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Abstract
Nearest neighbor search is a fundamental building-block for
a wide range of applications. A privacy-preserving protocol
for nearest neighbor search involves a set of clients who send
queries to a remote database. Each client retrieves the nearest
neighbor(s) to its query in the database without revealing
any information about the query. To ensure database privacy,
clients must learn as little as possible beyond the query answer,
even if behaving maliciously by deviating from the protocol.

Existing protocols for private nearest neighbor search re-
quire heavy cryptographic tools, resulting in high computa-
tional and bandwidth overheads. In this paper, we present
Preco: the first lightweight protocol for private nearest neigh-
bor search. Preco is instantiated using two non-colluding
servers, each holding a replica of the database. Our de-
sign supports an arbitrary number of clients simultaneously
querying the database through the two servers.

If at least one of the servers is non-colluding, we ensure
that (1) no information is revealed on the client’s query, (2)
the total communication between the client and the servers is
sublinear in the database size, and (3) each query answer only
leaks a small and bounded amount of information about the
database to the client, even if the client is malicious.

We implement Preco and report its performance on real-
world data. Preco requires between 10 and 20 seconds of
query latency over large databases of 10M feature vectors.
Client overhead remained under 10ms of processing time per
query and less than 10 MB of communication.

1 Introduction

Nearest neighbor search is used in a wide range of online appli-
cations, including recommendation engines [24, 91], reverse
image search [61], image-recognition [63], earthquake de-
tection [96], computational linguistics [70], natural-language
processing [83], targeted advertising [82, 92], and numerous
other areas [57, 65, 77, 82].
∗This is the full, corrected version of [86].
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Figure 1: Overview of approximate nearest neighbor search and the
privacy-preserving protocol considered in this paper. In the private
setting, a client with a query (blue square) interacts with a remote
database via two non-colluding servers (Servers A and B). The client
combines the responses from both servers to obtain the approximate
nearest neighbor ID (in this case the ANN ID = 5) without revealing
the query to the servers.

In these settings, a server has a database of high-dimensional
feature vectors associated with items. Clients send query
vectors to the server to obtain the set of items (a.k.a. neighbors)
that have similar vectors relative to the issued query. Typically,
the client only obtains the identifiers (IDs) of the neighbors
rather than the feature vectors themselves, as the server may
wish to keep the feature vectors private. The IDs of the feature
vectors can be documents, songs, or webpages, and therefore
all the client requires as output for correct functionality.

For a concrete example, consider a music recommendation
engine such as Spotify. The Spotify server holds a database of
song feature vectors. Each feature vector can be seen as a con-
cise representation of song attributes—e.g., genre, popularity,
user ratings—encoded in a high-dimensional vector space. A
Spotify user has a vector of features (the query) representing
their musical interests. The goal is to recommend songs the
user may find interesting, which should have similar features.

1



This is done using nearest neighbor search to find the ID
(e.g., the song) of a vector similar to the query. The client
learns the recommended song without learning the potentially
proprietary feature vector associated with it (beyond what can
be implicitly inferred through similarity with the query).

In the above example, the Spotify database learns the client’s
features. It is not difficult to see that in applications that
involve more sensitive user data, revealing these features can
easily violate user privacy. Such applications include targeted
advertising [13, 50, 82, 90, 92], biometric data [14, 41],
medical records [9, 88], and DNA data analysis [25, 67, 76, 93].
These applications construct queries from highly personal
user information. For example, in the medical setting, a
person’s medical history, demographics, and even DNA can
be compiled into a query. The resulting neighbors can consist
of other people who have similar symptoms, gene sequences,
or health conditions [74]. Both regulatory and ethical reasons
dictate that such personal information (represented in the
query) should be kept private from the database.

The potential privacy issues surrounding nearest neigh-
bor search have motivated a handful of privacy-preserving
protocols [27, 53, 80, 88, 97]. However, existing protocols
are highly inefficient. Prior work either makes use of heavy
cryptographic tools (e.g., two-party computation and fully-
homomorphic encryption) or fails to provide strong privacy
guarantees for users (e.g., leak information on the query to
the server). See the overview of related work in Section 9.

Additionally, existing protocols do not consider malicious1
clients that may attempt to abuse the system to learn more
information about the database. The proposed solutions leave
open the problem of designing a concretely efficient protocol
for private nearest neighbor search, especially in settings
where parties may act maliciously by deviating from protocol.

The contribution of this paper is the design and implementa-
tion of Preco: a lightweight protocol for private Approximate
Nearest Neighbor (ANN) search. Specifically, by lightweight
we require: (1) minimal communication and computation
overhead on the client, and (2) reasonable computational over-
heads on the database. This is in contrast to prior work, which
either requires gigabytes of communication to instantiate a
multi-party computation protocol or uses fully-homomorphic
encryption to perform the computation resulting in excessive
computational overhead on the database (see Section 9).

Preco provides strong security guarantees for both the client
and the database. Preco is concretely efficient and requires
little communication between the client and the database
servers (and no communication between servers). We achieve
this without compromising on privacy for the client—nothing
is leaked on the client’s query. For database privacy, our
construction requires some extra database leakage compared
to the (minimal) baseline leakage that only reveals the ANN

1Existing work requires secure function evaluation between the client and
server, which can be “upgraded” to malicious-security at the cost of compu-
tationally expensive transformations based on zero-knowledge proofs [47].

to the client. The small additional leakage allows us to eschew
oblivious comparisons, which are inefficient to instantiate [94].
However, we are careful to quantify the extra leakage relative
to the baseline. In our analysis, we show that the leakage is at
most a constant factor worse than the baseline. We empirically
show that this constant is at most 16× the baseline leakage
on real-world datasets, under worst-case parameters, but
otherwise remains approximately 2–4× the baseline leakage
on practical parameters (see Section 7.2).

Private ANN search. We operate in the following model
(see Figure 1 for a simplified illustration). Fix a database
DB containing a set of 𝑁 feature vectors 𝒗1, . . . , 𝒗𝑵 and
corresponding item identifiers ID1, . . . , ID𝑁 . A client has a
query vector 𝒒. The client must learn only the ID(s) of the
nearest neighbor(s) relative to 𝒒 under some similarity (or
distance) metric. For client privacy, the protocol must not
leak any information about 𝒒 to the database servers. For
database privacy, the protocol must leak as little as possible
on 𝒗1, . . . , 𝒗𝑵 to the client. Observe that perfect database
privacy (i.e., no database leakage) is unattainable because
the client must learn at least one ID corresponding to a
neighboring vector in the database, which indicates that the
vector associated with the ID is similar to the query. We
therefore focus on minimizing extra leakage of the database
to the client beyond this baseline.

Our approach. In Preco, we start by redesigning the standard
locality-sensitive-hashing based data structure for ANN search
with the goal of avoiding oblivious comparisons (the efficiency
bottleneck of prior work). We achieve this by replacing brute-
force comparisons with a radix-sort [59] inspired approach for
extracting the nearest neighbor, without sacrificing accuracy.
We then show how to query this new data structure through
a novel privacy-preserving protocol. Preco uses distributed
point functions [45] as an existing building block for private
information retrieval. We then apply a new tool we call partial
batch retrieval (a spin on batch-PIR [8]; see Section 5.1)
to reduce the server processing overhead when answering
queries. Finally, to provide database privacy, we use a new
technique we call oblivious masking (Section 5.1), which
hides all-but-one neighbor ID from the query answer.

We show that Preco is (1) accurate through a theoretical
analysis and empirical evaluation on real-world data, (2)
private by analyzing the security properties of Preco with
respect to client and database privacy, and (3) efficient in
terms of concrete server-side computation and client-server
communication. See Sections 7 and 8 for analytical and
empirical results, respectively.

Contributions. In summary, this paper makes the following
four contributions:
1. design of a single-round protocol for privacy-preserving

ANN search, achieving sublinear communication and
concrete query processing efficiency,
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2. leakage analysis with quantifiable database privacy, which
we show asymptotically matches the optimal leakage,

3. security against malicious clients that may deviate from
protocol in an attempt to abuse leakage, and

4. an open-source implementation [1] which we evaluate on
real-world data with millions of feature vectors.

Limitations. Preco has greater database leakage compared
to the baseline leakage required for correct functionality. We
show that the database leakage is asymptotically optimal, but
concretely a small factor worse on real data; see empirical
analysis in Section 7. Additionally, in contrast to prior work,
our threat model assumes two non-colluding servers. In
Appendix E, we sketch how our techniques extend to the single-
server setting (albeit at a concrete efficiency cost). For now,
however, the non-colluding assumption enables lightweight
privacy-preserving systems [2, 19, 28, 34, 35, 37, 38, 40, 60,
75], including systems deployed in industry [37, 48].
Organization. In Section 2, we provide the necessary back-
ground required for understanding nearest neighbor search
based on locality-sensitive hashing. In Section 3, we de-
scribe the baseline functionality which Preco implements and
the threat model under which we operate. In Section 4, we
describe the main ideas behind private approximate nearest
neighbor search. In Section 5, we provide details on the build-
ing blocks we use, including new tools we develop, and put
them all together in Section 5.2. In Section 7, we analyze the
security guarantees and leakage properties of our construction.
In Section 8, we provide details on our implementation and
our empirical evaluation on four real world datasets. We sur-
vey related work on privacy-preserving approximate nearest
neighbor search in Section 9. Section 10 concludes.

2 Background: nearest neighbor search

We begin by describing the standard (non-private) approach
to approximate nearest neighbor search based on locality-
sensitive hashing. Even outside of a privacy-preserving
context, nearest neighbor search in higher dimensions (𝑑 ≥ 10)
requires tolerating approximate results to achieve efficient
solutions [52]. In Section 4, we transform the ideas from
non-private ANN search into a private protocol instantiated
between a client and two servers holding replicas of the
database.

2.1 Locality-sensitive hashing
The approximate nearest neighbor search problem is solved
using hashing-based techniques that probabilistically group
similar feature vectors together (see survey of Andoni et al.
[6]). Approximate solutions based on Locality-Sensitive
Hashing (LSH) provide tunable accuracy guarantees and only
require examining a small fraction of feature vectors in the
database to find the approximate nearest neighbor(s).

LSH families are defined over a distance metric (such as
Euclidean distance) and have the property that vectors close
to each other in space hash to the same value with good
probability. Formally, for a vector space D, output space R,
and a distance metric Δ, an LSH family is defined as:
Definition 1 (Locality-Sensitive Hash (LSH)). A family of
hash functions H := {ℎ : D→R} is (𝑅, 𝑐𝑅, 𝑝1, 𝑝2)-sensitive
for distance metric Δ if for any pair of vectors 𝒗, 𝒒 ∈ D,

if Δ(𝒗, 𝒒) ≤ 𝑅 then Pr[ℎ(𝒗) = ℎ(𝒒)] ≥ 𝑝1,

if Δ(𝒗, 𝒒) ≥ 𝑐𝑅 then Pr[ℎ(𝒗) = ℎ(𝒒)] ≤ 𝑝2,

where 𝑅 < 𝑐𝑅 and 𝑝1 > 𝑝2.
Remark 1. Note that an LSH family is usually combined with
a universal hash function to map to a fixed output size [36].
Without loss of generality, we will assume that the output of
the LSH function is mapped by a universal hash.

LSH for nearest neighbor search. In this work we adapt
the data structure of Gionis et al. [46], which is the standard
way of solving the ANN search problem using LSH [6].
The data structure consists of two algorithms: Build and
Query (described in Appendix A for completeness). At a
high level, Build hashes each vector into a hash table using a
locality-sensitive hash function. Query performs a lookup in
the hash table and returns the nearest-neighbor in the colliding
bucket. This process is repeated 𝐿 times to increase accuracy.
Because the probability that a nearest neighbor collided with
the query in a subset of hash tables can be made arbitrarily
high (by tuning parameters), Build and Query ensure that the
nearest neighbor is found with high probability (see Figure 2).
In practice, one must query 𝐿 ≈

√
𝑁 tables (𝑁 is the database

size) to obtain good accuracy and sublinear query time [6].

