Mt. Random : Multi-Tiered Randomness Beacons

Ignacio Cascudo®, Bernardo Davidf, Omer Shlomovits*, Denis Varlakov®
*IMDEA Software Institute, Madrid, Spain, ignacio.cascudo@imdea.org
T University of Copenhagen, Copenhagen, Denmark, bernardo@bmdavid.com
17enGo X, Tel Aviv, Israel, omer@zengo.com
§ZenGo X, Tel Aviv, Israel, denis@zengo.com

Abstract—Many decentralized applications require a common
source of randomness that cannot be biased by any single party.
Randomness beacons provide such a functionality, allowing any
(third) party to periodically obtain random values and verify
their validity (i.e. check that they are indeed produced by
the beacon and consequently random). Protocols implementing
randomness beacons have been constructed via a number of
different techniques. In particular, several beacons based on time-
based cryptography, Publicly Verifiable Secret Sharing (PVSS),
Verifiable Random Functions (VRF) and their threshold variant
(TVRF) have been proposed. These protocols provide a range of
efficiency/randomness quality trade-offs but guarantee security
under different setups, assumptions and adversarial models.

In this work, we propose Mt. Random, a multi-tiered ran-
domness beacon that combines PVSS and (T)VRF techniques in
order to provide an optimal efficiency/quality trade-off without
sacrificing security guarantees. Each tier is based on a different
technique and provides a constant stream of random outputs
offering progressing efficiency vs. quality trade-offs: true uniform
randomness is refreshed less frequently than pseudorandomness,
which in turn is refreshed less frequently than (bounded) biased
randomness. This wide span of efficiency/quality allows for
applications to consume random outputs from an optimal point
in this trade-off spectrum. In order to achieve these results,
we construct two new building blocks of independent interest:
GULL, a PVSS-based beacon that preprocesses a large batch of
random outputs but allows for gradual release of smaller ‘“sub-
batches”, which is a first in the literature of randomness beacons;
and a publicly verifiable and unbiasable protocol for Distributed
Key Generation protocol (DKG), which is significantly more
efficient than most of previous DKGs secure under standard
assumptions and closely matches the efficiency of the currently
most efficient biasable DKG protocol.

Mt. Random (and all of its building blocks) can be proven
secure under the standard DDH assumption (in the random
oracle model) using only a bulletin board as setup, which is
a requirement for the vast majority of beacons. We showcase the
efficiency of our novel building blocks and of the Mt. Random
beacon via benchmarks made with a prototype implementation.
Our experimental results confirm the benefits of our multi-tiered
approach, showing that even though higher tiers provide fresh
random outputs more often, lower tiers can be executed fast
enough to keep higher tiers freshly seeded.

I. INTRODUCTION

Randomness is essential for constructing provably secure
cryptographic primitives and protocols. For several applica-
tions, it does not suffice that parties simply have a local source
of randomness, but we require instead a randomness beacon
that can periodically provide the same fresh random values
to all parties. This is particularly important in Proof-of-stake
protocols [31], [18], [14], where such random beacons are

needed to carry out the leader elections to decide the next party
to publish a block. In addition, random beacons are important
for other blockchain-related applications where committees
must be elected, such as sharding [43], [19], [45], as well
as for smart contracts that require a source of randomness. In
such settings it is desirable to implement a random beacon as
a protocol among the mutually distrustful participants of the
corresponding system, i.e., without assistance of a trusted third
party; moreover, we want to have a protocol with guaranteed
output delivery, and whose output correctness can be publicly
verified. The output of the protocol should not be predictable
beforehand and/or biasable by an adversary that corrupts up
to a certain threshold of the parties.

To illustrate the non-immediate nature of the problem,
notice that a simple commit-and-open strategy where parties
commit to local randomness and then output the sum of the
opened values not quite enough, as parties can bias the output
with a selective abort strategy, where they open or not their
commitments depending on their view so far.

Given that challenge, several alternatives for constructing
randomness beacons have been proposed based on crypto-
graphic primitives, such as publicly verifiable secret sharing
(PVSS) [311], [L1], [12f, (410, [139], verifiable random func-
tions (VRF) [14]], [18]], [17], [29], [24], [42], verifiable delay
functions (VDF) [8], [44], [6], [S], [38] and homomorphic
encryption [15]]. Moreover, achieving fairness against rational
adversaries has also been considered in works that rely on
financial incentives or punishments to encourage parties to
behave honestly [2], [L], [7], [32], [4]. In particular, this
rational approach has been proposed in the specific context
of randomness beacons by the RANDAO project [36].

Constructions of beacons from these different primitives
present a trade-off between the complexity of the construc-
tion (in terms of computation and communication) and how
unbiasable or unpredictable they really are. In this work, we
will focus on the two first types of random beacons, namely
based on PVSS and VRFs, because their security is based on
standard assumptions. In fact, we consider two different types
of VRF-based constructions, one using plain VRFs and another
using so-called threshold VRFs [42], [24], [29] (or TVRE,
also called distributed VRF or DVRF). Before describing our
approach, we give a brief overview of the complexity vs.
randomness quality trade-offs given by each of these types
of beacons.

Constructions using plain VRFs require very little computa-

tion and communication, but are open to the type of selecti¥e Our Contributions
abort bias that we mentioned above. Since they rely on theI
computation of a VRF that can only be carried out by a party
having its secret key, an adversary can always bias the lI:2
output by choosing whether to reveal or not its own VR
output, a fact that is captured in previous security analysis
this type of beacon [18].

n this work, we aim to combine the PVSS and (threshold)
F approaches to obtain a best-of-both worlds “multi-tiered”
ndomness beacon construction. Moreover, as a key part of
. Random's construction, we design a novel protocol for
Bublicly veri able and unbiasable distributed key generation.
Finally we also present GULL (Gradually UnLeashed alLba-

Distributed VRFs get rid of this bias by always allowing 4r0Ss), @ new PVSS-based beacon that generates a large batch
set of parties larger than a threshoédg.a majority of parties) of random outputs like ALBATROSS but allows for gradually
to compute the veri able random function, after a setup th&gleasing of smaller “sub-batches” of outputs. All of our
consists on a distributed key generation protocol. Nevertheleganstructions are publicly veri able and proven secure against
TVRF-based random beacons that have been proposed corB@f{cious adversaries under a single standard assumjgon,
on a round-by-round protocol where at each round the TVAgecisional Dif e Hellman (DDH).
is applied to the output of the previous round (and the randomMt. Random: A multi-tiered randomness beacolktore
beacon output is de ned to be some xed function of thaprecisely, Mt. Random is a protocol where VRF, TVRF and
output). This has the inconvenience of requiring a xed initid?VSS based random beacons are run as independent tiers
seed to which the TVRF is applied in the rst round, and sincexecuted in parallel. Each tier offers a different trade-off
the entropy of such seed is of course nite, the unpredictabili§etween complexity and randomness quality. By using the
guarantees of the process will on the long run necessaytputs of each tier as seeds for the next one, we aim at

deteriorate. To the best of our knowledge there is no analy§@nstructing a exible architecture for randomness beacons
of how this exactly plays out. that achieves good concrete efciency without sacricing

security guarantees. Moreover, our approach allows for higher

Finally, PVSS-based beacons such as SCRAPE [11] a@del| protocols to choose what tier to use when obtaining
ALBATROSS [12] enhance the commit-and-open strategindomness, according to the best complexity vs. randomnness
mentioned above by having parties commit to their inputs Viguality trade-off for each application. At a glance, Mt. Random
publicly veri able secret sharing. This approach renders thg constructed as follows:
selective abort strategy useless, since unopened secrets Caliar 1 - Uniform Randomness via PVSS: This tier
always be reconstructed by honest parties (provided there isprovides batches of uniformly random outputs while only
an honest majority). On the downside, such protocols require requiring a Public Ledger and a Random Oracle as setup.
more communication and computation from the parties. The However, communication and computational complexities
recent proposal ALBATROSS [12] amends this to some extent are quad’ratic in the number of parties executing the tier.

by allowing parties to generate a much larger output than Tier 2 - Uniform Pseudorandomness via TVREs:Be-

SCRAPE at the cost of little additional communication and sides the setup required for Tier 1, this tier requires a
;omputation. !\leverthele_ss, in ALBATROSS there is still the setup phase for distributed key genération, after which it
issue that, while the parties generate a large batch of elementspmvioles uniformly pseudorandom outputs (one per execu-

N a group as output, these.elements. are all known at Once'tion). Communication and computational complexities are
SO it may not be usable in scenarios where one should linear in the number of parties executing the tier. Since the
generate randomness gradually, as it happens with TVRF seed must be periodically refreshed, this tier uses outputs
based protocols. from Tier 1 as seeds every time a refresh is needed.

Recently, there is a growing interest in constructing beacons 11€r 3 - Bounded-Biased Pseudorandomness via VRFs:
from time based primitives, such as Time Lock Puzzles Regarding setup, besides a Public Ledger and a Random
(TLP) [37], [9], [30], [22] and the Related notion of Veri able Oracle, this tier requirgs arandom nonce, which is obtained
Delay Functions (VDF) [8], [35], [44], [20]. Such randomness f_rom the outpu_t; of Tier 2. Cpmmumcanon and computa-
beacons [8], [6], [5] achieve communication complexity linear tlpnallcomplexmes can be adjustgd at the'expense of output
in the number of parties while requiring only a common Pias; i.e. the lower the complexity the higher the upper
reference string as setup. However, these constructions arePound for the bias an adversary can introduce.
based on sequential computation assumptions that are ndPublicly Veri able Distributed Key GenerationWe show
well understood, such as the hardness of problems otkat the SCRAPE and ALBATROSS protocols can be adapted
supersingular isogenies [20] and of iterated squarings ower create a publicly veriable distributed key generation
groups of unknown order [37]. Since little is known aboufDKG) protocol that can provide both the keys needed for the
concrete security parameters for such constructions, we foddsRF and for the threshold encryption that we use in GULL.
our approach on PVSS and (T)VRF based beacons. Howevihis protocol gives each party a threshold public key/private
since these approaches provide uniform pseudorandom vallesy, pair(tpk; ; tski) wheretsk; is a Shamir sharing of a global
they can potentially be used as Tier 2 of our beacon (whiskecret keysk in a prime-order eldZy and tpk; = gtsk
will be discussed in details). in a DDH-hard cyclic group of ordeq generated byg;

the global public keytpk = g% is also publicly known. rather group elements, so they may not be used for example

The security of our DKG scheme is entirely based on DDk our application.

