Reflection, Rewinding, and Coin-Toss in EasyCrypt

Denis Firsov
deins@cs.ioc.ee
Tallinn University of Technology
Estonia
Guardtime
Tallinn, Estonia

Dominique Unruh
unruh@ut.ee
University of Tartu
Estonia

Abstract
In this paper we derive a suite of lemmas which allows users to internally reflect EasyCrypt programs into distributions which correspond to their denotational semantics (probabilistic reflection). Based on this we develop techniques for reasoning about rewinding of adversaries in EasyCrypt. (A widely used technique in cryptology.) We use our reflection and rewindability results to prove the security of a coin-toss protocol.

CCS Concepts: • Security and privacy → Logic and verification.

Keywords: cryptography, formal methods, EasyCrypt, reflection, rewindability, commitments, binding, coin-toss

1 Introduction
Handwritten cryptographic security proofs are inherently error-prone. Humans will make mistakes both when writing and when checking the proofs. To ensure high confidence in cryptographic systems, we use frameworks for computer-aided verification of cryptographic proofs. One widely used such framework is the EasyCrypt tool [5]. In EasyCrypt, a cryptographic proof is represented by a sequence of “games” (simple probabilistic programs), and the relationship between programs are analyzed in a probabilistic relational Hoare logic (pRHL). EasyCrypt has been successfully used to verify a variety of cryptographic schemes: electronic voting [13], digital signatures [14], differential privacy [3], security of IPsec [16], and many others.

However, there is one cryptographic proof technique that seems very difficult to implement in EasyCrypt, namely rewinding. Rewinding is ubiquitous in more advanced proofs, especially when involving zero-knowledge proofs, multi-party computation, but also in relatively simple cases such as building a coin-toss from a commitment. (The latter case we will explore in Sec. 5.) In a nutshell, rewinding refers to the proof technique in which we take a given (usually unknown) program A (an adversary), and convert it into an adversary B that performs the following or similar steps:

1. Remember the initial state of A.
2. Run A.
3. Restore the original initial state of A.
4. Run A again.
5. Combine the results from the runs and/or repeat this until it yields a desired outcome.

While the above steps seem simple, we run into numerous challenges when trying to implement rewinding in EasyCrypt, both due to restrictions in the type system, and due to the necessity for reasoning about probability distributions of program outputs in a way that is not directly supported by EasyCrypt’s tactics.

To the best of our knowledge, rewinding has not been implemented in EasyCrypt, nor in other frameworks for reasoning about cryptographic proofs, see Sec. 1.4.

Our contribution. In this work, we design a set of tools to address rewinding in the EasyCrypt framework, and for reasoning about the probabilistic semantics of programs inside EasyCrypt (we call this probabilistic reflection). We validate our results by developing a formal proof of a coin-toss protocol based on rewinding. The EasyCrypt code of our framework is found in [15].

1.1 Challenges

To understand the motivation behind our project, let us look at the example of a pen-and-paper derivation using rewinding. When analyzing a coin-toss protocol based on a commitment (e.g., A.commit to produce the commitment), stores the state of A, runs A.open(false) (to produce the first opening), restores the state of A, and runs A.open(true) (to produce the second opening). Then we show that the probability that B produces two valid openings is lower-bounded in terms of the probability that A is successful in producing one valid opening.

As we will see in more detail in Sec. 5.1, the core theorem for showing this is the following.

Theorem 1.1. Let A be a probabilistic program and let m denote a memory configuration which represents an initial state of A. We write \(\Pr [r \leftarrow X. p() @ m : M] \) to denote the probability of a predicate M being satisfied by the result of running the procedure p() of a module X on the initial memory m. In this case, the following inequality holds:

\[
\Pr \left[\begin{array}{c}
A.\text{init}(); s \leftarrow A.\text{getState}(); \\
r_1 \leftarrow A.\text{main}(); A.\text{setState}(s); \\
r_2 \leftarrow A.\text{main}() @ m : r_1 \land r_2
\end{array} \right]
\geq \Pr [A.\text{init}(); r \leftarrow A.\text{main}() @ m : r]^2.
\]