3 Overview

We adapt the standard LSH-based data structure described
in Section 2 into a privacy-preserving protocol between a
client with query vector 𝒒 and two servers with access to
replicas of the database. We begin by describing the baseline
functionality of private ANN search.
Notation. We denote by DB the database of vectors and their
IDs. We let 𝑁 be the total number of 𝑑-dimensional vectors in
DB. A vector is denoted in bold as 𝒗 where the 𝑖th coordinate
of 𝒗 is denoted by 𝒗𝑖 . For a hash table 𝑇 , we denote by 𝑇 (𝑘)
the value under key 𝑘 in 𝑇 . A distance metric (e.g., Euclidean
distance) is denoted Δ, where threshold distances 𝑅 and 𝑐𝑅
are as defined in Section 2.1. We let F𝑝 denote a prime-order
finite field (e.g., integers mod a prime 𝑝). A secret-share
of a value 𝑣 ∈ F𝑝 is denoted using bracket notation as [𝑣].
Coordinate-wise secret-shares of a vector 𝒗 are denoted as [𝒗].
We denote assignment to a variable by 𝑥 := 𝑦 and assigment
from a possibly randomized algorithm Alg as 𝑥← Alg. Finally,
𝑥

𝑅← 𝑆 denotes a random sample from a distribution 𝑆.
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Figure 2: Visualization of the nearest neighbor search problem.
Left: collision probability of a LSH function as the distance between
the query and a point grows larger. Center: representation of the
collision radius centered at the query for a collection of points in the
database. The blue points within distance 𝑅 have a high probability
of colliding with the query. The orange points within distance 𝑅
and 𝑐𝑅 from the query have a lower probability of colliding with the
query. The approximation factor 𝑐 > 1 determines the quality of the
results; typically 𝑐 = 2 in practical applications. Right: The query
is likely to collide with buckets containing the near neighbors (blue
points) when using a LSH function ℎ to construct the hash table.

3.1 Baseline functionality
The baseline ANN search functionality is described in Func-
tionality 1. The functionality takes as input the public param-
eters and query 𝒒 to output the ID of the nearest neighbor
to the client. The servers obtain no output. Without loss of
generality, we assume the ID of the ANN is the index of the
ANN for some canonical ordering of the feature vectors in the
database. We let ID = 0 when no nearest neighbor exists.

Restricting the problem. Note that an LSH-based algorithm
will only return an answer that is within distance 𝑐𝑅 of the
query. We formalize this by assuming that the baseline
functionality outputs the nearest neighbor that is also a near2
(distance less than 𝑐𝑅 away from the query) neighbor. While
it is possible to imagine contrived databases where the nearest
neighbor is not also a near neighbor, most practical instances
of the problem impose this additional restriction (returning no
neighbor if the nearest neighbor is beyond a threshold distance
from the query) because points beyond some threshold are
effectively unrelated to the query. To this end, the baseline
functionality is defined to reveal the ID of the nearest neighbor
(if one exists) within a fixed distance 𝑅 = 𝑅max from the query.
Following Bayer et al. [18], we define two quantities 𝐷max and
𝐷min to be the maximum and minimum distance between any
two points, respectively. Because the distance between any
two vectors is at most 𝐷max, it suffices to have 𝑅max < 𝐷max.

3.2 Threat model and security guarantees
Preco is instantiated with two non-colluding servers and an
arbitrary number of clients. Clients query the servers to obtain

2This name comes from the near neighbor search problem [3, 51].

Functionality 1: ANN Search
Public Parameters: Distance metric Δ, database size 𝑁 , feature
vector dimensionality 𝑑, maximum nearest neighbor radius 𝑅max.

Client Inputs: query 𝒒 ∈ R𝑑 .
Server Inputs: Database DB := {𝒗1, . . . , 𝒗𝑵 | 𝒗𝒊 ∈ R𝑑}.
Procedure:
1: 𝒗𝒂← nearest neighbor to 𝒒 in DB via brute-force search.
2: if Δ(𝒗𝒂 , 𝒒) > 𝑅max then

else output 0 to the client and ⊥ to the servers.
3: else output 𝑎 to the client and ⊥ to the servers.

the ANN ID from a remote database replicated on both servers.
We do not require any communication between servers when
answering queries.

Threat model.
• No client is trusted by either server. Clients may deviate

from the protocol, collude with other clients, or otherwise
behave maliciously to learn more about the database.

• No server is trusted by any client. One or both servers may
deviate from the protocol in an attempt to obtain information
on a client’s query or the resulting nearest neighbor.

Assumptions. Our core assumption, required for client
privacy, is that the two servers do not collude with each other.
For database privacy, we assume that neither server shares
the database with a client. We also require black-box public-
key infrastructure (e.g., TLS [84]) to encrypt communication
between the clients and the servers.

Guarantees. Under the above threat model and assumptions,
Preco provides the following guarantees.

Correctness. If the client and servers both follow protocol,
then the client obtains the ID of the ANN with respect to its
query. The result is guaranteed to have the same approximation
accuracy of standard, non-private data structures for ANN
search, and has tunable accuracy guarantees.

Client privacy. If the servers do not collude, then neither
server learns any information on the client’s query, even if
one or both servers arbitrarily deviate from protocol.

Bounded leakage. Each query answer is guaranteed to leak a
small (and tightly bounded) amount of information over the
ideal functionality, even if the query is maliciously generated
by the client. We provide a precise definition and in-depth
analysis of this leakage in Section 7.

Non-goals. We do not make it an explicit goal to guarantee
correctness of the result if one or both servers deviate from
the protocol (we only focus on privacy in the face of malicious
servers). Existing techniques for checking correctness of the
output in two-server PIR can be directly applied to Preco to
enable detection of incorrect outputs [16, 31, 58, 64].
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4 Main ideas

To introduce privacy, as required for the client and the database,
we make several changes to the standard LSH data structure
(Build and Query; described in Section 2). A simple straw-
man protocol with client privacy (but no database privacy)
can be realized by applying well-known techniques in Private
Information Retrieval (PIR) to privately obtain the answer
to Query (see [29, 30, 43]). PIR allows a client to privately
retrieve a specified object from a remote database without
revealing which object was retrieved, which naturally gen-
eralizes to retrieving buckets from a hash table [30]. While
PIR solves the client privacy problem, it provides no database
privacy. The client learns

√
𝑁 (recall that 𝐿 ≈

√
𝑁 to provide

good accuracy) feature vectors from the database per query.

The challenge with database privacy. The primary chal-
lenge in reducing database leakage comes from preventing
the client from learning extra vectors in the candidate set.
This is non-trivial to do given that the standard approaches
to removing false-positive candidates (vectors farther than
𝑐𝑅 from the query) require some form of direct distance
comparisons. In the private setting, these become oblivious
comparisons (a comparison between secret-shared values),
which in turn require heavy cryptographic techniques (e.g., gar-
bled circuits [94]). The state-of-the-art approach for privacy-
preserving ANN search (SANNS [27]) prunes candidates by
using an expensive two-party computation, which requires
several gigabytes of communication between the client and
database server.

The insight that we exploit to overcome this challenge is that
LSH can itself be used to accomplish the same goal of pruning
false-positives. By carefully tuning the LSH parameters, we
can eliminate a large number of false-positives from the ANN
candidates. We then apply a trick inspired by radix sorting [59]
to extract the nearest neighbor, fully removing the need for
direct comparisons between vectors. Our new data structure
is slightly less efficient when viewed from an algorithmic
perspective (i.e., when not considering privacy). However,
this is not a problem for us given that oblivious comparisons
are the primary bottleneck in a privacy-preserving setting.
We elaborate on this observation in the next two subsections.

4.1 Reframing the problem
LSH-based ANN search is typically optimized to minimize
the number of hash tables (𝐿) and the size of the candidate set
for each query. Removing false-positives via brute-force com-
parisons is relatively “cheap” from a computational standpoint
while hash table lookups are relatively expensive. Therefore,
LSH-based ANN search is typically tuned to retrieve as many
(reasonable) candidates as possible from each table. The extra
candidates are then pruned via brute-force comparisons.

The privacy-preserving setting requires different priorities.
First, note that it is not possible to perform only one lookup

per hash table. To preserve privacy, all hash table buckets
must be “touched” by the database server(s) to avoid revealing
information on the client’s query. This is the lower bound on
private information retrieval [15, 29]: if it is not met, then the
servers learn that the client’s hash does not correspond to any
untouched bucket. This is exactly why existing solutions for
privacy-preserving ANN search require𝑂 (𝑁) communication
between the client and server, or alternatively, the use of fully-
homomorphic encryption (which requires linear server work).
As such, we cannot hope to have sublinear (in 𝑁) work for the
servers when answering client queries.

With this in mind, we observe that the optimal LSH parame-
ters in the non-private (a.k.a. algorithmic) setting might not in
fact be optimal for a privacy-preserving setting. We therefore
approach the problem from a different angle by re-designing
and re-tuning the ANN search data structure of Section 2 to
limit the use of comparisons between vectors.

4.2 Eliminating oblivious comparisons
One idea to remove comparisons is to prevent values that
will be pruned from being added to the candidate set in the
first place. More precisely, by tuning the parameters of the
ANN search data structure, and the LSH functions it uses, we
can bound the probability of false-positives in the candidate
set to any 0 < 𝛿 < 1. A standard result in LSH theory is
that a (𝑅, 𝑐𝑅, 𝑝1, 𝑝2)-sensitive hash family can be “amplified”
to result in an (𝑅, 𝑐𝑅, 𝑝′1, 𝑝

′
2)-sensitive hash family, where

𝑝′1 = 𝑝
𝑘
1 and 𝑝′2 = 𝑝

𝑘
2 . This is done by simply concatenating

the outputs of 𝑘 independent (𝑅, 𝑐𝑅, 𝑝1, 𝑝2)-sensitive hash
functions. Amplification is generally used to reduce the size
of the candidate set [6], but we can take this approach to
its extreme. For a larger value of 𝑘 , fewer collisions will
occur. However, when considering the collisions that do
occur, they are more likely to be true positives. As a result,
with a sufficiently large 𝑘 , we can significantly reduce false
positives and compensate for the smaller 𝑝′1 by increasing the
number of tables 𝐿. We capture this idea in Proposition 1.

Proposition 1. Fix failure probability 𝛿 > 0, and any
(𝑝1, 𝑝2, 𝑅, 𝑐𝑅)-sensitive hash family where 𝜌 =

log(𝑝1)
log(𝑝2) <

1
2 .

There exists a data structure solving the 𝑐𝑅-approximate
near neighbor problem in 𝑂 (𝑁𝜌′) time and 𝑂 (𝑁1+𝜌′) space,
where 𝜌 < 𝜌′ < 1. This data structure returns the true 𝑐𝑅-
approximate nearest neighbor with probability 1− 𝛿, without
requiring brute-force distance comparisons between vectors.

Proof. See Appendix C.1. ■

Bounded false-positives (in the worst case). The conse-
quence of Proposition 1 is that while we can bound false-
positives to any 𝛿, this comes with the cost of increasing the
number of hash tables 𝐿, since 𝐿 :=

⌈
𝑝−𝑘1

⌉
. Because 𝑘 is a

function of the LSH sensitivity, we need to ensure that the
difference between 𝑝1 and 𝑝2 is sufficiently large to result in
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Figure 3: Illustration of using multiple radii (𝑅) to search for the
nearest neighbor. Left: Each of the dotted regions represents a
different hash function radius. Right: The candidate result with
the smallest 𝑅𝑖 is the nearest neighbor, in this case the bucket
corresponding to 𝑅2.

reasonable values of 𝑘 and 𝐿. We describe such LSH families
in Appendix C. In our evaluation (Section 8), we show that on
real data, we can have false positive probability less than 0.05
with 𝑘 = 2. This guarantees that all collisions are within 𝑐𝑅
from the query (i.e., all collisions are near neighbors), with
high probability. Additionally, in Section 4.3, we describe a
trick called LSH multi-probing which amortizes the number
of hash tables required to retrieve 𝐿 candidates.

