
Amortized Threshold Symmetric-key Encryption
Mihai Christodorescu

Visa Research

mihai.christodorescu@visa.com

Sivanarayana Gaddam

C3 Inc.

venganesh@gmail.com

Pratyay Mukherjee

Visa Research

pratyay85@protonmail.com

Rohit Sinha

Swirlds Inc.

sinharo@gmail.com

ABSTRACT
Threshold cryptography enables cryptographic operations while

keeping the secret keys distributed at all times. Agrawal et al.
(CCS’18) propose a framework for Distributed Symmetric-key En-

cryption (DiSE). They introduce a newnotion of Threshold Symmetric-

key Encryption (TSE), in that encryption and decryption are per-

formed by interacting with a threshold number of servers. However,

the necessity for interaction on each invocation limits performance

when encrypting large datasets, incurring heavy computation and

communication on the servers.

This paper proposes a new approach to resolve this problem by

introducing a new notion calledAmortized Threshold Symmetric-key
Encryption (ATSE), which allows a “privileged” client (with access

to sensitive data) to encrypt a large group of messages using a sin-
gle interaction. Importantly, our notion requires a client to interact

for decrypting each ciphertext, thus providing the same security

(privacy and authenticity) guarantee as DiSE with respect to a “not-

so-privileged” client. We construct an ATSE scheme based on a

new primitive that we formalize as �exible threshold key-derivation
(FTKD), which allows parties to interactively derive pseudorandom

keys in di�erent modes in a threshold manner. Our FTKD construc-

tion, which uses bilinear pairings, is based on a distributed variant

of left/right constrained PRF by Boneh and Waters (Asiacrypt’13).

Despite our use of bilinear maps, our scheme achieves signi�cant

speed-ups due to the amortized interaction. Our experiments show

40x lower latency and 30x more throughput in some settings.

KEYWORDS
threshold cryptography; authenticated encryption; secret manage-

ment systems; distributed pseudo-random functions, constraint

pseudorandom functions

1 INTRODUCTION
Enterprise key-management systems for massive data encryption.

Large modern enterprises acquire enormous amount of data every-

day, and protect them using encryption. They rely on dedicated key

management systems to protect encryption keys on behalf of the

applications. The typical deployment has three main entities: one

or more encrypting clients, a set of key-management servers holding
the key material, and a storage service that stores encrypted data.

Moreover, there are other non-encrypting clients (e.g. application
servers), which may frequently access the storage service to de-

crypt speci�c data as required. Among them the key management

server is often backed by Hardware Security Modules (e.g. AWS

KMS, Azure KMS, GCP KMS). However, in practice, they admit

signi�cant operational concerns surrounding scalability (especially

during bursty tra�c), availability, and cost.

Threshold Crypto for key-management. To address these con-

cerns of HSMs, we look towards threshold cryptography, where

the secret-key is split into shares and distributed across multiple

key-management servers (namely, commodity server machines)

and never reconstructed during use. A cryptographic operation

requires the participation of at least a threshold number of servers,

and security holds as long as the attacker compromises less than the

threshold number of servers. The bene�ts of threshold cryptogra-

phy have caught the attention of practitioners. For example, the U.S.

National Institute of Standards and Technology (NIST) has initiated

an e�ort to standardize threshold cryptography [7]. Furthermore,

an increasing number of commercial products use the technology,

such as the data protection services o�ered by Vault [9], Coinbase

Custody [2], and the HSM replacements by Unbound Tech [8] etc.

Distributed Symmetric-key Encryption (DiSE). Recently, Agrawal
et al. gave the �rst formal treatment of threshold symmetric-key

encryption (TSE) in DiSE [13], and provided a construction based

on distributed pseudo-random functions (DPRF). In a nutshell the

construction works as follows: to encrypt a message𝑚, the client

locally produces a commitment of𝑚, and sends the commitment

to the servers, who upon authenticating the client return the PRF

(partially) evaluated over the commitment (using their key-shares);

the client combines a threshold number of responses to construct a

message-speci�c key that a client uses to locally encrypt𝑚. More-

over, to defend against malicious servers, which can otherwise

cause the client to derive an “invalid” key and permanently lose the

plaintext, DiSE requires the servers to provide a zero-knowledge

proof of their PRF evaluations. Not surprisingly, the round-trip

interaction and server-side computation for each message becomes

prohibitively expensive when encrypting large datasets. The latency
and throughput worsens when the key-management servers are

geo-distributed, as often recommended for availability and security.

Inherent limitation of DiSE. A closer look into DiSE exposes that

the limitation is somewhat inherent to the requirement of their

authenticity notion, in that any ciphertext must be authenticated

via interacting with a threshold number of servers. While this

strong guarantee is critical for some applications (e.g., multi-device

authentication [13]), it is an overkill for our setting of large database
encryption (elaborated in Sec. 2.1).

A nav̈e approach: Encrypting in group. Our exploration starts

with the insight that if an encrypting client has access to a large

group of messages (e.g. an entire dataset) to be encrypted, then

interaction may not be necessary for authenticating each ciphertext

individually. Instead, the client may send a short commitment to

the group of messages to the servers; the servers return a common

group-speci�c key to encrypt and locally authenticate all messages

together. This lets us attain the same authenticity property as DiSE’s,

but without the need for interaction on each individual message.

Viewed from a di�erent angle, we observe that the encryptor client

is already trusted or “privileged” as it handles large volumes of data

in the clear. Therefore, we could allow that encryptor to encrypt an

entire dataset using a single group-speci�c key (instead of message-

speci�c key a la DiSE) derived via a single interaction, while also
ensuring that this key can not be used to encrypt any other message

that is not part of the data set (guaranteed by the commitment).

Issue with group-encryption. However, this approach turns out to

be problematic during decryption of individual data records, which

may be performed by any other “unprivileged” client, which is

trusted to a lesser extent than the so-called “privileged” dedicated

encryptor (such as analytics workloads that read a subset of the

database). In particular, there is no obvious way to allow decryption

of a single ciphertext without revealing the group-speci�c key and

hence the entire dataset. Clearly, such revelation falls short of a

desired privacy guarantee for an individual message. So, we need

a more �ne-grained solution that enables encryption of a group

message with just one interaction, but decryption can be done for

individual ciphertexts (each requiring one interaction).

Our approach. This paper provides a new scheme to that end.

In a nutshell, our scheme amortizes the communication and com-

putational e�ort for the encryptor without altering the security

requirements, so we call it Amortized Threshold Symmetric-key En-
cryption (ATSE).

Balancing sensitivity and amortization. A consequence of amorti-

zation is making the derived encryption keys (that is group-speci�c

keys) more sensitive. For example, if the encryptor encrypts 100

plaintexts using one such key derived via interaction, the same key

can also be used to decrypt those 100 ciphertexts, and is therefore

sensitive.
1
Nevertheless, since the privileged encryptor handles the

entire dataset, this increased sensitivity of short-lived group-speci�c
keys is a�ordable in favor of the e�ciency gains from amortization.

Key challenge. In ATSE, the encryptor interacts with the servers

to derive a group-speci�c key. Then, for each message, a unique

message-speci�c key is derived locally, which is then used to en-

crypt the message deterministically. During decryption, the same

message-speci�c key must be derived directly only from an indi-

vidual ciphertext without any access to the group-speci�c key. The

main challenge lies in deriving identical keys in these two di�erent

modes, while restricting access to the more sensitive group-speci�c

key only to the designated encryptor, thereby achieving the same

privacy and authenticity guarantees for an individual ciphertext.

1
This happens due to the symmetric nature of our scheme and can be avoided by

using (threshold) public-key encryption: a public-key can not be used to decrypt, by

de�nition. However, public-key encryption alone is un�t for our setting because it

allows anyone to encrypt data thereby falling short of any conceivable authenticity

requirement. One might think about adding signatures, but that leads to other issues

as elaborated in Appendix C.

Flexible Threshold Key-derivation. To resolve the challenge we in-
troduce a new core primitive called Flexible Threshold Key-Derivation
(FTKD), in that a client can derive pseudorandom keys in various

modes. Each client can use an entire input to derive the whole-key
(unique to the whole input), or just part of her input to derive

partial-keys, which can be locally combined then with the remain-

ing input to obtain the same whole-key. Pseudorandomness holds

for any such whole-key even conditioned on knowledge of other

whole-keys (derived from the same partial-key) or unrelated partial

keys. Looking ahead, when constructing an ATSE scheme, we use

a partial-key as a group-speci�c key whereas a whole-key as a

message-speci�c key. This can also be thought of as a distributed

version of a special type of constrained PRF, known as left/right

constrained PRF. Indeed, our FTKD construction is based on the

left/right constrained PRF proposed by Boneh andWaters [20]. Now,

the main challenge boils down to deriving a whole-key, which is

consistent across di�erent modes and any threshold number of

participants. Our construction uses bilinear pairings to that e�ect.

We believe that our FTKD notion may be of independent interest

and is useful in applications beyond ATSE (e.g. see Sec. 2).

Performance evaluation. We evaluate our scheme in a variety of

scenarios, from LANs to geo-distributed servers and with varying

number of servers. Since each server interaction incurs several

group operations — from lagrange interpolation within DPRF [45],

and zero-knowledge proofs to detect malicious servers (see Sec-

tion 5.2) — we achieve signi�cant speed-up at the encryptor from

amortization, despite our use of a comparatively heavier operation

like bilinear pairing. Our experiments indicate latency reduction
of upto 40x and throughput improvement of upto 30x compared to

a parallelized DiSE implementation,
2
when interacting with 24

servers and encrypting 10K messages in bulk. More importantly,

when encrypting larger groups of messages in bulk (say 10K), the

latency and throughput characteristics of our scheme is una�ected

by both network latency and the threshold size, thus incentivizing

deployments that have more, geo-distributed servers, increasing

availability and security.

Summary of contributions.

− We formalize the notion of amortized threshold symmetric-

key encryption, based on which our scheme facilitates large

data encryption in bulk.

− We construct an amortized threshold symmetric-key encryp-

tion scheme based on a new primitive called �exible threshold

key derivation. We construct a �exible threshold key deriva-

tion scheme combining the ideas from a left/right constrained

PRF by Boneh and Waters [20] and a distributed PRF by Naor,

Pinkas and Reingold [45]. We prove the security based on bilin-

ear decisional Di�e-Hellman assumption in the random oracle

model. Additionally we require a Merkle-tree like commitment

scheme, which we formalize as group commitments. We ex-

plore several interesting properties of group commitments as

required for our construction.

− We implement and evaluate the system in several deployment

scenarios, and report the performance measurements.

2
In this version, to encrypt, say 100messages in a group, 100 instances of DiSE scheme

are executed simultaneously.

2

2 TECHNICAL OVERVIEW
We informally describe ATSE and its requirements in this section,

with the help of a use case. Then, we provide overview of our con-

structions. Finally, we outline possible extensions of our techniques.

2.1 Use Case
Consider an enterprise such as Visa [10] that processes transac-

tions containing sensitive data, such as a payments network that

processes upwards of 5000 transactions per second [5]. In addition

to processing these transactions, this enterprise performs o�ine

analytics on this data. Therefore the data must be stored securely

in a way such that it can be accessed later.

We �nd the following data pipeline to be a common design for

enterprises that handle sensitive data. At the source of data ingress,

a designated application is responsible for one task: encrypting

each record as it arrives and forwarding it to a storage service. As it

accepts all user data in the clear, we will refer to this application as a

privileged client or encryptor, and it is often hardened with security

defenses. The data is later accessed by di�erent applications, each

performing some analytics on some subset of the entire database. In

practice, as di�erent developers possess varying levels of security

expertise, we do not trust these applications to access the entire

data; so, we call them unprivileged clients or decryptors.
We want the encryptors to encrypt a large number of messages

e�ciently (without a round-trip interaction with the key manage-

ment servers, for instance), but we also want authenticity: the

encryptor must only produce legitimate ciphertexts, where the key

given to the encryptor is bound to the set of messages. We also wish

to force decryptors to interact with the server(s) for decrypting

every message, for �ne-grained access control and auditability.

Our design is �exible in that it can be used with single or multi-

ple encryptors and decryptors. However, since our formalization

(ATSE) only supports amortization of encryption,
3
this is especially

useful in write-heavy applications where di�erent clients contin-

uously encrypt and store data streams, but later access individual

records on-demand. A good example is a payment gateway (e.g.

Cybersource [3]), which continuously encrypts and stores transac-

tions immediately after processing, and the decrypted transaction

data is seldom accessed to resolve issues like payment disputes.

2.2 Requirements
2.2.1 Functional Requirements.

− distributed/threshold: Similar to DiSE, we seek a threshold

symmetric encryption scheme in lieu of HSMs, where the long-

term symmetric key is secret-shared in an 𝑡 (threshold) out of

𝑛 (total number of participants) manner onto a collection of

commodity servers and never reconstructed. The servers must

be administered by independent parties for security and geo-

distributed for availability.

− amortized: We are looking for an amortized framework, in that

a privileged client can encrypt multiple data records in “bulk”

with only one interaction, yet an unprivileged client is compelled

3
We remark that it is just as easy to make the decryption amortized, using our building

block FTKD. However, we do not formalize it due to lack of a clear motivation. We

brie�y mention a potential application called threshold symmetric IBE in Sec. 2.4.

to interact in order to decrypt each record; this allows a �ne-
grained access control, and minimizes the potential exposure of

data in the event of a compromise of unprivileged clients.

2.2.2 Security Requirements.

− privacy: A decryptor, when decrypts a particular ciphertext,

may not be able to learn any information about any other cipher-
text, even those belonging to the same group. An encryptor may

derive multiple group-speci�c encryptions keys, but those keys

would not let her breach the privacy of any other ciphertext

for which she does not own the key speci�c to that group. In

particular, we must enforce that one encryptor may not be able

to derive encryption keys for another encryptor.
− (malicious) correctness: The clients must be able to detectma-

licious responses from the servers lest the client derive incorrect

keys, rendering the encrypted data useless. While optional for

some applications of DiSE, this property is crucial for our setting

as further discussed in Remark 7.5.

− authenticity: We must ensure that the ciphertexts produced

are “authentic”. More formally, we can say that authenticity

guarantees that as long as there are < 𝑡 corruptions each valid

ciphertextmust be produced via properly interacting with at least
one honest server. (More intuitions are provided in Remark 7.14.)

2.3 Our Construction
2.3.1 Flexible Threshold Key-derivation. Our ATSE scheme relies

on a core component, formalized in this paper as a �exible threshold

key-derivation (FTKD) scheme, which lets clients derive keys with

di�erent granularity levels: either a whole-key bound to the whole

input, or a partial-key bound to only a part of the input — a partial-

key can be combined with the other part of the message to derive

the same whole-key locally.

This notion can also be thought of as a distributed variant of

left/right constrained PRF [20], in that, for each input (𝑥,𝑦), it is
possible to generate constrained keys 𝑘𝑥 ‖★, 𝑘★‖𝑦 , such that one

can combine 𝑘𝑥 ‖★ (resp. 𝑘★‖𝑦) with 𝑦 (resp. with 𝑥) to obtain𝑤 :=

PRF𝑘 (𝑥,𝑦). Furthermore, given any constrained key 𝑘𝑥 ‖★ the value

PRF(𝑥 ′, ·) remains pseudorandom as long as 𝑥 ′ ≠ 𝑥 .

Our FTKD notion o�ers similar functionality and security guar-

antee in the distributed / threshold setting. In particular, the long-

term key 𝑘 is secret-shared across 𝑛 parties such that any 𝑡 ≤ 𝑛

shares are su�cient to recover 𝑘 . Any party 𝑖 ∈ [𝑛] can interact

with any other 𝑡 − 1 parties to derive either partial-keys 𝑘𝑥 ‖★ (left-

key), 𝑘★‖𝑦 (right-key) or directly the output value𝑤 such that 𝑘𝑥 ‖★
(resp. 𝑘★‖𝑦) can be locally combined with 𝑦 (resp. 𝑥) to obtain 𝑤

(this is called key-consistency, which is formalized in De�nition 5.1).

Furthermore, the same𝑤 is derived as long as there are any 𝑡 partic-
ipants (this is threshold-consistency, which is formalized in Def. 5.1).

The output𝑤 must be pseudorandom even conditioned on arbitrary

many input/output pairs or constrained keys as long as there is not
enough information to derive𝑤 trivially (pseudorandomness is for-

malized in Def. 5.4). Furthermore, we need a correctness property

(Def. 5.6) in the presence of malicious parties — this ensures that

no party can successfully cheat by sending an incorrect response.

Our FTKD construction uses ideas from the left/right constrained

PRF proposed by Boneh and Waters [20], which is based on bilin-

ear pairing over groups 𝐺1 × 𝐺2 → 𝐺𝑇 and uses independent

3

hash functionsH0,H1, modeled as random oracles in the proofs.

For input (𝑥,𝑦) and key 𝑘 , the PRF is computed as PRF𝑘 (𝑥,𝑦) :=
𝑒 (H0 (𝑥),H1 (𝑦))𝑘 . The constrained keys 𝑘𝑥 ‖★ and 𝑘★‖𝑦 are con-

structed asH0 (𝑥)𝑘 andH1 (𝑦)𝑘 respectively. Given 𝑘𝑥 ‖★, one can
compute PRF𝑘 (𝑥,𝑦) for any 𝑦 using pairing 𝑒 (𝑘𝑥 ‖★,H1 (𝑦)); simi-

larly 𝑘★‖𝑦 can be combined with 𝑥 .

Note that, the structure of this constrained PRF is similar to

the “key-homomorphic” structure of the (distributed)PRF by Naor,

Pinkas and Reingold (NPR [45], used in DiSE) which de�nes a prf on

𝑥 as PRF𝑘 (H (𝑥)) (whereH is modeled as a random oracle). Our

FTKD construction leverages this observation simply by secret-

sharing the key 𝑘 . Each party 𝑖 holds a share 𝑘𝑖 . On a left-key

request on a left-input 𝑥 , party-𝑖 returnsH0 (𝑥)𝑘𝑖 . The client can
combine 𝑡 such partial computations using Lagrange interpolation

in the exponent to obtain the left-key 𝑘𝑥 ‖★ := H0 (𝑥)𝑘 — let us call

this mode of key-derivation a left-mode (similarly a right-key 𝑘★‖𝑦
can be constructed in a right-mode). Moreover, it is also possible for

a client to directly obtain𝑤 just by making a query on the whole

input (𝑥,𝑦) in another mode (say, whole-mode); in response each

server sends back 𝑒 (H0 (𝑥),H1 (𝑦))𝑘𝑖 .
The pseudorandomness follows assuming BDDH over the bi-

linear group in the random oracle model, albeit extending to the

distributed setting requires using arguments from DiSE [13] and

NPR [45]. Themalicious correctness is obtained using non-interactive

zero-knowledge proof (and trapdoor commitments) a la DiSE.

2.3.2 Our ATSE scheme. Now, given a FTKD scheme, we are ready

to describe our ATSE construction at a high level. However, before

that, let us brie�y describe how the DiSE TSE scheme works given

a DPRF: an encryptor with identity id produces a commitment

𝛾 of the message𝑚 (with randomness/opening 𝑟); the encryptor

then interactively evaluates a DPRF on input (id‖𝛾) to obtain a

pseudorandom message-speci�c key 𝑤 = DPRF(id‖𝛾); which is

then used to produce a deterministic encryption 𝑒 = PRG(𝑤) ⊕
(𝑚‖𝑟). The ciphertext is of the form (id, 𝛾, 𝑒). One may decrypt by

�rst re-evaluating the DPRF on the �rst two values (id‖𝛾) of the
ciphertext, then decrypting 𝑒 , and �nally checking the consistency

of commitment 𝛾 with opening (𝑚, 𝑟).
We take an analogous approach for ATSE. However, instead of

standard commitment we use Merkle-tree commitment, because

Merkle-tree commitments come with the exact �ne-grained prop-

erty we are looking for: an ordered group of messages (𝑚1, . . .𝑚𝑁)
can be committed together with a short commitment, which can be

opened later for any𝑚𝑖 without revealing any other𝑚 𝑗 (for hid-

ing of𝑚 𝑗 we use randomized hashing at the leaves). In our ATSE

scheme, the encryptor produces a Merkle-tree commitment 𝛾 of a

group ofmessages (𝑚1, . . . ,𝑚𝑁) with randomness (𝑟1, . . . , 𝑟𝑁). The
root-to-leaf path, 𝑞𝑖 is unique to each message𝑚𝑖 . The encryptor

then computes a partial-key (say, left-key) 𝑘id‖𝛾 ‖★ by computing

FTKD on the partial input (id‖𝛾) of the whole input (id‖𝛾 ‖𝑞𝑖).
Then, each message𝑚𝑖 can be locally encrypted similar to DiSE:

𝑒𝑖 = PRG(𝑘id‖𝛾 ‖𝑞𝑖) ⊕ (𝑚𝑖 ‖𝑟𝑖) where the message-speci�c whole-

key 𝑘id‖𝛾 ‖𝑞𝑖 is locally derived from group-speci�c key 𝑘id‖𝛾 ‖★ and

𝑞𝑖 . The ciphertext for𝑚𝑖 is (id, 𝛾, 𝑞𝑖 , 𝑒𝑖). A decryptor directly derives

the whole-key 𝑘id‖𝛾 ‖𝑞𝑖 using the whole input (id‖𝛾 ‖𝑞𝑖); using that

she can decrypt 𝑒𝑖 to get (𝑚𝑖 ‖𝑟𝑖) and then �nally verify the root

commitment 𝛾 with opening 𝑟𝑖 with respect to the path 𝑞𝑖 .

The functionality requirements, such as threshold computation

and amortization follows directly from the underlying FTKD. The

privacy against a decryptor is guaranteed by the pseudorandom-

ness of the whole-key 𝑘id‖𝛾 ‖𝑞𝑖 (even given any other whole-key or

unrelated partial-key) and the hiding of the commitment scheme.

Privacy against an encryptor is enforced by including id into the

input of the FTKD, as this makes the keys bound to the identity

of an encryptor. However, to prevent a cheating encryptor from

impersonation, each server veri�es whether an encryption request

including identity id is indeed coming from a client with identity

id — this requires authenticated channels (also needed by DiSE).

