
On the Security of Doubly Efficient PIR

Elette Boyle∗ Justin Holmgren† Fermi Ma‡ Mor Weiss§

Abstract

Doubly Efficient Private Information Retrieval (DEPIR) enables queries to an externally held database
while hiding the identity of the queried indices, strengthening standard Private Information Retrieval
(Chor, Goldreich, Kushilevitz, Sudan FOCS’95) with an efficiency requirement that the computational
demands of both client and server are sublinear in the database size. The first DEPIR candidate con-
structions were recently put forth, based on a new type of assumption relating to indistinguishability of
moderate-degree polynomials from random functions when given permuted versions of their evaluation
graphs (Boyle, Ishai, Pass, Wootters TCC’17 and Canetti, Holmgren, Richelson TCC’17). To aid in
the cryptanalytic study of this new assumption, the work of (BIPW TCC’17) put forth a simpler “toy
conjecture” variant.

In this note, we present an attack that provably breaks the BIPW TCC’17 toy conjecture. The
attack identifies a natural embedding of permuted samples into a higher-dimensional linear space for
which permuted polynomial samples will be rank deficient. We note, however, that our attack does
not apply to the real assumption underlying the constructions, and thus the candidates still stand. We
discuss extensions of the attack and present an alternative “new toy conjecture” for future study.

Similar results were independently obtained by (Blackwell and Wootters, ArXiv’21).

1 Introduction

Private Information Retrieval (PIR) [CGKS95, KO00] schemes are protocols that enable a client to access
entries of a database stored on a remote server (or multiple servers), while hiding from the server(s) which
items are retrieved.

It is possible to privately retrieve bits of an N -bit database under a variety of cryptographic as-
sumptions, with as little as polylog(N) bits of communication, and with client running time of just
polylog(N). However, Beimel et al. [BIM00] observed that the security guarantee inherently requires
the server’s computation to be Ω(N) per query. They proposed circumventing this lower bound with a
pre-processing stage, and constructed a multi-server preprocessing PIR scheme that is doubly efficient.
That is, both the client and the server perform o(N) per-query computation after an initial preprocessing
computation of size Ω(N).

Achieving doubly-efficient PIR in the single server setting remained completely open until the recent
independent works of [BIPW17, CHR17] proposed the first candidate constructions. The security of their
candidates is based on a new conjecture that permuted local-decoding queries (for a Reed-Muller code
with suitable parameters) are computationally indistinguishable from uniformly random sets of points.

In service of future cryptanalysis, [BIPW17] proposed a particular simple “toy conjecture” that was
inspired by (but formally unrelated to) their SK-DEPIR scheme.

Our Contributions. In this work, we:

• identify an efficient attack that breaks the aforementioned toy conjecture.
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• put forth a modified toy conjecture, as a simple target for cryptanalysis.

• put forth an extended conjecture that formally implies the existence of an SK-DEPIR with non-
trivial efficiency. We believe this extended conjecture is simpler and more amenable to analysis
than the assumptions underlying previous SK-DEPIR schemes.

Concurrent Work. Independent and concurrent to this work, Blackwell and Wootters [BW21] ob-
served essentially the same attack on the [BIPW17] toy conjecture, and proposed essentially the same
modification to the toy conjecture. They did not extend the toy conjecture to one that implies a SK-
DEPIR scheme.

2 Attack on the [BIPW17] Toy Conjecture

2.1 The Conjecture

Towards understanding the security of their DEPIR construction, [BIPW17] proposed the following
conjecture.

Conjecture 1. Let Fq be a finite field where q ≈ λ2. Let p1, . . . , pm be random degree-λ polynomials
over Fq, for m = λ100. Let r1, . . . , rm be random functions from Fq to Fq. Then the following two
distributions are computationally indistinguishable, over the choice of random permutation π ← SFq×Fq .
Here, elements of each set Si or Ti appear in canonical sorted order (not ordered by x ∈ Fq).

1. Distribution D0: Permuted low-degree polynomials: (P1, . . . , Pm), for Pi = {π(x, pi(x)) : x ∈ Fq}.
2. Distribution D1: Permuted random functions: (R1, . . . , Rm), for Ri = {π(x, ri(x)) : x ∈ Fq}.
We first restate an equivalent form of the conjecture in a way that is more amenable to explaining

our attack.

