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Abstract. Physical side-channel attacks like power analysis pose a se-
rious threat to cryptographic devices in real-world applications. Conse-
quently, devices implement algorithmic countermeasures like masking.
In the past, works on the design and verification of masked software im-
plementations have mostly focused on simple microprocessors that find
usage on smart cards. However, many other applications such as in the
automotive industry require side-channel protected cryptographic com-
putations on much more powerful CPUs. In such situations, the security
loss due to complex architectural side-effects, the corresponding perfor-
mance degradation, as well as discussions of suitable probing models and
verification techniques are still vastly unexplored research questions.
We answer these questions and perform a comprehensive analysis of more
complex processor architectures in the context of masking-related side
effects. First, we analyze the RISC-V SweRV core — featuring a 9-stage
pipeline, two execution units, and load/store buffers — and point out
a significant gap between security in a simple software probing model
and practical security on such CPUs. More concretely, we show that ar-
chitectural side effects of complex CPU architectures can significantly
reduce the protection order of masked software, both via formal analy-
sis in the hardware probing model, as well as empirically via gate-level
timing simulations. We then discuss the options of fixing these problems
in hardware or leaving them as constraints to software. Based on these
software constraints, we formulate general rules for the design of masked
software on more complex CPUs. Finally, we compare several implemen-
tation strategies for masking schemes and present in a case study that
designing secure masked software for complex CPUs is still possible with
overhead as low as 13%.

Keywords: Masking · Verification · Side-channel analysis · SweRV· Glitches
· Application-level processors · Coco · Probing model

1 Introduction

Cryptographic primitives are primarily designed to withstand mathematical at-
tacks in a black-box setting. However, as soon as these primitives are deployed
in the real world, they find themselves in a grey-box setting in which an attacker
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may observe additional physical side-channel information, such as instantaneous
power consumption that can be used to extract secrets like cryptographic keys.
One particularly powerful example of such a side-channel attack, differential
power analysis (DPA), was introduced in 1999 by Kocher et al. [27]. In this type
of attack, the adversary observes a device’s power consumption while encrypt-
ing several known plaintexts, and can then extract sensitive information using
statistical analysis.

The typical approach of protecting against these attacks is to implement al-
gorithmic countermeasures, like masking [6, 9, 14, 22, 25, 34]. The main idea of
masking is to make computations independent from the actually processed data.
For this purpose, masking schemes split input and intermediate variables of cryp-
tographic computations into d+1 random shares such that observations of up to
d shares do not reveal any information about the native (unmasked) value. The
security of such dth-order protected computations relies, amongst others, on the
assumption of independent leakage, i.e., independent computations result in in-
dependent leakage [33]. However, many academic works in the past have shown
that such assumptions are typically not satisfied on ordinary CPUs, for example,
memory transitions in the register file or RAM can leak the Hamming distance
between two shares [2, 15, 21, 28, 32]. In general, one can work around these
problems using two different strategies. Works like [7, 20, 21, 32] show that one
can design dedicated masked software implementations that take specific char-
acteristics of the microprocessor into account, e.g., by never processing shares
of the same variable in immediate succession. Alternatively, one can follow the
lazy engineering approach, accept a certain loss of masking protection order due
to architecture side-effects and compensate for that by using a protection or-
der that is higher than theoretically required. This strategy was more formally
analyzed by Balasch et al. [2] who also formulated the so-called order reduc-
tion theorem. This theorem states that, when considering simple register-based
CPU architectures, the security of a dth-order masked software implementation
reduces to

⌊
d
2

⌋
-th order if transition-based leakage is taken into account.

Building efficient and correct masked software implementations is generally
difficult since one either needs to (1) carefully patch implementations for spe-
cific microprocessors [7, 21, 32], or (2) invest in masking orders that are a lot
higher than required [2]. In both cases, the runtime of the resulting masked soft-
ware implementations is significantly increased and subsequent manual leakage
assessments are needed to confirm that the performed modifications have the
desired effect, which is a quite labor-intensive and error-prone task. This situa-
tion becomes only ever more difficult with increasing processor complexity. For
example, the effects of multiple ALU pipeline stages, forwarding logic, super-
scalar building blocks, caches, and complex logic for handling loads/stores on
masked software implementations have not been analyzed in this detail before.
One reason for that might be the sheer complexity of application-level proces-
sors that usually consist of superscalar building blocks and multi-stage pipelines.
On such processors, identifying and understanding masking related side-effects
can barely be done manually anymore. Here, automated analysis methods that



Secure and Efficient Software Masking on Superscalar Pipelined Processors 3

can give concrete conditions under which masked software implementations can
guarantee a certain protection order on such CPUs are more relevant then ever.

In this context, a recent work by Gigerl et al. [20] studies the simple Ibex core
with Coco, a tool that can verify the correct execution of masked software im-
plementations on given CPU netlists, while considering all possible architectural
side effects. Simply speaking, Coco treats an entire CPU design as a hardware
circuit and then tracks all the shares of executed masked software implemen-
tations over several cycles using methods that are inspired by Rebecca [13].
One result of their analysis is a slightly modified secured Ibex core on which
masked software implementations can preserve their theoretic protection order
in practice if a few simple software constraints are followed. While this result is
certainly interesting for applications like smart cards where low computing power
is sufficient, many other IoT or automotive use cases require the usage of signif-
icantly more powerful processors. This raises a number of questions about the
performance, as well as the theoretic and practical security of masked software
on more complex CPUs.

Our contribution We answer these questions by providing the following contri-
butions:

– We generate several generic higher-order masked cryptographic software im-
plementations using Tornado and show with Coco that there is little hope
that such implementations can even provide 1st-order protection on more
complex CPU cores. We demonstrate this based on the dual-issue 9-stage
RISC-V SweRV core.

– In addition to the formal analysis of Coco, we perform gate-level simulations
to demonstrate that architecture-based glitch effects are visible in practice
and reduce the security of masked software by multiple orders. This points
out a significant gap between security in the simple software probing model
and practical security, and further motivates the verification of masked soft-
ware on concrete CPU netlists in a more hardware focused probing model.

– We then further analyze the components of SweRV that do not exist in
simpler cores, identify new problems, and discussed possible solutions in
software or hardware.

– Based on this analysis, we formulate more general rules for designing masked
software that takes into consideration properties such as the pipeline length,
the amount of execution units, or architectural buffers. We also present ar-
guments why relying on the lazy engineering approach alone, as proposed
by [2], does not seem viable anymore in case of more complex CPUs.

– Finally, we present a case study that compares how efficiently our derived
software constraints can be met with different implementation strategies.
Maybe somewhat surprisingly we show that, with knowledge about a proces-
sors netlist, one can build secure and efficient masked software for SweRV-like
cores with overhead as low as 13%.

Outline In Section 2 we cover relevant background on masking and the verifica-
tion of masking, including the basic working principles of Coco and Tornado.
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In Section 3, we describe the evaluation setup for the analysis of more complex
CPUs with Coco, present some initial verification results and describe the sig-
nificance of these in a practical evaluation. In Section 4, we present a detailed
analysis of SweRV architecture, describe all hardware components that can pose
problems to masked software implementations and propose viable solutions. In
Section 5, we list the generic software constraints and evaluate their overhead in
Section 6. We conclude our work in Section 7.

Open Source We plan to publish both, our modified SweRV core, as well as the
corresponding software implementations that are used in this paper on github 3.