Proof: Step (1) applies “the averaging technique” by representing A.init as a family of distributions \(D_A^m \). (\(D_A \) denotes the distribution in the family corresponding to memory m.) We write \(\mu_1 (D_A^m, n) \) for the probability that \(D_A^m \) assigns to memory configuration n. Then \(\mu_1 (D_A^m, n) \) is the probability of A.init() terminating in the memory state n given that it starts in the initial state m. The rest of the computations are run starting from memory configuration n.

\[
\Pr \left[\begin{array}{c}
A.\text{init}(); s \leftarrow A.\text{getState}(); \\
r_1 \leftarrow A.\text{main}(); A.\text{setState}(s); \\
r_2 \leftarrow A.\text{main}() @ m : r_1 \land r_2
\end{array} \right]
\geq \Pr [A.\text{init}(); r \leftarrow A.\text{main}() @ m : r]^2.
\]

Step (2) makes use of the fact that the probability of a success (i.e., A.main returning true) in both two independent runs equals to the square of a probability of a success in a single run. Step (3) is an application of Jensen’s inequality. The final step undoes the averaging.

There are number of challenges in performing this proof formally in EasyCrypt:

1. Our proof turns the program A.init() into a parameterized distribution of final memories (memories after A.init() terminates). While EasyCrypt has a notion \(\Pr [A.\text{init}() @ m : M] \) it does not formally recognize that this defines a distribution, not withstanding the suggestive syntax.
2. Also, our proof makes use of results about probability distributions (e.g., Jensen’s inequality) which can be easily stated and proved in terms of probabilistic distributions while they would be much harder (or even impossible) to express and prove directly using program logics (e.g., probabilistic Hoare logic).
3. Another challenge is that EasyCrypt does not have a type "memory"; we cannot define a distribution over memories because we cannot even assign it a type. In EasyCrypt, memories are recognized purely syntactically by prepending the variable names with &.
4. Finally, it is not immediate how one can generically specify the interface of programs (modules) which can return their own state. In other words, what should be the type of the return value of the function A.getState()?

1.2 Probabilistic Reflection

As explained above, one of the challenges is that we cannot access the distribution which corresponds to the semantics of the program. To enable this, we introduce a suite of lemmas which allows us to access the distribution corresponding to a program.
This turned out to be a powerful tool for rewriting proofs, but we also believe that it can be useful when one needs to derive facts for programs based on their denotational semantics. For example, in a situation when a particular tactic is not available in EasyCrypt, but in a pen-and-paper proof one would show it simply based on probability theory reasoning (e.g., Jensen’s inequality, averaging). In the following, we sketch our solution for what we call probabilistic reflection.

(A word on terminology: The term reflection is used in many different ways in the literature. For example, in programming languages it often refers to the ability of a program to see its own structure at runtime. In proof assistants, reflection often means that one translates a term into abstract syntax and can reason about it inside the logic. Our probabilistic reflection is different from these, but we believe the term “reflection” is still justified because it allows us to expose the internal denotational semantics inside the program logic.)

Recall that there are no valid types which refer to distribution of final memories. These would be needed to give a type to the denotational semantics of a program, let alone define those semantics. However, in EasyCrypt each program has an associated variable G^m_A (the type of G^m_A is G_A) which refers to the part of the memory m accessible by module A. It is guaranteed that running a program A will never change anything outside G^m_A. So “effectively”, the semantics of a program can be described by looking only at the G_A-part of a memory. So, we define a family of distributions D^g_A for g of type G_A such that $\mu_1(D^g_A, h)$ is the probability that we get h in G_A-part of the final memory configuration when starting with g in G_A-part of the initial memory configuration.

Another problem is that EasyCrypt forbids to refer to the type G_A in the top-level definitions (global definitions of operators/constants). So, in particular, we cannot define a distribution D^g_A parameterized by G_A-values in EasyCrypt. In our workaround to this problem, we prove lemmas of the existence of that family of distributions, but we do not define a constant referring to that family. This works since we only need to refer to the type of D^g_A locally in the theorem statement. Then, when reasoning, one can inside a proof refer to “the” distribution that exists by our lemmas.

