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Abstract—Many decentralized applications require a common
source of randomness that cannot be biased by any single party.
Randomness beacons provide such a functionality, allowing any
(third) party to periodically obtain random values and verify
their validity (i.e. check that they are indeed produced by
the beacon and consequently random). Protocols implementing
randomness beacons have been constructed via a number of
different techniques. In particular, several beacons based on time-
based cryptography, Publicly Verifiable Secret Sharing (PVSS),
Verifiable Random Functions (VRF) and their threshold variant
(TVRF) have been proposed. These protocols provide a range of
efficiency/randomness quality trade-offs but guarantee security
under different setups, assumptions and adversarial models.

In this work, we propose Mt. Random, a multi-tiered ran-
domness beacon that combines PVSS and (T)VRF techniques in
order to provide an optimal efficiency/quality trade-off without
sacrificing security guarantees. Each tier is based on a different
technique and provides a constant stream of random outputs
offering progressing efficiency vs. quality trade-offs: true uniform
randomness is refreshed less frequently than pseudorandomness,
which in turn is refreshed less frequently than (bounded) biased
randomness. This wide span of efficiency/quality allows for
applications to consume random outputs from an optimal point
in this trade-off spectrum. In order to achieve these results,
we construct two new building blocks of independent interest:
GULL, a PVSS-based beacon that preprocesses a large batch of
random outputs but allows for gradual release of smaller “sub-
batches”, which is a first in the literature of randomness beacons;
and a publicly verifiable and unbiasable protocol for Distributed
Key Generation protocol (DKG), which is significantly more
efficient than most of previous DKGs secure under standard
assumptions and closely matches the efficiency of the currently
most efficient biasable DKG protocol.

Mt. Random (and all of its building blocks) can be proven
secure under the standard DDH assumption (in the random
oracle model) using only a bulletin board as setup, which is
a requirement for the vast majority of beacons. We showcase the
efficiency of our novel building blocks and of the Mt. Random
beacon via benchmarks made with a prototype implementation.
Our experimental results confirm the benefits of our multi-tiered
approach, showing that even though higher tiers provide fresh
random outputs more often, lower tiers can be executed fast
enough to keep higher tiers freshly seeded.

I. INTRODUCTION

Randomness is essential for constructing provably secure
cryptographic primitives and protocols. For several applica-
tions, it does not suffice that parties simply have a local source
of randomness, but we require instead a randomness beacon
that can periodically provide the same fresh random values
to all parties. This is particularly important in Proof-of-stake
protocols [31], [18], [14], where such random beacons are

needed to carry out the leader elections to decide the next party
to publish a block. In addition, random beacons are important
for other blockchain-related applications where committees
must be elected, such as sharding [43], [19], [45], as well
as for smart contracts that require a source of randomness. In
such settings it is desirable to implement a random beacon as
a protocol among the mutually distrustful participants of the
corresponding system, i.e., without assistance of a trusted third
party; moreover, we want to have a protocol with guaranteed
output delivery, and whose output correctness can be publicly
verified. The output of the protocol should not be predictable
beforehand and/or biasable by an adversary that corrupts up
to a certain threshold of the parties.

To illustrate the non-immediate nature of the problem,
notice that a simple commit-and-open strategy where parties
commit to local randomness and then output the sum of the
opened values not quite enough, as parties can bias the output
with a selective abort strategy, where they open or not their
commitments depending on their view so far.

Given that challenge, several alternatives for constructing
randomness beacons have been proposed based on crypto-
graphic primitives, such as publicly verifiable secret sharing
(PVSS) [31], [11], [12], [41], [39], verifiable random func-
tions (VRF) [14], [18], [17], [29], [24], [42], verifiable delay
functions (VDF) [8], [44], [6], [5], [38] and homomorphic
encryption [15]. Moreover, achieving fairness against rational
adversaries has also been considered in works that rely on
financial incentives or punishments to encourage parties to
behave honestly [2], [1], [7], [32], [4]. In particular, this
rational approach has been proposed in the specific context
of randomness beacons by the RANDAO project [36].

Constructions of beacons from these different primitives
present a trade-off between the complexity of the construc-
tion (in terms of computation and communication) and how
unbiasable or unpredictable they really are. In this work, we
will focus on the two first types of random beacons, namely
based on PVSS and VRFs, because their security is based on
standard assumptions. In fact, we consider two different types
of VRF-based constructions, one using plain VRFs and another
using so-called threshold VRFs [42], [24], [29] (or TVRF,
also called distributed VRF or DVRF). Before describing our
approach, we give a brief overview of the complexity vs.
randomness quality trade-offs given by each of these types
of beacons.

Constructions using plain VRFs require very little computa-



tion and communication, but are open to the type of selective
abort bias that we mentioned above. Since they rely on the
computation of a VRF that can only be carried out by a party
having its secret key, an adversary can always bias the �nal
output by choosing whether to reveal or not its own VRF
output, a fact that is captured in previous security analysis of
this type of beacon [18].

Distributed VRFs get rid of this bias by always allowing a
set of parties larger than a threshold (e.g.a majority of parties)
to compute the veri�able random function, after a setup that
consists on a distributed key generation protocol. Nevertheless,
TVRF-based random beacons that have been proposed consist
on a round-by-round protocol where at each round the TVRF
is applied to the output of the previous round (and the random
beacon output is de�ned to be some �xed function of that
output). This has the inconvenience of requiring a �xed initial
seed to which the TVRF is applied in the �rst round, and since
the entropy of such seed is of course �nite, the unpredictability
guarantees of the process will on the long run necessarily
deteriorate. To the best of our knowledge there is no analysis
of how this exactly plays out.

Finally, PVSS-based beacons such as SCRAPE [11] and
ALBATROSS [12] enhance the commit-and-open strategy
mentioned above by having parties commit to their inputs via
publicly veri�able secret sharing. This approach renders the
selective abort strategy useless, since unopened secrets can
always be reconstructed by honest parties (provided there is
an honest majority). On the downside, such protocols require
more communication and computation from the parties. The
recent proposal ALBATROSS [12] amends this to some extent
by allowing parties to generate a much larger output than
SCRAPE at the cost of little additional communication and
computation. Nevertheless, in ALBATROSS there is still the
issue that, while the parties generate a large batch of elements
in a group as output, these elements are all known at once,
so it may not be usable in scenarios where one should
generate randomness gradually, as it happens with TVRF
based protocols.

Recently, there is a growing interest in constructing beacons
from time based primitives, such as Time Lock Puzzles
(TLP) [37], [9], [30], [22] and the Related notion of Veri�able
Delay Functions (VDF) [8], [35], [44], [20]. Such randomness
beacons [8], [6], [5] achieve communication complexity linear
in the number of parties while requiring only a common
reference string as setup. However, these constructions are
based on sequential computation assumptions that are not
well understood, such as the hardness of problems over
supersingular isogenies [20] and of iterated squarings over
groups of unknown order [37]. Since little is known about
concrete security parameters for such constructions, we focus
our approach on PVSS and (T)VRF based beacons. However,
since these approaches provide uniform pseudorandom values,
they can potentially be used as Tier 2 of our beacon (which
will be discussed in details).

A. Our Contributions

In this work, we aim to combine the PVSS and (threshold)
VRF approaches to obtain a best-of-both worlds “multi-tiered”
randomness beacon construction. Moreover, as a key part of
Mt. Random's construction, we design a novel protocol for
publicly veri�able and unbiasable distributed key generation.
Finally we also present GULL (Gradually UnLeashed aLba-
tross), a new PVSS-based beacon that generates a large batch
of random outputs like ALBATROSS but allows for gradually
releasing of smaller “sub-batches” of outputs. All of our
constructions are publicly veri�able and proven secure against
malicious adversaries under a single standard assumption,i.e.
Decisional Dif�e Hellman (DDH).

Mt. Random: A multi-tiered randomness beacon:More
precisely, Mt. Random is a protocol where VRF, TVRF and
PVSS based random beacons are run as independent tiers
executed in parallel. Each tier offers a different trade-off
between complexity and randomness quality. By using the
outputs of each tier as seeds for the next one, we aim at
constructing a �exible architecture for randomness beacons
that achieves good concrete ef�ciency without sacri�cing
security guarantees. Moreover, our approach allows for higher
level protocols to choose what tier to use when obtaining
randomness, according to the best complexity vs. randomnness
quality trade-off for each application. At a glance, Mt. Random
is constructed as follows:

� Tier 1 - Uniform Randomness via PVSS: This tier
provides batches of uniformly random outputs while only
requiring a Public Ledger and a Random Oracle as setup.
However, communication and computational complexities
are quadratic in the number of parties executing the tier.

� Tier 2 - Uniform Pseudorandomness via TVRFs:Be-
sides the setup required for Tier 1, this tier requires a
setup phase for distributed key generation, after which it
provides uniformly pseudorandom outputs (one per execu-
tion). Communication and computational complexities are
linear in the number of parties executing the tier. Since the
seed must be periodically refreshed, this tier uses outputs
from Tier 1 as seeds every time a refresh is needed.

� Tier 3 - Bounded-Biased Pseudorandomness via VRFs:
Regarding setup, besides a Public Ledger and a Random
Oracle, this tier requires a random nonce, which is obtained
from the outputs of Tier 2. Communication and computa-
tional complexities can be adjusted at the expense of output
bias, i.e. the lower the complexity the higher the upper
bound for the bias an adversary can introduce.

Publicly Veri�able Distributed Key Generation:We show
that the SCRAPE and ALBATROSS protocols can be adapted
to create a publicly veri�able distributed key generation
(DKG) protocol that can provide both the keys needed for the
TVRF and for the threshold encryption that we use in GULL.
This protocol gives each party a threshold public key/private
key pair(tpki ; tski ) wheretski is a Shamir sharing of a global
secret keysk in a prime-order �eld Zq and tpki = gtski

in a DDH-hard cyclic group of orderq generated byg;



the global public keytpk = gsk is also publicly known.
The security of our DKG scheme is entirely based on DDH
(in the random oracle model) and, as a consequence of the
unbiasability of SCRAPE and ALBATROSS, it does not suffer
from the problem that the public key may be biased by a
rushing adversary (which happens in some other alternatives).
In terms of communication and computational complexities,
our protocol is more ef�cient than previous unbiasable DKG
schemes and essentially as ef�cient as the best biasable scheme
(as discussed in Appendix E). We are not aware of this
protocol being described anywhere else.

GULL (Gradually UnLeashed aLbatross):Finally we in-
troduce GULL, a PVSS-based random beacon that generates
large batches of outputs that remain secret until a opening
phase where smaller “sub-batches” can be gradually released.
GULL is constructed by modifying and augmenting the
ALBATROSS beacon using threshold encryption. Basically,
instead of revealing their shares as in ALBATROSS, parties in
GULL threshold encrypt (functions of) their shares and prove
in zero knowledge that the resulting ciphertexts are correctly
generated. In order to do that, we present an ef�cient zero
knowledge proof for the required language.

Due to the added threshold encryption and zero knowledge
proof machinery, GULL is understandably slower than AL-
BATROSS in case a full batch of random outputs is required.
However, in case many fresh unpredictable uniformly random
outputs are required, the ability to gradually release sub-
batches of outputs makes GULL signi�cantly more ef�cient
than ALBATROSS: instead of re-executing the full protocol in
order to obtain a full batch that is completely revealed, GULL
allows for simply opening an encrypted sub-batch, which is
much cheaper than the full protocol execution. In other words,
GULL allows for preprocessing a large amount of sub-batches
of uniformly random outputs that can later be revealed at a
low cost (instead of generating new outputs on-the-�y).