2 Background

2.1 Masking

Masking has become one of the first-choice measures to defeat power-analysis
attacks on algorithmic level. In general, masking is a secret-sharing technique
which splits intermediate values of a computation into d + 1 shares. The shares
are uniformly random, such that an attacker who observes up to d shares cannot
infer any information about the underlying native value. A dth-order Boolean
masking scheme splits a native variable s into d+1 random shares s0 . . . sd, such
that s = s0 ⊕ . . . ⊕ sd. The values s0 . . . sd−1 are chosen uniformly at random
while sd = s0⊕. . .⊕sd−1⊕s. Consequently, each share si is uniformly distributed
and statistically independent of the native value s.

Implementing linear functions when designing masked cryptographic imple-
mentations is trivial, as they can simply be computed on each share individually.
However, non-linear functions (S-boxes) are not as simple, since computations in-
volve multiple shares of a native value at the same time, which is more difficult to
implement in a secure and correct manner. Therefore, the main interest in litera-
ture lays on masked implementations of non-linear functions [6,9,14,22,23,25,34]

2.2 Formal Verification of Masking

In general, masked implementations must ensure that each intermediate value of
a computation is statistically independent of any native values. The verification
of this property is usually done with the help of a security model that specifies
the abilities of an attacker. Typically, it is assumed that the ability of the attacker
is to place a certain amount of probes in a computation, that allow monitoring
concrete values at those locations.

Formal Verification of Hardware Implementations. The classical probing model
by Ishai et al. [25] is the most commonly used security model for masked hard-
ware circuits and it’s accuracy in modeling real world attacks has been confirmed
by many works [18,35]. Here, an attacker is allowed to place up to d probes at any

3 https://github.com/barbara-gigerl/sw-masking-swerv

https://github.com/barbara-gigerl/sw-masking-swerv
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location in a circuit, which can be used to observe the corresponding gates/wires
permanently. A masked hardware implementation is considered dth-order secure
if an attacker cannot learn any information about the native values by combining
all d observations. Examples of tools that can verify classical probing security
for cryptographic hardware implementations are are Rebecca [13], Silver [26],
and maskVerif [3]. These tools are mainly tailored to the verification of masked
hardware (ASIC/FPGA) implementations. maskVerif does offer some support
for software implementations but (1) can only deal with code that is written in
a special intermediate language, and (2) only considers simple CPU side-effects
such as register overwrites.

Formal Verification of Software Implementations. On software side, the research
community has also published many methods and tools to automatically gener-
ate or verify masked software implementations [4, 5, 8, 17, 29, 45]. More recently,
Beläıd et al. proposed Tornado [10], a tool that takes a high-level description
of an unmasked cryptographic function, generates a corresponding (any-order)
masked C implementation, and verifies its probing security. Tornado’s verification
itself is based on tightPROVE+, an extension of tightPROVE [9]. tightPROVE+
performs the verification of masked software in the register probing model. This
model allows an attacker to place probes on individual words of a processor’s
register file, and to use them for one cycle each during the execution of a masked
software implementation. Hereby, it is assumed that the probed registers cause
independent leakage, in other words, no additional potential side effects of a pro-
cessors architecture, such as glitches or register overwrites, are considered [33].

More precise verification tools, that e.g. also cover transition leakage have
been presented in [1,7,40], while with Coco, Gigerl et al. have recently presented
a tool that can verify the correctness of masked software implementations while
considering possible architectural side effects of a given CPU netlist [20].

2.3 Coco

Coco is a tool for the co-design and co-verification of masked software imple-
mentations on CPU netlists [20]. It formally verifies the security of (any-order)
masked assembly implementations that are executed on concrete CPUs, defined
by gate-level netlists. Coco’s verification strategy is inspired by Rebecca but
extended in a way such that the verification of masked software, when running on
hardware, is converted into a pure hardware verification problem. This involves
not only the addition of control-flow awareness but also several performance
improvements since entire CPUs are usually significantly larger designs, when
compared to pure hardware implementations of cryptographic functions. Coco
does not only capture transition-based effects, but in principle any glitch-related
hardware side-effects that can be derived from a CPU netlist. This is also for-
malized in the so-called time-constrained probing model, in which an attacker
can use each probe to measure any specific gate/wire for the duration of one
clock cycle that can be chosen independently for each probe.
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Fig. 1: Pipeline stages of SweRV [42]

Verification Flow In the following, we briefly outline the workflow of Coco,
broken into multiple steps. Steps A and B explain how the execution of software
can be combined with an otherwise purely hardware-focused verification method.
Step C then describes the application of Coco in a bit more detail.

A. Yosys [44] is used to parse the given CPU design into a gate-level netlist. The
masked assembly implementation together with the netlist is then given to
Verilator [36], which produces a cycle-accurate simulation of the execution
in form of an execution trace. The execution trace contains concrete values
of all CPU control signals during the software execution.

B. Registers or memory locations in the CPU netlist receive annotations (la-
bels) that indicate the location of shares and randomness at the start of the
software execution.

C. The CPU netlist, execution trace, initial labeling and desired verification
order is given to the verifier, which propagates the labels through the CPU
netlist, for as many cycles as the software execution takes. In case Coco de-
tects that a specific gate in the netlist leaks information about a native value
(by observing a combination of shares of the same native value), e.g. due to
implementation mistakes or architectural side-effects, the exact gate in the
netlist and the execution cycle is reported as a leak. For a more detailed de-
scription of this verification method we refer to the original publication [20].

2.4 RISC-V SweRV Core

The SweRV processor family [37] was first introduced by Western Digital in
2019 and designed for data-intensive applications like storage controllers and
industrial IoT. As of today, there are three different variants of the processor:
the EH1, the EH2 and the EL2 [43]. The EH1 features a 32-bit superscalar 9-
stage pipeline, while the EH2 basically adds a second thread with a dedicated
register file and instruction fetch buffer. The EL2 is a smaller version of the EH1
with only 4 pipeline stages and one execution unit.
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In our experiments, we use the SweRV EH1 core4, which implements the
RISC-V RV32IMC instruction set and has nine pipeline stages [42], as sketched
in Figure 1. The first three pipeline stages (Fetch1, Fetch2, Align) are responsible
for loading instructions from the instruction memory and storing them into the
fetch buffer. In the Decode stage, the instructions are decoded and prepared for
execution. The execution happens in pipeline stages 5-7, either in the Load-Store
unit (DC1,DC2,DC3), the multiplication unit (M1, M2, M3) or the ALUs (EX1,
EX2, EX3). The EH1 core has a dual-issue pipeline, which means that in each
clock cycle, the processor can decode two instructions and send them to two
different ALUs. In the last two pipeline stages, Commit (EX4) and Writeback
(EX5), the final result is stored in the register file. There are several peripherals
attached to the core via an AXI4 bus, including the SRAM and instruction
and data closely-coupled memories. The core operates in-order, except for loads
which might get executed earlier when the value is needed in the pipeline.

According to Western Digital, the SweRV EH1 core can be operated at fre-
quencies of up to 1 GHz [41] and its performance can be compared to an ARM
Cortex A15, making it outperform other RISC-V processors like the Berkely
BOOM core [38]. This makes EH1 an interesting target to analyze the effects of
more complex CPU architectures on masked software implementations. Another
reason why we chose SweRV EH1 is Coco’s current requirement of CPU designs
to be written in Verilog or SystemVerilog.