In conclusion, our lemma for probabilistic reflection looks roughly as follows:

Theorem 1.2. For all memories m and programs A there exists a family of distributions D^g_A (with g of type G_A) such that for all predicates M on values of type G_A:
$$
\Pr \left[A.main() @ m : M(G^m_A) \right] = \mu(D^g_A, M).
$$

Here, fin is the final memory after execution of $A.main()$ and $\mu(d, M)$ denotes the probability that the predicate M holds for values distributed according to d. Actual reflection lemma adds generality, e.g., referring also to the inputs/outputs of $A.main$, see Sec. 3.1.

However, being able to reflect the distribution corresponding to a given program is not enough. If we want to reason about composite programs, we will also need to understand how the different constructs in our language operate on the distributions. For example, given a program $A; B$, reflection gives us distributions $D_{AB}, D_A,$ and D_B relating to the semantics of $(A; B)$, A, and B, respectively. However, we do not, a priori, know how D_{AB} is related to D_A and D_B. It is not even a priori clear whether inside the logic of EasyCrypt, it is possible to derive that relationship. Thus we prove additional lemmas for this and other cases that allow us to derive the distribution of a more complex program from the distributions of its components (see Sec. 3.5). For example, D_{AB} is shown to be the monadic bind of D_A and D_B.

Altogether this gives us a library for probabilistic reflection in EasyCrypt, independent of the results on rewriting below. See Sec. 3 for details.

1.3 Rewinding

The final challenge in the formal derivation of Thm. 1.1 is that in EasyCrypt, we cannot define a generic interface of modules which return their own state. Morally, we want $A.getState()$ to return a value G^m_A of type G_A. However, this is impossible since the type G_A is only allowed to appear in the logical statements and program code of other modules but not in the code of the module A itself.

We solve the above problem by defining what it means for a module to be rewritable. In essence, a module is rewritable if and only if the state of the program can be encoded as a bitstring (or equivalently, as any other countable type). In particular, a program with variables of type “real” (which is uncountable) would not be rewritable in that sense. A security proof using rewinding would then only apply to rewritable adversaries which is not a restriction from the cryptographic point of view. (Typically, cryptographic adversaries are assumed to operate on data that is representable in a computer. Such data can always be encoded as a bitstring.)

In conclusion, our definition for rewritable modules (programs) roughly requires a module to have procedures getState and setState. The execution of $A.getState()$ in state m must return the value $f(G^m_A)$ where f is an arbitrary injective mapping from the type G_A to some parameter type $sbits$. The setState procedure gets an argument $x : sbits$ and sets G^m_A to $f^{-1}(x)$ if $f^{-1}(x)$ is defined.

Altogether this gives an approach for working with rewritable adversaries in EasyCrypt. See Sec. 4 for details.

1The restriction to countable types is arbitrary. We could choose a different, larger type $sbits$ instead of bitstrings for encoding program states. However, we choose bitstrings because these are more natural in the computational setting – notions of runtime of algorithms apply naturally to bitstrings but not to uncountable types such as reals.
1.4 Rewinding in Other Verification Frameworks

A natural question is: Can the methods from the present work be ported to these other frameworks? Can rewinding be implemented in those frameworks in other ways? If our work on rewinding in EasyCrypt is any indication, then it is hard to make a reasonable estimate how difficult it is to implement (or even whether it is possible at all) before actually going through the process of doing it. Nonetheless, we will hazard some guesses:

CryptHOL, FCF, Verypto, CertiCrypt, and SSProve are foundational frameworks. That is, they are implemented inside the general purpose logic of existing frameworks such as Coq and Isabelle. This means that the details of the probabilistic semantics of the language are already directly accessible; probabilistic reflection as we did in EasyCrypt would not be necessary. Then it should be possible to implement the different result on reflection (Sec. 3) directly as theorems in Coq/Isabelle. (How hard or easy the proofs of these theorems would be is, like always in formal verification, hard to predict in advance.)

