**FDFB: Full Domain Functional Bootstrapping**

Towards Practical Fully Homomorphic Encryption

Kamil Kluczniak  
*Stanford University, CISPA Helmholtz Center For Information Security*  
kamil.kluczniak@{stanford.edu,cispa.de}

Leonard Schild  
*CISPA Helmholtz Center For Information Security*  
leonard.schild@cispa.de

**Abstract**

Computation on ciphertexts of all known fully homomorphic encryption (FHE) schemes induces some noise, which, if too large, will destroy the plaintext. Therefore, the bootstrapping technique that re-encrypts a ciphertext and reduces the noise level remains the only known way of building FHE schemes for arbitrary unbounded computations. The bootstrapping step is also the major efficiency bottleneck in current FHE schemes. A promising direction towards improving concrete efficiency is to exploit the bootstrapping process to perform useful computation while reducing the noise at the same time.

We show a bootstrapping algorithm, which embeds a lookup table and evaluates arbitrary functions of the plaintext while reducing the noise. Depending on the choice of parameters, the resulting homomorphic encryption scheme may be either an exact FHE or homomorphic encryption for approximate arithmetic. Since we can evaluate arbitrary functions over the plaintext space, we can use the natural homomorphism of Regev encryption to compute affine functions without bootstrapping almost for free. Consequently, our algorithms are particularly suitable for circuits with many additions and scalar multiplication gates. We achieve record speeds for such circuits. For example, in the exact FHE setting, we achieve a speedup of a factor of over 3000x over state-of-the-art methods. Effectively, we bring the evaluation time from weeks or days down to a few hours or minutes. Furthermore, we note that the speedup gets more significant with the size of the affine function.

We provide a tight error analysis and show several parameter sets for our bootstrapping. Finally, we implement our algorithm and provide extensive tests. We demonstrate our algorithms by evaluating different neural networks in several parameter and accuracy settings.

**Index Terms**

Fully Homomorphic Encryption, Bootstrapping, Oblivious Neural Network Inference

I. INTRODUCTION

A fully homomorphic encryption scheme provides a way to perform arbitrary computation on encrypted data. The bootstrapping technique, first introduced by Gentry [Gen09], remains thus far the only technique to construct secure fully homomorphic encryption schemes. The reason is that in current homomorphic schemes evaluating encrypted data induces noise, which will eventually “destroy” the plaintext if too high. In practice bootstrapping also remains one of the major efficiency bottlenecks.

The most efficient bootstrapping algorithms to date are the FHEW-style bootstrapping developed by Ducas and Micciancio [DM15], and the TFHE-style bootstrapping by Chillotti et al. [CGGI16, CGGI20]. At a high level, the bootstrapping procedure in these types of bootstrapping algorithms does two things. First, on input, a Regev ciphertext [Reg09] the bootstrapping algorithm outputs a ciphertext whose error is independent of the error of the bootstrapped ciphertext. Second, it computes a function $F$ on the input plaintext. That is $F$ must satisfy $F(x + N) = -F(x) \mod Q$, where $x \in \mathbb{Z}_N$. This functionality, together with the linear homomorphism of Regev encryption [Reg09], is enough for FHEW and TFHE to compute arbitrary binary gates. For example, given $Enc(a \cdot 2N/3)$ and $Enc(b \cdot 2N/3)$, where $a, b \in \{0, 1\}$, we compute the NAND gate by exploiting the negacyclicity. We set $F$ to output $-1$ for $x \in [0, N)$, and from the negacyclicity property we have $F(x) = 1$ for $x \in [N, 2N)$. To compute the NAND gate we first compute $Enc(x) = Enc(a \cdot 2N/3) + Enc(b \cdot 2N/3)$ and then $Enc(c) = Enc(F(x))$. Note that only for $a = b = 1$, we have $x = 4N/3 > N$ and $c = 1$. For all other valuations of $a$ and $b$ we have $x < N$ and $c = -1$. Now, we can exploit that $c \in \{-1, 1\}$ to choose one of two arbitrary values $y, z \in \mathbb{Z}$ by computing $y \frac{1 + c}{2} - z \frac{c - 1}{2}$. When computing the NAND gate we choose $y = 0$ and $z = 2N/3$. Similarly, we can realize other Boolean gates. The crucial observation is that the bootstrapping algorithm relies on the negacyclicity property of the function $F$ to choose an outcome. In particular, the outcome is a binary choice between two values.

Unfortunately, the requirement on the function $F$ stays in the way to efficiently compute useful functions on non-binary plaintexts with only a single bootstrapping operation. For instance, we cannot compute $\frac{1}{\sin x}$, $\tanh(x)$, $\max(0, x)$, univariate polynomials or other functions that are not negacyclic. Hence, to evaluate such functions on encrypted data, we need to represent them as circuits, encrypt every input digit, and perform a relatively expensive bootstrapping per gate of the circuit. By solving the negacyclicity problems, we can hope for significant efficiency improvements by computing all functions over a larger plaintext space with a single bootstrapping operation. Additionally, we could leverage the natural and extremely efficient linear homomorphism of Regev encryption [Reg09], to efficiently evaluate circuits with a large number of addition and scalar multiplication gates like neural networks.
A. Contribution

Our main contribution is the design, detailed error analysis, implementation\(^1\), and extensive tests of a bootstrapping algorithm that solves the negacyclicity problem. In particular, our bootstrapping algorithm can evaluate all functions over \(\mathbb{Z}_t\) for some integer \(t\), as it internally embeds a lookup table. We will refer to our bootstrapping algorithm as “full domain bootstrapping” as opposed to a version of TFHE [CGGI16, CCGI20, CIM19], that can evaluate all function only over half of the domain \([0, \lfloor t/2 \rfloor]\).

We stress that the difference goes far beyond the size of the plaintext space. As we will explain in more detail in Section I-B, TFHE for non-negacyclic functions cannot exploit the natural linear homomorphism of Regev encryption, whereas our FDFB can.

The ability to compute affine functions “almost for free” gives our FDFB a tremendous advantage in evaluation time for arithmetic circuits with a large number of addition and scalar multiplication gates. We show several parameter sets targeting different bit-precisions and security levels. In particular, we show parameters that allow our FDFB to bootstrap and compute any function \(f : \mathbb{Z}_t \mapsto \mathbb{Z}_t\) with very low error probability, where \(t\) is a 6, 7 or 8-bit integer, but we note that we can bootstrap larger plaintexts when choosing a larger modulus \(Q\) and degree \(N\) of the ring \(\mathbb{R}_Q\). We show that we can take the message modulus higher for approximate arithmetic—for instance, 10 or 11 bits. We also show how to leverage the Chinese remainder theorem to extend the plaintext space to \(\mathbb{Z}_t\) for \(t\) being a large (e.g., 32-bit) composite integer. In short, we use the fact that the ring \(\mathbb{Z}_t\) for \(t = \prod_{i=1}^n t_i\) where the \(t_i\)’s are pairwise co-prime is isomorphic with the product ring \(\mathbb{Z}_{t_1} \times \cdots \times \mathbb{Z}_{t_n}\).

Performance. We implemented our bootstrapping algorithm using the Palisade library [PAL]. We exemplify the performance of our FDFB by evaluating neural networks. Roughly speaking, a neural network is a circuit which gates, called neurons, parameterized by weights \(w_0, w_1, \ldots, w_n \in \mathbb{N}\), take as input wires \(x_1, \ldots, x_n \in \mathbb{N}\) and output \(f(w_0 + \sum_{i=1}^n x_i \cdot w_i)\). The function \(f\) is typically a non-linear function called the activation function. When homomorphically evaluating an encrypted query to the neural network, we compute the linear combination \(w_0 + \sum_{i=1}^n x_i \cdot w_i\) by leveraging the natural linear homomorphism of Regev ciphertexts. Finally, we use our FDFB to compute the activation function \(f\). Since our bootstrapping reduces the noise of the ciphertexts along with computing \(f\), the time to evaluate the entire network is linear in the number of neurons. In particular, the evaluation time and the parameters for our FHE do not depend on the depth of the neural network. A critical property of FHE schemes is exploiting the parallelism of the circuits we wish to evaluate. On top of that, our functional bootstrapping algorithm is nicely parallelisable.

We compare our FHE scheme with the state-of-the-art lookup table methods [CGGI16, CCGI20, CIM17]. To the best of our knowledge, the lookup methods are the fastest FHE able to perform exact homomorphic computation correctly. To give the best quality of comparison, we rewrite the lookup table algorithms from [CIM17] in PALISADE [PAL]. Furthermore, we choose new parameters for [CGGI16, CCGI20, CIM17] that target the same security levels as our bootstrapping algorithm. We report that evaluating neurons with 784 weights is over 3000 to 6000 times faster than the lookup table methods, depending on the parameter setting. In particular, our homomorphic evaluation can be accomplished in minutes, whereas computing via the lookup tables requires weeks to accomplish\(^2\).

Relation to BFV/BGV [BV11, Bra12, FV12, BGV12] type schemes. In this setting, we consider FHE with a very low probability of having erroneous outcome of the homomorphic computation. We automatically satisfy CPA+security [LM20] in contrast to homomorphic encryption for approximate arithmetic. Current bootstrapping algorithms [HS15, CH18, HS21] for BGV/BFV type systems like HeLib [HEI, HS14, HS15, Alb17] or [SEA] reduce the error of the ciphertext and rescale the modulus, without performing any additional computation. To compute in BFV/BGV, we represent the program as an arithmetic circuit. This may be sometimes problematic. For example, CryptoNets [DGBL+16], which use the SEAL library to homomorphically evaluate a neural network, cannot easily compute popular activation functions. Therefore, CryptoNets uses \(x^2\) as an activation function. Furthermore, we need to discretize the trained network by multiplying the weights and biases by a parameter \(\delta\) and rounding. Since there is no homomorphic division algorithm, homomorphic computation on discretised data will increase the parameter \(\delta\). For example\(^3\) when computing \(\sum_{i=1}^n x_i \cdot w_i\), where \(x_i = \delta \cdot x_i\) and \(w_i = \delta \cdot w_i\) and the \(x_i\)’s and \(w_i\)’s are the original floating point inputs and weights, we end up with \(\delta^2 \cdot \sum_{i=1}^n x_i \cdot w_i\). Unfortunately, we cannot rescale the result since there is no natural division algorithm in BFV/BGV. Consequently, CryptoNets has to choose enormous parameters that grow exponentially with the depth of the neural network. Our functional bootstrapping algorithm resolves these issues, as we can compute any activation function. Along the way, we can compute the rescaling, i.e., division by \(\delta\) and rounding, together with the activation function within a single bootstrapping operation. This allows us to compute neural networks of unbounded depth without increasing the parameters. On the other hand, we preserve the extremely fast linear operations from BFV/BGV.

Relation to CKKS/HEAAN [CKKS17] type schemes. As hinted in the abstract, we can run our bootstrapping algorithm in an approximate mode. In particular, the probability that the error distorts the least significant bits of the message to be bootstrapped grows along with the message space. For example, we choose the plaintext space to be 11-bit, instead of 7-bit as in the “exact”

\(^1\)Available at: https://github.com/cispa/full-domain-functional-bootstrap

\(^2\)The time to evaluate the neural network was estimated for the lookup table methods based on the times to evaluate a single neuron.

\(^3\)We ignore the rounding for simplicity.
computation setting. However, when using such parameters, we cannot claim that the homomorphic encryption is a "exact" FHE anymore. Consequently, as all approximate schemes we cannot formally claim CPA+-security [LM20], but we can apply the same countermeasures against the Li-Micciancio attack. Nevertheless, this setting allows to use larger message modulus with the same efficiency, and is especially useful when approximate computation is sufficient (e.g., neural networks). Note that without bootstrapping algorithms like ours, current approximate homomorphic encryptions need to approximate a function via a polynomial, discretize its coefficients and evaluate a circuit as deep as the degree of that polynomial.

For the approximate homomorphic computation setting, Lu et al. [jLHH+21] proposed to use FHEW [DM15] to compute negacyclic functions only\(^5\). When using our algorithm, we can compute all functions over the plaintext space without posing any restriction on the plaintexts.

B. Deeper Dive into the Problem and our Solution

We first give a high-level overview of FHEW and TFHE bootstrapping to showcase the problem for using it to compute arbitrary functions. In this section, we keep the exposition rather informal and omit numerous crucial details to highlight the essential ideas underlying our constructions.

**Regev Encryption.** First, let us recall the learning with errors based encryption due to Regev [Reg09]. In the symmetric key setting of the encryption algorithm, we choose a vector \(a \in \mathbb{Z}_q^n\) and a secret key \(s \in \mathbb{Z}_q^n\), and compute an encryption of a message \(m \in \mathbb{Z}_q\) as \([b, a^\top \cdot s + \tilde{m} + e] \mod q\), where \(\tilde{m} = \frac{q}{t} \cdot m\) and \(e < \frac{q}{2t}\) is a "small" error. We assume that \(t/q\) for simplicity, but other settings are possible as well. To decrypt, we compute \([\frac{1}{q} \cdot (b, a^\top \cdot [1, -s^\top])]\) as \([\frac{1}{q} \cdot (\frac{q}{t} \cdot m + e)]\) = \(m\).

The ring version of the encryption scheme is constructed over the cyclotomic ring \(\mathcal{R}_Q\) defined by \(\mathcal{R} = \mathbb{Z}[X]/(X^N + 1)\) and \(\mathcal{R}_Q = \mathcal{R}/Q\mathcal{R}\). Similarly as for the integer version we choose \(a \in \mathcal{R}_Q\) and a secret key \(s \in \mathcal{R}_Q\), and encrypt a message \(m \in \mathcal{R}_Q\) as \([a, b]\) with \(b = a \cdot s + \frac{q}{t} \cdot m + e\), where \(e \in \mathcal{R}_Q\) is a "small" error.

