
REDsec: Running Encrypted DNNs in Seconds
Lars Folkerts, Charles Gouert, Nektarios Georgios Tsoutsos

{folkerts, cgouert, tsoutsos}@udel.edu

University of Delaware

Abstract

Machine learning as a service (MLaaS) has risen to become a prominent technology due to the

large development time, amount of data, hardware costs, and level of expertise required to develop a

machine learning model. However, privacy concerns prevent the adoption of MLaaS for applications

with sensitive data. One solution to preserve privacy is to use fully homomorphic encryption (FHE) to

perform the ML computations. FHE has great power to protect sensitive inputs, and recent advancements

have lowered computational costs by several orders of magnitude, allowing for practical applications to

be developed. This work looks to optimize FHE-based private machine learning inference by leveraging

ternary neural networks. Such neural networks, whose weights are constrained to {-1,0,1}, have special

properties that we exploit in this work to operate efficiently in the homomorphic domain. We introduce

a general framework that takes an input model, performs plaintext training, and efficiently evaluates

private inference leveraging FHE. We perform inference experiments with the MNIST, CIFAR-10, and

ImageNet datasets and achieve private inference speeds of only 1.7 to 2.7 orders of magnitude slower

compared to their plaintext baseline.

I. INTRODUCTION

The rapid growth of cloud computing services has amplified concerns about the need for data privacy.

Users of these services trust their personal data to the cloud for storage and computation, which can put

their privacy at risk. For instance, a curious cloud service provider can read the sensitive user data, since

it’s stored on their servers. This can potentially allow them to learn proprietary secrets as well as personal

data (such as health records) to sell to advertisers [1]. In addition, cyberattacks can be mounted against

cloud servers and data stored on these hosts can be leaked or stolen [2], [3]. Attackers are beginning to

set their sights on these servers as more and more users take advantage of cloud services and outsource

valuable data. Therefore, direct attacks targeting cloud datacenters are becoming increasingly common [4].

Because of these security threats and the fact that a large number of organizations and individuals

continue to adopt the cloud computing paradigm, it is essential to provide security guarantees for all



forms of outsourced computation, which each come with their own set of unique challenges. This work

focuses on a specific and emergent case of cloud computing known as machine learning as a service

(MLaaS) [5]. In this scenario, a cloud service provider has a trained network (often with private weights)

on their servers and allows users to upload their own data for classification purposes. For example, in

medical research, many new machine learning algorithms are being developed to process medical images

and cloud service providers could develop and launch networks using the MLaaS paradigm for users

[6]. However, due to legal and regulatory issues surrounding privacy and IP concerns (e.g., HIPAA [7]),

the use of cloud computing for these applications remains unexplored. To mitigate this problem, special

considerations need to be in place to enable users to securely upload their data to the cloud and receive

provable guarantees about their privacy during processing.

The most common way to secure user data and protect confidentiality is through the use of encryption

schemes such as AES [8]. While this successfully prevents attackers and the cloud from viewing the data,

it also severely limits the usefulness during processing. In particular, no meaningful work can be done

with the exception of storage; in other words, common encryption algorithms do not allow executing

algorithms on encrypted data, such as those required for MLaaS and other cloud computing scenarios [9].

Luckily, there are a few state-of-the-art cryptographic techniques that allow for purposeful computation

to be done on encrypted data while still maintaining confidentiality. The current strategies for privacy

preserving MLaaS mainly involve two techniques: homomorphic encryption (HE) [10] and multiparty

computation (MPC) [11].

Homomorphic encryption encompasses a special class of ciphers that all share an incredible property:

the ability to perform meaningful computations directly on ciphertexts, which, in turn, manipulates the

underlying plaintext data in exactly the same way. This capability allows users to outsource secure

ciphertexts to a third party cloud service provider to execute algorithms, such as neural network inference,

on the encrypted data without any knowledge of the data itself. After the computation is complete, the

cloud will send the encrypted result back and users can decrypt to get the output of the algorithm on their

original inputs. This type of encryption comes in three flavors: partial HE (PHE), leveled HE (LHE), and

fully HE (FHE) that differ in the number and types of operations that can be done on encrypted data.

Many previous works aiming to solve privacy preserving MLaaS utilize LHE, which allows performing

arbitrary operations on ciphertext data for only a predefined, bounded number of times. Pure LHE-based

MLaaS frameworks, such as CryptoNets [12] and CHET [13], allow machine learning inference on

encrypted data to be done entirely by the cloud with no interaction from the user except the secure

upload of encrypted inputs and downloading the final encrypted result. One of the key principles of HE

2



is the concept of noise, which accumulates in ciphertexts during every operation and is necessary to

guarantee security. If too much noise accumulates in the ciphertexts, the user will be unable to decrypt

the data. To accommodate for this, the depth of the computations in LHE must be known beforehand

to allocate the proper noise budget and to ensure a correct decryption 100% of the time. In order to

increase the noise budget, either the security level must be decreased, or different parameter sets must be

selected that result in progressively slower execution times. For complex algorithms that perform many

computations with the same data repeatedly, LHE does not scale and becomes incredibly inefficient in

terms of both speed and memory overheads. For deep neural networks that operate on complex datasets,

such as CIFAR-10, this approach is not feasible. In fact, most works using LHE are optimized only for

small and simple networks for the MNIST dataset.

To compensate for this, other works have employed FHE which builds upon LHE and adds a “bootstrap-

ping” mechanism that allows the noise in ciphertexts to be reduced when it reaches a certain threshold.

This procedure is considered costly and is generally the bottleneck of fully homomorphic operations.

However, for complex algorithms, this approach is still more efficient than choosing increasingly larger

parameters for LHE. For example, FHE-DiNN [14] employs fully homomorphic encryption to conduct

private inference for a tiny neural network, and this approach only demonstrates how to evaluate fully-

connected layers. In this case, the authors modify the bootstrapping algorithm adding the capability to

automatically compute an activation function on the encrypted data for almost no extra cost. While this

is a noteworthy optimization that has come to be known as “programmable bootstrapping” [15], it must

be done on all active neurons at least once a layer (in order to evaluate the activation function), even

if the ciphertexts have low noise. This results in an overall slower execution time, as the bootstrapping

procedure is invoked more times than strictly necessary.