Definition 2.1 (Function Graphs). Let f : X → Y be a a function. The graph of f , denoted G(f), is
defined as the set

G(f)
def
=
{

(x, y) ∈ X × Y : y = f(x)
}
.

Definition 2.2 (Indicator Strings). Let S be a subset of a universe U . The indicator of S (in U), denoted
1S, is defined as the string in {0, 1}U with

(1S)i
def
=

{
1 if i ∈ S
0 otherwise.

Definition 2.3 (Permutation Action on Strings). For any sets X and Σ, we let SX act on ΣX in the
following (standard) way. For any permutation π ∈ SX and x ∈ ΣX , we have

(π · x)i
def
= xπ−1(i).

Restated Conjecture 1. For b ∈ {0, 1}, define the distribution ensemble Db as follows:

1. Let Fq be a finite field where q ≈ λ2.

2. For m = λ100, sample i.i.d. functions f1, . . . , fm : Fq → Fq, where:

• If b = 0 each fi is a uniformly random degree-λ polynomial.

• If b = 1 each fi is a uniformly random function.

3. Sample a uniformly random permutation π ← SFq×Fq and output
(
π · 1G(f1), . . . , π · 1G(fm)

)
.

Then D0 and D1 are computationally indistinguishable.
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2.2 A Warm-Up Attack

For the sake of intuition, we first describe an attack on a modified version of the conjecture that is much
more easily broken. Namely, we change step 3 in Restated Conjecture 1 to:

3’. Sample a uniformly random permutation σ ← SFq and output (σ · f1, . . . , σ · fm), where each fi is
interpreted as the string (fi(0), fi(1), . . . , fi(q − 1)).

In words, the uniformly random permutation in the modified conjecture is applied to the truth table
of the function rather than graph of the function. Equivalently, this modification can be viewed as only
permuting the order of the columns in the graph of the function.

The Attack There is a very simple attack on the modified conjecture, distinguishing D0 from D1

with negligible (and one-sided) error: Given (σ · f1, . . . , σ · fm), output b = 0 if and only if

dim
(

span
{
σ · f1, . . . , σ · fm

})
< q. (1)

The left-hand side is just the rank of the matrix whose ith column is σ · fi, and is thus computable in
polynomial time by Gaussian elimination.

The Analysis We use the standard fact that degree-λ polynomials form a (λ+1)-dimensional subspace
of all functions. Thus when b = 0, we will always have

dim
(

span
{
f1, . . . , fm

})
≤ λ+ 1 < q.

Random functions do not have this property: for any proper subspace V ⊆ Fqq, a random function

f : Fq → Fq will lie in V with probability at most 1/q. There are qq−1
q−1

≤ qq maximal (i.e., co-dimension
1) subspaces of Fqq, so when f1, . . . , fm are i.i.d. uniform, the probability that f1, . . . , fm are all contained
in any subspace V ⊆ Fqq is at most qq · q−m = qq−m, which is negligible in λ by our choice of parameters.
Thus when b = 1, we have with overwhelming probability that

dim
(

span
{
f1, . . . , fm

})
= q.

Finally, we observe that for any permutation σ and vectors f1, . . . , fm, we always have

dim
(

span
{
σ · f1, . . . , σ · fm

})
= dim

(
span

{
f1, . . . , fm

})
,

since the two sides are the ranks of matrices with identical row spaces.

2.3 The Full Attack

We now turn our attention back to Restated Conjecture 1. Our attack is most naturally presented in a
more general setting:

Proposition 2.4 (Generalized Attack). Let V0 ( V1 ⊆ FXq be arbitrary linear spaces parameterized by
a security parameter λ ∈ N, with q and |X| polynomially bounded. Let m = m(λ) be a sufficiently large
integer (m ≥ q2|X|λ suffices).

For b ∈ {0, 1}, define the distribution ensemble Db (also parameterized by λ) as follows:

1. Sample i.i.d. uniform f1, . . . , fm ← Vb.

2. Sample a uniformly random permutation π ← SX×Fq

3. Output
(
π · 1G(f1), . . . , π · 1G(fm)

)
.

Then D0 and D1 are distinguishable in polynomial time. Moreover, the distinguishing error is negli-
gible in λ and one-sided (a sample from D0 is never mistakenly identified as coming from D1).