**FHEW/TFHE Bootstrapping.** Now let us proceed to the ideas underlying FHEW [DM15] and TFHE [CGGI16, CGGI20] to bootstrap the LWE ciphertext described above. Both algorithms leverage the structure of the ring \(\mathcal{R}_Q\). Recall that \(\mathcal{R}_Q\) includes polynomials from \(\mathbb{Z}[X]/(X^N + 1)\) that have coefficients in \(\mathbb{Z}_Q\). Importantly, in \(\mathcal{R}_Q\) the roots of unity form a multiplicative cyclic group \(\mathbb{G} = [1, X, \ldots, X^{N-1}, -1, -X, \ldots, -X^{N-1}]\) of order \(2 \cdot \text{N}^2\). Assume that the LWE modulus is \(q = 2 \cdot N\).

The concept is to set up a homomorphic accumulator acc to be an RLWE encryption which initially encrypts the message \(\text{rotP} \cdot X^b \in \mathcal{R}_Q\), where \(\text{rotP} = \frac{Q}{N} \cdot (1 - \sum_{i=0}^{N-1} X^{i+1}) \in \mathcal{R}_Q\). Then we multiply acc with encryptions of \(X^{-n[i]} \cdot s[i] \in \mathcal{R}_Q\). So that after \(n\) iterations the message of the accumulator is set to

\[
\text{rotP} \cdot X^{b - \sum_{i=1}^{n} a[i] \cdot s[i]} = \text{rotP} \cdot X^{kq + \tilde{m} + e} = \text{rotP} \cdot X^{\tilde{m} + e} \mod 2 \cdot N \in \mathcal{R}_Q.
\]

Note that we sent the coefficients of \(\text{rotP}\) such that the constant coefficient of the resulting polynomial is \(\frac{Q}{N}\) if \(\tilde{m} + e \in [0, N]\), and \(-\frac{Q}{N}\) if \(\tilde{m} + e \in [N, 2N)\). We can extract an LWE encryption of the constant term from the rotated accumulator and obtain an LWE ciphertext of the sign\(^6\) of the message without the error term \(e\).

We can extend the method to compute other functions simply by setting the coefficient of \(\text{rotP}\) to have the desired value after multiplying it by \(X^{\tilde{m} + e}\). To be precise, we want to compute \(f: \mathbb{Z}_q \mapsto \mathbb{Z}_q\), and for our reasoning we use \(f: 2 \cdot \text{N} \mapsto \mathcal{R}_Q\) such that \(F(x) = \frac{Q}{N} \cdot f\left(\frac{x}{2N}\right)\). Since we work over the multiplicative group \(\mathbb{G}\) of order \(2 \cdot N\), but \(\text{rotP}\) can only have \(N\) coefficients, we can only compute functions \(f\) such that \(F(x + N \mod 2 \cdot N) = -F(x) \mod Q\). In other words, multiplying any \(\text{rotP}\) in \(\mathcal{R}_Q\) by \(X^N\) rotates \(\text{rotP}\) by a full cycle negating all its coefficients. In particular, it flips the sign of the constant coefficient. Note that this behavior also affects the function \(f\) that we want to compute.

As we mentioned earlier, Lu et al. [jLHH+21] claim (see [jLHH+21, Fig. 2, Thm 1]) to compute any function with FHEW [DM15]. Unfortunately, they mistakenly assume the roots of unity in \(\mathbb{Z}/(X^N + 1)\) form the group \([1, X, \ldots, X^N]\) of order \(N\), instead of \(\mathbb{G}\) of order \(2N\). This issue invalidates [jLHH+21, Thm 1] and the correctness of their main contribution, as FHEW is in fact only capable to compute negacyclic functions.

**Problems when Computing Arbitrary Functions.** To compute arbitrary functions \(f\) a straightforward solution is to assume that the phase \(\tilde{m} + e\) is always in \([0, N)\). In fact, this is the case when \(m \in [0, t/2)\). In particular, \(m\) must have its sign fixed. The disadvantage is that we cannot safely compute affine functions on LWE ciphertexts without invoking the bootstrapping algorithm. As an example let us consider \(m = \frac{q}{2} (m_1 - m_2)\) and let us ignore for simplicity the error terms. Clearly when \(m_2 > m_1\) we have \(m_1 - m_2 \mod t \in [t/2, t)\) and \(m \in [q/2, q)\). In this case, the output of the bootstrapping will be \(-F(\tilde{m} - q/2)\) assuming we set the rotation polynomial to correctly compute \(F\) on the interval \([0, q/2)\). To summarize, to use the natural functional bootstrapping correctly, we need to use it as Carpov et al. [CIM19] to compute a lookup table on

\(^4\)Actually, Lu et al. [jLHH+21] claims to compute any function, but we noticed a serious flaw in their analysis. We address the issue in the next subsection.
\(^5\)This is trivial to verify by checking that \(X^N \mod (X^N + 1) = -1\).
\(^6\)Clearly, if the most significant bit of \(m\) is set (\(m\) is a negative number) and \(e \leq q/2t\), then \(\tilde{m} + e = q/t \cdot m + e \in [N, 2N)\). Otherwise, \(\tilde{m} + e \in [0, N)\).
an array of binary plaintexts that are composed to an integer within the interval \([0, t/2]\). Unfortunately, we cannot correctly compute the extremely efficient affine functions on LWE ciphertexts.

Our Solution: Full Domain Functional Bootstrapping. Our main contribution is the design of a bootstrapping algorithm that can compute all functions on an encrypted plaintext instead of only negacyclic functions. Our first observation is that, as shown in Bourse et al. [BMMP18], we can compute the sign of the message. In particular, given that the message \(m\) is encoded as \(\tilde{m} = \frac{2N}{t} \cdot m\), where \(t\) is the plaintext modulus, we have that if \(\tilde{m} \in [0, N]\), then \(\text{sgn}(m) = 1\), and if \(\tilde{m} \in [N, 2 \cdot N]\), then \(\text{sgn}(m) = -1\). Note that this function does not return exactly the sign function since it returns 1 for \(m = 0\), but it is enough for our purpose. The idea is to make two bootstrapping operations: the first computes the sign; the second computes the function \(F(x)\). Then we multiply the sign and the result of the function. Note that if \(x \in [N, 2 \cdot N]\), then \(-F(x) \cdot \text{sgn}(x) = F(x)\).

There are two problems with this solution. First of all, we cannot simply multiply two LWE ciphertexts in the leveled mode. While there are methods to do so [Bra12, BV11, BGV12, FV12], in these methods, the noise growth is quadratic and dependent on the size of the plaintexts. Moreover, one of those plaintexts may be large having a significant impact on the parameters. The second problem is that this way, the function \(F\) must satisfy \(F(x) = F(x + N)\). Thus our primary goal is not satisfied.

Let us first describe how to deal with the second problem. In short, instead of evaluating the sign, we will compute a bit \(b\) that indicates the interval in which that plaintext lies. This bit will help us choose the correct output of the evaluated function. That is, we split the function into \(F_0\) that computes \(F\) correctly for plaintexts in \([0, N]\), and \(F_1\) that computes correctly for the remaining plaintexts. To deal with the first problem, we resign of multiplying two ciphertexts at all. Note that a hypothetical multiplication algorithm could now bootstrap the bit \(b\) using a bootstrapping that returns a GSW tuple, and in a leveled mode we could then compute GSW\((1 - b) \cdot \text{LWE}(F_0(x)) + \text{GSW}(b) \cdot \text{LWE}(F_1(x))\).

From the properties of GSW cryptosystem [GSW13], the resulting ciphertexts’ noise is at most an additive function of the noises of both ciphertexts. Furthermore, there are implementations for bootstrapping that return GSW ciphertexts [DM15, CGGI17]. We, however, slightly depart from the idea and give a more efficient solution with better error management. Instead of multiplying two ciphertexts, we leverage the fact that the functions \(F_0\) and \(F_1\) are publicly known, which means that the rotation polynomials for these functions are known all. Now, based on LWE ciphertexts of a certain form, we will build a new accumulator that will encode one of the given rotation polynomials. Notably, our accumulator builder uses a new version of the homomorphic CMux gate [CGGI16, CGGI20] that may be of separate interest. Finally, we will bootstrap using the given accumulator and we obtain \(F(x) = F_b(x)\) as desired. We note that this method is roughly twice as fast as creating a GSW and multiplying it with LWE ciphertexts.

Now we can compute any function \(F : 2 \cdot N \mapsto Q\), and what follows \(f : Z_t \mapsto Z_p\)\(^7\). Furthermore, we can compute affine functions over \(Z_t\) without bootstrapping which costs several microseconds per operation.

C. Related Work

Since Gentry’s introduction of the bootstrapping technique [Gen09], the design of fully homomorphic encryption schemes has received extensive study, e.g., [BV11, Bra12, FV12, BGV12, AP13, GSW13, HS15, CH18, HS21]. Brakerski and Vaikuntanathan [BV14] achieved a breakthrough and gave a bootstrapping method that, exploiting the GSW cryptosystem [GSW13] by Gentry, Sahai, and Waters, incurs only a polynomial error growth. These techniques require representing the decryption circuit as a branching program. Alperin-Sheriff and Peikert [AP14] showed a bootstrapping algorithm, where they represent the decryption circuit as an arithmetic circuit, and we do not rely on Barrington’s theorem [Bar89]. Their method exploits the GSW cryptosystem [GSW13] to perform matrix operations on LWE ciphertexts. Hiromasa, Abe, and Okamoto [HAO15] improved the method by designing a version of GSW that natively encrypts matrices. Recently, Genise et al. [GGH1+19] showed an encryption scheme that further improves the efficiency of matrix operations. Unfortunately, Lee and Wallet [LW20] showed that the scheme is broken for practical parameters.

Building on the ideas of Alperin-Sheriff and Peikert [AP14], Ducas and Micciancio [DM15] designed a practical bootstrapping algorithm that we call FHEW. FHEW exploits the ring structure of the RLWE ciphertexts and RGSW noise management for updating a so-called homomorphic accumulator. Chillotti et al. [CGGI16, CGGI20] gave a variant, called TFHE, with numerous optimizations to the FHEW bootstrapping algorithm.

The FHEW and TFHE bootstrapping algorithms constitute state-of-the-art methods to perform practical bootstrapping. Further improvements mostly relied on incorporating packing techniques [CGGI17, MS18], and improved lookup tables evaluation [CGGI17, CIM19]. An interesting direction is to exploit the construction of FHEW/TFHE and embed a lookup table directly into the bootstrapping algorithm. To this end, Bonnoron, Ducas, and Fillinger [BDF18] showed a bootstrapping algorithm capable of computing over larger plaintexts, which, however, returns a single bit of output per bootstrapping operation and uses RLWE instantiated over cyclic rings instead of negacyclic. Carpov, Izabachéne, and Mollimard [CIM19] show that we can compute multiple functions on the same input plaintext at the cost of a single TFHE bootstrapping. Notably, their method\(^7\) we note that we can easily generalize the method to also compute functions \(f : Z_t \mapsto Z_p\) where \(t \neq p\). It remains to use a different message scaling in the rotation polynomials.
enjoys amortized time only for functions with a small domain like binary. Guimarães, Borin, and Aranha [GBA21] show several applications of [CIM19]. As mentioned earlier, Lu et al. [jLHH+21] use FHEW to compute a negacyclic function on CKKS [CKKS17] ciphertexts.

Applications to Neural Network Inference. Bourse et al. [BMMP18] applied TFHE [CGGI16, CGGI20] to compute the negacyclic sgn(x) function as activation for a neural network. Izabachéne, Sirdey, and Zuber [ISZ19] evaluate another neural network (a Hopfield network) using the same method as Bourse et al. [BMMP18]. Finally, we note that Bourse et al. [BMMP18] left as an open problem to compute general functions with a functional bootstrapping. It is worth noting that oblivious networks (a Hopfield network) using the same method as Bourse et al. [BMMP18]. Finally, we note that Bourse et al. [BMMP18] used the CKKS [CKKS17] ciphertexts.

Definition 1 (Generalized Learning With Errors). Let $\mathcal{R}_{N,q}$ be the ring of polynomials $\mathbb{Z}[X]/(X^N + 1)$ and as $\mathcal{R}_{N,q} = \mathcal{R}_{N,\infty}/q\mathbb{Z}$ the ring of polynomials with coefficients in $\mathbb{Z}_q$. We denote vectors with a bold lowercase letter, e.g., $v$, and matrices with uppercase letters $V$. We denote a $m$ dimensional column vector as $[f(.i)]_{i=1}^m$, where $f(.i)$ defines the $i$-th coordinate. For brevity, we will also denote as $[n]$ the vector $[i]_{i=1}^n$, and more generally $[n, m]_{i=1}^m$ the vector $[n, m, \ldots, m]^\top$. Finally, let $a = \sum_{i=1}^N a_i X^{i-1}$, be a polynomial with coefficients over $\mathbb{R}$, then we denote Coefs(a) = $[a_i]_{i=1}^N \in \mathbb{R}^{N \times 1}$ the vector of coefficients of the polynomial $a$. For a random variable $a \in \mathbb{Z}$ we denote as $\text{Var}(a)$ the variance of $a$, as $\text{stddev}(x)$ its standard deviation and as $E(x)$ its expectation. For $a \in \mathcal{R}_{N,\infty}$, we define $\text{Var}(a) = |\text{Var(Coefs}(a))|_{N}^{N \times 1}$, $\text{stddev}(a) = |\text{stddev(Coefs}(a))|_{N}^{N \times 1}$ and $E(a) = |E(Coefs}(a))|_{N}^{N \times 1}$. We define $\|a\|_p = (\sum_{i=1}^N |a_i|^p)^{1/p}$ the $p$-norm of a vector $a \in \mathbb{R}^n$, where $|.|$ denotes the absolute value. For polynomials we compute the $p$-norm by taking its coefficient vector. By Ham(a) we denote the hamming weight of vector $a$, i.e., the number of non-zero coordinates of $a$. We also define a special symbol $\Delta_{n,t} = \frac{1}{\sqrt{t}}$ and a rounding function for an element $\Delta_{n,t} \cdot a \in \mathbb{Z}_q$, as $[a]_q = \lceil \Delta_{n,t} \cdot a \rceil$. For ring elements, we take the rounding of the coefficient vector.