3 Generic Masked Software on SweRV

In this section we perform an initial analysis of generic (higher-order) masked
software implementations on the SweRV EH1 core and show that, even after
applying the same hardware modifications as proposed for Ibex in [20], a more
complex CPU architecture introduces additional problems that can reduce the
protection of masked software by serveral orders. In Section 3.1, we describe a
few small hardware modifications that we carry over from Gigerl et al.’s secured
Ibex to SweRV, that would otherwise lead to identical problems on SweRV.
In Section 3.2 we describe modifications we made to Coco’s verification flow
itself so that it can better handle CPU designs that are significantly larger than
Ibex. In Section 3.3, we generate generic, up to 4th-order masked software im-
plementations of the Keccak S-box using Tornado, verify their execution on the
secured SweRV using Coco, and conclude that there is little hope that such
implementations can achieve even just 1st-order protection. Finally, we present
additional empirical evidence of the impact of architectural glitches on masked
software via several gate-level timing simulations in Section 3.4.

3.1 Modifications of SweRV

Gigerl et al. have analyzed the simple 32-bit RISC-V Ibex core in terms of soft-
ware masking-related side effects. As a result of their analysis, they pointed out

4 https://github.com/chipsalliance/Cores-SweRV

https://github.com/chipsalliance/Cores-SweRV
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three hardware components that can cause unintended combinations of shares
during the execution of masked software implementations that are completely
invisible from software perspective: the register file, the Arithmetic Logic Unit
(ALU), and the Load-Store unit (LSU). Not surprisingly, the SweRV core has
similar problems, which is why we briefly discuss how we map these proposed
hardware fixes from Ibex to the SweRV core in the following. The resulting se-
cured SweRV core will then serve as the base of our further analysis. We expect
that the total area overhead of the hardware modifications for the SweRV core is
very similar to the Ibex core as analyzed in [20], which was about 2 kGe. Since
the SweRV core is much larger, this overhead is insignificant.

We use SweRV core commit 499378d0c67ab11965 as the baseline for our
modifications. For our analysis, we disable closely-coupled memories for instruc-
tions and data, but enable the instruction cache. We do this since (1) the instruc-
tion cache is large enough to hold all implementations that we intend to test, (2)
we want to analyze the “worst-case” in which the CPU can fetch instructions
without delay, thereby achieving the maximal possible amount of instructions
(and side-effects) in the pipeline stages. Hence, when running a verification with
Coco, we execute each software implementation twice, once to load it into the
instruction cache from instruction memory, and once to perform the actual ver-
ification.

Register File Ordinary register file implementations consist of a group of register
words (32 × 32bit for RV32IMC) plus addressing logic for reading two words
and writing one word within one clock cycle. This addressing logic is usually
implemented via multiplexer trees that select source and destination registers
depending on the currently decoded instruction. As previously shown for Ibex,
these selector signals are usually calculated by combinatorial logic within the
same cycle as the actual read/write event. Consequently, within a single clock
cycle, differences in signal propagation delays can cause glitches on these selector
signals, which in return can cause a read/write port to unreliably switch between
multiple register words until the selector signals at all multiplexers are stable5.
This is problematic for masked software implementations as they hold many
shares in the register file that must be kept strictly separated from each other.

The proposed solution for this problem is to replace multiplexer trees with
OR trees while introducing a one-hot encoded gating mechanism for each value
that is calculated in the previous clock cycle and buffered in a additional reg-
ister [20]. This mechanism ensures that glitches on a read/write port can only
ever happen between the operand of two consecutive instructions. In the SweRV
core, we face the same problems and fix these by applying the same register
gating concept. The main difference here is the fact that SweRV features four
read and three write ports, compared to Ibex’s two read and one write port.
Gating the read and write ports for SweRV works almost straightforward, except

5 Even if the selector signals were stable, e.g. by calculating and buffering them in
the previous clock cycle, there is still no guarantee that this signal arrives at all
multiplexers in stable condition in the next clock cycle due to different wire lengths.
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for the third write port, which is used for data from the memory, and requires a
dedicated solution (cf. Section 4.2).

Concurrent ALU Computations Cores like Ibex and SweRV always concurrently
calculate simple operations like AND, XOR, ADD, SHIFT in the execution stage
and later only forward the result that is actually needed by the currently exe-
cuted instruction. This is not a problem for most masking techniques, however
there do exist some masking techniques that store individual shares of the a
native value in the same register word [6]. This is okay as long as all computa-
tions keep the individual bits of a register word separate from another, e.g., by
performing only bit-wise operations such as AND and XOR. Operations such as
ADD or SHIFT on the other side do combine bits of individual operands and
can thus create side-channel leakage, even if the results of these computations
are ultimately discarded.

The suggested solution for the Ibex core is to implement a gating mechanism
that ensures that only the intended computation is performed. This mechanism
can also be easily carried over from Ibex to SweRV.

Data Memory Storing shares in the data memory leads to similar problems with
glitches in the addressing logic as for the register file. In theory, one could again
use the same one-hot encoded gating mechanism as discussed before, however,
this approach does not scale well for the large address ranges that are required
for data memory. Consequently, Gigerl et al. propose a trade-off that consists of
using only partially one-hot encoded addresses for data memory which can be
implemented with an area overhead that is indeed negligible when compared to
the area of SRAM blocks themselves. The downside of this trade-off is that only
memory words within certain address ranges (blocks) are properly separated
from each other. This is sufficient as long as a block is large enough to hold all
the shares that need to be kept isolated from each other during the execution of
masked software implementations.

We apply the same LSB one-hot address encoding to SweRV’s data memory.
Since the SweRV core reads 64 bit from the memory in one cycle instead of
32-bit, we gate memory words on 64-bit granularity.

3.2 Modifications of Coco

In this section we briefly outline modifications that we have made to Coco’s
verification workflow so that it can better handle large CPU designs. These
modifications first and foremost reduce SweRV’s circuit size which in return also
significantly reduces Coco’s verification runtime.

Removal of Unused Logic As mentioned before, we ensure that instructions can
be directly loaded from the instruction cache during Coco’s verification. We
only ever use the slower instruction memory in a read-only fashion to fill the
instruction cache and can, for the pure purpose of Coco’s verification, remove
any unused logic that would allow writes to data memory, which reduces the
circuit size by about 29%.



10 Barbara Gigerl, Robert Primas, and Stefan Mangard

Control Wire Tagging The initial version of Coco effectively treats each wire
of a CPU netlist equally and does not distinguish control from data wires. In
reality, only a small fraction of wires can actually affect the data that is processed
by a masked software implementation in such a way that side-channel related
problems could occur. Therefore, we adapted Coco such that it is possible to tag
wires as explicit control signals. During the verification, Coco will then simply
ignore these wires instead of applying the laborious process of constructing empty
SAT equations for them. Clearly, this tagging needs to be done carefully such that
we do not later overlook any architecture side-effects during Coco’s verification.
Since manual tagging of individual wires is infeasible for entire CPU designs, we
instead only do this in a course-grained manner and only in cases where we
can easily deduce that there will be no consequences for the processed data of
software with constant (data-independent) control flow. More precisely, we tag
the instruction memory, instruction cache and signals depending solely on those
as control signals automatically.

3.3 Initial Analysis of the SweRV Core

In this section we present our initial analysis of several higher-order masked
software implementations on the secured SweRV core that already includes all
hardware modifications that were proposed in the previous analysis of Ibex [20].
First, we use Tornado to generate generic, up to 4th-order masked C implementa-
tions of the Keccak S-box that are formally verified in Tornado’s register probing
model, meaning that an attacker observing up to d intermediate values (of the
algorithm) is not allowed to learn information about native values. We then an-
alyze the execution of these implementations on SweRV using Coco to get an
impression of how many more issues can be detected in Coco’s time-constrained
probing model, in which an attacker, able to observe up to d wires/gates in the
CPU netlist throughout one clock cycle each, is not allowed to learn information
about native values.