Finding the nearest neighbor. We are now left with the
problem of finding the nearest neighbor within the set of all
𝑐𝑅-neighbors. Our idea for doing so is based on a bucketing
technique of Ahle et al. [51], which resembles radix sort-
ing [59]. A radix sort does not perform direct comparisons,
which aligns well with our goals. We repeatedly apply the data
structure of Proposition 1 on a series of increasing neighbor
radii, retrieving a set of candidates from each radius [51].
The ANN is then chosen at random from the first non-empty
candidate set (see Figure 3 for an illustration of this process).

4.3 LSH multi-probing

The number of tables as given by Proposition 1 can become
very large due to the amplification. However, the number of
tables can be decreased through an optimization called LSH
multi-probing. The idea behind LSH multi-probing is the
following: if the bucket to which the query hashes to in a table
is empty, then it is likely that “adjacent” buckets in the table
contain a collision (due to the locality property) [68, 79]. To
exploit this observation, each hash table is probed on ℓ keys
which “surround” the query. In turn, this reduces the number
of hash tables required (the original motivation of multi-
probing [68]) to find a non-empty candidate. An additional
appealing property of multi-probing is that it allows us to apply
batching techniques when processing queries which, heavily
amortizes processing time for the servers (see Section 5.1).
We define the multiprobing function that outputs ℓ hashes for
a function ℎ and query 𝒒 as multiprobe(ℎ,ℓ, 𝒒) → (𝛼1 . . . 𝛼ℓ).

Comparison-free ANN search data structure

Build(DB,H1, . . . ,H𝐿) → (𝑇1, . . . ,𝑇𝐿 , ℎ1, . . . , ℎ𝐿):
Takes as input a set of 𝑁 vectors DB := (𝒗1, . . . , 𝒗𝑵 ) and 𝐿
hash families H𝑖 corresponding to a radix 𝑅1 ≤ 𝑅𝑖 ≤ 𝑅𝐿 .
1: Sample random ℎ𝑖 from H𝑖 , for 𝑖 ∈ {1, . . . , 𝐿}.
2: Use ℎ𝑖 to build hash table 𝑇𝑖 by hashing each vector

𝒗1, . . . , 𝒗𝑵 and assigning 𝒗 𝒋 to the bucket that it hashes
to (denote the bucket by 𝐵𝛼𝑗 ,𝑖 , where 𝛼 𝑗 is the hash key
for 𝒗 𝒋 under ℎ𝑖 in hash table 𝑇𝑖).

3: Output the ANN search data structure consisting of 𝐿
hash tables 𝑇1, . . . ,𝑇𝐿 and LSH functions ℎ1, . . . , ℎ𝐿 .

Query(𝑇1, . . . ,𝑇𝐿 , ℎ1, . . . , ℎ𝐿 , 𝒒) → ID; as in Figure 10.
1: Compute

(
𝛼𝑖,1 . . . 𝛼𝑖,ℓ

)
← multiprobe(ℎ𝑖 , ℓ, 𝒒) and re-

trieve buckets 𝐵𝛼𝑖, 𝑗
from hash table 𝑇𝑖 .

2: Let 𝑥, 𝑦 be the smallest integers such that 𝐵𝛼𝑥 ,𝑦 is
nonempty, or 0 if no such 𝑥, 𝑦 exist.

3: if 𝑥 ≠ 0 then output any 𝛾 s.t. 𝒗𝜸 ∈ 𝐵𝛼𝑥 ,𝑦 ; else output 0.

Figure 4: ANN search data structure with no direct comparisons.

4.4 The comparison-free ANN data structure
Our new ANN data structure (presented in Figure 4) merges
the above ideas to eliminate the brute-force step present in the
LSH-based data structure of Gionis et al. [46]. The client can
simply select any element from the first non-empty candidate
set. This data structure can be further adapted to suppress
database leakage, as we explain in the next section.

4.5 Database privacy and suppressing leakage
In this section, we explain how the ideas of Section 4.2
are useful to suppress database leakage. Our approach is a
combination of three changes applied to Query in Figure 4.
We recall that a simple strawman protocol achieving client
privacy can be constructed by having the client privately
retrieve colliding buckets through PIR [30].

Capping buckets. Our first observation is that we only need
to retrieve one element from the data structure of Figure 4.
As such, we can limit each hash bucket to only contain one
vector without affecting the success of the protocol. Any
non-empty bucket will remain non-empty. This will ensure
that no information is revealed (to either party) by the size of
the bucket returned to the client.

Hiding the vectors. Because the client selects the first
non-zero ID from the candidate set using the data structure
described in Figure 4, it does not need access to the raw
vectors. As such, we can modify each hash table (Build;
Figure 4) to only store the IDs of each vector. The client can
still query the hash tables using PIR but now only obtains
a candidate set of IDs (absent the vectors). If each vector
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in the database is 𝑑 dimensional and the number of hash
tables is 𝐿 =

√
𝑁 (Section 2), then roughly speaking, this

simple change reduces leakage from 𝑂 (
√
𝑁 · log𝑁 · 𝑑) bits to

𝑂 (
√
𝑁 · log𝑁 +𝑑) bits (each ID is at least log𝑁 bits and𝑂 (𝑑)

bits are leaked implicitly by the inference that the neighbor
features are similar to the query; see Section 7 for more
details).

Hiding the candidate set. Compared to the ideal leakage of
𝑂 (log𝑁 + 𝑑) bits, the leakage of 𝑂 (

√
𝑁 · log𝑁 + 𝑑) bits is far

from optimal. We eliminate (most of) the additional leakage
by designing a special “oblivious masking” transformation
which hides all-but-one non-zero candidate ID from the client.
From the masked candidate set C̃, the client is able to extract at
most one ID that collided with its query. This further reduces
leakage from𝑂 (

√
𝑁 · log𝑁 +𝑑) bits down to𝑂 (log𝑁 +𝑑) bits

(since only one ID is revealed), which matches the asymptotic
leakage of the baseline functionality. We provide details on
the oblivious masking transformation in Section 5.1, and a
formal leakage analysis in Section 7.

With these three leakage-suppressing steps, Preco achieves
close to optimal concrete database leakage per query. Impor-
tantly, the leakage guarantees hold in the face of malicious
clients that may deviate from protocol in an attempt to learn
more than an honest client (Section 7).

5 The Preco protocol

We now describe the details of the high-level ideas covered
in Section 4. We first formalize the necessary building-blocks
in Section 5.1 (distributed point functions and our oblivious
masking technique) and then present Preco in Section 5.2.

5.1 Building blocks

Existing tool: Distributed Point Functions. A point
function 𝑃𝛼 is a function that evaluates to 1 on a single input
𝛼 in its domain and evaluates to 0 on all other inputs 𝑗 ≠ 𝛼.
A distributed point function (Definition 2) is a point function
that is encoded into a pair of keys which are used to obtain a
secret-shared evaluation of 𝑃𝛼 on a given input 𝑗 .

Definition 2 (Distributed Point Function (DPF) [21, 22, 45]).
Fix any positive integer 𝑛. Let F𝑝 be a finite field (e.g.,
integers mod prime 𝑝), and let _ be a security parameter. A
DPF consists of two (possibly randomized) algorithms:

• Gen(1_, 𝛼 ∈ {1, . . . ,2𝑛}) → (^𝐴, ^𝐵). Takes as input an
index 𝛼. Outputs two evaluation keys ^𝐴 and ^𝐵,

• Eval(^𝑖 , 𝑗) → [𝑣 𝑗 ]𝑖 . Takes as input an evaluation key ^𝑖
(𝑖 ∈ {𝐴, 𝐵}) and 𝑗 ∈ {1, . . . ,2𝑛}. Outputs a share [𝑣 𝑗 ]𝑖 .

These algorithms must satisfy correctness and privacy:

Correctness. A DPF is correct if for all pairs of keys generated
according to Gen,

Pr

[
Eval(^𝐴, 𝑗) +Eval(^𝐵, 𝑗) =

{
1, if 𝑗 = 𝛼
0, otherwise.

]
= 1.

Privacy. A DPF is private if each individual evaluation key
output by Gen is pseudorandom (i.e., reveals nothing about
𝛼 to a computationally bounded adversary). Formally, this
means that there exists an efficient simulator Sim that can
generate an indistinguishable view for each generated DPF
key, without knowledge of the input 𝛼 [21, 45].

Application: Private Information Retrieval. DPFs form the
basis for efficient two-server private information retrieval [21,
22, 29, 30]. Consider a key-value table 𝑇 with 𝑁 keys,
replicated on two servers. Let each key in 𝑇 be in the set
{1, . . . ,2𝑛} and let the corresponding values be in the field F𝑝 .
To retrieve the value under key 𝛼 in 𝑇 , the client generates
DPF keys by running Gen(1_, 𝛼) and sends one key to each
server. Each server locally evaluates the DPF key with each
lookup key 𝛼𝑖 , for 𝑖 = 1, . . . , 𝑁 , to obtain the secret-share of
𝑃𝛼 (𝛼𝑖). Each server then locally multiplies the resulting
secret-share by the associated value 𝑇 (𝛼𝑖), and outputs the
sum of all 𝑁 component-wise products. That is, each server
computes:

𝑁∑︁
𝑗=1

(
𝑇 (𝛼 𝑗 ) ·Eval(^,𝛼 𝑗 )

)
= 𝑇 (𝛼𝑖) · [1] +

𝑁∑︁
𝑗=1, 𝑗≠𝑖

(
𝑇 (𝛼 𝑗 ) · [0]

)
.

Because 𝑃𝛼 (𝛼𝑖) = 1 only when 𝛼 = 𝛼𝑖 , the resulting sum
(computed in the field F𝑝) is a secret-share of 𝑇 (𝛼𝑖). Sum-
ming the shares received from each server, the client recovers
the desired entry in 𝑇 . Observe that DPFs achieve symmet-
ric PIR [44] (analogous to oblivious transfer [81]), which
guarantees that the answer consists of at most one value in 𝑇 .
Additionally, modern DPF [21, 22] constructions achieve key
size of 𝑛(_ +2) bits (logarithmic in the evaluation domain).
That is, privately querying a hash table with 𝑛-bit hash keys
requires only 𝑛(_+2) bits of communication and𝑂 (𝑁𝑛) work
on the server; where 𝑁 is the number of non-empty buckets.

New tool: Oblivious Masking. The core of our leakage
suppression technique (described at a high level in Section 4.5)
hinges on the ability to reveal only the first non-zero value in
a secret-shared vector. Because the vector is secret-shared (in
some prime order field F𝑝 where 𝑝 ≥ 𝑁2), this transformation
must only involve affine operations: addition and scalar
multiplication of shares [17, 87]. The idea is to recursively
compute a randomized sum, moving from left to right. For
a secret-shared input vector [𝒗] ∈ F𝐿

𝑝 , let 𝑧 ∈ {1, . . . , 𝐿} be
the index of the first non-zero element in 𝒗. The randomized
sums map each element 𝒗𝑖 to 0 for 𝑖 < 𝑧 and a uniformly
random element in F𝑝 for 𝑖 > 𝑧. Crucially, this process does
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not affect the first non-zero element, 𝒗𝑧 . We will use this
property to mask all-but-one result from a sequence of PIR
query answers.

Algorithm 1: ObliviousMasking

Input: Vector secret-share [𝒗]𝑖 ∈ F𝐿
𝑝 and randomness rand.

Output: Vector secret-share [𝒚]𝑖 = ( [𝑦1]𝑖 , . . . , [𝑦𝐿]𝑖) ∈ F𝐿
𝑝 .

Procedure:
1: for 𝑗 ∈ {1, . . . , 𝐿}:

1.1: Sample 𝑟 𝑗 from F𝑝 deterministically using rand.

1.2: Set [𝒚 𝑗 ]𝑖 ← [𝒗 𝑗 ]𝑖 + 𝑟 𝑗 ·
(∑ 𝑗−1

𝑘=0 [𝒗𝑘]𝑖
)
.

2: Output [𝒚]𝑖 ∈ F𝐿
𝑝 .