Throughout the paper we denote as $q \in \mathbb{N}$ and $Q \in \mathbb{N}$ two moduli. The parameter $n \in \mathbb{N}$ always denotes the dimension of a LWE sample, that we define below. For rings, we always use $N$ to denote the degree of $\mathcal{R}_{N,q}$ or $\mathcal{R}_{N,Q}$. We define $\ell = \lceil \log_q Q \rceil$ for some decomposition basis $L \in \mathbb{N}$. We denote bounds on variances of random variables by $B \in \mathbb{N}$. Often we mark different decomposition bases $L_{\text{man}}$ and the corresponding $f_{\text{man}}$, or bounds $B_{\text{man}}$ with some subscript $\text{man}$. Finally, in order not to repeat ourselves and not to overload the reader, we limit ourselves to define certain variables in the definitions of the algorithms, and we refrain from repeating them in the correctness lemmas.

Learning With Errors. We recall the learning with errors assumption by Regev [Reg05]. Our description is a generalized version due to Brakerski, Gentry, and Vaikuntanathan [BGV12].

Definition 1 (Generalized Learning With Errors). Let $X_\ell = \mathcal{X}(n)$ be a distribution over $\mathcal{R}_{N,q}$ such that $\|\text{Var}(\epsilon)\|_{\infty} \leq B$ and $E(\epsilon) = 0$ for all $\epsilon \in X_\ell$. For a $a \leftarrow \mathcal{R}_{N,q}^{n \times 1}$, $\ell \leftarrow X_\ell$ and $s \in \mathcal{R}_{N,q}^{n \times 1}$, we define a Generalized Learning With Errors (GLWE) sample of a message $m \in \mathcal{R}_{N,q}$ with respect to $s$, as

$$\text{GLWE}_{B_{n,N,q}}(s, m) = \begin{bmatrix} b = a^\top \cdot s + \epsilon \\ a^\top \end{bmatrix} + \begin{bmatrix} m \\ 0 \end{bmatrix} \in \mathcal{R}_{N,q}^{(n+1) \times 1}.$$  

The GLWE$_{B_{n,N,q}}$ problem is to distinguish the following two distributions: In the first distribution, one samples $(b_i, a_i^\top)^\top$ uniformly from $\mathcal{R}_{N,q}^{(n+1) \times 1}$. In the second distribution one first draws $s \leftarrow \mathcal{R}_{N,q}^{n \times 1}$ and then sample GLWE$_{B_{n,N,q}}(s, m) = (b_i, a_i^\top)^\top \in \mathcal{R}_{N,q}^{(n+1) \times 1}$. The GLWE$_{B_{n,N,q}}$ assumption is that the GLWE$_{B_{n,N,q}}$ problem is hard.
In the definition, we choose the secret key uniformly from $\mathcal{R}_{N,q}$. We note that often secret keys may be chosen from different distributions. When describing our scheme, we will emphasize this when necessary.

We denote an Learning With Errors (LWE) sample as $\text{LWE}_{B,n,q}(s,m) = \text{GLWE}_{B,n,1,q}$, which is a special case of a GLWE sample with $N = 1$. Similarly we denote an Ring-Learning With Errors (RLWE) sample as $\text{RLWE}_{B,n,q}(s,m) = \text{GLWE}_{B,1,N,q}$ which is the special case of an GLWE sample with $n = 1$. Sometimes we use the notation $c \in \text{GLWE}_{B,n,N,q}(s,m)$ (resp. LWE and RLWE) to indicate that a vector $c$ is a GLWE (resp. LWE and RLWE) sample of the corresponding parameters and inputs. Sometimes we leave the inputs unspecified and substitute them with "" when it is not necessary to refer to them within the scope of a function.

**Definition 2** (Phase and Error for GLWE samples). We define the phase of a sample $c = \text{GLWE}_{B,n,N,q}(s,m)$, as $\text{Phase}(c) = [1, -s^T] \cdot c$. We define the error of a GLWE sample $\text{Error}(c) = \text{Phase}(c) - m$.

**Lemma 1** (Linear Homomorphism of GLWE samples). Let $c = \text{GLWE}_{B,n,N,q}(s,m)$ and $d = \text{GLWE}_{B_d,n,N,q}(s,m_d)$. If $c_{\text{out}} \leftarrow c + d$, then $c_{\text{out}} \in \text{GLWE}_{B,n,N,q}(s,m)$, where $m = m + m_d$, and $B \leq B_C + B_D$. Furthermore, let $d \in \mathcal{R}_{N,L}$ where $L \in \mathbb{N}$. If $c_{\text{out}} \leftarrow c \cdot d$, then $c_{\text{out}} \in \text{GLWE}_{B,n,N,q}(s,m \cdot d)$, where

- $B \leq B_d^2 \cdot B_C$, when $d$ is a constant monomial with $||d||_{\infty} \leq B_d$,
- $B \leq \frac{1}{3} \cdot L^2 \cdot B_C$, when $d$ is a monomial with its non-zero coefficient distributed uniformly in $[0, L - 1]$,
- $B \leq N \cdot B_d^2 \cdot B_C$, when $d$ is a constant polynomial with $||d||_{\infty} \leq B_d$, and
- $B \leq \frac{1}{3} \cdot N \cdot L^2 \cdot B_C$, when $d$ is a polynomial with its coefficients distributed uniformly in $[0, L - 1]$.

**Gentry-Sahai-Waters Encryption.** We recall the cryptosystem from Gentry, Sahai and Waters [GSW13].

**Definition 3** (Gadget Matrix). We call the column vector $g_{t,L} = [L^{-1}]_{i=1}^\ell \in \mathbb{N}^{\ell \times 1}$ powers-of-$L$ vector. For some $k \in \mathbb{N}$ we define the gadget matrix $G$ as $G_{t,L,k} = I_k \otimes g_{t,L} \in \mathbb{N}^{k \times \ell}$, where $\otimes$ denotes the Kronecker product.

**Definition 4** (Decomposition). We define the Decompl_q function to take as input an element $a \in \mathcal{R}_{N,q}$ and return a row vector $a = [a_1, \ldots, a_\ell] \in \mathbb{R}^\ell$ such that $a = a_{\ell} g_{t,L} = \sum_{i=1}^\ell a_i \cdot L^{i-1}$. Furthermore we generalize the function to matrices where Decompl_q is applied to every entry of the input matrix. Specifically, on input a matrix $M \in \mathbb{R}^{n \times k \ell}$, Decompl_q outputs a matrix $D \in \mathbb{R}^{n \times k \ell}$. We define Generalized-GSW (GSW) samples as $\text{GSW}_{B,n,N,q,L}(s,m) = A \cdot m \cdot g_{t,L,(n+1)} \in \mathcal{R}_{N,q}$, where $A[i,s] = \text{GLWE}_{B,n,N,q}(s,0)^T$ for all $i \in [(n+1)\ell]$. In other words, all rows of $A$ consist of (transposed) GLWE samples of zero.

Similarly, as with LWE and RLWE, we denote an GSW sample as $\text{GSW}_{B,n,q,L}(s,m) = \text{GLWE}_{B,1,q,L}(s,m)$, which is a special case of a GSW sample with $N = 1$. Similarly we will denote an Ring-GSW (RGSW) sample as $\text{RGSW}_{B,n,q,L}(s,m) = \text{GSW}_{B,1,N,q,L}(s,m)$, which is the special case of an GSW sample with $n = 1$. We use the notation $C \in \mathbb{R}^{n \times \ell \times \mathcal{R}_{N,q}}$ (resp. GSW and RGSW) to indicate that a matrix $C$ is a GSW (resp. GSW and RGSW) sample with the corresponding parameters and inputs.

**Definition 6** (Phase and Error for GGSW samples). We define the phase of a sample $C = \text{GSW}_{B,n,N,q,L}(s,m) = A \cdot m \cdot g_{t,L,(n+1)}$ as $\text{Phase}(C) = C \cdot [1, -s^T]^T$. We define the error of a GLWE sample as $\text{Error}(C) = \text{Phase}(C) - m \cdot g_{t,L,(n+1)} \cdot [1, -s^T]^T \in \mathcal{R}_{N,q}$.

**Lemma 2** (Linear Homomorphism of GGSW samples). Let $C = \text{GSW}_{B,n,q,L}(s,m)$ and $D = \text{GSW}_{B_d,n,q,L}(s,m_d)$. If $C_{\text{out}} \leftarrow C + D$, then $C_{\text{out}} \in \text{GSW}_{B,n,q,L}(s,m)$, where $m = m + m_d$, and $B \leq B_C + B_D$. Furthermore, let $d \in \mathcal{R}_{L_2}$, where $L_2 \in \mathbb{N}$. If $C_{\text{out}} \leftarrow C \cdot d$, then $C_{\text{out}} \in \text{GSW}_{B,n,q,L}(s,m \cdot d)$ where

- $B \leq B_d^2 \cdot B_C$, when $d$ is a constant monomial with $||d||_{\infty} \leq B_d$,
- $B \leq \frac{1}{3} \cdot L^2 \cdot B_C$, when $d$ is a monomial with its non-zero coefficient distributed uniformly in $[0, L - 1]$,
- $B \leq N \cdot B_d^2 \cdot B_C$, when $d$ is a constant polynomial with $||d||_{\infty} \leq B_d$, and
- $B \leq \frac{1}{3} \cdot N \cdot L^2 \cdot B_C$, when $d$ is a polynomial with its coefficients distributed uniformly in $[0, L - 1]$.

The external product multiplies an RGSW sample with an RLWE sample resulting in an RLWE sample of the product of their messages.

**Definition 7** (External Product). The external product extProd given as input $C \in \text{GSW}_{B,n,q,L}(s,m_c)$ and $d \in \text{GLWE}_{B_d,n,q,L}(s,m_d)$, outputs $\text{extProd}(C,d) = \text{Decomp}_{l_q}(d^T) \cdot C$.

**Lemma 3** (Correctness of the External Product). Let $C = \text{GSW}_{B,n,q,L}(s,m_c)$, where $m_c$ consists of a single coefficient, and $d = \text{GLWE}_{B,n,q,L}(s,m_d)$. If $c \leftarrow \text{extProd}(C,d)$, then $c_{\text{out}} \in \text{GLWE}_{B,n,q,L}(s,m)$, where $m = m_c \cdot m_d$ and

- $B \leq \frac{1}{3} \cdot N \cdot (n + 1) \cdot \ell \cdot L^2 \cdot B_C + N \cdot B_m^c \cdot B_d$ in general,
Lemma 5 (Correctness of Modulus Switching). We define modulus switching from $\mathbb{Z}_Q$ to $\mathbb{Z}_q$ by the following algorithm.

- $\text{ModSwitch}(c, Q, q)$: On input a LWE sample $c = [b, a] \top \in \text{LWE}_{B, n, Q}(s, \cdot)$, and moduli $Q$ and $q$, the function outputs $c_{\text{out}} \in \text{LWE}_{B, n, q}(s, \cdot)$.

Lemma 5 (Correctness of Modulus Switching). Let $c = \text{LWE}_{B, n, Q}(s, m \cdot (\frac{Q}{q}))$ where $s \in \mathbb{Z}_Q^n$ and $Q = 0 \mod t$. If $c_{\text{out}} \leftarrow \text{ModSwitch}(c, Q, q)$, then $c_{\text{out}} \in \text{LWE}_{B, n, q}(s, m \cdot (\frac{Q}{q}))$, where

$$B \leq \frac{q^2}{Q^2} \cdot B_c + \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s) \cdot (||\text{Var}(s)||_\infty + ||s||_2^2).$$

Sample Extraction. Informally, sample extraction allows extracting from an RLWE sample an LWE sample of a single coefficient without increasing the error rate. Here we give a generalized version of the extraction algorithm, which can extract an LWE sample of any coefficient of the RLWE sample.

Definition 10 (Sample Extraction). Sample extraction consists of algorithms $\text{KeyExt}$ and $\text{SampleExt}$, defined as follows.

- $\text{KeyExt}(s)$: Takes as input a key $s \in \mathcal{R}_{N, q}$, and outputs $\text{Coefs}(s)$.
- $\text{SampleExt}(ct, k)$: Takes as input $ct = [b, a] \top \in \text{RLWE}_{B, n, q}(s, \cdot)$ and an index $k \in [N]$. The function outputs $c \in \text{LWE}_{B, n, q}(s, \cdot)$.

Lemma 6 (Correctness of Sample Extraction). Let $ct \in \text{RLWE}_{B, n, q}(s, m)$, where $s, m \in \mathcal{R}_{N, q}$. Denote $m = \sum_{i=1}^{N} m_i \cdot X_{i-1}$, where $m_i \in \mathbb{Z}_q$. If $s \leftarrow \text{KeyExt}(s)$ and $c \leftarrow \text{SampleExt}(ct, k)$, for some $k \in [N]$, then $c \in \text{LWE}_{B, n, q}(s, m_k)$, where $B \leq B_c$.

Key Switching. Key-switching is an important technique to build scalable homomorphic encryption schemes. In short, having a key switching key, the evaluator can map a given LWE sample to an LWE sample of a different key.

Definition 11 (Key Switching LWE to GLWE). We define the key generation algorithm $\text{KeySwitchSetup}$ and LWE to GLWE key Switching $\text{KeySwitch}$ as follows.