(in the random oracle model) and, as a consequence of the

unbiasability of SCRAPE and ALBATROSS, it does not suffer Il PRELIMINARIES

from the problem that the public key may be biased by A General notation

rushing adversary (which happens in some other alternatives)ror integersm n we denote byjm; n] the setfm;m +

In terms of communication and computational complexitieg;:::;ng. We let[n] = [1;n], i.e. f1;:::;ng. Our protocols

our protocol is more ef cient than previous unbiasable DKGyi|| take place in a cyclic grou of prime orderg. Observe

schemes and essentially as ef cient as the best biasable sch@fae in such a group, any element distinct from the identity

(as discussed in Appendix E). We are not aware of this a generator. We denote By, the nite eld of q elements,

protocol being described anywhere else. consisting of the integers modulg and note that we can
GULL (Gradually UnLeashed albatrosskinally we in- speak ofg? for g 2 G;a 2 Z, and this respects the rule

troduce GULL, a PVSS-based random beacon that generajes gb = ¢2+b where the sum is irZq. We will assume the

large batches of outputs that remain secret until a openipiH problem is hard in our group, i.e. give; &?; g°; g°)

phase where smaller “sub-batches” can be gradually releasgflereg is in G, a;b are uniformly random and independent

GULL is constructed by modifying and augmenting then 7, andc may be (with same probability) either uniformly

ALBATROSS beacon using threshold encryption. Basicallyandom inZq and independent df; b) or de ned byc = a b,

instead of revealing their shares as in ALBATROSS, partiesiRen it is hard to decide in which of the two cases we are with
GULL threshold encrypt (functions of) their shares and provgobability non-negligibly larger thah=2.

in zero knowledge that the resulting ciphertexts are correctly
generated. In order to do that, we present an ef cient zefp Adversarial and Communication Models
knowledge proof for the required language. The protocols analysed in this work are proven secure
Due to the added threshold encryption and zero knowledggainst a malicious static adversarg. the adversary may
proof machinery, GULL is understandably slower than ALarbitrarily deviate from the protocol but it must choose what
BATROSS in case a full batch of random outputs is requiregarties to corrupt before the execution starts. For the sake
However, in case many fresh unpredictable uniformly randoof simplicity, we assume access to an authenticated bulletin
outputs are required, the ability to gradually release subeard. Once a party posts a message to the bulletin board,
batches of outputs makes GULL signi cantly more ef cientit becomes immutable and immediately available to all other
than ALBATROSS: instead of re-executing the full protocol iparties, who can also verify the authenticity of the message
order to obtain a full batch that is completely revealed, GUL({i.e. that it was indeed posted by a given party). Notice that
allows for simply opening an encrypted sub-batch, which &ich a bulletin board could be substituted by a blockchain
much cheaper than the full protocol execution. In other wordsased public ledger, a public key infrastructure and digital
GULL allows for preprocessing a large amount of sub-batchsgnatures. However, modeling the corner cases that arise
of uniformly random outputs that can later be revealed ati@ this scenario introduces a number of technicalities that
low cost (instead of generating new outputs on-the- y). are not the main focus of this work. Moreover, we assume
synchronous communicatione. all messages sent (or posted
B. Other Related Works to the bulletin board) within a round are guaranteed to be
Since one of the contributions of this paper is a distributadceived by all parties before the next round.
key generation protocol for discrete logarithm based schemes, . .
in Appendix E we give an overview of some relevant work§: Packed Shamir secret sharing
in the extensive literature on this topic, namely [34], [26], Secret sharing allows to distribute a secret amorgarties

pros and cons: [34], [26] only assume DDH hardness as aartain subsets of these parties can later reconstruct it by
protocol, while [23] uses Paillier encryption and thereforpooling together their received shares.

needs the decisional composite residue assumption but it onlyWe recall the secret sharing scheme we refer tgta9-
requires one round of communication (in contrast, [34] mayacked Shamir secret sharing, a well-known generalization of
require 3 rounds in case of complaints, our protocol m&yhamir's secret sharing scheme that allows to share a vector
require 4, and [26] may require up to 5). Another issue f = secrets(sSp;S1;:::;S 1) in Z;J as long asn + ° o]

that the output global key in [34] and [23] may be biase8tandard Shamir's scheme is the casel.

by a rushing adversary, even though this may not be aTo share the secret, the dealer selects a polynomial of degree
big problem for many applications as shown in [28], andt mostt+ = 1 suchthatf (j)=s; forj 2 [0;° 1]and
seems quite inherent to low round complexity. We also nogends the evaluation, = f (i) to P; for i 2 [n].

that [28] also constructed a distributed key generation protocolPolynomial interpolation uniqueness properties guarantee
with improved communication complexity based on a gosstpat the secret is distributed independently from any set of
strategy; however, this construction does not generate niteor fewer sharest{privacy); while on the other hand it can
eld as secret keys, like the other alternatives we mention, bhé fully reconstructed from any set of+ ~ shares or more

((t+ ")-reconstruction). Indeed given a setof exactlyt + ° Low-degree exponent interpolation (LDEI) ZKPoK
shares, we apply Lagrange interpolation in each coordinate of wer (9% ; (Xi)i%s ;d)
the secret, namely

Setup: Group G, xed pairwise distinct elements1;:::; m in
_ . Zq4, a random oracléd ()
Sj = iLia (1) Statement: f (g1} 3 Om ; X1, 55 Xm d) 2 GP™ 20 9w(X) 2
i2ZA Zq[X]; degw d;x; = g"* V) 8i 2 [m]g (and the prover knows
forj =0;:::;° 1, where \g(ﬁ))-l
rotocol:
Li (X):= Y X .': The prover samples(X) Z4[X] with degu d and
’ ke computesa; = g'C) for all i 2 [m], in addition to
’ €= H(g; 1 Om X1 Xmsan;tilam); and z(X) =

is u(;() e w(X). The proof is(e; z).

A larger subset can reconstruct the secret by applying th (&
z(i

process to the shares of some sulfsaif t + ~ parties. The verier computesa; = ¢ "'xf for all i and checks
thate = H(Q1;:::;09m;X1;:::;Xm;@1;:::;am) and that
D. Non-interactive zero knowledge proofs degz d, accepts if these two conditions are true, and

otherwise rejects.
In a zero knowledge proof of knowledge a prover wants)

to convince a veri er of the veracity of a statement and dfig. 1: LDEI zero knowledge proof of knowledge pg,

the fact that she knows a piece of information (witness) th&em [12].

makes the statement true, without revealing anything about

this witness. Non-interactive proofs carry out this with a single

message from the prover. Proofs considered here will be {ariese papers follow in turn the blueprint of Schoenmakers'
public veri ers, meaning anyone can verify the proof. Wesy,gg [40].

need non-interactive zero-knowledge proofs of knowledge forWe describe the PVSS in ALBATROSS, which can be seen

tv_vo_types of statements in a cyclic group of prime Ordea(sageneralization of SCRAPE that allows for a exible trade-
o discrete logarithm equality (DLEQ) proofs [13] and IOW'off where the dealer can share a vector ajroup elements
degree exponent interpolation (LDEI) [12]. In fact, DLE '

Q/v ile at mostt (n ")=2 parties can be corrupted if we

proofs can be seen as a special case of LDEI proofs, apgn, botht-privacy andn t-reconstruction, which will be
both can realized from stan_dard Slgma-_protocol teChn'queshecessary later. In contrast, the parameters in SCRAPE (and

In a LDEI proof, we consider the cygllc gro@ of PNME iy Schoenmakers' PVSS) would correspond to the casd..
olrderq,taqd tlﬁt l’I.dIZ. ' T”;] bet >:ed putl:)]|c palrwi)se-dﬁfertent fOne important point in favor of this generalization is that the
elements in e €1z, The statement IS given by a VECtor 9% mortized computation and communication per secret shared
elementsg; ;i Om; X1; 15 Xm Of the cyclic group, and som

) € becomes much better agrows. The construction of the PVSS
integer0 d < m. The prover needs to show that therﬁen ALBATROSS can be seen in Figure 2

exists a polynomialv(X) in Z4[X] of degree at mostl that
interpolates the discrete logarithms of thés with respective
basesg on evaluation points i, i.e., Xj = giw(D for all

i 2 [m].

PVSSs can be used to construct random beacons as follows:
parties commit to a secret random choice in a group (in the
case of ALBATROSS the group would b8) by PVSSing

. . ._jt among the remaining participants. At that point all parties
A non-interactive prpof of knowledge Of. the_ ponnomlali,ind any external veri er can check the validity of each sharing
W(X) was p'resented in [12] and is given in Figure 1. Thgnd determine the s€ of parties which have dealt correctly.
proof works in the random oracle model, and we denote it Iiynce the seQ of parties that have correctly shared a secret
woer (g™ (xi)M, ;d): is pinpointed, each of these secrets.wil_l always be opened,
]] .) even if the dealer refuses to open it; indeed, they can be
A well known special case 8= 0, where we obtain a discrete e constructed by the remaining parties, and also this process is
logarithm equality, or DLEQ, statement: what the prover is,picly veri able. In fact at the point wher@ is determined,
showing in that case is that the discrete logarithms ofxthe the output is also fully xed. This output is constructed by
with respective basg are all equal, i.e.x; = g" for all 5n5ving a randomness extractor to the opened secrets, so that
I 2 [m] where noww 2 Z4. We subsequently de ne the result is independent from the input choice of apgrties.

pteo ((9)%1; (X)%1) = e (@)% (i) ;0) This randomness extractor could simply consist on the
group operation applied to the opened secrets. The result
E. Publicly Veri able Secret Sharing (PVSS) would be independent of any set of all but one of these secrets.

However, ALBATROSS exploits the fact that by assumption

A publicly veri a_lble secret sharlng_scheme allows any ®Xhere is more than one honest partyQnand extracts a larger
ternal party to verify the correct sharing and reconstruction 8 tput. This requires the notion ofresilient matrix

a secret, with the help of zero knowledge proofs posted respec-
tively by the dealer and the reconstructing parties. We will bagee nition 1. A matrix M 2 Z; ™ is t-resilient if for
our constructions upon techniques from SCRAPE [11] and they A = fiq;::;ig [m] of sizet, Mv is indepen-
subsequent modi cations in ALBATROSS [12]. The PVSSsent from the coordinates of indexed byA, i.e. for any

Packed PVSS in ALBATROSS [12]. ALBATROSS Random beacon from PVSS

Parameters: Let n be the number of parties that receive shares, Setup and parameters: Parameters are exactly as in Figure|2,
andl t (n 7)=2 be the corruption threshold, where 1 in particular1 't (n ")=2 for some integef 1. De ne

is an integer. , 0= n 2t andnote thai ° LetM 2 Zg ™ U be a
Setup: A public bulletin board, eldZy, and DDH-hard grous t-resilient matrix.

with generatorg. Every party has a private kesk 2 Z4, and Protocol:
public keypk; = g™ 2 G. 1) (Sharing) Each partyP. shares a random secre

Sharing: . st s S i ;

The secret is a tuplgg®;:::;0%)2 G, for (so;:::;s 1) 2 I(DVDSS .(i:.ié]ure 3 2 G with the sharing phase of th
Zq chosen by the dealer. 2) (Veri cation) After the sharing round is nished, Every party
executes the sharing veri cation phase on every shared secret.
Since veri cation is public, this xes a s&) of the rstn t

—

1%}

Z4 by selecting a polynomié 2 Z4[X] of degree at most

t+ 1L withf(j)= s,j =0;:::; 1, de nes : .
D) e L . partiesP,;a 2 Q who have correctly shared.
aln(; thgZéé,,_ Lizin. We refer tos;; i as*Shamir secret 3) (Reconstruction) Every part, in Q opens the Shami

secret(sga); T ;sfa)l) and the randomness used and parties

2) The dealer posts théencrypted group shares’$; = verify it is consistent with the sharing posted before and

pk;' on the bulletin board, together with the NIZK proof

. . (a) (a)
el (pk)y ; (&), ;t+ 1), asserting that indeed if so, setPa's group secret agg® ;:::;¢> 1). If Pa
IR n) = (f (]_); o f (n)) for a p0|ynomia|f of refuses to opge)n, or opens an invalid secret, the group secret
degree at most+ ° 1. (gsga) ;::1;0% 1) is reconstructed using the reconstruction
Sharlng veri cation: phase in the PVSS.

1) Check whether pei s correct. _ 4) (Aggregation) At this point we have a matrix of opened
Reconstruction: A set A contalnlng at least + ° honest partles secrets, with rows Corresponding 0?2 Q, and columns
(whose existence is guaranteed if there aré corruptions) can i 2 [0;° 1]. Now to every columnj, the randomness
reconstruc(g®;:::;g> 1) as follows: . extractor given by the-resilient matrixM is applied (this

1) Usingsk, thei-th party computes; = ($)% . Note this can just be done by each party locally, as everything is public

is supposed to b& = g ', the “group share”. now). Index the columns o with a 2 Q and rows with

2) The i-th party postsS; on the bulletin board to- k 2 ['9. Then for everyk 2 ['9, and evenyjj 2 [0;" 1],

gether with a NIZK proof of correct decryption; = the (k;j)-th output is
oie ((9;S):(pki;6)).2 P 20 Mia s
3) Given any subset A of exactlyt + ° decrypted shares O = g 22 Tka®

(Si)i21 for which is correct (e.g. the rst + ° with that

condition), any party or external veri er can reconstruct edch whereog can be computed from public information as

g% via Lagrange interpolation in the exponent: o = Y (g° (a))M ca -
_ ki = to
gsJ — Sil—ul (J): a2Q
i21 This is a total of °values (which is 2 if * = 9.

andeed note thagsk = pk;, S™ = &, andP; knowssk . We also Fig. 3: ALBATROSS Random beacon using PVSS [12].
remark that swapping the roles pk; andS; would not work, asP; does
not know the common exponent that would be needed for the proof ip
that case.