Claim 1. Let 𝒗 ∈ F𝐿
𝑝 be any vector and let 𝑧 ∈ {1, . . . , 𝐿} be

the first non-zero element of 𝒗. Let [𝒗] be an additive secret-
sharing of 𝒗. Algorithm 1 outputs a secret-shared vector [𝒚]
such that 𝒚𝑖 = 𝒗𝑖 for 𝑖 ≤ 𝑧 and a uniformly random element of
F𝑝 for 𝑖 > 𝑧.

Proof. The proof follows by examining the three possible
cases for each value in 𝒚 as a function of 𝒗.
1. for 𝑖 < 𝑧, 𝒗𝑖 = 0, so 𝒚𝑖 = 0+ 𝑟𝑖

∑𝑖−1
𝑗=0 0 = 0 ∈ F𝑝 ,

2. for 𝑖 = 𝑧, 𝒚𝑧 = 𝒗𝑧 + 𝑟𝑧
∑𝑧−1

𝑗=0 0 = 𝒗𝑧 ∈ F𝑝 ,

3. for 𝑖 > 𝑧, 𝒚𝑖 = 𝒗𝑖 + 𝑟𝑖
∑𝑧−1

𝑗=0 0+ 𝑟𝑖𝒗𝑧 + 𝑟𝑖
∑𝑖−1

𝑗=𝑧+1 𝒗 𝑗 ∈ F𝑝 .
Case (1) ensures that all zeroes remain zeroes. Case (2)
ensures that the first non-zero element is mapped to itself.
Case (3) ensures that all subsequent elements are uniformly
random in F𝑝. To see why (3) holds, observe that 𝒗𝑧 ≠ 0,
so 𝑟𝑖 · 𝒗𝑧 is a uniformly random element of F𝑝 given 𝑟𝑖 is
uniformly random. It then follows that the sum is uniformly
random in F𝑝. Finally, correctness of the computation over
secret-shares follows from all operations performed above
being linear (additions and scalar multiplications) over the
input secret-share of 𝒗 [17]. ■

New tool: Partial Batch Retrieval. LSH multi-probing
requires retrieving multiple hash table buckets (called a batch)
through PIR. A naive way to approach this problem is to
issue ℓ separate PIR queries—one per bucket—which incurs
a factor of ℓ processing overhead on the servers. Partial Batch
Retrieval (PBR) (inspired by probabilistic batch codes [7, 8])
makes it possible for the client to efficiently retrieve multiple
values without any increase in server-side processing time.
PBR is inspired by, but distinct from, batch codes [54]. With
PBR, only a fraction of requested values are returned, which
is fine for our probabilistic setting but may not be in others.
We compare PBR with batch codes (and their probabilistic
variants) in Section 6.

The main idea. A simple PBR scheme can be realized by
dividing the hash table keys into 𝑚 ≥ ℓ partitions at random.

If all ℓ multi-probes fall into a unique partition, then it suffices
for the client to issue𝑚 PIR queries, with each query retrieving
one bucket from each partition. The total server processing
time to compute PIR answers remains the same. To see this,
observe that for a hash table of 𝑁 hash keys, each partition
only contains 𝑁/𝑚 hash keys. The total work to answer all 𝑚
PIR queries, each computed over a set of 𝑁/𝑚 keys, is then
amortized to𝑂 (𝑁). However, the success of this PBR scheme
hinges on hash keys falling into unique partitions. How many
hash keys can we expect to retrieve in practice? Abstractly,
the fraction of retrievable elements can be modeled by the
classic “balls and bins” problem [71], where ℓ balls are tossed
into 𝑚 bins uniformly at random. If all ℓ balls fall into unique
bins, then the number of full bins is ℓ. Fewer than ℓ full bins
corresponds to a collision in a bin (i.e., partition) and only
one element in each partition can be retrieved. Let 𝑋𝑖 be the
indicator random variable where 𝑋𝑖 = 1 if a bin is full. Then,

Pr[𝑋𝑖 = 1] = 1−
(
1− 1

𝑚

)ℓ
> 1− 𝑒−ℓ/𝑚,

which implies that 𝑚
ℓ
· (1− 𝑒−ℓ/𝑚) of the ℓ hash keys are

simultaneously “retrievable” from the 𝑚 ≥ ℓ partitions. In
the case that 𝑚 = ℓ, we can expect to retrieve approximately
63% of the required buckets. With 𝑚 > ℓ, we can increase
the probability of retrieving all required buckets at the cost of
also increasing communication by a factor of 𝑚

ℓ
.

Application: Private multi-probing. The client first com-
putes many hash indexes using multi-probing, and keeps one
for each PBR partition region. For each partition region, it
sends a DPF key for the hash index (which maps to 0 for
no collision), and the results from all partitions and tables
are arranged and masked with oblivious masking. Our main
observation is that failing to retrieve specific probes (because
they collided in the same PBR partition) is not a total failure.
It is equivalent to not choosing that particular multi-probe,
which could have already happened due to the probabilistic na-
ture of LSH. Because each multi-probe hash key is uniformly
distributed from universal hashing (see Remark 1), each hash
key is equally likely to be selected, making it possible to
directly apply our PBR scheme.

5.2 Putting things together
The full protocol for Preco is presented in Protocol 1 and uses
the DPF, oblivious masking, and probablistic batch retrieval
building-blocks described in Section 5.1. We briefly describe
each step of the Preco protocol.

Setup. The public parameters consist of the number of hash
tables (𝐿) and a list of 𝐿 randomly sampled hash functions,
in accordance with the data structure of Figure 4 and Propo-
sition 1. The servers construct 𝐿 hash tables using the hash
functions from the public parameters. Only the IDs of the in-
put vectors are stored in the hash table; the vectors themselves
are discarded (see Section 4.5).
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Protocol 1: Preco protocol for private ANN search
Public Parameters: LSH families (H1, . . . ,H𝐿), number of hash
tables 𝐿, and LSH functions ℎ1, . . . , ℎ𝐿 as in Figure 4.
Server Input: database of vectors (𝒗1, . . . , 𝒗𝑵 ).
Client Input: query vector 𝒒.

Setup (one-time server-side pre-processing)
1: for 𝑗 ∈ {1, . . . , 𝐿}:

1.1: For all 𝑑 ∈ {1, . . . , 𝑁}, construct hash table 𝑇 𝑗 by storing
𝑑 in bucket with key 𝛼 𝑗 ,𝑑 ← ℎ 𝑗 (𝒗𝒅).

1.2: Truncate each bucket in 𝑇 𝑗 to have at most one value (as
described Section 4.5).

2: Agree on common randomness source (e.g., PRG seed) rand.

Step 1 (on the client)
1: for 𝑗 ∈ {1, . . . , 𝐿}:

1.1: (𝛼1 . . . 𝛼ℓ ) ←multiprobe
(
ℎ 𝑗 , ℓ, 𝒒

)
.

1.2: Choose one hash key for each PBR partition, and fill in 0
for empty partitions (See Section 5.1). For 𝑘 ∈ {1, . . . ,𝑚},
let 𝛼 ( 𝑗 ,𝑘) be the key for the 𝑘th partition of the 𝑗 th table.

1.3:
(
^
( 𝑗 ,𝑘)
𝐴

, ^
( 𝑗 ,𝑘)
𝐵

)
← DPF.Gen

(
1_, 𝛼 ( 𝑗 ,𝑘)

)
.

2: 𝐾𝐴←
(
^
(1,1)
𝐴

, . . . , ^
(𝐿,𝑚)
𝐴

)
and 𝐾𝐵←

(
^
(1,1)
𝐵

, . . . , ^
(𝐿,𝑚)
𝐵

)
.

3: Send 𝐾𝐴 and 𝐾𝐵 to servers A and B, respectively.

Step 2 (on server 𝑖 for 𝑖 ∈ {𝐴, 𝐵})
1: Parse 𝐾𝑖 =

(
^
(1,1)
𝑖

, . . . , ^
(𝐿,𝑚)
𝑖

)
. // DPF keys.

2: for 𝑗 ∈ {1, . . . , 𝐿} and 𝑘 ∈ {1, . . . ,𝑚}:
2.1: 𝐷 𝑗 ,𝑘 ← set of bucket keys in hash table 𝑇 𝑗 , partition 𝑘 .

2.2: [ID 𝑗 ·𝑚+𝑘]𝑖 ←
∑

𝛼∈𝐷 𝑗,𝑘
𝑇 𝑗 (𝛼) ·DPF.Eval

(
^
( 𝑗 ,𝑘)
𝑖

, 𝛼

)
.

3: [C]𝑖 ← ([ID1]𝑖 , . . . , [ID𝐿 ·𝑚]𝑖).
4: [C̃]𝑖 ← ObliviousMasking( [C]𝑖 , rand). // Algorithm 1.

Step 3 (on the client)
1: Receive [C̃]𝐴 and [C̃]𝐵 from servers A and B, respectively.
2:

( ˜ID1, . . . , ˜ID𝐿 ·𝑚
)
← [C̃]𝐴+ [C̃]𝐵.

3: Output ˜ID 𝑗 ≠ 0 for smallest 𝑗 , or 0 if all ˜ID 𝑗 are zero.

Step 1. The client hashes its query vector 𝒒 using the LSH
functions in the public parameters and multiprobing. The
client keeps one hash key at random that falls into each PBR
partition, so that it has exactly one key for each. Each resulting
hash is used as the input index to DPF.Gen to generate a DPF
key. The client distributes the generated keys to the servers.

Step 2. Each server uses the 𝐿 ·𝑚 DPF keys it receives from
the client to retrieve a secret-share of a bucket in each of
the ℓ partitions of each of the 𝐿 hash tables using the PIR
technique described in Section 5.1. The result is a vector C of
secret-shared buckets containing either a candidate ID (or zero

if the bucket was empty). Each server applies the oblivious
masking transformation (Algorithm 1) to C and obtains the
masked secret-shared vector C̃ as output. Each server then
sends its share of C̃ to the client in response.

Step 3. From the received secret-shares (C̃𝐴, C̃𝐵), the client
recovers the vector C̃ (in cleartext) by computing C̃ = C̃𝐴+ C̃𝐵.3
The transformation applied by the servers in Step 2 ensures
that the client learns at most one non-zero candidate from the
original C. Specifically, by Claim 1, only the first non-zero
value of C will be non-random in C̃. The first non-zero value,
if present, is output to the client.

5.3 Querying for k-nearest neighbors

To extend the construction to a 𝑘-ANN problem, that returns
the top-𝑘 nearest neighbors, we use the following simple idea.
For each non-empty bucket in Figure 4, the servers precompute
the 𝑘-nearest neighbors to the point that hashed to each bucket
with a standard ANN data structure. Then, the servers place a
vector consisting of the 𝑘-nearest neighbor IDs in the table
bucket. This extension can be viewed as instantiating the
protocol with a vector of IDs rather than a single ID. From
this vantage point, it is easy to see that the oblivious masking
technique still hides all-but-one non-zero 𝑘-vector in the final
result. Specifically, the oblivious masking is now defined over
the vector field F𝑘

𝑝 (with addition and scalar multiplication
defined elementwise in the natural way). The pre-computation
incurs only a small overhead of 𝑘 when computing the data
structure and is thus acceptable. An alternative strategy to
pre-computing the 𝑘-nearest neighbors when building the data
structure is to cap each bucket to at most 𝑘 IDs. However,
such an approach would not guarantee 𝑘 results are returned
per query and thus may be undesirable for certain use cases.

6 Efficiency analysis

Asymptotic efficiency analysis. We analyze the communica-
tion and computation costs of Preco (summarized in Table 1).
To derive our asymptotic guarantees, we follow the analysis
of Andoni and Indyk [4] for Euclidean distance (which has
𝜌 < 1

𝑐2 ; see definition of 𝜌 in Proposition 1) and where we
assume 𝑐 = 2 (see LSH; Definition 1).

Table 1: Asymptotic efficiency of Preco; constant and log factors
suppressed. We assume 𝐿 ≈

√
𝑁 (see Section 2.1).