B. Other Related Works

Since one of the contributions of this paper is a distributed
key generation protocol for discrete logarithm based schemes,
in Appendix E we give an overview of some relevant works
in the extensive literature on this topic, namely [34], [26],
[23]. Here we note brie�y that these protocols have diverse
pros and cons: [34], [26] only assume DDH hardness as our
protocol, while [23] uses Paillier encryption and therefore
needs the decisional composite residue assumption but it only
requires one round of communication (in contrast, [34] may
require 3 rounds in case of complaints, our protocol may
require 4, and [26] may require up to 5). Another issue is
that the output global key in [34] and [23] may be biased
by a rushing adversary, even though this may not be a
big problem for many applications as shown in [28], and
seems quite inherent to low round complexity. We also note
that [28] also constructed a distributed key generation protocol
with improved communication complexity based on a gossip
strategy; however, this construction does not generate �nite
�eld as secret keys, like the other alternatives we mention, but

rather group elements, so they may not be used for example
in our application.

II. PRELIMINARIES

A. General notation

For integersm � n we denote by[m; n] the setf m; m +
1; : : : ; ng. We let [n] = [1 ; n], i.e. f 1; : : : ; ng. Our protocols
will take place in a cyclic groupG of prime orderq. Observe
that, in such a group, any element distinct from the identity
is a generator. We denote byZq the �nite �eld of q elements,
consisting of the integers moduloq, and note that we can
speak ofga for g 2 G; a 2 Zq and this respects the rule
ga � gb = ga+ b where the sum is inZq. We will assume the
DDH problem is hard in our group, i.e. given(g; ga ; gb; gc)
whereg is in G, a; b are uniformly random and independent
in Zq andc may be (with same probability) either uniformly
random inZq and independent of(a; b) or de�ned byc = a�b,
then it is hard to decide in which of the two cases we are with
probability non-negligibly larger than1=2.

B. Adversarial and Communication Models

The protocols analysed in this work are proven secure
against a malicious static adversary,i.e. the adversary may
arbitrarily deviate from the protocol but it must choose what
parties to corrupt before the execution starts. For the sake
of simplicity, we assume access to an authenticated bulletin
board. Once a party posts a message to the bulletin board,
it becomes immutable and immediately available to all other
parties, who can also verify the authenticity of the message
(i.e. that it was indeed posted by a given party). Notice that
such a bulletin board could be substituted by a blockchain
based public ledger, a public key infrastructure and digital
signatures. However, modeling the corner cases that arise
in this scenario introduces a number of technicalities that
are not the main focus of this work. Moreover, we assume
synchronous communication,i.e. all messages sent (or posted
to the bulletin board) within a round are guaranteed to be
received by all parties before the next round.

C. Packed Shamir secret sharing

Secret sharing allows to distribute a secret amongn parties
P1; : : : ; Pn by delivering a share to each party, so that only
certain subsets of these parties can later reconstruct it by
pooling together their received shares.

We recall the secret sharing scheme we refer to as(t; ` )-
packed Shamir secret sharing, a well-known generalization of
Shamir's secret sharing scheme that allows to share a vector
of ` secrets(s0; s1; : : : ; s` � 1) in Z`

q as long asn + ` � q.
Standard Shamir's scheme is the case` = 1 .

To share the secret, the dealer selects a polynomial of degree
at mostt + ` � 1 such thatf (� j ) = sj for j 2 [0; ` � 1] and
sends the evaluation� i = f (i ) to Pi for i 2 [n].

Polynomial interpolation uniqueness properties guarantee
that the secret is distributed independently from any set of
t or fewer shares (t-privacy); while on the other hand it can
be fully reconstructed from any set oft + ` shares or more



((t + `)-reconstruction). Indeed given a setA of exactly t + `
shares, we apply Lagrange interpolation in each coordinate of
the secret, namely

sj =
X

i 2 A

� i L i;A (� j )

for j = 0 ; : : : ; ` � 1, where

L i;I (X ) :=
Y

k2 I;k 6= i

X � i
k � i

:

A larger subset can reconstruct the secret by applying this
process to the shares of some subsetA of t + ` parties.

D. Non-interactive zero knowledge proofs

In a zero knowledge proof of knowledge a prover wants
to convince a veri�er of the veracity of a statement and of
the fact that she knows a piece of information (witness) that
makes the statement true, without revealing anything about
this witness. Non-interactive proofs carry out this with a single
message from the prover. Proofs considered here will be for
public veri�ers, meaning anyone can verify the proof. We
need non-interactive zero-knowledge proofs of knowledge for
two types of statements in a cyclic group of prime order
q: discrete logarithm equality (DLEQ) proofs [13] and low-
degree exponent interpolation (LDEI) [12]. In fact, DLEQ
proofs can be seen as a special case of LDEI proofs, and
both can realized from standard Sigma-protocol techniques.

In a LDEI proof, we consider the cyclic groupG of prime
orderq, and let� 1; : : : ; � m be �xed public pairwise-different
elements in the �eldZq. The statement is given by a vector of
elementsg1; :::; gm ; x1; :::; xm of the cyclic group, and some
integer 0 � d < m . The prover needs to show that there
exists a polynomialw(X ) in Zq[X ] of degree at mostd that
interpolates the discrete logarithms of thex i 's with respective
basesgi on evaluation points� i , i.e., x i = gw(� i )

i for all
i 2 [m].

A non-interactive proof of knowledge of the polynomial
w(X ) was presented in [12] and is given in Figure 1. The
proof works in the random oracle model, and we denote it by

� LDEI ((gi )m
i =1 ; (x i )m

i =1 ; d):

A well known special case isd = 0 , where we obtain a discrete
logarithm equality, or DLEQ, statement: what the prover is
showing in that case is that the discrete logarithms of thex i

with respective basegi are all equal, i.e.,x i = gw
i for all

i 2 [m] where noww 2 Zq. We subsequently de�ne

� DLEQ ((gi )m
i =1 ; (x i )m

i =1 ) := � LDEI ((gi )m
i =1 ; (x i )m

i =1 ; 0)

E. Publicly Veri�able Secret Sharing (PVSS)

A publicly veri�able secret sharing scheme allows any ex-
ternal party to verify the correct sharing and reconstruction of
a secret, with the help of zero knowledge proofs posted respec-
tively by the dealer and the reconstructing parties. We will base
our constructions upon techniques from SCRAPE [11] and the
subsequent modi�cations in ALBATROSS [12]. The PVSSs

Low-degree exponent interpolation (LDEI) ZKPoK
� LDEI ((gi )m

i =1 ; (x i )m
i =1 ; d)

Setup: Group G, �xed pairwise distinct elements� 1 ; : : : ; � m in
Zq , a random oracleH (�)
Statement: f (g1 ; :::; gm ; x1 ; :::; x m ; d) 2 G2m � Z : 9w(X ) 2
Zq [X ]; degw � d; x i = gw ( � i )

i 8i 2 [m]g (and the prover knows
w(X )).
Protocol:

� The prover samplesu(X )  Zq [X ] with degu � d and
computesai = gu ( � i )

i for all i 2 [m], in addition to
e = H (g1 ; : : : ; gm ; x1 ; : : : ; x m ; a1 ; : : : ; am ); and z(X ) =
u(X ) � e � w(X ). The proof is(e; z).

� The veri�er computesai = gz ( � i )
i xe

i for all i and checks
that e = H (g1 ; : : : ; gm ; x1 ; : : : ; x m ; a1 ; : : : ; am ) and that
degz � d, accepts if these two conditions are true, and
otherwise rejects.

Fig. 1: LDEI zero knowledge proof of knowledge� LDEI

from [12].

in these papers follow in turn the blueprint of Schoenmakers'
PVSS [40].

We describe the PVSS in ALBATROSS, which can be seen
as a generalization of SCRAPE that allows for a �exible trade-
off where the dealer can share a vector of` group elements,
while at mostt � (n � `)=2 parties can be corrupted if we
want botht-privacy andn � t-reconstruction, which will be
necessary later. In contrast, the parameters in SCRAPE (and
in Schoenmakers' PVSS) would correspond to the case` = 1 .
One important point in favor of this generalization is that the
amortized computation and communication per secret shared
becomes much better as` grows. The construction of the PVSS
in ALBATROSS can be seen in Figure 2.

PVSSs can be used to construct random beacons as follows:
parties commit to a secret random choice in a group (in the
case of ALBATROSS the group would beG` ) by PVSSing
it among the remaining participants. At that point all parties
and any external veri�er can check the validity of each sharing
and determine the setQ of parties which have dealt correctly.
Once the setQ of parties that have correctly shared a secret
is pinpointed, each of these secrets will always be opened,
even if the dealer refuses to open it; indeed, they can be
reconstructed by the remaining parties, and also this process is
publicly veri�able. In fact at the point whereQ is determined,
the output is also fully �xed. This output is constructed by
applying a randomness extractor to the opened secrets, so that
the result is independent from the input choice of anyt parties.

This randomness extractor could simply consist on the
group operation applied to the opened secrets. The result
would be independent of any set of all but one of these secrets.
However, ALBATROSS exploits the fact that by assumption
there is more than one honest party inQ, and extracts a larger
output. This requires the notion oft-resilient matrix.

De�nition 1. A matrix M 2 Zr � m
q is t-resilient if for

any A = f i 1; :::; i t g � [m] of size t, M v is indepen-
dent from the coordinates ofv indexed byA, i.e. for any



Packed PVSS in ALBATROSS [12].

Parameters: Let n be the number of parties that receive shares,
and1 � t � (n � `)=2 be the corruption threshold, where` � 1
is an integer.
Setup: A public bulletin board, �eldZq , and DDH-hard groupG
with generatorg. Every party has a private keyski 2 Zq , and
public keypki = gski 2 G.
Sharing:
The secret is a tuple(gs0 ; : : : ; gs ` � 1 ) 2 G` , for (s0 ; : : : ; s` � 1) 2
Z`

q chosen by the dealer.
1) The dealer constructs Shamir's shares for(s0 ; : : : ; s` � 1) 2

Z`
q by selecting a polynomialf 2 Zq [X ] of degree at most

t + ` � 1, with f (� j ) = sj , j = 0 ; : : : ; ` � 1, de�nes
� i = f (i ), i = 1 ; :::; n. We refer tosj ; � i as“Shamir secret
and shares”.

2) The dealer posts the“encrypted group shares” Ŝi =
pk� i

i on the bulletin board, together with the NIZK proof
� LDEI (( pki )

n
i =1 ; (Ŝi )n

i =1 ; t + ` � 1), asserting that indeed
(� 1 ; : : : ; � n ) = ( f (1); : : : ; f (n)) for a polynomial f of
degree at mostt + ` � 1.

Sharing veri�cation:
1) Check whether� LDEI is correct.

Reconstruction: A set A containing at leastt + ` honest parties
(whose existence is guaranteed if there are� t corruptions) can
reconstruct(gs0 ; : : : ; gs ` � 1 ) as follows:

1) Usingski , the i -th party computesSi = ( Ŝi )sk� 1
i . Note this

is supposed to beSi = g� i , the “group share”.
2) The i -th party posts Si on the bulletin board to-

gether with a NIZK proof of correct decryption� i =
� DLEQ (( g; Si ); (pki ; Ŝi )) .a

3) Given any subsetI � A of exactly t + ` decrypted shares
(Si ) i 2 I for which � i is correct (e.g. the �rstt + ` with that
condition), any party or external veri�er can reconstruct each
gs j via Lagrange interpolation in the exponent:

gs j =
Y

i 2 I

S
L i;I ( � j )
i :

aIndeed note thatgski = pki , Sski
i = Ŝi , andPi knows ski . We also

remark that swapping the roles ofpki andSi would not work, asPi does
not know the common exponent� i that would be needed for the proof in
that case.