P a . -
Fig. 2: Packed PVSS in ALBATROSS. elementg a2 S wheres® is the (in SCRAPE's case,
single) Shamir secret shared By,. We remark that, in this
paper, we keep and’%= n 2t as two separate parameters.

toVi, = y1;:1;Vi, = Yy and(v;);za being uniform ianm t F. Veri able Random Functions (VRFs)
is uniform inZj,. A veri able random function (VRF) [33] is a pseudorandom

A t-resilient matrix with the parameters above needs fgnction that can be evaluated by the owner of a secret key,
satisfyr m t. An optimal choice (i.er = m t) results of who at the same time produces a proof or correct evaluation,
takingM to be a transpose of a Vandermonde matrix (we ayéhich can be veri ed by using the corresponding public key. A
assumingg m). For computation ef ciency reasons, [12]VRF scheme consists on three algorithmglénotes a security

chooseM to also be itself Vandermonde, il = I for Parameter):
some 2 Zq of large enough order. In summary, the random KeyGerfl): outputs a pair(pk;sk) of a public and a
beacon protocol is as in Figure 3. secret key.

The parametef® = n 2t is the size of the output of Evalsk x) is a deterministic algorithm which outputs a
the t-resilient function. In ALBATROSS, parameters were set pair (y;) wherey is the output of the function and is
such that = ", and in SCRAPE,®= " = 1. In this latter a proof.
case we obtain that (for the optimal corruptigh= n 1), Verify(pk; X;y;) is a probabilistic algorithm that outputs
M 2 Zé (" Y s in fact the vector(1;1;:::;1). The output 0 or 1 (respectively meaning "reject” or "accept” the

consists ofl element of the group in that case, namely the proof).

It has been observed in [18] that the standard VRF de nition evaluation of the (implicit) random functioR at x and

is not sufcient in the randomness beacon setting. Notice ; is a proof.
that pseudorandomness only holds in case the key pair has Combindtpk; f tpk;g; x; A; (m;)i2a) is a probabilistic al-
been honestly generatede(by KeyGen but not when it gorithm that takes a set of at leastr 1 evaluations

is generated maliciously, allowing the adversary to bias VRF (indexed byA) and outputs either a pafy;) consisting

outputs computed under maliciously generated keys. Indeed, in of a global evaluatiory and a global proof , or ?.

VRF based beacons.g.Figure 4), the adversary can generate Verify(tpk; X;y;) is a probabilistic algorithm that out-

its own key pairs maliciously. Hence, in this setting, we require puts 0 or 1 (respectively meaning “reject” or “accept” the

the VRF to be unpredictable under maliciously key generation proof).

as de ned in [18]. In Appendix A we present the de nition and - security de nitions and a construction of a TVRF can be

a construction of a VRF with unpredictability under maliciougyynd in Appendix B.

key generation. _ Notice that, in the threshold scenario, the pseudorandomness
We show in Figure 4 a construction of a VRF based randogigperty of the standard de nition is suf cient to guarantee

beacon from [18]. The beacon uses an initial seed whighat VRF outputs are unbiased because the distributed key

may come from a CRS or, as will happen in our multiyeneration procedure guarantees that keys are correctly gen-

tiered beacon, as an output from some protocol. The beagqftey.

proceeds iteratively as follows: Each party has a key-pair fore present in Figure 5 a TVRF-based random beacon

a VRF and evaluates the VRF on the seed. The parties de Bfoposed by the DRAND [42] and D nity [29] projects and

the output of that round to_ be the hash of the XOR of th&roven secure in [25]. The idea is to apply the veriable

correctly computed evaluations (which the can check usipgnqom function iteratively starting with some seed as initial

the veri cation procedure and the public keys), anq use thg{/RE input and, in every subsequent round, applying the

output to de ne the seed for the next round. Note this procegg/RrF 1o the output of the previous round. The random beacon

opens the door for biasing strategies: malicious parties M&¥tput at a certain round is the hash of that round's TVRF
simply wait until honest parties publish their evaluations q;utput.

the VRF and then decide whether they publish theirs, thereby

deciding the nal result. -
The DRAND/D nity beacon
VRF-based beacon We assume (n 1)=2, so th%re are at least 1 honest parties,
We x an initial seed o andH": G!f 0;1g a hash function.
Setup: The setup contains some initial seed, and a random 1) Parties invok®istKeyGenfrom the TVRF to obtain the keys
oracleH : fQ;1gvRF If 0;1g™. (tsk; tski; tpk;).
Beacon: 2) Atroundr =1;2;:::: Letm; = rjj + 1.
1) Each party executeKeyGer(l) of the VRF obtaining a a) P computes and broadcasts (yi; i) =
key-pair (pk; ; sk)), and publishepk; . PartialEval(m; ; tski; tpk;).
2) Atroundr =1;2;:::: Letm; = rjj + 1. o b) Each party applies locallyCombingpk;ftpk;diz(ny;
a) Every party P; computes and publishe§ ;; ') = me; [n]; ((vi; i))iz[n]) Obtaining valuegy;).
Eval(sk ;m;). c) We de ne =y (for use in the next round). The output
b) Each party veries proofs of the remaining parties by of roundr isz= HY ;).
applyingVerify(pk;;m:; t; '), de nesl to be the set of Note that at each step, a public veri er can attest the correctness
partieg that ri1ave posted a corréct; '), and computes | of the computation by runninyerify(tpk; x;y;).
r= iz 1 Theoutput of this round is/ = H(1) Fig. 5: The DRANDID nity beacon.

Fig. 4: VRF-based beacon from [18].

H. Threshold Encryption

G. Threshold Veri able Random Functions (TVRFS) .
A threshold encryption scheme allows to encrypt a message
Analogously to the case of signatures, one can also de R§vards a group of receivers, such that the message can be
a distributed notion of veri able random functions, WhefQjecrypted by anyt + 1 of them, but not less. Similar to
each party can compute a partial evaluation, and tafyl threshold signatures and threshold veri able random functions,
valid partial evaluations can be combined to obtain the glob@keshold encryption schemes require a distributed key genera-
evaluation of the VRF. Following [25] we de ne a DVRF astion protocols providing every decrypting party with a partial
the tuple of algorithms below, where as ustiadenotes the secret key, and publishing corresponding partial public keys
corruption threshold: and a global public key, the latter of which is used by any
DistKeyGelfl): outputs secret keyisk;;i 2 [n], corre- sender to encrypt a message, while the partial public keys
sponding public partial keypk; and a global public key guarantee that each decrypting party carries out the decryption
tpk. correctly. In this work consider here EI Gamal threshold
PartialEvalx; tski; tpk;) is a deterministic algorithm encryption [21], which requires exactly the same ensemble
which outputs a paim; = (vy;; ;) wherey; is the of keys as the TVRF we have seen above. We present further

security de nitions threshold encryption and a construction @nd reconstruct the nal result(()jirectly. Indeed, note that from
threshold EI Gamal in Appendix C. the posted encrypted shanglg ' to P; the aggregated value
(a)

IIl. DISTRIBUTED KEY GENERATION VIA PVSS pk ** ' can be computed pUb"CN?,g can decrypt each
In the following section we will need to run EI Gamalvalue tog * secretly , aggregate all i a2 > and then
threshold encryption protocol, and we therefore need a disest this value and a DLEQ proof that it is correct with respect
tributed key generation protocol to provide keys to the partigs K o “ The complete protocol is in Figure 6.

involved. We could use some of the existing protocols dis- The distributed key generation protacol has the properties

cussr:ad '3 Appfend|x SECtl)?lJ;\IEeEre Wde zrl_egzgkgsasltegnat[vefbﬁlﬁggt [26] called correctness and that are called robustness
on the ideas from an that Is Tu X 28], namely that all honest parties agree on a global

- a0 [
based on the DD_H-assumptlon and compares rather posmvsrbblic key, whose corresponding global secret key can be
o It?hesefl e:lr':e:natlves. Lis t tablish blic k reconstructed from any set of partial secret keys containing at
tok e_ca tsk a otL_lrlgoabl_ls ko e;i 'E %Slgommﬁnthplit "_: S¥astt+1 honest ones, and the public transcript. In addition the
pi-= g~ partial public keysipk; = g~ suc a .Sk' public key is unbiasable. In order to capture these properties,
are Shamir shares fdsk, and in addition partyP; receives we dene an ideal functionalityFppy pke in Figure 7

: inki S = 1-°0 = 1 j
tsk;. Thmkmg of the case = 1; . 1in ALBA.TROSS which is tailored to the DDH setting we are working on.
one realizes that the two rst requirements are given by that

) . .) bbH DkG €ssentially outputs random partial public keys
protocol: the parties will have established a random _/gﬁlﬁe and secret key shares to honest parties while allowing for

e adversary to arbitrary secret key share (and consequently
arbitrary partial public keys) for corrupted parties. We remark
tt‘ﬁatFDDH pkg can be used as the DKG building block for

a number of protocols.g.threshold El Gamal and the TVRFs

in [25] (including the D nity TVRF).

the partial public keygyk from the information known at
the end of the protocol: while we did not need to compu
these values explicitly in Figure 3, theth partial key can be
computed by aggregating the decrypted shares af-thearty

for each of the secrets, in the same wayg$ is computed We formally analyse the security ofoon ke from

from the reconsiructed group secrets. Figure 6 in the real/ideal simulation paradigm with sequential

However we still have the problem of how parB/ can I ; ; .
computetsk;. This requires to modify the secret sharing phascomposmon. This paradigm is commonly used to analyse

& raphic pr I ri nd provi ron ri
so that wherP, deals a secref? this party sends information Cryptographic protocol security and provides strong security

(a) guarantees, namely that several instance of the protocol can
that allowsP; not only to reconstrugg i~ but also (a) (recall ; ; ; ; :
@) : ! . y . : [" be executed in sequence while preserving their security. More
i is the Shamir share a&f®). We solve this by also sendingdetails about this model can be found in [10].
a ciphertextt® = @ H(g ") containing (¥ that can . .
@) L Theorem 1. Under the DDH assumption and assuming an
only be decrypted by learning i ', which in turn can only thenticated bulletin board | i
be obtained by party; with its secret key. We need thent < hoated DUEln Board, pon pke ~SECUIEly Tealzes
© di hat h ' it th ¢ d B (@) Foon bpke inthe random oracle model against a malicious
0 discuss what happens 1T the encrypted messag ia, static PPT adversanA corrupting at most ™ L parties.

Tz
does not correspond to the value in the exponenplof Proof. In order t this th truct a simulat
which the dealer has also posted. In comparison to Fouqué90 - [N order o prove this theorem, we construct a simuiator

Stern DKG, where the use of Paillier encryption allows th§ that intera<_:ts with the adversa_uﬁy and_with functional_ity
dealer to construct an elegant non-interactive proof of the fdcpPH Pke N ;uphdg way Fhst E)IIIeV;‘I OA in a real gxecu.t(ljon |
that the two values are indeed the same, here we do not hVe PPH DK_GhéS n dlsémgws avble ILoml:l)ti Vt')ew ;]n an | e?
this possibility. What we do is to simply haw complain if €X€cution withS and Foon ke - Let e the set o

it sees that the value iEi(a) does not match the exponent mcorrupted partiesS simulates the bulletin board and the

random oracle towardd and proceeds as follows:
1) In round 1,S proceeds as follows:

Upon receiving(GEN; sid; P,) from Fppy pke for
an honest party,, S acts exactly as an honest party
would, sampling a randora® 2 Z,, dealing it with

pk; ‘(), in which case the dealer needs to revq(e?l). This is
not a problem since at this point we know that onePgfor

P; is cheating. If partyP, is cheating, all valuesi(a) for all

i 2 [n] will be ignored. On the other hand, K, is honest, the
cheating complaineP; reveals an additive share of its own

tsk; the SCRAPE PVSS and, for all 2 [n], posting

: (a). (@) ; ;

Finally, we also point out the following modi cation with SN _(a)' E{™" on the bulletin board. Finally, adél,
respect to the order of operations in ALBATROSS, which 0 Q, ie.the se;ca())f p(z)rtles(a\)/vho provide valid shares.
we will also exploit later in GULL: in ALBATROSS parties WhenA postsSi®; @;E{® fori=1;:::;n on the

would rst decrypt their shares for each of the shared secrets ~ Dbulletin board on behalf of a corrupted paRy 2 PA,
(and prove decryption correctness) and reconstruct the secrets S checks whether to adll, to Q or not:

of each dealer (step 3 of Figure 3), and then these opened a) Verify the proof (@ is valid.

secrets would be aggregated (step 4); here, we note that instead b) Use the extractor from the zero knowledge proof
parties can rst aggregate their shares and then decrypt them Lpel to obtain i(a) from (@ foralli 2 [n].