Communication Server Work Client Work Rounds√
𝑁 𝑁

√
𝑁 1

3Additive secret-share recovery follows from the correctness property of
DPFs; see Definition 2.
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Communication. The communication overhead of Preco
consists of 𝐿 DPF keys, each of which is used to retrieve one
candidate from a table. The DPF key size is 𝑛 =𝑂 (log𝑁) [21,
22]. Each masked ID returned by the protocol is of size
log𝑁 . Therefore, when 𝐿 ≈

√
𝑁 , the total communication is

𝑂 (
√
𝑁 log𝑁).

Computation. For each server, computing the answer to the
PIR query requires evaluating the DPF on 𝑂 (𝑁) hash keys
per hash table. Therefore, the total server work is naively
𝑂 (𝐿 ·𝑁). However, note that each PBR partition only needs to
be evaluated on a portion of the hash keys. As such, if we can
set 𝑚 = ℓ = 𝐿/𝑎, for some constant 𝑎, then the total amortized
server work is𝑂 (𝑁). Oblivious masking, which is performed
over the candidate set, requires 𝑂 (

√
𝑁) additional work per

server. For the client, the computational cost is proportional
to the query response size, since it has to receive and recover
the candidate set and find the first non-zero element to return
as the answer.

Storage. The storage overhead on the client is simply the
query 𝒒 which requires𝑂 (𝑑) bits (assuming the feature vector
consists of constant entries). On the server, the storage
overhead is 𝑂 (𝐿 ·𝑁 log𝑁) for storing all the hash tables. In
particular, the storage overhead is on-par with the requirements
of non-private ANN data structures [6, 52].

PBR efficiency. It is natural to ask how PBRs compare to
batch codes in terms of efficiency. The main difference is
with respect to the guarantees provided by both tools. Batch
codes (and their probabilistic variants [7, 8]) aim to guarantee
retrieval of all ℓ elements. Doing so comes at an efficiency cost:
batch codes replicate data which increases both processing
time and bandwidth. With PBRs, we avoid the need for
replicating data, keeping the total processing cost fixed while
only modestly increasing bandwidth (see Table 2 and Figure 5
for a comparison to batch codes). However, this comes at a
different cost: PBRs only guarantee partial retrieval of the
ℓ elements. We find that for certain applications, such as
Protocol 1, partial retrieval in favor of decreased processing
time is a desirable trade-off, given the already probabilistic
guarantees of LSH.

7 Security and leakage analysis

In this section, we analyze the security of Preco with respect
to client privacy and server leakage. While client privacy
is conceptually simple and follows directly from the privacy
property of DPFs (Definition 2), the leakage analysis of the
database is more involved.

7.1 Client privacy
Claim 2 (Query Privacy). For all Probabilistic Polynomial
Time (PPT) adversaries A corrupting server 𝑏 for 𝑏 ∈ {A,B},

Table 2: Replication and partitioning costs of existing batching
schemes: Naive (perform ℓ PIR queries), Subcube batch codes
(SBC) [54], Probabilistic batch codes (PBC) [8]. Replication in-
creases server-side processing by the same factor but influences
communication by a sublinear factor. Communication increases
linearly with the number of partitions for all schemes.

Batch-PIR
Scheme

Replication
Factor

Total
Partitions

Fraction
Retrieved

Naive 1 1 1
ℓ

SBC [54] ( 32 )
ℓ 3logℓ 1

PBC [8] 3 1.5ℓ > 1−2−20

PBR 1 𝑚 𝑚
ℓ
· (1− 𝑒−ℓ/𝑚)

Protocol 1 guarantees that A learns no information on the
client’s query, even when deviating from protocol.

Proof. The proof follows from a simulation-based indistin-
guishability argument. We say that the protocol is query
private if there exists a PPT simulator Sim such that

Sim(DB) ≈𝑐 view(DB, 𝜿𝑏),

where view is the view of A from an execution of Protocol 1
with the client. Sim(DB) is trivially constructed by invoking
the DPF simulator for each DPF key present in the vector
𝜿𝑏 provided to A [23]. The client does not send any other
information to the servers apart from the DPF keys which
are used to query the hash tables. Therefore, query privacy
depends only on the privacy property of DPFs and follows
immediately. We now briefly argue why the use of PBR does
not alter the above simulation. When retrieving buckets with
the PBR scheme, the client retrieves ℓ keys from each table,
where the key space is partitioned into 𝑚 uniformly random
subsets (see Section 5.1). This results in 𝑚 DPF keys sent to
each server per hash table. Because the client sends a DPF
key for each partition (even if no bucket is retrieved from that
partition), the simulator works as before. ■
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Figure 5: Y-axis: overhead of communication and processing time
to retrieve ℓ elements using partial batch retrieval (PBR; Section 5.1),
subcube batch codes (SBCs [54]), and probabilistic batch codes
(PBCs [8]). Overhead of PBR in this figure is for retrieving all ℓ
elements in expectation. Processing and communication factors are
computed relative to the retrieval of a single element; see Table 2.
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7.2 Database privacy
Following Carlini et al. [26], we divide our analysis of privacy
for the database into two parts: physical privacy, which is the
leakage of an algorithm beyond what is learned by the query
answer itself, and functional privacy, which is the leakage
from the query answer itself. To quote Carlini et al. [26]: “we
emphasize that these two notions of privacy are incomparable
and complementary.” For the purpose of this analysis we will
consider the query answer to consist of the vector that is output
by oblivious masking, [0, . . . ,0, ID, 𝑟𝑧+1, . . . , 𝑟𝐿]. The DPF-
based symmetric-PIR technique combined with oblivious
masking gives us physical privacy. For functional privacy
we have to compare the leakage of this query answer to the
leakage of the answer in the baseline Functionality 1.

Physical privacy. The client’s view of the database can be
efficiently simulated given the query answer, consisting of the
ID and index 𝑧. The simulator must create two vectors, one
for each server’s response. It does so by first constructing a
vector C with the first 𝑧−1 entries all zero, ID in the 𝑧th entry,
and random numbers for all remaining entries. It then secret
shares this vector into two “response vectors” C𝐴 and C𝐵 to
construct a statistically indistinguishable view for the client.

Functional privacy. We now turn to formalizing the database
leakage incurred from the answer to a client’s query. We
start by quantifying the baseline leakage, given that the client
must obtain information as output: the ANN ID relative to
the query 𝒒. In our setting, the client learns strictly more than
just the ID, which we must quantify as additional leakage.

Theorem 1 (Quantifying Baseline Leakage). Fix quantities
𝐷max, 𝐷min, and Δ as defined in Section 3.1. The baseline
leakage for an instance of approximate nearest neighbor search
as instantiated in Functionality 1 is captured by 𝑂 (𝑑 + log𝑁)
bits of information per query, where 𝑑 is the intrinsic di-
mensionality of the vector space and 𝑁 is the size of the
database.

Proof. We start by considering the ℓ∞-norm and induced
distance metric Δ. The ℓ∞-norm is the absolute value of
the maximum coordinate: ℓ∞ | |𝑥 | | = max𝒙𝑖 |𝒙𝑖 |. The induced
distance metric is Δ(𝒙, 𝒚) = ℓ∞ | |𝒙 − 𝒚 | |. We first prove the
baseline leakage for the ℓ∞-norm, as it is easier to intuit. We
then show how to extend the proof to any ℓ𝑝-norm induced
metric, which includes Euclidean distance. Other common
distance metrics, such as angular distance and Hamming
distance, can be embedded into Euclidean space [10, 27].

Recall that for any query 𝒒 that returns an ID corresponding
to vector 𝒗, we have that Δ(𝒗, 𝒒) ≤ 𝑅max < 𝐷max. The baseline
functionality implicitly reveals that there exists a point 𝒗 such
that Δ(𝒗, 𝒒) ≤ 𝑅max. In the ℓ∞ metric, this implies that 𝒗 is
within a cube of side length 2𝑅max centered at 𝒒. The output
implicitly reveals that 𝒗 is in this cube. Considering each
coordinate of 𝒗, the number of possible values each coordinate

can take diminishes from 2𝐷max to 2𝑅max. As a result, the
information revealed is log(𝐷max/𝑅max) bits. With the ℓ∞
metric, this argument can be repeated individually for each
coordinate, making the total leakage 𝑑 log(𝐷max/𝑅max) bits.

For any ℓ𝑝-norm, the above argument holds by considering
similar shapes and their relative volumes. In the Euclidean met-
ric Δ(𝒗, 𝒒) ≤ 𝐷max defines a ball of radius 𝐷max. The baseline
functionality reveals that 𝒗 is in a ball of radius 𝑅max centered
at 𝒒. The ratio of the volumes of these balls is 𝐷𝑑

max/𝑅𝑑
max,

making the leakage log(𝐷𝑑
max/𝑅𝑑

max) = 𝑑 log(𝐷max/𝑅max) bits,
as in the ℓ∞ metric. ■

Intuitively, the extra leakage in Preco corresponds to the
fact that the query vector serves as an approximation for the
feature vector of the nearest neighbor, by definition of the
problem. However, as we show in Theorem 1, the precision
of this approximation is limited to log(𝐷max/𝑅max).

We now formalize the leakage per query in Protocol 1 and
show that it is no worse than𝑂 (𝑑+ log𝑁) bits, which matches
the leakage of the baseline functionality up to a constant factor.

Claim 3 (Asymptotic Leakage of Protocol 1). Let 𝐿 be the
number of hash tables used to instantiate Protocol 1. Then,
the leakage of Protocol 1 is 𝑂 (𝑑 + log𝑁) bits, matching the
baseline functionality.

Proof. Consider the leakage of an infinite number of queries
answered through Protocol 1. Fix any 𝒗 𝒋 ∈ DB. The total
information revealed on 𝒗 𝒋 is never more than the set 𝑆 𝑗 =

{𝛼1, . . . , 𝛼𝐿 | 𝛼𝑖 = ℎ𝑖 (𝒗 𝒋)}. That is, the set of all 𝐿 LSH digests
of 𝒗 𝒋 . The maximum information revealed is thus the set 𝑆 𝑗

for all 𝑁 feature vectors 𝒗 𝒋 ∈ DB.
For an individual query, the oblivious masking transfor-

mation (Section 5.1) guarantees that at most one element
of 𝑆—a hash corresponding to a feature vector 𝒗 ∈ DB—is
leaked. Consider the worst-case (least-hiding) LSH function
possible. This is not even a locality-sensitive hash function
but instead simply the identity function ℎ(𝒙) = 𝒙. It follows
that the worst-case implicit query leakage is then 𝑂 (𝑑) bits,
because 𝛼𝑖 = 𝒗 𝒋 for all 𝑖 ∈ {1, . . . , 𝐿}). This is in addition to
the explicit log𝑁 bits revealed by the vector ID. Therefore,
the total leakage is 𝑂 (𝑑 + log𝑁), which matches the leakage
of the baseline functionality in Theorem 1. ■

Claim 4. A client deviating from Protocol 1 cannot learn
more information on DB than an honest client following
protocol.

Proof. Fix 𝑆 𝑗 (the set of all hashes) as defined in the proof
of Claim 3. By the guarantees of the oblivious masking
transformation (Claim 1), even a malicious client can only
obtain one element of 𝑆 𝑗 (for some 𝑗 ∈ {1, . . . , 𝐿}). All other
elements are uniformly random or zero. Even if the client
does not follow the protocol (such as sending random hashes
that don’t correspond to any one query), the leakage is capped
at a single element of 𝑆 𝑗 . ■
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Figure 7: Recall (fraction of queries for which an approximate
nearest neighbor was found) for different numbers of table multi-
probes using the data structure of Figure 4 and 𝑐 = 2. Average of 10
trial runs for different numbers of probes. Probes = 1 corresponds
to no multi-probing (only retrieving the hash of the query from the
table; Section 4.3). The standard deviation is 0.002 (invisible).