Since Coco can only deal with assembly implementations by default, we cre-
ate an assembly wrapper around the Tornado-generated C functions and adapt
the work flow accordingly. We then analyze these implementations using Coco,
while targeting the verification of 1st-order protection. Unfortunately, the verifi-
cation results show that none of the tested implementations can even reach just
1st-order protection. Upon first inspection of the reported problems, we can see
that multiple additional issues still exist within SweRV that can significantly re-
duce the protection order of our tested software implementations. For example,
the forwarding logic in SweRV’s 9-stage pipline is reported by Coco as one of the
main culprits for the loss of multiple protection orders in the time-constrained
probing model.

3.4 Empirical Evaluation

In order to empirically confirm the problems identified by Coco in the SweRV
core, we perform and analyze gate-level simulations in this section. More con-
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cretely, we perform gate-level timing simulations of the forwarding logic within
SweRV’s pipeline (see Figure 3) using multiple cell libraries to better illustrate
how problems in the time-constrained probing model can relate to practical
problems. Our evaluation reveals that glitches in the forwarding logic can lead
to independent occurrences of up to five shares on one wire within one clock
cycle, and combined occurrences of up to three shares at the same time. We
note that while the exact behaviour of glitches strongly depends on the used
standard cell library, all of our tested standard cell libraries report leaks leading
to a reduction in the masking order between three and five.

Setup We use signal traces from the post-synthesis simulations of the SweRV
core netlist. The synthesis process maps logic gates in the netlist to suitable
cells in the standard cell library, which defines the exact behavior and delay of
each cell. We investigate and compare four different open-source cell libraries6,
osu035, osu018, osu050, and gscl45nm. The mapping process is performed by
Yosys [44], before running the simulation with Modelsim to obtain an execution
trace of our test program.

The same test program is used in all four evaluation scenarios. The test pro-
gram works with a native value split into 10 shares, which corresponds to a
9th-order masked implementation. First, the test program executes 10 instruc-
tions, each operating on exactly one share. This effectively stores each share to
its own register in a specific pipeline stage. Second, the test program executes
an instruction referring to a previously computed result, which sends the shares
in the pipeline registers to the bypass logic, which finally forwards the correct
share to the ALU. It should be noted that the program is correctly masked on
algorithmic level because exactly one share is processed per instruction.

Results Figure 2 shows what information an attacker can observe by probing the
wire fwd data in SweRV’s forwarding logic for the duration of one clock cycle
using different cell libraries. Each plot additionally shows the corresponding clock
signal and contains marks that indicate at which point in time a specific share (or
combination of shares) is visible until the value of the wire has stabilized. Since
the analyzed time window in each plot is different (due to different propagation
delays) we have applied suitable horizontal scalings to improve readability.

From these plots we can see that an attacker can always observe at least
three shares (Figure 2d), and at most five shares (Figure 2a-c) within one clock
cycle when probing the fwd data wire. Sometimes, shares do not appear inde-
pendently, but also in combination with other shares. For example, in Figure 2a,
the attacker first observes s1, and then s1 in combination with s2. Note that
both, the occurrence of multiple shares independently within one cycle, or the
occurrence of combinations of shares at any point in time breaks the assumption
of independent leakage.

Clearly, this evaluation is not exhaustive. Every technology, every cell library,
and every different placement of a design, leads to different timing properties

6 https://github.com/RTimothyEdwards/qflow/tree/master/tech

https://github.com/RTimothyEdwards/qflow/tree/master/tech
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and differences in the exact leakage. Also concrete ASIC or FGPA prototypes
are just instances of particular configurations. The exact quantification of the
leakage, i.e. determining the number of traces that are needed for exploitation
in a particular configuration, is not in the scope of this paper. In fact, it is also
not clear if it would be possible to find a representative configuration and setup
that would allow more than making a statement on leakage for one particular
realization in one particular setup. A worst case setup would be a library with
delay settings that lead to the observation even all 10 shares in a single clock
cycle.

Instead of focusing on more specific instances, the focus of our analysis in
this section was on showing that problems identified using Coco actually lead
to critical signal transitions in the design. Given the empirical confirmation of
critical signal transitions, we therefore use Coco as a reference for the identifica-
tion of critical design elements in the design of SweRV. With Coco we are able
to formulate a generalized statement about the security of a masked software
implementation in the time-constrained probing model, which is independent of
a specific technology or platform.

4 Analysis of Problems on SweRV

As shown in our previous analysis of generic (higher-order) masked software im-
plementations, the hardware components of more complex CPUs can cause a
significant reduction in the protection order. In this section, we discuss these
problematic components in the secured SweRV core that already has the Ibex-
patches applied (cf. Section 3.1). We divide these problems into big and small
problems, based on how many shares may be combined, since, as we show later
in Section 5, one can follow different strategies to deal with them. A component
causes a big problem when more than two shares can be potentially combined.
A small problem indicates that a component can combine at most two shares.
For each potential leakage source, we discuss the options of making further mod-
ifications in hardware or shifting this problem as a constraint to masked software
implementations.

4.1 Pipelines and Execution Units

The dual-issue SweRV EH1 core features nine pipeline stages and can process two
instructions per clock cycle. Accordingly, the fetch/decode stages (1-4) can han-
dle multiple instructions at the same time, the execution/writeback stages (5-9)
exist twice, while the lesser used multiply (5-7) and load/store stages (5-7) exist
only once (c.f. Figure 1). The dual issue design also requires a register file with
four read ports and three write ports. Since symmetric cryptographic software
implementations are usually implemented with constant (data independent) con-
trol flow, which is also the case for all our tested software implementations, only
the later execution/writeback stages (5-9) get in touch with actual data and can
thus cause potential side-channel related problems.
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Fig. 3: Pipeline stages 4-9 in SweRV. Shares reside in the register file (�), are
then sent to the ALU (�) before being buffered in pipeline registers (�, �,
�, �). Forwarding values from the pipeline registers to the ALU is possible in
each stage and handled by the multiplexer M1, and the respective select signal
M1select.

A typical optimization in pipelined CPU designs is the usage of forwarding
logic, also known as bypass-logic, that can redirect the result of an instruction
from a later pipeline stage to a previous stage without needing to wait for the
result to be written into the register file. Forwarding significantly reduces the
occurrence of pipeline stalls in cases where one instruction uses an operand that
was only just calculated by the previous instruction. In the context of masking,
this architectural design causes problems in two different points.

Figure 3 shows a simplified depiction of SweRV’s pipeline stages 4-9. The
multiplexer M1 is responsible for selecting which data is used as input for EX1,
the first of the execution stages. This data either comes from the register file
(GPR), the (LSU), or from any of the later execution stages due to forwarding
logic. The select signal of this multiplexer, M1select, is computed in the respective
pipeline stage from combinatorial logic and is therefore susceptible for glitches.
Consequently, an attacker probing the output of M1, fwd data, could, in the
worst case, observe all of M1’s possible inputs within one clock cycle until the
select signal stabilizes. This means that if multiple shares of the same native
value are in different pipeline registers, a combination of those can be observed at
fwd data in the same clock cycle. On top of that, since two different instructions
are executed by SweRV at the same time, fwd data can also combine data from
the other execution unit. Exactly this problem was also seen in our empirical
evaluation in Section 3.4.