Distributed key generation via SCRAPE - ppn pke

andletl t (n
Setup: A public bulletin board, eldZy, and DDH-hard group

sk 2 Zq, and public keypk; = g™ . A random oracleH
G!f 0;1g%9 %, We also assume some injective encoding!
f0; 1g"°9 9 which is easy to invert.

Protocol

1) Inround 1, each part. proceeds as follows:

P. choosess® 2 Z, and deals it with the SCRAPE
PVSS:P, selects a polynomidl () 2 Z,[X] of degree

at mostt, with f (¥ (0) = s(® and, for alli 2 [n], de nes
@ = £@¢i), computesS® = pk, " and computes
@ = e (Pk)1 (§7)a).

For alli 2 [n], P, computesE(® = ® H(g i(a))

and postsS'®; @ E(® on the bulletin board.

2) In round 2, for alli, P; veries the proof @ for all a; for
thosea for which the proof rejectsP; posts a complaint
againstP, on the bulletin board. 1MoreoveIPi computes

@ fromE™ as ¥ = H(8®)%) E® and checks

a)
Whetheréi(a) = pk ' . If this does not hold thei®; posts
a complaint ag?insi?a to the bulletin board. Otherwis®;

(a
setsS™ =g i .

the instructions of round 4. Otherwise, in round 3, foriall
Pi proceeds as follows:
If a proof (® receives more tham complaints,P, is
disquali ed.

If a party P, receives a complaint fronP; about its
(a)
encrypted share, theR, reveals . If $* 6 pk; i

(a) . .
or Ei(a) 3 i(a) H(g i), Pa is disquali ed.

and proofs without being disquali ed.
4) In round 4, for alli, paay P; proceeds as follgws:
a) P computes$S "o ez §® and ; =
Also P; setsS; = = ,,, S'¥.
b) P; publishesSi, Si and obieo (9;S;pki; i) in the
bulletin board.
5) Finally, after round 4, all parties proceed as follows:
a) For all $;Si; bieo ((g;S)Q(pki;éi)) posted to the
bulletin board, verifyS; = = _,, $* and the proof
oieo ((9;S); (pki;S)). Letl be the set of all indices
for which these checks pass.
b) LetJ I be a set of cardinality + 1 (e.g. the rst
b+ 1). The output global public key ispk = S =
S,
J

(@
a2Q [

Liy (0)
- ™ The i-th partial public key (fori 2 1)

i2
is Itpki = S;i. Thei-th partial secret key (for 2 1) is
tski = . Finally, noge the global secret key is implicitly
dened astsk=s= " _,, s®.

Fig. 6: Protocol ppy
via SCRAPE.

@ H(g ") foralli 2 [n].
d) If and only if all these checks pass, add to Q.

c) Verify thatg(® = (@

Parameters: Let n be the number of parties that receive shareg
1)=2 be an integer, the corruption threshold.

, Foon bke is parameterized by a DDH-hard cyclic groGpof

G with generatorg. Every party in the system has a private key|

prime orderq, with generatog. Letn and1l t (n 1)=2be
integers.Fppn pke interacts with partied;:::;P, and an
adversaryS that corrupts at most parties.Fppn pke Works
as follows:

aThis is possible since the adversary can only set at moatues ;.
bNotice thatf tpk, gk2 3nc Can always be used to obtaipk = gf @
by Lagrange interpolation becaugenCj n t>t.

Functionality Fppn pke

Upon receiving(GEN; sid; Pi) from a partyP;:
1) If P; is honest, forward GEN; sid; P;) to S.
2) If Pi is corrupted, wait forS to send (SETSHARE;

sid; Pi; i) where ; 2 Z4 and setipk; = g .

3) LetJ be the set of all partieB; who sent(GEN; sid; P;).

If all honest parties are id, proceed as follows:

a) Sample a random polynomialof degree at mogtwith
f(i)= forall ; sentbyS in step2): ® For every
honest partyPh, settpk, = g " with = f (h).

b) Settpk = g' @ .

c) For all corrupted partie. 2 J, send (KEYS;
sid; ¢;ftpk; gi2a;tpk) to S.

d) Wait for S to answer with(ABORT;sid; C) whereC
is a set of corrupted parties.

e) Forallj 2 3 nC, send(KEYs;sid; j;ftpk,Ok2anc:
tpk) to P;. °

Let Q be the set of parties who have posted encrypted shares

pkg for distributed key generation

3) If no complaints were posted, ignore this round and exeq ulpig_ 7: Distributed Key Generation Functional®pprn pke

in Rounds 2 and 3 before adding these partie®to

2) For every corrupted partgi 2 PA\Q, S computes

the secret key shares = i(a) and send{GEN,;

sid; P;) and (SETSHARE;sId;P;i; i) to Fppn DpkeG -

S waits for messag€KEYs;sid; i;ftpk; gj2q ;tpk) for

P, 2 PA from Fppy pke . Notice thatS can do
that since it knows i(a) provided by simulated honest
parties and it has extracted the corresponding values from
corrupted parties.

3) In rounds 2 and 3$ executes exactly the same instruc-

tions as an honest party. Notice that this will yield the
same sef) computed in step 1.

4) In round 4, for everyj' such thatP; 2 Q is hon-

est, computesS, =~ _,, §'¥, uses the simulator
from the ZK proof peq to generate an accepting
proof pLeo (9:tpki;pki;S) and postsS;, tpk; and

oeo (:tpki; pki; Si) on the bulletin board.

5) After round 4, letC be the set of corrupted parties who

postS, S and pieo (9;S:pk;S) with an invalid
proof pLeg (g;S;pki;éi).Ssends(ABORT; sid; C) to
FooH DkeG -

6) S executes the remainder of the protocol as an honest

party would and, wherA terminates, outputs whatever
A outputs.

We now show that the execution wih andFppy pke
is indistinguishable from an execution ofpn

DKG with

When Round 1 is nishedS has computed) exactly A. First of all, notice that in rounds 1, 2 and 3 all messages

as in pphH

pkG , since it checked that all messagesent fromS to A (through the bulletin board) are distributed

éi(a); (@, Ei(a) from corrupted partiers pass the checksxactly as in ppy pkc - Moreover, notice that after round

1 is nished S computes the same s€ as parties would ~9=2, we would obtain as output’ independent instances
compute after round 3 of ppy pke - This is so because (tpk*; ftpkKg; ftskig), k 2 ['9.
S is able to perform all the veri cation done by individual The protocol works in the same way until step 4.
parties in rounds 2 and 3 all at once after extractihad from In step 5 partiesP; compute éi;k = 220 (éi(a))Mk:a ,

@ for all corrupted partig?a. Having determined, S is ik = P 20 Mia i(a) and Sy = QazQ (Si(a))lvlk;a for
able to determine the choices of secret key shageom all = 1:::::0 Then steps 6, 7, 8 are executed indepen-

seen all honest party messages in round 1. Heqapvides (g,(a))mk;a) '
a2Q i .

consistent values, 0 Fppn pKG - Moreover, the refreshing technique (Remark 1) can clearly
It remains to be shown that the messages exchangesl b}g extended to deal with refreshinensembles.

andA in round 4 are indistinguishable from those exchangede

by honest parties anéd in an execution of ppy pke

which intuitively means thaf cannot bias the global public

key even though it can choose secret key shargsfor

corrupted parties. In round 4, we take advantage of the facClyhjje the ALBATROSS construction provides a large uni-
that, for i arzg)a such(at)hat partleSDi_ 2Q «’?lnd Pa 2 (9) formly random output, one problem is that the whole output
are honestS[® and E{® reveal no information about;” s reconstructed by the participants at once. For applications,
to A. First, notice that it is proven if11] that §* is it is instead desirable that parts of this output are released
indistinguishable from a random group element forunder gradually, while the rest of the output is still hidden. In this
the DDH assumption. Moreover, sinée is PPT, it can only gsection, we depart from ALBATROSS to construct GULL,
guess (* such thate(® = ¥ H({¥) and thus leam a random beacon that can accomplish this. Recall that in
i(a) via Ei(a) with negligible probability, since it can only ALBATROSS as described in Figure 3, the output consisted of
makepoly(k) queries to the random oracle anb“) is chosen atotal of “°group elements, that we can think of as consisting
uniformly at random from aexp(k) large space where k isof “© blocks of * elements each; in our modi cation, parties
the security parameter. Hence, for alwhereP, 2 Q is an carry out the beginning of the protocol as in ALBATROSS
honest partyA learns onlyt values i(a) and Si(a), which are (until the whole output is xed), but then are able to release
not suf cient to recover the degreepolynomials that de nes every block independently. Every block can be released with
honest partiesSi(a) values and consequenttpk,. Since A little communication and computation and, furthermore, the
learns nothing aboupk; values of honest parties before roundlocks that have not yet been released are unpredictable given
4, leveraging the zero knowledge property obg; , S can the ones that are known already.
generate an accepting proof that honest parties have obtainelh order to do this, we reutilize a trick from the previous
tok; from $® instead of the value they should have obtainegection: note that after step 2 of the protocol in Figure 3, a
from Si(a). g setQ of well-behaved dealers (dealers who have shared their
secret correctly) has been set. What we do now is to swap

As an aside, we remark two interesting extensions of offte order of steps 3 and 4, i.e., we have every party aggregate

distributed key generation, which we only explain informallythe shares before reconstructing the secrets. More precisely,
_ _ we can do this in the foIIowingdvay: every party can compute
Remark 1 (Refreshing partial keys)The protocol can be fom public informationRy = (gi(a))Mk;a for everyi

. . s 2
modied to one that, given a distributed key ensemblg,q everyk 2 [1;°9. Additionally, eachP; can compute the

(pk; f pk;g; f sk g) in the form above (not necessarily createq/aluesik _ Rﬁb 1 Note thatSy = - (Sﬁa))Mk:a)
by our protocol) outputs fresh random partial secret and public ke a ! '
y ourp) outpu part Publ Note that for everyk, P; could prove the correctness of

keystsk;, tpk; corresponding to the same global kagk, tpk.) N)
Th)i/s is dorr:elby havizg eacgl pary share tghe valuesg(‘a) :po the valueSy if P; were to open it, sinc®jc is known by
gveryone, and®; could then use pieq ((9; Sk); (Pki; Rik).

in step 1) of Figure 6. It is easy to modify the LDEI proof t . & wil directl S b h
additionally prove in zero knowledge that the PVSS is indegg)wever., In our case; wi not directly opensic, but rgt er
encrypt it with threshold EI Gamal. Namel®; publishes

a sharing to0 (in Figure 1, the prover just choosag(X) _

with the additional conditioru(0) = 0 and the veri er checks Ei = Endipk; Sic) = (g'* ;tp_kr'k Si) = ((Gic ; dic) (where
that z(0) = 0). Modifying the DKG protocol in this way wil the rar]domnessik .must be independent of each other for
output the ensemblqal(o;fpk,pg;fsl{)g) with pk® = 1. Now k 2 [1;°9) and provides a zerp—knovill?d_ge progs that the
parties can de nerﬁki = pk pkio and (privately by partyP;) value Sy encrypted a€j satisesS;* = Ry wheresk is

oL) kL the same as in the equatigf = pk;. This proof is slightly
$i = sk + Si{)’ and output the ensemblpl(f;f)ki g,f§K 9. more complicated than the DLEQ proof mentioned above, and

Remark 2 (Outputting® key ensembles)Our DKG protocol we detail it in Appendix D.

would correspond to the case= "% = 1 in the analogy Parties can now agree on a $ebf t + * + 1 parties that

with ALBATROSS, but of course we can also easily adapt thave published correct proofs for every2 [1; 9. For every

protocol for* =1, % 1, where assuming now (n k 2 [1,°9 and everyj 2 [0;° 1], and from the encrypted

IV. GULL: GRADUAL RELEASE OFPVSS QUTPUTS VIA
THRESHOLDENCRYPTION

values everyone can compudg; = Endtpk;Qi2| Sit”' €1y

using the linearity Of. El Gamal. . Lo Setup: A public bulletin board, eldZy, and DDH-hard group
~Then, at the opening stage parties could dec@gt indi- | G with generatory. Every party in the system has a private key
vidually by using the threshold decryption protocol to obtainsk 2 z,, and public keypk; = g® . A t-resilient matrixmM 2

the outputso,; one by one. Nevertheless, one needs to takQ;f (" 1 which we can take by setting its elementsMg = ¥
into account that opening on&; reveals information about| for some 2 Z, of order at leastaxfn t;%.

the valuesoy; o for other; 02 [0;> 1]. Therefore we consider| Setup from DKG: We assume that parties have established a
global threshold public keypk, partial threshold keyspk; and

GULL: PVSS beacon with gradual release

that the bgtcﬁoko; Ol ==+ Ok 1)) IS o“pened .at once. How- artial threshold secret keysk; for threshold El Gamal.

ever, the independence of the output “holds in the other coorp4tocol:

dinate”, i.e., having opened batch@o; 0x1;:::; 0k 1)) for 1) Round 1 - (Sharing) Each parf, shares a random secret

k 2 [1;°°], for some'® <" ©, the remaining unopened batches (gst”:::::¢5""1) 2 G with the sharing phase of the PVSS.