Proposition 2.4 falsifies Restated Conjecture 1 with X as Fq, V0 as the space of degree-λ polynomials,

and V1 as all of FFq
q .
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The Attack The distinguisher looks very similar to that of our warm-up attack. Given(
π · 1G(f1), . . . , π · 1G(fm)

)
,

output b = 0 if and only if

dim
(

span
{
π · 1G(f1), . . . , π · 1G(fm)

})
< τ,

where τ is a threshold that depends on V0, V1. As before, the left-hand side is computable in polynomial
time using Gaussian elimination.

The Analysis At a high level, we show that the distributions of 1G(fi) in D0 and D1, although more
complicated, retain the core properties that enabled our warm-up attack. We view each 1G(fi) as an

element of FX×Fq
q and prove that:

• Ṽ0
def
= span

{
1G(f)

}
f∈V0

is a proper subspace of Ṽ1
def
= span

{
1G(f)

}
f∈V1

.

• When f ← V1 is uniformly random, 1G(f) is not too concentrated in any proper subspace of Ṽ1.
This implies that polynomially many samples of 1G(f) for f ← V1 are very likely to span all of

Ṽ1, and will have higher dimension than Ṽ0. In particular, we show in Lemma 2.8 that dim(Ṽ1)qλ
samples suffices, which is at most q2|X|λ.

To prove these two properties, it will prove fruitful for us to first characterize functions of the form
f 7→ 〈v,1G(f)〉 for some vector v ∈ Fq·|X|.

Lemma 2.5. Let F be a finite field and let φ ∈ FFX be arbitrary (that is, φ takes as input a function
f : X → F and outputs an element of F). With f indeterminate, φ(f) can be written in the form
〈v,1G(f)〉 if and only if it can be written in the form

∑
x∈X gx

(
f(x)

)
for functions {gx : F→ F}.

Proof. Let f : X → F be a function. Writing 1G(f) =
∑
x∈X 1{(x,f(x))}, we see that

〈v,1G(f)〉 =
〈
v,
∑
x∈X

1{(x,f(x))}
〉

=
∑
x∈X

〈v,1{(x,f(x))}〉

=
∑
x∈X

v(x,f(x)).

This is equal to
∑
x gx

(
f(x)

)
if we have

gx(y) = v(x,y) for all x ∈ X, y ∈ F. (2)

For any v, one can define {gx} that satisfy Eq. (2), and also vice versa.

We can now characterize the effect of the mapping f 7→ 1G(f) on linear subspaces of FXq .

Lemma 2.6. Let V0 ⊆ V1 be linear subspaces of FX for a field F and a set X. For b ∈ {0, 1}, define

Ṽb
def
= span

{
1G(f)

}
f∈Vb

Then Ṽ0 = Ṽ1 if and only if V0 = V1.

Proof. Clearly if V0 = V1 then Ṽ0 = Ṽ1. Conversely, suppose V0 ( V1 and take y ∈ V ⊥0 \ V ⊥1 . Writing
y = (yx)x∈X , let gx : F → F be the function that multiplies its input by the scalar yx. Then for any
f ∈ FX we have 〈f,y〉 =

∑
x∈X gx(f(x)). Since y ∈ V ⊥0 \V ⊥1 , we have

∑
x∈X gx(f(x)) = 0 for all f ∈ V0,

but not for all f ∈ V1. By Lemma 2.5, we can translate this to a vector v ∈ Ṽ ⊥0 \ Ṽ ⊥1 , which establishes
that Ṽ0 6= Ṽ1.
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Lemma 2.7. Let V ⊆ FXq be an arbitrary subspace, and let Ṽ denote span
{
1G(f)

}
f∈V . Then for every

Ũ ( Ṽ ,

Pr
F←V

[
1G(F ) ∈ Ũ

]
≤ q − 1

q
.

Proof. Let u be a vector in Ũ⊥ \ Ṽ ⊥, and let {gx : Fq → Fq}x∈X be functions (given by Lemma 2.5)
such that 〈u,1G(f)〉 =

∑
x gx

(
f(x)

)
for all f ∈ FXq . We then have

Pr
F←V

[
1G(F ) ∈ Ũ

]
≤ Pr
F←V

[
〈u,1G(F )〉 = 0]

= Pr
F←V

[ ∑
x∈X

gx
(
F (x)

)
= 0
]
. (3)

Note that F can be written F =
∑
i αivi, where {vi} is a basis for V and {αi} are i.i.d. uniform on Fq.