Hash tables Maximum concrete leakage factor
deep1b mnist gist sift

𝐿 = 10 1.97× 2.16× 3.25× 3.52×
𝐿 = 30 2.79× 3.23× 6.86× 8.24×
𝐿 = 50 3.29× 3.92× 11.32× 15.7×

Table 3: Concrete leakage (computed as 0.77 · 𝑅max
𝑅min

) compared
to baseline leakage following Claim 3, evaluated on four datasets.
Leakage increase is roughly proportional to the number of tables (𝐿)
given that each table introduces more precision in the resulting answer.
See Appendix B for more details. The 0.77 factor comes from the
(im)precision of the LSH computed in Lemma 1 (Appendix D).

Empirical leakage calculation. In our asymptotic leakage
analysis, we assume a worst-case scenario in terms of the
data and the LSH instantiation. In Appendix D, we analyze
the concrete leakage using a specific instantiation of LSH
for Euclidean distance. We summarize the concrete leakage
in Table 3 on the four real-world datasets we used for our
evaluation in Section 8. This represents the maximum speedup
(in number of queries) for database recovery relative to the
baseline leakage. For each dataset, different radii are required
in order to separate near and nearest neighbors using the
radix approach of Section 4.2. It is this extra precision that is
captured in the leakage factor. We note that this leakage is a
worst-case bound on the actual concrete leakage.

8 Evaluation

We now turn to describing our implementation and empirical
evaluation of Preco (Protocol 1). The goal of this section is
to answer the following questions:
• What are the parameters needed to obtain high accuracy in

practice using the data structure of Figure 4?
• What is the concrete performance of Preco when used for

ANN search on real data?
• How does Preco compare to the state-of-the-art approach

for private ANN search?

8.1 Implementation and environment
We implement Preco in approximately 4,000 lines of code.
Our implementation is written in Go v1.16. with performance-
critical components written in C. The code is open source and
available online [1]. Our DPF implementation follows Boyle
et al. [22] and is partially based on open-source libraries [37,
40]. Our implementation uses AES as a pseudo-random
generator which exploits the AES-NI instruction for hardware-
accelerated operations. We use the GMP library [42] for fast
modular arithmetic.

Environment. We deploy our implementation on Amazon
Elastic Cloud Compute (EC2) for our experiments. We
geographically locate the servers on the east coast of the
United States while the client is located on the west coast. We
measure average ping time of 79 ms between the client and
servers. Each server runs on a c5.9xlarge Amazon Linux
virtual machine. Each server is equipped with Intel Xeon
Platinum 8000 CPUs (36 vCPUs) and 72 GB of RAM. We
use a small t2.micro (1 vCPU; 1 GB of RAM) VM for the
client (specifications comparable to a low-end smartphone).

8.2 Performance evaluation

Accuracy. We report the accuracy of Protocol 1 when eval-
uated on real-world datasets in Figure 7. The datasets we
choose form a standard for benchmarking ANN search [10].
We use 𝑘 = 2 for the amplification factor (see Proposition 1).
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Figure 9: Query latency (including server processing time and
network delay) as a function of the number of tables and number
of multi-probes performed per table. Probes do not increase com-
putation time but do increase communication resulting in increased
latency (see our PBR scheme; Section 5.1). Server parallelization
factor is set to equal the number of hash tables. Shaded region
represents the 95% confidence interval (occasionally invisible).

Accuracy is defined in terms of recall: what fraction of ap-
proximate nearest neighbors found are at most 𝑐-times the
distance to the true nearest neighbor [3, 46, 51]. Matching
the theory, increasing the number of tables or multi-probes
increases the accuracy. For all datasets we can achieve high
accuracy (> 95%) without needing more than 20 tables and
50 multi-probes per table.

Parallelism. The server overhead of answering queries (which
involves a linear scan over all hash table keys; see Section 6)
is easily parallelizable across cores or even across different
machines composing each logical server. In our runtime
experiments (Figure 9), we provide results for both single
core and parallelized executions (where each hash table is
processed on a separate core). In our experiments, we observe
a close-to-linear speedup in the degree of parallelism.

Performance. We report the end-to-end latency (as measured
on the client machine) for each dataset in Figure 9. The end-
to-end latency includes the server-side processing time, client-
side processing, and network delay. The server processing
time, per hash table, ranges from 28 ms on the mnist dataset
(60,000 items) to approximately 6.5 s on the deep1b dataset
(10,000,000 items). The processing time is dominated by the
DPF and, in practice, increases moderately with the number of
multiprobes. The other steps, including ObliviousMasking,

take less than 2 ms. The client processing overhead across all
datasets is small: never exceeding 10 ms.

Communication. We provide the total communication re-
quired to query one hash table in Table 4. The communication
overhead is determined by three factors: (1) the size of the
DPF keys, (2) the number of hash tables 𝐿, and (3) the number
of multi-probes performed per table (recall Section 5.1). The
size of each DPF key is proportional to 𝑛, where 2𝑛 is the
universal hash range (see Section 5.1 and Remark 1). We
set 𝑛 = 30 for mnist, 𝑛 = 35 for sift and gist, and 𝑛 = 40 for
deep1b. DPF key size is logarithmic in 𝑁 , and each choice of
𝑛 is fixed to minimize universal hash collisions and achieve
this bound. This communication is multiplied by the number
of tables 𝐿 and the number of probes to calculate the total
communication required to perform an ANN query.

Table 4: Communication between the client and both servers per
hash table in terms of the number of multi-probes performed. We
set 𝑛 = 40 for the DPF domain.

Multi-probes: 1 5 10 50 100
Communication: 3 kB 10 kB 18 kB 87 kB 172 kB

8.3 Comparison to related work
To the best of our knowledge, all existing works on privacy-
preserving ANN search (with the exception of [88, 97] which
use fully-homomorphic encryption) only consider honest-
but-curious clients and servers and require many rounds of
communication. While generic techniques for upgrading to
active security in two-party computation exist [66], they are
computationally expensive and often considered impractical.
Preco is the first to assume fully malicious clients, which
solves the challenge left open by prior approaches [27]. To the
best of our knowledge, SANNS is the most efficient privacy-
preserving protocol for ANN search, achieving performance
on the order of several seconds when evaluated on both deep1b
and sift (over high-bandwidth network connections), which is
comparable with Preco. However, our threat model differs in
that we use two servers, who may not collude, while in SANNS
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the server and the clients are expected to be honest-but-curious.
An in-depth comparison is provided below.

Comparison to SANNS. We note that Chen et al. [27] only
evaluate their approach on the deep1b and sift datasets, and
also use the smaller 10M feature vector version of deep1b
in their evaluation. To match the evaluation of SANNS, we
compare with two network settings. We note that the net-
work configuration used by SANNS has throughput that is
faster than what we were able to measure on localhost
using iperf3 [49], which capped at 3.6 GB/s. The first
setting has network throughput between 40 MB/s to 2.2 GB/s,
which we call the “fast” network. The second setting has
network throughput between 500 MB/s to 7 GB/s, which
we call the “localhost” network (Chen et al. [27] refer to
this as the “fast” network in their evaluation). Given these
network configurations, SANNS is by no means deployable
over realistic network connections [89], which are over 30×
slower. Because SANNS does not provide an open-source
implementation, we use the query times reported in their
evaluation and note that our deployment environment re-
sembles theirs (comparable CPUs, network, and degree of
parallelism applied). We report the results of our comparison
in Table 5. Our improvements over SANNS are primarily in
terms of communication costs. However, we incur a modest
latency overhead on very high bandwidth networks (a setting
that is highly favorable to SANNS). Our latency is between
1.3–5.65× greater on the “localhost” network. On the “fast
network”, Preco is 1.1–12.9× faster compared to SANNS.
Our communication cost is a factor of 1180–3250× less in
comparison to SANNS. As a result, over slower networks, e.g.,
average mobile network supporting 12 Mbps [89], SANNS
would incur latency ranging between 19 minutes (for sift)
to an hour (for deep1b), just from the network delay. Over
such networks, the latency of Preco is expected to be several
orders of magnitude faster in comparison. Additionally, be-
cause bandwidth costs can be upwards of $0.02 per GB [12],
while CPU cost is around $0.2 per hour, Preco is monetarily
cheaper (per query). SANNS costs 4¢–11¢ per query just
for bandwidth alone. In contrast, Preco costs up to 0.02¢ per
query (a 200–550× reduction in total cost).

9 Related work

Existing works on privacy-preserving ANN search either
use heavy cryptographic tools (e.g., general secure function
evaluation instantiated using two-party computation and fully-
homomorphic encryption) or provide poor privacy guarantees
for either the client or the database. A summary of related
work is provided in Table 6.

Two-party computation based approaches. Indyk and
Woodruff [53] investigate nearest neighbor search between
two parties under the Euclidean distance metric. They show a
�̃� (
√
𝑁) communication protocol for finding an approximate

Table 5: End-to-end comparison between Preco and SANNS over
a 500 MB/s to 7 GB/s network (localhost) and a fast network (40
MB/s to 2.2 GB/s). We fix 𝐿 = 20 hash tables and 50 multi-probes
per table (for ≈ 95% accuracy). SANNS is network-dominated and
hence parallelizes less favorably than Preco (see [27, Table 2]).

Preco
(this work)

SANNS
(localhost)

SANNS
(fast network)

sift
Latency (1 CPU): 28.2 s 8.06 s (3.5× ↓) 59.7 s (2.1× ↑)
Latency (32 CPUs): 1.1 s 1.55 s (1.4× ↑) 14.2 s (12.9× ↑)
Communication: 1.5 MB 1.77 GB (1180× ↑)

deep1b
Latency (1 CPU): 170 s 30.1 s (5.65× ↓) 181 s (1.1× ↑)
Latency (32 CPUs): 6.13 s 4.58 s (1.3× ↓) 37.2 s (6.1× ↑)
Communication: 1.7 MB 5.53 GB (3250× ↑)

near (as opposed to nearest) neighbor to a query. Their tech-
niques rely on black-box two-party computation. This makes
them only asymptotically efficient (they do not provide an
implementation or any concrete efficiency estimate). However,
their protocol shares some similarity to ours. Specifically,
they tolerate some precisely quantified leakage, which they
argue can be a suitable compromise in favor of efficiency.

More recently, Chen et al. [27] design and evaluate SANNS,
a system for ANN search that uses oblivious RAM, garbled cir-
cuits, and homomorphic encryption. Their solution combines
heuristic 𝑘-means clustering techniques to reduce overhead of
two-party computation of computing oblivious comparisons
by a constant factor (i.e., 1

𝑘
). However, they still require

asymptotically linear communication, as 𝑘 is typically small.
They leave open the possibility of using locality-sensitive
hashing to provide provable guarantees.

By assuming data-dependent clusters, SANNS is able to
forgo a linear scan over the database when evaluating obliv-
ious distance comparisons. While their implementation is
efficient over high-bandwidth connections (40MB/s to 7GB/s
bandwidth), such throughput is often too high to be practical
on real-world connections (especially on mobile networks,
which can be over 30× slower [89]). Moreover, SANNS
requires the data to be clusterable to reduce communication.
Preco, in contrast, does not make any assumptions on the
input data to achieve sublinear communication. We show
in our evaluation (Section 8) that Preco requires between
484–1511× less communication compared to SANNS, and
microseconds of processing on the client.

Qi and Atallah [80] present a protocol for privacy-
preserving nearest neighbor search in the honest-but-curious
setting with two parties. In contrast to Preco, SANNS assumes
that each party (i.e., server) has a database that is private from
the other party. Queries are computed over the union of both
databases. Their protocol uses secure two-party computation
to compute oblivious comparisons and requires linear com-
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munication in the database size. Qi and Atallah [80] do not
provide an implementation or concrete efficiency estimates
for their protocol.

Fully-homomorphic encryption based approaches. Shaul
et al. [88] present a protocol based on fully-homomorphic
encryption, requiring several hours of computation time to
answer queries over small (1000 item) databases. While this
results in both a single-round protocol and tolerates malicious
clients, it is not practical for large databases. Their implemen-
tation requires between three and eight hours (parallelized
across 16 cores) to compute the nearest neighbors on small
datasets ranging between 1,000 and 4,000 feature vectors.