Fig. 2: Packed PVSS in ALBATROSS.

(y1; : : : ; yt ) 2 Zt
q, the distribution ofM v when conditioned

to vi 1 = y1; : : : ; vi t = yt and(vj ) j =2 A being uniform inZm � t
q ,

is uniform inZr
q.

A t-resilient matrix with the parameters above needs to
satisfyr � m� t. An optimal choice (i.e.r = m� t) results of
taking M to be a transpose of a Vandermonde matrix (we are
assumingq � m). For computation ef�ciency reasons, [12]
chooseM to also be itself Vandermonde, i.e.M ij = � ij for
some� 2 Zq of large enough order. In summary, the random
beacon protocol is as in Figure 3.

The parameter̀ 0 = n � 2t is the size of the output of
the t-resilient function. In ALBATROSS, parameters were set
such that̀ 0 = `, and in SCRAPE,̀ 0 = ` = 1 . In this latter
case we obtain that (for the optimal corruption2t = n � 1),
M 2 Z1� (n � t )

q is in fact the vector(1; 1; : : : ; 1). The output
consists of1 element of the group in that case, namely the

ALBATROSS Random beacon from PVSS

Setup and parameters:Parameters are exactly as in Figure 2,
in particular1 � t � (n � `)=2 for some integer̀ � 1. De�ne
`0 = n � 2t and note that̀ � `0. Let M 2 Z` 0� ( n � t )

q be a
t-resilient matrix.
Protocol:

1) (Sharing) Each party Pa shares a random secret

(gs ( a )
0 ; : : : ; gs ( a )

` � 1 ) 2 G` with the sharing phase of the
PVSS (Figure 2).

2) (Veri�cation) After the sharing round is �nished, Every party
executes the sharing veri�cation phase on every shared secret.
Since veri�cation is public, this �xes a setQ of the �rst n � t
partiesPa ; a 2 Q who have correctly shared.

3) (Reconstruction) Every partyPa in Q opens the Shamir
secret(s( a )

0 ; : : : ; s( a )
` � 1) and the randomness used and parties

verify it is consistent with the sharing posted before and

if so, set Pa 's group secret as(gs ( a )
0 ; : : : ; gs ( a )

` � 1 ). If Pa

refuses to open, or opens an invalid secret, the group secret

(gs ( a )
0 ; : : : ; gs ( a )

` � 1 ) is reconstructed using the reconstruction
phase in the PVSS.

4) (Aggregation) At this point we have a matrix of opened
secrets, with rows corresponding toa 2 Q , and columns
j 2 [0; ` � 1]. Now to every columnj , the randomness
extractor given by thet-resilient matrixM is applied (this
can just be done by each party locally, as everything is public
now). Index the columns ofM with a 2 Q and rows with
k 2 [`0]. Then for everyk 2 [`0], and everyj 2 [0; ` � 1],
the (k; j )-th output is

ok;j = g
P

a 2Q M k;a s ( a )
j :

whereokj can be computed from public information as

ok;j =
Y

a2Q

(gs j
( a )

)M k;a :

This is a total of` � `0 values (which is̀ 2 if ` = `0).

Fig. 3: ALBATROSS Random beacon using PVSS [12].

elementg
P

a 2Q s( a )
where s(a) is the (in SCRAPE's case,

single) Shamir secret shared byPa . We remark that, in this
paper, we keep̀ and`0 = n � 2t as two separate parameters.

F. Veri�able Random Functions (VRFs)

A veri�able random function (VRF) [33] is a pseudorandom
function that can be evaluated by the owner of a secret key,
who at the same time produces a proof or correct evaluation,
which can be veri�ed by using the corresponding public key. A
VRF scheme consists on three algorithms (� denotes a security
parameter):

� KeyGen(1� ): outputs a pair(pk; sk) of a public and a
secret key.

� Eval(sk; x) is a deterministic algorithm which outputs a
pair (y; � ) wherey is the output of the function and� is
a proof.

� Verify(pk; x; y; � ) is a probabilistic algorithm that outputs
0 or 1 (respectively meaning ”reject” or ”accept” the
proof).



It has been observed in [18] that the standard VRF de�nition
is not suf�cient in the randomness beacon setting. Notice
that pseudorandomness only holds in case the key pair has
been honestly generated (i.e. by KeyGen) but not when it
is generated maliciously, allowing the adversary to bias VRF
outputs computed under maliciously generated keys. Indeed, in
VRF based beacons (e.g.Figure 4), the adversary can generate
its own key pairs maliciously. Hence, in this setting, we require
the VRF to be unpredictable under maliciously key generation
as de�ned in [18]. In Appendix A we present the de�nition and
a construction of a VRF with unpredictability under malicious
key generation.

We show in Figure 4 a construction of a VRF based random
beacon from [18]. The beacon uses an initial seed which
may come from a CRS or, as will happen in our multi-
tiered beacon, as an output from some protocol. The beacon
proceeds iteratively as follows: Each party has a key-pair for
a VRF and evaluates the VRF on the seed. The parties de�ne
the output of that round to be the hash of the XOR of the
correctly computed evaluations (which the can check using
the veri�cation procedure and the public keys), and use that
output to de�ne the seed for the next round. Note this process
opens the door for biasing strategies: malicious parties may
simply wait until honest parties publish their evaluations of
the VRF and then decide whether they publish theirs, thereby
deciding the �nal result.

VRF-based beacon

Setup: The setup contains some initial seed� 0 , and a random
oracleH : f 0; 1g` V RF ! f 0; 1gm .
Beacon:

1) Each party executesKeyGen(1� ) of the VRF obtaining a
key-pair (pki ; ski ), and publishespki .

2) At roundr = 1 ; 2; : : : : Let m r = r jj � r � 1 .
a) Every party Pi computes and publishes(� i

r ; � i ) =
Eval(ski ; m r ).

b) Each party veri�es proofs of the remaining parties by
applyingVerify(pki ; m r ; � i

r ; � i ), de�nesI to be the set of
parties that have posted a correct(� i

r ; � i ), and computes
� r =

L
i 2 I � i

r . The output of this round iswr = H (� r )

Fig. 4: VRF-based beacon from [18].

G. Threshold Veri�able Random Functions (TVRFs)

Analogously to the case of signatures, one can also de�ne
a distributed notion of veri�able random functions, where
each party can compute a partial evaluation, and anyt + 1
valid partial evaluations can be combined to obtain the global
evaluation of the VRF. Following [25] we de�ne a DVRF as
the tuple of algorithms below, where as usualt denotes the
corruption threshold:

� DistKeyGen(1� ): outputs secret keystski ; i 2 [n], corre-
sponding public partial keystpki and a global public key
tpk.

� PartialEval(x; tski ; tpki ) is a deterministic algorithm
which outputs a pairmi = ( yi ; � i ) where yi is the

evaluation of the (implicit) random functionF at x and
� i is a proof.

� Combine(tpk; f tpki g; x; A; (mi ) i 2 A ) is a probabilistic al-
gorithm that takes a set of at leastt + 1 evaluations
(indexed byA) and outputs either a pair(y; � ) consisting
of a global evaluationy and a global proof� , or ? .

� Verify(tpk; x; y; � ) is a probabilistic algorithm that out-
puts 0 or 1 (respectively meaning “reject” or “accept” the
proof).

Security de�nitions and a construction of a TVRF can be
found in Appendix B.

Notice that, in the threshold scenario, the pseudorandomness
property of the standard de�nition is suf�cient to guarantee
that VRF outputs are unbiased because the distributed key
generation procedure guarantees that keys are correctly gen-
erated.

We present in Figure 5 a TVRF-based random beacon
proposed by the DRAND [42] and D�nity [29] projects and
proven secure in [25]. The idea is to apply the veri�able
random function iteratively starting with some seed as initial
TVRF input and, in every subsequent round, applying the
TVRF to the output of the previous round. The random beacon
output at a certain round is the hash of that round's TVRF
output.

The DRAND/D�nity beacon

We assumet � (n � 1)=2, so there are at leastt +1 honest parties.
We �x an initial seed� 0 andH 0 : G ! f 0; 1g� a hash function.

1) Parties invokeDistKeyGenfrom the TVRF to obtain the keys
(tsk; tski ; tpk i ).

2) At roundr = 1 ; 2; : : : : Let m r = r jj � r � 1 .
a) Pi computes and broadcasts (yi ; � i ) =

PartialEval(m r ; tski ; tpk i ).
b) Each party applies locallyCombine(pk; f tpk i gi 2 [n ] ;

m r ; [n]; (( yi ; � i )) i 2 [n ] ) obtaining values(y; � ).
c) We de�ne � r = y (for use in the next round). The output

of roundr is z = H 0(� r ).
Note that at each step, a public veri�er can attest the correctness
of the computation by runningVerify(tpk; x; y; � ).

Fig. 5: The DRAND/D�nity beacon.

H. Threshold Encryption

A threshold encryption scheme allows to encrypt a message
towards a group of receivers, such that the message can be
decrypted by anyt + 1 of them, but not less. Similar to
threshold signatures and threshold veri�able random functions,
threshold encryption schemes require a distributed key genera-
tion protocols providing every decrypting party with a partial
secret key, and publishing corresponding partial public keys
and a global public key, the latter of which is used by any
sender to encrypt a message, while the partial public keys
guarantee that each decrypting party carries out the decryption
correctly. In this work consider here El Gamal threshold
encryption [21], which requires exactly the same ensemble
of keys as the TVRF we have seen above. We present further



security de�nitions threshold encryption and a construction of
threshold El Gamal in Appendix C.

III. D ISTRIBUTED KEY GENERATION VIA PVSS

In the following section we will need to run El Gamal
threshold encryption protocol, and we therefore need a dis-
tributed key generation protocol to provide keys to the parties
involved. We could use some of the existing protocols dis-
cussed in Appendix E but here we present an alternative based
on the ideas from SCRAPE and ALBATROSS that is fully
based on the DDH-assumption and compares rather positively
to these alternatives.

Recall that our goal is to establish a common public key
tpk = gtsk, partial public keystpki = gtski such thattski

are Shamir shares fortsk, and in addition partyPi receives
tski . Thinking of the casè = 1 ; `0 = 1 in ALBATROSS
one realizes that the two �rst requirements are given by that
protocol: the parties will have established a random valuegtsk

(the output of ALBATROSS in that case), and can easily obtain
the partial public keysgtski from the information known at
the end of the protocol: while we did not need to compute
these values explicitly in Figure 3, thei -th partial key can be
computed by aggregating the decrypted shares of thei -th party
for each of the secrets, in the same way asgtsk is computed
from the reconstructed group secrets.