Authenticity relies on more sophisticated arguments. In fact, in

the above construction, since 𝛾 , as it is, independent of the number

of messages, it becomes tricky to keep track of the exact number

𝑁 of valid ciphertexts generated per invocation. To �x this, we use

a technique to augment the Merkle-tree: at each node we produce

the hash values with a number denoting the total number of leaves

under that node — the leaves are labeled 1, whereas the root is

labeled exactly 𝑁 . While opening, the veri�er checks whether this

labels recursively sums up to 𝑁 at the top via the given leaf to root

path. This augments the Merkle-tree to satisfy a new property, that

we call cardinality-binding. This enables our construction to achieve

a one-more authenticity notion analogous to DiSE. We put forward

an abstraction, called group commitments (Sec. 6), to capture all the

properties that we need from the commitment scheme.

We illustrate a �ow of our simpli�ed
4
ATSE scheme in Figure 1. It

is worth noting how the key management service is used. Though,

for simplicity we present our ATSE framework as a symmetric

distributed system, where each party is treated equally, it can be

deployed di�erently with dedicated roles of privileged encryptors,

unprivileged decryptors, key-holders. Furthermore, one could put

policies like any encryption request must come from speci�c clients.

We do not formalize these in the paper.

2.4 Other Applications of FTKD
Using FTKD for Identity-based Threshold Symmetric Encryption.

Our FTKD notion can be used to achieve another notion of thresh-

old symmetric encryption scheme simply by reversing the roles of

the privileged and the unprivileged clients from ATSE. In particular,

we can construct a primitive, in that many unprivileged clients can

encrypt messages𝑚1,𝑚2, . . . with respect to a particular privileged

client’s identity 𝑗 just by directly deriving the message-speci�c

whole-key wk𝑖 := 𝑒 (H0 (𝑗),H1 (Com(𝑚𝑖 , 𝑠𝑖)))𝑘 based on the iden-

tity 𝑗 and the message𝑚𝑖 . The privileged client with identity 𝑗 may

obtain its “identity-key” (which is a renaming of a partial-key in this

context) idk := 𝑒 (H0 (𝑗))𝑘 later by interacting with servers when

the servers do check whether the requester’s identity is indeed 𝑗 .

Once the identity-key is obtained, each individual whole-key wk𝑖
can be obtained by pairingH0 (idk) withH1 (Com(𝑚𝑖 , 𝑠𝑖)) (which
is included in the ciphertext) locally. Therefore, any message en-

crypted under 𝑗 ’s identity is now accessible to party 𝑗 . This scheme

can be termed as identity-based threshold symmetric encryption.

4
We do not use the “labeling trick” here for simplicity; full details are in Figure 30.

4

Storage

Client-1

𝑘1

Client-7

𝑘7

Server-2

𝑘2

Server-3

𝑘3

Server-4

𝑘4

Server-5

𝑘5

Server-6

𝑘6

(𝜔 ,𝛾)

H0 (𝜔)𝑘2
(𝜔 ,𝛾) H0 (𝜔)𝑘3

(𝜔 ,𝛾)

H0 (𝜔)𝑘4 (𝜔,𝛾, 𝑞)

𝑒 (H0 (𝜔),H1 (q))𝑘4(𝜔,𝛾, 𝑞) 𝑒 (H0 (𝜔),H1 (𝑞))𝑘5

(𝜔,𝛾, 𝑞)
𝑒 (H0 (𝜔),H1 (q))𝑘6

𝑐1, . . . , 𝑐𝑛 𝑐𝑖

Amortized Encryption of (𝑚1, . . . ,𝑚𝑁) by privileged client-1

− sample random values (𝑠1, . . . , 𝑠𝑁). Compute Merkle-tree 𝑀𝑇 on the set

((1‖𝑚1 ‖ 𝑠1), . . . , (𝑁 ‖𝑚𝑁 ‖ 𝑠𝑁)) and compute the commitment 𝛾 to 𝑀𝑇 .

− send (𝛾,𝜔 := H(1, 𝛾), ‘Group-key’) to servers {2, 3, 4}. Each server 𝑖

veri�es 𝜔 = H(1, 𝛾) and returns H0 (𝜔)𝑘𝑖 on success.

− compute group-key gk := H0 (𝜔)𝑘 by Lagrange interpolation in the

exponent from the server response and its own value H0 (𝜔)𝑘1 .
− for each 𝑚𝑖 , compute message-key mki := 𝑒 (gk,H1 (𝑞𝑖)) , where 𝑞𝑖 is the

unique commitment derived from the root-to-leaf path in 𝑀𝑇 .

− store ciphertexts 𝑐1, . . . , 𝑐𝑁 , where 𝑐𝑖 = (1, 𝛾, 𝑞𝑖 , PRG(mk𝑖) ⊕ (𝑚𝑖 , 𝑠𝑖)) .

Decryption of 𝑐 𝑗 by unprivilged client-7

− parse 𝑐 𝑗 as (id, 𝛾, 𝑞, 𝑥).
− send (id, 𝛾, 𝑞, ‘Message-key’) to servers {4, 5, 6}. Each server

𝑖 computes 𝜔 = H(id‖𝛾) and returns 𝑒 (H0 (𝜔),H1 (𝑞))𝑘𝑖 .
− compute message-key mk := 𝑒 (H0 (id, 𝛾),H1 (ℎ))𝑘 by

Lagrange interpolation in the exponent from the server

response and its own value 𝑒 (H0 (𝜔),H1 (𝑞))𝑘7 .
− extract (𝑚,𝑠) ← PRG(mk) ⊕ 𝑥
− verify unique commitment 𝑞 with respect to 𝛾 and opening 𝑠 .

On success, output 𝑚, otherwise output ⊥.

Figure 1: Flow of ATSE protocol for 𝑛 = 7 and 𝑡 = 4. Privileged client (id 1) encrypts messages𝑚1, . . . ,𝑚𝑛 in bulk using 𝑡 − 1 servers 2, 3, 4, and
unprivileged client only decrypts𝑚𝑖 using servers 4, 5, 6. To encrypt, client computes Merkle tree with commitment 𝛾 sends (𝜔,𝛾) to each
server 𝑖, who returns H0 (𝜔))𝑘𝑖 if 𝜔 = H(1, 𝛾) . Client then locally derives per-message keys using pairings. A client decrypts 𝑐𝑖 by sending
(𝜔,𝑞) to each server 𝑖, who returns 𝑒 (H0 (𝜔),H1 (𝑞))𝑘𝑖 . Client then combines responses and computes the per-message key locally.

Encrypting Tabular data. Our FTKD scheme can also be used for

encrypting tabular data with amortization. Each cell in a table can

be uniquely identi�ed by its row number 𝑖 and column number 𝑗 . A

message-speci�c unique whole-key is given by 𝑒 (H0 (𝑖),H1 (𝑗))𝑘 .
One can obtain a left-keyH0 (𝑖)𝑘 for row-𝑖 and use that to locally

encrypt/decrypt all elements in that row. Similarly, one can use a

right-keyH1 (𝑗)𝑘 to encrypt/decrypt elements across columns.

3 RELATEDWORK
3.1 Competing approaches
3.1.1 DiSE. The most closely related work is DiSE [13] (recently
extended to adaptive setting in [43]), which is the �rst work to

propose a de�nition and construction for threshold, authenticated,

symmetric-key encryption, based on distributed pseudo random

functions. An alternative to our approach could be to run DiSE in
parallel for many messages. We provide an experimental compari-

son with this approach with ours in Section 8.

3.1.2 MPC. Secure multi-party computation (MPC) enables
cryptographic algorithms (in a circuit form) such as AES wherein

keys remain split during operation. Prior works have shown how to

evaluate ciphers such as AES [4, 24, 35, 47], but we �nd them to be

too expensive for our large-data encryption setting, as they require

many rounds of communication, high bandwidth, and a prohibitively
heavy preprocessing phase. The preprocessing phase in these works

depends on the number of operations to be performed in the online

phase. This becomes a potential bottleneck in our setting, where

input data is continuously arriving, as preprocessing must be per-

formed repeatedly (by alternating or running concurrently with the

online phase). In contrast, our scheme has a one-time setup phase

which is independent of the number of operations to be performed.

To our knowledge, the state-of-art construction of the AES is by

Keller et al. [38]. We compare with their work (speci�cally, their

AES-LT scheme for 2PC) along the following lines:

Compatibility: Unlike our work, [38] implements a standardized

AES cipher, and therefore provides backward compatibility.

Throughput: [38] gives 236K ops / sec in the online phase, but

the (bottleneck) pre-processing step gives 17 ops / sec (LAN setting).

In contrast, our scheme provides around 23K ops / sec.

Network sensitivity: In the WAN setting, [38]’s throughput low-

ers to 29K ops / sec and pre-processing lowers to 0.83 ops / sec.

Our scheme is insensitive to network timings (due to the amortized

interaction), and achieves 23K ops / sec in all network conditions.

Bandwidth complexity: MPC protocols use a non-blackbox ap-

proach, in that the computation is modeled as a boolean circuit and

the communication is proportional to the circuit size. For example,

[38] uses 8.4 MB of bandwidth for each AES block, whereas we
require 132*𝑡 bytes (𝑡 < 𝑛 is the corruption threshold; set 𝑡 = 2 to

compare with them) bytes for an unbounded-size group of messages
— that is, our bandwidth is independent of number and size of mes-

sages. So, even a parallel execution of their construction to encrypt

a large number (say 10000) of messages in a batch would lead to a

huge blow up in bandwidth.

Round complexity: 10 rounds per block in [38] vs. our 2 rounds

Flexibility: Our scheme can easily be adapted to any 𝑛 and any

threshold 𝑡 — our implementation considers 𝑛 as large as 24 and

various 𝑡 values for each 𝑛. [38] considers only 𝑛 out of 𝑛 settings

for a few small values of𝑛 (upto 5). While it is possible to implement

5

a version of their scheme that supports arbitrary 𝑡 out of 𝑛, that

may lead to considerable overhead and require signi�cant changes.

MPC-friendly ciphers, such as LowMC [15], provide a slight

improvement in some metrics but still require at least 12 rounds,

and they implement a non-standard cipher (so does not have the

compatibility advantage as AES) — our encryption is also non-

standard but provides signi�cantly better performance.

3.2 Additional related works
Our notion of FTKD enables delegating generation of pseudoran-

dom values in a restricted manner. This is reminiscent of (also

borrows ideas from) constrained PRF, albeit in a threshold setting.

Constrained PRFs, �rst proposed in [20, 39], found many appli-

cations (mostly on the theoretical side of) cryptography, such as

broadcast encryption [20], attribute-based encryption [16], indistin-

guishability obfuscation [48], watermarking [40], keyword search

over shared cloud data [50], etc. Our work can be thought of as

a new application of constrained PRF (more precisely, a threshold

version of constrained PRF), more on the applied side.

Threshold constructions have been designed for pseudoran-
dom functions [19, 28–31, 42, 45, 46]. Naor et al. [45] propose a
mechanism for encrypting messages using their DPRF construction,

albeit without any authentication guarantee. Beyond symmetric-

key primitives, threshold public-key encryption is also well

studied [21, 25–27, 33, 45, 49]. Similar to the symmetric key set-

ting that we study, the decryption key is secret-shared amongst

a set of servers, requiring at least a threshold to decrypt the ci-

phertext. More recently, Jarecki et al. [37] provide a threshold,
updatable, and oblivious key management system based on

oblivious pseudo-random functions, based on public key encryp-

tion. However, as we discussed earlier and also in Appendix C,

public-key schemes allow any party (potentially unprivileged en-

tity) to encrypt a message and produce the ciphertext, without

any interaction, thus falling short of our requirement of authen-

ticity. Works like PASTA [12], BETA [11] and PESTO [17] provide

frameworks for threshold authentication. While their designs can

be extended to achieve a di�erent notion of token/signature privacy

(such as threshold blind signatures [41]), they do not consider the

problem of message privacy (blind signatures do not o�er decryp-

tion). Similar to DiSE, our framework is targeted towards achieving

authenticated encryption/decryption of the message and hence is

broadly incomparable with those works despite some technical

similarities (namely, both give threshold access structure and use

bilinear maps).

Our notion of group commitment (c.f. Sec. 6) has some similarity

with the notion of vector commitments [22] — vector commit-

ments too produce a short commitment of a sequence/vector of

messages and o�er so-called position-binding similar to group com-

mitments. However, what distinct their notion from ours is the

requirement of having both short opening and short commitment —

we only require the group-commitment (root of the Merkle-tree) to

be short. Moreover, their notion o�ers other features such as updata-

bility, that is not present in ours. Nevertheless, their constructions

are based on computationally-heavy public-key operations.

4 NOTATION AND PRELIMINARIES
We use N to denote the set of positive integers, and [𝑛] to denote

the set {1, 2, . . . , 𝑛} (for 𝑛 ∈ N). We denote the security parameter

by 𝜅 . We assume that, every algorithm takes 𝜅 as an implicit input

and all de�nitions work for any su�ciently large choice of 𝜅 ∈ N.
We will omit mentioning the security parameter explicitly except a

few places. Throughout the paper we use the symbol ⊥ to denote

invalidity; in particular, if any algorithm returns ⊥ that means the

algorithm failed or detected an error in the process.

We use negl to denote a negligible function; a function 𝑓 : N→
N is considered negligible is for every polynomial 𝑝 , it holds that

𝑓 (𝑛) < 1/𝑝 (𝑛) for all large enough values of 𝑛. We use D(𝑥) =: 𝑦
or 𝑦 := D(𝑥) to denote the evaluation of a deterministic algorithm

D on input 𝑥 to produce output 𝑦. Often we use 𝑥 := var to denote

the assignment of a value var to the variable 𝑥 . We write R(𝑥) → 𝑦

or 𝑦 ← R(𝑥) to denote evaluation of a randomized algorithm R on

input 𝑥 to produce output 𝑦. R can be determinized as R(𝑥 ; 𝑟) =: 𝑦,
where 𝑟 is the explicit randomness used by R.

We denote a sequence of values (𝑥1, 𝑥2, . . .) by a standard vector

notation x, and it’s 𝑖-th element is denoted by x[𝑖]. |x| denotes the
number of elements in the vector 𝑥 . A list can be thought of as an

ordered set; the 𝑖-th element of a list 𝐿 is denoted by 𝐿[𝑖]. Lists and
vectors can be used interchangeably. Concatenation of two strings

𝑎 and 𝑏 is denoted by (𝑎‖𝑏), or (𝑎, 𝑏). Let 𝑥 ∈ {𝑎, 𝑏} is a variable
that can have only two values 𝑎 or 𝑏. We use 𝑥 to denote the value

within this set which is di�erent from 𝑥 . For example if 𝑥 = 𝑎 (resp.

𝑥 = 𝑏) then 𝑥 = 𝑏 (resp. 𝑥 = 𝑎).

We write [𝑗 : 𝑥] to denote that the value 𝑥 is private to party

𝑗 . For a protocol 𝜋 , we write [𝑗 : 𝑧′] ← 𝜋 ([𝑖 : (𝑥,𝑦)], [𝑗 : 𝑧], 𝑐) to
denote that party 𝑖 has two private inputs 𝑥 and 𝑦; party 𝑗 has one

private input 𝑧; all the other parties have no private input; 𝑐 is a

common public input; and, after the execution, only 𝑗 receives a

private output 𝑧′. We write [𝑖 : 𝑥𝑖]∀𝑖∈𝑆 or more compactly JxK𝑆 to

denote that each party 𝑖 ∈ 𝑆 has a private value 𝑥𝑖 .

On our communication model and protocol structure. All our pro-
tocols are over secure and authenticated channel – they require two

rounds of communication, in that a initiator party (often referred to

as a client for this execution) sends messages to a number of other

parties (referred to as the servers for this execution); each server

computes on the message and then sends the responses back to the

client in the second round; the client then combine the responses

together to compute the �nal output. Importantly, the servers do

not interact among themselves in an execution. However, we stress

that our de�nitions and the protocol notations are �exible enough

to accommodate protocols with di�erent structures.

4.1 Security games and oracles.
While our formalization uses intuitive security games, to handle

many cases, the descriptions often become cumbersome. Therefore,

we use simple pseudo-code notation that we explain next.

Adversaries are formalized as probabilistic polynomial time (PPT)

stateful algorithms. Adversarial queries are formalized via interac-
tive oracles; they may run interactive protocols with the adversary.

In particular, when a protocol, say 𝜋 (· · ·) is being executed inside

an interactive oracle, the oracle computes and sends messages on

behalf of the honest parties following the protocol speci�cations;

6

the adversary controls the corrupted parties– such an execution

may need multiple rounds of interactions between the oracle and

the adversary. Occasionally, the oracle needs to execute an instance

of a protocol 𝜋 (· · ·) internally, in that the codes of everyone are ex-

ecuted honestly by the oracle– such special executions are denoted

by a dagger superscript, e.g. 𝜋† (· · ·) and it is then treated like a

non-interactive algorithm. We use standard if − then − else state-
ments for branching and for to denote a loop. A branching within

another is distinguished by indentations. The command set is used
for updating/assigning/parsing variables, whereas run is used for

executing an algorithm/protocol. The command uniform is used

to qualify a variable, 𝑣 (say) to denote a uniform random sample

in the domain of 𝑣 is drawn and assigned to 𝑣 . Finally, require is
used to impose conditions on a preceding set of variables; if the

condition is satis�ed, then the next step is executed, otherwise the

experiment aborts at this step (for simplicity we keep the abortion

implicit in the descriptions, they can be made explicit by using

existing/new �ags). All variables, including counters, �ags and lists,

that are initialized in the security game, are considered global, such

that they can be accessed and modi�ed by any oracle.

4.2 Building blocks used in our constructions
4.2.1 Bilinear Pairing. Our construction relies on bilinear pairing.

Following the notation of [6] we consider three groups 𝐺0,𝐺1,𝐺𝑇

all of prime order 𝑝 and an e�ciently computable map 𝑒 : 𝐺0×𝐺1 →
𝐺𝑇 which is bilinear and non-degenerate. We rely on bilinear deci-
sional di�e-helman (BDDH) assumption which states that, given

a generators 𝑔0 ∈ 𝐺∗
0
, 𝑔1 ∈ 𝐺∗

1
and values 𝑔𝑎

0
, 𝑔𝑎

1
, 𝑔𝑏

0
, 𝑔𝑐

1
for ran-

dom 𝑎, 𝑏, 𝑐 ∈ Z𝑝 , it is computationally hard to distinguish between

𝑒 (𝑔0, 𝑔1)𝑎𝑏𝑐 and a random value in 𝐺𝑇 .

4.2.2 Secret Sharing. We use Shamir’s secret sharing scheme.

De�nition 4.1 (Shamir’s Secret Sharing). Let 𝑝 be a prime. An

(𝑛, 𝑡, 𝑝, 𝑠)-Shamir’s secret sharing scheme is a randomized algo-

rithm SSS that on input four integers 𝑛, 𝑡, 𝑝, 𝑠 , where 0 < 𝑡 ≤ 𝑛 < 𝑝

and 𝑠 ∈ Z𝑝 , outputs 𝑛 shares 𝑠1, . . . , 𝑠𝑛 ∈ Z𝑝 such that the following

two conditions hold for any set {𝑖1, . . . , 𝑖ℓ }:

− if ℓ ≥ 𝑡 , there exists �xed (i.e., independent of 𝑠) integers

𝜆1, . . . , 𝜆ℓ ∈ Z𝑝 (a.k.a. Lagrange coe�cients) such that

∑ℓ
𝑗=1 𝜆 𝑗𝑠𝑖 𝑗

= 𝑠 mod𝑝;
− if ℓ < 𝑡 , the distribution of (𝑠𝑖1 , . . . , 𝑠𝑖ℓ) is uniformly random.

Concretely, Shamir’s secret sharing works as follows. Pick 𝑎1,

. . ., 𝑎𝑡−1 ←$
Z𝑝 . Let 𝑓 (𝑥) be the polynomial 𝑠 + 𝑎1 · 𝑥 + 𝑎2 · 𝑥2 +

. . . + 𝑎𝑡−1 · 𝑥𝑡−1. Then 𝑠𝑖 is set to be 𝑓 (𝑖) for all 𝑖 ∈ [𝑛].
Additional building blocks can be found in Appendix B.

5 FLEXIBLE THRESHOLD KEY DERIVATION
In this section we introduce the concept of �exible threshold key-
derivation (FTKD). First, in Sec 5.1 we provide formal de�nitions.

Then, in Sec. 5.2 we provide a construction using bilinear pairing

and argue that it satis�es our de�nitions.

5.1 De�nition of FTKD
Now we provide our main de�nition for �exible threshold key-
derivation (FTKD). We formalize it as a scheme consisting of both

non-interactive algorithms and interactive protocols.
The notation within DKdf protocol ensures that only one party

gets an output.
5
Our key-derivation protocol DKdf works in three

modes; a party 𝑗 (called the client for this execution) may send three

di�erent types of queries: either the whole input (𝑥,𝑦), only the

left part 𝑥 , or the right part 𝑦. The recipients (acting as the servers
in this execution) may perform di�erent computations based on the

type of request. Among all (𝑛) parties, if at least a threshold number

of parties (𝑡 including the client) participate until the completion

of the protocol, then the client is able to combine their responses

to get either a partial-key or a whole-key depending on the mode.

De�nition 5.1 (Flexible Threshold KeyDerivation). A�exible thresh-
old key derivation (FTKD) scheme consists of a tuple of algorithms

/ protocols with the following syntax:

– Setup(1𝜅 , 𝑛, 𝑡) → (JskK[𝑛] , 𝑝𝑝). Setup is a randomized algo-

rithm that takes the total number of participants 𝑛 and a thresh-

old 𝑡 (≤ 𝑛) as input, and outputs 𝑛 keys JskK[𝑛] := 𝑠𝑘1, . . . , 𝑠𝑘𝑛

and public parameters 𝑝𝑝 . The 𝑖-th secret key 𝑠𝑘𝑖 is given to

party 𝑖 . We assume that each of the following algorithm takes

𝑝𝑝 and security parameter 1
𝜅
as additional inputs implicitly.

– DKdf (JskK[𝑛] , [𝑗 : 𝜌, 𝑆]) → [𝑗 : 𝑘/⊥]. DKdf is a protocol that
a party 𝑗 engages with parties in the set 𝑆 , using which the

party 𝑗 derives a key 𝑘 ∈ {lk, rk,wk} (or ⊥ on failure) based on

the request 𝜌 ∈ {(𝑥, ‘left’), (𝑦, ‘right’), ((𝑥,𝑦), ‘whole’)}.
We refer to lk as the left-key, rk as the right-key and wk as the
whole-key. Only party 𝑗 receives a private output from DKdf.