- $\text{KeySwitchSetup}(B_{\text{sk}}, n, n', N, q, s, s', L_{\text{sk}}, k)$: Takes as input bound $B_{\text{sk}} \in \mathbb{N}$, dimensions $n, n' \in \mathbb{N}$, a degree $N \in \mathbb{N}$ and a modulus $q \in \mathbb{N}$, vectors $s \in \mathbb{Z}_q^n, s' \in \mathbb{R}_{N, q}^{n'}$ and a basis $L_{\text{sk}} \in \mathbb{N}$. The algorithm outputs $ksK \in \text{GLWE}_{B_{sk}, n', N, q}(s', \cdot)$. The output is $\text{ksK} = \text{GLWE}_{B_{sk}, n', N, q}(s', \cdot)$.
- $\text{KeySwitch}(c, ksK)$: Takes as input $c = [b, a] \top \in \text{LWE}_{B, n, q}(s, \cdot)$ and a key switching key $ksK \in \text{GLWE}_{B_{sk}, n', N, q}(s', \cdot)$. The algorithm outputs $c_{\text{out}} \in \text{GLWE}_{B, n', q}(s', m)$, where

$$B \leq B_c + \frac{1}{3} \cdot n \cdot \ell_{\text{sk}} \cdot L_{\text{sk}}^2 \cdot B_{\text{sk}}$$

and $\ell_{\text{sk}} = \lceil \log_{t_{\text{sk}}^2} q \rceil$.

TFHE Blind Rotation and Bootstrapping. Below we recall the blind rotation introduced by Chillotti et al. [CGGI16]. For both blind rotation and bootstrapping we use a decomposition vector $u \in \mathbb{Z}_N^u$ for which the following holds. For all $y \in S$ with $S \subseteq \mathbb{Z}_N$ there exists $x \in \mathbb{Z}_N^u$ such that $y = \sum_{i=1}^{u} x[i] \cdot u[i] \mod 2 \cdot N$. For example for $S = \{0, 1\}$ we have $u = \{1\}$, and for $S = -1, 0, 1$ we have $u = \{-1, 1\}$.
**Definition 12** (TFHE Blind Rotation). Blind rotation consists of a key generation algorithm $\text{BRKeyGen}$, and blind rotation algorithm $\text{BlindRotate}$.

- $\text{BRKeyGen}(n, s, b, b, N, Q, \text{LRSW}, s)$: Takes as input a dimension $n$, a secret key $s \in \mathbb{Z}_n^t$ and a vector $u \in \mathbb{Z}_u$, a bound $b$, a degree $N$ and a modulus $Q$ defining the ring $R_{N, Q}$, a basis $L_{\text{LRSW}} \in \mathbb{N}$, and a secret key $s \in R_{N, Q}$. The algorithm outputs a blind rotation key $b$.
- $\text{BlindRotate}(b, acc, ct, u)$: Takes as input a blind rotation key $b = \text{LRSW}_{b, N, Q, \text{LRSW}}(s, \cdot)^{n \times u}$, an accumulator $acc \in \text{RLWE}_{b, N, Q}(s, \cdot)$, a ciphertext $ct \in \text{LWE}_{b, N, n, 2}(s, \cdot)$, where $s \in \mathbb{Z}_n^t$ with $t \leq 2 \cdot N$, and a vector $u \in \mathbb{Z}_u$. The algorithm outputs $acc$.

**Lemma 8** (Correctness of TFHE-Style Blind Rotation). Let $ct \in \text{LWE}_{b, N, n, 2}(s, \cdot)$ be a LWE sample and denote $ct = [b, a^T] \in \mathbb{Z}_q^{(n+1) \times 1}$. Let $acc \in \text{RLWE}_{b, N, Q}(s, m_{acc})$. If $brK \leftarrow \text{BRKeyGen}(n, s, b, b, N, Q, \text{LRSW}, s)$ and $acc \leftarrow \text{BlindRotate}(b, acc, ct, u)$, then $m_{acc}^\text{out} = m_{acc} \cdot X^b - a^T \mod 2 \cdot N \in R_{N, Q}$ and

$$B_{out} \leq B_{acc} + \left(\frac{2}{3}\right) \cdot n \cdot u \cdot N \cdot \ell_{\text{LRSW}} \cdot L_{\text{LRSW}}^2 \cdot b_{\text{brK}}$$

**Definition 13** (Bootstrapping). The bootstrapping procedure is as follows:

- $\text{Bootstrap}(b, u, ct, rotP, ksK)$: Takes as input a blind rotation key $b = \text{LRSW}_{b, N, Q, \text{LRSW}}(s, \cdot)^{n \times u}$, a vector $u \in \mathbb{Z}_u$, a LWE sample $ct = \text{LWE}_{b, N, n, 2}(s, \cdot) = [b, a^T] \in \mathbb{Z}_q^{(n+1) \times 1}$, a polynomial $rotP \in R_{N, Q}$, and a LWE to LWE key switching key $ksK$. The algorithm outputs $ct_{\text{out}}$.

**Theorem 1** (Correctness of TFHE-Style Bootstrapping). Let $ct \in \text{LWE}_{b, N, n, q}(s, \Delta_q, t, m)$. Let $brK \leftarrow \text{BRKeyGen}(n, s, u, b, b, N, Q, \text{LRSW}, s)$, $sF \leftarrow \text{KeyExt}(s)$, and $ksK \leftarrow \text{KeySwitchSetup}(b, b, N, n, q, sF, s, sF)$. Let $ct_{\text{in}} \leftarrow \text{ModSwitch}(ct, q, 2 \cdot N) \in \text{LWE}_{b, N, n, 2}(s, \Delta_{q, N/2}, m)$. Let $m \leftarrow \text{Phase}(ct_{\text{in}})$, $m = [m]^{2 \cdot N}$ and $rotP \in R_{N, q}$ be such that if $m \in \{0, N\}$, then $\text{Coef}(X^m \cdot rotP)[1] = \Delta_{q, t} \cdot F(m)$, where $F : \mathbb{Z}_q \rightarrow \mathbb{Z}_q$. If $ct_{\text{out}} \leftarrow \text{Bootstrap}(b, u, ct, rotP, ksK)$ and $m \leq \frac{1}{2} - 1$, then $ct_{\text{out}} \in \text{RLWE}_{b, N, n, q}(s, m_{\text{out}})$, where $m_{\text{out}} = \Delta_{q, t} \cdot F(m)$ and

$$B_{out} \leq \left(\frac{q^2}{Q^2}\right) \cdot (B_{BR} + B_{KS})$$

$$+ \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(sF) \cdot (\|\text{Var}(sF)\|_\infty + \|E(sF)\|_\infty^2),$$

where $B_{BR} \leq \left(\frac{2}{3}\right) \cdot n \cdot u \cdot N \cdot \ell_{\text{LRSW}} \cdot L_{\text{LRSW}}^2 \cdot b_{\text{brK}}$ and $B_{KS} \leq \left(\frac{2}{3}\right) \cdot N \cdot \ell_{ksK} \cdot L_{ksK}^2 \cdot b_{ksK}$. If $Q = q$, then $B_{out} \leq B_{BR} + B_{KS}$. Finally we have,

$$B_{N} \leq \left(\frac{2}{3}\right) \cdot N \cdot \ell \cdot L \cdot B_{ct}$$

$$+ \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s) \cdot (\|\text{Var}(s)\|_\infty + \|E(s)\|_\infty^2)$$

if $N \neq 2 \cdot q$, and $B_{N} = B_{ct}$ otherwise, where $B_{ct} = \max(B_{\text{fresh}}, B_{out})$ and $B_{\text{fresh}}$ is the bound in the error variance of a fresh ciphertext.

### III. Our Functional Bootstrapping Technique

In this section, we show our functional bootstrapping algorithm. First, however, we introduce two sub-procedures that help us construct the bootstrapping procedure.

**A. Public Mux Gate and Building a Homomorphic Accumulator**

We introduce a public version of the CMux gate from [CGGI16] which aims to choose one of two given polynomial plaintexts based on an encrypted bit. Furthermore, we show how to use our public Mux gate to build an accumulator for the functional bootstrapping. Roughly speaking, the accumulator builder gets an encrypted bit and based on that bit chooses one of two different rotation polynomials. The difference between the accumulator builder and the public mux is that our accumulator builder needs to switch the encrypted bit from the LWE samples to RLWE samples. The algorithms are depicted in Figure 1. Below we state and prove the correctness theorems for both algorithms.

**Lemma 9** (Correctness of Public Mux). Let $c_{i_j} \in LWE_{b, n, q}(s, m, \Delta_{q, t} \cdot L^{-1})$ where $n, q \in \mathbb{N}$, $m \in \{0, 1\}$, $\ell = [\log_q \ell]$. Let $p_0, p_1 \in R_{N, q}$. If $c_{\text{out}} \leftarrow \text{PubMux}([c_{i_j}]_{j=1}^{1}, p_0, p_1)$, then $c_{\text{out}} \leftarrow \text{GLWE}_{b, n, q}(s, \Delta_{q, t} \cdot p_m)$, where $B_{\text{out}} \leq \left(\frac{1}{2}\right) \cdot N \cdot \ell \cdot L^2 \cdot B_{ct}$. If $p_0, p_1$ are monomials then $N$ disappears from the above inequality.
Fig. 1: On the left we show the public Mux algorithm. On the right is the accumulator builder algorithm.

**Bootstrap**(brK, u, ct, rotP0, rotP1, Lboot, pK, ksK)

**Input:** A bootstrapping key \( \text{brK} = \text{RGSW}_{\text{brK}, N, Q, L_{\text{boot}}} (s, m) \times u \), vector \( u \in Z^u \),

LWE sample \( \text{ct} = \text{LWE}_{\text{brK}, N, Q} (s, m) = [b, a]^T \in Z_q \times Z_q \),
polynomials \( \text{rotP}_0, \text{rotP}_1 \in \mathbb{R}_{N, Q} \),
decomposition \( L_{\text{boot}} \),
LWE to RLWE key switching key \( pK \),
and a LWE to LWE key switching key \( \text{ksK} \).

1. Set \( \text{sgnP} = 1 - \sum_{i=2}^{N} X_i^{-1} \in \mathbb{R}_{N, Q} \).
2. Set \( \text{ctN} \leftarrow \text{ModSwitch} (\text{ct}, q, 2 \cdot N) = [bN, a m]^T \).
3. Compute \( \text{sgnP}_b \leftarrow \text{sgnP} \cdot X^{bN} \in \mathbb{R}_{N, Q} \).
4. Let \( \ell_{\text{boot}} = \log_2 q \).
5. For \( i = 1 \) to \( \ell_{\text{boot}} \) do,
6. Set \( \text{acc}_i \leftarrow [X_i^{-1 - 1} \cdot \text{sgnP}_b \cdot \frac{\Delta_{q, i} q}{2}, 0]^T \).
7. Run \( \text{acc}_{\text{BR}, i} \leftarrow \text{BlindRotate} (\text{brK}, \text{acc}_i, \text{ctN}, u) \).
8. Run \( \text{acc}_{\text{BR}, N} \leftarrow \text{SampleExt} (\text{acc}_{\text{BR}, i}, 1) + [X_i^{-1 - 1} \cdot \frac{\Delta_{q, i} q}{2}, 0]^T \).
9. Set \( \text{rotP}_0 \leftarrow \text{rotP}_0 \cdot X^{bN} \in \mathbb{R}_{N, Q} \).
10. Set \( \text{rotP}_1 \leftarrow \text{rotP}_1 \cdot X^{bN} \in \mathbb{R}_{N, Q} \).
11. Run \( \text{acc}_{\text{CF}} \leftarrow \text{BuildAcc} ([\text{acc}_i]_{i=1}^{\ell_{\text{boot}}}, \text{rotP}_0, \text{rotP}_1, \text{pK}) \).
12. Run \( \text{acc}_{\text{BR}, F} \leftarrow \text{BlindRotate} (\text{brK}, \text{acc}_{\text{CF}}, \text{ctN}, u) \).
13. Run \( \text{c}_Q \leftarrow \text{SampleExt} (\text{acc}_{\text{BR}, F}, 1) \).
14. Run \( \text{c}_{Q, \text{SK}} \leftarrow \text{KeySwitch} (\text{c}_Q, \text{ksK}) \).
15. Return \( \text{ct}_{\text{out}} \leftarrow \text{ModSwitch} (\text{c}_{Q, \text{SK}}, Q, q) \).

**BuildAcc**\((\text{acc}_i)_{i=1}^{\ell_{\text{boot}}}, \text{p}_0, \text{p}_1, \text{ksK})\)

**Input:** Takes as input a vector \( \text{acc}_i \)\( \in R_{N, q} \)
where \( \text{acc}_i \in \text{LWE}_{\text{brK}, N, q} (s, \Delta_{q, i} m \cdot L_{\text{boot}}^{-1}) \),
where \( m \in \{0, 1\} \) and \( \ell = \log_2 q \), and \( \text{p}_0, \text{p}_1 \in \mathbb{R}_{N, q} \)
and a key switching key \( \text{ksK} \).
1. For \( i = 1 \) to \( \ell_{\text{boot}} \) compute \( \text{acc}_{\text{BR}, i} \leftarrow \text{KeySwitch} (\text{acc}_i, \text{ksK}) \).
2. Compute \( \text{ct}_{\text{out}} \leftarrow \text{buildAcc} (\text{acc}_{\text{BR}, i})_{i=1}^{\ell_{\text{boot}}}, \text{p}_0, \text{p}_1 \).
3. Output \( \text{ct}_{\text{out}} \).

Fig. 2: On the left is our full domain bootstrapping algorithm. On the right is the algorithm for setting up the rotation polynomials based on a lookup table.

**Proof.** From the correctness of linear homomorphism of GLWE samples, we have

\[
\text{c}_{\text{out}} = \begin{bmatrix} \Delta_{q, t} p_0 \\ 0 \end{bmatrix} + \sum_{i=1}^{\ell} p_i \Delta_{q, i} \text{GLWE}_{\text{brK}, N, q} (s, m \Delta_{q, i} L_{\text{boot}}^{-1}) \\
= \begin{bmatrix} \Delta_{q, t} p_0 \\ 0 \end{bmatrix} + \text{GLWE}_{\text{brK}, N, q} (s, \Delta_{q, t} m (p_1 - p_0)) \\
= \text{GLWE}_{\text{brK}, N, q} (s, \Delta_{q, t} \cdot p_m),
\]

where \( m \in \{0, 1\} \) and \( \ell = \log_2 q \), and \( \text{p}_0, \text{p}_1 \in \mathbb{R}_{N, q} \)
and a key switching key \( \text{ksK} \).
where $B_{\text{out}} \leq \left( \frac{1}{3} \right) \cdot N \cdot \ell \cdot L^2 \cdot B_c$. If $p_0$, $p_1$ are monomials then $N$ disappears from the above inequality.

