and sender inputs mg, my € {0,1}* the following holds:

A(OTy(oty, (mg, my)); Sim! (1%, o))

is negligible in A with Sim having one-time access to an oracle f : b— mg- (1 —b) +mq - b.

The (download) rate of an OT protocol captures how big the senders response is in comparison to the
size of a message my.

Definition 18 (Rate). An OT (OTy,0Ts,OT3) has rate p if there exists a polynomial pn such that for all

security parameters A,
mo|

p(A)

for all choice bits b, message lengths n > p(\), sender inputs mg, my € {0,1}", receiver outputs (oty, st)
OT1(1*,b) and sender outputs oty +— OTa(oty, (Mg, m1))

|0t2| -

8.5 Packed ElGamal

A big component of our OT construction is the packed ElGamal encryption scheme, which we recall here for
completeness. As discussed in the introduction, in the ElGamal encryption scheme [EIG84] public keys are of
the form g, h and messages m are encrypted as g", h" -m. In the packed ElGamal scheme, the same header g"
is shared across several payload slots h] -m;, effectively amortizing the cost of the header to encrypt an entire
vector m. Now let G be a cyclic group of prime order p, and let g be a generator of G. In our description we
will provide a decryption algorithm which takes as additional input a matrix M € Z;"*", which is applied
to the secret key before decryption. In this way, we achieve correctness for homomorphic operations across
slots.

KeyGen(1*,n):

— Choose s < Zy, uniformly at random.

— Set h = ¢°.

— Return secret key sk = s and public key pk = h.
Enc(pk,m € {0,1}"):

— Parse pk=h € G".

— Choose 7 ¢ Z,, uniformly at random.
— Return the ciphertext ¢ = (¢",h" - ¢™) € G x G™.

For a matrix X = (X1,...,Xmy) € {0,1}"*™, we overload encryption and denote
Enc(pk, X) = (Enc(pk,x1), ..., Enc(pk,xm)).
Dec(sk, M, c):

— Parse sk = s.
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— Compute s’ = Ms

— Parse c = (c € G,e € G").

— Return dlogg(e/cs,).
Evali(pk,C,a € Z',b € Zj)

— Parse pk =h

— Parse C=cy,...,Cpp.
For all i € [m] parse ¢; = (¢;,€;).

— Choose 1 & Z,, uniformly at random.
Set c=g" [/~ i

Set e = b ([[[", o) - g
Return the ciphertext ¢ = (c, e)
Evaly(pk,c,M € Z;**")

— Parse M = (m;;)

— Parse ¢ = (¢,e) and e = (eq,...,e,)

— For all i € [m] compute d; = []}_, ;"
— Return the ciphertext ¢/ = (¢, d)

For two ciphertexts c¢; and co we overload Eval; and denote by Eval;(pk,cy,co, —) the homomorphic
computation of the difference of ¢; and co. Homomorphic correctness of this scheme follows routinely. To
analyze the rate of this scheme, note that plaintexts m € G™ consist of n group elements, whereas ciphertexts
consist of n 4+ 1 group elements, i.e. there is an additive overhead of 1 group element and the rate of the
scheme comes down to 1 — 1/n. Thus the rate of the scheme approaches 1 for a growing n.

Lemma 14. The packed ElGamal encryption scheme as described above is IND-CPA secure, given the DDH
problem is hard for group G.

Proof. IND-CPA security of the packed ElGamal scheme follows tightly (in n) from the decisional Diffie
Hellman assumption in a routine way: A DDH instance (g,h,¢’,h’) can be rerandomized into a pair of
vectors h and f, such that h is distributed uniformly random in G™ and the following holds for f. If (¢’, h')
is of the form r - (g, h), then f is of the form r - h, whereas if (¢’, k) is uniformly random in G2, then f is
uniformly random in G". Given such an instance (h,f), a reduction can set pk = h and ¢ =f - (1,m). If f
is of the form f = r - h, then c is a correctly distributed ciphertext for the public key pk and the message
m. On the other hand, if f is uniformly random, then c is also uniformly random and independent of m. It
follows that an adversary with advantage e against the IND-CPA security of packed ElGamal can be used
to distinguish DDH with advantage e.

Before presenting our construction we recall a useful pair of algorithms that allow us to compress ciphertexts
for the packed ElGamal encryption scheme.