On the other hand, CryptoVerif is, like EasyCrypt, not foundational. This means that we cannot directly access the semantics, and thus would probably have to implement something akin to our probabilistic reflection. In addition, it is not clear whether the various facts about rewinding (Sec. 3) can even be expressed inside CryptoVerif. If not, the logic of these tools would have to be extended, and the tools rewritten accordingly.

But, as we stated, these are educated guesses only. To know for sure, one would have to actually put in the work and implement rewinding in these various frameworks.

2 Preliminaries

In this section we review the syntax and semantics of the main EasyCrypt constructs. Readers familiar with EasyCrypt can skip this section and just familiarize themselves with our syntactic conventions in this footnote. The top-level definitions in EasyCrypt consist of types, operators, lemmas/axioms, module types, and modules. In EasyCrypt one can specify datatypes and operators, where types intuitively denote non-empty sets of values and operators are typed pure functions on these sets. EasyCrypt provides basic built-in types such as unit, bool, int, etc. The standard library includes formalizations of lists, arrays, finite sets, maps, probability distributions, etc. EasyCrypt also allows users to implement their own datatypes and functions (including inductive datatypes and functions defined by pattern matching). For example, we can give a definition of a polymorphic identity function as follows:

\[\text{op \ id ['a] : 'a \rightarrow 'a = \lambda x. x.} \]

In this paper, for ease of readability, we use a more compact notation \(\lambda x. x \) for lambda-abstractions. In the original EasyCrypt code, this would be written as \(\text{fun \ x \Rightarrow x} \).

The ambient logic in EasyCrypt is based on a classical (i.e., non-constructive) set theory which we can use to state and prove properties. (The term ambient logic refers to a built-in logic in EasyCrypt. Ambient logic is not specific to reasoning about programs). For example, we can prove that application of \(\text{id} \) to any \(x \) equals to \(x \). In lemmas and axioms we will use symbols \(\forall \) and \(\exists \) instead of the EasyCrypt syntax which uses keywords \textit{forall} and \textit{exists}, respectively.

\[\text{lemma \ id_prop ['a] : \forall (x : 'a), \text{id} x = x.} \]

proof. trivial. qed.

In EasyCrypt, a proof starts with the keyword \texttt{proof}. The steps of the proof consist of tactic applications (e.g., \texttt{auto}, \texttt{trivial}, etc.) which either discharge the proof obligation or transform it into subgoal(s). The \texttt{qed} finishes the proof.

Types and operators without definitions are abstract and can be seen as parameters to the rest of the development. Parameters can additionally be restricted by axioms. For example, we can parameterize the development by a uniform distribution of elements of type \texttt{bits}.

\texttt{type \ bits.}

\texttt{op \ bD : \ bits \ D.}

\texttt{axiom \ bD\!\!u : \ is_uniform \ bD.}

The theory containing this axiom can later be “cloned” and the operator \texttt{bD} instantiated with a value for which the axiom \texttt{bD\!\!u} is actually provable. This enables modular design of theories.

In this paper we will use notation \texttt{bits \ D} as a more concise version of the EasyCrypt syntax \texttt{bits distr} which denotes the type of distributions of bits. Similarly, we will use \texttt{bits \ L} instead of \texttt{bits list}, and \texttt{bits \ O} instead of \texttt{bits option}.

\textbf{Distributions}. In EasyCrypt, every type \(t \) is associated with the type \(t \ \mathcal{D} \) of discrete distributions. A discrete distribution over type \(t \) is fully defined by its mass function. i.e. by a non-negative function \(f \) from elements of type \(t \) to reals so that \(\sum_{x} f(x) \leq 1 \). The probability mass function of distribution \(d \) can be accessed by writing \(\mu_1 \ d \) (i.e., \(\mu_1 \ d \ x \) is the probability assigned to element \(x \) by distribution \(d \)). Also, for any predicate \(P : t \rightarrow \text{bool} \) we can write \(\mu \ d : P \) to
get the total probability assigned by \(d \) to elements which satisfy \(P \).