**Lemma 10** (Correctness of the Accumulator Builder). Let $[\text{acc}]_{i=1}^n$ where $\text{acc} \in \text{LWE}_{B_{\text{acc}},n,q}(s, \Delta_{q,t} \cdot m \cdot L^{-1})$, where $m \in \{0, 1\}$, $n,q \in \mathbb{N}$, $B_{\text{acc}} \leq q$, $s \in \mathbb{Z}_q^{n \times 1}$, and $\ell = \lceil \log_q q \rceil$. Let $\text{ksK} \leftarrow \text{KeySwitchSetup}(B_{\text{skK}}, n, 1, Q, s, L_{\text{skK}})$, where $N \in \mathbb{N}$, $s \in \mathcal{R}_{N,q}$ and $L_{\text{skK}} \leq q$. Finally let $p_0, p_1 \in \mathcal{R}_{N,q}$. If $c_{\text{out}} \leftarrow \text{BuildAcc}([\text{acc}]_{i=1}^n, p_0, p_1, \text{ksK})$, then $c_{\text{out}} \in \text{RLWE}_{B_{\text{out}},n,q}(s, \Delta_{q,t} \cdot p_m)$, where

$$B_{\text{out}} \leq \left( \frac{1}{3} \right) \cdot N \cdot \ell \cdot L^2 \cdot (B_{\text{acc}} + \left( \frac{1}{3} \right) \cdot n \cdot \ell_{\text{skK}} \cdot L_{\text{skK}}^2 \cdot B_{\text{skK}}).$$

If $p_0, p_1$ are monomials, then the degree $N$ disappears from the above inequality.

**Proof.** From correctness of KeySwitch we have that $\text{acc}_{R,i} \in \text{LWE}_{B_{R,i},N,q}(s, \Delta_{q,t} \cdot m \cdot L^{-1})$, where $B_R \leq B_{\text{acc}} + \left( \frac{1}{3} \right) \cdot n \cdot \ell_{\text{skK}} \cdot L_{\text{skK}}^2 \cdot B_{\text{skK}}$. From correctness of PubMux we have that $c_{\text{out}} \in \text{RLWE}_{B_{\text{out}},N,q}(s, \Delta_{q,t} \cdot p_m)$, where $B_{\text{out}} \leq \left( \frac{1}{3} \right) \cdot N \cdot \ell \cdot L^2 \cdot B_R$. Also from correctness of PubMux we have that if $p_0, p_1$ are monomials, then the degree $N$ disappears from the above inequalities.

### B. The Functional Bootstrapping Algorithm

Our bootstrapping algorithm depicted in Figure 2. There are three phases. First, we compute an extended ciphertext whose plaintext indicates whether the given ciphertext is in $[0, N)$ or in $[N, 2 \cdot N)$. Based on this ciphertext, we build the accumulator. The final step is to blind rotate the rotation polynomial and switch the ciphertext from RLWE to LWE. Remind that the vector $u \in \mathbb{Z}^u$ is such that for all $y \in \mathcal{S}$ with $\mathcal{S} \subseteq \mathbb{Z}_{2 \cdot N}$ there exists $x \in \mathbb{B}^u$ such that $y = \sum_{i=1}^u x[i] \cdot u[i] \mod 2 \cdot N$. Furthermore, we denote as $L_{\text{RGSW}}, L_{\text{skK}}$ and $L_{\text{K}}$ the decomposition basis for RGSW samples, and two different key switch keys. Below we state the correctness theorem.

**Theorem 2** (Correctness of the Bootstrapping). Let $s \in \mathbb{Z}_q^n$ for some $q, n \in \mathbb{N}$, $s \in \mathcal{R}_{N,q}$, and $s_F \leftarrow \text{KeyExt}(s)$. Furthermore, let us define the following:

- $\text{brK} \leftarrow \text{BRKeyGen}(n, s, u, B_{\text{RK}}, N, Q, L_{\text{RGSW}}, s)$.
- $\text{pkK} \leftarrow \text{KeySwitchSetup}(B_{\text{pkK}}, N, 1, Q, s_F, s, L_{\text{pkK}})$.
- $\text{ksK} \leftarrow \text{KeySwitchSetup}(B_{\text{skK}}, n, 1, Q, s_F, s, L_{\text{skK}})$.
- $c_{\text{t}} \in \text{LWE}_{B_{\text{t}},n,q}(s, \Delta_{q,t} \cdot m)$.
- $c_{\text{N}} \leftarrow \text{ModSwitch}(c_{\text{t}}, q, 2 \cdot N)$, and let us denote $c_{\text{N}} \in \text{LWE}_{B_{\text{N}},n,2,N}(s, \Delta_{2,N} \cdot m)$.

Finally, let $\text{m} \leftarrow \text{Phase}(c_{\text{N}})$, $c_{\text{N}}^\prime = m$ and $\text{rotP}_0, \text{rotP}_1 \in \mathcal{R}_{N,q}$ be such that

- if $\text{m} \in \{0, N\}$, then $\text{Coefs}(X^m \cdot \text{rotP}_0)[1] = \Delta_{Q,t} \cdot f(m)$, and
- if $\text{m} \in \{N, 2 \cdot N\}$, then $\text{Coefs}(X^m \cdot \text{rotP}_1)[1] = \Delta_{Q,t} \cdot f(m)$, where $f : \mathbb{Z}_t \mapsto \mathbb{Z}_t'$.

If $c_{\text{out}} \leftarrow \text{Bootstrap}(\text{brK}, u, c_{\text{t}}, \text{rotP}_0, \text{rotP}_1, L_{\text{boot}}, \text{pkK}, \text{ksK})$ and given that $B_N \leq \frac{N}{2}$, then $c_{\text{out}} \in \text{LWE}_{B_{\text{out}},n,q}(s, \Delta_{2,N} \cdot f(m))$, where

$$B_N \leq \left( \frac{2 \cdot N}{q} \right)^2 \cdot B_{\text{ct}} + \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s) \cdot (||\text{Var}(s)||_\infty + ||E(s)||_\infty^2),$$

for $N \neq 2 \cdot q$, and $B_N = B_{\text{ct}}$ otherwise, and $B_{\text{ct}} \leq \max(B_{\text{fresh}}, B_{\text{out}})$. We use the bound $B_{\text{fresh}}$ if $c_{\text{t}}$ is a freshly encrypted ciphertext. Finally the bound $B_{\text{out}}$ of the bootstrapped ciphertext $c_{\text{out}}$ that is as follows

$$B_{\text{out}} \leq \left( \frac{q^2}{Q^2} \right) \cdot (B_{\text{F}} + B_{\text{BR}} + B_{\text{KS}}) + \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s_F) \cdot (||\text{Var}(s_F)||_\infty + ||E(s_F)||_\infty^2),$$

for $Q \neq q$, and $B_{\text{out}} \leq B_{\text{F}} + B_{\text{BR}} + B_{\text{KS}}$ for $Q = q$, where

- $B_{\text{F}} \leq \left( \frac{1}{3} \right) \cdot N \cdot \ell_{\text{boot}} \cdot L_{\text{boot}}^2 \cdot (B_{\text{BR}} + B_{\text{F}})$
- $B_{\text{BR}} \leq \left( \frac{1}{3} \right) \cdot n \cdot u \cdot N \cdot \ell_{\text{RGSW}} \cdot L_{\text{RGSW}}^2 \cdot B_{\text{RK}}$, and
- $B_{\text{KS}} \leq \left( \frac{1}{3} \right) \cdot N \cdot \ell_{\text{skK}} \cdot L_{\text{skK}}^2 \cdot B_{\text{skK}}$, and
- $B_{\text{P}} \leq \left( \frac{1}{3} \right) \cdot \ell_{\text{pkK}} \cdot L_{\text{pkK}}^2 \cdot B_{\text{pkK}}$.

**Proof.** Let us denote $\text{Phase}(\text{ModSwitch}(c_{\text{t}}, q, 2N)) = \text{m} = \Delta_{2,N} \cdot m + e \mod 2N$. From correctness of modulus switching we have $||\text{Var}(s)||_\infty \leq B_N \leq \left( \frac{2N}{q} \right)^2 \cdot B_{\text{ct}} + \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s) \cdot (||\text{Var}(s)||_\infty + ||E(s)||_\infty^2)$. The first $\ell_{\text{boot}}$ blind rotations compute powers of $L_{\text{boot}}$ of the sign function. Specifically from the correctness of blind rotation we have $\Delta_{\Delta_{q,t} \cdot m} \cdot \text{sgnP} \cdot X^\text{m}$. Hence, if $\text{m} \in \mathbb{N}, 2 \cdot N \subseteq \mathbb{Z}_{2 \cdot N}$. If $\text{m} \mod 2N \in \{0, N\}$, then the constant coefficient is equal to $-L_{\text{boot}}^{-1} \cdot \Delta_{\Delta_{q,t} \cdot m} \in \mathbb{Z}_{2 \cdot N}$. Equivalently, the constant coefficient
is $\text{sgn}(m) \cdot L^{i-1} \cdot \frac{\Delta q + i}{2} \in \mathbb{Z}_Q$. Note that $\text{sgn}(m) \mod 2 \cdot N = \text{sgn}(m) \mod t$. From correctness of sample extraction and additive homomorphism of LWE samples we have $\text{acc}_{c,t} \in \text{LWE}_{\text{sample, } N, Q}(s_{\text{acc}}, m_{\text{BR}})$, where $m_{\text{BR}}$ is the error stemming from the blind rotation, and $m_{\text{BR}} = \text{sgn}(m) \cdot L^{i-1} \cdot \frac{\Delta q + i}{2} \cdot \frac{\Delta q + i}{2}$. Note that if $\text{sgn}(m) = 1$, then $m_{\text{BR}} = L^{i-1} \cdot \Delta Q, t$, and if $\text{sgn}(m) = -1$, then $m_{\text{BR}, i} = 0$.

The next step is to create a new accumulator holding the polynomial $\text{rotP}_{\text{inter}} \in \mathcal{R}_{N, Q}$, where $\text{inter} = 0$ if $m + e \in [0, N)$ and $\text{inter} = 1$ if $m + e \in [N, 2N)$. From correctness of the accumulator builder we have the $\text{acc}_{F} \in \text{LWE}_{B, N, Q}(s, \text{rotP}_{\text{inter}})$, where

$$B_{F} \leq \left(\frac{1}{3}\right) \cdot N \cdot L_{\text{out}}^2 \cdot (B_{\text{BR}} + B_{F})$$

with $B_{F}$ being the bound on the error induced by the LWE to RLWE key switching algorithm.

From correctness of blind rotation we have that $\text{acc}_{\text{BR}, F} \in \text{LWE}_{B_{\text{BR}}, N, Q}(s, \text{rotP}_{\text{inter}}, \cdot N^{\text{mod } 2N})$. Hence, from correctness of sample extraction and given that $\Delta Q, t \cdot f(m) = \text{Coefs}(\text{rotP}_{\text{inter}}, \cdot N^{\text{mod } 2N})[1]$, we have $c_{\text{acc}} \in \text{LWE}_{c_{\text{acc}}, N, Q}(s_{\text{acc}}, \Delta Q, t \cdot f(m))$, where $B_{c, Q} \leq B_{F} + B_{\text{BR}}$.

From correctness of key switching we have that $c_{\text{acc}, k_{\text{SK}}} \in \text{LWE}_{B_{\text{acc}}, N, Q}(s, \Delta Q, \cdot t \cdot f(m))$, where $B_{c, Q, k_{\text{SK}}} \leq B_{c, Q} + B_{K_{\text{S}}}$, where $B_{K_{\text{S}}}$ is the bound induced by the key switching procedure. From correctness of modulus switching we have that $c_{\text{out}} \in \text{LWE}_{B_{\text{out}}, N, Q}(s, \Delta Q, \cdot t \cdot f(m))$, where

$$B_{\text{out}} \leq \left(\frac{q^2}{Q}\right) \cdot (B_{F} + B_{\text{BR}} + B_{K_{\text{S}}})$$

$$+ \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s_{\text{acc}}) \cdot \left(\|\text{Var}(s_{\text{acc}})\|_{\infty} + \|E(s_{\text{acc}})\|_{\infty}\right)$$.

Recall that the errors induced by the blind rotation is $B_{\text{BR}} \leq \left(\frac{q}{2}\right) \cdot n \cdot u \cdot N \cdot \text{Var}_{\text{GSSW}} \cdot L_{\text{GSSW}}^2 \cdot B_{\text{SK}}$. Similarly, recall that the error induced by the LWE to RLWE algorithm is $B_{P} \leq \left(\frac{q}{2}\right) \cdot N \cdot L_{\text{pk}}^2 \cdot B_{\text{pk}}$. For LWE to key switching the error is $B_{K_{\text{S}}} \leq \left(\frac{q}{2}\right) \cdot N \cdot \text{Coefs}_{\text{GSSW}} \cdot L_{\text{GSSW}}^2 \cdot B_{\text{SK}}$.

\[\square\]

C. Construction of the Rotation Polynomial

In Figure 2 we describe how to build the polynomials for our bootstrapping to compute arbitrary functions, and by Theorem 3, we show the correctness of our methodology. We want to evaluate BootsMap : $\mathbb{Z}_{\ell} \mapsto \mathbb{Z}_{Q}$. Informally, we partition the rotation polynomials into chunks where each chunk represents a value in the domain of BootsMap. The chunk size is determined by the error bound of the bootstrapped LWE sample. Note that BootsMap already assumes that the domain is scaled to fit the ciphertext modulus. That is, if we want to compute $f : \mathbb{Z}_{\ell} \mapsto \mathbb{Z}_{\ell'}$ for some $t' \in \mathbb{N}$, then we set the lookup table BootsMap$[x] = \Delta Q, t \cdot f(x)$ for all $x \in \mathbb{Z}_{\ell}$.