Lemma 15 ([BBD™"20]). There exists a pair of (expected) PPT algorithms (Shrink, ShrinkDec) such that
if (¢,e) = Enc(pk, m) be a packed ElGamal ciphertext encrypting a message m € {0,1}™.

— Shrink(c,e) — (¢, K,by,...,b,) € G x {0, 1} ™,
— Pr[ShrinkDec(sk, Shrink(c,e)) = m] = 1.

Proof (Sketch). Let T be a polynomial in the security parameter and let PRF : {0,1}* x G — {0,1}", where
7 & log(\), be a pseudorandom function. On input a ciphertext (¢, (e1, ..., e,)), the compression algorithm
Shrink samples the key K for the PRF until the following two conditions are simultaneously satisfied: For all
i € [n] it holds that

(1) PRF(K, e:/g) # 0.
(2) There exists a §; € [T — 1] such that PRF(K,e; - ¢%) = 0.
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The compressed ciphertext consists of (¢, K,d; mod 2,...,d, mod 2) where §; is the smallest integer that
satisfies condition (2).

The compressed decryption algorithm ShrinkDec finds, for every ¢ € [n], the smallest 7; such that
PRF(K,c® - g7i) = 0 by exhaustive search, where sk = (s1,...,s,). Finally it outputs M; = ¢; ® LSB(~v;),
where LSB denotes the least significant bit of an integer. Note that the scheme is correct with probability 1,
since condition (1) ensures that there is no ambiguity in the decoding of the bit M;. By setting the parame-
ters appropriately, we can guarantee that K can always be found in polynomial time, except with negligible
probability.

We can straightforwardly modify the algorithm ShrinkDec in the same way as we have modified the Dec
algorithm above to support decryption of ciphertexts produced by Evals. Specifically, we modify it such that
it takes as an additional input a matrix M and transforms the secret key sk before decrypting its input
ciphertext.

8.6 Construction

We will now provide our construction of rate-1 SSP OT from the packed ElGamal scheme and an additional
receiver-secure rate-1 OT. Specifically, let (OTy,0T2,0T3) be a receiver-secure rate-1 OT protocol. We will
also use the the packed ElGamal encryption scheme with ciphertext compression discussed above. Finally,
let AR = (AR.Encode, AR.Eval, AR.Decode) be an AR~code with linear decoding, i.e. decoding of a codeword
y proceeds by computing R,y for a matrix R, € Zf,”x”” specified by a seed s.

Our OT protocol (OT7,0T5,0T3;) is given as follows. In the following we assume that the seed s is
available to the receiver after the first message ot} has been sent. Note that since the seed can be reused in
an arbitrary number of parallel executions of the protocol, its size can be amortized and does therefore not
affect the asymptotic rate of the protocol.

OT; (1%, b):

— Compute (oty, stor) + OT1(1*,b).

— Compute (pk, sk) « KeyGen(1*,m).

~ Set A =b-TezZmm,
Compute C = Enc(pk, A)

— Return ot; = (ot1, pk, C) as the first message and set (stor,sk) to be the secret state.
OT3(ot, (mp, my)):

— Parse ot} = (ot1, pk,C)

— Parse my € {0,1}"™ and m; € {0,1}".

— Sample two uniform vectors rq ﬁ Z;L and ry ﬁ ZZ.
— Compute x; = <$1 : 22 i i?) S Zﬁ” and xg = <m0m_0 I‘1> € ZZn
— Compute (X1,%X3) < AR.Encode(s, x1,X2)
— Compute ¢ = Eval; (pk, C, x1,%3)
— Compute c* = Evaly(pk, ¢, Ry)
— Compute ¢ = Shrink(pk, c*)
— Parse € as ¢ = (¢, €p, €1).
— Compute oty + OTa(ot1, (€9, €1))-
Output ot} < (¢, ots)
OT;(oth, st):
— Parse st as (stor,sk) and ot} as (¢, ota).
— Compute ¢ = OT3(ota, stoT)
— Return ShrinkDec(sk, Ry, (¢, ¢€)).
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Correctness follows routinely from the correctness of the underlying primitives. First observe that in each of
the two branches by homomorphic correctness of Eval; and Evals that c* encrypts

Rs(b- %1 + %X2) = AR.Decode(s, AR.Eval(b, AR.Encode(s, X1, X2)))

= le + Xo.
Now observe that

ShrinkDec(sk, Ry, (¢,€’))) = ShrinkDec(sk, Rs, (¢, )

. (ml—m0+r0)-0+m0:m0 ifb=0
N (1’1’11—1’H0+I‘1)-1+1’H0—I‘1=1’1’11 ifb=1

We proceed by showing the computational receiver privacy of the resulting OT protocol.