(0k0; Ok1; 1150k 1), K 2 [©+1;°9 remain uniformly 2) Round 2:

random in the view of the adversary. a) (Veri cation) Every party executes the sharing veri catign

Indeed, x any j. We recall thato,; is dened as phase on every shared secret. Since veri cation is public,

P Mon s@ (a) . : - this xes a setQ of the rstn t partiesPa;a2 Q who

g =2 "< with 5% having been chosen by participant have correctly shared.

P., a 2 Q. The properties of the-resilient matrix imply b) (Aggregation) Every party can compute

that if v is the vector with containing alisj(a), the output
y = Mv is uniformly random inz;; and independent from
any set oft coordinates of/ (which are the ones known by the
adversary). Therefore, conditioned to some of the coordinates o .
of this outputy being revealed, the rest of the coordinates of Pi computesSic = R, for everyk 2 [1;™7]
y are still uniformly random in the view of the adversary. This ¢) (Encryption) For everk 2 [}, Pi posts
translates of course to the independence of the unopaned Ei = Eno(tpk; Sic) = (g'™* ;tpk™ Sic) := (Cic ; dic)
As for unbiasability and uniformity of the random output,
notice that GULL differs from ALBATROSS at a point where
the output is already determined, and hence it inherits those f((9;pk;; Rik ; tpk; cik ; dik); (ski; Tk ; Sik) :
properties from ALBATROSS.

Y
Rik = (§)Vka
a2Q
for everyi 2 [n] and everyk 2 [1; 9. Additionally each
1

and a non-interactive proofgg for the language

o™ = pki;g'* = ciidik = tpk'* Sy ;SN = Rig
V. CONSTRUCTINGMT. RANDOM which we detail in Appendix D.

In this section, we present Mt. Random, our multi-tiered 3) (Lagrange computation) After round 2 is nished, lebe the
beacon composed by the building blocks presented so far. Set of the rstt+ ~ parties who have posted correct progfs
As discussed earlier, we have three tiers: Tier 1 - Uniform fo;t?gfré’o'ﬁﬁ 'Tﬁ;,everyk 2 [and everyj 2 [0;" 1],
Randomness, Tier 2 - Pseudorandomness and Tier 3 - Bounded P P v v
Biased Randomness. Starting from Tier 1, going up each Okj =((ch)"# ¢ (ai)t Dy
tier represents a trade-off between ef ciency and randomness i21 i21
quality, where more ef ciency in gained at the cost of quality. 4) (Opening) At any point after round 2 is nished, to opén
In other words, higher tiers generate random outputs faster ~ batchk® wherek®2 ['9, parties threshold-decry@yq; for
than lower tiers albeit with losses in randomness qualliy, everyj 2 [0;" 1] to obtain outpui(Ocoo; 30k)
going from uniformly random values to values with a bounded Fig. 8: GULL: PVSS beacon with gradual release.
adversarial bias. Moreover, each higher tier uses outputs from
the previous tier as seeds, ensuring that all tiers operate within
a desired level of bias while maintaining ef ciency.

In this work, we use the DDH assumption (in the randorn]

We present the general structure of Mt. Random in Figure 9.
. .In the remainder of this section, we discuss the building blocks
oracle model) to prove the security of all of Mt. Random

.) Used for each of Mt. Random's tiers and provide a security
_bwldmg b_Iocks,l.e. PVSS, D_KG, TVRF and _/RF. The goal ri\nalysis of the full multi-tiered beacon.
is to obtain a nal construction whose security can be anal-
ysed ba_lsed on a smgle_standard assumption while aCh'eVK'.gTier 1: Uniform Randomness via PVSS
competitive concrete ef ciency. However, we remark that other . .
constructions of these building blocks can be used within ourThe rst tier of Mt. Randor_n outputs true un_|form random-
framework in order to achieve better ef ciency at the codiess. It is important that this tier outputs uniformly random
of having security underpinned by multiple and possibly lesglues because these outputs will be used as high min-entropy
standard assumptions. seeds for the next tier. In our construction we will instantiate
this tier with GULL (Figure 8) using threshold encryption keys
1We remark that the randomnesg chosen by party; in the El Gamal generated by our new DKG protocol (Figure 6). Being based
encryption of her shares must be independent for different valuek, of
on this protocol, this tier will arguably have the highest exe-

as otherwise the adversary could obtain information alwmgyt from their . | A k .
encryptionsOyj and the openedyg . cution time and communication, outputting uniformly random

values less frequently than higher tiers. On the other haRtaos beacon, which seeds each of its execution with the
instead of outputting a single value, Tier 1 will outpubatch output of its last execution, we seed this protocol with an
of uniformly random values that can be used to seed Tieroitput from Tier 2. This crucial difference has the advantage
multiple times (instead of requiring a full execution of Tier Iof reducing the potential adversarial bias in Tier 3 outputs.
every time Tier 2 needs a new seed). 1) Combining Bounded Biased Randomness and Uniform
In the original ALBATROSS [12] protocol, the full batch of RandomnessApart from outputting bounded biased random-
uniformly random outputs is revealed as soon as the protoecass, Tier 3 can also be used in conjunction with Tier 1 outputs
terminates. This is not an issue when seeding Tier 2, since Tégrd an extractor in order to obtain correlated but uniform
2 outputs cannot be predicted without a threshold key. Homandomness. Basically, an uniformly random output from Tier
ever, it might be a problem in the case where fresh uniformlly can be used as a seed for an extractor that takes as input a
random outputs from Tier 1 are required for applications otheequence of outputs from Tier 3, outputting correlated (due to
than seeding Tier 2. Hence, we instantiate Tier 1 with GULthe use of the same seed) but uniform randomness.
Figure 8), which allows for gradually revealing smaller “sub- .) .
EJa?ches”)of outputs. Unde(fJ this rggime, wr?enever a fre91 Seeding Upper Tiers vs. Unpredictable Randomness
uniformly random output is required for other applications, An important aspect of Mt. Random is that each lower tier
a fresh sub-batch can be revealed, which is signi cantly mof@ used to seed the next upper tiee. Tier 1 seeds Tier 2,
ef cient than re-executing the full ALBATROSS protocol.Which in turn seeds Tier 3. When randomness from Tier 1
Nevertheless, previously revealed but unused outputs can §fll2 is requested to be used as a seed in the next tier, it is

be used as seeds for Tier 2. not necessary wait for a fresh random value to be produced.
. . For this reason, Tiers 1 and 2 respectively keep Wstsn
B. Tier 2: Pseudorandomness via Threshold VRFs and TVRFUn of random outputs that have been obtained in

The second tier of Mt. Random outputs pseudorandoifie past but that have not yet been used as a seed by the
values instead of truly uniformly random values. While thegeext layer. However, many applications.4. a lottery and
values are not suitable for some app”catioesg_(seeding committee selection) require unpredictable random values that
PRGs), they are sufcient for a number of popular applicadre not known in advance. In this case, a fresh unpredictable
tions (.g.selecting random committees). In our constructio®utput can be obtained from Tier 1 or 2 as follows:

Tier 2 is instantiated with a DDH based version of the Tier 1. A fresh unpredictable uniformly random output
DRAND/D nity TVRF proposed in [25] coupled with our new can be obtained from Tier 1 by executing Step 2 of
DKG protocol (Figure 6). As discussed before, we choose to the output request procedure, which decrypts an unused
use a DDH based TVRF in order to instantiate all of our block of threshold encrypted outputs frolktbUnEncand
building blocks from a single standard assumption. However, returns the rst output from the freshly decrypted block.

a more efcient TVRF €.g. GLOW [25]) can be used for Tier 2: A fresh unpredictable pseudorandom output can
better performance at the cost of a stronger assumption. be obtained by waiting for the output of the next round

There are two main hurdles in using TVRF-based beacons: of the beacon executed by Tier 2.

1. keys must be generated in a distributed manner; 2. being) _

essentially a distributed PRG, the beacon must be re-seefled>€curity Analysis

periodically. Mt. Random respectively solves these issues bylin order to analyse the security of Mt. Random, we rst
employing our new DDH-based DKG (Figure 6) and bwrgue about the initialization phase and then focus on the
periodically re-seeding Tier 2 with uniformly random outputsecurity guarantees offered by each layer. Notice that in the
from Tier 1. Using our DKG, we maintain public veri ability initialization phase we execute our DKG protocol (Figure 6)
of threshold key validity and consequently of Tier 2's outpubefore initiating the execution of the tiers. Due to the security
without requiring extra assumptions. Moreover, as pointed ooft the DKG protocol (Theorem 1), the resulting global and
in Remark 1, our DKG protocol can be used to refresh secgrtial public keystpk;tpk; and tpk;tpki0 for i 2 [n] are

key shares if parties are compromised. guaranteed to be unbiased and each pBityis guaranteed

to have obtained its secret shdsk; ; tskiO as well as the same
view of the public keys. This fact will be important when

The third tier of Mt. Random outputs pseudorandom vakrguing about the security of Tiers 1 and 2, where these keys
ues that may be biased by the adversary up to a certaiill be used for threshold encryption and TVRFs, respectively.
upper bound. While this sort of biased randomness ndsIn Tier 1, we only execute GULL from Figure 8 using
less applications than unbiased pseudorandomness or unifélys tpk; tpk; ; tsk;, which gives us two main guarantees as
randomness, it is still suf cient for important applications sucldiscussed in Section 1V: 1) Executing up to Step 3 results in
as selecting block creators in Proof-of-Stake based blockchaifl®utput blocks that are guaranteed not only to be recoverable
(e.g.Ouroboros Praos [18]). In fact, we instantiate Tier 3 witby a majority of the parties but also to remain secret until
the VRF and VRF-based beacon protocols from Ourobordscryption is executed in Step 4; 2) All values of each
Praos, which are secure under the CDH assumption (impliedtput block are guaranteed to be uniformly random. Hence,
by DDH). However, differently from the original Ouroboroswhen Tier 1 is initiated, ©® output blocks with™ uniformly

C. Tier 3: Bounded Biased Randomness via VRFs

Mt. Random: Multi-tiered Randomness Beacon
Parameters:

n participantsP;, i 2 [n].
Integer” 1 (number of secrets in GULL output block).
Integer corruption threshold t (n 7)=2.
Integer'®= n
of GULL).
Integers ' tvre and “vgre denoting the bitlength of output
from Tier 2 and Tier 3 respectively.
Integer TVRFmax 0 (number of times the TVRF-base

beacon at Tier 2 is applied iteratively starting from a given seg

If it is 0 then we are not using this tier
IntegerVRFmax 0 (number of times the TVRF-based beac

at Tier 3 is applied iteratively starting from a given seed). If

is 0 then we are not using this tier.