– WKGen(𝑣, 𝜎) =: wk. This algorithm deterministically produces

a whole-key wk on input (𝑣, 𝜎) ∈ {(lk, 𝑦), (rk, 𝑥)}.
such that they satisfy the following consistency properties. For any

𝑛, 𝑡, 𝜅 ∈ N such that 𝑡 ≤ 𝑛, any (JskK[𝑛] , 𝑝𝑝) output by Setup(1𝜅 , 𝑛, 𝑡):
Key Consistency: for any set 𝑆 ⊆ [𝑛] such that |𝑆 | ≥ 𝑡 , any party 𝑗 ∈

𝑆 , any input (𝑥,𝑦), for any 𝜎 ∈ {(𝑥, ‘left’), (𝑦, ‘right’)},
if all parties behave honestly, then the following probability

is at most negl(𝜅):6

Pr

[
WKGen(𝑣, 𝜎) ≠ wk |

[𝑗 : wk] ← DKdf (JskK[𝑛] , [𝑗 : ((𝑥,𝑦), ‘whole’), 𝑆]);

[𝑗 : 𝑣] ← DKdf (JskK[𝑛] , [𝑗 : (𝜎, 𝑆])
]

Threshold Consistency: for any two sets 𝑆, 𝑆 ′ ⊆ [𝑛] such that

|𝑆 |, |𝑆 ′ | ≥ 𝑡 , any two parties 𝑗 ∈ 𝑆, 𝑗 ′ ∈ 𝑆 ′, any input (𝑥,𝑦),
if all parties behave honestly, then the following probabiliy

is at least 1 − negl(𝜅):

Pr

[
[𝑗 ′ : wk] ← DKdf (JskK[𝑛] , [𝑗 ′ : ((𝑥,𝑦), ‘whole’), 𝑆 ′])

| [𝑗 : wk] ← DKdf (JskK[𝑛] , [𝑗 : ((𝑥,𝑦), ‘whole’), 𝑆])
]

Remark 5.2. Key-consistency only considers queries from the

same party; combining with threshold consistency this extends

5
These types of protocols are also known as solitary output protocols in literature [36].

6
Recall from Section 4 that, 𝜎 ∈ {𝑥, 𝑦 } such that 𝜎 ≠ 𝜎 .

7

immediately to di�erent parties. Similarly, combining with key

consistency, the threshold consistency extends to partial-keys.

Next, we de�ne security of a FTKD scheme. Security is cap-

tured by two separate properties: pseudorandomness and correctness.
First note that pseudorandomness is a crucial property for any

cryptographic key-derivation. Looking ahead, in our ATSE scheme

(Fig. 30) we use the key derived via FTKD to encrypt messages.

However, our pseudorandomness property (similar to DPRF pseu-

dorandomness) will guarantee that a key is pseudorandom even

when corrupt parties participate in the derivation protocol. We also

note that the consistency properties described above are indeed a

form of basic correctness when all participants behave honestly.

However, when the computation involves malicious parties, the

above guarantee may not be su�cient. Therefore we have a sepa-

rate correctness de�nition (c.f. Def. 5.6), in that the corrupt parties

can behave in arbitrarily malicious way. While correctness can be

optional for some use cases, it is indeed a crucial requirement for

our application ATSE, as discussed in Remark 7.5.

De�nition 5.3 (Security of FTKD). We say that an FTKD scheme

(as in Def. 5.1) is secure against malicious adversaries if it satis�es

the pseudorandomness requirement (Def. 5.4). Moreover, an FTKD

scheme is said to be strongly-secure against malicious adversaries if

it satis�es both pseudorandomness and correctness (Def. 5.6).

In the de�nitions that follow, the adversary is given access to

various interactive oracles (see Sec. 4.1 for detailed notations). On

a legitimate query (as conditioned by the corresponding require
command) the oracle runs an adequate instance of DKdf protocol.
When the client (denoted by 𝑗 usually) is corrupt, the protocol

instance is initiated by the adversary (denoted byA) (and the output

is received only by the adversary)
7
; the honest servers (usually

denoted by 𝑆 \𝐶) are controlled by the oracle. If the client is honest,
then the protocol is initiated by the oracle, and in some cases the

output is explicitly given to the attacker; in other cases the output

is not revealed to the attacker, though the attacker obtains the

transcripts of the protocol execution in either case.

De�nition 5.4 (Pseudorandomness of FTKD). An FTKD is pseu-
dorandom if for all PPT adversaries A, there exists a negligible

function negl such that��
Pr

[
DP-PRA (1𝜅 , 0) = 1

]
−Pr

[
DP-PRA (1𝜅 , 1) = 1

] �� ≤ negl(𝜅),
where the game DP-PR is de�ned in Figure 2, the key-derivation

oracle is de�ned in 3 and the challenge oracle is de�ned in 4.

Game DP-PRA (1𝜅 , b):
− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− set CHAL,ABORT := 0.

− set 𝐿lk, 𝐿rk, 𝐿wk := ∅ and set 𝑥★, 𝑦★, 𝑧★ := ⊥.
− set ∀ (𝑥,𝑦, 𝑧) : LCT𝑥 ,RCT𝑦,WCT𝑧 := 0.

− run 𝐶 ← A(𝑝𝑝); require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run 𝑏 ′ ← AOpr-kd,Opr-chal ({𝑠𝑘𝑖 }𝑖∈𝐶).
− if ABORT ≠ 1 then return 𝑏 ′; else return uniform 𝑏 ′.

Figure 2: Pseudorandomness game of an FTKD scheme.

7
This is automatically captured by the notation such as [𝑗 : op] ← DKdf (JskK𝑛, [𝑗 :
𝜎, 𝑆]) , so no explicit statement such as return op is needed when 𝑗 is corrupt.

Oracle Opr-kd (𝑗, 𝜎, 𝑆) :
require 𝑗 ∈ 𝑆 ∧ 𝜎 ∈ {(𝑥, ‘left’), (𝑦, ‘right’), (𝑧, ‘whole’)}.

− run [𝑗 : op] ← DKdf (JskK[𝑛] , [𝑗 : 𝜎, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.
− if 𝑗 ∈ 𝐶 then do :

− if 𝜎 = (𝑥, ‘left’) then do :

− set LCT𝑥 := LCT𝑥 + |𝑆 \𝐶 |.
− if LCT𝑥 ≥ 𝑡 − |𝐶 | then do :

− if CHAL = 1 ∧ 𝑥 = 𝑥★ then set ABORT := 1;

else set 𝐿lk := 𝐿lk ∪ {𝑥}.
− else if 𝜎 = (𝑦, ‘right’) then do :

− set RCT𝑦 := RCT𝑦 + |𝑆 \𝐶 |.
− if RCT𝑦 ≥ 𝑡 − |𝐶 | then do :

− if CHAL = 1 ∧ 𝑦 = 𝑦★ then set ABORT := 1;

else set 𝐿rk := 𝐿rk ∪ {𝑦}.
− else if 𝜎 = (𝑧, ‘whole’) then do :

− setWCT𝑧 := WCT𝑧 + |𝑆 \𝐶 |.
− if WCT𝑧 ≥ 𝑡 − |𝐶 | then do :

− if CHAL = 1 ∧ 𝑧 = 𝑧★ set ABORT := 1;

else set 𝐿wk := 𝐿wk ∪ {𝑧}.
Figure 3: Key-derivation oracle for DP-PR

Oracle Opr-chal (𝑗★, 𝑧★, 𝑆★):
require 𝑗★ ∈ 𝑆★ \𝐶 and |𝑆★ | ≥ 𝑡 and CHAL = 0.

− set CHAL := 1.

− set (𝑥★, 𝑦★) := 𝑧★.

− if (𝑧★ ∈ 𝐿wk) or (𝑦★ ∈ 𝐿rk) or (𝑥★ ∈ 𝐿lk) then ABORT := 1;

else run [𝑗★ : wk★] ← DKdf (JskK[𝑛] , [𝑗 : 𝜎, 𝑆★]) and do:
− if (wk★ = ⊥) then return ⊥;

else do:
− if 𝑏 = 0 then return wk★.
− if 𝑏 = 1 then return uniform wk★.

Figure 4: Challenge oracle for DP-PR.

Remark 5.5. The �ag CHAL is used to distinguish between

the pre-challenge and post-challenge queries; CHAL = 1 implies

that the challenge oracle was already accessed (also it ensures

that the challenge oracle is accessed only once). The counters

LCT𝑥 ,RCT𝑦,WCT𝑧 keep track of the total number of honest parties

contacted by the attacker on a particular input 𝑥/𝑦/𝑧 (resp.)–this
enables keeping track of whether enough information is acquired

by the adversary (that happens when 𝑡 − |𝐶 | parties are contacted
on an input) to derive the corresponding key. These counters are

initialized to 0 implicitly as there are exponentially many (𝑥,𝑦, 𝑧)
values. The lists 𝐿lk, 𝐿rk, 𝐿wk contains the left/right/whole inputs

respectively for which the attacker already has enough information

to compute the output and hence if a challenge query is made on

any such input (present in one of the lists) the experiment is aborted

(within the challenge oracle, by setting the �ag ABORT = 1.)

De�nition 5.6 (Correctness of FTKD). An FTKD is correct if for all
PPT adversariesA, there exists a negligible function negl such that

the DP-CorrectA game outputs 1 with probability at most negl(𝜅).
The gameDP-Correct is given in Figure 5, the key-derivation oracle
is de�ned in Figure 6 and the challenge oracle is de�ned in Figure 7.

8

Oracle Ocr-kd (𝑗, 𝜎, 𝑆):
require 𝑗 ∈ 𝑆 ∧ 𝜎 ∈ {(𝑥, ‘left’), (𝑦, ‘right’), (𝑧, ‘whole’)}.

− run [𝑗 : op] ← DKdf(JskK[𝑛] , [𝑗 : 𝜎, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Figure 6: Key-derivation oracle for DP-Correct

Oracle Ocr-chal (𝑗★, Type, 𝑧★, 𝑆★):
requireOUT = 0 and CHAL = 0 and Type ∈ {‘left’, ‘right’,
‘whole’} and 𝑗★ ∈ 𝑆★ \𝐶 and |𝑆★ | ≥ 𝑡 .

− set CHAL := 1, and set (𝑥★, 𝑦★) := 𝑧★.

− if Type = ‘left’ then do:
run [𝑗★ : lk] ← DKdf (JskK[𝑛] , [𝑗★ : (𝑥★, ‘left’), 𝑆★)]).
if lk ≠ ⊥ then set wk★ := WKGen(lk, 𝑦★).

− else if Type = ‘right’ then do:
run [𝑗★ : rk] ← DKdf(JskK[𝑛] , [𝑗★ : (𝑦★, ‘right’), 𝑆★)]).
if rk ≠ ⊥ then set wk★ := WKGen(𝑥★, rk).

− else if Type = ‘whole’ then do :

run [𝑗★ : wk★] ← DKdf (JskK[𝑛] , [𝑗★ : (𝑧★, ‘whole’), 𝑆★)]).
− run wk† ← DKdf† (JskK[𝑛] , [𝑗 : (𝑧★, ‘whole’), 𝑆★)]).
− if wk★ = ⊥ then set OUT := 0; else set OUT := (wk★ ≠ wk†)

Figure 7: Challenge oracle for DP-Correct

Game DP-CorrectA (1𝜅):
− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− set CHAL,OUT := 0.

− run 𝐶 ← A(𝑝𝑝) and require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run AOcr-kd,Ocr-comp ({𝑠𝑘𝑖 }𝑖∈𝐶).
− return OUT.

Figure 5: Correctness game of an FTKD scheme.

Remark 5.7. The key-derivation oracle above is much simpler

than the one in DP-PR as no book-keeping is required to prevent

a trivial win. However, the challenge oracle gets more complex,

because we allow the attacker to use any of the three “modes of

interaction” available. As guaranteed by the consistency property

in Def. 5.1, when no corruption is present then all three modes gen-

erate the same whole-key for the same input. However, a malicious

server may decide to respond di�erently for di�erent modes (even

when the same input is used) potentially leading to di�erent keys.

Our correctness de�nition guarantees that such scenario can never

happen. In particular, if correctness holds, then the attacker can not

enforce an honest client to derive di�erent keys even when di�erent

modes of key-derivation are used. Any such attempt would invoke

a failure (that is ⊥) with overwhelming probability. This is formal-

ized by the (global) �ag OUT, which is set to 1 inside the challenge

oracle only when derived whole-key wk★ is equal to neither ⊥, nor
wk† which is the value obtained from an honest execution (denoted

by DKdf† as explained in Sec. 4.1).

5.2 Our FTKD construction
Figure 8 speci�es our FTKD construction. We require a bilinear

pairing:
8 𝑒 : 𝐺0 ×𝐺1 → 𝐺𝑇 and two independent hash functions

H0,H1 such that H𝑏 : {0, 1}∗ → 𝐺𝑏 for any 𝑏 ∈ {0, 1}. In the

8
We assume the asymmetric variant which subsumes the other variants, but our

construction is compatible with other variants as well.

setup phase, a master secret-key 𝑠𝑘 ←
$
Z𝑝 is sampled which is

then secret-shared using 𝑡-out-of-𝑛 Shamir’s secret sharing de-

noted JskK[𝑛] := {𝑠𝑘1, . . . , 𝑠𝑘𝑛}. Each party-𝑖 obtains a key-share

𝑠𝑘𝑖 . For an input (𝑥,𝑦) the left, right and the whole-keys are given

byH0 (𝑥)𝑠𝑘 ,H1 (𝑦)𝑠𝑘 and 𝑒 (H0 (𝑥),H1 (𝑦))𝑠𝑘 respectively. Clearly,

given a partial-key H0 (𝑥)𝑠𝑘 (resp. H1 (𝑦)𝑠𝑘) and the other part

of the input, 𝑦 (resp. 𝑥) one can locally compute the whole-key

using pairing. For any key-derivation query, depending on its

type, a server performs an exponentiation on an appropriate value

𝑤 ∈ {H0 (𝑥),H1 (𝑦), 𝑒 (H0 (𝑥)),H1 (𝑦)} with its own share 𝑠𝑘𝑖 , and

returns that to the client. On receiving su�ciently many responses,

the client combines any 𝑡 (including the value computed from its

own share) responses to compute the partial or whole-key using

Lagrange interpolation in the exponent.

Ingredients

− Let𝐺0,𝐺1, and𝐺𝑇 be multiplicative cyclic groups of prime order

𝑝 such that there exists a bilinear pairing 𝑒 :𝐺0 ×𝐺1 → 𝐺𝑇 that

is e�ciently computable and non-degenerate; we let 𝑔0 ∈ 𝐺0 and

𝑔1 ∈ 𝐺1 be generators of𝐺0 and𝐺1 respectively.

− Let H0 : {0, 1}∗ → 𝐺0 and H1 : {0, 1}∗ → 𝐺1 be hash functions

modeled as random oracles.

− Let SSS be Shamir’s secret sharing scheme.

Our FTKD Construction

− Setup(1𝜅 , 𝑛, 𝑡) → (JskK[𝑛] , 𝑝𝑝) . Sample 𝑠𝑘 ←
$
Z𝑝 ; run JskK𝑛 ←

SSS(𝑛, 𝑡, 𝑝, 𝑠) . Set 𝑝𝑝 := (𝑝,𝑔0,𝐺0, 𝑔1,𝐺1,𝐺𝑇 , 𝑒,H0,H1) .
− DKdf (JskK𝑆 , [𝑗 : 𝜌, 𝑆]) → [𝑗 : 𝑘/⊥]. This is a two round protocol

as described below:

Round-1. Party 𝑗 sends 𝜌 to each party 𝑖 ∈ 𝑆 .
Round-2. Each party 𝑖 ∈ 𝑆 sends back ℎ𝑖 to 𝑗 such that ℎ𝑖 := 𝑤𝑠𝑘𝑖

where 𝑤 :=


H0 (𝑥) if 𝜌 = (𝑥, ‘left’)
H1 (𝑦) if 𝜌 = (𝑦, ‘right’)

𝑒 (H0 (𝑥),H1 (𝑦)) if 𝜌 = ((𝑥, 𝑦), ‘whole’)
Finalize. Party 𝑗 , if receives at least 𝑡 − 1 responses from parties in 𝑆

then outputs 𝑘 :=
∏

𝑖∈𝑆′ ℎ
𝜆
0,𝑖,𝑆′

𝑖
where 𝑆′ ⊆ 𝑆 ∪ { 𝑗 } is of size

𝑡 ; otherwise outputs ⊥.
− WKGen(𝑣, 𝜎) =: wk. Compute wk := 𝑒 (𝑣,H𝑏 (𝜎))

where 𝑏 := 0 if 𝜎 = 𝑥, else 1 if 𝜎 = 𝑦

Figure 8: Our Flexible Threshold Key Derivation Scheme

Remark 5.8 (Special structure of ourDKdf protocol: Simple
FTKD). We observe our FTKD scheme has a special property: in

the �rst round of DKdf (JskK[𝑛] , [𝑗 : 𝜌, 𝑆]) the client 𝑗 sends over
part of its input, 𝜌 to each server in 𝑆 . Any FTKD scheme with a

DKdf protocol with this speci�c simple structure is referred to as a

simple FTKD scheme. Our ATSE construction requires this.

Theorem 5.9. The construction, presented in Figure 8 is a se-
cure FTKD construction under the BDDH assumption over the map
𝑒 (𝐺0,𝐺1) → 𝐺𝑇 in the programmable random oracle model.

Proof. The threshold and key consistency properties follow

immediately from the correctness of Shamir’s Secret Sharing and

bilinear pairing respectively.

Pseudorandomness. To see the pseudorandomness, �rst note that

our FTKD construction is a distributed variant of the left/right con-

strained PRF construction of Boneh and Waters (BW [20]) in the

random oracle model. Due to the structural similarity (in particular

9

the “key-homomorphic” property) with the distributed PRF of Naor,

Pinkas and Reingold [45], which is the DDH-based DPRF construc-

tion used in DiSE [13], it is possible to use it in a distributed manner

as done here. The pseudorandomness of our construction is loosely

based on the arguments provided in BW [20] (Theorem 3.2) and

DiSE [13] (Theorem 8.1). We defer the details to Appendix E.1 �

The construction of strongly secure FTKD (see Fig. 34) is achieved

by techniques analogous to strongly-secure DiSE DPRF, namely

using e�cient ZK proofs, and is deferred to Appendix A.

6 GROUP COMMITMENTS
We introduce the notion of group commitments in this section. We

construct this primitive based on Merkle-tree.

De�nition 6.1 (Group Commitments). A group commitment scheme
consists of a tuple of PPT algorithms, (GSetup,GCommit,CardVer,
GVer) with the following syntax:

− GSetup(1𝜅) → 𝑝𝑝 : The setup algorithm, on input the security

parameter, outputs the public parameters.

− GCommit(𝑝𝑝,m) → (𝛾, q, p) : The commit algorithm takes

a message vector as input and returns a group commitment

string 𝛾 , a unique commitment vector q, an opening vector p.
− CardVer(𝑝𝑝, (𝛾, 𝑁)) =: 0/1: The cardinality veri�cation algo-

rithm takes a commitment and an integer and outputs 1 if and

only if the group-commitment’s cardinality (the number of

messages in the group used to produce 𝛾) correctly veri�es

against 𝑁 .

− GVer(𝑝𝑝, (𝛾, 𝑞), (𝑚, 𝑝)) =: 0/1 : The veri�cation algorithm

takes a pair of group and unique commitments, a message-

opening pair, and outputs a bit signifying the validity (1 if

valid and 0 otherwise) of the message with respect to the

commitment and the opening.

such that the following properties hold for any 𝜅 ∈ N and any

𝑝𝑝 ← GSetup(1𝜅):

Correctness: for any m = (𝑚1, . . . ,𝑚𝑁) and any 𝑖 ∈ [𝑁] we
have:

Pr[GVer(𝑝𝑝, (𝛾, 𝑞𝑖), (𝑚𝑖 , 𝑝𝑖))) = 1 |
(𝛾, q, p) ← GCommit(𝑝𝑝,m)] = 1

where the randomness is over GCommit.
Compactness: for any m = (𝑚1, . . . ,𝑚𝑁) and any 𝑖 ∈ [𝑁], |𝛾 |

is independent of 𝑁 and |𝑞𝑖 | ∝ log(𝑁) where (𝛾, q, p) ←
GCommit(𝑝𝑝,m).

Binding: for any PPT adversary A there exists a negligible func-

tion negl(·) such that:

Pr

[
((𝑚, 𝑝) ≠ (𝑚′, 𝑝 ′));GVer(𝑝𝑝, ((𝛾, 𝑞), (𝑚, 𝑝))) = 1;

GVer(𝑝𝑝, ((𝛾, 𝑞), (𝑚′, 𝑝 ′))) = 1

| (𝛾, 𝑞, (𝑚, 𝑝), (𝑚′, 𝑝 ′)) ← A(𝑝𝑝)
]
≤ negl(𝜅)

Game HideA (1𝜅 , 𝑏):
− set 𝐼 := ∅.
− run (m0,m1) ← A(𝑝𝑝);

require |m0 | = |m1 | and ∃ 𝑖 su� that m0 [𝑖] ≠ m1 [𝑖].
− for 𝑖 = 1→ |m0 | : if 𝑚0 [𝑖] =𝑚1 [𝑖] then set 𝐼 := 𝐼 ∪ {𝑖}.
− run (𝛾, q, p) ← GCommit(𝑝𝑝,m𝑏).
− run 𝑏 ′ ← AOopen (𝛾, q).
− if 𝑏 = 𝑏 ′ then return 1; else return 0

Figure 9: Hiding game for group-commitments

Oracle Oopen (𝑖★): if 𝑖★ ∈ 𝐼 then return 𝑝𝑖★

Figure 10: The opening oracle for game Hide.

Cardinality Binding: for any PPT adversary A there exists a

negligible function negl(·) such that:

Pr

[
{GVer(𝑝𝑝, (𝛾, 𝑞𝑖), (𝑚𝑖 , 𝑝𝑖)) = 1}𝑖∈ |m | ; |m| > 𝑁 ;

CardVer(𝑝𝑝, (𝛾, 𝑁)) = 1 | (𝛾, 𝑁 , (m, q, p)) ← A(𝑝𝑝)
]
≤ negl(𝜅)

Hiding: for any PPT adversary A, there exists a negligible func-

tion negl(·) such that:

| Pr[HideA (1𝜅 , 𝑏) = 1] − 1/2| ≤ negl(𝜅)

where the security game Hide is de�ned in Figure 9, and

the opening oracle Oopen is de�ned in Figure 10.