We first show that ∑
x∈X

gx
(
F (x)

)
(4)

is a non-zero polynomial in {αi} of degree at most q− 1. To establish the degree bound, we observe that
for every x:

1. gx has degree q − 1, and

2. F (x) is a degree-1 polynomial in {αi}.
The first claim is by Lagrange interpolation, and uses no structure of gx other than that it is a function
mapping Fq → Fq. The second claim follows from F (x) =

∑
i αivi(x).

Finally, (4) is a non-zero polynomial because u /∈ Ṽ ⊥. Schwartz-Zippel thus bounds (3) by q−1
q

as
desired.

Lemma 2.8. Let V be any subspace of FXq and let d := dim(Ṽ ). Then

Pr
f1,...,fdqλ←V

[span({1G(fi)}i∈[dqλ]) = Ṽ ] = 1− negl(λ).

Proof. For each k ∈ [d], let tk := span({1G(fi)}i∈[kqλ]. For any k < d, by Lemma 2.7,

Pr[tk+1 > tk | tk < d] = 1−
(
q − 1

q

)qλ
= 1− negl(λ).

It follows that td = d with probability 1− negl(λ).

3 Context for Our Attack

Before addressing our attack, we first summarize the framework for constructing SK-DEPIR that was
outlined by [BIPW17, CHR17], and we explain how Conjecture 1 fits in. Our current understanding of
how these parameters affect security is quite limited.

3.1 The General Template

The main idea in [BIPW17, CHR17] is to start with a locally decodable code C : {0, 1}n → {0, 1}N and
construct an SK-DEPIR scheme where the secret key is a random permutation π ∈ SN and a secret-key
encryption key sk. Let λ denote the ciphertext length of this encryption scheme.

The general template is as follows:

• For a databaseD ∈ {0, 1}n, the server stores a string D̃ ∈
(
{0, 1}λ

)N
such that D̃π(I) = Enc(sk, C(D)I)

for every I ∈ [N ].

• To query the ith element of D, the client:

1. Runs the algorithm for locally decoding C at index i ∈ [n], which produces a list of queries
I1, . . . , Ik ∈ [N ].
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2. Sends π(I1), . . . , π(Ik) to the server.

3. Answers the aforementioned local decoding queries with the decryption of the server’s re-
sponses.

4. Outputs whatever the local decoding algorithm outputs.

The correctness and efficiency of this construction follow as in [BIPW17, CHR17].

3.2 Reed-Muller Instantiations

It is easy to contrive locally decodable codes with which this template is insecure. Still, [BIPW17, CHR17]
conjectured that appropriate Reed-Muller codes (with an appropriate local decoding procedure) lead to a
secure instantiation. However, there still are many possibilities for instantiating the parameters of these
codes and their corresponding local decoding algorithms. Each choice of parameters corresponds to a
different candidate SK-DEPIR scheme.

Code Parameters Reed-Muller codes are parameterized by a field F and integers m and d (for each
message length). They encode a message X ∈ {0, 1}n systematically as a degree-d, m-variate polynomial
X̂ : Fm → F. Our current intuition is that these parameters do not directly impact security; they seem
relevant primarily to efficiency, namely the tradeoff between the code’s rate and local decoding query
complexity. One piece of evidence in support of this is that neither our attack nor the lower bounds of
[BHW19] depend on any particular choice of F, m, and d.

Local Decoding Parameters Local decoding algorithms for Reed-Muller codes are based on the
observation that for any i ∈ Fm, X̂(i) can be recovered from

(
X̂(i′)

)
i′∈S , where S ⊆ Fm contains any

sufficiently large subset of any low-degree curve γ : F → Fm passing through i. There are three major
desiderata in the selection of such a set, each of which appears to significantly affect whether the resulting
SK-DEPIR scheme is secure. We recall these desiderata and possible resolutions that were proposed by
[CHR17, BIPW17]:

• What distribution should γ have?