One potential limitation of homomorphic encryption that affects all of the above approaches is the

issue of branching on encrypted data. Because the third party carrying out the encrypted computation has

no information about what the underlying plaintext of the user is, there is no way for the server to make

a runtime decision based on an encrypted value. This is known as the termination problem [16], which

is a reference to the fact that servers cannot rely on early termination of loops that depend of encrypted

conditions and return an answer. For instance, a privacy-preserving search algorithm for a database with

homomorphically encrypted records must search the entire database and combine the encrypted results

in every query. As a result, for certain encrypted computations where all branch conditions are based on

ciphertexts, the servers end up with the worst-case complexity.

The second approach for privacy preserving MLaaS aims to solve the termination problem using

3



multiparty computation, which involves multiple entities performing functions jointly over their private

data. With this approach, no single entity is capable of seeing the data of other parties involved in the

computation. A number of popular private MLaaS solutions incorporate both MPC and HE constructions,

such as Gazelle [17], Cheetah [18] and MiniONN [19]. These frameworks use LHE or PHE for linear

operations on the cloud (e.g., convolutions) and MPC in the form of garbled circuits [20] for non-linear

operations (e.g., ReLU activations) that require branch decisions and help from the data owner. In these

solutions, the cloud still maintains control over the convolution weights, making them transparent to

the user. However, in these solutions, the user must be kept actively engaged during the computation,

which limits the usefulness and feasibility of these solutions. In addition, there is a large communication

overhead between the user and cloud, as data used for MPC computations must be continuously uploaded

and downloaded.

Because LHE realistically only supports inference for small neural network, and MPC requires the user

to take part in the machine learning computations, in this work we adopt FHE to facilitate inference for

arbitrary neural networks. While bootstrapping remains the bottleneck of fully homomorphic operations,

several works have accelerated the procedure dramatically [21], [22], [23], [24]. In addition, the FHE

evaluation can be accelerated even further with GPUs, achieving more than an order of magnitude speedup

over a CPU. Even with all of these techniques, the cost of a bootstrap remains much higher than other

operations on ciphertexts and minimizing the invocations of the procedure is critical for fast evaluation.

Contrary to prior works, our REDsec framework employs ternary neural networks (TNNs) and treats

individual ciphertexts in the network as binary bits, which allows us to employ optimizations such as

computing a sign function for very little cost and no noise penalty. In addition, we adopt a strategy

known as bridging to convert ciphertexts to the integer domain and accelerate addition operations [25].

These insights allows us to optimize all layer types to require the bare minimum number of bootstraps

in order to achieve significantly faster inference speeds.

Our contributions can be summarized as follows:

• An optimal order and computation structure of ternary neural networks to accommodate for an

efficient fully homomorphic implementation;

• Major improvements to cuFHE, a state-of-the-art library for GPU accelerated HE operations,

including leveled operations, encryption of constants, and robust support for multiple GPUs;

• A detailed analysis of neural network structure to determine the most optimal times to perform

costly bootstrapping procedures to refresh the noise;

4



• An end-to-end system to construct arbitrary neural network architectures, including a UI for users

to build their model and a bespoke compiler to generate the training code in TensorFlow and

encrypted inference code in C++/CUDA.

Roadmap: In Section II, we provide an overview of homomorphic encryption and machine learning

concepts as well as our adopted threat model. Section III provides an overview of REDsec and Section

IV provides specific implementation details. Section V details our experimental evaluations and analysis

of results. Lastly, Section VI provides comparisons with prior works and Section VII concludes the paper.

II. PRELIMINARIES

A. Learning With Errors

Learning with Errors (LWE) [26], and its variant called Ring-LWE [27], is the hard problem that

many homomorphic encryption schemes and other lattice-based encryption algorithms rely on for their

security. In turn, LWE derives its hardness assumptions from other important problems in both coding

and lattice theory [28], [29]. Solving the LWE problem essentially requires recovering a function from a

set of noisy samples. The difficulty of solving this problem, and hence the level of security of schemes

based on LWE, is proportional to the magnitude of random noise injected into the original samples. The

Ring-LWE problem is an extension of LWE in the domain of polynomials over finite fields.

Adapting this problem to cryptographic applications is relatively straightforward: encryption keys and

ciphertexts are injected with noise to hinder cryptanalysis. In the case of homomorphic encryption, there

is a tradeoff between the level of injected noise (and hence the security level) and the speed of HE

computation. The lower the magnitude of noise, the more homomorphic additions and multiplications

can be conducted before measures must be taken (e.g., bootstrapping) to reduce the noise to a secure,

but manageable level.

B. Homomorphic Encryption

Cryptographic schemes that support meaningful computation directly on ciphertexts and result in a valid

encryption of the result of the computation are deemed homomorphic. However, not all homomorphic

encryption schemes are created equal, and they are classified into three categories depending on the type

and number of operations that can be computed on ciphertexts.

1) Partially Homomorphic Encryption: The “weakest” category of HE is partially homomorphic en-

cryption (PHE) and was naturally the first realization of homomorphic encryption in general. Cryptosys-

tems such as RSA [30], ElGamal [31], and Paillier [32] fall into this category and allow for only one

5



of two basic arithmetic operations on ciphertexts: either addition or multiplication. A benefit of this type

of homomorphic encryption is that operations are fast and there is no noise accumulation because these

schemes do not derive their security from the previously defined LWE problem. The consequence of this

is that PHE allows for unlimited additions or unlimited multiplications on encrypted data, but not both.

In the context of privacy-preserving machine learning, PHE is often combined with MPC to make up for

its computational shortcomings for both neural network training and inference [17].