**Theorem 3.** Let $f : \mathbb{Z}_{\ell} \mapsto \mathbb{Z}_{Q}$ be a function with a lookup table BootsMap such that for all $x \in \mathbb{Z}_{\ell}$, we have that BootsMap$[x + 1] = f(x)$. Let $(\text{rotP}_{0}, \text{rotP}_{1}) \leftarrow \text{SetupPolynomial}(\text{BootsMap}, N)$ for $N \in \mathbb{N}$. Let $y = \lfloor \frac{2N}{\ell} \rfloor$, for $m \in \mathbb{Z}_{\ell}$ and $e \in \left[\frac{N}{2}, \frac{N}{2}\right]$. Then

- $\text{Coefs}(\text{rotP}_{0} \cdot X^{y})[1] = f(m)$ for $y \in [0, N - 1]$, and
- $\text{Coefs}(\text{rotP}_{1} \cdot X^{y})[1] = f(m)$ for $y \in [N, 2 \cdot N - 1]$.

**Correctness of the Polynomial Construction.** Let us first consider the case $y = \lfloor \frac{2N}{\ell} \rfloor$, for $m + e \in [0, N - 1]$. In this case we have

$$\text{rotP}_{0} \cdot X^{y} = -\sum_{i=1}^{y} p_{0}[N - y + i] \cdot X^{i-1}$$

$$+ \sum_{i=y+1}^{N} p_{0}[i - y] \cdot X^{i-1} \in \mathcal{R}_{N, Q}$$

Hence, for $y = 0$, we have $\text{Coefs}(\text{rotP}_{0} \cdot X^{y})[1] = p_{0}[1] = \text{BootsMap}[m + 1] = f(m)$, and $\text{Coefs}(\text{rotP}_{0} \cdot X^{y})[1] = -p_{0}[N - y + 1] = -(-\text{BootsMap}[m + 1]) = f(m)$ for $y \in [1, N - 1]$.

The case $y \in [N, 2 \cdot N - 1]$ is analogous. Let us first denote $y' + N = y$. In particular, we have

$$\text{rotP}_{1} \cdot X^{y} = \text{rotP}_{0} \cdot X^{y' + N} = -\text{rotP}_{1} \cdot X^{y'}$$

$$= -\left(-\sum_{i=1}^{y'} p_{1}[N - y' + i] \cdot X^{i-1} \right.$$
For all parameters sets we set the error variance of fresh (R)LWE samples to 10. Hence, for the second value is the upper bound for a ciphertext after bootstrapping and computing an affine function of size 784. We switch this particular setting as in this case computing the linear homomorphism will not increase the error that stems from the key switching cost of computing multiple functions on an encrypted ciphertext. After the first bootstrapping operation, we may reuse the values to compute the next function on the same input.

For efficiency it is important to note that we might amortize the cost of computing multiple functions on an encrypted ciphertext. After the first bootstrapping operation, we may reuse the values to compute the next function on the same input.

To compute the product \( x \cdot y \), we compute \((\frac{x+y}{2})^2 - (\frac{x-y}{2})^2\). Therefore evaluating the product requires only two functional bootstrapping invocations, with compute the square, and the addition/subtraction induces only a small error when done outside the bootstrapping procedure. Similarly, we can compute \(\max(x, y)\) by as \(\max(x, y) + y\), which costs only one functional bootstrapping.

### Multiple Univariate Functions With the same Input

For efficiency it is important to note, that we might amortize the cost of computing multiple functions on an encrypted ciphertext. After the first bootstrapping operation, we may reuse the values to compute the next function on the same input.

### Extending the Arithmetic

Finally, a powerful tool to extend the size of the arithmetic we can leverage the Chinese Reminder theorem and the fact that the ring \(\mathbb{Z}_t\) for \(t = \prod_{i=1}^{m} t_i\) where the \(t_i\) are pairwise co-prime is isomorphic to the product ring \(\mathbb{Z}_{t_1} \times \cdots \times \mathbb{Z}_{t_m}\). This way we can handle modular arithmetic for a large modulus, while having cheap leveled linear operations, and one modular multiplication per factor. Note that we can compute arbitrary polynomials in \(\mathbb{Z}_t\) in the CRT representation.

To set the rotation polynomials for each component of the ciphertext vector we do as follows. For each number \(x \in \mathbb{Z}_t\), we compute its CRT representation \(x_1, \ldots, x_m\). Then we compute the polynomial \(y = P(x)\) and \(y\)'s CRT representation \([y_i]_{i=1}^{m}\). We set the rotation polynomials for the ith bootstrapping algorithm to map \(x_i\) to \(y_i\) as described in Section III-C. Furthermore, additions and scalar multiplications can still be performed without bootstrapping.
TABLE III: Complexity and security for the parameter sets. We computed the size of the keys and ciphertexts by taking the byte size of every field element and counting the number of field elements.

<table>
<thead>
<tr>
<th>Set</th>
<th>Time [ms]</th>
<th>PK [MB]</th>
<th>CT [KB]</th>
<th>RLWE</th>
<th>LWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDFB:80:6</td>
<td>3655</td>
<td>737.13</td>
<td>1.40</td>
<td>129.5</td>
<td>83.2</td>
</tr>
<tr>
<td>FDFB:100:6</td>
<td>4838</td>
<td>1816.03</td>
<td>2.10</td>
<td>129.5</td>
<td>83.2</td>
</tr>
<tr>
<td>FDFB:80:7</td>
<td>9278</td>
<td>2351.95</td>
<td>1.40</td>
<td>282.4</td>
<td>306.1</td>
</tr>
<tr>
<td>FDFB:100:7</td>
<td>13781</td>
<td>4624.31</td>
<td>2.20</td>
<td>282.4</td>
<td>306.1</td>
</tr>
<tr>
<td>FDFB:80:8</td>
<td>33117</td>
<td>7388</td>
<td>1.40</td>
<td>548.5</td>
<td>596.2</td>
</tr>
<tr>
<td>FDFB:100:8</td>
<td>45266</td>
<td>14318</td>
<td>3.00</td>
<td>548.5</td>
<td>596.2</td>
</tr>
<tr>
<td>TFHE:80:7</td>
<td>7757</td>
<td>921.91</td>
<td>2.43</td>
<td>225.84</td>
<td>289.82</td>
</tr>
<tr>
<td>TFHE:80:8</td>
<td>306</td>
<td>31.72</td>
<td>0.72</td>
<td>116.9</td>
<td>128.3</td>
</tr>
<tr>
<td>TFHE:100:2</td>
<td>321</td>
<td>25.62</td>
<td>0.58</td>
<td>116.9</td>
<td>128.3</td>
</tr>
</tbody>
</table>

TABLE IV: Time to evaluate the MNIST-1-f and MNIST-2-f neural networks. The time to evaluate the neural networks is given in hours. Due to extremely high execution times, we only present estimates for TFHE, which we base on Table VI. For accuracy we show values for \( f = \text{ReLU} \), but stress that we can use arbitrary univariate functions without impacting execution time. We discretized the models using a discretization factor \( \delta = 6 \) for MNIST-1-f and \( \delta = 4 \) for MNIST-2-f.

<table>
<thead>
<tr>
<th>Log₂(t)</th>
<th>Evaluation Time MNIST-1-f</th>
<th>Accuracy MNIST-1-f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>FDFB:80:6</td>
<td>0.027</td>
<td>0.090</td>
</tr>
<tr>
<td>FDFB:100:6</td>
<td>0.11</td>
<td>0.75</td>
</tr>
<tr>
<td>FDFB:80:7</td>
<td>0.08</td>
<td>0.90</td>
</tr>
<tr>
<td>FDFB:100:7</td>
<td>0.35</td>
<td>0.90</td>
</tr>
<tr>
<td>FDFB:80:8</td>
<td>0.17</td>
<td>0.85</td>
</tr>
<tr>
<td>FDFB:100:8</td>
<td>0.76</td>
<td>0.80</td>
</tr>
<tr>
<td>TFHE:80:2</td>
<td>99.24</td>
<td>135.88</td>
</tr>
<tr>
<td>TFHE:100:2</td>
<td>122.18</td>
<td>165.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Log₂(t)</th>
<th>Evaluation Time MNIST-2-f</th>
<th>Accuracy MNIST-2-f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>FDFB:80:6</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>FDFB:100:6</td>
<td>0.23</td>
<td>0.10</td>
</tr>
<tr>
<td>FDFB:80:7</td>
<td>0.37</td>
<td>0.15</td>
</tr>
<tr>
<td>FDFB:100:7</td>
<td>0.65</td>
<td>0.15</td>
</tr>
<tr>
<td>FDFB:80:8</td>
<td>1.1</td>
<td>0.15</td>
</tr>
<tr>
<td>FDFB:100:8</td>
<td>1.8</td>
<td>0.15</td>
</tr>
<tr>
<td>TFHE:80:2</td>
<td>24.56</td>
<td>33.64</td>
</tr>
<tr>
<td>TFHE:100:2</td>
<td>33.64</td>
<td>41.06</td>
</tr>
</tbody>
</table>

IV. PARAMETERS, PERFORMANCE, AND TESTS

First, we note that if the ratio \( Q/q \) is high, then the error after modulus switching from \( Q \) to \( q \) is dominated by the Hamming weight of the LWE secret key \( s \). To minimize the error, we choose \( q = 2 \cdot N \) to avoid another modulus switching. To be able to compute number theoretic transforms we choose \( Q \) prime and \( Q = 1 \mod 2 \cdot N \). An important observation is that the error does not depend on the RLWE secret key \( s \). Hence, we choose \( s \) from the uniform distribution over the Hamming weight of the vector is 64. Recall that LWE with binary keys is asymptotically as secure as the standard LWE [Mic18], and is also used in many implementations of TFHE. To compensate for the loss of security due to a small hamming weight, we choose the standard

<table>
<thead>
<tr>
<th>Input</th>
<th>MNIST-1-f</th>
<th>MNIST-2-f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dense:784:f</td>
<td>Conv2D:4:(6,6):f</td>
</tr>
<tr>
<td>2</td>
<td>Dense:510:f</td>
<td>AvgPool2D:(2,2)</td>
</tr>
<tr>
<td>3</td>
<td>Softmax:10</td>
<td>Conv2D:16:(6,6):f</td>
</tr>
<tr>
<td>4</td>
<td>AvgPool2D:(2,2)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AvgPool2D:16:(3,3):f</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dense:68:f</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Softmax:10</td>
<td></td>
</tr>
</tbody>
</table>

TABLE V: Specification for both models that we train and evaluate and the baseline accuracy of the non-discretised model using floating point numbers.
TABLE VI: Addition and scalar multiplication timings. Timings in microsseconds for FDFB parameter sets. Timings in seconds for TFHE sets. We consider the timings for operations from $\mathbb{Z}_{2^k} \times \mathbb{Z}_{2^k}$ to $\mathbb{Z}_{2^k}$ for $k \in \{6, 7, 8\}$.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Addition</th>
<th>Scalar Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDFB:80b6 [µs]</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>FDFB:100:6 [µs]</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>TFHE:80:2 [s]</td>
<td>13.2</td>
<td>13.2</td>
</tr>
<tr>
<td>TFHE:100:2 [s]</td>
<td>16.2</td>
<td>16.2</td>
</tr>
<tr>
<td>FDFB:80b7 [µs]</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>FDFB:100:7 [µs]</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>TFHE:80:2 [s]</td>
<td>15.6</td>
<td>19.2</td>
</tr>
<tr>
<td>TFHE:100:2 [s]</td>
<td>19.2</td>
<td>19.2</td>
</tr>
<tr>
<td>FDFB:80b8 [µs]</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>FDFB:100:8 [µs]</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>TFHE:80:2 [s]</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>TFHE:100:2 [s]</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

deviation of LWE samples error much higher that the in case of RLWE. For binary components of $s$ we have $||u|| = 1$ which is as in TFHE [CGGI16, CGGI20]. We choose the decomposition bases $L_{\text{boot}}, L_{\text{RGSW}},$ and $L_{\text{pk}}$ to minimize the amount of computation. Due to the higher noise variance of the LWE samples in the key switching key, we choose the decomposition basis $L_{\text{pk}}$ relatively low, but we note that in terms of efficiency, key switching does not contribute much.

To evaluate security, we use the LWE estimator [APS15] commit 612618aca7ca2c5df5b06a0f6c32f1db6807722964 and the Sparse LWE estimator [CSY21] commit 6ab7a6eb based on the LWE Estimator. The LWE Estimator estimates the security level of a given parameter set by calculating the complexity of the meet in the middle exhaustive search algorithm, Coded-BKW [GIS15], dual-lattice attack and small/sparse secret variant [Alb17], lattice-reduction + enumeration [LP11], primal attack via sVSP [AFG14, BG14] and Arora-Ge algorithm [AG11] using Gröbner bases [ACFP14]. The sparse LWE estimator is build on top of [APS15], but additionally considers a variant [SC19] of Howgrave-Graham’s hybrid attack [How07].

We calculate the correctness by taking the standard deviation of the bootstrapping sample. In particular, given that $B$ is the bound on the variance of the error we set $\text{ stddev}_B = \sqrt{B}$, and compute the probability of a correct bootstrapping as $\text{erf} \left( \frac{2 \cdot \text{ stddev}_B}{\sqrt{2}} \right)$. In Table II for the sake of readability, we approximate the probability of getting an incorrect output as a power of 2. That is we find the smallest $i \in \mathbb{N}$ such that $2^{-i} \leq 1 - \text{erf} \left( \frac{2 \cdot \text{ stddev}_B}{\sqrt{2}} \right)$. For sets 1 to 4 we show correctness calculated from the bound $B_N$ as given in Theorem 2. Furthermore, we show correctness when computing affine functions after bootstrapping. For TFHE we take the error bound $B_N$ as given by Theorem 1. In both cases, according to our parameter selection, we have that $B_N$ is computed from $B_{\text{ct}}$ since it is higher than $B_{\text{fresh}}$. Note that $B_{\text{ct}}$ is a ciphertext output by a previous bootstrapping.