However we still have the problem of how partyPi can
computetski . This requires to modify the secret sharing phase
so that whenPa deals a secrets(a) this party sends information
that allowsPi not only to reconstructg� ( a )

i but also� (a)
i (recall

� (a)
i is the Shamir share ofs(a) ). We solve this by also sending

a ciphertextE (a)
i = � (a)

i � H (g� ( a )
i ) containing� (a)

i that can
only be decrypted by learningg� ( a )

i , which in turn can only
be obtained by partyPi with its secret key. We need then
to discuss what happens if the encrypted message inE (a)

i

does not correspond to the value in the exponent ofpk� ( a )
i

i
which the dealer has also posted. In comparison to Fouque-
Stern DKG, where the use of Paillier encryption allows the
dealer to construct an elegant non-interactive proof of the fact
that the two values are indeed the same, here we do not have
this possibility. What we do is to simply havePi complain if
it sees that the value inE (a)

i does not match the exponent in

pk� ( a )
i

i , in which case the dealer needs to reveal� (a)
i . This is

not a problem since at this point we know that one ofPa or
Pi is cheating. If partyPa is cheating, all values� (a)

i for all
i 2 [n] will be ignored. On the other hand, ifPa is honest, the
cheating complainerPi reveals an additive share of its own
tski .

Finally, we also point out the following modi�cation with
respect to the order of operations in ALBATROSS, which
we will also exploit later in GULL: in ALBATROSS parties
would �rst decrypt their shares for each of the shared secrets
(and prove decryption correctness) and reconstruct the secrets
of each dealer (step 3 of Figure 3), and then these opened
secrets would be aggregated (step 4); here, we note that instead
parties can �rst aggregate their shares and then decrypt them

and reconstruct the �nal result directly. Indeed, note that from

the posted encrypted sharespk� ( a )
i

i to Pi the aggregated value

pk
P

a 2Q � ( a )
i

i can be computed publicly;Pi can decrypt each
value tog� ( a )

i secretly , aggregate all tog
P

a 2Q � ( a )
i and then

post this value and a DLEQ proof that it is correct with respect

to pk
P

a 2Q � ( a )
i

i . The complete protocol is in Figure 6.
The distributed key generation protocol has the properties

that [26] called correctness and that are called robustness
in [28], namely that all honest parties agree on a global
public key, whose corresponding global secret key can be
reconstructed from any set of partial secret keys containing at
leastt+1 honest ones, and the public transcript. In addition the
public key is unbiasable. In order to capture these properties,
we de�ne an ideal functionalityFDDH � DKG in Figure 7,
which is tailored to the DDH setting we are working on.
FDDH � DKG essentially outputs random partial public keys
and secret key shares to honest parties while allowing for
the adversary to arbitrary secret key share (and consequently
arbitrary partial public keys) for corrupted parties. We remark
that FDDH � DKG can be used as the DKG building block for
a number of protocols,e.g.threshold El Gamal and the TVRFs
in [25] (including the D�nity TVRF).

We formally analyse the security of� DDH � DKG from
Figure 6 in the real/ideal simulation paradigm with sequential
composition. This paradigm is commonly used to analyse
cryptographic protocol security and provides strong security
guarantees, namely that several instance of the protocol can
be executed in sequence while preserving their security. More
details about this model can be found in [10].

Theorem 1. Under the DDH assumption and assuming an
authenticated bulletin board,� DDH � DKG securely realizes
FDDH � DKG in the random oracle model against a malicious
static PPT adversaryA corrupting at mostt � n � 1

2 parties.

Proof. In order to prove this theorem, we construct a simulator
S that interacts with the adversaryA and with functionality
FDDH � DKG in such a way that view ofA in a real execution
of � DDH � DKG is indistinguishable from its view in an ideal
execution withS and FDDH � DKG . Let PA be the set of
corrupted parties.S simulates the bulletin board and the
random oracle towardsA and proceeds as follows:

1) In round 1,S proceeds as follows:
� Upon receiving(GEN; sid; Pa) from FDDH � DKG for

an honest partyPa , S acts exactly as an honest party
would, sampling a randoms(a) 2 Zq, dealing it with
the SCRAPE PVSS and, for alli 2 [n], posting
Ŝ(a)

i ; � (a) ; E (a)
i on the bulletin board. Finally, addPa

to Q, i.e. the set of parties who provide valid shares.
� WhenA postsŜ(a)

i ; � (a) ; E (a)
i for i = 1 ; : : : ; n on the

bulletin board on behalf of a corrupted partyPa 2 PA ,
S checks whether to addPa to Q or not:
a) Verify the proof� (a) is valid.
b) Use the extractor from the zero knowledge proof

� LDEI to obtain� (a)
i from � (a) for all i 2 [n].



Distributed key generation via SCRAPE - � DDH � DKG

Parameters: Let n be the number of parties that receive shares,
and let1 � t � (n � 1)=2 be an integer, the corruption threshold.
Setup: A public bulletin board, �eld Zq , and DDH-hard group
G with generatorg. Every party in the system has a private key
ski 2 Zq , and public keypki = gski . A random oracleH :
G ! f 0; 1gdlog qe. We also assume some injective encodingZq !
f 0; 1gdlog qe which is easy to invert.
Protocol

1) In round 1, each partyPa proceeds as follows:
� Pa choosess( a ) 2 Zq and deals it with the SCRAPE

PVSS:Pa selects a polynomialf ( a ) 2 Zq [X ] of degree
at mostt, with f ( a ) (0) = s( a ) and, for alli 2 [n], de�nes

� ( a )
i = f ( a ) (i ), computesŜ( a )

i = pki
� ( a )

i and computes
� ( a ) = � LDEI ((pki )

n
i =1 ; (Ŝ( a )

i )n
i =1 ; t ).

� For all i 2 [n], Pa computesE ( a )
i = � ( a )

i � H (g� ( a )
i )

and postsŜ( a )
i ; � ( a ) ; E ( a )

i on the bulletin board.
2) In round 2, for alli , Pi veri�es the proof� ( a ) for all a; for

thosea for which the proof rejects,Pi posts a complaint
againstPa on the bulletin board. MoreoverPi computes
� ( a )

i from E ( a )
i as � ( a )

i = H (( Ŝ( a )
i )

1
ski ) � E ( a )

i and checks

whetherŜ( a )
i = pk

� ( a )
i

i . If this does not hold thenPi posts
a complaint againstPa to the bulletin board. Otherwise,Pi

setsS( a )
i = g� ( a )

i .
3) If no complaints were posted, ignore this round and execute

the instructions of round 4. Otherwise, in round 3, for alli ,
Pi proceeds as follows:
� If a proof � ( a ) receives more thant complaints,Pa is

disquali�ed.
� If a party Pa receives a complaint fromPi about its

encrypted share, thenPa reveals� ( a )
i . If Ŝ( a )

i 6= pki
� ( a )

i

or E ( a )
i 6= � ( a )

i � H (g� ( a )
i ), Pa is disquali�ed.

Let Q be the set of parties who have posted encrypted shares
and proofs without being disquali�ed.

4) In round 4, for alli , party Pi proceeds as follows:
a) Pi computesŜi =

Q
a2Q Ŝ( a )

i and � i =
P

a2Q � ( a )
i .

Also Pi setsSi =
Q

a2Q S( a )
i .

b) Pi publishesŜi , Si and � DLEQ (g; Si ; pki ; Ŝi ) in the
bulletin board.

5) Finally, after round 4, all parties proceed as follows:
a) For all Ŝi ; Si ; � DLEQ (( g; Si ); (pki ; Ŝi )) posted to the

bulletin board, verifyŜi =
Q

a2Q Ŝ( a )
i and the proof

� DLEQ (( g; Si ); (pki ; Ŝi )) . Let I be the set of all indices
for which these checks pass.

b) Let J � I be a set of cardinalityt + 1 (e.g. the �rst
t + 1 ). The output global public key istpk = S =Q

i 2 J S
L i;J (0)
i . The i -th partial public key (fori 2 I )

is tpk i = Si . The i -th partial secret key (fori 2 I ) is
tski = � i . Finally, note the global secret key is implicitly
de�ned astsk = s =

P
a2Q s( a ) .

Fig. 6: Protocol� DDH � DKG for distributed key generation
via SCRAPE.

c) Verify that E (a)
i = � (a)

i � H (g� ( a )
i ) for all i 2 [n].

d) If and only if all these checks pass, addPa to Q.
When Round 1 is �nished,S has computedQ exactly
as in � DDH � DKG , since it checked that all messages
Ŝ(a)

i ; � (a) ; E (a)
i from corrupted partiers pass the checks

Functionality F DDH � DKG

F DDH � DKG is parameterized by a DDH-hard cyclic groupG of
prime orderq, with generatorg. Let n and1 � t � (n � 1)=2 be
integers.F DDH � DKG interacts with partiesP1 ; : : : ; Pn and an
adversaryS that corrupts at mostt parties.F DDH � DKG works
as follows:

� Upon receiving(GEN; sid; P i ) from a partyPi :
1) If Pi is honest, forward(GEN; sid; P i ) to S.
2) If Pi is corrupted, wait for S to send (SETSHARE;

sid; P i ; � i ) where� i 2 Zq and settpk i = g� i .
3) Let J be the set of all partiesPj who sent(GEN; sid; P j ).

If all honest parties are inJ , proceed as follows:
a) Sample a random polynomialf of degree at mostt with

f (i ) = � i for all � i sent byS in step2): a For every
honest partyPh , set tpkh = g� h with � h = f (h).

b) Settpk = gf (0) .
c) For all corrupted partiesPc 2 J , send (KEYS;

sid; � c ; f tpk j gj 2 J ; tpk) to S.
d) Wait for S to answer with(ABORT; sid; C ) whereC

is a set of corrupted parties.
e) For all j 2 J n C, send(KEYS; sid; � j ; f tpkk gk 2 J nC ;

tpk) to Pj . b

aThis is possible since the adversary can only set at mostt values� i .
bNotice thatf tpk k gk 2 J nC can always be used to obtaintpk = gf (0)

by Lagrange interpolation becausejJ n Cj � n � t > t .

Fig. 7: Distributed Key Generation FunctionalityFDDH � DKG

in Rounds 2 and 3 before adding these parties toQ.
2) For every corrupted partyPi 2 PA \ Q , S computes

the secret key shares� i =
P

a2Q � (a)
i and sends(GEN;

sid; Pi ) and (SETSHARE; sid; Pi ; � i ) to FDDH � DKG .
S waits for message(KEYS; sid; � i ; f tpkj gj 2Q ; tpk) for
Pi 2 PA from FDDH � DKG . Notice that S can do
that since it knows� (a)

i provided by simulated honest
parties and it has extracted the corresponding values from
corrupted parties.

3) In rounds 2 and 3,S executes exactly the same instruc-
tions as an honest party. Notice that this will yield the
same setQ computed in step 1.

4) In round 4, for everyi such that Pi 2 Q is hon-
est, computesŜi =

Q
a2Q Ŝ(a)

i , uses the simulator
from the ZK proof � DLEQ to generate an accepting
proof � DLEQ (g;tpki ; pki ; Ŝi ) and postsŜi , tpki and
� DLEQ (g;tpki ; pki ; Ŝi ) on the bulletin board.

5) After round 4, letC be the set of corrupted parties who
post Ŝi , Si and � DLEQ (g; Si ; pki ; Ŝi ) with an invalid
proof � DLEQ (g; Si ; pki ; Ŝi ). S sends(ABORT; sid; C) to
FDDH � DKG .

6) S executes the remainder of the protocol as an honest
party would and, whenA terminates, outputs whatever
A outputs.

We now show that the execution withS andFDDH � DKG

is indistinguishable from an execution of� DDH � DKG with
A . First of all, notice that in rounds 1, 2 and 3 all messages
sent fromS to A (through the bulletin board) are distributed
exactly as in� DDH � DKG . Moreover, notice that after round



1 is �nished S computes the same setQ as parties would
compute after round 3 of� DDH � DKG . This is so because
S is able to perform all the veri�cation done by individual
parties in rounds 2 and 3 all at once after extracting� (a)

i from
� (a) for all corrupted partiesPa . Having determinedQ, S is
able to determine the choices of secret key shares� a from all
corrupted parties, which might be made after the adversary has
seen all honest party messages in round 1. Hence,S provides
consistent values� a to FDDH � DKG .