2) Leveled Homomorphic Encryption: Contrary to PHE, both LHE and FHE schemes allow for arbitrary

algorithms to be evaluated on encrypted data because both are capable of supporting encrypted additions

and multiplications, which form a functionally complete set of operations. However, unlike PHE, LHE is

not capable of executing an unbounded number of encrypted operations because of noise accumulation.

This fact also makes LHE far more difficult to harness effectively, since complex encryption parameters

(e.g., the number of primes in the ciphertext moduli chain, the degrees of various polynomials, and the

standard deviation of injected noise) must be carefully tweaked and optimized for both security and the

number of operations required by the algorithm being implemented. There is a complicated balancing act

between the security level, speed, and noise threshold that must be taken into account for each application

in which LHE is used. While this balancing act also exists for FHE, it is generally independent of the

actual algorithm being carried out on encrypted data. For LHE, the more operations required for an

application, the slower (or less secure) leveled homomorphic operations become in general.

3) Fully Homomorphic Encryption: FHE was realized for the first time in 2009 by Craig Gentry with

the introduction of the bootstrapping theorem [10]. As mentioned prior, this technique is used to reduce

the noise in ciphertexts to allow for arbitrary encrypted operations. Before bootstrapping, the only way

to eliminate the noise in a homomorphic ciphertext was to send it back to the user, have them decrypt,

and finally re-upload a fresh ciphertext with minimal noise. The bootstrapping procedure converts this

concept to the encrypted domain by having the user provide the cloud with an encryption of the secret

key. The cloud can then use this key to perform a decryption procedure homomorphically; however,

instead of plaintext, the result will be a new encryption of the plaintext with greatly reduced noise. By

keeping track of noise growth in ciphertexts and applying the bootstrapping procedure when needed,

FHE is capable of computing an infinite number of additions and multiplications on ciphertext data.

C. Contemporary HE Libraries

There are a number of HE libraries to choose from that all offer certain advantages and disadvantages.

The first widely available open-source library is called HElib and implements the BGV [33] and CKKS

6



[34] homomorphic cryptosystems. This library treats individual ciphertexts as integers (or approximate

numbers) and supports both multiplication and addition operations on ciphertext data. Typically, this

library is used for LHE even though it includes FHE support due to particularly slow bootstrapping

speeds.

Another popular library called SEAL was created by Microsoft and offers leveled versions of the BFV

[35] and CKKS cryptosystems. Similar to HElib, ciphertexts represent either integers or approximate

numbers. SEAL is commonly used to build small privacy-preserving neural network inference applications

as it provides an intuitive API and is generally more friendly and easier to configure than other HE

libraries.

Both HElib and SEAL are solid options for LHE, but the former is not feasible for FHE and the latter

does not include bootstrapping, and thus does not provide FHE support. The FHEW [23] scheme, which

itself is derived from the GSW cryptosystem [36], takes a completely different approach to HE from these

two libraries and greatly improves the speed of bootstrapping. In FHEW, ciphertexts represent individual

bits of plaintext values and the operations exposed to users take the form of logic gate operations. As a

result, algorithms implemented using FHEW must be in the form of (virtual) digital circuits; for instance,

to add two encrypted bytes, one must implement an 8-bit homomorphic adder circuit.

While FHEW boasts bootstrapping speeds of less than a second, TFHE expands upon and evolves

FHEW’s approach to achieve even more efficient bootstrapping capabilities. Similar to FHEW, TFHE

treats ciphertexts as encryptions of single bits and provides a logic gate API for users to construct arbitrary

algorithms as circuits. TFHE is capable of evaluating a single gate followed by a bootstrapping procedure

in 13 milliseconds, with the exception of a homomorphic multiplexer gate that takes approximately double

the time of the other gates. Due to its incredibly fast bootstrapping speeds, many privacy-preserving

machine learning frameworks that leverage FHE use this library. In turn, REDsec also allows users to

select TFHE as the underlying crypto library as it remains the fastest and most feasible option for FHE

on CPUs. However, the cuFHE [37] and nuFHE [38] GPU libraries port the TFHE scheme to CUDA

and are capable of accelerating the bootstrapping procedure even further, by over an order of magnitude.

To the best of the authors’ knowledge, these GPU libraries provide the fastest bootstrapping speeds of

any open-source library and boast approximately identical speeds as each other (on the same GPUs and

in NTT mode). In its fastest configuration, REDsec employs our heavily modified version of cuFHE to

evaluate any homomorphic circuit.

7



D. Binary Neural Networks

1) Concepts: Binary neural networks (BNNs) constrain weights and/or values to {-1,1}. They are

primarily researched as a way to store small weight files on mobile devices, as each {-1,1} weight can

be represented as a bit {0,1} [39], [40]. Often, the BNN activation function is a sign function:

sign(x) =

8><>:+1 iff x > 0;

−1 otherwise;
(1)

which converts the post-convolution values back to binary. We refer to this class of activation functions

as binary activations [39], [40], [41]. Binary neural networks have many advantages that improve the

speed of computation, rendering BNNs less costly in terms of memory and execution time compared to

full precision networks [39], [40], [41]. Since all of the weights and values are bits, this network is an

ideal candidate to run with the TFHE cryptosystem.

There are several works expounding on how to train binary neural networks for quick convergence

[41]. In particular, training a binary neural network is an interesting problem, since the gradient for the

sign function is undefined. Thus, much of the work on BNNs centers around the problem of picking a

suitable gradient function during backwards propagation for training the network [41]. We remark that

our paper does not focus on these different implementations, although many are available in the Larq

library, which we leverage for our REDsec implementation [42].

TABLE I. POPULAR NETWORK ARCHITECTURES FOR ALEXNET: WEIGHT FORMAT, ACTIVATION FUNCTIONS AND

REPORTED ACCURACY.