Theorem 6 (Receiver Privacy). The scheme as described above is computationally receiver private, given
that (OT1,0T2,0T3) is a computationally receiver private OT and that the packed ElGamal scheme is IND-
CPA secure.

Proof. The proof consists in observing that the following distributions
(OT1(1*,0), Enc(pk,0-T)) ~ (OT(1*,1), Enc(pk, 0 - T)) = (OT (1%, 1), Enc(pk, 1 - T))

are computationally indistinguishable by the receiver privacy of the OT and IND-CPA security of the packed
ElGamal scheme, respectively.

Instantiating the AR Code Finally, we show that our scheme satisfies statistical sender privacy. In the
certified group setting, we can directly rely on the AR codes constructed in Section 6. In the uncertified
group setting, we routinely obtain the required codes by concatenating the AR codes of Section 7 over an
extension field of Z, with the AR codes of Section 6 via Lemma 7.

Theorem 7 (Sender Privacy). The scheme as described above is statistically sender private, given that
the AR code AR restricts functions of the form h(X1,%2) = Evaly(pk, C,%1,%X2) (for maliciously chosen pk,
C) to linear functions of the form f(X1,X2) = aXy + X2 or f(X1,%2) = X;1.

Proof. We will first provide the description of the (unbounded) simulator Sim. Sim uses the extractor £ and
the simulator & of the AR code AR as a subroutine. Now fix a maliciously chosen receiver message ot} =
(ot1, pk, C). On input ot}, Sim proceeds as follows. It first defines a function h(X;,%s2) = Eval; (pk, C, %1, X2)
and runs the extractor £ on input h, which outputs a function f and auxiliary information aux. The simulator
now distinguishes the following two cases.

1. The function f is of the form f(%1,%X2) = X3
2. The function f is of the form f(X1,%X2) =a-X1 + X for an a € Z,.

In the first case, the simulator computes ¢ by running & and on a uniformly sampled r & Zg". In the
second case Sim proceeds as follows, where we distinguish 3 sub-cases depending on the value of a € Z,,.

— a = 0: In this case, the simulator queries the OT oracle on 0 to receive mg, and then computes ¢ =
S(aux, <120>) for a uniformly random rf.
1
— a = 1: This case is similar as the previous one, except that the bit is flipped. More precisely, the simulator
/
Ty

queries the OT oracle on 1 and receives my, then computes ¢ = S(aux, ) for a uniformly random

/
ry.

— a ¢ {0,1}: ¢ is computed running S and on a uniformly sampled r & zz".
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The remainder of the algorithm proceeds exactly as in the definition of OT3. Note that in any of the above
cases, the simulator queries the OT oracle at most once. Thus, all we need to argue is that the distribution
of the simulated c is statistically close to the real one.

Our analysis distinguishes the same cases as Sim, i.e. whether the extracted f is of the form f(%1,%3) = X
or f()A(l,)A(Q) =a- )A(1 + )ACQ.

1. In the first case, when f is of the form f(%X1,%2) = X3, observe that that x; = <m1 — Mo + r0> =r

m; —mg+1rg
is uniformly random and independent of mg, my, as ro and r; are uniformly random. Consequently, it
holds by the security of AR that

(s,€) = (s, h(x1,%2))
~ (s,S(aux, f(x1,%2)))
= (s,S(aux,x1))

= (s,S(aux,r)),

as the information in OT5 can be computed from s and ¢, we conclude that Sim faithfully simulates the
sender message ot3.