It remains to be shown that the messages exchanged byS
andA in round 4 are indistinguishable from those exchanged
by honest parties andA in an execution of� DDH � DKG ,
which intuitively means thatA cannot bias the global public
key even though it can choose secret key shares� a for
corrupted parties. In round 4, we take advantage of the fact
that, for i and a such that partiesPi 2 Q and Pa 2 Q
are honest,Ŝ(a)

i and E (a)
i reveal no information about� (a)

i

to A . First, notice that it is proven in[11] that Ŝ(a)
i is

indistinguishable from a random group element forA under
the DDH assumption. Moreover, sinceA is PPT, it can only
guess� (a)

i such thatE (a)
i = � (a)

i � H (� (a)
i ) and thus learn

� (a)
i via E (a)

i with negligible probability, since it can only
makepoly(k) queries to the random oracle and� (a)

i is chosen
uniformly at random from aexp(k) large space where k is
the security parameter. Hence, for alla wherePa 2 Q is an
honest party,A learns onlyt values� (a)

i andS(a)
i , which are

not suf�cient to recover the degreet polynomials that de�nes
honest parties'S(a)

i values and consequentlytpka . SinceA
learns nothing abouttpki values of honest parties before round
4, leveraging the zero knowledge property of� LDEI , S can
generate an accepting proof that honest parties have obtained
tpki from Ŝ(a)

i instead of the value they should have obtained
from S(a)

i .

As an aside, we remark two interesting extensions of our
distributed key generation, which we only explain informally.

Remark 1 (Refreshing partial keys). The protocol can be
modi�ed to one that, given a distributed key ensemble
(pk; f pki g; f ski g) in the form above (not necessarily created
by our protocol) outputs fresh random partial secret and public
keystski , tpki corresponding to the same global keystsk, tpk.
This is done by having each partyPa share the values(a) = 0
in step 1) of Figure 6. It is easy to modify the LDEI proof to
additionally prove in zero knowledge that the PVSS is indeed
a sharing to0 (in Figure 1, the prover just choosesu(X )
with the additional conditionu(0) = 0 and the veri�er checks
that z(0) = 0 ). Modifying the DKG protocol in this way will
output the ensemble (pk0; f pk0

i g; f sk0
i g) with pk0 = 1 G. Now

parties can de�nefpki = pki � pk0
i and (privately by partyPi )

fski = ski + sk0
i , and output the ensemble (pk; f fpki g; f fski g).

Remark 2 (Outputting`0 key ensembles). Our DKG protocol
would correspond to the casè = `0 = 1 in the analogy
with ALBATROSS, but of course we can also easily adapt the
protocol for ` = 1 , `0 � 1, where assuming nowt � (n �

`0)=2, we would obtain as output̀0 independent instances
(tpkk ; f tpkk

i g; f tskk
i g), k 2 [`0].

The protocol works in the same way until step 4.
In step 5 partiesPi compute Ŝi;k =

Q
a2Q (Ŝ(a)

i )M k;a ,
� i;k =

P
a2Q M k;a � (a)

i and Si;k =
Q

a2Q (S(a)
i )M k;a for

k = 1 ; : : : ; `0. Then steps 6, 7, 8 are executed indepen-
dently for eachk (where in step 7 parties verifŷSi;k =
Q

a2Q (Ŝ(a)
i )M k;a ).

Moreover, the refreshing technique (Remark 1) can clearly
be extended to deal with refreshing`0 ensembles.

IV. GULL: G RADUAL RELEASE OFPVSS OUTPUTS VIA

THRESHOLDENCRYPTION

While the ALBATROSS construction provides a large uni-
formly random output, one problem is that the whole output
is reconstructed by the participants at once. For applications,
it is instead desirable that parts of this output are released
gradually, while the rest of the output is still hidden. In this
section, we depart from ALBATROSS to construct GULL,
a random beacon that can accomplish this. Recall that in
ALBATROSS as described in Figure 3, the output consisted of
a total of`�`0 group elements, that we can think of as consisting
of `0 blocks of ` elements each; in our modi�cation, parties
carry out the beginning of the protocol as in ALBATROSS
(until the whole output is �xed), but then are able to release
every block independently. Every block can be released with
little communication and computation and, furthermore, the
blocks that have not yet been released are unpredictable given
the ones that are known already.

In order to do this, we reutilize a trick from the previous
section: note that after step 2 of the protocol in Figure 3, a
setQ of well-behaved dealers (dealers who have shared their
secret correctly) has been set. What we do now is to swap
the order of steps 3 and 4, i.e., we have every party aggregate
the shares before reconstructing the secrets. More precisely,
we can do this in the following way: every party can compute
from public informationRik =

Q
a2Q (Ŝ(a)

i )M k;a for every i
and everyk 2 [1; `0]. Additionally, eachPi can compute the

valueSik = Rsk� 1
i

ik . Note thatSik =
Q

a2Q (S(a)
i )M k;a :

Note that for everyk, Pi could prove the correctness of
the valueSik if Pi were to open it, sinceRik is known by
everyone, andPi could then use� DLEQ ((g; Sik ); (pki ; Rik )) .
However, in our casePi will not directly openSik , but rather
encrypt it with threshold El Gamal. Namely,Pi publishes
E ik = Enc(tpk; Sik ) = ( gr ik ; tpkr ik �Sik ) := ( cik ; dik ) (where
the randomnessr ik must be independent of each other for
k 2 [1; `0]) and provides a zero-knowledge proof� EG that the
value Sik encrypted asE ik satis�es Sski

ik = Rik whereski is
the same as in the equationgski = pki . This proof is slightly
more complicated than the DLEQ proof mentioned above, and
we detail it in Appendix D.

Parties can now agree on a setI of t + ` + 1 parties that
have published correct proofs for everyk 2 [1; `0]. For every
k 2 [1; `0] and everyj 2 [0; ` � 1], and from the encrypted



values everyone can computeOkj = Enc(tpk;
Q

i 2 I SL i;I ( � j )
ik )

using the linearity of El Gamal.
Then, at the opening stage parties could decryptOkj indi-

vidually by using the threshold decryption protocol to obtain
the outputsokj one by one. Nevertheless, one needs to take
into account that opening oneokj reveals information about
the valuesokj 0 for otherj 0 2 [0; ` � 1]. Therefore we consider
that the batch(ok0; ok1; : : : ; ok ( ` � 1) ) is opened at once. How-
ever, the independence of the output “holds in the other coor-
dinate”, i.e., having opened batches(ok0; ok1; : : : ; ok ( ` � 1) ) for
k 2 [1; `0

� ], for some`0
� < ` 0, the remaining unopened batches

(ok0; ok1; : : : ; ok ( ` � 1) ), k 2 [`0
� + 1 ; `0] remain uniformly

random in the view of the adversary.
Indeed, �x any j . We recall that okj is de�ned as

g
P

a 2Q M k;a s( a )
j with s(a)

j having been chosen by participant
Pa , a 2 Q . The properties of thet-resilient matrix imply
that if v is the vector with containing alls(a)

j , the output
y = M v is uniformly random inZ` 0

q and independent from
any set oft coordinates ofv (which are the ones known by the
adversary). Therefore, conditioned to some of the coordinates
of this outputy being revealed, the rest of the coordinates of
y are still uniformly random in the view of the adversary. This
translates of course to the independence of the unopenedokj .1

As for unbiasability and uniformity of the random output,
notice that GULL differs from ALBATROSS at a point where
the output is already determined, and hence it inherits those
properties from ALBATROSS.

V. CONSTRUCTINGMT. RANDOM

In this section, we present Mt. Random, our multi-tiered
beacon composed by the building blocks presented so far.
As discussed earlier, we have three tiers: Tier 1 - Uniform
Randomness, Tier 2 - Pseudorandomness and Tier 3 - Bounded
Biased Randomness. Starting from Tier 1, going up each
tier represents a trade-off between ef�ciency and randomness
quality, where more ef�ciency in gained at the cost of quality.
In other words, higher tiers generate random outputs faster
than lower tiers albeit with losses in randomness quality,i.e.
going from uniformly random values to values with a bounded
adversarial bias. Moreover, each higher tier uses outputs from
the previous tier as seeds, ensuring that all tiers operate within
a desired level of bias while maintaining ef�ciency.

In this work, we use the DDH assumption (in the random
oracle model) to prove the security of all of Mt. Random's
building blocks,i.e. PVSS, DKG, TVRF and VRF. The goal
is to obtain a �nal construction whose security can be anal-
ysed based on a single standard assumption while achieving
competitive concrete ef�ciency. However, we remark that other
constructions of these building blocks can be used within our
framework in order to achieve better ef�ciency at the cost
of having security underpinned by multiple and possibly less
standard assumptions.

1We remark that the randomnessr ik chosen by partyPi in the El Gamal
encryption of her shares must be independent for different values ofk,
as otherwise the adversary could obtain information aboutokj from their
encryptionsOkj and the openedok 0j .

GULL: PVSS beacon with gradual release

Setup: A public bulletin board, �eld Zq , and DDH-hard group
G with generatorg. Every party in the system has a private key
ski 2 Zq , and public keypki = gski . A t-resilient matrixM 2
Z` 0� ( n � t )

q which we can take by setting its elements toM ij = � ij

for some� 2 Z �
q of order at leastmaxf n � t; ` 0g.

Setup from DKG: We assume that parties have established a
global threshold public keytpk, partial threshold keystpk i and
partial threshold secret keystski for threshold El Gamal.
Protocol:

1) Round 1 - (Sharing) Each partyPa shares a random secret

(gs ( a )
0 ; : : : ; gs ( a )

` � 1 ) 2 G` with the sharing phase of the PVSS.
2) Round 2:

a) (Veri�cation) Every party executes the sharing veri�cation
phase on every shared secret. Since veri�cation is public,
this �xes a setQ of the �rst n � t partiesPa ; a 2 Q who
have correctly shared.

b) (Aggregation) Every party can compute

R ik =
Y

a2Q

(Ŝ( a )
i )M k;a

for every i 2 [n] and everyk 2 [1; `0]. Additionally each

Pi computesSik = R
sk� 1

i
ik for everyk 2 [1; `0].

c) (Encryption) For everyk 2 [`0], Pi posts

E ik = Enc(tpk; Sik ) = ( gr ik ; tpk r ik � Sik ) := ( cik ; dik )

and a non-interactive proof� EG for the language

f ((g;pki ; R ik ; tpk; cik ; dik ); (ski ; r ik ; Sik )) :

gski = pki ; gr ik = cik ; dik = tpk r ik � Sik ; Sski
ik = R ik g

which we detail in Appendix D.
3) (Lagrange computation) After round 2 is �nished, letI be the

set of the �rst t + ` parties who have posted correct proofs
for every k. For everyk 2 [`0] and everyj 2 [0; ` � 1],
parties compute:

Ok;j = (
Y

i 2 I

(c0
ik )L i;I ( � j ) ;

Y

i 2 I

(cik )L i;I ( � j ) ):

4) (Opening) At any point after round 2 is �nished, to open
batchk0 wherek0 2 [`0], parties threshold-decryptOk 0j for
every j 2 [0; ` � 1] to obtain output(ok 00 ; : : : ; ok 0( ` � 1) ):

Fig. 8: GULL: PVSS beacon with gradual release.