Remark 6.2. A group commitment scheme has a standard bind-

ing property, and a �ne-grained hiding property, in that the com-

mitment pair (𝛾, q) of a set of messages m semantically hides an

𝑚 ∈ m even when the openings 𝑝 ′ of other messages (𝑚′ ≠𝑚, but

𝑚′ ∈ m) in the same group are given. This is captured by the open-

ing oracle Oopen, which requires indexes 𝑖★ for which the message

𝑚𝑖★ is exactly the same in the two groups m0 and m1, to prevent

trivial wins. Furthermore, it has a cardinality binding property, that

prevents an attacker from lying about the cardinality of the vector
9
.

This property only makes sense when compactness holds and the

veri�cation algorithm does not get a unique-commitment as input.

6.1 Constructing Group Commitments from
Merkle-tree

Figure 11 provides an instantiation of a group commitment scheme

using Merkle-tree hashing. It is proven secure in the random oracle

model. The claim of security is formalized in the following theorem.

Theorem 6.3. LetH be a random oracle. Then the construction
described in Figure 11 is a group commitment scheme as per De�ni-
tion 6.1.

Proof. The correctness and compactness are obvious. The bind-

ing property follows from the collision resistance of the hash func-

tion (random oracles are collision resistant) easily.

9
Without this property one may carry out an attack by honestly using 100 messages

to generate 𝛾 , but then maliciously claiming that she used only 10 messages. Looking

ahead, this would make our one-more style authenticity de�nition to fail.

10

− GSetup(1𝜅) : Sample a hash function H : {0, 1}∗ →
{0, 1}𝜅 and output its description as the public parame-

ters 𝑝𝑝 := H .

− GCommit(𝑝𝑝,m) : Let 𝑁 = |m| and 𝜆 = dlog(𝑁)e.
− Sample 𝑁 uniform random values 𝑟1, . . . , 𝑟𝑁 .

− Compute the hash values and labels for the leaves (or

level-0) for 𝑖 := 1→ 2
𝜆
:

ℎ0𝑖 :=

{
H(𝑖‖𝑚𝑖 ‖𝑟𝑖) if 𝑖 ≤ 𝑁

H(𝑖‖0 . . . 0) if 𝑖 > 𝑁

and

𝜈0𝑖 :=

{
1 if 𝑖 ≤ 𝑁

0 if 𝑖 > 𝑁

− Then recursively compute other nodes of the trees. In

particular, the nodes at the 𝑗-th level for 𝑗 := 1→ 𝜆

and 𝑖 := 1→ 2
𝜆−𝑗

are computed as:
a
.

ℎ
𝑗
𝑖
:= H(𝜈 𝑗−1

2𝑖−1‖ℎ
𝑗−1
2𝑖−1‖𝜈

𝑗

2𝑖
‖ℎ 𝑗

2𝑖
)

and

𝜈
𝑗
𝑖
= 𝜈

𝑗−1
2𝑖−1 + 𝜈

𝑗−1
2𝑖

− The commitment 𝛾 is de�ned as 𝛾 := (𝑁,ℎ𝜆
1
).

− For 𝑖 ∈ [𝑁], the opening 𝑝𝑖 is de�ned to be (𝑖‖𝑟𝑖)
and the unique commitment 𝑞𝑖 is set to be a tuple

consisting of all intermediate auxiliary hash values

and corresponding labels required to compute

the root: (ℎ0sib(𝑖,0) , ℎ
1

sib(d𝑖/2e,1) , . . . , ℎ
𝜆

sib(d𝑖/2𝜆−1 e))
(𝜈0sib(𝑖,0) , 𝜈

1

sib(d𝑖/2e,1) , . . . , 𝜈
𝜆−1
sib(d𝑖/2𝜆−1 e)) where

sib(𝑖, 𝑗) denotes the sibling of the 𝑖-th node at the

𝑗-th level.

− Output the group commitment 𝛾 , the unique commit-

ment vector q and the opening vector p.
− GVer(𝑝𝑝, (𝛾, 𝑞), (𝑚, 𝑝)) : Parse 𝑝 as (𝑖, 𝑟), 𝑞 as (𝑔0, 𝑔1, . . . ,

𝑔𝜆−1), (𝜇0, . . . , 𝜇𝜆−1) and 𝛾 as (𝑀,ℎ). Then do as follows:

− Compute ℎ0 := H(𝑖‖𝑚‖𝑟) and 𝜈0 := 1.

− Let 𝜂 be the bit-representation of the string 𝑖 , let 𝜂 [𝑗]
be the 𝑗-th bit of 𝜂.

− For 𝑗 := 1→ 𝜆, compute:

ℎ 𝑗 :=

{
H(𝜈 𝑗−1‖ℎ 𝑗−1‖𝜇 𝑗−1‖𝑔 𝑗−1) if 𝜂 [𝑗] = 0

H(𝜇 𝑗−1‖𝑔 𝑗−1‖𝜈 𝑗−1‖ℎ 𝑗−1) if 𝜂 [𝑗] = 1

and

𝜈 𝑗 := 𝜈 𝑗−1 + 𝜇 𝑗−1
− Finally verify whether ℎ = ℎ𝜆 and 𝜈𝜆 = 𝑀 if it suc-

ceeds output 1, otherwise output 0.

− CardVer(𝑝𝑝, (𝛾, 𝑁)) = 0/1 : Parse 𝛾 as (𝑀,ℎ) and return 1

if𝑀 = 𝑁 and 0 otherwise.

a
Note that, the labels 𝜈

𝑗

2𝑖
denotes the total number of leaves below this node and

for the root this will be equal to 𝑁

Figure 11: The Merkle-tree based group commitment

Cardinality-binding. To observe the cardinality-binding property
�rst note that the commitments are position binding [22], meaning

that no cheating committer can open two messages in the same

position 𝑖 — this is straightforward to see from the binding property,

because same position immediately implies that the unique com-

mitments must be the same (due to collision resistance of the hash

function). So, the only way an adversary can succeed in breaking

cardinality-binding for a commitment 𝛾 = (𝑀,ℎ) is by opening to

more positions than 𝑀 . There are two possibilities: �rst suppose

that 𝛾 was honestly produced. In this case, attempting to open any

message at a new position would lead to wrong label at a node and

hence a wrong hash value at the next node (by collision resistance).

In the other case, let’s assume that the correct cardinality is 𝑁 > 𝑀 ,

and the adversary lied about it; then on opening to 𝑁 positions all

the hash values would match, but the �nal label at the root would

be equal to 𝑁 (instead of the 𝑀 as claimed by the adversary) —

leading GVer to fail.

Hiding. Finally, the hiding property can be derived from the fact

thatH(𝑖‖𝑚‖𝑟) hides𝑚 semantically when 𝑟 is uniformly random

andH is a random oracle. It is not hard to see that this fact holds

when H is a random oracle, because the adversary is not able

predict 𝑟 except with negligible probability–which implies that the

output is uniformly random conditioned on the adversary’s view.

Now, in the security-game HideA , the adversary’s view consists

of all unique commitments which are all the hash-values of the

Merkle-tree plus the openings of the messages {𝑚𝑖 }𝑖∈𝐼 that are
indi�erent across two message vectors m0 and m1. Additionally,

the adversary may acquire random oracle outputs (polynomially

many) by querying the random oracle. However, for all themessages

{𝑚𝑖 }𝑖∉𝐼 that di�er across two challenge vectors, the correspond-

ing randomnesses are not known to the adversary (this is ensured

by requiring that 𝑖★ ∈ 𝐼 within the oracle Oopen), therefore, the
random oracle outputs are also unknown to the adversary with

overwhelming probability. So, the only information adversary ob-

tains on those di�ering messages {𝑚𝑖 }𝑖∈𝐼 areH(𝑖‖𝑚𝑖 ‖𝑟𝑖), which
hides𝑚𝑖 as discussed above. �

7 AMORTIZED THRESHOLD SYMMETRIC
ENCRYPTION (ATSE)

We now present amortized threshold symmetric encryption (ATSE).

We �rst provide the formal de�nition, and then present our con-

struction based on FTKD, and prove that it satis�es our de�nition.

7.1 De�nition of ATSE
In a 𝑡 out of 𝑛 ATSE scheme all parties obtain their corresponding

key-shares in the setup phase. Any party, who wants to encrypt a

tuple of messages m, contacts at least 𝑡 − 1 other parties to interac-

tively generate a tuple of ciphertexts c. In this particular execution,

the encrypting party is often called the client, whereas the helping
parties are called the servers. Later, any party (possibly di�erent

from the previous client) may want to decrypt a single ciphertext

𝑐 from the tuple c. It can do so by contacting any 𝑡 − 1 (possibly
di�erent from the previous servers) other parties.

We remark that our formalization follows the de�nitional frame-

work of threshold symmetric encryption (TSE) de�nition (Def. 6.1

in DiSE ePrint version [14]) of DiSE. The only di�erence is that

11

we allow encryption of a group messages together, whereas DiSE

supports encryption of one message at a time.
10

De�nition 7.1 (Amortised Threshold Symmetric Encryption (ATSE)).
An amortised threshold encryption scheme (ATSE) is given by a triple

of algorithms and protocols (Setup,DGEnc,DKdf) satisfying the

consistency property described below.

– Setup(1𝜅 , 𝑛, 𝑡) → (JskK[𝑛] , 𝑝𝑝) : Setup is a randomized al-

gorithm that outputs 𝑛 secret keys 𝑠𝑘1, . . . , 𝑠𝑘𝑛 and public

parameters 𝑝𝑝 . The 𝑖-th secret key 𝑠𝑘𝑖 is given to party 𝑖 . All

algorithms / protocols below take 𝑝𝑝 as an implicit input.

– DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆]) → [𝑗 : c/⊥]: DGEnc denotes a
distributed group-encryption protocol through which a party 𝑗

encrypts any vector of messages m = (𝑚1,𝑚2 . . .) to produce

a vector of ciphertexts c = (𝑐1, 𝑐2, . . .) or ⊥, when it fails.

– DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]) → [𝑗 : 𝑚/⊥] : DistDec is a dis-

tributed protocol through which a party 𝑗 decrypts a single

ciphertext 𝑐 with the help of parties in a set 𝑆 . At the end of

the protocol, 𝑗 outputs a message (or ⊥ to denote failure).

Consistency. For any𝜅, 𝑛, 𝑡, 𝑁 ∈ N such that 𝑡 ≤ 𝑛, all (JskK[𝑛] , 𝑝𝑝)
output by Setup(1𝜅 , 𝑛, 𝑡), for any sequence of messages

m = 𝑚1 . . . ,𝑚𝑁 , any 𝑖 ∈ [𝑁], two sets 𝑆, 𝑆 ′ ⊂ [𝑛] such
that |𝑆 |, |𝑆 ′ | ≥ 𝑡 , and any two parties 𝑗 ∈ 𝑆, 𝑗 ′ ∈ 𝑆 ′, if all
the parties behave honestly, then there exists a negligible

function negl for which the following probability is at least

1 − negl(𝜅).

Pr

[
[𝑗 ′ :𝑚𝑖] ← DistDec(JskK[𝑛] , [𝑗 ′ : 𝑐𝑖 , 𝑆 ′]) |

c← DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆])
]

where the probability is over the random coin tosses of the

parties involved in DGEnc and DistDec.

We now de�ne the security of an ATSE scheme. Inspired by

DiSE TSE [14], the security of an ATSE scheme is captured by three

di�erent properties, correctness, message-privacy and authenticity,
of which correctness and authenticity have stronger versions.

De�nition 7.2 (Security of ATSE). We say that a ATSE scheme

is (strongly)-secure against malicious adversaries if it satis�es the

(strong)-correctness (Def. 7.3), message privacy (Def. 7.6) and (strong)-

authenticity (Def. 7.9) requirements.

An ATSE scheme is correct whenever a legitimately produced

ciphertext 𝑐 for an input message𝑚, if decrypted (in presence of

potential malicious corruption) in a distributed manner, outputs

either 𝑚 or ⊥. In particular, an adversary should not be able to

in�uence the decryption protocol to produce a message di�erent
from𝑚. Furthermore, strong-correctness additionally requires that 𝑐

should only decrypt to𝑚 (not even⊥) when decryption is performed

honestly. We stress that strong-correctness is crucial for our use-

case (see Remark 7.5).

De�nition 7.3 ((Strong)-Correctness). An ATSE scheme is correct
if for all PPT adversaries A, there exists a negligible function negl
such that the game AT-CorrectA outputs 1 with probability at most

10
This is, nevertheless, a syntactic di�erence as one may just run DiSE encryption

protocol on a group of messages, assuming that to be a single message. The security

property that follows provide a semantic distinction.

Game AT-CorrectA (1𝜅):
− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− set CHAL,OUT := 0.

− run 𝐶 ← A(𝑝𝑝);
require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run AOat-cor-enc,Oat-cor-dec,Oat-cor-chal ({𝑠𝑘𝑖 }𝑖∈𝐶).
− return OUT.

Figure 12: The correctness game of an ATSE scheme.

Oracle Oat-cor-enc (𝑗,m, 𝑆):
require 𝑗 ∈ 𝑆 .

− run [𝑗 : op] ← DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Figure 13: The encryption oracle for the game AT-Correct..

Oracle Oat-cor-dec (𝑗, 𝑐, 𝑆):
require: 𝑗 ∈ 𝑆 .

− run [𝑗 : op] ← DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Figure 14: The decryption oracle for the game AT-Correct..

Oracle Oat-cor-chal (𝑗, 𝑆, 𝑗 ′, 𝑆 ′,m = (𝑚1 . . . ,𝑚𝑁), 𝑖):
require 𝑗 ∈ 𝑆 \𝐶 and 𝑗 ′ ∈ 𝑆 ′ \𝐶 and 𝑖 ∈ [𝑁] and CHAL =

0 and OUT = 0.

− set CHAL := 1.

− run [𝑗 : op] ← DGEnc(JskK𝑛, [𝑗 : m, 𝑆]).
− if op = ⊥ then set OUT := 0;

else set (𝑐1, . . . , 𝑐𝑁) := op and do :

− run [𝑗 ′ : op′] ← DistDec(JskK𝑛, [𝑗 ′ : 𝑐𝑖 , 𝑆 ′]).
− if op′ ∈ {𝑚𝑖 ,⊥} then set OUT := 0; else set OUT := 1.

Figure 15: The challenge oracle for the game AT-Correct.

negl(𝜅). The security game AT-Correct is described in Figure 12,

the corresponding oracles are described in Figure 13, Figure 14 and

Figure 15. An ATSE scheme is called strongly-correct if for all PPT
adversaries A, there exists a negligible function negl such that the

game AT-Str-CorrectA outputs 1 with probability at most negl(𝜅),
where the game AT-Str-Correct is described in Figure 16, which

uses a di�erence challenge oracle (but the same encryption and

decryption oracle) as described in Figure 17.

Remark 7.4. There are two �ags in the game AT-Correct (Fig-
ure 12), namely CHAL which simply ensures that the challenge

oracle is accessed only once; and OUT which indicates whether

the adversary satis�es the winning condition. The default value of

OUT is set to 0 and it is set to 1 only within the challenge oracles

Oat-cor-chal,Oat-str-cor-chal, when the winning conditions are met.

Remark 7.5 (Correctness for massive data encryption). For

our application where a client encrypts large volumes of data, strong
correctness is a crucial requirement. As also explained in DiSE (see

Remark 6.5 in [14]), the plaintext data is deleted from memory after

storing the encrypted version.Without strong correctness, a corrupt

server may return a wrong computation that remains undetected

during encryption and leads the client to generate a malformed

ciphertext. Later, even an honest decryption session would not

12

Game AT-Str-CorrectA (1𝜅):
− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− set CHAL,OUT := 0.

− run 𝐶 ← A(𝑝𝑝);
require: 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run AOat-cor-enc,Oat-cor-dec,Oat-str-cor-chal ({𝑠𝑘𝑖 }𝑖∈𝐶).
− return OUT.

Figure 16: The strong-correctness game for ATSE scheme.

Oracle Oat-str-cor-chal (𝑗, 𝑆, 𝑗 ′, 𝑆 ′,m = (𝑚1 . . . ,𝑚𝑁), 𝑖):
require 𝑗 ∈ 𝑆 \𝐶 and 𝑗 ′ ∈ 𝑆 ′ \𝐶 and 𝑖 ∈ [𝑁] and CHAL =

0 and OUT = 0.

− set CHAL := 1.

− run [𝑗 : op] ← DGEnc(JskK𝑛, [𝑗 : m, 𝑆]).
− if op = ⊥ then set OUT := 0;

else (𝑐1, . . . , 𝑐𝑁) := op and do :

− run op′ ← DistDec† (JskK𝑛, [𝑗 ′ : 𝑐𝑖 , 𝑆 ′]).
− if op′ =𝑚𝑖 then set OUT := 0; else set OUT := 1.

Figure 17: The challenge oracle for the game AT-Correct.

Oracle Oat-mp-enc (𝑗,m, 𝑆):
require 𝑗 ∈ 𝑆 .

− run [𝑗 : op] ← DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Figure 19: The encryption oracle of game AT-MsgPriv.

be able to recover the plaintext, which is now lost permanently.

With strong correctness, it is guaranteed that whatever a malicious

party does during the encryption, any honest decryption at a later

point would result in a correct message. Looking ahead, in our

strongly secure FTKD scheme this is realized by adding a non-

interactive zero-knowledge proof for the correct computation by

each participating server during encryption (similar to DiSE). For

this reason our performance evaluation only focuses on this version.

De�nition 7.6 (Message privacy). An ATSE scheme satis�es mes-
sage privacy if for all PPT adversaries A, there exists a negligible

function negl such that��
Pr

[
AT-MsgPrivA (1𝜅 , 0) = 1

]
−

Pr

[
AT-MsgPrivA (1𝜅 , 1) = 1

] �� ≤ negl(𝜅),
where the security game AT-MsgPriv is described in Figure 18;

the associated encryption, decryption and challenge oracles are

described in Figure 19, Figure 20 and Figure 15 respectively.

Game AT-MsgPrivA (1𝜅 , 𝑏):
− set CHAL := 0.

− set c★ := ∅.
− set 𝐼 := ∅.
− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− run 𝐶 ← A(𝑝𝑝);

require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run𝑏 ′ ← AOat-mp-enc,Oat-mp-dec,Oat-mp-chal,Oat-mp-pc-dec ({𝑠𝑘𝑖 }𝑖∈𝐶)
− return 𝑏 ′.

Figure 18: Description of AT-MsgPriv

Oracle Oat-mp-dec (𝑗, 𝑐, 𝑆):
require 𝑗 ∈ 𝑆 \𝐶 .

− run [𝑗 : op] ← DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]).

Figure 20: The decryption oracle of game AT-MsgPriv.

Oracle Oat-mp-chal (𝑗★,m0,m1, 𝑆
★):

require 𝑗★ ∈ 𝑆 \𝐶 and |m0 | = |m1 | and CHAL = 0.

− set CHAL := 1.

− for 𝑖 su� that m0 [𝑖] = m1 [𝑖] set 𝐼 := 𝐼 ∪ {𝑖}.
− run [𝑗★ : op] ← DGEnc(JskK𝑛, [𝑗 : m𝑏 , 𝑆

★]).
− set c★ := op.
− return 𝑐★.

Figure 21: The challenge oracle of game AT-MsgPriv.

Oracle Oat-mp-pc-dec (𝑗, 𝑐, 𝑆):
require 𝑗 ∈ 𝑆 and CHAL = 1 and 𝑐 = c★[𝑖★] and 𝑖★ ∈ 𝐼 .

− run [𝑗 : op] ← DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]).
− if 𝑗 ∉ 𝐶 return op.

Figure 22: Post-challenge decryption oracle for AT-MsgPriv.

Remark 7.7 (Comparison with DiSE). We note that the adver-

sary gets access to two decryption oracles apart from the encryption

and challenge oracles. The decryption oracle Oat-mp-dec
requires

an honest client, and the output is not returned to the attacker.

This captures that in the distributed setting an adversary may learn

additional information from the transcript by participating in a de-

cryption protocol (as a corrupt server) initiated by an honest client–

this is similar to DiSE. The other oracle Oat-mp-pc-dec
does not have

a counterpart in DiSE as it is speci�c to the group-encryption set-

ting. It can only be accessed after the challenge query and it requires

the ciphertext 𝑐 (i) to come from the challenge vector c★ and (ii)

must be corresponding to a message𝑚 which does not di�er across

two challenge message vectors m0 and m1. These are ensured by

requiring that 𝑐 ∈ 𝑐★[𝑖★] and 𝑖★ ∈ 𝐼 . Note that the set 𝐼 is updated
within the challenge oracle– in particular 𝐼 collects the indexes 𝑖 for

which m0 [𝑖] = m1 [𝑖]. Intuitively, this captures an important secu-

rity goal which ensures that when a single ciphertext 𝑐 (generated

by encrypting a group of messagesm) is decrypted (to𝑚 ∈ m), then

the semantic security of any other message (𝑚′ ∈ m and𝑚 ≠𝑚′)
in the same group must hold.

Remark 7.8 (Intuitions on privacy guarantee). Let us pro-

vide some intuitions here about on our privacy goals (as described

in Section 2.2) are captured by the message privacy de�nitions.

An unprivileged decryptor, who is potentially malicious, wins if

it learns the message within a challenge ciphertext, even when it

learns other messages from the same group. Formally we capture

this by allowing the oracle Oat-mp-pc-dec
: for two challenge mes-

sages m0 and m1, the adversary gets to query this oracle on the

indexes for which the messages are the same. Furthermore, when

an encryptor in malicious, then it wins the game if it learns the

group-speci�c keys derived by 𝑗★ — the key would let her decrypt

the challenge ciphertext without further interaction.

Finally we de�ne (strong) authenticity. In particular, we use a one-

more type de�nitions, in that the adversary wins the game if and

only if it is able to produce one more legitimate ciphertexts than it

13

is supposed to acquire by legitimate encryption/decryption queries.

Additionally, the attacker is allowed to make targeted decryption

queries on ciphertexts generated by honest clients.