2. We now turn to analyzing the second case, where f is of the form f(%X1,%2) = a-X1 + X2. In the first two
sub-cases, it holds that a € {0, 1}. To see why in these sub-cases the output of the simulator is correctly
distributed, first observe that for a € {0,1} it holds that

( o ) ifa=0
mo—1;

e T
m;

Note that if @ = 0, then v} = mg—r; is distributed uniformly random. Likewise, if a = 1 then r{, = m; +ry
is distributed uniformly random. Consequently, the value ¢ computed by Sim has the correct distribution
as it holds by the security of AR that

(57 C) = (87 h(&h )22))
~ (87 S(aux, f(xla XQ)))'
For the last sub-case (a ¢ {0,1}) note that

_ (mi—mg+ro mg _ {am; + (1 —a)mg a-ry
f(XO7XI) —a <m1 — mg + I‘1> + (mo — I‘1> - (aml + (1 — a)mo + (1 — a) - ’
a-ro
(1—-a) 1

o (BRI ()

m; —mgp+1r; my—ry

Note that since a ¢ {0,1}, the term r = (
it holds by the security of AR that

) is distributed uniformly random. Consequently,

(57 C) = (Sa h(f(hf(?))
~ (87 S(aUX7 f(X17 XQ)))
= (s,S(aux,r)).

As above, we conclude that Sim faithfully simulates the sender message ot%. This concludes the proof.
Rate-1. Finally we argue that the scheme achieves rate-1. In the calculation we only consider without loss
of generality the size of the OT second message (i.e. the download rate), since the size of the first message
can always be amortized to increase the rate arbitrarily [DGI*19]. By Lemma 15, we have that for b € {0,1}

it holds that |Shrink(pk, ¢)| = log(|G|) + A+n = 2XA +n, which approaches n as n grows. Since the underlying
OT scheme has rate-1, then the size of oty asymptotically equals n.
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9 Applications of Rate-1 SSP OT

In this section we show that our rate-1 SSP OT allows us to build PIR with server’s statistical security and
asymptotically-optimal communication. More generally, by plugging in our rate-1 SSP OT into the construc-
tion of [IP07], we obtain homomorphic encryption for branching programs, with (a) statistical branching-
program privacy and (b) semi-compactness: the size of a homomorphically-evaluated ciphertext grows only
with the depth, and not the size, of the branching program. For brevity, we will present and analyze the
protocol for PIR, and the analysis for branching programs will be similar, referring the reader to [IP07].

Recall that PIR allows a client with an index i € [K] to retrieve the ith element in a database
(mq,...,mg), held by a server. The PIR protocol is given as (PIR1, PIR2, PIR3), where PIR; and PIR3 corre-
spond to the two-phase algorithms of the client, and PIRs is run by the sever. We require computational client
privacy: for any two indices i; and 4: pir; & piry, where (piry, *) <—g PIR;(1*, 1) and (piry, *) <—g PIR; (1*,143).
We require statistical security for the server: there exists a (computationally-unbounded) extraction algo-
rithm PSim such that for any pir; and any m = (mq,...,mg), the distribution of (pir,, PIRy(pir;,m)) is
statistically indistinguishable from (piry, Simo(pirl)), where Sim has one-time access to an oracle O, which
on an input index ¢ returns m;.

In the following we let K = 2¥. The following construction is from [IP07].

— PIR (1%, 5 € [2¥]): Parse s = s; ... s;. Return pir; := (otry,...,otrg) and st := (stty,...,stty), where for
1€ [K] (otri,stti) g OT1(1>\7SZ').
— PIRy(piry, (M1, ..., mg)): Parse pir; := (otry,...,otrg). For i € [2¥], set otsz(»o) =m;. Forw e {1,... k}:
1. For i € [2F7%], let otsz) 3 OTz(otry, (otsé?:ll),otsé?_l)))

Return otsgk) .

— PIR3(st, pir,): Parse st := (stty,...,stty) and piry := ots(?). For i € [k] let ots() := OT;(stty_; 1, 0ts—1).
Return ots(*).

Correctness and client’s security follow immediately. To establish statistical server’s security we define
the following computationally-unbounded simulation algorithm PSim, built based on the OT’s simulation
algorithm OSim.

— PSimO(otrl, ... otre): For ¢ € [k] extract a bit b; from otr; using the OT’s simulation algorithm OSim
(by observing the bit query that OSim(otr;) makes). Let s = by ---by1, and query O(s) to get m. Let
ots”) = m, and for all i € [K]\ {s}, set otsl(-o) to an arbitrary value. Continue the procedure of PIRy
described above based on these values.

The proof of statistical security for PSim follows from that of OSim using an inductive argument. We
omit the details.

Server’s communication complexity. For r = 7()), if the server has K = 2¥ messages each of r bits,
then the server’s communication complexity is 7+ poly(k, A) bits (where poly is a fixed polynomial), achieving
rate-1 for large enough r.
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