In software, special care is also needed for control transfer instructions like
conditional jumps. The instructions beq, bne, blt and bge perform conditional



Secure and Efficient Software Masking on Superscalar Pipelined Processors 15

branches on data but are typically not used in (symmetric) cryptographic im-
plementations to avoid potential timing side channels. Still, they can be used
together with the unconditional jump instructions jal and jalr to implement
loops or function calls. In the context of masking, these instructions can cause
problems which are invisible via e.g. the control flow graph of the software. Since
the SweRV core decodes two instructions per cycle, the jump is potentially de-
coded with the instruction which comes code-wise after it. If this instruction
operates on shares, and there are still shares of the same native value in the
pipeline, a leak occurs, before the CPU realizes a change in the instruction
pointer caused by the branch two cycles later. The instructions in these two
cycles must be unrelated instructions, which requires in total four unrelated
instructions.

Possible Hardware Solutions One could first consider to solve this problem in
hardware by using a trick similar to the one used to prevent unintended glitches
in the multiplexer tree of the register file. For example, one could gate the out-
put of each pipeline register with a bit indicating whether the respective value
should be forwarded back to the first execution stage (5) or not. This would
further require individual gate-bits to be glitch-free, i.e., to be computed in the
previous clock cycle and buffered in a register. The problem with pre-computing
gate-bits is that those values are typically only available in the same cycle like
the forwarding signal. One can overcome this problem by introducing additional
pipeline stages in between the execution stage, however, this would significantly
impact the overall performance of the core, also in cases where ordinary non-
masked software is executed. Since we do not consider such a performance degra-
dation to be a viable option, we next explore if those problems can better be
dealt with on software-level.

Possible Software Solutions For a masked software implementation to not be
affected by the side-effects of SweRV’s forwarding logic, it must ensure that at
no time there are two or more shares corresponding to the same native value
in any execution stage of either execution unit. For example, if we consider the
execution of two instructions, each of which uses a different share of the same
native value, then one would need to ensure that there are 2 × 6 + 1 unrelated
instructions between them. Hereby, an amount of 6 instructions is needed to clear
all execution stages (5-9) of one execution unit, that then has to be doubled since
SweRV has two execution units in total. Unrelated instructions are instructions
processing data unrelated to any share (for example a nop), or shares from
another native value.

While such a software constraint can significantly decrease the performance
of masked software implementations, it is a solution that does not impact the
performance of ordinary non-masked software. Nevertheless, as we will show
later in Section 6, it is still possible to implement efficient masked software
implementations fulfilling this constraint if the right masking/implementation
techniques are used.
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Software Constraints for ALU Operations

– (Pipeline Stages and Execution Units) Two instructions using different shares
of the same native value must be separated by 6 × 2 + 1 unrelated instruc-
tions.
Combination of up to 13 shares possible (big problem).

– (Control transfer instructions) Control transfer instructions, which are pre-
ceded by instructions processing shares, must be followed by 4 unrelated
instructions.
Combination of up to 4 shares possible (big problem).

4.2 Management Components of Data Memory

The SweRV core manages communication to the data memory via the Load-
Store unit (LSU). The LSU is a component between the CPU and the memory
to ensure low memory latency by providing buffers and a dedicated pipeline for
store operations. Our analysis shows, that the LSU Bus Buffer, responsible for
saving values of recent loads or stores, similar to a data cache, turns out to
be a major source of leakage which potentially combines multiple shares (big
problem). Furthermore, the dedicated store pipeline, components in the data
memory interface, back-to-back memory accesses and the dedicated register file
write port for memory accesses potentially combine two shares (small prob-
lems). For each of these problems, we discuss possible solutions in hardware and
software.

LSU Bus Buffer Since data memory is connected to the SweRV core over an
AXI4 bus, which can potentially introduce a considerable amount of latency,
the LSU implements the so-called the LSU Bus Buffer, which works in principle
like a small data cache. The LSU Bus Buffer consists of eight elements that are
used to temporarily store the values of recent load or store events. Each element
additionally stores the target address, an age, and a state, since the LSU uses a
state machine to manage the buffer entries. Initially, all element states are set
to Idle, meaning that they are ready to receive data, and their age is set to 0.
While executing the memory access, the state and age are updated accordingly,
until the memory access is finished and the element enters the Idle state again.
However, the element is not removed from the buffer until the buffer is full and
the oldest element is overwritten.

In the context of masked software implementations two problems arise in
the LSU Bus Buffer. First, it is problematic if one share of a native value in
the buffer and is overwritten with its counterpart, which might happen, e.g.,
when loading two shares from the data memory. This is not only a problem for
load operations within short succession but can also occur if these operations
are far apart since buffer elements are not cleared once their state goes back to
Idle. Second, if multiple shares of the same native value are stored in the buffer
at the same time but at different locations, one can observe similar side-effects
as originally described for ordinary register files (c.f. Section 3.1). The second
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1 # Reset state/age of buffer elements
2 fence
3 # Load share 1 from address 0x20
4 lw x1, 0x20
5 # Reset state/age of buffer elements
6 fence
7 # Dummy overwrite of buffer element 1
8 lw x0, (x0)
9 # Reset state/age of buffer elements

10 fence
11 # Load share 2 from address 0x40
12 lw x2, 0x40

Fig. 4: Example of flushing the LSU buffer to clear it from shares

problem could in principle be solved in hardware by applying a similar gating
mechanism as for the the register file. However, in case of the LSU buffer, such
a solution requires an additional register layer for pre-computing stable one-hot
encoded signals, which decreases the performance of all software.

Instead, we can solve this problem on software-level by ensuring that the
buffer holds at most one share per native value, which additionally prevents the
problem of overwriting shares. When doing so, we could ideally target individual
elements of the buffer such that a share can easily be overwritten with dummy
data whenever needed. However, the LSU buffer is completely invisible from a
progammer’s perspective, which is also why there is no easy way to manipu-
late specific elements from software side. The choice of which buffer element is
overwritten is determined by the element age, which depends not only on time,
but also instruction dependencies, data addresses and the element state. While
one could formulate a software constraint that takes all of these factors into
consideration, we do not consider this a worthwhile solution due to complexity.
Instead, we propose a software solution utilizing RISC-V’s fence, that while
introducing a 2-5 cycle overhead for each usage, is significantly easier to use in a
correct way. In general, a fence can be used to ensure a certain order of memory
operations by stalling the CPU pipeline unless previous load/store operations
are finished. For the LSU Bus Buffer this means that all buffer elements are set
to Idle with age 0. However, the stored values are not cleared, which must be
done manually by executing load/store instructions dealing with unrelated data.
The fence ensures that these loads and stores are inserted consecutively into
the buffer, i.e., starting at the first slot and ending at the last slot, finally over-
writing all buffer elements. It is recommended to place a second fence after this
load/store sequence, before loading or storing further shares. Figure 4 shows a
short exemplary code snipped, in which a share is stored in the buffer and later
cleared.

Store Pipeline Stages Before being stored to memory, data values pass through
three dedicated pipeline stages in the LSU (c.f. Figure 1), which are exclusively
updated when a store happens. A share used as an operand in a store instruction
will therefore hang in the pipeline until it is overwritten by the data of the next
store. This is problematic if the data of the next store is a share from the same
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native value. In order to avoid this problem, it is sufficient to ensure that at least
one unrelated store operation is performed between two stores that transfer two
shares of the same native value.