De�nition 7.9 ((Strong)-Authenticity). An ATSE scheme satis�es

authenticity if for all PPT adversary A, there exists a negligible

function negl such that, for any security parameter 𝜅 ∈ N the game

AT-AuthA (1𝜅) outputs 1 with probability at most negl(𝜅), where
the security game AT-Auth is described in Figure 23; the corre-

sponding encryption, decryption, targeted-decryption and chal-

lenge(a.k.a. forgery) oracles are described in Figures 24, 25, 26, 27

respectively. The strong authenticity game (described in Figure 28)

uses a di�erent challenge oracle (described in Figure 29), but the

same encryption/decryption oracles.

Game AT-AuthA (1𝜅):
− set ct := 0 and 𝐿ctxt := ∅.
− set SUCC := 0 and CHAL := 0.

− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− run 𝐶 ← A(𝑝𝑝);

require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run AOat-au-enc,Oat-au-dec,Oat-au-tar-dec,Oat-au-chal ({𝑠𝑘𝑖 }𝑖∈𝐶).
− return SUCC.

Figure 23: Description of the authenticity game

Oracle Oat-au-enc (𝑗,m, 𝑁 , 𝑆):
require 𝑗 ∈ 𝑆 .

− run [𝑗 : op] ← DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆]).
− if 𝑗 ∉ 𝐶 then 𝐿ctxt := 𝐿ctxt ∪ {op};

else set ct := ct + 𝑁 |𝑆 \𝐶 |.
Figure 24: Encryption oracle for AT-Auth

Oracle Oat-au-dec (𝑗, 𝑐, 𝑆):
require: 𝑗 ∈ 𝑆 .

− run [𝑗 : op] ← DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]).
− if 𝑗 ∈ 𝐶 then set ct := ct + |𝑆 \𝐶 |.

Figure 25: Decryption oracle for AT-Auth.

Oracle Oat-au-tar-dec (𝑗, 𝑖, 𝑆):
require: 𝑗 ∈ 𝑆 \𝐶 and 𝑖 ∈ [|𝐿ctxt |].

− set 𝑐 := 𝐿ctxt [𝑖].
− run [𝑗 : op] ← DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]).

Figure 26: Targeted decryption oracle for AT-Auth

Remark 7.10. In AT-Auth (and AT-Str-Auth) the �ag SUCC is

used for keeping track of whether the one-more condition is satis-

�ed. Notice that, the �ag is set to 1 only when the adversary is able

to produce 𝑘 + 1 valid ciphertexts while acquiring enough informa-

tion to produce at most 𝑘 valid ciphertexts. In the stronger version a

ciphertext is called valid when the decryption succeeds (that is, does

not output ⊥) even when it is done with corrupt servers, whereas

for the plain version the decryption is done honestly.

Oracle Oat-au-chal (𝐿forge):
− set 𝑘 := bct/𝑔c, where 𝑔 := 𝑡 − |𝐶 |.
− set ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝑘+1, 𝑆𝑘+1, 𝑐𝑘+1)) := 𝐿forge;

require CHAL = 0 and SUCC = 0 and 𝑗1, 𝑗2, . . . , 𝑗𝑘+1 ∉

𝐶 and ∀ 𝑖 ≠ 𝑖 ′ : 𝑐𝑖 ≠ 𝑐𝑖′ .

− set CHAL := 1.

− run {op𝑖 ← DistDec† (JskK𝑛, [𝑗𝑖 : 𝑐𝑖 , 𝑆𝑖])}𝑖∈[𝑘+1] .
− if ∀ 𝑖 ∈ [𝑘 + 1] : op𝑖 ≠ ⊥ then set SUCC := 1;

else set SUCC := 0.

Figure 27: Challenge/forgery oracle for AT-Auth.

Game AT-Str-AuthA (1𝜅 , 𝑏):
− set ct := 0 and 𝐿ctxt := ∅.
− set SUCC := 0 and CHAL := 0.

− run (JskK𝑛, 𝑝𝑝) ← Setup(1𝜅 , 𝑛, 𝑡).
− run 𝐶 ← A(𝑝𝑝);

require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− set 𝑔 := 𝑡 − |𝐶 |.
− run AOat-au-enc,Oat-au-dec,Oat-au-tar-dec,Oat-str-au-chal ({𝑠𝑘𝑖 }𝑖∈𝐶).
− return SUCC.

Figure 28: Description of the strong authenticity game

Oracle Oat-str-au-chal (𝐿forge):
− set 𝑘 := bct/𝑔c, where 𝑔 := 𝑡 − |𝐶 |.
− set ((𝑗1, 𝑆1, 𝑐1), . . . , (𝑗𝑘+1, 𝑆𝑘+1, 𝑐𝑘+1)) := 𝐿forge;

require CHAL = 0 and SUCC = 0 and 𝑗1, 𝑗2, . . . , 𝑗𝑘+1 ∉

𝐶 and ∀ 𝑖 ≠ 𝑖 ′ : 𝑐𝑖 ≠ 𝑐𝑖′ .

− set CHAL := 1.

− run {op𝑖 := DistDec(JskK𝑛, [𝑗𝑖 : 𝑐𝑖 , 𝑆𝑖])}𝑖∈[𝑘+1] .
− if ∀ 𝑖 ∈ [𝑘 + 1] : op𝑖 ≠ ⊥ then set SUCC := 1;

else set SUCC := 0.

Figure 29: Challenge / forgery oracle for AT-Str-Auth.

Remark 7.11. Both versions of authenticity are relevant for our

massive-data encryption application. This is in contrast with the

correctness (see Remark 7.5), in which stronger guarantee is, in

fact, crucial. Looking ahead, our ATSE construction requires the un-

derlying FTKD to be strongly-secure to achieve strong correctness.

Using strongly correct FTKD provides strong authenticity.

Remark 7.12 (Comparison with DiSE-TSE). The main di�er-

ence with DiSE-TSE comes up in the encryption oracle Oat-au-enc
(Fig. 24). The oracle, for each legitimate query, increments the

counter by 𝑁 |𝑆 \ 𝐶 | as opposed to |𝑆 \ 𝐶 | whenever 𝑗 is corrupt.
This exactly captures the fact that all 𝑁 encryptions are authen-

ticated together with one interaction — in other words, by one

interaction the adversary may gain enough information to produce

𝑁 legitimate ciphertexts.

Remark 7.13 (Special structure of encryption qery). Note

that, we have a special structure of the encryption query to the

oracleOat-au-enc. In particular, since𝑁 may not (in our construction

it could not be unless we include it in the query explicitly) be

correctly determined immediately from an execution when 𝑗 ∈ 𝐶 , it
is required as an additional input. Now, observe that this makes the

de�nition stronger, as it allows the adversary to cheat by providing

a di�erent number 𝑁 ′ < 𝑁 enforcing the oracle to undercount

ct (and thereby stay below the forgery budget). The construction

14

needs to take care of such attack. Our construction achieves this

by enforcing cardinality-veri�cation at the server’s end and the

cardinality-binding property of the underlying group commitment

(c.f. Sec. 6).

Remark 7.14 (Intuition on authenticity guarantee). Recall

from Sec. 2.2 that we require our authenticity de�nition to capture

that all ciphertexts must be produced with legitimate interactions

with at least one honest server even if 𝑡 − 1 servers are malicious;

alternatively the honest servers (together) should be able to keep

track of the total number of legitimate ciphertexts that are being

produced in a given period. This prevents a corrupt encryptor to

produce any legitimate ciphertext locally. Without this guarantee a

potentially malicious encryptor would be able to locally produce

arbitrary many ciphertexts and then dump all of them into the

storage server. Furthermore, our notion ensures that a malicious

encryptor can not even produce duplicate ciphertexts encrypting

the same messages without further interaction— this is analogous

to the strongest security guarantee of standard (non-interactive)

authenticated encryption, known as ciphertext integrity [18].
11

To

see this point consider the following attack: a malicious encryptor

interacts once for encrypting a group of 100 messages and then

produces 1000 distinct ciphertexts locally where each group of

10 ciphertexts encrypts the same message — this fails to satisfy

our authenticity guarantee. Of course, one is able to duplicate by

repeatedly interacting (10 times in this case) with honest servers, but

our notion ensures that duplication has a signi�cant cost (in terms

of interaction). In the enterprise KMS application this particular

feature helps in reducing the possibility of data duplication. (We

leave it as a open question to fully protect against duplication in our

setting — from the �rst glance it seems hard due to the CPA-security

requirement which requires randomized commitments)

Remark 7.15. The above guarantee is captured in our de�nition

because, the adversary wins if it is able to produce one more cipher-
texts than the challenger can keep track of. The challenger does

the book-keeping by updating the count in various oracles, from

which we can infer how legitimate ciphertexts can be generated.

However, one slightly sub-optimal guarantee is that, we update the

counter also in the decryption oracle — meaning that the adversary

may generate one valid ciphertext by making a decryption query.

This is the short-coming of our construction which we inherit from

the DiSE TSE construction (see Remark 6.11 in [14]).

7.2 Our ATSE Construction
In this section, we put forward our ATSE construction in Figure 30

based on the main two ingredients: (i) a simple FTKD scheme (as

per Remark 5.8) and (ii) a group commitment scheme. Additionally

we require a pseudorandom generator of polynomial stretch.

Theorem 7.16. OurATSE scheme described in Figure 30 is (strongly)-
secure if the underlying simple FTKD is (strongly-)secure.

11
A weaker guarantee is plaintext integrity, in which one can produce unlimited

number of ciphertexts of the same message — the failed construction (c.f. Fig 35) seems

to achieve a similar weaker guarantee in the interactive setting, but fails to achieve

our de�nition.

Ingredients

− A simple FTKD scheme FTKD := (FTKD.Setup,DKdf,WKGen) .
− A group commitment (GSetup,GCommit,CardVer,GVer) .
− A PRG with polynomial stretch.

Our ATSE construction

Setup(1𝜅 , 𝑛, 𝑡) → (JskK[𝑛] , 𝑝𝑝) . Run FTKD.Setup(𝑛, 𝑡) to get ((𝑟𝑘1,
. . . , 𝑟𝑘𝑛), 𝑝𝑝FTKD) , and run GSetup(1𝜅) to get 𝑝𝑝com. Set

𝑠𝑘𝑖 := 𝑟𝑘𝑖 for 𝑖 ∈ [𝑛] and 𝑝𝑝 := (𝑝𝑝
FTKD

, 𝑝𝑝com) .
DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆]) → [𝑗 : c/⊥] . Let 𝑁 := |m |. This is an

interactive protocol initiated by the client (party-𝑗):

− Party-𝑗 computes (𝛾, q, p) ← GCommit(𝑝𝑝com,m))
where p = (𝑝1, . . . , 𝑝𝑁) and q = (𝑞1, . . . , 𝑞𝑁) .

− Parties in 𝑆 interactively runs an instance of DKdf
protocol to derive the (group-speci�c) left-key:

a [𝑗 :

gk] ← DKdf (JskK𝑆 , [𝑗 : (𝑁, (𝑗 ‖𝛾), ‘left’), 𝑆], 𝑝𝑝) .
The client party-𝑗 initiates the protocol by sending

(𝑗 ‖𝛾 ‖𝑁) to the servers in 𝑆 . A server, on receiving the

input, checks (i) whether it is sent by party-𝑗 and (ii)

CardVer(𝑝𝑝, (𝛾, 𝑁)) = 1; if either fails, then it returns ⊥
and aborts; otherwise it continues with the protocol. If

gk = ⊥, then party-𝑗 outputs ⊥, otherwise it executes the
next step.

− Finally for each 𝑖 ∈ [𝑁] party-𝑗 executes:
− Compute the (message-speci�c) whole-key wk𝑖 :=

WKGen(gk, 𝑞𝑖) .
− Generate the ciphertext 𝑐𝑖 := (𝑗,𝛾, 𝑞𝑖 , 𝑒𝑖) where

𝑒𝑖 := PRG(wk𝑖) ⊕ (𝑚𝑖 ‖𝑝𝑖) .
− Output the ciphertext tuple c = (𝑐1, . . . , 𝑐𝑁) .

DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]) → [𝑗 : 𝑚/⊥] This is an interactive

protocol initiated by the client (party-𝑗):

− Party-𝑗 parses 𝑐 as (𝑗,𝛾, 𝑞, 𝑒) .
− Parties in 𝑆 interactively runs an instance of DKdf: [𝑗 :

wk] ← DKdf (JskK𝑆 , [𝑗 : ((𝑗 ‖𝛾,𝑞), ‘whole’), 𝑆], 𝑝𝑝) .
Finally party-𝑗 receives the whole-key wk. If wk = ⊥,
then it outputs ⊥, otherwise it executes the next step.

− Decrypt 𝑒 as (𝑚 ‖𝑝) := PRG(wk) ⊕ 𝑒 .
− Verify the commitment by running GVer(𝑝𝑝com, (𝛾,𝑞),
(𝑚,𝑝)) ; if it returns 0 then output ⊥, else output𝑚.

a
Though we use the left-key as the group-speci�c key here, any partial key can be

used for this purpose. In fact, our implementation uses the right-key for e�ciency.

Figure 30: Our ATSE Scheme

Proof. The consistency property is straightforward to see given

consistency of the underlying simple FTKD scheme. The other prop-

erties, namely message-privacy, (strong-)correctness and (strong-

)authenticity follow arguments similar to that of DiSE and are

formally provided in Appendix E.2. �

8 EXPERIMENTAL EVALUATION
We implement our strongly secure ATSE scheme in Go. We use the

256-bit Barretto-Naehrig curves that support the Optimal Ate pair-

ings as described in [44] (implementation from [1]). Observe that

the construction for ATSE.DGEnc is embarrassingly parallel as we

can concurrently compute the pairings for each input message and

concurrently verify the zero-knowledge proofs from each server,

and we make full use of such parallelism opportunities.

We compare throughput and latency metrics of ATSE with the

strongly secure version of DiSE from [13] using the DDH-based

PRF [45] (as the AES version requires a more expensive symmetric

15

1 msg 100 msg 10k msg
#messages per call to BEnc

10 1

100

101

102

La
te

nc
y

(m
s/

en
c)

Latency Measurement

1 msg 100 msg 10k msg
#messages per call to BEnc

102

103

104

Th
ro

ug
hp

ut
 (e

nc
/s

ec
)

Throughput Measurement
DiSE (LAN)
ATSE (LAN)
DiSE (WAN)
ATSE (WAN)
DiSE (Geo)
ATSE (Geo)

Figure 31: E�ect of amortized interaction: 𝑛 = 24, 𝑡 = 22

12 18 24
#parties(n)

0

1

2

3

4

La
te

nc
y

(m
s/

en
c)

Latency Measurement

12 18 24
#parties (n)

0

5000

10000

15000

20000

Th
ro

ug
hp

ut
 (e

nc
/s

ec
)

Throughput Measurement
DiSE (t= n/3)
ATSE (t= n/3)
DiSE (t= n/2)
ATSE (t= n/2)
DiSE (t= 2n/3)
ATSE (t= 2n/3)
DiSE (t= n-2)
ATSE (t= n-2)

Figure 32: E�ect of 𝑡 and 𝑛: 10K messages, Geo deployment

key NIZK [23, 34]). We evaluate both schemes with varying parame-

ters for 𝑡 and 𝑛, and in three network con�gurations for the servers:

1) LAN: 2 ms round-trip latency, 2) WAN: 30 ms latency, and 3)

GEO: geo-distributed servers with 200 ms latency. We also vary

the number of messages (1/100/10000) that are provided to bulk

encryption, with the hypothesis that increasing messages further

highlights the performance bene�ts of the amortized interaction.

We only discuss bulk encryption here because decryption operates

similarly in ATSE and DiSE.
For fair comparison, and to focus on the key bene�ts of ATSE, we

implement the following optimizations in the DiSE scheme. Since

DiSE only supports encryption of 1message at a time, we implement

a batched version which coalesces all messages into one server-

bound request and have each server return the PRF evaluation of all

messages within a single response (to avoid repeated round-trips

when encrypting many messages). We even implement server-side

parallelism when computing PRF over multiple messages in a batch.

Benchmarks were run using two server-grade machines (one for

the client application, and one for the𝑛 server processes holding the

key shares), each equipped with a 16-core Intel Xeon E5-2640 CPU

@ 2.6 Ghz and 64 GB DDR4 RAM. We use Figure 36 and Figure 37

in Appendix D to report the latency and throughput for LAN and

WAN settings, respectively, and Figure 33 here to report the geo-

distributed setting — for each setting, we vary the threshold 𝑡 , the

number of parties 𝑛, and the number of messages. Figure 31 and

Figure 32 illustrate the relevant trends, and we discuss them below.

Latency. We record latency as the time period between invoking

encryption or decryption until the result is ready — both encryption

and decryption take similar time in our scheme. When multiple

messages are provided as input to DGEnc, we divide the total time

by the number of messages to report the latency per message. The

absolute numbers for the latency depends on the number of CPU

cores available to the encryptor client, as the operation is compute-

bound, so we focus our discussion to the relative trends.

When encrypting a single message, ATSE has higher latency by

a few millisecs because of the additional bilinear pairing compared

to DiSE — the round-trip network latency followed by the computa-

tion of DPRF combination and NIZK proof veri�cation is equivalent

in both schemes when handling 1 message. However, we observe

that ATSE has signi�cantly lower latency (0.09 msecs / encryp-

tion) when encrypting 10K messages together, providing between

12x-42x improvement over DiSE depending on the parameters 𝑛

and 𝑡 . This is because DiSE requires DPRF combination and NIZK

proof veri�cation for each message, whereas this computation is

amortized over a group of messages in ATSE — even though ATSE

requires a bilinear pairing for each message, that time is dwarfed

by the added computation in DiSE, for even small values of 𝑛 and 𝑡 .

We �nd that 𝑡 and 𝑛 has negligible impact on ATSE’s latency

(for 100 or 10K messages) as the increased computation — a client

must verify at least 𝑡 NIZK proofs (each𝑂 (1) group operations) and
perform 𝑂 (𝑡) group operations for DPRF combination (Lagrange

interpolation in the exponent) — is only performed once, whereas

DiSE latency su�ers signi�cantly with higher 𝑡 and 𝑛. For that

reason, the network latency also has negligible impact when en-

crypting multiple messages. In practice, this feature incentivizes

deployments with larger 𝑡 and 𝑛, and across many data centers,

thus raising the bar for an attack while also increasing availability.

Throughput. We report throughput to be the average number of

operations per second, which we measure by launching multiple

clients in parallel, who send requests to a server pool. ATSE attains

throughputs over 23K encryptions / sec, an order of magnitude

improvement over DiSE, for the same reasons as latency. We see

between 10x-30x improvement, as DiSE has lower throughput with

higher values of 𝑡 and 𝑛; they have negligible impact on ATSE’s
throughput when encrypting multiple messages, as the NIZK veri-

�cation and Lagrange interpolation is performed once. Moreover,

network latency has negligible impact on ATSE’s throughput be-
cause the interaction only occurs once per group of messages.

Communication. Note that ATSE incurs constant communication

overhead in the number of messages. For each interaction (i.e., for

each invocation of DGEnc), ignoring the underlying TLS channel’s

overheads, the client receives 132*𝑡 bytes, comprising one 256-bit

group element and three 256-bit scalar values. In contrast, DiSE

receives 132*𝑡*𝑘 bytes, where 𝑘 is the number of messages. For 𝑘 =

10
4
, that constitutes 4 orders of magnitude reduction in bandwidth.

Key Size. Each server is given a key share output by the under-

lying DPRF scheme, which is 64 bytes (2 32-byte �eld elements).

Ciphertext Expansion. Since each ciphertext includes a Merkle

proof (root-to-leaf path), its size is a function of 𝑁 : the number of

messages being encrypted as a group. For a message of size |𝑚 |
bytes, the corresponding ciphertext occupies |𝑚 | +40+32 d𝑙𝑜𝑔2 (𝑁)e
bytes, consisting of 8-byte client id, 32-byte commitment, and log-

size Merkle proof (containing a sequence of SHA-256 values). In

addition, we can compress the stored representation by storing

the entire Merkle tree separately, rather than storing path-by-path,

16

𝑡 𝑛
Latency (𝑚𝑠/𝑒𝑛𝑐) Throughput (𝑒𝑛𝑐/𝑠)

DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE

1 msg 1 msg 100 msg 100 msg 10000 msg 10000 msg 1 msg 1 msg 100 msg 100 msg 10000 msg 10000 msg

𝑛/3
6 205.92 212.97 3.17 2.21 1.04 0.09 57.39 54.76 1398.27 4880.45 1740.27 22543.26

12 207.45 217.36 3.78 2.22 1.62 0.09 55.79 52.30 798.46 4673.12 861.67 22492.51

18 209.00 218.75 4.41 2.21 2.22 0.10 53.79 50.22 548.47 4705.85 587.75 22460.39

24 210.08 220.43 4.99 2.21 2.84 0.10 55.25 47.89 422.56 4645.98 449.92 22974.32

𝑛/2
6 206.29 213.60 3.33 2.22 1.12 0.09 57.39 54.57 1274.24 4672.32 1627.96 22496.51

12 208.26 216.11 4.08 2.22 1.81 0.09 56.26 52.08 691.33 4743.46 762.13 22963.56

18 210.02 219.36 4.70 2.22 2.52 0.10 54.63 50.19 486.55 4796.76 517.15 22999.04

24 210.62 225.35 5.47 2.23 3.25 0.09 54.85 48.39 372.41 4624.42 393.34 22800.52

2𝑛/3
6 207.70 214.44 3.47 2.23 1.24 0.09 56.83 53.98 1129.56 4714.47 1415.88 22687.60

12 209.04 219.38 4.23 2.23 2.02 0.10 56.13 51.17 620.78 4600.97 682.50 22537.69

18 210.89 224.22 5.12 2.23 2.82 0.10 54.49 48.84 431.65 4537.45 455.21 22665.10

24 212.34 227.41 6.06 2.25 3.68 0.09 53.36 46.84 325.83 4557.52 347.59 22784.53

𝑛 − 2
6 207.70 216.27 3.47 2.22 1.24 0.09 56.83 53.52 1129.56 4754.78 1415.88 22939.19

12 209.85 221.50 4.57 2.24 2.21 0.10 55.48 51.26 568.55 4644.43 611.72 22787.98

18 212.12 227.34 5.65 2.24 3.23 0.10 53.32 47.67 382.09 4610.05 397.75 22763.13

24 214.44 231.95 6.68 2.27 4.27 0.10 52.76 45.40 280.52 4486.86 296.88 22425.52

2

6 205.92 213.12 3.17 2.22 1.04 0.09 57.39 54.87 1398.27 4696.05 1740.27 22721.16

12 206.66 216.00 3.53 2.21 1.42 0.10 56.20 52.84 897.56 4830.98 1024.26 22614.18

18 207.25 215.56 3.87 2.20 1.83 0.09 55.10 50.83 665.82 4719.54 720.64 23048.52

24 207.17 216.12 4.24 2.20 2.26 0.10 56.41 49.17 529.65 4745.87 578.95 23170.50

Figure 33: Encryption performance metrics averaging 10 repeated trials of 32 bytes messages in the geo-distributed setting.

giving us an aggregated ciphertext size of 𝑁 ∗ |𝑚 | + 40 + 32 ∗
2
d𝑙𝑜𝑔2 (𝑁) e+1

, for a group of 𝑁 messages.