Network Weights Activation Top-1 Top-5

AlexNet [43] Full Precision Full Precision 57.1% 80.2%

Binary Weight (BWN) [40] Binary Full Precision 56.8% 79.4%

XNOR-net [40] Binary Mixed 44.2% 69.2%

BinaryAlexNet [44] Binary Binary 36.3% 61.5%

Hybrid Binary (HBN) [45] Binary Mixed 48.6% 72.1%

Benn [46] Binary Binary 54.3% N/A

There are also many works that improve network architectures for high accuracy [41]. Indeed, there

is a difference between binary weight networks (BWNs) with integer activation functions, and binary-

weight/binary-activation networks [42], [41]. This trade off was first explored in the XNOR-net paper

[40], and binary weight networks can have similar accuracy to full precision networks when trained

properly. Nevertheless, binary-weight/binary-activation networks do receive some accuracy degradation

8



(a) Strategies (b) Truth Tables

Fig. 1. Integer to Logical Space: The core idea behind BNNs is that a complex multiplication operation reduces to an XNOR

gate, with the f-1,1g in the integer domain mapping to f0,1g in the XNOR truth table. In the encrypted domain, when the

weight (W) is known to the server, REDsec applies either the NOT gate (if W=0) or a copy operation (if W=1) to the ciphertext

(C) instead of the noisy and expensive homomorphic XNOR gate.

since information is lost in the binary sign activation function. Likewise, recent works explore hybrid

techniques to boost accuracy and still have binary weights and activations [41], [45]; for example, most of

the accuracy loss can be mitigated by keeping full-precision pixel values at only a few of the middle layers

[47]. Another useful technique is binary network ensembles, where multiple binary neural networks are

trained and return a result to the user. In this case, users consolidate these results to improve performance

[46]. A comparison of these different strategies is summarized in Table I.

Ternary neural networks is another promising technique for accuracy improvement, which we find to

be very effective for our work. Specifically, ternary neural networks offer the possibility of having an

additional zero weight: {-1,0,1} [48]. This optimization comes with an increase in accuracy, but since

it incurs moderate memory and computation overheads, many discrete neural network implementations

overlook this feature [48], [41]. However, this cost is effectively negligible when working with encrypted

neural networks, making ternary networks a lucrative alternative to binary neural networks for our system.

2) Multiplication: The concept of binary multiplication was first adapted in BinaryNet [39]. The basic

idea is that a multiplication of values in {-1, 1} is equivalent to an XNOR of values in {0, 1}. While

this concept makes binary-weight/binary-activation networks easier to implement on FPGAs [49], [41],

encrypted XNOR is noisy and expensive. Thus, in REDsec we exploit the fact that weights are know

to the server to further reduce the cost of multiplication to a very efficient homomorphic NOT or copy

operation (Fig. 1). REDsec also supports integer-value/binary-weight multiplication using a similar logic:

multiplication by -1 is the 2’s complement, where all bits are flipped and one is added to the result.

The bit flip can also be accomplished by an NOT gate, while the plus one can be implemented using a

homomorphic add operation or an incrementer circuit:

9



−x = x+ 1: (2)

For ternary neural networks, multiplication by a 0 weight is 0 regardless of the input. Therefore, we do

not need to process the input in our calculations, but need to adjust for the zero valued result in the

convolution step [48].

3) Convolution: Building on binary multiplication, convolution is a series of multiply-adds. Since

XNOR replaces multiplication, this problem reduces to XNOR-bitcount. When the convolution has binary

inputs, the bitcount and XNOR operations are not exact representations, since XNOR has outputs {0,1}

instead of {-1,1}. The different representations are related based on the number of multiplications M.

Bitwise Representation: b = (i+M)÷ 2 (3)

Integer Representation: i = (2 · b)−M (4)

For ternary neural networks in the bitwise domain, we need to take into account the 0 values. These zero

values actually correspond to 0.5 in the bitwise domain. Thus, when building a network, we can count

the number of zero values and divide by two to get an offset.

Ternary Weight Offset = 1
2

X
w ∈W | (w == 0) (5)

Since the sign activation function follows convolution, we can incorporate the count in the sign step,

rounding to the nearest number. Likewise, when the convolution has integer inputs, our 2’s complement

method can be used to represent integers directly. Here, zero valued weights just ignore the input directly.

4) Sign Function: Combining the sign equation (Eq. (1)) with the integer-bitwise conversion (Eq. (4)),

we get the following result [40], [41]:

sign(i) = sign(2 · b−M) =

8><>:+1 if (2 · b−M) > 0;

−1 otherwise;

(6)

bitsign(b) =

8><>:1 iff b > M
2 ;

0 otherwise:
(7)

5) Pooling: The pooling layer in neural networks combines pixels for smaller inputs. The two most

common forms of pooling are MaxPooling and AveragePooling, in which the max and average functions

are used to combine pixels, respectively. The pooling layer is typically applied after the convolutional

layer, but before the activation function. This can further assist with better training [41]. For binary neural

10



network inference, it is also efficient to move the MaxPooling layer after the activation function; this

does not require a change in logic, because it holds:

sign(max(x1; x2; x3:::)) = max(sign(x1; x2; x3:::)): (8)

Since the sign function outputs a binary representation, the MaxPooling function can be represented as

an OR gate [41].

6) Batch Norm: Batch normalization is essential to BNN training, and despite its complex nature, it

reduces to an efficient operation during inference. The concept of batch normalization is to re-center the

data around zero with a standard deviation of one. While the mean and standard deviation are updated

during training, they are frozen during inference, allowing us to convert the data in an efficient way:

BN(x) =
x− �√
�2 + e

· 
 + �; (9)

sign(BN(x)) =

8><>:+1 iff (x > �);

−1 otherwise,
(10)

where � and �2 are the mean and variance of the batch, 
 and � are the gain and bias, and e offers

numerical stability. Moreover, � = −�

 ·
√
�2 + e+ � and is calculated during weight preprocessing and

rounded to the nearest integer [41].