Data Memory Interface SweRV reads 8 bytes from the external data memory
module in one cycle, and then selects the parts which are effectively needed
according to the load address and load instruction (lw, lh or lb). Glitches in
the selection signal can lead to problems if two shares of a native value are stored
in the same 8-byte data memory word. A hardware gating mechanism is again
not viable since it would increase latency, which is why we suggest to store shares
of the same native value not within the same 8-byte word.

Back-to-back Memory Accesses SweRV is able to execute memory accesses
in a back-to-back fashion, i.e., in two consecutive cycles. Given a data memory
layout that utilizes partially one-hot encoded addresses (c.f. Section 3.1), an
additional problem can occur if shares si, sj are stored stored in block b1 at
indices i, j respectively, and one accesses unrelated data at indices i, j in another
block b2 in two consecutive cycles. The the output of b1, even though ignored,
will switch from si to sj in two consecutive cycles. Preventing this kind of leakage
can be done by paying special attention to the block indices during each memory
access, or reserving one “neutral” index within blocks that never holds any shares
and thus can be used for inserting a dummy load.

Register file gating for Data from Memory Register file write ports of the
SweRV core need to be gated by a stable gate bit (c.f Section 3.1). Computing
the gate bit is straightforward for all write ports except for the one dedicated
to data loaded from memory, since it depends on a potentially glitching write
enable signal derived from the LSU bus buffer entries. First, we gate the write
data with the stable register write address only, which means the preliminary
gate bit is set for all registers which have loads pending in the LSU bus buffer. In
the next cycle, the write enable value is then used to select the final, correct write
register. This solution requires the software to ensure that no other pending load
in the LSU bus buffer writes to a register, which contains another share from
the same native value.

Software Constraints for Memory Operations

– (LSU Bus Buffer) Two memory accesses processing two shares must be sep-
arated by a fence, followed by a load of unrelated data, followed by a fence.
Combination of up to 8 shares possible (big problem).

– (Store Pipeline Stages) Two stores storing two shares must be separated by
a fence, followed by a store of unrelated data, followed by a fence.
Combination of up to 2 shares possible (small problem).
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– (Data Memory Interface) Shares must be stored in the same memory block,
but not within an 8-byte word.
Combination of up to 2 shares possible (small problem).

– (Back-to-back memory accesses) Either one 8-byte region per block at index
i is not used to store shares and between any two loads, a load to this region
is performed, or if a share si is stored at index i and sj is stored at index
j in a block, no back-to-back accesses to any addresses mapping to index i
and j are performed.
Combination of up to 2 shares possible (small problem).

– (Write port 2 of the register file) If a share si is stored in register xi and
sj is stored in memory, then there must not exist another load at the same
time which writes to register xi.
Combination of up to 2 shares possible (small problem).

5 Deriving Generic Software Rules

In this section, we propose generic rules for the design of masked software imple-
mentations that are intended to run on more complex CPUs like SweRV. These
rules take into account features like pipeline length, the number of execution
units, and the size of load/store buffers, and are based on the software con-
straints defined in Section 4. We also discuss the lazy engineering approach by
Balasch et al. [2] and demonstrate that, while entirely relying on this approach
in our setting is not recommended, it can still be a worthwhile trade-off that can
eliminate many smaller problems, that would otherwise all need be dealt with
in software.

5.1 Generic Rules for Masked Software

A CPU can be described by numerous characteristics, ranging from the archi-
tecture width to register file size to cache sizes. Our analysis in Section 4 shows
that, when considering the implementation of masked software implementations,
the following characteristics are especially important:

– The amount of pipeline stages p
– The amount of execution units e
– The size of data buffers.

Pipelines and Execution Units Forwarding logic, also known as bypass-logic,
is a common optimization in pipelined CPUs which we identify to be a big
problem for masked software implementations. In the worst case, each pipeline
stage forwards its current content to the first stage, where it can be effectively
combined with data from all stages due to glitches. Assuming a pipeline length
p = pi +pd, where pi is the number instruction fetch stages and pd is the number
of decode/execute stages (processing actual data), this problem can be avoided
by ensuring that at least pd + 1 unrelated instructions are executed between any
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two instructions processing the shares of the same native value. We have observed
this problem on the SweRV core (pi = 3, pd = 6) but it also affects simpler cores
such as the CV32E40P (formerly known as RI5CY) that is roughly comparable
to an ARM Cortex M4 [31]. This core features a 4-stage pipeline (pi = 1, pd = 3),
and would therefore still require a “padding” with four unrelated instructions.

On top of that, more powerful CPUs like SweRV often feature a superscalar
architecture, including e.g. a dual-issue pipeline, that allows executing two in-
structions per clock cycle. This is achieved by having e execution units in parallel,
all of which have their own fetch/decode/execute stages. In those cases, forward-
ing is not only possible between stages of the same execution unit but also across
them. This additionally increases the required amount of padding to e× pd + 1.

Data Buffers and Caches Besides pipeline stages, another big problem for masked
software implementations is the existence of data buffers that are invisible from a
programmers perspective. Defining generic rules for these components is some-
what harder as their exact behavior can differ quite a lot depending on their
concrete implementation. However, typically when considering SweRV’s LSU
buffer or many other cache designs, these components can cause shares to essen-
tially get stuck at certain locations within the CPU where they then represent
an additional source of leakage from this time onward. While such problems can
be resolved in hardware, e.g. as shown for the register file (c.f. Section 3.1), this
is only really a viable option in cases where these hardware modifications do not
increase latency, which is also why we need to deal with SweRV’s LSU buffer
side effects in software. In general one needs to ensure that, whenever a share is
transferred over an unmodified buffer, none of the other buffer entries contain
shares that correspond to the same native value. How this can be achieved is
implementation dependent. In the easier case, a mechanism to clear the buffer
contents could be implemented in hardware, which is however not always effi-
cient since it would also affect unmasked data. In the harder case, one has to
make use of dummy loads/stores to clear all unwanted values.

Rules Here we summarize the most important rules for masked software on
application-level processors. As we explain in Section 5.2, many of the other
smaller problems are probably better dealt with using the “lazy engineering”
approach.

R1 Two instructions processing shares from the same native value must be sep-
arated by e× pd + 1 unrelated instructions.

R2 Whenever a share is transferring through a buffer, none of the other buffer
entries must contain shares that correspond to the same native value.

Naturally, at this point one could also ask how these rules would look like on even
more complex CPUs with multi-level caches, out-of-order execution, or specula-
tive memory accesses. For example, the 64-bit out-of-order RISC-V BOOM core
would be a potential target for further analysis. However, when considering the
analysis of such CPUs we currently see quite a few problems that are not neces-
sarily easy to overcome. First, out-of-order execution will violate our assumption
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of having software with constant control flow, meaning that verifying a program’s
execution once might not be indicative of future runs. Second, the effects of, e.g.,
large cache hierarchies will likely cause problems where corresponding software
constraints would become too complex to implement with reasonable effort and
overhead. Nevertheless, we argue that physical attacks like power analysis are
most relevant only for devices in the range from microprocessors to application
processors. An attacker having physical access to a desktop/server could any-
way use other methods, like cold boot attacks, to compromise a system more
efficiently.

5.2 The Cost of Lazily Engineering

Until now, the verification of masked software implementations is mostly done
using rather simple security models like the value-based or register-based leakage
model. While such models are certainly useful to detect some problems, many
other works also show that processors do emit leakage that is not captured
by these models [2, 19, 21, 28, 32]. Balasch et al. [2] formalize this behaviour in
their order-reduction theorem, which states that on simple CPUs, the security
of dth-order masked software in the value-based leakage model reduces to

⌊
d
2

⌋
-th

order in the transition-based leakage model. In other words, as a rule-of-thumb
for a “lazy” software engineer, they suggest to double the security-order of a
masked implementation to achieve the desired security-order in a model that
more accurately reflects reality.