Setup: An authenticated public bulletin board (BB), eldq, and

DDH-hard groupG with generatorg. Every party in the systen

has a private kegk 2 Z, and a public keypk; = g* (registered
in BB) for Tier 1. A t-resilient matrixM 2 Zq (n 1) given by
M I for some 2 Z, of order at leastmaxfn t;"°.

Initialization: All parties P; keep initally empty Table®\lbUn,

AlbUnEnc and TVRFUnN. the rst two tables will store unusec

GULL outputs from Tier 1:AlbUn stores plain outputs an
AlbUnEnc stores outputs encrypted under threshold-El Gan
TableTVRFUnN stores outputs from Tier 2. All parties rst execut
the Distributed Key Generation phase and then executéer 1,

Tier 2 andTier 3 as soon as seed randomness from the previ
tier is available. Tiers are re-executed as more outputs are ne

Distributed Key Generation: All parties execute ppn pke
(Figure 6) to obtain keys for Tiers 1 and 2 (see Remark 2).]
public outputs are global threshold public kegk; tpk® and partial
threshold public keygpk; ;tpk? for i 2 [n], while each party
Pi:i 2 [n] obtains partial threshold secret ketgk; andtsk’.

Tier 1. Using keystpk and tski obtained in the Distributed
Key Generation phase, all parties execute GULL from Figur
until Step 3. At this point all parties obtaii’ blocks By =

encryptions ofog under tpk, which are stored inrAlbUnEnc.

When an output is requested:

1) If AlbUn is not empty, return the next outpag 2 AlbUn and
removeoy; from AlbUn.

2) If AlbUn is empty andAlbUnEnc is not empty, all parties
decrypt the nexByx 2 AlbUnEnc, store the resulting value

in AlbUn and removeBy from AlbUnEnc
Return the nexty; 2 AlbUn and removeo; from AlbUn.

3) If AlbUn andAlbUnEncare empty, returf? and execute GULL
until Step 3 to re Il AlbUnEnc.

Tier 2: Parties request an outpwai; from Tier 1 (repeating
the request untib; 6 ?) and execute the protocol in Figure
using tpk’ tpk?; tsk? with initial seed o = og . In each round
r 2 f1;:::;TVRFmnax 9, @ valuez, 2 f0;1g VRF is out-

putted by the protocol and stored in tabl& RFUn. When an
output is requested, iTVRFUN is not empty, return the nex
z; 2 TVRFUn and removez, from TVRFUN, else, return? .

Whenr = TVRFnax , resetr to O and re-start Tier 2.

Tier 3: All parties request an outpat from Tier 2 (repeating the
request untilz; 6 ?) and run the VRF-based beacon in Figure
using z as initial seed. In each round 2 f1;:::; VRFmax G,

the outputw?® 2 f 0;1g VR* is the output of the beacon. When

r®= VRFnax , I is reset to0 and Tier 3 is started again.

2t (number of blocks outputted by one roun

d

D

d
2d).

on
it

Fig. 10: Comparison of time for carrying out each Tier with
xed t = bjc, " =1
1

of
nal.

[¢']

random values become available. When an output is requested,
ousxecuting the procedures of Tier 1 clearly returns either an
edeghiformly random output (or?, in case more encrypted
output blocks must be generated). In case fresh unpredictable
rheandomness is required, we remark that it can be obtained by
executing step 2 of Tier 1's output request procedure, which
decrypts the next unused encrypted output block and returns
the rst freshly decrypted output value.

8 In Tier 2, we execute the TVRF-based beacon protocol
from Figure 5, which is proven to output pseudorandom
values in [25]. Since we periodically re-seed this protocol
with uniformly random values from Tier 1, its outputs are
guaranteed to be pseudorandom even after long execution
times. Notice that we can re-seed Tier 2 with outputs from
Tier 1 that are already revealed but still not used as a Tier
2 seed. By the security of the TVRF scheme used in Tier
2 (proven in [25]), an adversary who controls less than the
required threshold of parties cannot predict the output of the
TVRF on any given input. Hence, the outputs of Tier 2 cannot
be predicted by the adversary (who only corrupts a minority
5 of the parties) upon learning the seed. Notice that again the
TVRF security properties hold since we use unbiased threshold
keys tpk® tpk?; tsk’.

t In Tier 3, we execute the protocol from Figure 4, which is
proven to output bounded biased values in [18] even when it
is seeded with outputs of a previous execution of itself. Hence,
seeding this protocol with the unbiased pseudorandom outputs

4from Tier 2, not only preserves but improves on the proven

bias bounds for its outputs. Once again, using outputs from

Tier 2 that are already known but still not used as a seed in

Tier 3 preserves the security of the scheme, since even by

Fig. 9: Mt. Random: Multi-tiered Randomness Beacon.

knowing the seed in advance the adversary can only bias the
output of this tier by a bounded amount (as proven in [18]).

Fig. 11: Comparison of communication size for carrying ougig. 12: Amortized cost of a single random element generated
each Tier with xedt = bjc, " =1 at Tier 1 with xed n = 25, t = 8. For given", number of
output random elements &

VI. EFFICIENCY ANALYSIS

We provide a reference implementation for each one of
the tiers> Our main goal is to demonstrate the trade-off
in ef ciency between the three tiers. We also highlight the
sensitivity of the different random beacons to changing number
of partiesn, the thresholdt and culpritsc when relevant.
All our measurements were done on a t3.medium AWS
instance (2 vCPU of Intel(R) Xeon(R) Platinum 8259CL CPU
@ 2.50GHz, 4GB RAM). Our experiments do not include
network latency or delay. The reason is simple: Network
latency is larger than our computation times and therefore
will mask them. Since the number of rounds of Tier 1 is
larger than the number of rounds in Tier 2 and Tier 3, and
communication size of Tier 2 is larger than communication
size of Tier 3, if we include latency, we trivially get our
expected hierarchy. Network delay is of no interest because
for all tiers the communication bandwidth is small enough for
network to not be a bottleneck. All our measurements weRgg. 13: Average total running time of Tier 1 for various
done using a benchmark tool and are averaged over many ruhgesholdt with xed n =25, =1
Computation time and communication size:In Figure 10
we compare the computation time for a single run of each

tier as a function of the number of partias As can be seen the other hand, producing random values is done over and over
from the gure, Tier 1 is the slowest, Tier 3 is the fastesfyain throughout the life time of the system.

and Tier 2 E_ in thﬁ_ mlilddle. This is rc}:ohe;fent With hovy W€ Tier 1 and Tier 2 sensitivity: We measured Tier 1 without
suggest _to ierarchically compose t_e 9“ ere_nt tiers In theadual release (Albatross), that is, all random values are
paper. Figure 11 shows the communication size of the thr

. ; . ber of — : eased at once. In Figure 12 we show how changding
tiers, for various number of parties. Here again we see a, parameter proportional to the number of random elements

clear hierarchy where Tier 1 requires the most communicati%tput by Tier 1 impacts the amortized cost of a single random
Tier 3 thg Ia§t and Tier_ 2 is in the middle. For completenesge an Ag expected, the more random elements we pack in a
we Pro"'d_e n appendix E the same me_asurements, but ﬁgle run the more ef cient the amortized computation per a
running distributed kgy generation for tiers 1 a_nd 2 Kegingle random element is. This result hints to the effectiveness
generatmn gnd setu-p IS not our fO.CUS_ as we consider ,'t a OI3?'running GULL in settings were fresh unpredictable output
time operation running at the beginning of the execution. QQ needed by an application other than Tier 2. In Figures 13

2All our code is open sourced and provided here: and 14 we x the number of parties and change the threshold
https://github.com/ZenGo-X/random-beacon and number of culprits, respectively. As can be viewed from

with grants number 9040-00399B (T#8) and number 9131-
00075B (PUMA).

The authors thank Diego Aranha for providing experimental
data on the performance of Paillier cryptosystem operations
and group operations over a DDH-hard group.

REFERENCES

[1] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.
Fair two-party computations via bitcoin deposits. In RH&ne, M. Bren-
ner, T. Moore, and M. Smith, editor6C 2014 Workshopsolume 8438
of LNCS pages 105-121. Springer, Heidelberg, Mar. 2014.
[2] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.
Secure multiparty computations on bitcoin. 2014 IEEE Symposium
on Security and Privagypages 443-458. IEEE Computer Society Press,
May 2014.
[3] D.F. Aranha, C. P. L. Gowa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efcient Llbrary for Cryptography. https://github.com/
relic-toolkit/relic.
[4] C. Baum, B. David, and R. Dowsley. Insured MPC: Efcient secure
. computation with nancial penalties. In J. Bonneau and N. Heninger,
Fig. 14: Average total running time of Tier 1 for various editors, FC 2020 volume 12059 ofLNCS pages 404-420. Springer,
number of culpritsc with xed n=25,t=28 Heidelberg, Feb. 2020. _
[5] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner.
Craft: Composable randomness beacons and output-independent abort
mpc from time. Cryptology ePrint Archive, Report 2020/784, 2020.
https://eprint.iacr.org/2020/784.
[6] C.Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. Tardis:
A foundation of time-lock puzzles in uc. to appear at EUROCRYPT
2021, 2020. https://eprint.iacr.org/2020/537.
[7] 1. Bentov and R. Kumaresan. How to use bitcoin to design fair protocols.
In J. A. Garay and R. Gennaro, edito@RYPTO 2014, Part Jlvolume
8617 of LNCS pages 421-439. Springer, Heidelberg, Aug. 2014.
[8] D. Boneh, J. Bonneau, B.iBiz, and B. Fisch. Veri able delay functions.
In H. Shacham and A. Boldyreva, edito@RYPTO 2018, Part olume
10991 of LNCS pages 757-788. Springer, Heidelberg, Aug. 2018.
[9] D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor,
CRYPTO 2000volume 1880 ofLNCS pages 236—254. Springer, Hei-
delberg, Aug. 2000.
[10] R. Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology 13(1):143-202, Jan. 2000.
[11] 1. Cascudo and B. David. SCRAPE: Scalable randomness attested by
public entities. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors,
ACNS 17volume 10355 o NCS pages 537-556. Springer, Heidelberg,
July 2017.
[12] I. Cascudo and B. David. ALBATROSS: Publicly AttestabLe BATched
Randomness based On Secret Sharing. In S. Moriai and H. Wang,
; . ; ; f ; editors,ASIACRYPT 2020, Part lIvolume 12493 o NCS pages 311-
Fig. 15: Ave_rage total running time of Tier 2 for various 341, Springer, Heidelberg, Dec. 2020,
thresholdt with xed n =25 [13] D. Chaum and T. P. Pedersen. Wallet databases with observers. In
E. F. Brickell, editor, CRYPTO'92 volume 740 ofLNCS pages 89—
105. Springer, Heidelberg, Aug. 1993.
. . . #].4] J. Chen and S. Micali. Algorand: A secure and ef cient distributed
the gures both parameters impact the total running time ledger. Theor. Comput. Sci777:155-183, 2019.
a meaningful way. Increasing threshdiddecreases running [15] A. Cherniaeva, I. Shirobokov, and O. Shlomovits. Homomorphic en-

time as it decreases number of output random elements and cryption random begcon. Cryptology ePrint Archive, Report 2019/1320,
2019. https://eprint.iacr.org/2019/1320.

decreases number of messages every party needs to Progesgsy, cortier, D. Galindo, S. Glondu, and M. Izabarte. Distributed

Finally, for Tier 2, we conducted an experiment, Figure 15, elgamala la pedersen: Application to helios. Proceedings of the

for xed number of partiem and various threshold Observe 12th annual ACM Workshop on Privacy in the Electronic Society, WPES

. 2013 pages 131-142. ACM, 2013.

that aS. expected, the computation time is linear in the numl??f] P. Daian, R. Pass, and E. Shi. Snow white: Provably secure proofs

of parties. of stake. Cryptology ePrint Archive, Report 2016/919, 2016. https:
/leprint.iacr.org/2016/919, To Appear in the Proceedings of Financial
Crypto 2019.

[18] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An

. . adaptively-secure, semi-synchronous proof-of-stake blockchain. In J. B.