7) Larq Library: The Larq library for binary neural networks is actively maintained, integrated into

TensorFlow, and is well documented [42]. Its toolchain supports binary neural network training, and has

many pre-trained models included as part of the platform. The API offers QuantDense and QuantConv2D

layers for fully connected and 2D convolutions, respectively, in the BNN domain. In addition, it supports

many sign activation functions, differing in their backward pass pseudo-gradient, as well as ternary [48]

and DoReFa discrete activations [50].

E. Threat Model

The primary concern of this work is the privacy of both user data and proprietary network character-

istics, such as biases. We assume an honest-but-curious cloud that will execute the correct operations on

the encrypted data but is incentivized to snoop the uploaded data stored on their servers. Likewise, we

consider cyberattacks that attempt to exfiltrate sensitive user data from the server. In addition, we assume

that the user has limited knowledge about the network architecture and weights and is incentivized to

learn proprietary secrets about the trained network.

11



In terms of user data, the cloud is able to determine the size and dimensions of the inference inputs.

However, as encryptions of bits using the TFHE scheme are probabilistic and operations using encrypted

ones and zeros take the same amount of time regardless of the underlying plaintext value, it is impossible

for the cloud to deduce any information about the content of the user data.

With respect to the cloud’s trained model, we acknowledge that by observing the magnitude of inference

results for each class, it is possible to deduce the number of neurons in the second to last layer. For

instance, if there are 200 neurons in the second to last layer, the maximum value of the scores for each

class is around 200. However, the architecture of other layers and the model weights are protected from

all curious users as it is impossible to glean any information about earlier layers from the magnitude of

the output. We note that this threat can be thwarted by adding a batch norm or bias layer to the end of

a network to blind this information.

III. FRAMEWORK OVERVIEW

A. End to End System Overview

REDsec is an end to end framework that provides an efficient way to generate, train, and execute secure

neural network inference. Our framework allows for configurable networks to be executed without writing

complex blocks of FHE code. An overview of the REDsec modules is presented here, with references to

Fig. 2. A detailed description of implementation details is provided in the next section.

• REDsec Model Generator (1): The model generator is a friendly UI tool used to generate a netlist

of the model in CSV format. Use of this tool makes our system configurable and easy to use.

• REDsec Compiler (2): The REDsec compiler converts the CSV netlists into TensorFlow-based

Larq training code and C++/CUDA secure inference net-file code.

• Training with Larq (3): Using the Larq library in Jupyter notebook, the model is trained on input

data and the TensorFlow weights file is generated.

• REDsec Library: The C++/CUDA based REDsec library provides optimizations for efficient secure

inference. This includes optimizations for network architecture, encrypted circuits and rigorous

parallelism.

• Weight Conversion with REDsec (4): Utilizing the REDsec library and generated net-file code,

the TensorFlow weight file is condensed and optimized to run using REDsec.

• Secure Inference (Server) with REDsec (5): Our server module is executed on a remote server.

The C++/CUDA net-file code, which was generated by the REDsec compiler, utilizes the REDsec

12



Fig. 2. REDsec Overview: Summary and interaction of the different components and modules of our REDsec framework.

library and reads the condensed weights file to run secure inference.

• Secure Inference (Client): Client modules are provided to prepare and encrypt the input data,

send it to the secure inference server, and decrypt results.

B. Secure Inference Overview

REDsec is designed with cloud computing in mind: a remote user communicates with a cloud server,

uploads inputs, and receives outputs in turn. REDsec includes client-side scripts that facilitate prepping

private inputs, generating encryption keysets, and decrypting classification results. To enable private

inference, the user and cloud will both need to initiate separate one-time setup phases. For the cloud,

it must specify the neural network and train it. At this stage, the cloud service provider must provide

a training set in the clear and a description of the neural network. The cloud will proceed to use the

REDsec network compiler to generate code implementing the neural network using REDsec modules and

will train the network in the plaintext domain with the training set in order to generate the weights. After

the setup phase, the cloud is ready to receive private inference requests. For the user, a homomorphic

keypair must be generated and the evaluation key sent to the cloud to facilitate homomorphic operations.

When the user wishes to classify a private input, she must first supply the data in either picture or

binary form to a converter module, which will prepare the input and ensure that it is in the format that

the network is expecting. This typically implies simply resizing or cropping the image, and centering the

13



pixels around the value of 0. For all networks in our experiments, we preprocess using:

preprocess(img) = 2 · img − 255 (11)

We note that this could have be implemented homomorphically on the cloud via a bitshift and integer

subtraction. Next, the user will utilize an encryption script that will take the converted data, encrypt each

bit using the private key generated in the setup phase, and export the resulting ciphertext array into a

file. The user uploads this file to the cloud and then the cloud initiates the inference procedure.

The output will be in the form of a ciphertext array, the size of which depends on the network

architecture and the number of possible classes in the dataset. For instance, the ImageNet dataset

contains 1000 classes and the result of the inference will be 1000 scores of the input belonging to

each class. Normally, these scores are converted using the softmax function, but to avoid executing

costly floating point arithmetic circuits on encrypted data, we skip this analysis with REDsec. In the

case of BinaryAlexNet for ImageNet, the outputs are fourteen bit unsigned integers, the highest of which

indicates the class that the input most likely belongs to. After encrypted evaluation, the cloud will generate

an output ciphertext file encoding the encrypted score of each class, and send this to the user.

Once receiving the output ciphertexts from the cloud, the user can use their secret key to decrypt the

scores corresponding to each class and then simply take the maximum to find the correct classification. We

opt not to do this in the encrypted domain as encrypted comparator circuits are not efficient (many gate

evaluations required). In addition, the scores for each of the classes may provide relevant information to

the user, especially in the case where the second-highest score is comparable to the maximum. Therefore,

we leave it up to the user to sort or find the maximum of the dataset, depending on how they plan to use

the data for their applications. This is the only computation involved on the user’s behalf besides basic

preprocessing, encryption, and decryption.