We present the general structure of Mt. Random in Figure 9.
In the remainder of this section, we discuss the building blocks
used for each of Mt. Random's tiers and provide a security
analysis of the full multi-tiered beacon.

A. Tier 1: Uniform Randomness via PVSS

The �rst tier of Mt. Random outputs true uniform random-
ness. It is important that this tier outputs uniformly random
values because these outputs will be used as high min-entropy
seeds for the next tier. In our construction we will instantiate
this tier with GULL (Figure 8) using threshold encryption keys
generated by our new DKG protocol (Figure 6). Being based
on this protocol, this tier will arguably have the highest exe-
cution time and communication, outputting uniformly random



values less frequently than higher tiers. On the other hand,
instead of outputting a single value, Tier 1 will output abatch
of uniformly random values that can be used to seed Tier 2
multiple times (instead of requiring a full execution of Tier 1
every time Tier 2 needs a new seed).

In the original ALBATROSS [12] protocol, the full batch of
uniformly random outputs is revealed as soon as the protocol
terminates. This is not an issue when seeding Tier 2, since Tier
2 outputs cannot be predicted without a threshold key. How-
ever, it might be a problem in the case where fresh uniformly
random outputs from Tier 1 are required for applications other
than seeding Tier 2. Hence, we instantiate Tier 1 with GULL
(Figure 8), which allows for gradually revealing smaller “sub-
batches” of outputs. Under this regime, whenever a fresh
uniformly random output is required for other applications,
a fresh sub-batch can be revealed, which is signi�cantly more
ef�cient than re-executing the full ALBATROSS protocol.
Nevertheless, previously revealed but unused outputs can still
be used as seeds for Tier 2.

B. Tier 2: Pseudorandomness via Threshold VRFs

The second tier of Mt. Random outputs pseudorandom
values instead of truly uniformly random values. While these
values are not suitable for some applications (e.g. seeding
PRGs), they are suf�cient for a number of popular applica-
tions (e.g.selecting random committees). In our construction,
Tier 2 is instantiated with a DDH based version of the
DRAND/D�nity TVRF proposed in [25] coupled with our new
DKG protocol (Figure 6). As discussed before, we choose to
use a DDH based TVRF in order to instantiate all of our
building blocks from a single standard assumption. However,
a more ef�cient TVRF (e.g. GLOW [25]) can be used for
better performance at the cost of a stronger assumption.

There are two main hurdles in using TVRF-based beacons:
1. keys must be generated in a distributed manner; 2. being
essentially a distributed PRG, the beacon must be re-seeded
periodically. Mt. Random respectively solves these issues by
employing our new DDH-based DKG (Figure 6) and by
periodically re-seeding Tier 2 with uniformly random outputs
from Tier 1. Using our DKG, we maintain public veri�ability
of threshold key validity and consequently of Tier 2's output
without requiring extra assumptions. Moreover, as pointed out
in Remark 1, our DKG protocol can be used to refresh secret
key shares if parties are compromised.

C. Tier 3: Bounded Biased Randomness via VRFs

The third tier of Mt. Random outputs pseudorandom val-
ues that may be biased by the adversary up to a certain
upper bound. While this sort of biased randomness �nds
less applications than unbiased pseudorandomness or uniform
randomness, it is still suf�cient for important applications such
as selecting block creators in Proof-of-Stake based blockchains
(e.g.Ouroboros Praos [18]). In fact, we instantiate Tier 3 with
the VRF and VRF-based beacon protocols from Ouroboros
Praos, which are secure under the CDH assumption (implied
by DDH). However, differently from the original Ouroboros

Praos beacon, which seeds each of its execution with the
output of its last execution, we seed this protocol with an
output from Tier 2. This crucial difference has the advantage
of reducing the potential adversarial bias in Tier 3 outputs.

1) Combining Bounded Biased Randomness and Uniform
Randomness:Apart from outputting bounded biased random-
ness, Tier 3 can also be used in conjunction with Tier 1 outputs
and an extractor in order to obtain correlated but uniform
randomness. Basically, an uniformly random output from Tier
1 can be used as a seed for an extractor that takes as input a
sequence of outputs from Tier 3, outputting correlated (due to
the use of the same seed) but uniform randomness.

D. Seeding Upper Tiers vs. Unpredictable Randomness

An important aspect of Mt. Random is that each lower tier
is used to seed the next upper tier,i.e. Tier 1 seeds Tier 2,
which in turn seeds Tier 3. When randomness from Tier 1
or 2 is requested to be used as a seed in the next tier, it is
not necessary wait for a fresh random value to be produced.
For this reason, Tiers 1 and 2 respectively keep listsAlbUn
and TVRFUn of random outputs that have been obtained in
the past but that have not yet been used as a seed by the
next layer. However, many applications (e.g. a lottery and
committee selection) require unpredictable random values that
are not known in advance. In this case, a fresh unpredictable
output can be obtained from Tier 1 or 2 as follows:

� Tier 1: A fresh unpredictable uniformly random output
can be obtained from Tier 1 by executing Step 2 of
the output request procedure, which decrypts an unused
block of threshold encrypted outputs fromAlbUnEncand
returns the �rst output from the freshly decrypted block.

� Tier 2: A fresh unpredictable pseudorandom output can
be obtained by waiting for the output of the next round
of the beacon executed by Tier 2.

E. Security Analysis

In order to analyse the security of Mt. Random, we �rst
argue about the initialization phase and then focus on the
security guarantees offered by each layer. Notice that in the
initialization phase we execute our DKG protocol (Figure 6)
before initiating the execution of the tiers. Due to the security
of the DKG protocol (Theorem 1), the resulting global and
partial public keystpk; tpki and tpk; tpk0

i for i 2 [n] are
guaranteed to be unbiased and each partyPi is guaranteed
to have obtained its secret sharetski ; tsk0

i as well as the same
view of the public keys. This fact will be important when
arguing about the security of Tiers 1 and 2, where these keys
will be used for threshold encryption and TVRFs, respectively.

In Tier 1, we only execute GULL from Figure 8 using
keys tpk; tpki ; tski , which gives us two main guarantees as
discussed in Section IV: 1) Executing up to Step 3 results in
`0 output blocks that are guaranteed not only to be recoverable
by a majority of the parties but also to remain secret until
decryption is executed in Step 4; 2) All` values of each
output block are guaranteed to be uniformly random. Hence,
when Tier 1 is initiated,̀ 0 output blocks with` uniformly



Mt. Random: Multi-tiered Randomness Beacon
Parameters:
� n participantsPi , i 2 [n].
� Integer` � 1 (number of secrets in GULL output block).
� Integer corruption threshold1 � t � (n � `)=2.
� Integer`0 = n � 2t (number of blocks outputted by one round

of GULL).
� Integers`T V RF and `V RF denoting the bitlength of outputs

from Tier 2 and Tier 3 respectively.
� Integer TVRFmax � 0 (number of times the TVRF-based

beacon at Tier 2 is applied iteratively starting from a given seed).
If it is 0 then we are not using this tier

� IntegerVRFmax � 0 (number of times the TVRF-based beacon
at Tier 3 is applied iteratively starting from a given seed). If it
is 0 then we are not using this tier.

Setup: An authenticated public bulletin board (BB), �eldZq , and
DDH-hard groupG with generatorg. Every party in the system
has a private keyski 2 Zq and a public keypki = gski (registered
in BB) for Tier 1. A t-resilient matrixM 2 Z` 0� ( n � t )

q given by
M ij = � ij for some� 2 Z �

q of order at leastmaxf n � t; ` 0g.

Initialization: All parties Pi keep initally empty TablesAlbUn,
AlbUnEnc and TVRFUn. the �rst two tables will store unused
GULL outputs from Tier 1: AlbUn stores plain outputs and
AlbUnEnc stores outputs encrypted under threshold-El Gamal.
TableTVRFUn stores outputs from Tier 2. All parties �rst execute
the Distributed Key Generation phase and then executeTier 1,
Tier 2 andTier 3 as soon as seed randomness from the previous
tier is available. Tiers are re-executed as more outputs are needed.

Distributed Key Generation: All parties execute� DDH � DKG

(Figure 6) to obtain keys for Tiers 1 and 2 (see Remark 2). The
public outputs are global threshold public keystpk; tpk0 and partial
threshold public keystpk i ; tpk0

i for i 2 [n], while each party
Pi ; i 2 [n] obtains partial threshold secret keystski and tsk0

i .

Tier 1: Using keys tpk and tski obtained in the Distributed
Key Generation phase, all parties execute GULL from Figure 8
until Step 3. At this point all parties obtaiǹ0 blocks B k =
(Ok 1 ; Ok 2 ; : : : ; Ok` ), k 2 [`0] consisting of threshold El-Gamal
encryptions ofokj under tpk, which are stored inAlbUnEnc.
When an output is requested:

1) If AlbUn is not empty, return the next outputokj 2 AlbUn and
removeokj from AlbUn.

2) If AlbUn is empty andAlbUnEnc is not empty, all parties
decrypt the nextB k 2 AlbUnEnc, store the resulting values
ok 1 ; ok 2 ; : : : ; ok` in AlbUn and removeB k from AlbUnEnc.
Return the nextokj 2 AlbUn and removeokj from AlbUn.

3) If AlbUn andAlbUnEncare empty, return? and execute GULL
until Step 3 to re�ll AlbUnEnc.

Tier 2: Parties request an outputokj from Tier 1 (repeating
the request untilokj 6= ? ) and execute the protocol in Figure 5
using tpk0; tpk0

i ; tsk0
i with initial seed� 0 = okj . In each round

r 2 f 1; : : : ; TVRFmax g, a value zr 2 f 0; 1g` T V RF is out-
putted by the protocol and stored in tableTVRFUn. When an
output is requested, ifTVRFUn is not empty, return the next
zr 2 TVRFUn and removezr from TVRFUn, else, return? .
Whenr = TVRFmax , resetr to 0 and re-start Tier 2.

Tier 3: All parties request an outputzr from Tier 2 (repeating the
request untilzr 6= ? ) and run the VRF-based beacon in Figure 4
using zr as initial seed. In each roundr 0 2 f 1; : : : ; VRFmax g,
the outputw0

r 2 f 0; 1g` V RF is the output of the beacon. When
r 0 = VRFmax , r is reset to0 and Tier 3 is started again.

Fig. 9: Mt. Random: Multi-tiered Randomness Beacon.

Fig. 10: Comparison of time for carrying out each Tier with
�xed t = bn

3 c, ` = 1

random values become available. When an output is requested,
executing the procedures of Tier 1 clearly returns either an
uniformly random output (or? , in case more encrypted
output blocks must be generated). In case fresh unpredictable
randomness is required, we remark that it can be obtained by
executing step 2 of Tier 1's output request procedure, which
decrypts the next unused encrypted output block and returns
the �rst freshly decrypted output value.

In Tier 2, we execute the TVRF-based beacon protocol
from Figure 5, which is proven to output pseudorandom
values in [25]. Since we periodically re-seed this protocol
with uniformly random values from Tier 1, its outputs are
guaranteed to be pseudorandom even after long execution
times. Notice that we can re-seed Tier 2 with outputs from
Tier 1 that are already revealed but still not used as a Tier
2 seed. By the security of the TVRF scheme used in Tier
2 (proven in [25]), an adversary who controls less than the
required threshold of parties cannot predict the output of the
TVRF on any given input. Hence, the outputs of Tier 2 cannot
be predicted by the adversary (who only corrupts a minority
of the parties) upon learning the seed. Notice that again the
TVRF security properties hold since we use unbiased threshold
keys tpk0; tpk0

i ; tsk0
i .