Research leading to these results has been partially funded igleen and v. Rijmen, gditorsEUROgRYPT 2018, Part livolume
by a research grant from Nomadic Labs and the Tezos 10821 ofLNCS pages 66-98. Springer, Heidelberg, Apr. / May 2018.

Foundation, by the Spanish Government under grant nuf#l B David, B. Magri, C. Matt, J. B. Nielser, and b. Tschudi. Gearbox
. . An ef cient uc sharded ledger leveraging the safety-liveness dichotomy.
ber PID2019-110873RJ-100 (SeCUng)1 by the Concordium Cryptology ePrint Archive, Report 2021/211, 2021. https://eprint.iacr.

Foundation and by the Independent Research Fund Denmark org/2021/211.

ACKNOWLEDGEMENTS

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

L. De Feo, S. Masson, C. Petit, and A. Sanso. Veri able delay functiorjg3]
from supersingular isogenies and pairings. In S. D. Galbraith and
S. Moriai, editors, ASIACRYPT 2019, Part olume 11921 ofLNCS
pages 248-277. Springer, Heidelberg, Dec. 2019.

Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassafd4]
editor, CRYPTO'89 volume 435 ofLNCS pages 307-315. Springer,
Heidelberg, Aug. 1990.

N. Ephraim, C. Freitag, |. Komargodski, and R. Pass. Non-malleabl45]
time-lock puzzles and applications. Cryptology ePrint Archive, Report
2020/779, 2020. https://eprint.iacr.org/2020/779.

P.-A. Fouque and J. Stern. One round threshold discrete-log key
generation without private channels. In K. Kim, edit®/KC 2001
volume 1992 oL.NCS pages 300-316. Springer, Heidelberg, Feb. 2001.
D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distributed

G. Wang, Z. J. Shi, M. Nixon, and S. Han. Sok: Sharding on blockchain.
In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019
pages 41-61. ACM, 2019.

B. Wesolowski. Efcient veri able delay functions. In Y. Ishai and
V. Rijmen, editorsEUROCRYPT 2019, Part lIvolume 11478 o£NCS
pages 379-407. Springer, Heidelberg, May 2019.

M. Zamani, M. Movahedi, and M. Raykova. RapidChain: Scaling
blockchain via full sharding. In D. Lie, M. Mannan, M. Backes, and
X. Wang, editors ACM CCS 2018pages 931-948. ACM Press, Oct.
2018.

APPENDIX

veri able random functions and their application to decentralised random Veri able Random Functions: De nition and Construction

beacons. Cryptology ePrint Archive, Report 2020/096, 2020. http:
Ileprint.iacr.org/2020/096.

D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distribute
veri able random functions and their application to decentralised rando
beacons. Cryptology ePrint Archive, Report 2020/096, 2020. httpS:
Ileprint.iacr.org/2020/096.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In J. Stern, editor,
EUROCRYPT'99 volume 1592 ofLNCS pages 295-310. Springer,
Heidelberg, May 1999.

J. Groth. Non-interactive distributed key generation and key resharing.
2021. https://eprint.iacr.org/2021/339.

K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu. Aggregatable distributed key generation. 2021.
https://eprint.iacr.org/2021/005.

T. Hanke, M. Movahedi, and D. Williams. D nity technology overview
series, consensus system, 2018.

J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and
timed commitments. In R. Pass and K. Pietrzak, editdGC 2020,
Part Ill, volume 12552 of NCS pages 390—413. Springer, Heidelberg,
Nov. 2020.

A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In J. Katz and
H. Shacham, editorsCRYPTO 2017, Part, lvolume 10401 ofLNCS
pages 357-388. Springer, Heidelberg, Aug. 2017.

R. Kumaresan and |. Bentov. How to use bitcoin to incentivize correct
computations. In G.-J. Ahn, M. Yung, and N. Li, edito&CM CCS
2014 pages 30-41. ACM Press, Nov. 2014.

S. Micali, M. O. Rabin, and S. P. Vadhan. Veri able random functions.
In 40th FOCSpages 120-130. IEEE Computer Society Press, Oct. 199

©

A VRF schemdKeyGerfl); Evalsk x); Verify(pk; x;y;))
dyith unpredictability under malicious key generation is secure
it holds that:

(complete provability): for everypk;sk) generated by
KeyGen and everyx, then if (y;) = Evalsk x), we
have thatVerify(pk;x;y;) 1 with overwhelming
probability;

(unique provability): for everx, for anyy; 6 y,, and any
proofs i1; », then at least one oferify(pk; x;y1; 1) or
Verify(pk; X; y2; 2) outputO with overwhelming proba-
bility.

(pseudorandomness): no PPT adversary can distinguish
betweenEvalsk x) and a uniformly random string, even
when having chosen, after seeingk.

(unpredictability under malicious key generation) no PPT
adversary who generatggbk; sk} arbitrarily can distin-
guish betweertval sk x) and a uniformly random string
for an unknown uniformly randorx.

We describe in Figure 16 the VRF with unpredictability
under malicious key generation from [18].

T. P. Pedersen. A threshold cryptosystem without a trusted pafty
(extended abstract) (rump session). In D. W. Davies, edi#bHRO-
CRYPT'91 volume 547 ofLNCS pages 522-526. Springer, Heidelberg
Apr. 1991. g.
K. Pietrzak. Simple veri able delay functions. In A. Blum, edit¢éfCS
2019 volume 124, pages 60:1-60:15. LIPIcs, Jan. 2019. H
randao.org. RANDAO: Veri able random number generation, 2017.
https://lwww.randao.org/whitepaper/Rande®.85 en.pdf accessed on
20/02/2020.

R. L. Rivest, A. Shamir, and D. A. Wagner.
timed-release crypto, 1996.

P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. R. Weippl.
Randrunner: Distributed randomness from trapdoor vdfs with stromg
uniqueness. Ir28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 202fe Internet
Society, 2021.

P. Schindler, A. Judmayer, N. Stifter, and E. R. Weippl. HydRandg:
Ef cient continuous distributed randomness. 2020 IEEE Symposium

Time-lock puzzles and

Setup: Let G be a cyclic group of prime order, with generator

Commands:

VRF from Ouroboros Praos

LetH :f0;1g ! f O;1gV®R andH®: f0;1g ! G be

random oracles. In addition we implicitely need a random oracle

:f0;1g ! Zq for the DLEQ proof.

KeyGer(l) chooses a uniformly randosk 2 Zq, setspk =
g** and outputgpk; sK)

Eval(sk x) setsy = H(x;u) whereu = HYx)% It
moreover de nes = (U; pieo ((9;HYX)); (pk;u))), the
latter being the proof thag® = pk andH%x)* = u for a
commonk, in this casek = sk. It outputs(y;).
Verify(pk; x;y;) parses = (u; 9, checks that %is a
correct DLEQ proof for(g; H%(x)) ; (pk; u)) and checky =
H (x;u). It accepts if all these checks pass.

on Security and Privacypages 73-89. IEEE Computer Society PressF'g
May 2020.
B. Schoenmakers. A simple publicly veri able secret sharing scheme
and its application to electronic. In M. J. Wiener, editGRYPTO'99
volume 1666 oLNCS pages 148-164. Springer, Heidelberg, Aug. 1999.
E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Galilly, L. Gasser, |. Khof ,
M. J. Fischer, and B. Ford. Scalable bias-resistant distributed rando

16: VRF with unpredictability under malicious key gen-

eration [18].

ﬁ Threshold Veri able Random Functions: De nition and

ness. Ir2017 IEEE Symposium on Security and Privamages 444-460. Construction

IEEE Computer Society Press, May 2017.

D. team. DRAND project website, 2020. https://drand.love accessed onA Threshold Veri able Random Function (TVRF) has the

21/03/2021.

following properties:

Consistency: Given any, when we applyCombineto

any t+1 correct partial evaluation@n;);, a, we obtain
the samey.

Robustness: IfCombine outputs a pair(y;), then

Verify(tpk; x;y;) =1

Uniqueness: for everk, for anyy; 6 y,, and any
proofs 1; »,then atleast one oferify(tpk; Xx;y1; 1) or

Verify(tpk; x; y2; 2) outputO with overwhelming proba-
bility.

from in [25]. Notice that the original DRAND/D nity TVRF

uses actual pairing based threshold BLS signatures in order

LocalDectpk;; tsk;; E) takes a cyphertex and a partial
key pair {pk;, tsk), and outputs a partial decrypted
message; .

GlobalDeétpk; I; ftpk;gi21;fXigi2i; E) takes as input a
setl [n] with jIj t+ 1, the global public key, the
partial public keys of , the cyphertexE and the partial
decrypted messages and outputs a decrypted message
m° or an error? .

~ We describe informally the properties we want from a
Pseudorandomness: roughly, the adversary corredtinghreshold encryption scheme, following the work of [16],
parties cannot distinguish the output of the function fronyhich we refer to for formal de nitions.

a uniformly random value, even when chosing the input.

We describe in Figure 17 a DDH-based threshold VRF in-
spired by a threshold Boneh-Lynn-Shacham (BLS) signatures

to achieve compact proofs. Both this construction and the
improved GLOW TVRF construction are proven secure in [25]

and could serve as a building block for the DRAND/D nity

beacon. However, we present the DDH based version for the
sake of simplicity and for making it clear that all Mt. Random
building blocks can be instantiated from DDH in the ROM.

Note that we do not make the instantiation BistKeyGen

explicit, as we both introduced our own scheme in Section IlI

and discuss a number of alternatives in Appendix E.

DDH-based threshold VRF (DDH-DVRF in [25])

Setup: Let G be a cyclic group of prime ordey, with generatog.

LetH :f0;1g ! G arandom oracle. In addition we implicitly
need a random oracld :f0;1g ! Zq for the DLEQ proof.
Commands:

DistkeyGen(1) The distributed key generation creates
tski 2 Z4 such that(tsk), is a valid Shamir sharing o
some secretsk 2 Zq. It outputs publictpk; = g and
tpk = g%, and privatelytsk; only to partyP;, fori 2 [n].
PartialEval(x; tsk;; tpk;): Vi is computed by
Pi as vy H(x)®. In additon compute
i = oieq ((9;H(X)); (tpk;;yi)).

Combingpk; ftpk; g; X; A; (Yi; i)i2a): AsubsetA® A is
selected such tha&" has cardinalitg +1 and ; is accepted
fori 2 A% Theny = iZAOyiL“A @ and = (Yi; i)iza0
Verify(tpk; x;y;): Parse =(y: i)i2a0, verify all ; for
i 2 A% and check whethey = ~ ., oy * * . Output 1
if all checks pass, otherwise output 0.

Fig. 17: DDH-based threshold VRF (DDH-DVRF in [25]).

C. Threshold Encryption: De ntion and Construction

A threshold encryption scheme is composed by the follov
ing algorithms:
DistKeyGelfl): outputs secret keyisk;;i 2 [n], corre-
sponding public partial keypk; and a global public key

Completeness: If the keys have been honestly generated
with DistKeyGena messagm honestly encrypted, and a
setl of atleast+1 honest parties have computed correct
partial decryptionsx; of the corresponding cyphertexts
with their keys, thenGlobalDeg taking that cyphertext
and the public keys and partial decryptions lgf will
outputm

Robustness: Given as inpi?subsetd andJ of at least

t +1 parties and their corresponding partial decryptions
of a same cyphertext, iGlobalDecdoes not reject then

it outputs the same message on both inputs with over-
whelming probability.

IND-CPA against static corruption: We assume the adver-
sary corrupts a séi of at mostt parties at the beginning

of the protocol. The scheme is IND-CPA secure if the
adversary cannot guess (with success probability non-
negligibly larger than1=2) the plaintext corresponding

to a given cyphertext, even if this a cyphertext encrypts
a message from a set of 2 possible messages that the
adversary has chosen, and given of course that the ad-
versary knows all the public keys and the secret keys
corresponding tcA.

The threshold version of EI Gamal is then as in Figure 18

Setup: Let G be a cyclic group of prime ordeg, with generator

g.

Commands:

Threshold ElI Gamal encryption scheme.