While these works focus on rather simple microprocessors, our analysis has
shown that on more complex application-level processors, the reduction of se-
curity order can be significantly higher. When deriving the expected security
reduction of lazy engineering on application-level processors, the main point to
consider is the component that can potentially combine the most shares. In the
case of our modified SweRV this component would be the forwarding logic of
the CPU pipeline. According to our generic rules, a processor executing algo-
rithmically correct masked software, might combine up to e×pd +1 shares in its
pipeline. Consequently, without any further assumptions, the CPU could create
all combinations of any choice of e×pd +1 shares, which corresponds to an order

reduction of
⌊

d
e×pd+1

⌋
.

To give a concrete example, when relying entirely on lazy engineering, one
would in theory require at least a 13th-order masked implementation for actual
1st-order security on SweRV in the time-constrained probing model. While we
do not expect an easily exploitable order reduction this large when performing
physical power measurements of SweRV (c.f. Section 3.4), we also want to stress
that these architectural side effects should not be underestimated. For example,
works like [28] show that, already on simple microprocessors, a generic 2nd-
order masked software implementations can very well loose both of its protection
orders in practice. If we add to that the fact that SweRV’s architecture has the
potential to unintentionally combine many more shares at many more locations,
one can expect that quite a few masking orders will also be required in case
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Plain Secure

Implementations Implementations

Name
Input Fresh

Cycles
Instr-

Cycles
Instr-

NOPs
Verification

Shares Randomness uctions uctions Runtime

Tornado-generated Implementations

ISW Keccak S-box 10 × 32 bit 5 × 32 bit 163 330 -

ISW Keccak S-box,
2nd order

15 × 32 bit 15 × 32 bit 1272 810 -

ISW Keccak S-box,
3rd order

20 × 32 bit 30 × 32 bit 2124 1121 -

ISW Keccak S-box,
4th order

25 × 32 bit 50 × 32 bit 4406 3309 -

AND Gate Implementations

DOM AND reg. [23] 4 × 32 bit 32 bit 10 8 33 48 40 1.4 m

ISW AND reg. [25] 4 × 32 bit 32 bit 10 8 32 48 40 57 s

TI AND reg. [30] 4 × 32 bit - 14 15 37 54 39 1.1 m

Trichina AND reg. [39] 4 × 32 bit 32 bit 9 8 34 46 38 1.28 m

DOM AND reg.,
2nd order [23]

6 × 32 bit 3 × 32 bit 20 21 86 148 127 3.2 m

DOM AND reg.,
3rd order [23]

8 × 32 bit 6 × 32 bit 33 42 250 295 235 9.6 m

Serial/Parallel Implementations

DOM Keccak S-box reg.,
serial [24]

10 × 32 bit 5 × 32 bit 83 95 240 418 333 8.4 m

DOM Keccak S-box reg.,
parallel

10 × 32 bit 5 × 32 bit 36 60 81 144 79 3.7 m

DOM Keccak S-box,
serial [24]

10 × 32 bit 5 × 32 bit 174 140 550 624 464 22.38 m

DOM Keccak S-box,
2nd order, serial

15 × 32 bit 15 × 32 bit 283 250 2050 1465 283 1.5 h

Threshold Implementations

TI Keccak S-box, reg. 15 × 32 bit - 66 105 72 126 15 3.5 m

TI Ascon (1 round) 15 × 64 bit - 721 863 1621 1153 290 1.18 h

Table 1: Runtime comparison of masked software implementations on the SweRV
core. Plain implementations do not consider software constraints, and thus lose
all protection orders. Secure implementations are handcrafted for SweRV, con-
sider all required constraints, and can thus preserve their claimed protection
order. NOPs indicate the required amount of nop’s or dummy loads/stores. Test-
cases marked with reg. do not perform any memory accesses, i.e., all data is in
the register file at the beginning/end of the computation.

of SweRV. Given that masking imposes a runtime overhead that is quadratic
in the masking order, such very high-order implementations might however still
not be a desirable solution, especially in automotive applications with real-time
requirements. As we show later, in such cases, we recommend utilizing lazy
engineering only for eliminating small problems while tackling big problems using
more effective implementation/masking strategies that we describe in Section 6.

6 Evaluation

In this section we demonstrate that, despite the fact that cores like SweRV can
cause significant problems for masked software implementations in general, one
can still design fine-tuned, secure versions with very small overhead. First, we
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explain how one can use a parallel instead of the usual serial coding strategy to
significantly reduce the performance impact of software constraints that require
a separation between processing shares of the same native value. We then explain
how one can utilize Threshold masking schemes, and by extension also the core
idea of lazy engineering, to design masked software for SweRV that is secure,
efficient, and easy to implement. More concretely, we show that the runtime
overhead of e.g. a masked Keccak S-box implementation providing 1st-order
security on SweRV, when compared to a corresponding implementation ignoring
all software constraints, can be as little as 13%.

Evaluation Setup All of our tested implementations are hand-written assembly
code, except for the Tornado-generated C implementations that are compiled
with the compiler flag -O1. For the verification and performance benchmarks we
used the cycle accurate simulation of SweRV’s netlist within Coco. Coco itself
was executed on a 64-bit Linux operating system on an Intel Core i7-7600U CPU
with a clock frequency of 2.70 GHz and 16 GB of RAM. We configure SweRV
with data memory ranging from 256 byte to 2 KB, adapted as required by the
respective testcase. The instruction memory and instruction cache is configured
to be 2 KB for each test case.

The SweRV configuration using 256 byte of data memory, after applying the
optimizations described in Section 3.2, results in a circuit with 420 000 gates, of
which 108 000 are registers and 97 000 are non-linear gates. A detailed breakdown
of these numbers can be found in Appendix B. This makes the hardware design
of SweRV orders of magnitudes larger than the Ibex design which was studied
in [20], and consisted of only 27 000 gates.

Software Implementation Package To measure the overhead imposed by differ-
ent software constraints, we construct a comprehensive set of masked software
implementations. First, we take a look at several examples of masked And gates,
which represent the simplest non-linear function (degree 2). More concretely, we
analyze 1st-order implementations of the Ishai-Sahai-Wagner (ISW) And [25],
the Trichina And [39], the Threshold Implementation (TI) And [30], and up to
3rd-order masked variants of the Domain Oriented Masking (DOM) And [23].

We then investigate masked S-box implementations which represent the non-
linear layer within symmetric cryptographic computations, and use masked And-
gates as basic building blocks. Here, we focus on 1st- and 2nd-order masked
implementations of the Keccak S-box, which has a prominent use in the SHA-3
hash function. Furthermore, we provide TI variants of the Keccak S-box [11], as
well as one complete round (linear + non-linear layer) of the Ascon cipher [16].

In Table 1 we list plain implementations, which are correct in the value-based
leakage model, but do not consider any of SweRV’s software constraints, and are
thus also not secure on this core when verified by Coco in the time-constrained
probing model. In contrast, secure implementations fulfill all required constraints
can thus be verified successfully for their claimed protection order on SweRV. For
each implementation, we report SweRV’s execution runtime in cycles, as well as
the number of executed instructions. Additionally, for secure implementations,
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we report the number of unrelated instructions (NOPs), that are needed to
achieve the required amount of time separation between the processing of shares
of the same native value, as stated by the individual software constraints.