In Tier 3, we execute the protocol from Figure 4, which is
proven to output bounded biased values in [18] even when it
is seeded with outputs of a previous execution of itself. Hence,
seeding this protocol with the unbiased pseudorandom outputs
from Tier 2, not only preserves but improves on the proven
bias bounds for its outputs. Once again, using outputs from
Tier 2 that are already known but still not used as a seed in
Tier 3 preserves the security of the scheme, since even by
knowing the seed in advance the adversary can only bias the
output of this tier by a bounded amount (as proven in [18]).



Fig. 11: Comparison of communication size for carrying out
each Tier with �xedt = bn

3 c, ` = 1

VI. EFFICIENCY ANALYSIS

We provide a reference implementation for each one of
the tiers.2 Our main goal is to demonstrate the trade-off
in ef�ciency between the three tiers. We also highlight the
sensitivity of the different random beacons to changing number
of parties n, the thresholdt and culpritsc when relevant.
All our measurements were done on a t3.medium AWS
instance (2 vCPU of Intel(R) Xeon(R) Platinum 8259CL CPU
@ 2.50GHz, 4GB RAM). Our experiments do not include
network latency or delay. The reason is simple: Network
latency is larger than our computation times and therefore
will mask them. Since the number of rounds of Tier 1 is
larger than the number of rounds in Tier 2 and Tier 3, and
communication size of Tier 2 is larger than communication
size of Tier 3, if we include latency, we trivially get our
expected hierarchy. Network delay is of no interest because
for all tiers the communication bandwidth is small enough for
network to not be a bottleneck. All our measurements were
done using a benchmark tool and are averaged over many runs.

Computation time and communication size:In Figure 10
we compare the computation time for a single run of each
tier as a function of the number of partiesn. As can be seen
from the �gure, Tier 1 is the slowest, Tier 3 is the fastest
and Tier 2 is in the middle. This is coherent with how we
suggest to hierarchically compose the different tiers in the
paper. Figure 11 shows the communication size of the three
tiers, for various number of partiesn. Here again we see a
clear hierarchy where Tier 1 requires the most communication,
Tier 3 the last and Tier 2 is in the middle. For completeness,
we provide in appendix E the same measurements, but for
running distributed key generation for tiers 1 and 2. Key
generation and setup is not our focus as we consider it a one-
time operation running at the beginning of the execution. On

2All our code is open sourced and provided here:
https://github.com/ZenGo-X/random-beacon

Fig. 12: Amortized cost of a single random element generated
at Tier 1 with �xed n = 25, t = 8 . For given`, number of
output random elements is9`

Fig. 13: Average total running time of Tier 1 for various
thresholdt with �xed n = 25, ` = 1

the other hand, producing random values is done over and over
again throughout the life time of the system.

Tier 1 and Tier 2 sensitivity: We measured Tier 1 without
gradual release (Albatross), that is, all random values are
released at once. In Figure 12 we show how changing`,
a parameter proportional to the number of random elements
output by Tier 1 impacts the amortized cost of a single random
element. As expected, the more random elements we pack in a
single run the more ef�cient the amortized computation per a
single random element is. This result hints to the effectiveness
of running GULL in settings were fresh unpredictable output
is needed by an application other than Tier 2. In Figures 13
and 14 we �x the number of parties and change the thresholdt
and number of culpritsc, respectively. As can be viewed from



Fig. 14: Average total running time of Tier 1 for various
number of culpritsc with �xed n = 25, t = 8

Fig. 15: Average total running time of Tier 2 for various
thresholdt with �xed n = 25

the �gures both parameters impact the total running time in
a meaningful way. Increasing thresholdt decreases running
time as it decreases number of output random elements and
decreases number of messages every party needs to process.
Finally, for Tier 2, we conducted an experiment, Figure 15,
for �xed number of partiesn and various thresholdt. Observe
that as expected, the computation time is linear in the number
of parties.
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APPENDIX

A. Veri�able Random Functions: De�nition and Construction

A VRF scheme(KeyGen(1� ); Eval(sk; x); Verify(pk; x; y; � ))
with unpredictability under malicious key generation is secure
if it holds that:

� (complete provability): for every(pk; sk) generated by
KeyGen, and everyx, then if (y; � ) = Eval(sk; x), we
have thatVerify(pk; x; y; � ) = 1 with overwhelming
probability;

� (unique provability): for everyx, for anyy1 6= y2, and any
proofs� 1; � 2, then at least one ofVerify(pk; x; y1; � 1) or
Verify(pk; x; y2; � 2) output 0 with overwhelming proba-
bility.

� (pseudorandomness): no PPT adversary can distinguish
betweenEval(sk; x) and a uniformly random string, even
when having chosenx, after seeingpk.

� (unpredictability under malicious key generation) no PPT
adversary who generated(pk; sk) arbitrarily can distin-
guish betweenEval(sk; x) and a uniformly random string
for an unknown uniformly randomx.

We describe in Figure 16 the VRF with unpredictability
under malicious key generation from [18].

VRF from Ouroboros Praos

Setup: Let G be a cyclic group of prime orderq, with generator
g. Let H : f 0; 1g� ! f 0; 1g` V RF and H 0 : f 0; 1g� ! G be
random oracles. In addition we implicitely need a random oracle
H � : f 0; 1g� ! Zq for the DLEQ proof.
Commands:

� KeyGen(1� ) chooses a uniformly randomsk 2 Zq , setspk =
gsk and outputs(pk; sk)

� Eval(sk; x) sets y = H (x; u ) where u = H 0(x)sk. It
moreover de�nes� = ( u; � DLEQ (( g; H 0(x)) ; (pk; u))) , the
latter being the proof thatgk = pk and H 0(x)k = u for a
commonk, in this casek = sk. It outputs(y; � ).

� Verify(pk; x; y; � ) parses� = ( u; � 0), checks that� 0 is a
correct DLEQ proof for(g; H 0(x)) ; (pk; u)) and checksy =
H (x; u ). It accepts if all these checks pass.

Fig. 16: VRF with unpredictability under malicious key gen-
eration [18].

B. Threshold Veri�able Random Functions: De�nition and
Construction

A Threshold Veri�able Random Function (TVRF) has the
following properties:



� Consistency: Given anyx, when we applyCombineto
any� t+1 correct partial evaluations(mi ) i 2 A , we obtain
the samey.

� Robustness: IfCombine outputs a pair (y; � ), then
Verify(tpk; x; y; � ) = 1

� Uniqueness: for everyx, for any y1 6= y2, and any
proofs� 1; � 2, then at least one ofVerify(tpk; x; y1; � 1) or
Verify(tpk; x; y2; � 2) output0 with overwhelming proba-
bility.

� Pseudorandomness: roughly, the adversary correctingt
parties cannot distinguish the output of the function from
a uniformly random value, even when chosing the input.

We describe in Figure 17 a DDH-based threshold VRF in-
spired by a threshold Boneh-Lynn-Shacham (BLS) signatures
from in [25]. Notice that the original DRAND/D�nity TVRF
uses actual pairing based threshold BLS signatures in order
to achieve compact proofs. Both this construction and the
improved GLOW TVRF construction are proven secure in [25]
and could serve as a building block for the DRAND/D�nity
beacon. However, we present the DDH based version for the
sake of simplicity and for making it clear that all Mt. Random
building blocks can be instantiated from DDH in the ROM.
Note that we do not make the instantiation ofDistKeyGen
explicit, as we both introduced our own scheme in Section III
and discuss a number of alternatives in Appendix E.

DDH-based threshold VRF (DDH-DVRF in [25])

Setup: Let G be a cyclic group of prime orderq, with generatorg.
Let H : f 0; 1g� ! G a random oracle. In addition we implicitly
need a random oracleH � : f 0; 1g� ! Zq for the DLEQ proof.
Commands:

� DistKeyGen(1� ) The distributed key generation creates
tski 2 Zq such that(tski )n

i =1 is a valid Shamir sharing of
some secrettsk 2 Zq . It outputs publictpk i = gtski and
tpk = gtsk, and privatelytski only to partyPi , for i 2 [n].

� PartialEval(x; tski ; tpk i ): yi is computed by
Pi as yi = H (x) tski . In addition compute
� i = � DLEQ ((g; H (x)) ; (tpk i ; yi )) .

� Combine(pk; f tpk i g; x; A; (yi ; � i ) i 2 A ): A subsetA0 � A is
selected such thatA0 has cardinalityt +1 and� i is accepted
for i 2 A0. Theny =

Q
i 2 A 0 y

L i;A 0(0)
i and� = ( yi ; � i ) i 2 A 0

� Verify(tpk; x; y; � ): Parse� = ( yi ; � i ) i 2 A 0, verify all � i for

i 2 A0, and check whethery =
Q

i 2 A 0 y
L i;A 0(0)
i . Output 1

if all checks pass, otherwise output 0.

Fig. 17: DDH-based threshold VRF (DDH-DVRF in [25]).

C. Threshold Encryption: De�ntion and Construction

A threshold encryption scheme is composed by the follow-
ing algorithms:

� DistKeyGen(1� ): outputs secret keystski ; i 2 [n], corre-
sponding public partial keystpki and a global public key
tpk.

� Enc(tpk; m) takes as input the global public key and a
messagem, and outputs a cyphertextE

� LocalDec(tpki ; tski ; E ) takes a cyphertextE and a partial
key pair (tpki , tski ), and outputs a partial decrypted
messagex i .

� GlobalDec(tpk; I; f tpki gi 2 I ; f x i gi 2 I ; E ) takes as input a
set I � [n] with jI j � t + 1 , the global public key, the
partial public keys ofI , the cyphertextE and the partial
decrypted messagesx i and outputs a decrypted message
m0 or an error? .

We describe informally the properties we want from a
threshold encryption scheme, following the work of [16],
which we refer to for formal de�nitions.

� Completeness: If the keys have been honestly generated
with DistKeyGen, a messagem honestly encrypted, and a
setI of at leastt+1 honest parties have computed correct
partial decryptionsx i of the corresponding cyphertexts
with their keys, thenGlobalDec, taking that cyphertext
and the public keys and partial decryptions ofI , will
outputm

� Robustness: Given as inputs2 subsetsI andJ of at least
t + 1 parties and their corresponding partial decryptions
of a same cyphertext, ifGlobalDecdoes not reject then
it outputs the same message on both inputs with over-
whelming probability.

� IND-CPA against static corruption: We assume the adver-
sary corrupts a setA of at mostt parties at the beginning
of the protocol. The scheme is IND-CPA secure if the
adversary cannot guess (with success probability non-
negligibly larger than1=2) the plaintext corresponding
to a given cyphertext, even if this a cyphertext encrypts
a message from a set of 2 possible messages that the
adversary has chosen, and given of course that the ad-
versary knows all the public keys and the secret keys
corresponding toA.

The threshold version of El Gamal is then as in Figure 18

Threshold El Gamal encryption scheme.

Setup: Let G be a cyclic group of prime orderq, with generator
g.
Commands:

� DistKeyGen(1� ): The distributed key generation creates
tski 2 Zq such that(tski )n

i =1 is a valid Shamir sharing of
some secrettsk 2 Zq . It outputs publictpk i = gtski and
tpk = gtsk, and privatelytski only to partyPi , for i 2 [n].