C. BNN Optimizations

1) Sign Function and Offset Conversion: The sign function in Equation 7 requires a comparison,

which is expensive to perform in the encrypted domain. To get around this, we apply an offset value

equal to signoffset = 2Mbits −M=2, where Mbits is the number of bits required to represent M, so that

Mbits = int(log2(M) + 1). We end up with the following expression:

bitsign(x) =

8><>:+1 iff (x+ offset) > 2Mbits ;

0 otherwise;
(12)

14



which can be simplified by taking the most significant bit of x. Since TFHE operates on bits, and assuming

the ciphertext is encoded in the binary domain, the bit extraction is a free operation.

Furthermore, we need to add in multiple offsets throughout the layer. These include:

• 2’s complement offsets in integer convolution (eq. 2),

• Ternary zero valued weight offset (eq. 5),

• Convolution bias offset (not typically used),

• Batch Norm offset (eq. 10), and

• Bit sign addition offset (eq. 12).

All of these offset values can be combined after training to condense the size of the weights file.

Combining these offsets also means that during inference, each layer needs to apply only one Mbit

addition per value. Therefore, even though REDsec’s implementation of the activation function requires

an addition, there is no additional cost to our activation function since it is combined with other operations.

2) Data Reuse: One useful concept in binary neural networks is the limited values that weights can

take on. With this realization, we can perform basic operations only once and reuse that result.

Fully Connected and Convolution Layers: For the fully connected layer, the XNOR multiplications

only need to be performed twice per value: once for a {-1} weight, and once for a {+1} weight. This

observation simplifies the expensive and noisy bivariate XNOR gate to a low noise univariate NOT gate

for {-1} and a free copy operation for {+1} (Fig. 1(b)). These results are stored in an array, and for every

output filter applied, the corresponding output value of {-1, +1} can be selected. Notably, this applies to

both bitwise and integer multiplication. We also observe that {0} values are independent of input values

and are incorporated into the offset preprocessing. In practice, we combine the NOT operation with a

bootstrap to convert from binary to integer ciphertexts.

3) Pooling Functions:

Average Pooling: In binary neural networks, average pooling may be used. Sum pooling has often been

a substitute for leveled BGV based schemes, since homomorphic division is only possible in specific

circumstances. To compensate for the change of function, BGV schemes adjust the weights in the

subsequent convolution accordingly. We apply a similar approach here, but due to the nature of the

sign function, there is no adjustments needed for the weights. However, we do need to sum the offset

values so that they scale accordingly:

sign(avg(x1; x2; x3:::)) = sign(sum(x1; x2; x3:::)):

Max Pooling: Max pooling is not typically used in leveled BGV neural networks since a costly com-

15



parison must be made between values. For REDsec, we can use the method many BNNs use by moving

the max pooling step to after the activation function. In this case, the max pooling problem is reduced

to an OR gate:

sign(max(x1; x2; x3:::)) = max(sign(x1; x2; x3:::)):

D. FHE Optimizations

By default, both TFHE and cuFHE set parameters well suited for fast bootstrapping. In the standard,

open-source implementations of both, it is assumed that bootstrapping will be done during every gate

evaluation (with the exception of the homomorphic NOT gate, which essentially results in minimal noise

growth). This paradigm is typically referred to as gate bootstrapping mode. This mode results in relatively

slow homomorphic operations even with the superior bootstrapping capabilities of this scheme, on the

order of 10-13 milliseconds for TFHE and 0.5 milliseconds for cuFHE. While this is indeed an impressive

result in the field of FHE, it is still prohibitively slow for complex algorithms. For large neural networks,

billions of gate evaluations are required to compute inferences; even small networks require millions of

gate evaluations.

Efficient Operations: To compensate for this, we adopt two approaches, namely bridging and lazy

bootstrapping. The first technique involves switching from the binary to the integer domain in order

to evaluate efficient addition operations; this can be done with a single bootstrapping operation and is

simply a matter of dividing the TFHE torus into more segments. With bridging we can minimize both

noise growth (a single addition operation is relatively inexpensive in terms of noise accumulation) and

eliminate the high number of bootstraps required to evaluate an addition circuit in the binary domain.

The second approach involves choosing parameter sets that allow for a large number of leveled HE

operations before bootstrapping is strictly necessary and monitoring the variance of noise levels of the

output of each leveled HE operation. Since it is well known how additions and multiplications affect

noise magnitude [36], and all TFHE operations (in both the binary and integer domain) are composed of

additions and multiplications (modulo 2 for the binary case), we can accurately estimate the new noise

variance after every type of computation on encrypted bits and integers. When the noise level exceeds a

certain threshold, we perform a bootstrapping operation to allow us to execute another series of operations

without bootstrapping.

Noise Auto-tuning: We also note that the TFHE bootstrap is integral to the evaluation of gate operations

as it serves to scale the output to the correct region of the torus. In practice, no more than a few gates

(depending on the gate types) can be evaluated on a ciphertext before bootstrapping is required to rescale

16



the underlying plaintext value. To avoid computing new noise variances for each ciphertext after each

operation during actual inference, we designed a custom auto-tuning mechanism that only needs to be run

once per network architecture. This procedure can either occur during the first live inference computation

or on dummy data. This mode adds noise checks after each operation and designates locations in the

network code where the noise variance exceeds a certain threshold. After all bootstrapping points are

determined, there is no need to perform noise checks on subsequent inference computations since the

noise will grow the same way each time. All arithmetic procedures constructed for convolutional, fully-

connected, and pooling layers (as elaborated in Section IV) are optimized for low noise growth.

Parallelization: Further, due to the embarrassingly parallel nature of most neural network operations,

we exploit multiple techniques to achieve the fastest performance for a given hardware target. If the

system consists of strictly CPUs, we execute HE circuits in parallel with as many cores as available.

Second, if GPUs are available, we execute cuFHE circuits in parallel by assigning each GPU streaming

multiprocessor a separate circuit to execute. In this way, we can achieve inference speedups that scale

linearly with the number of CPU cores and GPUs.