REFERENCES
[1] Advanced crypto library for the Go language. https://github.com/dedis/kyber.

[2] Coinbase custody. custody.coinbase.com/. Use of secret sharing described in [?].
[3] Cybersource Payment Platform and Fraud management. https://www.

cybersource.com/en-us.html.

[4] Dyadic Security. https://www.dyadicsec.com.

[5] Fact Sheet - Visa. [Online; posted June-2018].

[6] Introduction to Pairing-Based Cryptography. http://cseweb.ucsd.edu/~mihir/

cse208-06/main.pdf.

[7] NIST tcg. csrc.nist.gov/Projects/threshold-cryptography.

[8] Unbound Tech. www.unboundtech.com/. Use of MPC mentioned in [?].
[9] Vault Seal. www.vaultproject.io/docs/concepts/seal.html.

[10] Visa. https://usa.visa.com/.

[11] S. Agrawal, S. Badrinarayanan, P. Mohassel, P. Mukherjee, and S. Patranabis.

BETA: biometric-enabled threshold authentication. In J. A. Garay, editor, Public-
Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice
and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceed-
ings, Part II, volume 12711 of Lecture Notes in Computer Science, pages 290–318.
Springer, 2021.

[12] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee. PASTA: PASsword-based

threshold authentication. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors,

ACM CCS 2018, pages 2042–2059. ACM Press, Oct. 2018.

[13] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. DiSE: Distributed

symmetric-key encryption. In D. Lie, M. Mannan, M. Backes, and X. Wang,

editors, ACM CCS 2018, pages 1993–2010. ACM Press, Oct. 2018.

[14] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal. DiSE: Distributed

symmetric-key encryption. Cryptology ePrint Archive, Report 2018/727, 2018.

https://eprint.iacr.org/2018/727.

[15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers

for MPC and FHE. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, Apr. 2015.

[16] N. Attrapadung, T. Matsuda, R. Nishimaki, S. Yamada, and T. Yamakawa. Con-

strained PRFs for NC
1
in traditional groups. In H. Shacham and A. Boldyreva,

editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 543–574. Springer,
Heidelberg, Aug. 2018.

[17] C. Baum, T. K. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai. PESTO: proac-

tively secure distributed single sign-on, or how to trust a hacked server. In

IEEE European Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy,
September 7-11, 2020, pages 587–606. IEEE, 2020.

[18] M. Bellare and C. Namprempre. Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm. In T. Okamoto, editor,

ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer, Heidelberg,
Dec. 2000.

[19] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic

PRFs and their applications. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, Aug. 2013.

[20] D. Boneh and B. Waters. Constrained pseudorandom functions and their appli-

cations. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270

of LNCS, pages 280–300. Springer, Heidelberg, Dec. 2013.
[21] R. Canetti and S. Goldwasser. An e�cient threshold public key cryptosystem se-

cure against adaptive chosen ciphertext attack. In J. Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 90–106. Springer, Heidelberg, May 1999.

[22] D. Catalano and D. Fiore. Vector commitments and their applications. In K. Kuro-

sawa and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72.
Springer, Heidelberg, Feb. / Mar. 2013.

[23] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-

manig, and G. Zaverucha. Post-quantum zero-knowledge and signatures from

symmetric-key primitives. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1825–1842, 2017.

[24] I. Damgård and M. Keller. Secure multiparty AES. In R. Sion, editor, FC 2010,
volume 6052 of LNCS, pages 367–374. Springer, Heidelberg, Jan. 2010.

[25] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function

securely. In 26th ACM STOC, pages 522–533. ACM Press, May 1994.

[26] C. Delerablée and D. Pointcheval. Dynamic threshold public-key encryption. In

D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 317–334. Springer,
Heidelberg, Aug. 2008.

[27] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, Aug. 1990.
[28] Y. Dodis. E�cient construction of (distributed) veri�able random functions.

In Y. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 1–17. Springer,
Heidelberg, Jan. 2003.

[29] Y. Dodis and A. Yampolskiy. A veri�able random function with short proofs and

keys. In S. Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431.
Springer, Heidelberg, Jan. 2005.

[30] Y. Dodis, A. Yampolskiy, and M. Yung. Threshold and proactive pseudo-random

permutations. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 542–560. Springer, Heidelberg, Mar. 2006.

[31] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia

PRF service. In 24th USENIX Security Symposium (USENIX Security 15), pages
547–562, 2015.

[32] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability

of the Fiat-Shamir transform. In S. D. Galbraith and M. Nandi, editors, IN-
DOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, Heidelberg, Dec.
2012.

[33] Y. Frankel. A practical protocol for large group oriented networks. In J.-J.

Quisquater and J. Vandewalle, editors, EUROCRYPT’89, volume 434 of LNCS,
pages 56–61. Springer, Heidelberg, Apr. 1990.

[34] I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge for

boolean circuits. In USENIX Security Symposium, pages 1069–1083, 2016.

[35] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. MPC-friendly

symmetric key primitives. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.

Myers, and S. Halevi, editors, ACM CCS 2016, pages 430–443. ACM Press, Oct.

2016.

[36] S. Halevi, Y. Ishai, E. Kushilevitz, N. Makriyannis, and T. Rabin. On fully secure

MPC with solitary output. In D. Hofheinz and A. Rosen, editors, TCC 2019, Part I,
volume 11891 of LNCS, pages 312–340. Springer, Heidelberg, Dec. 2019.

17

https://github.com/dedis/kyber
custody.coinbase.com/
https://www.cybersource.com/en-us.html
https://www.cybersource.com/en-us.html
https://www.dyadicsec.com
http://cseweb.ucsd.edu/~mihir/cse208-06/main.pdf
http://cseweb.ucsd.edu/~mihir/cse208-06/main.pdf
csrc.nist.gov/Projects/threshold-cryptography
www.unboundtech.com/
www.vaultproject.io/docs/concepts/seal.html
https://usa.visa.com/
https://eprint.iacr.org/2018/727

[37] S. Jarecki, H. Krawczyk, and J. K. Resch. Updatable oblivious key management

for storage systems. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM
CCS 2019, pages 379–393. ACM Press, Nov. 2019.

[38] M. Keller, E. Orsini, D. Rotaru, P. Scholl, E. Soria-Vazquez, and S. Vivek. Faster

secure multi-party computation of aes and des using lookup tables. In Interna-
tional Conference on Applied Cryptography and Network Security, pages 229–249.
Springer, 2017.

[39] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable

pseudorandom functions and applications. In A.-R. Sadeghi, V. D. Gligor, and

M. Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, Nov. 2013.

[40] S. Kim and D. J. Wu. Watermarking cryptographic functionalities from standard

lattice assumptions. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 503–536. Springer, Heidelberg, Aug. 2017.

[41] V. Kuchta and M. Manulis. Rerandomizable threshold blind signatures. In

M. Yung, L. Zhu, and Y. Yang, editors, Trusted Systems, pages 70–89, Cham, 2015.

Springer International Publishing.

[42] S. Micali and R. Sidney. A simple method for generating and sharing pseudo-

random functions, with applications to clipper-like escrow systems. In D. Cop-

persmith, editor, CRYPTO’95, volume 963 of LNCS, pages 185–196. Springer,
Heidelberg, Aug. 1995.

[43] P. Mukherjee. Adaptively secure threshold symmetric-key encryption. In K. Bhar-

gavan, E. Oswald, and M. Prabhakaran, editors, INDOCRYPT 2020, volume 12578

of LNCS, pages 465–487. Springer, Heidelberg, Dec. 2020.
[44] M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records

for cryptographic pairings. Cryptology ePrint Archive, Report 2010/186, 2010.

https://eprint.iacr.org/2010/186.

[45] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and

KDCs. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346.
Springer, Heidelberg, May 1999.

[46] J. B. Nielsen. A threshold pseudorandom function construction and its applica-

tions. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 401–416.
Springer, Heidelberg, Aug. 2002.

[47] D. Rotaru, N. P. Smart, and M. Stam. Modes of operation suitable for computing

on encrypted data. Cryptology ePrint Archive, Report 2017/496, 2017. http:

//eprint.iacr.org/2017/496.

[48] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable

encryption, and more. In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[49] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 1–16. Springer, Heidelberg, May / June 1998.

[50] Y. Wu, J. Su, and B. Li. Keyword search over shared cloud data without se-

cure channel or authority. In 2015 IEEE 8th International Conference on Cloud
Computing, pages 580–587, 2015.

A STRONG FTKD: CONSTRUCTION AND
PROOF

In this section we provide our construction for strong FTKD (see

Fig. 34. The construction is extended from the standard FTKD con-

struction provided in Fig. 8 using a trapdoor commitment and a

non-interactive zero-knowledge proof. The strengthening is analo-

gous to the DPRF construction of DiSE.

TheoremA.1. The construction, presented in Figure 34 is a strongly-
secure FTKD construction under the BDDH assumption over the map
𝑒 (𝐺0,𝐺1) → 𝐺𝑇 in the programmable random oracle model.

Proof. (sketch) This strengthening from the previous constric-

tion is analogous to the one presented in DiSE. In particular, the

same tools, namely a trapdoor commitment and a simulation sound

NIZK is used in a similar fashion. We omit the details. �

B ADDITIONAL BUILDING BLOCKS
In this section we provide additional building blocks and useful

concepts, many of which are taken verbatim from DiSE [13]. We

include them for completeness.

Ingredients

− Let𝐺0,𝐺1, and𝐺𝑇 be multiplicative cyclic groups of prime order

𝑝 such that there exists a bilinear pairing 𝑒 :𝐺0 ×𝐺1 → 𝐺𝑇 that

is e�ciently computable and non-degenerate; we let 𝑔0 ∈ 𝐺0 and

𝑔1 ∈ 𝐺1 be generators of𝐺0 and𝐺1 respectively.

− Let H0 : {0, 1}∗ → 𝐺0, H1 : {0, 1}∗ → 𝐺1 and H′ : {0, 1}∗ →
{0, 1}poly(𝜅) be hash functions modeled as random oracles.

− Let SSS be Shamir’s secret sharing scheme.

− Let TCom := (Setupcom,Com) be a trapdoor commitment scheme

(Def. B.2)

− Let NIZK := (ProveH′ ,VerifyH′) be a simulation-sound NIZK

proof system (Def. B.4).

Our strongly secure FTKD construction

− Setup(𝑛, 𝑡) → (JskK[𝑛] , 𝑝𝑝) . Sample 𝑠 ←
$
Z𝑝 and then com-

pute (𝑠1, . . . , 𝑠𝑛) ← SSS(𝑛, 𝑡, 𝑝, 𝑠) . Run Setupcom (1𝜅) to get

𝑝𝑝com. Compute a commitment 𝛾𝑖 := Com(𝑠𝑖 , 𝑝𝑝com; 𝑟𝑖) by pick-

ing 𝑟𝑖 at random. 𝑠𝑘𝑖 := (𝑠𝑖 , 𝑟𝑖) . Set 𝑝𝑝 := (𝑝,𝑔0,𝐺0, 𝑔1,𝐺1,

𝐺𝑇 , 𝑒,H0,H1,H′, 𝛾1, . . . , 𝛾𝑛, 𝑝𝑝com) .
− DKdf (JskK𝑆 , [𝑗 : 𝜌, 𝑆]) → [𝑗 : 𝑘/⊥]. This is a two round protocol

as described below:

Round-1. Party 𝑗 sends 𝜌 to each party 𝑖 ∈ 𝑆 .
Round-2. Each party 𝑖 ∈ 𝑆 sends back ((𝑤,ℎ𝑖), 𝜋𝑖) to 𝑗 where

𝑤 :=


H0 (𝑥) if 𝜌 = (𝑥, ‘left’)
H1 (𝑦)if 𝜌 = (𝑦, ‘right’)

𝑧 if 𝑒 (H0 (𝑥),H1 (𝑦)) = ((𝑥, 𝑦), ‘whole’)
; ℎ𝑖 = 𝑤𝑠𝑖

and run ProveH
′
with the statement stmt𝑖 : {∃𝛼, 𝛽 s.t. ℎ𝑖 =

𝑤𝛼 ∧ 𝛾𝑖 = Com(𝛼, 𝑝𝑝com; 𝛽) } and witness (𝑠𝑖 , 𝑟𝑖) to obtain

the proof 𝜋𝑖 .

Finalize. Party 𝑗 , if receives at least 𝑡−1 responds then parse party 𝑖’s re-
sponds as as ((𝑤,ℎ𝑖), 𝜋𝑖) and check if VerifyH

′ (stmt𝑖 , 𝜋𝑖) =
1 for all 𝑖 ∈ 𝑆 . If this check fails for any 𝑖 , output ⊥. Else,
outputs 𝑘 :=

∏
𝑖∈𝑆′ ℎ

𝜆
0,𝑖,𝑆′

𝑖
where 𝑆′ ⊆ 𝑆 ∪ { 𝑗 } is of size 𝑡 ;

otherwise outputs ⊥.
− WKGen(𝑣, 𝜎) =: wk. Compute wk := 𝑒 (𝑣,H𝑏 (𝜎)) where 𝑏 :={

0 if 𝜎 = 𝑥

1 if 𝜎 = 𝑦

Figure 34: Our Strongly Secure FTKD construction.

B.1 Commitment
De�nition B.1. A (non-interactive) commitment scheme Σ con-

sists of two PPT algorithms (Setupcom,Com) which satisfy hiding

and binding properties:

− Setupcom (1𝜅) → 𝑝𝑝com : It takes the security parameter as

input, and outputs some public parameters.

− Com(𝑚, 𝑝𝑝com; 𝑟) =: 𝛼 : It takes a message𝑚, public param-

eters 𝑝𝑝com and randomness 𝑟 as inputs, and outputs a com-

mitment 𝛼 .

Hiding. A commitment scheme Σ = (Setupcom,Com) is hiding
if for all PPT adversaries A, all messages 𝑚0, 𝑚1, there exists a

negligible function negl such that for 𝑝𝑝com ← Setupcom (1𝜅),

|Pr[A(𝑝𝑝com,Com(𝑚0, 𝑝𝑝com; 𝑟0)) = 1]−
Pr[A(𝑝𝑝com,Com(𝑚1, 𝑝𝑝com; 𝑟1)) = 1] | ≤ negl(𝜅),

where the probability is over the randomness of Setupcom, random
choice of 𝑟0 and 𝑟1, and the coin tosses of A.

18

https://eprint.iacr.org/2010/186
http://eprint.iacr.org/2017/496
http://eprint.iacr.org/2017/496

Binding. A commitment scheme Σ = (Setupcom,Com) is bind-
ing if for all PPT adversaries A, if A outputs 𝑚0, 𝑚1, 𝑟0 and 𝑟1
((𝑚0, 𝑟0) ≠ (𝑚1, 𝑟1)) given 𝑝𝑝com ← Setupcom (1𝜅), then there

exists a negligible function negl such that

Pr[Com(𝑚0, 𝑝𝑝com; 𝑟0) = Com(𝑚1, 𝑝𝑝com; 𝑟1)] ≤ negl(𝜅),
where the probability is over the randomness of Setupcom and the

coin tosses of A.

De�nition B.2 (Trapdoor (Non-interactive) Commitments.). Let
Σ = (Setupcom,Com) be a (non-interactive) commitment scheme.

A trapdoor commitment scheme has two more PPT algorithms

SimSetup and SimOpen:
− SimSetup(1𝜅) → (𝑝𝑝com, 𝜏com) : It takes the security param-

eter as input, and outputs public parameters 𝑝𝑝com and a trap-

door 𝜏com.

− SimOpen(𝑝𝑝com, 𝜏com,𝑚′, (𝑚, 𝑟)) =: 𝑟 ′ : It takes the public

parameters 𝑝𝑝com, the trapdoor 𝜏com, a message 𝑚′ and a

message-randomness pair (𝑚, 𝑟), and outputs a randomness

𝑟 ′.

For every (𝑚, 𝑟) and 𝑚′, there exists a negligible function negl
such that 𝑝𝑝com ≈𝑠𝑡𝑎𝑡 𝑝𝑝 ′com, where 𝑝𝑝com ← Setupcom (1𝜅) and
(𝑝𝑝 ′com, 𝜏com) ← SimSetup(1𝜅); and

Pr

[
Com(𝑚, 𝑝𝑝 ′com; 𝑟) = Com(𝑚′, 𝑝𝑝 ′com; 𝑟 ′)

]
≥ 1 − negl(𝜅),

where 𝑟 ′ := SimOpen(𝑝𝑝 ′com, 𝜏com,𝑚′, (𝑚, 𝑟)) and (𝑝𝑝 ′com, 𝜏com) ←
SimSetup(1𝜅).

Remark B.3. Clearly, a trapdoor commitment can be binding
against PPT adversaries only.

B.1.1 Concrete instantiations. Practical commitment schemes can

be instantiated under various settings:

Random oracle. In the random oracle model, a commitment to

a message 𝑚 is simply the hash of 𝑚 together with a randomly

chosen string of length 𝑟 of an appropriate length.

DLOG assumption. A popular commitment scheme secure under

DLOG is Pedersen commitment. Here, Setupcom (1𝜅) outputs the
description of a (multiplicative) group𝐺 of prime order 𝑝 = Θ(𝜅) (in
which DLOG holds) and two randomly and independently chosen

generators 𝑔, ℎ. If H : {0, 1}∗ → Z𝑝 is a collision-resistant hash

function, then a commitment to a message𝑚 is given by 𝑔H(𝑚) ·ℎ𝑟 ,
where 𝑟 ←

$
Z𝑝 . A trapdoor is simply the discrete log of ℎ with

respect to 𝑔. In other words, SimSetup picks a random generator 𝑔,

a random integer 𝑎 in Z★𝑝 and sets ℎ to be 𝑔𝑎 . Given (𝑚, 𝑟),𝑚′ and 𝑎,
SimOpen outputs [(H (𝑚) −H (𝑚′))/𝑎] +𝑟 . It is easy to check that
commitment to𝑚 with randomness 𝑟 is equal to the commitment

to𝑚′ with randomness 𝑟 ′.

B.2 Non-interactive Zero-knowledge
Let 𝑅 be an e�ciently computable binary relation. For pairs (𝑠,𝑤) ∈
𝑅, we refer to 𝑠 as the statement and𝑤 as the witness. Let 𝐿 be the

language of statements in 𝑅, i.e. 𝐿 = {𝑠 : ∃𝑤 such that 𝑅(𝑠,𝑤) = 1}.
We de�ne non-interactive zero-knowledge arguments of knowledge

in the random oracle model based on the work of Faust et al. [32].

De�nition B.4 (Non-interactive Zero-knowledge Argument of Knowl-
edge). LetH : {0, 1}∗ → {0, 1}poly(𝜅) be a hash function modeled

as a random oracle. A NIZK for a binary relation 𝑅 consists of two

PPT algorithms Prove and Verify with oracle access toH de�ned

as follows:

− ProveH (𝑠,𝑤) takes as input a statement 𝑠 and a witness 𝑤 ,

and outputs a proof 𝜋 if (𝑠,𝑤) ∈ 𝑅 and ⊥ otherwise.

− VerifyH (𝑠, 𝜋) takes as input a statement 𝑠 and a candidate

proof 𝜋 , and outputs a bit 𝑏 ∈ {0, 1} denoting acceptance or

rejection.

These two algorithms must satisfy the following properties:

− Perfect completeness: For any (𝑠,𝑤) ∈ 𝑅,

Pr

[
VerifyH (𝑠, 𝜋) = 1 | 𝜋 ← ProveH (𝑠,𝑤)

]
= 1.

− Zero-knowledge: There must exist a pair of PPT simulators

(S1,S2) such that for all PPT adversary A,���Pr[AH,ProveH (1𝜅) = 1] − Pr[AS1 (·),S
′
2
(·, ·) (1𝜅) = 1]

��� ≤ negl(𝜅)

for some negligible function negl, where
− S1 simulates the random oracleH ;

− S′
2
returns a simulated proof 𝜋 ← S2 (𝑠) on input (𝑠,𝑤)

if (𝑠,𝑤) ∈ 𝑅 and ⊥ otherwise;

− S1 and S2 share states.
− Argument of knowledge: There must exist a PPT simula-

tor S1 such that for all PPT adversary A, there exists a PPT

extractor EA such that

Pr

[
(𝑠,𝑤) ∉ 𝑅 and VerifyH (𝑠, 𝜋) = 1 |

(𝑠, 𝜋) ← AS1 (·) (1𝜅);𝑤 ← EA (𝑠, 𝜋,𝑄)
]
≤ negl(𝜅)

for some negligible function negl, where
− S1 is like above;
− 𝑄 is the list of (query, response) pairs obtained from S1.

Fiat-Shamir transform. Let (Prove,Verify) be a three-round public-
coin honest-veri�er zero-knowledge interactive proof system (a

sigma protocol) with unique responses. LetH be a function with

range equal to the space of the veri�er’s coins. In the random

oracle model, the proof system (ProveH,VerifyH) derived from

(Prove,Verify) by applying the Fiat-Shamir transform satis�es the

zero-knowledge and argument of knowledge properties de�ned

above. See De�nition 1, 2 and Theorem 1, 3 in Faust et al. [32] for

more details. (They actually show that these properties hold even

when adversary can ask for proofs of false statements.)