There were two proposals discussed in [BIPW17, CHR17]. The first proposal was to let γ be a
uniformly random degree-λ curve conditioned on γ(0) = i. The second proposal was to fix the first
component of γ to the identity function, and pick the rest of the components uniformly at random
conditioned on γ(i1) = (i1, . . . , im). We refer to the first proposal as the parametric proposal, and
the second proposal as the explicit proposal.

• How many points on γ, and which ones, should be included?

The proposals of [BIPW17, CHR17] can be viewed as starting with a “base signal” that in the
parametric case is equal to {γ(t)}t6=0, and in the explicit case is equal to {γ(t)}t 6=i1 ∪

(
{i1} × {z}

)
,

where z ← Fm−1 is chosen uniformly at random. Each point of the base signal is then included
with some fixed probability α, which we refer to as the signal amplitude.

• What “noise” points (outside the image of γ), if any, should be included?

The most natural noise distribution (and the one proposed in [BIPW17, CHR17]) is obtained by
including non-signal points independently with some fixed probability p ∈ [0, 1]. We refer to the
ratio α/p ∈ [0,+∞) as the signal-to-noise ratio, and denote it by β.

4 New Conjectures

At the time it was proposed, Conjecture 1 corresponded to a SK-DEPIR scheme whose parameter choices
were most amenable to cryptanalysis. While the scheme was not known to be insecure, it was estimated
to be a combination of “simple to analyze” and “least likely to be secure”. In this section we propose a
new toy conjecture to take the place of Conjecture 1, as well as a stronger version that would imply a
full-fledged SK-DEPIR scheme. Along the way we discuss two alternative directions for SK-DEPIR.
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4.1 New Toy Conjectures

There are several possible modifications to Conjecture 1 that may result in a true conjecture. Each mod-
ification that we discuss attempts to base SK-DEPIR on Reed-Muller codes, and in particular modifies
the local decoding procedure described above.

Parametrism To query i ∈ Fm, sample γ : F → Fm uniformly at random such that γ(0) = i (not
fixing γ1 to be the identity function).

One drawback of this modification is that the indicator vector 1Img(γ) is no longer λ-wise independent.
Consequently the statistical query lower bound of [BHW19] does not extend to this modification. We
leave it as an interesting topic for future research to determine whether there exist statistical query
attacks on this variant.

Sub-sampling and Noise Instead of querying the entire image of γ, query a random subset instead
of a given size. We note that using smaller subset sizes can only be more secure. On the other hand, the
corresponding SK-DEPIR constructions require a minimum subset size for functionality. In addition to
querying the image of γ, one can also query ≈ q random (“noisy”) points. We note that adding noise
can only improve security, as long as the distribution of noise is independent of γ.

More generally, it makes sense to combine subsampling and noise, and parameterize the resulting
conjecture by the “signal amplitude” α, and the “signal-to-noise ratio” β. Setting either α < 1 or
β < +∞ seems to eliminate the linear structure leveraged by our attack, although we lack a good way of
formalizing this. We suggest that the modification most amenable to further analysis is to simply change
α to 1/2, while keeping β = +∞.

4.2 New Conjectures for Full-Fledged SK-DEPIR

4.2.1 General Conjecture

Let λ denote a security parameter, and let C ⊆ [q]n be any linear code with a dual distance d such that:

• The block length n and the alphabet size q are both λO(1).

• C’s dual distance d is at least λ.

Furthermore, let m = m(λ) be any polynomial in λ, and let w = w(λ) be such that w
n
≤ 1 − Ω(1). We

conjecture that the following two distributions are computationally indistinguishable.

Structured Distribution

1. Sample a random permutation π ← S[n]×[q].

2. Repeat m times:

(a) Sample (i0, σ0)← [n]× [q].

(b) Sample c ← C conditioned on ci0 = σ0. This is well-defined because C’s dual distance is
greater than 1, so for every i the distribution of ci when sampling c← C is uniform on [q].

(c) Sample σ′0 ← [q].

(d) Define c′ ∈ [q]n such that

c′i =

{
σ′0 if i = i0

ci otherwise.

(e) Sample i1, . . . , iw ← [n].

(f) Output
(
i0, σ0, π(i1, c

′
i1), . . . , π(iw, c

′
iw )
)
.

Random Distribution

1. Sample a random permutation π ← S[n]×[q].

2. Repeat m times:

(a) Sample (i0, σ0)← [n]× [q].