DistkeyGen(1): The distributed key generation creates
tski 2 Z4 such that(tski)iL; is a valid Shamir sharing o
some secretsk 2 Zq. It outputs publictpk; = g4 and
tpk = g**, and privatelytsk; only to partyP;, fori 2 [n].
End(tpk;m): To encrypt a messagen 2 G, sampler
uniformly at random irZq, and outpu€ = (g"; tpk" m) :=
(c;d) 2 G?

LocalDedtpk;; tski; E) outputsxi = (Vyi; i) wherey;
¢ and i = e ((9:0); (tpk;;yi)).

GlobalDedtpk; I; ftpk;gi21;fXigi2i;C) outputs ? if no
more thant DLEQ proofs ;i 2 | pass. Otherwise, it take
asubset® | of cardinality exactlyt + 1 such that 5o
are all correct, and computes

12}

Y .
m'=d (")

i210

tpk.

Endqtpk; m) takes as input the global public key and a

messagen, and outputs a cyphertel

Fig. 18: Threshold EI Gamal encryption scheme

D. Zero-knowledge proofgg and zero knowledge in the random oracle model, assuming the

In this section we provide a zero-knowledge proof folr:iat-Shamir heuristic holds.

the EG relation that we need in the GULL construction iProof. We prove that the interactive public-coin version of

Section IV, which is a discrete logarithm equality type ofhis protocol wheree is chosen uniformly at random by the

relation, except that one of the elements that would be publicyeri er is correct, special-sound and zero knowledge and the

the DLEQ relation now is encrypted by El Gamal (thresholdjiat-Shamir heuristic implies the properties above for the

encryption. In order to alleviate the notation, the relation antbn-interactive version.

its elements will be denoted as follows for the rest of the

section: Correctness: The protocol is easily seen to be correct, as

o 6) _ settingw = rs impliesd® t¥ = x,, ¢ ¢y =1 if the

f(grxasxzited)i(sirg2) 2 G° (Zg G): relation is correct, as argued above, and hence all of the
=Xy gi=c d=t" g ¢ = X0 checks will pass.

The problem here is thag, is part of the witness, and gpecial-soundness: Now suppose that a prover can answer
should not be revealed. The third and fourth equalities can Rg, gifferent challenges 6 €®with z, : zs; z, and respectively
goml;ined b); raising the thi-;g?ma?sd SUbStitPE”@S =d><2 N, 20.70:20 This means that the 4 checks by the veri er pass

ut this results in an equatial¥ t S = x, with a productrs . L °o_ 7 z
in the exponent. This is now solved by linearization, nameln bot? goasesZ.SFchOJm here it is easy to see tfaf = g;
considerw = rs as a new variable and, using one of th nhdx; = =g;° ™ soone can extract

rst two equations, for example the second, introduce a new=(z, 2%=(e €% ,s=(z z9)=(e &) andg,=dt
one that guarantees thatis of the right form.

More concretely, the prover will show knowledge of expo- Note that these values satisfy thgft = x1; ¢ = ¢; d=

r

nentsr;s:w with: t" o, so in order to show that the extractéstr;g,) is a
witness, we only need to additionally show thydt= x»
g=c From the fact that the fourth coheck passes in both cases,
o= X, we get thatl = c* 22 g ™, which implies 1 =
ds tv = x, (e gl % Since we aIr&ady knewe = g for the
S gV = extractedr, this meansg;>® ®** % = 1. Since we are
01 1

in a group of prime order, sg; is a generator, it must hold
This can be proved by a standardprotocol, as we will that

see. If the prover is honest tham = rs will satisfy the rs(e +z, 22=
equations. On the other hand, knowledgéro$; w) satisfying
these equations implies knowledge (ofs; g,) satisfying the
relation, so the only way of a cheater prove to succe
convincing the verier of a false statement is by breakin
the soundness of the protocol for this system of equatio

Finally from the fact that the third check passes in both
. e eO _ z Z0 z ZO . .
tances we have; © = d*» Zt? Zw, which, using the
formation deduced in the previous line and the expression
|?;r the extracteds, means

which will happen with negligible probability. Zero-knowledge XS e _ (dst 's)e e’
is quite trivial. We formally state and prove security of the
protocol now. Now sincee €°6 0 and we are in a group of prime order,

this means; = d°t 'S. But the right hand side is exacttg

—_ S
Protocol ea SOXz = @3 as we wanted to show.
Selt)uf_’lﬂrfér?)rr‘g\%? (():rha(;:clg'éﬂ UeiUw 2 Zo unifomly at ran Zero knowledge: The simulator samples; zs; zy; € in-
ryUs, Uw q - :
dom, and constructsy = gi'ia; = g'fias = depeengenzt!){ andeu_mfc;zr.nly ate r_antzjomZ @q, zindv de \Elwes
d® t'w,a, = ¢ gf". She createse = | & C=0p,% X7=0; ;8 X3 —.dls triag =c gt
H(gi;x1;X2;t;¢;d;a1;a2;as;a4). She computeszz = | This generates a transcript which is indistinguishable from one
U + €,z = U +e s 2zy = u er s Th of an actual protocol, as it is easy to see.
proof is(e;z ; zs; zw) O
2) The verier computesa; ¢ = ¢i";a; x§ = d%;as
X5 = d* t*™";ay = ¢* g and accepts ife =
H (g1;X1;X2;t; ¢; d; a1; a2; as; as), otherwise rejects. E. Distributed Key Generation
Fig. 19: Protocol gg There are many known instantiations of the distributed

key generation protoc@istKeyGerfl) from Figure 17. The

structure of most of these protocols is similar to the one we
Proposition 1. Protocol gg is a correct proof of knowledge have presented, namely parties each secret share a random
of (s; r; g2) with special soundness (with soundness etren), eld element with Shamir's secret sharing and post some

Scheme Comp. (Exp/Enc/Dec) Comm. (bits) Rounds | Bias | Assump.
Pedersen [34] nt+5n+t+1 (2nZ+ tn + n)kq 1+2 Yes DDH
Gennaro et al. [26] 2nt +11n+3t+3 (4nZ+2tn +2n)kq 2+3 No DDH
Fouque-Stern [23] (nt +5n+ t+1) Exp. (2nZ+ tn + n)kq 1 Yes DDH
+4n Enc+ Dec +2n2kp +3n2ky +DCR
Fouque-Stern [23] in| (nt +18005n + t +1) Exp. | (28n? + tn + n)kq 1 Yes DDH
terms of Exp. ankgq +DCR
Our Result oan+t+2 (2nZ+ tn +5n)kq 2+2 No DDH

TABLE I: Comparison of DKG schemes whereis the total number of parties$,is the number of corrupted partids, is the
number of bits of an element &g or Zy, kn is the number of bits of the Paillier cryptosystem moduNisandk;, is the
output length of a hash function. Exp, Enc, Dec stand for operatida @fe. exponentiation), Paillier encryption and Paillier
decryption, respectively. We consider that Pedersen and Geehalohave private messages encryted under El Gamal. For
typical parameterkq = 256; ky = 2048, we haveky = 8kqy, ENnc=3600 Exp and Dec=4880 Exp.

related information. The global implicit secret key is the surie type of output keys we need with their gossip techniques.
of the secrets dealt by a s€& of parties who have shared Another recent work [27] introduces a non-interactive (but
correctly (the partial secret keys are similarly computed Hyiasable) DKG protocol that generates keys with the same
the corresponding party by summing the received shares fratructure as ours. However, the preliminary version of [27]
parties inQ), and the public information is used to derivedoes not present any efciency analysis of the proposed
the public partial and global keys. The differences lie on hoprotocol, making it hard to present a comparison. Moreover
parties can prove the correct sharing of their initial secrethat construction requires pairing hardness assumptions.
and their consistency with the public information they post. In Table I, we compare the amount of computation, com-
Possibly the best known is Pedersen's protocol [34], whefeunication, number of rounds (separated in number of xed
parties use a veri able secret sharing scheme (VSS), namédunds plus number of rounds that may be required to resolve
Feldman's VSS to do this, while they post a commitment to tH#isputes), assumptions and biasability of the globel public key
coef cients of the polynomial. Parties reach an agreement, Viigk by a rushing adversary. We denote ky the number of
the VSS properties, on a sé of parties that have correctly bits to describe a eld element i@y, which we assume to
shared their value. The protocol has 1 round of interactiodlso be roughly equal to the number of bits to describe an
and 2 additional rounds if there are disputes. element inG; in the case of Fouque-Stern, we denote by

As discussed in Gennaro et al. [26], one caveat of Pederden the number of bits to describe an elemeniZiq for the
distributed key generation protocol is the fact that maliciouds® Of Paillier scheme (hen@ky describes an element in
parties can bias the public global key. [26] also Showedzwz). Since Ped.ersgn's and Gennaro et gl.'s protocols involve
modi cation of the protocol that xes this problem, using aPrivateé communication between parties, in order to properly
different commitment to the coef cients of the sharing polycompare the communication complexity, we have assumed that

nomial. However this introduces a new round of interactioifiS communication is done through the public ledger using
and a new round of dispute resolution. El Gamal encryption, which requires postiritlx, bits and

[23] proposed a one-round distributed key generation prggmputing 2 exponentiations per encryption, while decryption

tocol based on Paillier cryptosystem, where parties only spe ts 1 exponentiation. For the sake of comparison to Fouque-

once, by posting their message in a public bulletin board. THE™ We measured the time for Paillier encryption and decryp-
protocol is publicly veri able but again the public key can pdion with 128-bit security, obtaining 180 milliseconds and 244
biased by a rushing adversary. milliseconds, respectively, on a Intel(R) Core(TM) i7-10510U

Nevertheless, a recent work by Gurkan et al. [28] shovs%PU @ 1.80GHz using the RELIC library [3]. On the same

that the public key biasability from [26] should not be atform and security Igvel, a group operation over a DDH
N . : ard group takes 50 microseconds.
problem for applications to threshold encryption, signatures :
As one can see, our protocol requires almost the same com-

and veri able random functions, due to a property named - " . e .
rekeyability, introduced in that work. We also remark that irqmnlcatlon as Pedersenss, differing only in lower order terms,
y Y. ’ and less communication than Gennaro et al. and Fouque-Stern,

the same work [28], the authors construct a publicly veri ableS ecially when compared with the latter, sifigeis typicall
distributed key generation protocol with a much improveﬁ P y P ' ypicaty

) o : arger thark, (we can currently assunig = 256, ky = 2048
asymptotical communication complexig(n), based on the[%'.;?On the other hand, Pedersen and of course Fouque-Stern

notion of aggregat!qn via gossip. However, this protocol is n ve better round complexity, at the cost of allowing bias on
only based on pairing assumptions (stronger than our D > public key

assumption), but also outputs group elements as secret keyaur novel DKG protocol's performance is further show-

(rather than elements idy), i.e., the output is to be usecjcadc,ed in our benchmarks. Figures 20 and 21 show the DKG

with pairing-based threshold schemes, so it cannot be usg S e : .
computation time and communication size for changing num-

for example for its use with threshold El Gamal encryptioB . .
: : : ._ber of parties for tiers 1 and 2.
scheme, at least directly. It would be very interesting to achieve

	Introduction
	Our Contributions
	Other Related Works

	Preliminaries
	General notation
	Adversarial and Communication Models
	Packed Shamir secret sharing
	Non-interactive zero knowledge proofs
	Publicly Verifiable Secret Sharing (PVSS)
	Verifiable Random Functions (VRFs)
	Threshold Verifiable Random Functions (TVRFs)
	Threshold Encryption

	Distributed Key Generation via PVSS
	GULL: Gradual Release of PVSS Outputs via Threshold Encryption
	Constructing Mt. Random
	Tier 1: Uniform Randomness via PVSS
	Tier 2: Pseudorandomness via Threshold VRFs
	Tier 3: Bounded Biased Randomness via VRFs
	Combining Bounded Biased Randomness and Uniform Randomness

	Seeding Upper Tiers vs. Unpredictable Randomness
	Security Analysis

	Efficiency Analysis
	References
	Appendix
	Verifiable Random Functions: Definition and Construction
	Threshold Verifiable Random Functions: Definition and Construction
	Threshold Encryption: Defintion and Construction
	Zero-knowledge proof EG
	Distributed Key Generation