Zuber and Sirdey [97] implement a secure nearest neighbor
classifier using (threshold) fully-homomorphic encryption
with applications to collaborative learning and nearest neigh-
bor search. Their approach requires over one hour of server
processing time to compute a query answer over a small
database of approximately 500 feature vectors. As such, their
protocol is not scalable beyond databases containing a few
thousand feature vectors.

Partially-private approaches. Not directly related to privacy,
Aumüller et al. [11] introduce distance-sensitive hashing
which they show can be beneficial to reducing information
leakage between hashes. However, their security guarantees
are not formally defined and their approach provides a trade-
off between privacy and accuracy, leaking information about
the client’s query and the database simultaneously. Riazi
et al. [85] likewise explore LSH as a means of trading-off
privacy with accuracy, with more accurate results revealing
more information on both the query and the database. They
make use of two-party computation to instantiate a garbled
circuit for the purpose of securely evaluating locality-sensitive
hashes without revealing the description of the hash function.
While this reduces some leakage, their approach still reveals
information on the query and the database.

In a similar vein, Boufounos and Rane [20] develop a
binary embedding (locality-sensitive hash) that preserves
privacy when finding similar feature vectors in a remote
database. Their technique is less general compared to [11, 85].
Boufounos and Rane [20] do not provide a formal security
analysis of their nearest neighbor search protocol based on
their secure embedding. Analyzing their protocol, we found
that (1) some partial information on the query is inadvertently
leaked to the server, and (2) the client learns the distances
from its query to all near-neighbors, resulting in significant
database leakage. No implementation or any concrete runtime
estimates were provided for their protocol.

Riazi et al. [85] propose a protocol based on a locality-
sensitive hash transformation (similar to [11]) to achieve
similarity search with slightly less leakage compared to reveal-
ing locality sensitive hashes directly. Their approach provides
a trade-off between privacy and accuracy, leaking information
about the client’s query and the database simultaneously. They

Table 6: Summary of related-work providing strong privacy guaran-
tees. 𝑁 is the database size. Ignores constant and log𝑁 factors. We
assume dimension 𝑑 ∈ polylog(𝑁) [46].

Comm. Comp. Rounds Tools Efficiency
sfr20 [88] log𝑁 𝑁 1 FHE 1

sanns [27] 𝑁/𝑘 𝑁 𝑁 2PC
iw06 [53]

√
𝑁 𝑁 𝑁 2PC N/A2

qa08 [80] 𝑁 𝑁 𝑁 2PC
zs21 [97] log𝑁 𝑁2 1 FHE 3

Preco
√
𝑁 𝑁 1 DPF

1Uses fully-homomorphic encryption to evaluate the entire computation;
takes several hours of computation to evaluate on very small datasets.

2Theoretical work; no implementation or concrete runtime estimates provided.
3Uses fully-homomorphic encryption to evaluate the entire computation;
takes over 20 minutes to evaluate on very small datasets (𝑁 ≈ 1000).

make use of two servers to instantiate a garbled circuit for
the purpose of securely evaluating locality-sensitive hashes
without revealing the description of the hash function.

Dauterman et al. [37] develop a two-server encrypted search
system called Dory for reverse-index queries to a database
(i.e., exact keyword matching). Their goal is solving metadata-
private exact keyword search where only privacy for the
client is considered. We believe that our techniques can be
directly applied to extend Dory to support fuzzy-keyword
reverse-index search.

10 Conclusion

We presented Preco, a lightweight privacy-preserving protocol
for approximate nearest neighbor search in the two-server
model. Preco requires only one round and a few megabytes
of communication between the client and servers. We do not
require servers to communicate when answering queries and
guarantees out-of-the-box security against malicious clients.
In our evaluation (Section 8), we show that Preco remains
practical with large databases (10M items), even on high-
latency, low-bandwidth networks and lightweight clients (e.g.,
low-end smartphones).
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A LSH-based ANN data structure

We describe the LSH-based data structure for approximate
nearest neighbor search of Gionis et al. [46] in Figure 10.

LSH-based ANN search data structure

Build(DB,H, 𝐿) → (𝑇1, . . . ,𝑇𝐿) takes as input a set of 𝑁
vectors DB = {𝒗1, . . . , 𝒗𝑵 }, LSH family H (Definition 1),
and number of tables 𝐿. Outputs hash tables 𝑇1, . . . ,𝑇𝐿 .
1: Sample 𝐿 LSH functions ℎ1, . . . , ℎ𝐿 from H.
2: Use ℎ𝑖 to build 𝑇𝑖 by hashing each vector 𝒗1, . . . , 𝒗𝑵 .
3: Output 𝐿 hash tables 𝑇1, . . . ,𝑇𝐿 .

Query(𝑇1, . . . ,𝑇𝐿 , ℎ1, . . . , ℎ𝐿 , 𝒒) → ID takes as input a
query vector 𝒒, 𝐿 hash tables, and LSH functions.
1: Compute bucket key 𝛼← ℎ𝑖 (𝒒) and retrieve the corre-

sponding bucket B𝛼 in 𝑇𝑖 under key 𝛼 (if non-empty).a

2: Set C := B1∪ · · · ∪B𝐿 .
3: Find 𝑗 such that 𝒗 𝒋 ∈ C and Δ(𝒗 𝒋 , 𝑐𝑅) ≤ 𝑐𝑅 via brute-

force distance comparisons.
4: if no such 𝑗 exists, output 0; else output 𝑗 .

aNote that by the properties of LSH, the query will collide with
probability proportional to the relative distance from other vectors.

Figure 10: ANN search data structure based on locality-sensitive
hashing of Gionis et al. [46].

B Determining LSH radii for radix sorting

We discuss how to determine the radii to use when instantiating
the data structure of Figure 4. We sample 10,000 points from
each training set, and find the nearest neighbor among the
other training set points. The results are shown in Figure 12.
We use a normal distribution computed over the resulting
distances as an approximation (orange line in Figure 12), and
choose the 𝑅𝑖 along the quantiles of the normal distribution.
Figure 12 is shown for 𝐿 = 10. This ensures that the number
of expected candidates colliding at each 𝑅𝑖 is approximately
the same (in Figure 12, the area between the dashed lines is
the same). Our intuition is that equal areas means that each
table will have 1

𝐿
of the collisions, balancing the load and

maximizing efficiency. Each vertical dotted line in Figure 12
corresponds to the 𝑅𝑖 for an LSH family for the 𝑖th hash table,
where 𝑅1 > 𝐷min and 𝑅10 = 𝑅max.

Implementation of the LSH. We use the Leech lattice LSH
of Andoni and Indyk [4], which we describe in Appendix C
for completeness. We find the closest Leech lattice point to a
specified point (e.g., the query) using the decoder described by
Conway and Sloane [32]. The coordinates of the lattice point
are then mapped to the DPF domain using a universal hash.
Since the Leech lattice is a 24-dimensional object, the first
step of Andoni and Indyk [4, Appendix B] is dimensionality

reduction [55]. We randomly project 𝑑/𝑘 of the coordinates
onto each lattice before concatenating the hashes (we use
𝑘 = 2; see Proposition 1). Many locality sensitive hashing
algorithms have efficient methods for multi-probing [68]. For
lattice based hashes, we choose the multi-probes from the
set of closest lattice points, as these correspond to unique
hash values. Indeed, the client can advantageously select
the closer lattice points when retrieving candidates through
PBR (Section 5.1), letting the retrieval failures correspond to
probes that are further away.

C Efficient LSH for Euclidean distance

In this section we describe how to instantiate Proposition 1
efficiently for Euclidean distance ANN search. We first note
that Proposition 1 is an upper bound and assumes worst-
case data (all points are between 𝑅 and 𝑐𝑅 from the query).
In practice, there are LSH functions that can achieve very
small 𝑝2 without needing a large 𝑘 . We take another look at
Proposition 1. For a large enough 𝑘 > 𝑑, the region of space
defined by the set {𝑥 | ℎ(𝑥) = ℎ(𝑦)} for a fixed 𝑦 becomes
bounded. Specifically, there exists a bounding distance 𝑏 such
that

Pr[ℎ(𝑥) = ℎ(𝑦) ∧ ||𝑥− 𝑦 | | > 𝑏] < 𝛿.

For a false-positive rate of 𝛿, it suffices to scale the space
so that the bounding distance 𝑏 is equal to 𝑐𝑅. This scaling
decreases 𝑝1 as explained in the proof of Proposition 1. For
better efficiency, we observe that it is possible to use LSH
functions that inherently have bounded regions, such as the
Leech lattice based LSH of Andoni and Indyk [4]. By using
structure rather than randomness they can achieve a larger 𝑝1
for the same 𝑝2 as one might expect from 𝑘 ≈ 𝑑. We briefly
describe a lattice-based LSH family for Euclidean distance
next.

Lattice-based LSH. A simple lattice-based locality sensitive
hash family for Euclidean distance is as follows. Choose an
infinite set of points in R𝑑 , and let the hash of 𝑥 be the closest
point of this set. For example, if we consider the set of points
with integer coordinates, we can efficiently find the hash by
rounding the coordinates of 𝑥. Lattice based hashes allow us
to bound the error distance on 𝑝2; with the integer points, it
is clear that 𝑏 ≤

√
𝑑. Furthermore, we can reduce 𝑏 to 𝑏′ by

returning ⊥ if the distance | |𝑥 − ℎ(𝑥) | | is not less than 𝑏′/2.
However, the set of integer points is not optimal in that the
error increases greatly for the higher dimensional data we
wish to use it on. For an efficient implementation, we use the
Leech lattice (as in [4, Appendix B]), which has 𝑏 ≤

√
2 for

𝑑 = 24. See Conway et al. [33] or Conway and Sloane [32]
for more information on the lattice structure.
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Figure 12: Distances to the nearest neighbor over 10,000 training
points in each dataset. The orange curve plots the normal approx-
imation that informs the choice of each 𝑅𝑖 for the radix bucketing
(see Section 4.4). The vertical dashed lines represent the choice of
each 𝑅𝑖 , for 𝐿 = 10 hash tables.

C.1 Proof of Proposition 1
Consider the standard LSH-based data structure [6, 46, 52]
described in Figure 10. This data structure achieves asymptotic
space and query time 𝑂 (𝑁1+𝜌) and 𝑂 (𝑁𝜌), respectively [6].

Now consider the same data structure but where Query is
modified to a return a random element ∈ C (if C ≠ ∅) instead
of an element that is guaranteed to be within distance 𝑐𝑅. We
need to bound the success probability of this random element
being within 𝑐𝑅 of the query to 1− 𝛿. By Definition 1 (LSH),
we have that 𝑝1 > 𝑝2. Therefore, there exists a “gap” between
the probability of a true positive and a false positive collision,
which can be amplified exponentially in 𝑘 . First, observe that
the probability of selecting a false-positive at random from C,
when the database size is 𝑁 , is bounded by

𝑁 · 𝑝𝑘2
𝑝𝑘1 +𝑁 · 𝑝

𝑘
2

< 𝑁 ·
𝑝𝑘2

𝑝𝑘1

, (1)

which we further need to bound by 𝛿. Since we have that
𝑝1 > 𝑝2 (Definition 1), it follows that 𝑝2/𝑝1 < 1. Therefore,
when

𝑘 ≥
⌈

log(𝑁) + log(1/𝛿)
log(1/𝑝2) + log(𝑝1)

⌉
we get that (1) is bounded by 𝛿, which leads to success
probability 1− 𝛿 of selecting a true-positive at random (when
it is contained in the candidate set). We contrast this to the

standard LSH-based data structures (e.g., Appendix A) where
𝑘 ≥

⌈
log(𝑁 )

log(1/𝑝2)

⌉
[6]. The new data structure results in the

elimination of brute-force comparison while still preserving
accuracy guarantees. Finally, to prove space and query time,
we note that the expected number of tables is

𝐿 =
⌈
𝑝−𝑘1

⌉
= 𝑁

𝜌

1−𝜌 · 𝛿
1−𝜌
𝜌 .