C FAILED APPROACHES USING PKE.
In this section we brie�y discuss potential approaches involving

threshold public-key encryptions such as threshold RSA [25]. Recall

that, in a threshold public-key encryption the encryption works as

a standard public encryption, whereas the decryption takes place

with help of a threshold number of servers holding key-shares of

the decryption key. In particular, a threshold PKE scheme (for 𝑡 out

of 𝑛 threshold structure) has four algorithms: (i) Setup(1𝜅 , 𝑛, 𝑡) →
(𝑝𝑘, 𝑑𝑘1, . . . 𝑑𝑘𝑛) which outputs one single public encryption key

and𝑛 secret decryption key shares𝑑𝑘1, . . . , 𝑑𝑘𝑛 ; (ii) Enc(𝑝𝑘,𝑚) → 𝑐

that encrypts amessage to produce a ciphertext using the public key;

(iii) TDec(𝑑𝑘𝑖 , 𝑐) →𝑚𝑖 which outputs a partial message when pro-

vided a key-share and a ciphertext as input; (iv) Combine(𝑝𝑘,𝑚1,

19

. . . ,𝑚𝑡) → 𝑚/⊥ which collects (at least) 𝑡 message shares and

output the whole message or ⊥ (in case of error). Importantly, the

encryption procedure is purely non-interactive and thus does not

o�er any authenticity by itself. (The OKMS framework [37] in-

deed follows a similar approach) However, one may think about

combining it with a signature in the following two ways.

Signing by the client. Suppose, that the encryptor signs the ci-
phertext 𝑐 locally after encryption to add a signature 𝜎 . The full

ciphertext becomes (𝑐, 𝜎) and veri�cation of the signature is per-

formed during decryption. This is not useful as the goal of au-

thenticity is to primarily enforce the client to generate legitimate

ciphertexts. So, if the client holds the signing key, then no one can

prevent her to sign a ciphertext with her own key.

Threshold signature by the servers. So, it is evident that we need
to have some interaction with the servers during the encryption

phase. This brings us to our next approach using threshold signa-

ture, Recall that, a threshold signature scheme also consists of four

algorithms: (i) Setup(1𝜅 , 𝑛, 𝑡) → (𝑣𝑘, 𝑠𝑔𝑘1, . . . , 𝑠𝑔𝑘𝑛), which out-

puts one veri�cation key and 𝑛 signing key shares (𝑠𝑔𝑘1, . . . , 𝑠𝑔𝑘𝑛);
(ii) the signing algorithm TSign(𝑠𝑔𝑘𝑖 ,𝑚) → 𝜎𝑖 that outputs a partial

signature; (iii)Combine(𝑣𝑘, 𝜎1, . . . , 𝜎𝑡) → 𝜎/⊥which combines the

partial signatures to a single one; (iv) the standard veri�cation al-

gorithm SigVer(𝑣𝑘,𝑚, 𝜎) → 0/1. Now, in this approach the servers

hold shares of the signing-key of a threshold signature scheme; the

client interacts with them to get a short commitment (like ours)

of the group of message signed. Each individual message is then

locally encrypted using the public encryption key. During the de-

cryption, the client �rst locally veri�es the commitment and then

decrypts each ciphertext using threshold decryption. The detailed

scheme is described in Figure 35.

The main problem of this approach is that public-key encryp-

tions are inherently randomized. Therefore, no one can prevent the

adversary from producing arbitrary many legitimate ciphertexts

of the same group of messageslocally, after obtaining the signature
(a similar failed approach is described in DiSE; see Appendix B.2

of [14]). Therefore, this approach falls short of our authenticity

requirement. More intuitions on this can be found in Remark 7.14.

D EXPERIMENTAL RESULTS
We report throughput and latency results in 3 settings: LAN (2 ms

round-trip time) in Figure 36, WAN (30 ms round-trip time) in Fig-

ure 37, and geo-distributed (200 ms round-trip time) in Figure 33.

We refer the reader to § 8 for a detailed explanation of these results

and the comparison with DiSE.

E MISSING PROOFS
In this section we provide the proofs missing from the main body.

E.1 Proof of Theorem 5.9
For simplicity we consider a simpler case where there are exactly

𝑡 − 1 corruptions (implies that |𝑆 \ 𝐶 | = 1), and in fact they are

exactly the parties with identities {1, . . . , 𝑡−1}. It can be generalized
to the general case with techniques analogous to DiSE [13].

The reduction from DP-PR(b) to BDDH works as follows:

Ingredients
− A threshold public-key encryption scheme (TPKE.Setup,

Enc, TDec, TPKE.Combine).
− A threshold signature scheme (TSIG.Setup, TSign,

SigVer, TSIG.Combine).
− A group commitment scheme (GSetup,GCommit,

CardVer,GVer).
The Scheme

Setup(1𝜅 , 𝑛, 𝑡) → (JskK[𝑛] , 𝑝𝑝). Execute the following steps:
− Run TPKE.Setup(1𝜅 , 𝑛, 𝑡) to get (𝑝𝑘, 𝑑𝑘1, . . . ,

𝑑𝑘𝑛)
− Run TSIG.Setup(1𝜅 , 𝑛, 𝑡) to get (𝑣𝑘, 𝑠𝑔𝑘1, , . . . ,

, 𝑠𝑔𝑘𝑛).
− Run GSetup(1𝜅) to get 𝑝𝑝com.

− Set 𝑠𝑘𝑖 := (𝑑𝑘𝑖 , 𝑠𝑔𝑘𝑖) for 𝑖 ∈ [𝑛] and 𝑝𝑝 :=

(𝑝𝑝com, 𝑝𝑘, 𝑣𝑘).
DGEnc(JskK[𝑛] , [𝑗 : m, 𝑆]) → [𝑗 : c/⊥] . Let 𝑁 := |m|. This

is an interactive protocol initiated by the client (party-

𝑗):

− Party- 𝑗 computes (𝛾, q, p) ← GCommit(
𝑝𝑝com,m)) where p = (𝑝1, . . . , 𝑝𝑁) and q =

(𝑞1, . . . , 𝑞𝑁).
− Party-𝑖 for 𝑖 ∈ 𝑆 returns partial signatures 𝜎𝑖 ←

TSign(𝑠𝑔𝑘𝑖 , (𝑗, 𝛾, 𝑁)).
− Party- 𝑗 , on receiving at least 𝑡 such partial signa-

tures combines them 𝜎 ← TSIG.Combine(𝑣𝑘, 𝜎1,
. . . , 𝜎𝑡) and then compute ciphertext 𝑒𝑖 := (𝑗, 𝑁 ,

𝛾,𝑚𝑖) for all 𝑖 ∈ [𝑁].
− The �nal ciphertext consists of (𝑐1, . . . , 𝑐𝑁)

where 𝑐𝑖 = (𝑗, 𝑁 ,𝛾, 𝜎, 𝑒𝑖)
DistDec(JskK[𝑛] , [𝑗 : 𝑐, 𝑆]) → [𝑗 : 𝑚/⊥] This is an interac-

tive protocol initiated by the client (party- 𝑗):

− Party- 𝑗 parses 𝑐 as (𝑗, 𝑁 ,𝛾, 𝜎, 𝑒) and locally veri-

�es SigVer(𝑣𝑘, (𝑗, 𝑁 ,𝛾), 𝜎), if the veri�cation fails
then output ⊥. Otherwise go to the next step.

− Party- 𝑗 sends 𝑒 to the servers in 𝑆 .

− Each server 𝑖 in 𝑆 returns a partial decryption

𝑚𝑖 ← TDec(𝑑𝑘𝑖 , 𝑒).
− On receiving at least 𝑡 such partial

decryptions, party- 𝑗 combines 𝑚 ←
TPKE.Combine(𝑝𝑘,𝑚1, . . . ,𝑚𝑡) and outputs

that.

Figure 35: A failed approach based on PKE and Threshold
Signatures

− Receive a challenge tuple (𝑔𝑎
1
, 𝑔𝑎

2
, 𝑔𝑏

1
, 𝑔𝑐

2
, 𝑢). Compute 𝑔𝑎

𝑇
:=

𝑒 (𝑔𝑎
1
, 𝑔2).

− Sample 𝑎1, . . . , 𝑎𝑡−1 uniformly at random and set 𝑠𝑘𝑖 := 𝑎𝑖 for

𝑖 ∈ [𝑡 − 1]. Implicitly assume 𝑠𝑘 := 𝑎. All 𝑎𝑖 for 𝑖 ∈ {𝑡, . . . , 𝑛}
are well de�ned and can be computed in the exponent (but not

in the clear due to hardness of discrete logarithm in all groups

𝐺1,𝐺2,𝐺𝑇) of either 𝑔1 or 𝑔2 by Lagrange interpolation.

− Simulating the random oracle. Guess the order of the ran-
dom oracle queries on challenge (𝑥★, 𝑦★) ahead of time – this

incurs a loss of 𝑂 (𝑞2) in the security assuming each random

20

𝑡 𝑛
Latency (𝑚𝑠/𝑒𝑛𝑐) Throughput (𝑒𝑛𝑐/𝑠)

DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE

1 msg 1 msg 100 msg 100 msg 10000 msg 10000 msg 1 msg 1 msg 100 msg 100 msg 10000 msg 10000 msg

𝑛/3
6 7.67 15.17 1.21 0.24 1.02 0.08 1353.60 538.05 1935.06 17338.93 1740.39 23090.32

12 8.77 18.36 1.80 0.23 1.60 0.08 777.31 356.17 970.34 16459.29 916.86 22939.21

18 10.59 21.37 2.41 0.24 2.20 0.08 568.76 274.51 625.62 15572.01 610.03 23000.59

24 11.10 23.54 3.01 0.25 2.83 0.08 490.91 217.81 477.74 15179.30 457.33 22732.65

𝑛/2
6 8.02 16.19 1.34 0.24 1.10 0.08 1206.19 489.88 1643.08 17522.10 1708.22 22606.00

12 10.26 21.27 2.09 0.25 1.79 0.08 740.08 317.91 848.86 16135.29 761.98 23062.49

18 11.79 22.33 2.77 0.24 2.51 0.08 506.65 241.54 540.39 15484.78 512.59 23000.98

24 13.07 27.37 3.52 0.26 3.24 0.08 390.81 185.69 409.22 14261.33 394.80 23227.21

2𝑛/3
6 9.23 17.38 1.50 0.24 1.21 0.08 1137.89 475.06 1478.51 16916.38 1382.72 22737.52

12 11.25 21.21 2.32 0.25 2.00 0.08 613.84 305.26 752.49 15702.13 693.90 23007.18

18 12.85 25.26 3.20 0.25 2.81 0.08 447.55 214.51 483.95 14687.05 459.95 22861.80

24 14.22 28.98 4.06 0.27 3.66 0.08 361.62 165.88 367.74 13648.82 348.42 22977.42

𝑛 − 2
6 9.23 18.22 1.50 0.25 1.21 0.08 1137.89 493.38 1478.51 17218.14 1382.72 23057.09

12 11.20 22.71 2.57 0.25 2.20 0.08 599.51 274.37 662.85 15434.01 608.87 22619.24

18 14.34 29.46 3.67 0.27 3.21 0.08 403.58 185.74 429.69 14084.06 401.69 22785.89

24 17.11 34.32 4.95 0.29 4.26 0.08 328.86 141.39 298.36 13085.54 296.27 22814.45

2

6 7.67 15.31 1.21 0.24 1.02 0.08 1353.60 552.28 1935.06 17672.40 1740.39 22808.23

12 8.19 16.49 1.52 0.23 1.41 0.08 901.21 413.32 1128.34 17171.94 1022.70 22716.23

18 8.76 17.88 1.88 0.23 1.81 0.08 706.69 297.89 831.78 16319.49 740.89 22929.70

24 9.18 18.41 2.27 0.22 2.24 0.08 642.83 242.51 678.35 16124.29 580.40 22896.45

Figure 36: Encryption performance metrics averaging 10 repeated trials of 32 bytes messages in the LAN setting.

𝑡 𝑛
Latency (𝑚𝑠/𝑒𝑛𝑐) Throughput (𝑒𝑛𝑐/𝑠)

DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE DiSE ATSE

1 msg 1 msg 100 msg 100 msg 10000 msg 10000 msg 1 msg 1 msg 100 msg 100 msg 10000 msg 10000 msg

𝑛/3
6 36.28 43.05 1.49 0.52 1.01 0.08 314.49 249.35 1657.44 13896.08 1844.77 23255.97

12 37.27 46.22 2.09 0.51 1.60 0.08 276.10 208.23 889.04 13526.79 864.09 22701.11

18 39.14 49.43 2.65 0.51 2.21 0.08 233.34 172.61 607.03 12752.33 588.50 23600.82

24 39.20 51.37 3.28 0.51 2.82 0.08 247.29 148.51 443.23 12881.85 451.54 22819.92

𝑛/2
6 36.10 44.25 1.60 0.53 1.11 0.08 305.11 235.45 1540.22 13746.63 1558.98 22587.91

12 37.04 49.27 2.36 0.52 1.80 0.08 261.07 197.77 792.06 13107.11 762.56 23184.55

18 39.54 50.83 3.04 0.54 2.50 0.08 262.93 168.53 526.64 12777.58 526.33 22882.63

24 40.97 55.03 3.80 0.54 3.21 0.08 232.00 142.21 387.46 12195.49 392.91 23073.57

2𝑛/3
6 36.48 44.15 1.73 0.52 1.21 0.08 298.07 225.83 1357.15 13574.06 1341.21 22901.73

12 38.65 49.33 2.58 0.53 2.00 0.08 265.64 185.81 691.62 13328.30 679.10 22883.03

18 41.10 54.32 3.39 0.54 2.81 0.08 242.94 153.92 456.75 12489.62 460.92 23066.88

24 42.22 58.26 4.44 0.55 3.65 0.08 218.17 129.39 340.22 11684.43 350.85 22797.72

𝑛 − 2
6 36.48 46.01 1.73 0.53 1.21 0.08 298.07 226.42 1357.15 13889.17 1341.21 22985.34

12 39.45 52.26 2.84 0.53 2.20 0.08 267.34 184.07 616.21 12805.00 614.13 22738.41

18 41.93 57.09 3.93 0.56 3.20 0.08 218.91 145.53 401.83 12141.07 395.32 22676.14

24 44.51 62.56 5.04 0.56 4.27 0.08 190.73 114.34 290.57 11171.21 294.88 22560.14

2

6 36.28 44.82 1.49 0.53 1.01 0.08 314.49 253.26 1657.44 13403.01 1844.77 22888.23

12 36.09 44.86 1.80 0.51 1.40 0.08 283.35 219.49 1011.29 13423.24 1007.36 22694.18

18 37.41 46.03 2.16 0.50 1.82 0.08 265.28 188.43 724.91 13683.31 732.99 22932.86

24 37.40 46.75 2.53 0.50 2.24 0.08 236.96 160.31 572.38 13437.24 574.20 22602.86

Figure 37: Encryption performance metrics averaging 10 repeated trials of 32 bytes messages in the WAN setting.

oracle receives 𝑞 queries (because if the guess is wrong, then

the simulation becomes incorrect). For a query H0 (𝑥★), set
H0 (𝑥★) := 𝑔𝑏

1
and for a queryH1 (𝑦★), setH1 (𝑦★) := 𝑔𝑐

2
. For

all other queries 𝑥 toH0 (resp. 𝑦 toH1) choose uniform ran-

dom 𝑟←
$
Z𝑝 and setH0 (𝑥) := 𝑔𝑟

1
(resp.H1 (𝑥) := 𝑔𝑟

2
) and store

the pair (𝑥, 𝑟) (resp. (𝑦, 𝑟)).
− Simulating key-derivation oracleOpr-kd.Notice that in this

case, the adversary is not allowed to ask a single key-derivation

query to oracle Opr-kd (otherwise it would be listed in 𝐿wk
invoking ABORT = 1) on the challenge (𝑥★, 𝑦★). The partial-
key queries are simulated using 𝑔𝑎

1
and 𝑔𝑎

2
for the ‘left’ and

‘right’ queries. In particular, for a ‘left’ query on a value

𝑥 return (𝑔𝑎𝑖
1
)𝑟 on behalf of an honest party 𝑖 , where 𝑔

𝑎𝑖
1

is

computed by Lagrange interpolation in the exponent and 𝑟 is

such thatH0 (𝑥) = 𝑔𝑟
1
. Note that, 𝑟 is known to the reduction

due to programmability of random oracle, which also guar-

antees that even if the query H0 (𝑥) is made later it will be

returned 𝑔𝑟
1
. The ‘right’ partial-key queries are simulated

analogously. A ‘whole’ query on (𝑥,𝑦) is simulated by re-

turning (𝑔𝑎𝑖
𝑇
)𝑟1𝑟2 on behalf of an honest party 𝑖 , where 𝑟1, 𝑟2

are such thatH0 (𝑥) = 𝑔
𝑟1
1
andH1 (𝑦) = 𝑔

𝑟2
2
. As we already ob-

served that, no query on (𝑥★, 𝑦★) is made, all such exponents

(𝑟1, 𝑟2) of the random oracle outputs are known.

− Simulating challenge oracleOpr-chal. Finally, for a challenge
query (‘Challenge’, 𝑗★, 𝑆★, (𝑥★, 𝑦★)) return 𝑢 ′ computed as

follows:

− Assuming 𝑢 = 𝑔𝑑
𝑇
(where 𝑑 is either equal to 𝑎𝑏𝑐 or a

uniform random value in Z𝑝), the reduction computes

𝑢𝑖 := 𝑔
𝑑𝑖
𝑇

where 𝑑𝑖 is the 𝑖-th 𝑡-out-of-𝑛 Shamir secret

sharing of 𝑑 for every honest 𝑖 ∈ 𝑆★ \ 𝐶 by Lagrange

interpolation.

− Then use these 𝑢𝑖 along with ℎ𝑖 received from the cor-

rupt parties 𝑖 ∈ 𝑆★ ∩ 𝐶 in the round-2 of protocol

DKdf (JskK𝑆★, J 𝑗★K(𝑥★, 𝑦★), 𝑆★) to reconstruct 𝑢 ′ again
by Lagrange interpolation.

21

Note that, the adversary does not gain any additional advantage

from sending incorrectℎ𝑖 ’s on behalf of the corrupt parties, in which

case𝑢 ′ becomes di�erent from𝑢–because, information theoretically,

even an unbounded adversary obtains exactly the same information

irrespective of the exact values of ℎ𝑖 ’s in both the cases. So, without

loss of generality we can assume𝑢 ′ = 𝑢. Now clearly when𝑢 = 𝑔𝑎𝑏𝑐
𝑇

then the reduction perfectly simulates DP-PR(0), as in that case

each 𝑢𝑖 is equal to 𝑔
𝑎𝑖𝑏𝑐
𝑇

as desired. On the other hand, when 𝑢 is

a random element in 𝐺𝑇 , then the reconstruction would yield a

uniform random value in𝐺𝑇 perfectly simulating DP-PR(1). This
concludes the proof for pseudorandomness.

E.2 Proof of Theorem 7.16
We need to prove three security properties: (i) message-privacy

(Def. 7.6), (ii) (strong-)correctness (Def. 7.3) and (iii) (strong-)authenticity

(Def. 7.9). The proofs are similar to the security proof of DiSE.

E.2.1 Proof of Message privacy. Message privacy of our ATSE

scheme follows mainly from pseudorandomness of the underly-
ing FTKD scheme and the hiding of the group commitment scheme.

Recall that, for any PPT adversary A, our goal is to show compu-

tational indistinguishability of two experiments AT-MsgPrivA (0)
andAT-MsgPrivA (1).We start from the experimentAT-MsgPrivA (𝑏)
and transition through a number of intermediate hybrid experi-

ments (polynomially many) to eventually reach atAT-MsgPrivA (1).
We describe the �rst set of hybrids below for 𝑖 ∈ {0, 1, . . . , 𝑁 }.
− Hyb

1,𝑖 : In this hybrid only following change is made in the

challenge oracleOat-mp-chal
: for challenge query (𝑗★,m0,m1, 𝑆

★),
the �rst 𝑖 elements 𝑐1, . . . , 𝑐𝑖 of the challenge ciphertext vector

c★ are generated as follows:

− Compute locally (𝛾, q, p) := GCommit(𝑝𝑝com,m0).
− For all 𝑘 ∈ [𝑖] use random wk𝑘 := R(𝑗★‖𝛾 ‖𝑞𝑘); for all

𝑘 ∈ [𝑁] \ [𝑖] use correctly computed values wk𝑘 ←
DKdf (JskK𝑛, [𝑗★ : (𝑗★‖𝛾), ‘whole’, 𝑆★]). Here R(· · ·)
is a random function that returns random outputs, but

ensuring that the same output is returned always on the

same input.