(RED)cuFHE: Lastly, we introduce major overhaul to the cuFHE library for efficient GPU evaluation

of homomorphic circuits. First, the original cuFHE library only supports a single set of parameters

corresponding to the recommendations set forth in the original TFHE paper [24]. This parameter set

corresponds to 110 bits of security and while it is a solid default configuration, it is not optimal for

all types of applications and algorithms. We introduce changes to the library to allow for customizing

injected noise levels and degrees of LWE polynomials (which can be used to influence sizes of both keys

and ciphertexts) to allow finding optimal parameter sets. In addition, this allows users to tweak the level

of security to their desired setting.

Moreover, we introduce leveled gates (i.e., gates without any bootstrapping) and a robust API for

leveled integer addition and scalar multiplication to the library as well as encrypting constant values.

These constant values are considered public and are encoded by the cloud with zero noise. The impact

of this mechanism is to allow private information from the user to be mixed with non-private data. In the

case of neural network inference, values such as biases are converted into noiseless, encrypted constants

in order to interface with the uploaded inputs encrypted with the secret key.

17



IV. IMPLEMENTATION DETAILS

A. Model Generation and Training

In order to make our REDsec framework more accessible, we developed a bespoke compiler to

encrypted neural networks. The input to the compiler is a CSV netlist outlining each of the neural

network layers, while the REDsec model generator was developed using Excel VBA to generate this

netlist. The tool directly asks for the convolution dimensions, pooling options and batch normalization

requirements of the desired network, and it further provides room for dropout to be applied. After the

REDsec model generator outputs the CSV netlist, the REDsec compiler can be used on the netlist to

generate the training and secure inference code.

For training, the source code output is a Jupyter notebook file that leverages TensorFlow and the Larq

library. This notebook file can be executed locally using Jupyter, or can run on cloud hosts (e.g., one can

use Google Colab for debugging or rapid prototyping). After the correct training and validation dataset

files are uploaded and properly linked, the code can be executed to train the network. As soon as the

network is trained in TensorFlow, a final weight extraction and compression must be performed. The

REDsec secure inference code comes with an integrated weight converter that transforms TensorFlow’s

floating point weights to ternary weights, and also combine different offsets, as discussed in Section

III-C1. Finally, the weight converter outputs a compressed weight file that is used for secure inference.

B. Secure BNN Inference with REDsec

The inference code leverages the REDsec, TFHE, and modified (RED)cuFHE libraries and consists

of both C++ and CUDA modules depending on available hardware. These files are run on the cloud to

perform secure inference.

1) Server Modules: After invoking the compiler in the training step, the cloud service provider should

already have a compressed weights file and the high level net code that is integrated with the REDsec

library. Once the server receives the evaluation key of a client, it can run noiseless encryption scripts

to compute biases for integration with secure inputs uploaded by users. Once a user sends an inference

request and encrypted input data to be classified, the cloud can execute the generated net code and

send the encrypted result back to the user after the inference procedure is complete. As it is possible to

encode multiple bits in a single ciphertext, the generated net code takes advantage of this to minimize

communication overhead and memory consumption by packing results of classification into a single

ciphertext per class.

18



2) Client Modules: There are three primary programs that are run on the client-side, none of which

are computationally demanding. The first is a key generation script that allows users to specify a security

level (in bits) and creates a keypair using either TFHE or (RED)cuFHE depending on whether the user

wants the cloud to use CPU cores or GPUs for homomorphic computations. The user is expected to

store the generated secret key, which is needed by the other client scripts for encryption/decryption and

uploads the evaluation key directly to the cloud server.

After generating a secure keypair, the user can utilize the second client module to prepare any inputs

for secure inference. First, the raw bytes of the image are read and checks are performed to ensure that

the image is compliant with the network architecture. REDsec will ensure that the image dimensions are

appropriate for the network and determines how many color channels to use; depending on the network,

this is either one for black and white images or three for color images. Next, the values of each pixel

are read from left to right and top to bottom and each color channel is encrypted as an array of eight

ciphertexts in the binary domain (since the value can vary from 0-255) and appended to a large ciphertext

file that holds all of the encrypted bits of the image. To start the outsourced secure inference, the user

uploads this ciphertext file to the cloud that evaluates the classification result.

The cloud will return a single ciphertext file storing the results of the neural network inference. This

file, like the input ciphertext file, will vary in size depending on the application and network architecture

itself. The ciphertext result file will consist of a number of ciphertexts equal to the number of possible

classes in which the input can belong. The magnitude of each ciphertext (which is an integer) can grow

up to the number of neurons in the second to last layer of the network, specifically dlog2Ne where

N is the number of neurons. The decryption module will use the secret key to process each ciphertext

corresponding to each class and return the plaintext scores. The class with the highest score indicates

the most likely match with the input image and can be determined by simply computing the max of the

values for all classes.

C. REDsec Library Implementation

The REDsec library contains our implementations of the TFHE machine learning circuits. For additional

flexibility, it can be compiled in unencrypted mode for debugging, or encrypted mode for evaluation.

This section gives an overview of the library and the optimizations that were contributed.

1) Library Structure: The REDsec library contains the following layers of abstraction:

• Layer: The layer library encapsulates convolution, pooling, batch normalization and activation

into a single object. The layer object ensures proper order of these functions so that the REDsec

19



Fig. 3. REDsec C++/Cuda Library: This figure shows the modules in the REDsec library, as described in Section IV-C1.

optimizations are preserved.

• Func: This level of files contain optimized implementations of convolution, fully connected,

pooling, batch normalization and quantize activation functions. OpenMP-based parallelization is

added at this level of abstraction.

• Ops: The Ops files contain basic, low level logic and arithmetic circuits that invoke the underlying

cryptographic library directly. This part of the library is where the encrypted operations are im-

plemented. Depending on the hardware target, the encrypted operations are written in CUDA (for

GPUs) and C++ for CPU-based systems.