Parameter Sets. Table I shows our different parameter sets. Table II gives correctness for each parameter set and the size of the message space, and Table III contains an overview of the ciphertext size, estimated security level and time to run single bootstrapping operation.

We denote the parameter sets FDFB:s:t and TFHE:s:t where $s$ is the security level, and $t$ is the number of bits of the plaintext space for which the probability of having an incorrect outcome is very low. For example, FDFB:80:6 offers 80 bits of security and is targeted at 6-bit plaintexts. We stress that the targeted plaintext space does not exclude larger plaintext moduli. In particular, according to Table II, all parameter sets can handle larger plaintexts, but the probability that the least significant bit of the input message changes obviously grows with the plaintext space size, shifting the scheme from FHE towards homomorphic encryption for approximate arithmetic.

Implementation. We ran our experiments on a virtual machine with 60 cores, featuring 240GB of ram and using Intel Xeon Cascade lake processors, and the measurements are averaged over five runs. We implemented our bootstrapping technique by modifying the latest* version of the PALISADE [PAL] and using the Intel HEXL [HEX] already featured an implementation of [DM14] and [CGGI16]. Note that the timings in PALISADE for TFHE are different than reported in [CGGI16]. This is mostly due to an optimization in TFHE that chooses the modulus $Q$ as $Q = 2^{32}$ or $Q = 2^{64}$ and uses the natural modulo reduction of unsigned int and long C++ types. Then instead of computing the number theoretic transform, TFHE computes the fast Fourier transform. We note that the same optimization is possible for our algorithms.

Evaluation. Table VI shows the efficiency of modular addition and scalar multiplication targeting different plaintext spaces, respectively, for our parameter sets. We compare our approach to operations on binary ciphertexts. To this end, we use the vertical look-up tables from [CGGI17], as they turned out to be faster than a circuit-based implementation. Note that, while vertical LUTs are significantly faster than the horizontal tables, which were also introduced in [CGGI17], they can compute at most one function at the same time. Therefore multiple tables need to be maintained for each output bit, requiring additional memory.

---

*commit 612618aca7ca2c5df5b06a0f6c32f1db6807722964
To evaluate a neural network on encrypted inputs, we discretized two neural networks that recognize handwritten digits from the MNIST dataset. Note that the discretization of a floating-point neural network to integers models with modular arithmetic is a delicate operation. Many operations such as normalization can not be applied in the same manner, and therefore the discretization process often results in a drop of accuracy. The configurations and accuracies are given at Table V. In what follows, we give the notation used to specify the neural networks. We always denote the weights with \( w \) and biases with \( b \).

By \( \text{Dense}:d:f \) we denote a dense layer that on input a vector \( x_i \) outputs a vector \( [f(b_j + \sum_{i=1}^{m} x_i \cdot w_{j,i})]_{j=1}^{d} \).

Convolution layers are denoted as \( \text{Conv2D}:h:(d, d):f \), where \( h \) is the number of filters, \((d, d)\) specify the shape of the filters and \( f \) is an activation function. A \( \text{Conv2D} \) layer takes as input a tensor \( x_{g,i,j}^{c,m,l} \) and outputs

\[
\left[ \left( f(b_{g,i,j}^{k}) + \sum_{g=1, i=1, j=1}^{c,d,d} x_{g,i+\nu', j'+j} \cdot w_{g,i,j}^{k} \right)_{\nu'=0, j'=0}^{m-d,l-d} \right]^{h}_{k=1}.
\]

Average pooling \( \text{AvgPool2D}:(d, d) \) on input a tensor \( x_{g,i,j}^{c,m,l} \) outputs

\[
\left[ \left( \sum_{g=1, i=1, j=1}^{d,d} x_{g,i+\nu', j'+j} \right)_{\nu'=0, j'=0}^{m-d,l-d} \right]_{d}^{c}.
\]

Finally, \( \text{Softmax}:d \) takes as input a vector \( x_i \) computes \( z = [b_j + \sum_{i=1}^{m} x_i \cdot w_{j,i}]_{j=1}^{d} \) and outputs \( \text{Softmax}(z, i) = \exp(z[i]) / \sum_{j=1}^{d} \exp(z[j]) \).

We compare our FHE with our bootstrapping with a functionally equivalent implementation based on vertical LUTs [CGG17]. In particular, for activation functions, we run \( k \), \( k \)-to-1 bit LUTs for \( k \in \{6, 7, 8, 9, 10, 11\} \) and to compute addition and scalar multiplication for the affine function, we must use \( k/2 \)-to-1 bit LUTs. We note that we also tested the method of Carpo et al. [CIM19] to compute the activation function on set TFHE:100?. However, the timing to evaluate the affine function in the LUT-based method is so overwhelming that we did not notice any significant difference. We include the evaluation accuracies for plaintext spaces that exceed the target space. Such settings are extremely useful for computations in which a small amount of error is acceptable, such as activation functions in neural network inference. We can see that our approach significantly outperforms LUT-based techniques. The most important reason for this is that we can compute affine functions within neurons almost instantly due to the linear homomorphism of LWE samples. Binary ciphertext requires the approach significantly outperforms LUT-based techniques. The most important reason for this is that we can compute affine functions within neurons almost instantly due to the linear homomorphism of LWE samples. Binary ciphertext requires the evaluation of expensive LUT at each step. In the case of the LUT-based approach, we note that the computation will be exact. Therefore, the accuracy will be identical to the discretized neural network with applied modulo reduction. Table IV shows the time required to evaluate the whole neural network. We test our network on 20 samples for each plaintext space and achieve the best speedups for sets FDFB:80:6 and FDFB:100:6 that outperform the LUT-based technique by a factor of over 3600 and 1000. Even in the worst case with the MNIST-2-f network, for which the affine functions are significantly smaller, we obtain speedups 44.4 and 29.6 for FDFB:80:8 against TFHE:80:2, and respectively FDFB:100:8 against TFHE:100:2 for 8-bit plaintexts.

By computing the activation functions of the network over 60 cores, we manage to lower the evaluation significantly. To estimate the speedup one would gain by parallelizing the LUT-based technique, we averaged the speedup gained by the FDFB and applied it to the LUT-based timings. We did not parallelize our bootstrapping technique itself. However, we note that there is a lot of room to do so.

V. CONCLUSION

We believe that our evaluations showed that it is practically feasible to evaluate neural networks over encrypted data using fully homomorphic encryption. We emphasize that in our method, the choice of the activation functions does not play a role. We showed that parallelization might play a pivotal role in further reducing the timing for oblivious neural network inference. Therefore, an open question is how much time can be improved when exploiting graphics processing units or larger clusters. Finally, we believe that our method may either be a complementary algorithm to CKKS methods or a competitive alternative that gives the evaluation’s exact results instead of approximate.

REFERENCES


\[ CMux(C, g, h) \]

**Input:** Takes as input \( C \in \text{GGSW}_{B,C,n,N,q,L}(s, m_C) \), where \( m_C \in B \), \( g \in \text{GLWE}_{B,n,N,q}(s, \cdot) \) and \( h \in \text{GLWE}_{B,n,N,q}(s, \cdot) \).

1. Compute \( d \leftarrow g - h \).
2. Compute \( c_{\text{out}} \leftarrow \text{extProd}(C, d)^\top + h \).
3. Output \( c_{\text{out}} \).

---

**Fig. 3:** CMux gate.

---

**APPENDIX**

**Definition 14 (External Product).** The external product \( \text{extProd} \) given as input \( C \in \text{GGSW}_{B,C,n,N,q,L}(s, m_C) \) and \( d \in \text{GLWE}_{B,n,N,q}(s, m_d) \), outputs the following:

\[
\text{extProd}(C, d) = \text{Decomp}_{L,q}(d^\top) \cdot C.
\]

To conveniently describe our SampleExt, we first need to introduce a step function which we call \( \text{NSgn} : \mathbb{R} \to \{-1, 1\} \) and which is defined as

\[
\text{NSgn}(x) = \begin{cases} 
1 & \text{if } x > 0 \\
-1 & \text{otherwise}
\end{cases}
\]

Note that the function is equal in all points to the sign function except for \( x = 0 \), which its image is \(-1\).
Fig. 4: Modulus switching algorithm.

```
ModSwitch(c, Q, q)
Input: Takes as input c = [b, a] ∈ LWE_{B,n,Q}(s, .).
Q ∈ \mathbb{N} and q ∈ \mathbb{N}.
1: Set b_q ← [\frac{Q}{q} \cdot b].
2: Set a_q ← [\frac{Q}{q} \cdot a].
3: Output ct_{out} ← [b_q, a_q] \in \mathbb{Z}_q^{(n+1) \times 1}.
```

Fig. 5: Sample and key extraction. The KeyExt(s) function on input key s ∈ \mathcal{R}_{N,q} outputs its coefficient vector. That is it outputs Coefs(s).

```
KeySwitchSetup(B_{atk}, n, n’, N, q, s, s’, L_{atk})
Input: A bound B_{atk} ∈ \mathbb{N}, dimensions n, n’ ∈ \mathbb{N},
and a degree N ∈ \mathbb{N} and a modulus q ∈ \mathbb{N} that define \mathcal{R}_{N,q}.
and a basis L_{atk} ∈ \mathbb{N}.
Vectors s ∈ \mathbb{Z}_q^n, s’ ∈ \mathbb{Z}_{N,q}^{n’} and a basis L_{atk} ∈ \mathbb{N}.
1: Set ℓ_{atk} = |\log\ell_{atk} q|.
2: For i ∈ [n], j ∈ [ℓ_{atk}]
3: ksK[i, j] ← GLWE_{B_{atk}, n’, N, q}(s’, s[i] \cdot L_{atk}^{-1}).
4: Output ksK ∈ GLWE_{B_{atk}, n’, N, q}(s’, .)_{n \times ℓ_{atk}}.
```

```
KeySwitch(c, ksK)
Input: Takes as input c = [b, a] \in LWE_{B,n,q}(s, .)
and a key switching key ksK ∈ GLWE_{B_{atk}, n’.N,q}(s’, .)_{n \times ℓ_{atk}}.
1: Denote ℓ_{atk} = |\log\ell_{atk} q|.
2: Compute A ← Decomp_{B_{atk}, q}(a) ∈ \mathbb{Z}_{ℓ_{atk}}^{n \times ℓ_{atk}}.
3: Output ct_{out} ← [b, 0] - \sum_{i=1}^{n} \sum_{j=1}^{ℓ_{atk}} A[i, j] \cdot ksK[i, j].
```

Fig. 6: Key switching algorithm and its setup.

```
BRKeyGen(n, s, u, B_{atk}, N, Q, L_{RGSW}, s)
Input: A dimension n ∈ \mathbb{N}, a secret key s ∈ \mathbb{Z}_q^n, a vector u ∈ \mathbb{Z}^n, a bound B_{atk}, a degree N ∈ \mathbb{N},
a modulus Q defining the ring \mathcal{R}_{N,q}, a basis L_{RGSW} ∈ \mathbb{N},
and a secret key s ∈ \mathcal{R}_{N,q}.
1: Set a matrix Y ∈ \mathbb{B}^{n \times n} as follows:
2: For i ∈ [n] do
3: Set the i-th row of Y, to satisfy s[i] = \sum_{j=1}^{n} Y[i, j] \cdot u[j].
4: For i ∈ [n], j ∈ [u]
5: Set brK[i, j] = RGSW_{B_{atk}, N, Q, L_{RGSW}}(s, Y[i, j]).
6: Output brK.
```

```
BlindRotate(brK, acc, ct, u)
Input: Blind rotation key brK = RGSW_{B_{atk}, N, Q, L_{RGSW}}(s, .)_{n \times n},
an accumulator acc ∈ LWE_{B_{atk}, N, Q}(s, .),
a ciphertext ct ∈ LWE_{B_{atk}, N, Q}(s, .),
a vector u ∈ \mathbb{Z}^n.
1: Let c = [b, a] ∈ \mathbb{Z}_q^{(n+1) \times 1}.
2: For i ∈ [n] do
3: For j ∈ [u] do
4: acc ← Cmux(brK[i, j], acc \cdot X^{-s[i]} u[j], acc).
5: Output acc.
```

Fig. 7: Blind Rotation and its setup.
of lemma 1 - Linear Homomorphism of GLWE samples. Denote \( c = [b, a_c]^\top \), where \( b_c = a_c^\top \cdot s + m_c + c_e \) and \( d = [b_d, a_d^\top]^\top \), where \( b_d = a_d^\top \cdot s + m_d + c_d \). Then we have \( c_{\text{out}} = [b, a_c^\top] = c + d = [b_c + b_d, (a_c + a_d)^\top]^\top \), and \( b = a^\top \cdot s + m + c \), where \( m = m_c + m_d \) and \( c = c_e + c_d \). Thus, we have that \( \text{Error}(c_{\text{out}}) = c_e + c_d \), and \( ||\text{Var}(\text{Error}(c_{\text{out}}))|| \leq B_c + B_d \).

Let \( \delta \in \mathcal{R}_{N,L} \) and \( c_{\text{out}} = c \cdot \delta = [b, a_c^\top]^\top \), where \( a_b = a \cdot \delta \) and \( b_b = a_b^\top \cdot s + m_c \cdot \delta + c_e \cdot \delta \).

If \( \delta \) is a constant monomial with \( ||\delta||_\infty \leq B_{\delta} \), then we have \( ||\text{Var}(\text{Error}(c_{\text{out}}))|| \leq ||B_c^2 \cdot \text{Var}(c_c)||_\infty \leq B_d^2 \cdot B_c \). If \( \delta \) is a monomial with its non-zero coefficient uniformly distributed over \([0, L - 1]\), then we have \( ||\text{Var}(\text{Error}(c_{\text{out}}))||_\infty = \left(\frac{1}{2} \cdot L^2 \cdot \text{Var}(c_c)\right)_\infty \). This follows from the fact that \( \text{Var}(\delta) = \left((L - 1) - 0 + 1\right)^2 - 1 = L^2 - 1 \leq L^2 \), and \( E(\delta) = \frac{L - 1 + 0}{2} = \frac{L}{2} \). Then for some random variable \( X \) with \( E(X) = 0 \) and assuming \( \delta \) and \( X \) are uncorrelated we have \( \text{Var}(\delta \cdot X) = \text{Var}(\delta) \cdot \text{Var}(X) + \text{Var}(\delta) \cdot \text{Var}(X) \leq \text{Var}(X) \cdot \left(\frac{L^2}{4} + \frac{L^2}{4}\right) \leq \text{Var}(x) \cdot \frac{L^2}{4} \).