− Compute 𝑒𝑘 := PRG(wk𝑘) ⊕ (m0 [𝑘] ‖p[𝑘]).
Clearly, Hyb

1,0 is identical to AT-MsgPriv(0). Furthermore, the

only di�erence between experiments Hyb
1,𝑖−1 and Hyb

1,𝑖 (for any

𝑖 ∈ [𝑁]) is in the generation of the 𝑖-th challenge ciphertext where

in the former wk𝑖 is produced by querying FTKD and in the later

it is generated using a random function. Therefore we can argue

that if A can distinguish between Hyb
1,𝑖−1 and Hyb

1,𝑖 , we can

construct a PPT adversary BA that can break pseudorandomness

of the underlying FTKD. Note that in the reduction, the group-key

queries, honest encryption queries, indirect decryption queries in

the hybrid experiment can be simulated by forwarding to the FTKD

pseudorandomness challenger. We conclude that

AT-MsgPriv(0) ≈𝑐 Hyb
1,𝑁

Next we describe the second set of hybrids:

− Hyb
2,𝑖 : This hybrid is the same asHyb

1,𝑁 except the following

changesmade in the challenge oracleOat-mp-chal
: for challenge

query (𝑗★,m0,m1, 𝑆
★), the �rst 𝑖 elements 𝑐1, . . . , 𝑐𝑖 of the

challenge ciphertext vector c★ are generated as follows:

− Compute locally (𝛾, q, p) := GCommit(𝑝𝑝com,m0).
− for all 𝑘 ∈ [𝑁] use random wk𝑘 := R(𝑗★‖𝛾 ‖𝑞𝑘).
− For 𝑘 ∈ [𝑖] compute 𝑒𝑘 := 𝑠𝑘 ⊕ (m0 [𝑘] ‖p[𝑘]) where 𝑠𝑘

is randomly sampled; for 𝑘 ∈ [𝑁] \ [𝑖] compute 𝑒𝑘 :=

PRG(wk𝑘) ⊕ (m0 [𝑘] ‖p[𝑘]).
Note that Hyb

2,0 is identical to Hyb
1,𝑁 . Furthermore, due to the

pseudorandomness of the PRG we obtain Hyb
2,𝑖−1 ≈𝑐 Hyb

2,𝑖 for

any 𝑖 ∈ [𝑁]. So, combining we obtain

Hyb
1,𝑁 ≈𝑐 Hyb

2,𝑁

Next we describe the third set of hybrids:

− Hyb
3,𝑖 : This hybrid is the same asHyb

2,𝑁 except the following

changesmade in the challenge oracleOat-mp-chal
: for challenge

query (𝑗★,m0,m1, 𝑆
★), the �rst 𝑖 elements 𝑐1, . . . , 𝑐𝑖 of the

challenge ciphertext vector c★ are generated as follows:

− Compute locally (𝛾, q, p) := GCommit(𝑝𝑝com,m0).
− for all 𝑘 ∈ [𝑁] use random wk𝑘 := R(𝑗★‖𝛾 ‖𝑞𝑘).
− For 𝑘 ∈ [𝑖] compute 𝑒𝑘 := 𝑣𝑘 where 𝑣𝑘 is randomly sam-

pled; for 𝑘 ∈ [𝑁] \ [𝑖] compute 𝑒𝑘 := 𝑠𝑘 ⊕ (m0 [𝑘] ‖p[𝑘]).
We note that Hyb

3,0 is identical to Hyb2,𝑁 and for any 𝑖 ∈ [𝑁] the
successive hybrids Hyb

3,𝑖−1 and Hyb
3,𝑖 are statistically close (as

the keys 𝑠𝑘 are used as a one-time pad in Hyb
2,𝑁). Therefore we

conclude that:

Hyb
2,𝑁 ≈𝑠 Hyb3,𝑁

Next we describe the �nal set of hybrids:

− Hyb
4,𝑖 : This hybrid is the same asHyb

3,𝑁 except the following

changesmade in the challenge oracleOat-mp-chal
: for challenge

query (𝑗★,m0,m1, 𝑆
★), the �rst 𝑖 elements 𝑐1, . . . , 𝑐𝑖 of the

challenge ciphertext vector c★ are generated as follows:

− Compute locally (𝛾, q, p) := GCommit(𝑝𝑝com, u) where
u is randomly sampled.

− for all 𝑘 ∈ [𝑁] use random wk𝑘 := R(𝑗★‖𝛾 ‖𝑞).
− For 𝑘 ∈ [𝑁] compute 𝑒𝑘 := 𝑣𝑘 where 𝑣𝑘 is randomly

sampled.

We note that Hyb
4,0 is identical to Hyb

3,𝑁 and for any 𝑖 ∈ [𝑁]
the successive hybrids Hyb

4,𝑖−1 and Hyb
4,𝑖 are computationally

close due to the hiding property of the group commitment scheme.

Importantly, in this reduction, the oracle Oat-mp-pc-dec
can be sim-

ulated by using the oracle Oopen of the group commitment scheme

which returns the private openings for the messages which are

same across the challenge message vectors. So, it does not help the

adversary. Therefore we conclude that:

Hyb
3,𝑁 ≈𝑐 Hyb

4,𝑁

Finally, observe that the hybrid game Hyb
4,𝑁 is independent of the

message m𝑏 and hence is independent of the challenge bit 𝑏. It is

also important to note that the other queries are not helpful to the

adversary due to the binding property of the commitment scheme,

because each group of messages maps to a unique group-key, so

none of them gives any information about the challenge message-

key wk★. Therefore, we conclude that the adversary can guess

the bit 𝑏 in this hybrid with probability at most 1/2. In a similar

manner we can reach to the same hybrid starting from experiment

AT-MsgPrivA (1)– combining this with the above arguments we

conclude the proof.

22

E.2.2 Proof of (strong-)correctness. An ATSE scheme is correct if,

whenever an honest party 𝑗 initiates DGEnc on a an input (𝑗 ‖𝛾)
to obtain a group key gk and uses that to encrypt a sequence of

messages m := 𝑚1, . . . ,𝑚𝑁 to produce ciphertexts c := 𝑐1, . . . 𝑐𝑁 ,

then any other honest party 𝑗 ′ for any 𝑖 ∈ [𝑁] either recovers𝑚𝑖

itself or results in an error ⊥ with high probability, when it runs

DistDec with 𝑐𝑖 as input. In particular, even if a PPT adversary is

involved in the execution via corrupting any �xed set of (up to) 𝑡 −1
parties during the procedure, it is not feasible for the adversary to

enforce 𝑗 to output another𝑚′ ≠𝑚𝑖 as a result of decrypting 𝑐𝑖 . This

property is achieved by our construction due to the binding of the

underlying group commitment scheme. In particular, the ciphertext

𝑐𝑖 is of the form (𝑗, 𝛾, 𝑞, 𝑒). If we assume for the sake of contradiction

that it correctly decrypts to a di�erent (𝑚′‖𝑝 ′) ≠ (𝑚‖𝑝), then that

would imply that both 𝑚′ and 𝑚 correctly opens to the group-

unique commitment pair (𝛾, 𝑞), which contradicts the binding.

To argue strong correctness, we �rst recall that it requires that

if decryption is performed honestly, then the output must be 𝑚𝑖

(and never ⊥ as in the case for standard correctness). Nevertheless,

correctness of the underlying FTKD guarantees that if an ad-

versarial run of key-derivation yields a valid wk (which is not ⊥),
then an honest run of key-derivation on the same input must also

yield wk. In that case, as argued above, an honest run of decryption

would yield the exact same𝑚𝑖 . This proves that a correct FTKD
gives a strongly correct ATSE scheme. This concludes the proof.

E.2.3 Proof of (strong)-authenticity. For any PPT adversary A,

recall the authenticity game AT-AuthA (1𝜅) from Def. 7.9. Now, for

our construction (c.f. Fig. 30) let us de�ne a slightly modi�ed game

CardAuthGameA (1𝜅) which works as the same as AT-Auth except

a few changes as described below:

− One more global list 𝐿card is initialized to ∅ within the game.

− The list 𝐿card is populated with entries of the form (𝛾, 𝑁)
within the encryption oracle for queries from as a corrupt 𝑗

and whenever DGEnc does not return ⊥.
− In the challenge oracle, the forgeries are groupedwith the same

𝛾 values as (𝛾1, (𝑗1
1
, 𝑐1
1
, 𝑆1

1
), . . .), (𝛾2, (𝑗2

1
, 𝑐2
1
, 𝑆2

1
), . . .). If there ex-

ists a 𝛾𝑖 for which (i) there is an entry (𝛾𝑖 , 𝑁𝑖) in 𝐿card and (ii)

the number of forgeries is greater than 𝑁𝑖 then set SUCC to 0

and abort – let us call this a “special condition”.

Now, we claim that, due to cardinality binding of the underly-

ing group commitment scheme, if A wins the game AT-AuthA
with non-negligible probability thenAmustwinCardAuthGameA
with non-negligible probability. This is easy to observe from the

above description because the only time A wins in AT-Auth but

loses in CardAuthGame is when the above “special condition” is

met. However, in case such event happens, then clearly A can be

used to break cardinality-binding, as it is ensured at the server

side that for any such query CardVer must return 1 and since the

adversary can not corrupt more than 𝑡 − 1 parties, it must contact

at least one honest server to produce a successful forgery (except

with negligible probability).

Now, let us de�ne another slightlymodi�ed gameAT-Auth-UniqA (1𝜅)
which works as the same as CardAuthGameA (1𝜅) except that in-
stead of the standard challenge oracle Oat-cor-chal (Fig. 27) the adver-
sary is given access to a modi�ed challenge oracle, Oat-uniq-auth-chal
with di�erences as described below:

− The challenge oracle aborts unless among the forgeries, the

following property holds:

∀ 𝑖 ≠ 𝑖 ′ : (𝑗𝑖 , 𝛾𝑖 , 𝑞𝑖) ≠ (𝑗𝑖′, 𝛾𝑖′, 𝑞𝑖′)
In particular, in the game AT-Auth-Uniq, the requirement of

adversary’s winning is more restricted because here not only the

ciphertexts within the forgery list 𝐿forge have to be distinct, but the

di�erence must come from the �rst three components. We claim

that:

CardAuthGameA (1𝜅) ≈𝑐 AT-Auth-UniqA (1𝜅)
To see this, suppose that in the game CardAuthGameA the adver-

sary A outputs (𝑘 + 1) distinct ciphertexts among which two of

them, say, 𝑐𝑖 and 𝑐𝑖′ only di�er in the �nal component: that is, 𝑐𝑖 can

be written as (𝑗, 𝛾, 𝑞, 𝑒) and 𝑐𝑖′ as (𝑗, 𝛾, 𝑞, 𝑒 ′). In this case running an

honest decryption DistDec† would internally invoke execution of

an honest instance ofDKdf† on the same input ((𝑗 ‖𝛾, 𝑞), ‘whole’)–
this would return the same message-key wk due to the consistency

property of the underlying FTKD (with overwhelming probabil-

ity). However, since 𝑒 ≠ 𝑒 ′, we would end up with di�erent (𝑚‖𝑝)
and (𝑚′‖𝑝 ′). Now, due to the binding property of the underly-

ing group commitment scheme one of the veri�cations between

GVer(𝑝𝑝com, (𝛾, 𝑞), (𝑚, 𝑝)) and GVer(𝑝𝑝com, (𝛾, 𝑞), (𝑚′, 𝑝 ′)) must

fail with overwhelming probability. This would lead to the fail-

ure of one of the decryption in Oat-cor-chal setting SUCC := 0 in

the game CardAuthGameA . Since this is the only way A can dis-

tinguish between this game with AT-Auth-UniqA , the probability
that SUCC = 1 in either game is negligibly close. Therefore, we

conclude that output of these two games are computationally in-

distinguishable.

In the next stepwe bind the winning probability ofA in the game

AUTH-UA by the winning probability of another PPT adversary

B (a.k.a. reduction) that attempts to win the pseudorandomness

game DP-PRB (c.f. Def. 5.4). B works as follows:

− Get 𝑝𝑝
FTKD

from the challenger; run GSetup to obtain 𝑝𝑝com.

Give (𝑝𝑝
FTKD

, 𝑝𝑝com) to A. Initialize the list 𝐿ctxt := ∅ and a

counter ct𝑗 ‖𝛾 ‖𝑞 := 0 for each string (𝑗 ‖𝛾 ‖𝑞) (this will be done
implicitly as there are exponentially many such strings). The

corrupt set, received from A is forwarded to the challenger.

− The encryption queries of the form (𝑗,m, 𝑁 , 𝑆) (requires 𝑗 ∈ 𝑆)
will be simulated as follows: �rst compute the commitment

(𝛾, q, p) ← GCommit(𝑝𝑝com,m) and then do as follows:

− If 𝑗 is corrupt, then check whether CardVer(𝑝𝑝, (𝛾, 𝑁)) =
1, if not then abort, otherwise make a key-derivation

query of the form (𝑗, (𝑗 ‖𝛾, ‘left’), 𝑆) to the challenger,

and forward the responses back and forth between the

challenger and A for the execution. Increment the coun-

ters ct𝑗 ‖𝛾 ‖𝑞 by 1 for each 𝑞 ∈ q.
− If 𝑗 is honest, send (𝑗 ‖𝛾) to A. Append all {(𝑗 ‖𝛾 ‖𝑞)}𝑞∈q

to 𝐿ctxt.

− Decryption queries of the form (𝑗, 𝑐, 𝑆) (requiring 𝑗 ∈ 𝑆) are
simulated as follows: �rst parse 𝑐 as (𝑗 ′, 𝛾, 𝑞, 𝑒), then:
− If 𝑗 is corrupt, send the key-derivation query (𝑗, (𝑗 ′‖𝛾 ‖𝑞,

‘whole’), 𝑆)) to the challenger, and forward the responses
back and forth between A and the challenger. Increment

the only counter ct𝑗 ‖𝛾 ‖𝑞 by 1.

− If 𝑗 is honest, then send (𝑗 ′‖𝛾 ‖𝑞) to A.

23

− The targeted decryption queries of the form (𝑗, 𝑖, 𝑆) are sim-

ulated by searching from the ordered list 𝐿ctxt and replying

back the 𝑖-th entry (𝑗𝑖 ‖𝛾𝑖 ‖𝑞𝑖) to A.

− WhenA outputs the forgery list 𝐿forge, parse it as ((𝑗1, 𝑆1, 𝑐1),
. . . , (𝑗𝜏 , 𝑆𝜏 , 𝑐𝜏)) and each 𝑐𝑖 as (𝑗𝑖 , 𝛾𝑖 , 𝑞𝑖 , 𝑒𝑖). Then pick a 𝑐 :=

(𝑗, 𝛾, 𝑞, 𝑒) from this list for which ct𝑗 ‖𝛾 ‖𝑞 < 𝑔 (if no such el-

ement is found then output a random bit). Send a challenge

query (𝑗, 𝑧, 𝑆) to the challenger where 𝑧 := 𝑗 ‖𝛾 ‖𝑞. If the chal-
lenge oracle responds with the output wk, then if wk = ⊥
output a random bit, otherwise compute𝑚‖𝑝 := PRG(wk) ⊕ 𝑒 ,
and run GVer(𝑝𝑝com, (𝛾, 𝑞), (𝑚, 𝑝)), if this outputs 0, then out-

put 1, otherwise output 0.

Now, note that if 𝜏 > 𝑘 , then there must exist a ct𝑗 ‖𝛾 ‖𝑞 which is

smaller than𝑔, otherwisewewould end upwith ct ≥ ∑
𝑐∈𝐿ctxt ct𝑗 ‖𝛾 ‖𝑞 >

𝑘𝑔 in game AT-Auth-Uniq which is a contradiction. This ensures

that (i) (𝑗 ‖𝛾 ‖𝑞) ∉ 𝐿wk; and (ii) (𝑗 ‖𝛾) ∉ 𝐿lk. Furthermore, B sim-

ulates the experiment AT-Auth-Uniq perfectly for A. Now, let 𝑏 ′

denote the bit output by B and 𝑏 be the bit randomly chosen by the

challenger in game DP-PRB (b). Now, from the above description

we observe that AT-Auth-Uniq outputs 1 only when wk ≠ ⊥ and

GVer returns 1. So, assuming thatA wins in AT-Auth-UniqA with

probability 𝜀 we get: Pr[𝑏 ′ = 0 | 𝑏 = 0] ≥ 𝜀. On the other handwhen

𝑏 = 1, the challenger returns a random wk, which makes (𝑚‖𝑝)
uniform random too. Hence, the probability that GVer returns 1 in
this case is at most negl(𝜅), implying Pr[𝑏 ′ = 0 | 𝑏 = 1] ≤ negl(𝜅).
Combining we obtain����Pr[DP-PRB (b) = 1] − 1

2

����
=

1

2

��
Pr[𝑏 ′ = 0 | 𝑏 = 0] + Pr[𝑏 ′ = 1 | 𝑏 = 1] − 1

��
=

1

2

��
Pr[𝑏 ′ = 0 | 𝑏 = 0] − Pr[𝑏 ′ = 0 | 𝑏 = 1]

�� ≥ 𝜀 − negl(𝜅)
2

which is non-negligible when 𝜀 is non-negligible. This concludes

the proof.

The argument of strong authenticity is similar, but is additionally

based on the correctness of the underlying FTKD. In particular,

the main di�erence shows up in the argument of indistinguisha-

bility of corresponding AT-Str-Auth-Card and a corresponding

AT-Str-Auth-Uniq, as now the �nal decryption within the chal-

lenge oracle involves the adversary and hence it is not immediate

that a �xed (𝑗 ‖𝛾 ‖𝑞) will imply a unique valid ciphertext. Instead,

we can reduce to the correctness of FTKD as follows: if there is

a PPT adversary A which can distinguish between two games

AT-Str-Auth-CardA and AT-Str-Auth-UniqA with non-negligible

probability 𝜀 (say), we can construct a PPT adversary B that would

break the game DP-CorrectB . Note that, the only event that would

cause the games AT-Str-Auth-Card and AT-Str-Auth-Uniq to out-

put di�erently is when there are more than one valid ciphertexts

𝑐, 𝑐 ′ with the same (𝑗, 𝛾, 𝑞). Due to the binding of the group
commitment, this is only possible when both encrypts the same

message/randomness pair, which in turn means that the message-

keys derived, wk,wk′ are di�erent. Therefore, among these two

ciphertexts there exists at least one message key which is di�erent

from the correct wk†. The reduction B makes a challenge oracle

query to the oracle Ocr-chal with (𝑗, ‘whole’, (𝑗𝑏 ‖𝛾 ‖𝑞), 𝑆𝑏) where 𝑏

is a uniform random bit randomly selected between the two forgery

tuples (𝑗0, 𝑐, 𝑆0), (𝑗1, 𝑐 ′, 𝑆1). Clearly, with probability 1/2 the output
of DKdf (which does involve the adversary) inside the challenge

oracle Ocr-chal will be di�erent from wk†, in that case B wins the

game. So, B would also win the DP-CorrectB with non-negligible

probability ≈ 𝜀/2 (the loss of a factor of 2 comes up due to the

random choice between the forgery tuples made above). The rest

of the proof is quite similar to the above and is hence omitted.

F A BRIEF OVERVIEW OF DISE
For reader’s convenience we provide a brief overview of DiSE con-

struction here. Some of the texts below are taken almost verbatim

from [14].

DPRF. DiSE provides a generic construction of a threshold sym-

metric encryption (TSE). The construction is based on distributed

pseudorandom functions (DPRF) as the main building block in a

manner similar to our ATSE construction is based on FTKD. A

DPRF is a distributed (and interactive) analog of a standard PRF. It

involves a setup where each party obtains their secret-key and the

public parameters. In other words, it can be thought of as a more re-

stricted version of FTKD (De�nition 5.1), that allows key-derivation

only in one mode (namely “whole”). Evaluation on an input is per-

formed collectively by any 𝑡 parties where 𝑡 (≤ 𝑛) is a threshold.

Importantly, at the end of the protocol, only one special party (eval-

uator/client) learns the output. Similar to FTKD, a DPRF should

meet two main requirements: (i) consistency: the evaluation should

be independent of the participating set, and (ii) pseudorandomness:
the evaluation’s output should be pseudorandom to everyone else

but the evaluator even if the adversary corrupts all other 𝑡 − 1

parties and behaves maliciously.

In the malicious case, one can think of a slightly stronger prop-

erty, called (iii) correctness, where after an evaluation involving up

to 𝑡 − 1 malicious corruptions, an honest evaluator either receives

the correct output or can detect the malicious behavior.

Naor et al. [45] propose two very e�cient (two-round) instan-

tiations of DPRF, one based only on symmetric-key cryptography

and another based on the DDH assumption. As mentioned ear-

lier, the DDH based construction has similarities with our FTKD

construction (Figure 8).

DiSE Construction. At a high level, DiSE uses a DPRF scheme

to generate a pseudorandom key 𝑤 that is used to encrypt the

message 𝑚. But one needs to ensure that an adversary cannot

use the same 𝑤 to generate more than one valid ciphertext. To

do so, Agrawal et al. bind 𝑤 to the message 𝑚 (and the identity

of party- 𝑗), in particular by using (𝑗 ‖𝑚) as an input to the DPRF.

First, note that it is necessary to put 𝑗 inside the DPRF, otherwise

a malicious attacker can easily obtain𝑤 by replaying the input of

the DPRF in a new encryption query and thereby recovering any

message encrypted by an honest encryptor. In the protocol they

made sure each party checks if a message of the form (𝑗, ∗) (just
like our ATSE construction in Figure 30) is indeed coming from

party- 𝑗 . Second, this does not su�ce as it reveals 𝑚 to all other

parties during the encryption protocols originated by honest parties

and as a result fails to achieve even message privacy. To overcome

24

this, they instead input a simple commitment to𝑚 to the DPRF.
12

The hiding property of the commitment ensures that𝑚 remains

secret, and the binding property of the commitment binds𝑤 to this

particular message. To enable the veri�cation of the decommitment

during the decryption, they need to also encrypt the commitment

randomness along with𝑚.

This almost works except that the attacker can still generate valid

new ciphertexts by keeping𝑚, 𝑗 and 𝑤 the same and using new

randomness to encrypt𝑚. This is prevented by making the cipher-

text deterministic given𝑚 and𝑤 : they input𝑤 to a pseudorandom

number generator to produce a pseudorandom string serving as a

“one-time pad” that is used to encrypt𝑚 just by XOR’ing. (Again,

this is similar to our ATSE construction.)

To summarize, the �nal DiSE construction can be informally

described as follows: (i) the encryptor with identity 𝑗 chooses a

random 𝜌 to compute 𝛼 := Com(𝑚; 𝜌) whereCom is a commitment

and sends (𝑗, 𝛼) to the participating parties, (ii) the participating

parties then �rst check if the message (𝑗, 𝛼) is indeed sent by 𝑗

(otherwise they abort) and then evaluate the DPRF on (𝑗 ‖𝛼) for
the encryptor to obtain the output 𝑤 , (iii) �nally, the encryptor

computes 𝑒 = PRG(𝑤) ⊕ (𝑚‖𝜌) and outputs the ciphertext (𝑗, 𝛼, 𝑒).
It is not too hard to see that the DiSE construction satis�es ATSE

correctness and security de�nitions for groups consisting of a single

message (that is when 𝑁 = 1).

12
Since they use a single message each time, they can a�ord to use a plain commitment,

whereas we need a special type of commitment such as group commitments.

25

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Use Case
	2.2 Requirements
	2.3 Our Construction
	2.4 Other Applications of FTKD

	3 Related Work
	3.1 Competing approaches
	3.2 Additional related works

	4 Notation and Preliminaries
	4.1 Security games and oracles.
	4.2 Building blocks used in our constructions

	5 Flexible Threshold Key Derivation
	5.1 Definition of FTKD
	5.2 Our FTKD construction

	6 Group Commitments
	6.1 Constructing Group Commitments from Merkle-tree

	7 Amortized Threshold Symmetric Encryption (ATSE)
	7.1 Definition of ATSE
	7.2 Our ATSE Construction

	8 Experimental Evaluation
	References
	A Strong FTKD: Construction and proof
	B Additional building blocks
	B.1 Commitment
	B.2 Non-interactive Zero-knowledge

	C Failed approaches using PKE.
	D Experimental Results
	E Missing proofs
	E.1 Proof of Theorem 5.9
	E.2 Proof of Theorem 7.16

	F A brief overview of DiSE