In addition to these levels of abstraction, we subdivide the functions into integer and binary components

based on the layer input. Therefore, the user can decide to use integer layers for higher accuracy or

binary layers for speed.

2) Encrypted Circuit Designs: The goal of the homomorphic circuits utilized for neural network

inference is to minimize the noise growth in the ciphertexts in order to delay bootstrapping as long

as possible. The goal is to only bootstrap when a conversion from the integer domain to the binary

domain and vice-versa is required, as this will serve to accomplish the conversion and noise reduction at

the same time. Since bootstrapping remains the bottleneck of FHE operations and takes up significantly

more time than a standard ciphertext addition in TFHE, we aim to perform this procedure as few times as

necessary, yet guarantee correct decryption result for the client. In this subsection, we present an outline

of the core building blocks of homomorphic inference that are used to construct the different network

layers.

Adder constructions: We observe in neural network inference that adder circuits operating on bits form

the most computationally expensive operations in evaluating REDsec networks. In our adder designs for

20



unsigned and signed adders, the basic building block is a full adder using using two XOR gates, two AND

gates, and an OR gate. In total, this requires 10 arithmetic operations on LWE ciphertexts to evaluate

[24]. The primary reason for the large cost of using binary adder circuits is the bootstrapping required

to successfully evaluate it.

We made a key observation with regards to noise accumulation in the propagating carry bits used in

a ripple chain for multi-bit adders. We observe that the carry accumulates far more noise than any other

ciphertext involved in the circuit. This is because it is the only ciphertext object involved in every stage

of the adder and is continuously computed upon to determine the carry for the next stage. In addition, it

mixes at each stage with the secure input ciphertexts, resulting in an exponential noise growth in the most

significant bits of the result. In a carry-ripple design, even rigorously optimizing for noise accumulation,

the carry bit needs to be bootstrapped frequently in the carry-ripple chain. We note that parallel adders

can reduce the size of the carry chain, but this only serves to marginally improve the problem, requiring

slightly fewer bootstraps.

Instead, using the special properties of the TFHE bootstrap, we can rescale the ciphertexts from the

binary message space to an integer space (modulo an integer representing the total number of regions on

the TFHE torus). This will allow us to use the natural FHE addition operation instead of a costly adder

circuit composed of logic gates to compute the sum of two ciphertexts. Instead of dozens of bootstraps

and even more ciphertext arithmetic operations, we can accomplish this procedure for the cost of a single

bootstrap for the conversion plus the negligible cost of a single ciphertext addition.

Multiplication: These circuits are among the slowest to execute of the basic arithmetic circuits using

TFHE. However, because REDsec constructs BNNs and not full precision networks, the multiplication

operation is simply a single NOT operation. In the TFHE cryptosystem, this NOT operation does not

require a bootstrap procedure and becomes among the fastest operations in REDsec networks.

Activation: The most efficient operation in REDsec is the computation of the sign function, which is used

as the activation function for REDsec networks. While other works that utilize the sign function need to

extract the top bit of a ciphertext representing integers, which is an expensive and complicated operation,

or perform a programmable bootstrap, we need only make a copy of the ciphertext representing the MSB

of the ciphertext vector, assuming the current encrypted value is currently in the binary domain. This

operation is fast, accumulates no noise, and is essentially free, which is a major motivation for using

BNNs and treating ciphertexts as individual bits for certain operations in the first place.

3) GPU Modules for Encrypted Computation: GPUs can be used to achieve significant speedups over

strictly CPU based systems for homomorphic operations, particularly bootstrapping. For example, a GPU

21



can achieve over a 37x speedup compared to a CPU for bootstrapping operations using the TFHE scheme

[38]. For this reason and the fact that cloud instances with GPUs are widely available (such as the P and

G families of Amazon EC2 instances), the REDsec library provides GPU support for all homomorphic

operations through the use of CUDA code, the base cuFHE library, and several REDsec optimizations

built on top of cuFHE. Also, through the use of a custom GPU scheduler, REDsec is able to effectively

utilize GPU resources for any arbitrary number of available GPUs.

Updates in (RED)cuFHE: Like the TFHE library, cuFHE only exposes bootstrapped gate functions

to users. Even though the bootstrapped operations are much faster on GPUs, they are still orders of

magnitude slower than their leveled equivalents. As such, we constructed leveled gate functions and

arithmetic operations to fit with our lazy bootstrapping paradigm and modified the cuFHE ciphertext

structures to add variables that track of current noise variance. This variable, similarly to the TFHE

library, accumulates differently for various types of operations involving encrypted data. This allows

REDsec to utilize our auto-tuning feature to predict the best places in the network to insert bootstrapping

operations. Further, we parameterize cuFHE to allow for different configurations corresponding to various

security levels, as determined using the LWE estimator framework [51].

GPU resource scheduler: In order to maximize resource utilization for any number of GPUs, we

incorporate a custom scheduler to assign GPU streams to CPU threads running inference operations. The

scheduler runs on a dedicated CPU thread that maintains an array to keep track of resource utilization

and uses shared memory to direct CPU threads to specific GPUs and stream handles. When a CPU thread

needs to outsource FHE computation, it will ask the scheduler for a number of GPU streams proportional

to the work that needs to be done by entering a shared, thread-safe queue and the scheduler will return

new stream handles as they become available and when it is at the front of the queue. In the meantime,

the CPU thread can utilize its currently assigned hardware resources while it waits for more assignments.

When possible, the scheduler will attempt to find resources on a single GPU for any given CPU thread, as

communicating with multiple GPUs on a single thread will result in unnecessary overheads. For instance,

the CPU thread will need to transfer data back and forth between the GPUs it is using and also switch

contexts in CUDA (since a single GPU can be active at any moment on a single thread) which impacts

performance.

V. EXPERIMENTAL EVALUATION

To verify and test the efficiency of our framework, we conduct experiments using several network

architectures to classify images from three popular datasets at various levels of complexity. For experi-

22