6.1 Serial vs. Parallel Implementations

Many modern symmetric cryptographic primitives have a mathematical descrip-
tion based on simple Boolean functions that can be easily mapped into a cor-
responding software/hardware implementation. For example, the Keccak S-box
(as used in SHA-3) operates on a state consisting of five lanes, each of which is
combined with two other lanes using a sequence of simple And, Xor, and Not
operations to compute the corresponding output lane. The most straightforward
way of implementing this S-box in software is to take a set of three lanes, pro-
cessing them, storing the resulting output lane, and repeating these steps until
the computation of all five output lanes is finished.

If we now consider a masked implementation, where each input/output lane
is represented by two (or more) shares, the same implementation strategy can
be used, except for the fact that the sequence of Boolean operations needs to be
adapted such that (1) shares of the same native value (lane) are never directly
combined, (2) the (native) output is still the same. If we further consider a soft-
ware constraint that requires a certain amount of unrelated instructions between
processing shares of the same native value, one can imagine that additional nop
instructions will need to be introduced for this purpose. Alternatively, one could
consider a parallel implementation, where one interleaves the computation of the
five output lanes such that nop’s can be replaced with computations on shares of
other lanes. We give an example that illustrates the runtime difference between
serial and parallel implementations in Appendix A. This runtime difference is
also quite visible in Table 1. For example, the parallel DOM Keccak S-box im-
plementation (81 cycles) is three times faster than its serial counterpart (240
cycles).

One potential downside of parallel implementations is the fact that they in-
crease the maximum amount of intermediate values that need to be kept track
of. Especially in case of higher-order masked implementations, a processor’s reg-
ister file might not be large enough to hold this increased amount of intermediate
values. The resulting register spilling then requires additional load/store opera-
tions that also need to comply with software constraints and can thus eliminate
any potential gain of this approach. To illustrate the overhead of memory op-
erations, we have included a serial implementation of the Keccak S-box that
initially loads all shares from memory and computes the S-box. If we compare
the runtime of this implementation (550 cycles) to the serial implementation
that performs computations without intial memory operations (240 cycles), we
can observe a runtime overhead of about factor two.
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6.2 Threshold Implementations

Threshold implementations (TI) [30], is a provable secure masking scheme that
splits non-linear functions into multiple incomplete component functions. More
concretely, in TI, each component function fulfills the non-completeness property,
meaning that its computation is independent of at least one of its input shares.
One consequence of incompleteness is that TI schemes require computations with
at least three shares in order to provide 1st-order security. At the same time, this
incompleteness guarantees that any combination of intermediate values during
the computation of one component function can combine at most two out of
three shares of any native value, therefore leaving 1st-order security intact.

In the context of implementing secure and efficient masked software imple-
mentations for SweRV, TI turns out to be beneficial in two ways. First, the
“lazy” characteristic of TI allows us to ignore all small problems that can com-
bine at most two shares. Second, a TI description of Keccak, for example as
shown in [12], also gives a description of three S-box component functions, each
of which only contain instructions that operate on an incomplete set of shares.
Hence, when implementing TI Keccak in software, one can calculate the linear
layer in sequence for each share, and the non-linear layer in sequence for each
component function. Then, one only really needs to pay attention to big prob-
lems when switching the calculation from one component functions to another.
This significantly simplifies the software development process as big problems
can only really occur twice per Sbox computation.

In Table 1, we show a TI implementation of the Keccak S-box (72 cycles)
which has almost no overhead compared to the corresponding plain implemen-
tation (66 cycles). Compared to a plain parallel DOM implementation, the over-
head of a secure TI implementation is still only a about a factor of two, while
being at lot easier to implement. With TI Ascon, we also present runtimes of im-
plementations that compute an entire cipher round (linear + non-linear layer).
The choice of using Ascon for this comparison is motivated by the fact that Ascon
uses a S-box very similar to Keccak, and a linear layer that is significantly easier
to implement in assembly than in case of Keccak. From the reported numbers we
can see that only 290 additional nops are needed to make this implementation
conform to the required software constraints. While the cycle count of the secure
implementation is still about twice as large as in the plain case, we want to stress
that most of this overhead (≈ 900 cycles) is due to software constraints for data
memory since three shares of Ascon’s state do not quite fit into the register file
anymore.

7 Conclusion

In this work, we have performed a comprehensive analysis of more complex CPU
architectures in the context of masking-related side effects. First, we showed that
on cores like SweRV, there exists a significant gap between security in a simple
software probing model and practical security for masked software. We under-
lined this point both via a formal analysis in the hardware probing model and
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via empirical analysis based on gate-level timing simulations. We then further
analyzed the components of SweRV in the hardware probing model, identified
new problems, and discuss possible solutions in terms of software constraints.
Ultimately, while there exist many hardware components that can reduce the
security of masked software due to architectural side-effects, we show that there
only exist a few components that could reduce the security of masking schemes by
multiple orders. Hence, when considering the implementation of efficient masked
software for such CPUs, we recommend to use a combination of TI/lazy engi-
neering to deal with small problems while only addressing the few large problems
directly in the software implementation. In that case, the performance overhead
of software constraints can be as low as 13% while the resulting implementation
can be fully formally verified on our secured SweRV in the hardware probing
model. If 2nd-order protection is desired, one could again rely on TI/lazy en-
gineering for small problems, here however the additional cost of this approach
might not justify this convenience anymore. When aiming for even higher pro-
tection orders, one likely needs to consider all software constraints directly in
the implementation to keep the runtime overhead manageable.
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Appendix A
1 # Shares lane 0: x2, x3
2 # Shares lane 1: x4, x5
3 # ...
4 # Randomness: x12, x13, x14, x15, x1
5 # Lane 0
6 not x17, x2
7 and x24, x17, x5
8 xor x24, x24, x12
9 and x25, x3, x4

10 xor x25, x25, x12
11 and x27, x17, x4
12 xor x27, x27, x24
13 and x28, x3, x5
14 xor x28, x28, x25
15 xor x27, x27, x10
16 xor x28, x28, x11
17 # Lane 1
18 not x17, x4
19 and x24, x17, x7
20 xor x24, x24, x13
21 and x25, x5, x6
22 ...
23 #Lane 2
24 ...

1 # Shares lane 0: x2, x3
2 # Shares lane 1: x4, x5
3 # ...
4 # Randomness: x12, x13, x14, x15, x16
5 # NOT
6 not x17, x2
7 not x18, x4
8 not x19, x6
9 not x20, x8

10 not x21, x10
11 #DOM -AND - Instr 1
12 and x22, x17, x5
13 and x23, x18, x7
14 and x24, x19, x9
15 and x25, x20, x11
16 and x26, x21, x3
17 #DOM -AND - Instr 2
18 xor x22, x22, x12
19 xor x23, x23, x13
20 xor x24, x24, x14
21 xor x25, x25, x15
22 xor x26, x26, x16
23 #DOM -AND - Instr 3
24 ...

Fig. 5: Comparison between serial and parallel DOM Keccak S-box

Appendix B
Raw circuit Optimized circuit

Registers 108 129 108 043
Linear Gates 8 828 8 708
Non-linear Gates 133 415 97 222
Not-Gates 3 518 3 248
Multiplexers 335 294 203 107
Total 589 188 420 332

Table 2: Circuit size of the SweRV core (256 byte of data memory, 2 KB of instruction memory /
cache) before and after optimization (Removal of unused instruction memory logic)
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