� Enc(tpk; m): To encrypt a messagem 2 G, sample r
uniformly at random inZq , and outputE = ( gr ; tpk r �m) :=
(c; d) 2 G2

� LocalDec(tpk i ; tski ; E ) outputsx i = ( yi ; � i ) where yi =
ctski and � i = � DLEQ (( g; c); (tpk i ; yi )) .

� GlobalDec(tpk; I; f tpk i gi 2 I ; f x i gi 2 I ; c) outputs ? if no
more thant DLEQ proofs� i ; i 2 I pass. Otherwise, it takes
a subsetI 0 � I of cardinality exactlyt + 1 such that� i 2 I 0

are all correct, and computes

m0 = d � (
Y

i 2 I 0

y
� L i;I 0(0)
i )

Fig. 18: Threshold El Gamal encryption scheme



D. Zero-knowledge proof� EG

In this section we provide a zero-knowledge proof for
the EG relation that we need in the GULL construction in
Section IV, which is a discrete logarithm equality type of
relation, except that one of the elements that would be public in
the DLEQ relation now is encrypted by El Gamal (threshold)
encryption. In order to alleviate the notation, the relation and
its elements will be denoted as follows for the rest of the
section:

f ((g1; x1; x2; t; c; d); (s; r; g2)) 2 G6 � (Z2
q � G) :

gs
1 = x1; gr

1 = c; d = t r � g2; gs
2 = x2g

The problem here is thatg2 is part of the witness, and
should not be revealed. The third and fourth equalities can be
combined by raising the third tos and substitutinggs

2 = x2 in,
but this results in an equationds � t � rs = x2 with a productrs
in the exponent. This is now solved by linearization, namely
considerw = � rs as a new variable and, using one of the
�rst two equations, for example the second, introduce a new
one that guarantees thatw is of the right form.

More concretely, the prover will show knowledge of expo-
nentsr; s; w with:

gr
1 = c

gs
1 = x1

ds � tw = x2

cs � gw
1 = 1

This can be proved by a standard� -protocol, as we will
see. If the prover is honest thenw = � rs will satisfy the
equations. On the other hand, knowledge of(r; s; w) satisfying
these equations implies knowledge of(r; s; g2) satisfying the
relation, so the only way of a cheater prove to succeed
convincing the veri�er of a false statement is by breaking
the soundness of the protocol for this system of equations,
which will happen with negligible probability. Zero-knowledge
is quite trivial. We formally state and prove security of the
protocol now.

Protocol � EG

Setup: A random oracleH
1) The prover choosesur ; us ; uw 2 Zq unifomly at ran-

dom, and constructsa1 = gu r
1 ; a2 = gu s

1 ; a3 =
du 3 � tu w ; a4 = cu s � gu w

1 . She createse =
H (g1 ; x1 ; x2 ; t; c; d; a1 ; a2 ; a3 ; a4). She computeszr =
ur + e � r , zs = us + e � s, zw = uw � e � r � s. The
proof is (e; zr ; zs ; zw )

2) The veri�er computesa1 � ce = gz r
1 ; a2 � xe

1 = gzs
1 ; a3 �

xe
2 = dzs � tzw ; a4 = czs � gzw

1 and accepts ife =
H (g1 ; x1 ; x2 ; t; c; d; a1 ; a2 ; a3 ; a4), otherwise rejects.

Fig. 19: Protocol� EG

Proposition 1. Protocol � EG is a correct proof of knowledge
of (s; r; g2) with special soundness (with soundness error1=q),

and zero knowledge in the random oracle model, assuming the
Fiat-Shamir heuristic holds.

Proof. We prove that the interactive public-coin version of
this protocol wheree is chosen uniformly at random by the
veri�er is correct, special-sound and zero knowledge and the
Fiat-Shamir heuristic implies the properties above for the
non-interactive version.

Correctness: The protocol is easily seen to be correct, as
setting w = � rs implies ds � tw = x2, cs � gw

1 = 1 if the
relation is correct, as argued above, and hence all of the
checks will pass.

Special-soundness: Now suppose that a prover can answer
two different challengese 6= e0 with zr ; zs; zw and respectively
z0

r ; z0
s; z0

w . This means that the 4 checks by the veri�er pass
in both cases. From here it is easy to see thatce� e0

= gzr � z0
r

1

andxe� e0

1 = gzs � z0
s

1 so one can extract

r = ( zr � z0
r )=(e� e0) , s = ( zs � z0

s)=(e� e0) andg2 = d� t � r

Note that these values satisfy thatgs
1 = x1; gr

1 = c; d =
t r � g2, so in order to show that the extracted(s; r; g2) is a
witness, we only need to additionally show thatgs

2 = x2

From the fact that the fourth check passes in both cases,
we get that 1 = czs � z0

s � gzw � z0
w

1 , which implies 1 =
cs(e� e0) gzw � z0

w
1 . Since we already knewc = gr

1 for the
extractedr , this meansgrs (e� e0)+ zw � z0

w
1 = 1 . Since we are

in a group of prime order, sog1 is a generator, it must hold
that

rs(e � e0) + zw � z0
w = 0 :

Finally from the fact that the third check passes in both
instances we havexe� e0

2 = dzs � z0
s tzw � z0

w , which, using the
information deduced in the previous line and the expression
for the extracteds, means

xe� e0

2 = ( dst � rs )e� e0
:

Now sincee � e0 6= 0 and we are in a group of prime order,
this meansx2 = dst � rs . But the right hand side is exactlygs

2
so x2 = gs

2 as we wanted to show.

Zero knowledge: The simulator sampleszr ; zs; zw ; e in-
dependently and uniformly at random inZq, and de�nes
a1 � ce = gzr

1 ; a2 � xe
1 = gzs

1 ; a3 � xe
2 = dzs � tzw ; a4 = cvs � gvw

1 .
This generates a transcript which is indistinguishable from one
of an actual protocol, as it is easy to see.

E. Distributed Key Generation

There are many known instantiations of the distributed
key generation protocolDistKeyGen(1� ) from Figure 17. The
structure of most of these protocols is similar to the one we
have presented, namely parties each secret share a random
�eld element with Shamir's secret sharing and post some



Scheme Comp. (Exp/Enc/Dec) Comm. (bits) Rounds Bias Assump.
Pedersen [34] nt + 5 n + t + 1 (2n2 + tn + n)kq 1 + 2 Yes DDH

Gennaro et al. [26] 2nt + 11 n + 3 t + 3 (4n2 + 2 tn + 2 n)kq 2 + 3 No DDH
Fouque-Stern [23] (nt + 5 n + t + 1) Exp. (2n2 + tn + n)kq 1 Yes DDH

+4n Enc+n Dec +2 n2kh + 3 n2kN +DCR
Fouque-Stern [23] in (nt + 18005n + t + 1) Exp. (28n2 + tn + n)kq 1 Yes DDH
terms of Exp. andkq +DCR

Our Result 9n + t + 2 (2n2 + tn + 5 n)kq 2 + 2 No DDH

TABLE I: Comparison of DKG schemes wheren is the total number of parties,t is the number of corrupted parties,kq is the
number of bits of an element ofGq or Zq, kN is the number of bits of the Paillier cryptosystem modulusN and kh is the
output length of a hash function. Exp, Enc, Dec stand for operation ofG (i.e. exponentiation), Paillier encryption and Paillier
decryption, respectively. We consider that Pedersen and Gennaroet al. have private messages encryted under El Gamal. For
typical parameterskq = 256; kN = 2048, we havekN = 8kq, Enc=3600 Exp and Dec=4880 Exp.

related information. The global implicit secret key is the sum
of the secrets dealt by a setQ of parties who have shared
correctly (the partial secret keys are similarly computed by
the corresponding party by summing the received shares from
parties inQ), and the public information is used to derive
the public partial and global keys. The differences lie on how
parties can prove the correct sharing of their initial secrets,
and their consistency with the public information they post.

Possibly the best known is Pedersen's protocol [34], where
parties use a veri�able secret sharing scheme (VSS), namely
Feldman's VSS to do this, while they post a commitment to the
coef�cients of the polynomial. Parties reach an agreement, via
the VSS properties, on a setQ of parties that have correctly
shared their value. The protocol has 1 round of interaction,
and 2 additional rounds if there are disputes.

As discussed in Gennaro et al. [26], one caveat of Pedersen
distributed key generation protocol is the fact that malicious
parties can bias the public global key. [26] also showed a
modi�cation of the protocol that �xes this problem, using a
different commitment to the coef�cients of the sharing poly-
nomial. However this introduces a new round of interaction
and a new round of dispute resolution.

[23] proposed a one-round distributed key generation pro-
tocol based on Paillier cryptosystem, where parties only speak
once, by posting their message in a public bulletin board. This
protocol is publicly veri�able but again the public key can be
biased by a rushing adversary.

Nevertheless, a recent work by Gurkan et al. [28] shows
that the public key biasability from [26] should not be a
problem for applications to threshold encryption, signatures
and veri�able random functions, due to a property named
rekeyability, introduced in that work. We also remark that in
the same work [28], the authors construct a publicly veri�able
distributed key generation protocol with a much improved
asymptotical communication complexityO(n), based on the
notion of aggregation via gossip. However, this protocol is not
only based on pairing assumptions (stronger than our DDH
assumption), but also outputs group elements as secret keys
(rather than elements inZq), i.e., the output is to be used
with pairing-based threshold schemes, so it cannot be used
for example for its use with threshold El Gamal encryption
scheme, at least directly. It would be very interesting to achieve

the type of output keys we need with their gossip techniques.
Another recent work [27] introduces a non-interactive (but

biasable) DKG protocol that generates keys with the same
structure as ours. However, the preliminary version of [27]
does not present any ef�ciency analysis of the proposed
protocol, making it hard to present a comparison. Moreover
that construction requires pairing hardness assumptions.

In Table I, we compare the amount of computation, com-
munication, number of rounds (separated in number of �xed
rounds plus number of rounds that may be required to resolve
disputes), assumptions and biasability of the globel public key
tpk by a rushing adversary. We denote bykq the number of
bits to describe a �eld element inZq, which we assume to
also be roughly equal to the number of bits to describe an
element inG; in the case of Fouque-Stern, we denote by
kN the number of bits to describe an element inZN for the
use of Paillier scheme (hence2kN describes an element in
ZN 2 ). Since Pedersen's and Gennaro et al.'s protocols involve
private communication between parties, in order to properly
compare the communication complexity, we have assumed that
this communication is done through the public ledger using
El Gamal encryption, which requires posting2kq bits and
computing 2 exponentiations per encryption, while decryption
costs 1 exponentiation. For the sake of comparison to Fouque-
Stern we measured the time for Paillier encryption and decryp-
tion with 128-bit security, obtaining 180 milliseconds and 244
milliseconds, respectively, on a Intel(R) Core(TM) i7-10510U
CPU @ 1.80GHz using the RELIC library [3]. On the same
platform and security level, a group operation over a DDH-
hard group takes 50 microseconds.

As one can see, our protocol requires almost the same com-
munication as Pedersen's, differing only in lower order terms,
and less communication than Gennaro et al. and Fouque-Stern,
especially when compared with the latter, sincekN is typically
larger thankq (we can currently assumekq = 256, kN = 2048
). On the other hand, Pedersen and of course Fouque-Stern
have better round complexity, at the cost of allowing bias on
the public key.

Our novel DKG protocol's performance is further show-
cased in our benchmarks. Figures 20 and 21 show the DKG
computation time and communication size for changing num-
ber of partiesn for tiers 1 and 2.
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