Therefore, we get 𝜌′ < 1 when 𝜌 < 1
2 . Following the LSH-

based ANN search data structure of Section 2, the asymptotic
query time is 𝑂 (𝐿) and the space is 𝑂 (𝑁 · 𝐿).
When is 𝜌 < 1

2 ? The restriction 𝜌 < 1/2 (required for sub-
linearity in Proposition 1) is met for many common distance
metrics when the approximation factor 𝑐 ≥ 2. We cite various
results for when these conditions are met. We note that these
values are for worst-case theoretical guarantees; in practice,
𝜌 is much smaller (see Section 8). For Euclidean distance,
Andoni and Indyk [4] show 𝜌 < 1

𝑐2 = 1
4 with 𝑐 = 2. Andoni

et al. [5] also show a similar result for angular distance. For
any p-stable distribution with 𝑝 ∈ {1,2}, Datar et al. [36] show
𝜌 < 1

𝑐
= 1

2 for 𝑐 = 2. For the ℓ1-norm specifically, Motwani
et al. [72] show 𝜌 < 1

2𝑐 = 1
4 with 𝑐 = 2. Hamming distance

can be embedded into Euclidean space (see Aumüller et al.
[10]). Alternatively, [95, Corollary 3.10] shows 𝜌 < 1

𝑐
= 1

2
for Hamming distance directly.

D Bounding concrete leakage

From the proof of Claim 3, we see that the asymptotic leakage
consists of at most one LSH digest, even when the client is
acting maliciously (Claim 4). In the worst case, this digest
corresponds to a full feature vector, leading to the asymptotic
bound. However, concretely, we would like to analyze how
much worse Protocol 1 is in comparison to Functionality 1.
We answer this in Claim 5. We show that Protocol 1, when
instantiated for Euclidean distance using the Leech lattice LSH
(Appendix C), leaks a more precise approximation compared
to Functionality 1. Intuitively, this extra leakage comes from
the client learning which radix bucket the nearest neighbor
to the query is located in. To analyze the concrete leakage,
we must first establish some technical groundwork pertaining
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to the Leech-lattice LSH we use for Euclidean (and Angular)
distance. We do so in Lemma 1, where we will show that a
Leech-lattice LSH digest is inherently less precise than the
corresponding ideal ball in Euclidean space. Specifically, we
show that the ideal ball of radius 𝑅 has a smaller volume
compared to the region of space represented by an LSH digest.

Lemma 1. The (1,2,0.0097459,0.0000156)-sensitive Leech
lattice LSH [4] has volume at least 𝑉𝐵

0.77 , where 𝑉𝐵 is the
volume of the 24-dimensional unit ball.

Proof. Our proof relies on the following fact about the Leech
lattice.

Fact 1: The Leech lattice is a 24 dimensional object
with a sphere packing density of 𝜋12

12! [33], where the
density is defined as the fraction of space covered
by (tangent) balls centered at the lattice points.

By Fact 1, we have that the ratio of the volume of the unit
ball to that of the lattice cell is given by the density. A small
calculation shows that the lattice cell then has volume 1. We
ask what is the minimum radius for a 24-dimensional ball
such that the ball has volume 1. We find that the answer is

24

√︂
12!
𝜋12 ≈ 1.29.

The inverse of this quantity is 0.77, which proves the lemma.
For the (1.2,1.8,0.00515,0.0000771)-sensitive LSH [4], this
factor is 1.2

1.29 ≈ 0.93, as 𝑐 = 1.5 is a tighter approximation.
The values of 𝑝1 = 0.0097459 and 𝑝2 = 0.0000156 for 𝑐 = 2

are from [4, Table 1]. ■

Remark 2. In Lemma 1 we describe the
(1,2,0.0097459,0.0000156)-sensitive Leech lattice
LSH for Euclidean space as described by Andoni and Indyk
[4]. We note that this LSH can be used for any 𝑅 and 𝑐𝑅
(while also preserving the same 𝑝1 and 𝑝2), by simply scaling
the input vectors accordingly. See Andoni and Indyk [4] for a
more detailed explanation.

Using Lemma 1, we can bound the concrete leakage of
Protocol 1 when instantiated with the Leech-lattice LSH. This
allows us to empirically bound the concrete leakage for the
datasets we use in our evaluation (Section 8). We compute a
precise leakage bound in Claim 5.

Claim 5 (Concrete Leakage of Protocol 1). Fix 𝑅min and 𝑅max

as defined in both Figure 4 and Functionality 1, where 𝐷min <

𝑅min ≤ 𝑅max < 𝐷max. Protocol 1, when instantiated with the
Leech-lattice based LSH of Andoni and Indyk [4] leaks at
most a multiplicative factor of 0.77 · 𝑅max

𝑅min
more information

compared to Functionality 1.

Proof. We recall the argument in the proof of Claim 3. Fix
any 𝒗 𝒋 ∈ DB and 𝑆 𝑗 as in the proof of Claim 3. We show that

𝑆 𝑗 is an upper bound on what can be revealed on 𝒗 𝒋 through
Protocol 1. We now examine how much faster this set can
be leaked with queries issued to Protocol 1 and contrast it to
Functionality 1.

Define an baseline oracleO(DB, 𝑅𝑖 , ·), which given a query
𝒒, outputs the ID of any vector in DB within distance 𝑅𝑖 of
𝒒, if such a vector exists. Observe that Functionality 1 is
modeled by O(DB, 𝑅max, ·).

Suppose that the client obtains a query answer and learns
𝛼𝑖 ∈ 𝑆 𝑗 . Note that this leakage is less than (or equal to) that
of learning 𝛼1 ∈ 𝑆 𝑗 . That is, the hash of the same vector but
on the smallest radius. It is easy to see that 𝛼1 is at least as
precise (contains as much information) as 𝛼𝑖 ∈ 𝑆 𝑗 , 𝑖 > 1, due
to the increasing radii of the radix buckets, as explained in
Section 4.2.

Next, by Lemma 1, we have that the information revealed
by 𝛼1 = ℎ1 (𝒒) is less than or equal to the information revealed
by O(DB, 𝑅1, 𝒒). Indeed, as was shown in Lemma 1, 𝛼𝑖 is
0.77 times less precise compared to O(DB, 𝑅𝑖 , 𝒒), for any 𝑖.

Therefore, we have that the ratio in precision between 𝛼1
and O(DB, 𝑅max, ·), that is, the ratio between the precision
of the smallest radix bucket and the baseline functionality,
is bounded by 0.77 times the ratio of precision between the
baseline oracles O(DB, 𝑅min, ·) and O(DB, 𝑅max, ·), respec-
tively. Because the latter ratio is simply 𝑅max

𝑅min
, we get that

Protocol 1 leaks at most a multiplicative factor of 0.77 · 𝑅max
𝑅min

more compared to the baseline leakage of Functionality 1,
derived in Theorem 1. ■

We empirically compare the concrete leakage of Protocol 1
to the baseline leakage in Section 7.2 on real world data. We
do so by finding values for 𝑅min and 𝑅max as a function of 𝐿
(see Appendix B for how this is done) and applying Claim 5.

Corollary 1. The leakage of 𝑘 queries to Protocol 1 is bounded
by a multiplicative factor of 0.77 · 𝑅max

𝑅min
more than the leakage

of 𝑘 queries to Functionality 1.

Proof. We only need to consider the relative leakage between
𝑘 successive queries to O(DB, 𝑅min, ·) and O(DB, 𝑅max, ·),
resulting in at most a factor of 𝑘 more leakage. Another
attack one might consider is to learn more information across
multiple queries. While the information given by 𝑘 hashes
for the same vector is more specific (e.g., the set of points
that have both hashes is smaller), the same effect occurs
with queries to the baseline oracle. If two queries spaced
by some offset return the same nearest neighbor, then that
neighbor must be in the intersection of the regions of radius
𝑅max centered at each query. The leakage factor captures the
extra precision in our case. It also might be the case that the
malicious client is able to pick queries by exploiting hashes
that return zeroes. However, this is bounded by obtaining a
new element of 𝑆 𝑗 (the set of all LSH digests for a vector
𝒗 𝒋 ; see proof of Claim 3) each time, which is captured in our
concrete leakage bound. ■
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E A single-server protocol

In this section, we describe how our ideas from Section 3 and
tools from Section 5.1 can be applied to a single-server setting.
Our main observation is that the DPF (which requires two non-
colluding servers) is only necessary for performing keyword-
based symmetric PIR. If we had an efficient way of querying
the hash tables with single-server PIR (e.g., [8, 56, 62, 73])
then we could dispense with the non-collusion assumption.
(Crucially, in our case we require symmetric PIR and so the
hash table queries must not reveal the hash keys in the hash
table to the client. This requirement stands in contrast to
known constructions for single-server PIR-by-keywords [30].)
Specifically, examining Protocol 1, we note that each server
responds to a PIR query (using the provided DPF keys) and
applies oblivious masking (Algorithm 1). Oblivious masking
can be performed over additively homomorphic encryptions
of the answers (which most PIR schemes inherently satisfy [8,
56, 73]), where the message space is defined as the field
F𝑝 (it is also possible to apply oblivious masking over a
ring if the message space is not a finite field). As such, the
only barrier to removing the non-collusion assumption is the
ability to query the hash tables without revealing the hash
keys present in the table. (Put differently: we need a single
round PIR-by-keywords protocol with keyword privacy.)

Very recently, Mahdavi and Kerschbaum [69] develop a
practical scheme for a single-round, PIR-by-keywords in the
single-server setting. Using their scheme, we can replace the
DPF in Protocol 1 to obtain encrypted query answers in a
single-server setting. The server can then exploit the additive
homomorphic properties of the resulting ciphertexts [69]
to apply Algorithm 1 and mask all but the first non-zero
ID in the query answers. The privacy guarantees for the
client follow from the privacy guarantees of the single-server
PIR-by-keywords scheme [69] (rather than following from the
non-collusion and privacy of the DPF). The privacy guarantees
for the database remain unchanged and follow from Claim 1.
However, we note that it may be necessary to instantiate

[69] using a circuit-private fully-homomorphic encryption
scheme [39, 78] (to avoid leaking hashes) or design alternative
mechanisms for ensuring privacy of the hashes in each table.

Efficiency. The scheme of Mahdavi and Kerschbaum [69],
while practical, is orders of magnitude slower compared to
DPF-based two-server PIR-by-keywords. As such, while
we believe that Preco can be converted into a single-server
protocol via the PIR-by-keywords scheme of Mahdavi and
Kerschbaum [69], there remains an efficiency gap that makes
the solution less compelling from a practical standpoint. Fu-
ture work on single-server PIR-by-keywords can help close
this gap. However, we note even with the concrete overhead
of Mahdavi and Kerschbaum [69], our approach applied to
the single-server would still be orders of magnitude faster
compared to FHE-based solutions instantiated under the same
threat model. Indeed, in Mahdavi and Kerschbaum [69, Sec-
tion 5] report processing times of approximately 75 seconds
per PIR-by-keyword query (assuming 𝑛 = 40 bit hashes and
𝑁 = 214 items). Using this, we estimate a single-server instanti-
ation of Protocol 1 would require approximately 25 hours with
𝑁 = 106, 𝐿 = 20, and ℓ = 50, (e.g., the gist and sift datasets).
However, for smaller datasets (e.g., the mnist dataset with
𝑁 = 64,000), we estimate the server processing time at 2
hours. These estimates are for a a single CPU and can be
massively parallelized, similarly to our two-server DPF-based
instantiation. While slow, this approach still marks a signifi-
cant improvement over FHE solutions (from a computational
standpoint) that would require several days of computation to
evaluate at similar scales (see related work in Section 9). How-
ever, another cost to consider in a single-server deployment
is high communication. Specifically, as reported in Mahdavi
and Kerschbaum [69, Table 8], the total communication for a
single PIR-by-keyword query is roughly 300 KB. This means
that for 𝐿 = 20 and ℓ = 50 multi-probes (1,000 queries in
total), the communication cost of a single ANN query through
Protocol 1 would be approximately 300 MB—an order of
magnitude greater compared to our two-server approach.
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