If \( \delta \in \mathcal{R}_{N,L} \) is a constant polynomial with \( ||\delta||_\infty \leq B_{\delta} \) then \( ||\text{Var}(\text{Error}(\delta \cdot c))||_\infty \leq N \cdot B_{\delta}^2 \cdot B_c \). If \( \delta \in \mathcal{R}_{N,L} \) has coefficients distributed uniformly in \([0, L - 1]\), then we have \( ||\text{Var}(\text{Error}(\delta \cdot c))||_\infty \leq \frac{1}{2} \cdot N \cdot L^2 \cdot B_c \). □

of lemma 2 - Linear Homomorphism of GGSW samples. The proof follows from the fact that rows of GGSW samples are GLWE samples.

of lemma 3 - Correctness of the External Product. Denote \( C = A + m_c \cdot G_{f,L,(n+1)} \in \mathcal{R}_{N,q}^{(n+1)\times(n+1)} \) and \( d = [a, a_c]^\top \in \mathcal{R}_{N,q}^{(n+1)\times1} \). To ease the exposition, denote \( r = \text{Decomp}_q(d^\top) \in \mathcal{R}_d^{1\times(n+1)\text{d}} \) and \( A = [c_1, \ldots, c_{(n+1)\text{d}}]^\top \), where for \( i \in [(n+1)\text{d}] \) the vector \( c_i \) is the transposed GLWE sample of zero making up the row of the matrix \( A \). Then from the definition of external product we have \( r \cdot C = r \cdot A + m_c \cdot r \cdot G_{f,L,(n+1)} \). From correctness of the gadget decomposition, we have that \( r \cdot G_{f,L,(n+1)} = d \in \mathcal{R}_{N,q}^{(n+1)\times1} \). Then, \( c' = r \cdot A = \sum_{i=1}^{(n+1)\text{d}} r[i] \cdot c_i \in \mathcal{R}_{N,q}^{(n+1)\times1} \) is a transposed GLWE sample of zero. Thus we can write \( c = \sum_{i=1}^{(n+1)\text{d}} r[i] \cdot c_i + m_c \cdot d \). We have \( c' = c \) is a valid GLWE sample of \( m_c \cdot m_d \). Finally \( B = ||\text{Var}(\text{Error}(c'))||_\infty \) follows from the analysis of linear combinations of GLWE samples. In particular, we have

- \( B \leq \frac{1}{2} \cdot N \cdot (n + 1) \cdot \ell \cdot L^2 \cdot B_C + N \cdot B_{m_c}^2 \cdot B_d \) in general, and
- \( B \leq \frac{1}{3} \cdot N \cdot (n + 1) \cdot \ell \cdot L^2 \cdot B_C + B_{m_c}^2 \cdot B_d \) when \( m_c \) is a monomial.

of lemma 4 - Correctness of the CMux Gate. Let us first denote \( d = g - h = \text{GLWE}_{B_g}(s, m_g) - \text{GLWE}_{B_h}(s, m_h) = \text{GLWE}_{B_g}(s, m_d) \). Then from correctness of the external product and linear homomorphism of GLWE samples we have

\[
c_{\text{out}} = \text{extProd}(C, d) + h = \text{extProd}(\text{GGSW}_{B_c,n,N,q,L}(s, m_C), \text{GLWE}_{B_g}(s, m_d)) + \text{GLWE}_{B_h}(s, m_h) = \text{GLWE}_{B}(s, m_{\text{out}}),
\]

where \( m_{\text{out}} = m_C \cdot (m_g - m_h) + m_h \). Hence if \( m_{\text{out}} = 0 \), we have \( m_{\text{out}} = m_h \), and if \( m_{\text{out}} = 1 \), we have \( m_{\text{out}} = m_g \).

Fig. 8: TFHE Bootstrapping.
Recall that
\[\text{Error}(c_{\text{out}}) = \sum_{i=1}^{(n+1) \cdot \ell} r[i] \cdot c_i + m_c \cdot c_d + c_h,\]
\[= \sum_{i=1}^{(n+1) \cdot \ell} r[i] \cdot c_i + m_c \cdot c_g - m_c \cdot c_h + c_h.\]
Thus if we have \(m_c = 0\), then \(\text{Error}(c_{\text{out}}) = \sum_{i=1}^{(n+1) \cdot \ell} r[i] \cdot c_i + c_h\), and if \(m_c = 1\), we obtain \(\text{Error}(c_{\text{out}}) = \sum_{i=1}^{(n+1) \cdot \ell} r[i] \cdot c_i + c_g\).
Finally, we can place an upper on the variance \(B \leq \frac{1}{4} \cdot (n+1) \cdot N \cdot \ell \cdot L^2 \cdot B_C + \max(B_A, B_h).\)

**of lemma 5 - Correctness of Modulus Switching.** Denote \(c = (h, a)\), where \(b = a^T \cdot s + \Delta Q_t \cdot m + e \in \mathbb{Z}_q\) and \(\|\text{Var}(e)\|_\infty \leq B_c\). From the assumption that \(Q = 0 \mod t\), we have \(\Delta Q_t = [\frac{Q}{t}] = \frac{Q}{t}\). Then we have that the following:
\[\text{Phase}(\frac{q}{Q} \cdot c) = [\frac{q}{Q} \cdot b] - [\frac{q}{Q} \cdot a^T] \cdot s\]
\[= \frac{q}{Q} \cdot b + r - \frac{q}{Q} \cdot a^T \cdot s + r^T \cdot s\]
\[= \frac{q}{t} \cdot \Delta Q_t \cdot m + \frac{q}{Q} \cdot e + r + r^T \cdot s\]
\[= \frac{q}{t} \cdot m + \frac{q}{Q} \cdot e + r + r^T \cdot s\]
where \(r \in \mathbb{R}\) and \(r \in \mathbb{R}^n\) are in \([-\frac{1}{2}, \frac{1}{2}]\). Furthermore, \(r\) and \(r\) are close to uniform distribution over their support. Denote as \(t \in \mathbb{Z}\) a uniformly random variable over \((-1, 0, 1)\). Clearly we have that \(\text{Var}(r) \leq \text{Var}(t)\) and similarly for all entries of \(r\).
Recall that \(\|\text{Var}(t)\|_\infty = \frac{q}{2}\) and \(\|E(t)\|_\infty = 0\). Let us denote \(\text{Ham}(s) = h\). Therefore, we have
\[\|\text{Var}(\text{Error}(\frac{q}{Q} \cdot c)))\|_\infty\]
\[= \|\text{Var}(\frac{q}{Q} \cdot e + r + r^T \cdot s)\|_\infty\]
\[= \|\text{Var}(\frac{q}{Q} \cdot e)\|_\infty + \|\text{Var}(r)\|_\infty + \|\text{Var}(r^T \cdot s)\|_\infty\]
\[\leq \frac{q^2}{Q^2} \cdot B_c + \frac{2}{3} + \sum_{i=1}^{\text{Ham}(s)} \|\text{Var}(r[i] \cdot s[i])\|_\infty\]
\[\leq \frac{q^2}{Q^2} \cdot B_c + \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s) \cdot (\|\text{Var}(s)\|_\infty + \|E(s)\|_\infty^2)\]

The last inequality follows from the fact that for all \(i \in \text{Ham}(s)\) we have
\[\|\text{Var}(r[i] \cdot s[i])\|_\infty \leq \|((E(s[i])^2 \cdot \text{Var}(t)) \cdot (E(t)^2 \cdot \text{Var}(s[i]) + \text{Var}(s[i]) \cdot \text{Var}(t))\|_\infty\]
\[= \|((E(s[i])^2 \cdot \frac{2}{3} + \text{Var}(s[i])) \cdot \frac{2}{3})\|_\infty\]
\[= \frac{2}{3} \cdot ((\|E(s)\|_\infty^2 + \|\text{Var}(s)\|_\infty^2).\]
In the above we assume that \(\|\text{Var}(s[i])\|_\infty = \|\text{Var}(s)\|_\infty^2\) for all \(i \in [n]\).

**of lemma 6 - Correctness of Sample Extraction.** Denote \(s = \text{Coefs}(s) \in \mathbb{Z}_q^N\) and \(b' = \text{Coefs}(b)[k] \in \mathbb{Z}_q\) and \(a = \text{Coefs}(a) \in \mathbb{Z}_q^N\). Denote \(b = a \cdot s + m + e \in \mathbb{R}_{N,q}\), \(m = \sum_{i=1}^N m_i \cdot X_i^{-1}\) and \(e = \sum_{i=1}^N e_i \cdot X_i^{-1}\) then it is easy to see, that \(b' = \text{Coefs}(a \cdot s)[k] + \text{Coefs}(m)[k] + \text{Coefs}(e) = \text{Coefs}(a \cdot s)[k] + m + e\). Furthermore, denote \(a = \sum_{i=1}^N a_i \cdot X_i^{-1}\) and \(s = \sum_{i=1}^N s_i \cdot X_i^{-1}\). Denote \(s \cdot a = (\sum_{i=1}^N a_i \cdot X_i^{-1}) \cdot (\sum_{i=1}^N s_i \cdot X_i^{-1})\). By expanding the product we have that the \(k\)-th coefficient of \(s \cdot a\) is given by \(\sum_{i=1}^N s_i \cdot N\text{Sgn}(k - i + 1) \cdot a_{(k-i \mod N)+1}\). Note that when working over the ring \(\mathbb{R}_{N,q}\) defined by the cyclotomic
polynomial $\Phi_N = X^N + 1$, we have that for $(k - i \mod N) + 1 \leq 0$, the sign of $a_{(k-i \mod N)+1}$ is reversed, thus we multiply the coefficient with $\NSgn(k - i + 1)$. Now if we set $a'[i] = \NSgn(k - i + 1) \cdot a_{(k-i \mod N)+1}$, then the extracted sample is a valid LWE sample of $m_k$ with respect to key $s$. Finally, since the error in $e_k$ is a single coefficient of $e$, we have that $B_{\text{ct}} = B$.

**of lemma 7 - Correctness of Key Switching.** Let us first note that for all $i \in [n]$ we have

$$[b_i, a_i^T] = \sum_{j=1}^{\ell_{\text{ks}}} A[i, j] \cdot \ksK[i,j] \cdot \GLWE_{B_{\text{ksk}}, n'.N,q}(s', s[i] \cdot L^2_{\text{ksk}})$$

where $B_1 \leq \left(\frac{1}{\Delta}\right) \cdot \ell_{\text{ksk}} \cdot L^2_{\text{ksk}} \cdot B_{\text{ksk}}$. Then note that

$$[b', a'^T] = \sum_{i=1}^{n} \GLWE_{B_1, n'.N,q}(s', a[i] \cdot s[i])$$

where $B_2 \leq n \cdot B_1 \leq \left(\frac{1}{\Delta}\right) \cdot n \cdot \ell_{\text{ksk}} \cdot L^2_{\text{ksk}} \cdot B_{\text{ksk}}$. Let us denote $b = a^T \cdot s + m + e$ and $b' = a'^T \cdot s + a^T \cdot s + e'$, then

$c_{\text{out}} = [b, 0]^T - [b', a'^T]^T$

$$= [-a'^T \cdot s' + m + e - e']$$

Hence, $c_{\text{out}}$ is a valid GLWE sample of $m$ with respect to key $s'$ and

$$||\text{Var}(\text{Error}(e))||_\infty \leq B$$

$$\leq ||e - e'||_2 \leq B_c + B_2$$

$$\leq B_c + \left(\frac{1}{\Delta}\right) \cdot n \cdot \ell_{\text{ksk}} \cdot L^2_{\text{ksk}} \cdot B_{\text{ksk}}.$$
\[ ||E(s)||_\infty^2. \] From the correctness of blind rotation we have \( \text{acc}_{BR,F} \in \text{RLWE}_{B_{BR},N,Q}(s, \text{rotP} \cdot X^{m'} \mod 2^N) \), where \( B_{BR} \) is the bound induced by the blind rotation algorithm. From the assumption on \( \text{rotP} \), given that \( m' \leq N \) and the correctness of sample extraction we have \( c_Q \in \text{LWE}_{B_{c,Q},N} \), where \( B_{c,Q} \leq B_{BR} \).

From correctness of key switching we have that \( c_Q,ksK \in \text{LWE}_{B_{c},n,q} \), where \( B_{c,Q,ksK} \leq B_{c,Q} + B_{KS} \), where \( B_{KS} \) is the bound induced by the key switching procedure. From correctness of modulus switching we have that \( cl_{out} \in \text{LWE}_{B_{out},N,q} \), where

\[
B_{out} \leq \left( \frac{q^2}{|Q|^2} \right) \cdot (B_{BR} + B_{KS})
+ \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s_F) \cdot (||\text{Var}(s_F)||_\infty + ||E(s_F)||_\infty^2).
\]

To summarize we have:

\[
B_{out} \leq \left( \frac{q^2}{|Q|^2} \right) \cdot (B_{BR} + B_{KS})
+ \frac{2}{3} + \frac{2}{3} \cdot \text{Ham}(s_F) \cdot (||\text{Var}(s_F)||_\infty + ||E(s_F)||_\infty^2),
\]

where

\[
B_{BR} \leq \left( \frac{2}{3} \right) \cdot n \cdot u \cdot N \cdot \ell_{RGSW} \cdot L_{RGSW}^2 \cdot B_{brK}, \text{ and}
B_{KS} \leq \left( \frac{1}{3} \right) \cdot N \cdot \ell_{ksK} \cdot L_{ksK}^2 \cdot B_{ksK}.
\]