(b) Sample c′ ← [q]n.
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(c) Sample i1, . . . , iw ← [n].

(d) Output
(
i0, σ0, π(i1, c

′
i1), . . . , π(iw, c

′
iw )
)
.

We emphasize that in the random distribution, the m pairs (i0, σ0) are independent of all other
outputs, whereas in the structured distribution they are correlated through the choice of c.

4.2.2 Specific Conjecture

We propose more specifically that for every polynomial m = m(λ), the above conjecture holds when:

• n = q is a random log(λ)-bit prime (so q is Θ(λ)).

• The code C is the set of all (truth tables of) univariate polynomials over Fq with degree q1/4.

• w is q5/6.

A SK-DEPIR Construction This conjecture implies the existence of a SK-DEPIR scheme that,
for a database of size N , requires the server to first spend O(N2) time in pre-processing, and then allows
the server to answer queries with O(N5/6) computation per query.

Specifically, in the corresponding SK-DEPIR scheme:

• There is a field FN of size ≈ N associated with each database length N .

• The secret key is a random permutation π of FN × FN and a secret-key encryption secret key sk.

• For a database D, let it be encoded by a degree-
√
N bivariate polynomial Q over FN , i.e. with

D ≡ Q|H2 for some fixed subset H ⊆ FN with |H| =
√
N . The server stores Q̃ ∈

(
{0, 1}λ

)FN×FN

such that for all i ∈ FN × FN , Q̃π(i) = Enc
(
sk, Q(i)

)
.

• To query an element of D (i.e. recover Q(x?, y?) for some (x?, y?) ∈ H2), the client:

1. Samples a degree-N1/4 univariate polynomial p with the property that p(x?) = y?.

2. Defines p̃ to be identical to p, but with p̃(x?) freshly uniformly random.

3. Queries Q̃ on N5/6 points of the form π−1(x, p̃(x)), where the points x are i.i.d. uniform on
FN .

4. Upon receiving answers (ax), interpolates a degree-N3/4 univariate polynomial g : FN → FN
such that g(x) = Dec(sk, ax) for all x (not including x?).

5. Outputs g(x?).

The correctness and efficiency of this construction follow as in [BIPW17, CHR17].

A Security Reduction We describe how the conjecture of Section 4.2.2 implies the security of the
above construction.

Suppose there is an adversary that attacks the SK-DEPIR construction. That is, the adversary is
able to choose two distinct sequences of database indices i0 = (i01, . . . , i

0
`) and i1 = (i11, . . . , i

1
`) such that if

the adversary sees SK-DEPIR queries for ib for b← {0, 1}, then it can guess b with probability noticeably
larger than 1/2.

We construct a simulator that first gets as input a sample from one of the two distributions (structured
or random) defined in Section 4.2.1, with λ ≈

√
N and m ≥ N`λ. This sample is a list of m entries, each

of the form (i0, σ0, ĩ1, . . . , ĩw), where (i0, σ0), ĩ1, . . . , ĩw are all in [q]2. It then repeatedly receives an index
i ∈ H2 from the adversary, and returns what is purportedly a SK-DEPIR query to i. Specifically, the
simulator looks for an entry (that it has not used before) where (i0, σ0) = i. By the choice of m, there
will with overwhelming probability be such an entry. It then returns the corresponding (̃i1, . . . , ĩw).

This simulator has the property that when it initially received a sample from the structured distribu-
tion, then the simulation is faithful — the simulator’s answers to the adversary’s queries are distributed
like those of a real client. On the other hand, when the simulator initially receives a sample from
the random distribution, then the simulator’s answers are independent of the indices provided by the
adversary.

This gives us a distinguisher breaking the conjecture, which is a contradiction. Specifically, the
distinguisher receives a sample from either the structured or random distribution, and needs to guess
which. It runs the adversary, which produces database indices i0 = (i01, . . . , i

0
`) and i1 = (i11, . . . , i

1
`).

It samples b ← {0, 1}, and passes ib to the simulator (who is initially given the same input as the
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distinguisher — a sample from either the structured or random distribution), and forwards the simulator’s
answers to the adversary. The distinguisher guesses that its input was from the structured distribution
if and only if the adversary correctly guesses b.
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