Modules. In EasyCrypt, modules consist of typed global variables and procedures. The set of all global variables of a module is the union of the set of global variables that are declared in that module and the set of all global variables (declared in other modules) which the module could read or write by a series of procedure calls beginning with a call of one of its procedures. In EasyCrypt, the whole memory (state) of a program is referred to by \(\& m \) (or \(\& n \) etc.). We can refer to the tuple of all global variables of the module \(A \) in \(\& m \) as \((\text{glob } A)(m)\). The type of all global variables of \(A \) (i.e., the type of \((\text{glob } A)(m)\)) is denoted by \(\text{glob } A \). For readability, we will use syntax \(G_A \) for the type \(\text{glob } A \). Memories \(\& m \) will be typed in bold without the \& symbol (i.e., \(m \) for \(\& m \)). And \(G^m_A \) will denote the EasyCrypt value \((\text{glob } A)(m)\).

For illustration, we implement the following example of a guessing-game module \(G_G \):

```plaintext
module GG = {
  var c, win, q, r
  proc init (x : int) = {
    (c, win, q) ← (0, false, x); // simultaneous assignment
  }
  proc guess (x : bits) : bool = {
    if (c < q)(
      r ← bD;
      win ← win || r = x;
      c ← c + 1;
    )
    return win;
  }
}.
```

The module \(G_G \) has three global variables: \(c \) and \(q \) of type \(\text{int} \), and \(\text{win} \) of type \(\text{bool} \). Hence, for any memory \(m, G^m_G \) has type \(G^m_{GG} \) which equals to a product \(\text{bool} \times \text{int} \times \text{int} \). The \(G_G \) module allows a player to guess (call the \(G_G \)._guess procedure) the next value sampled from distribution \(bD \). The player has at most \(q \) attempts (set during initialization by procedure \(G_G \)._init). The player wins if they guess correctly at least once.

Module types. In EasyCrypt, *module types* specify the types of a set of module procedures [4]. Therefore, module types in EasyCrypt are similar to interfaces in other programming languages (e.g., Java). We can specify the module type of \(G_G \) as follows:

```plaintext
module type GuessGame = {
  proc init (x : int) : unit
  proc guess (x : bits) : bool
}.
```

Note that module types say nothing about the global variables a module could have and only specify the input and output types of the module procedures.

Next, we define a module type of protocol parties (adversaries), who receive an instance \(G \) of a guessing game as a module parameter. An adversary must have a \(\text{play} \) procedure which starts the game:

```plaintext
module type Adversary (G : GuessGame) = {
  proc play () : unit (G.guess)
}.
```

To forbid adversaries to reinitialize the game the \(\text{play} \) procedure can only execute the \(\text{guess} \) procedure of the parameter game \(G \). This is optionally expressed by listing the allowed method(s) in the curly braces next to the procedure.

Probability expressions. EasyCrypt has \(\Pr \)-constructs which can be used to refer to the probabilities of events in program executions: \(\Pr [r ← X . p \; @ \; m : \; M \; r] \) denotes the probability that the return value \(r \) of procedure \(p \) of module \(X \) given initial memory \(m \) satisfies the predicate \(M \). (i.e., the general form is \(\Pr [\text{program } @ \; \text{initial memory: event}] \). The \(\Pr \)-notation in EasyCrypt is somewhat restrictive, the program can only be a single procedure call. In our presentation, we relax this notation and allow multiple statements; it is to be understood that in the actual EasyCrypt code this is implemented by defining an auxiliary wrapper procedure that contains those statements.

For example, we can express that for any adversary \(A \) the probability of winning the guessing-game is equal to or smaller than \(\varphi_n \), where \(n \) is the size of the support of distribution used by \(G_G \) and \(q \) is the maximal allowed number of guesses.

```plaintext
lemma winPr : \forall \varphi : \langle A <: \text{Adversary } \{G_G\} \rangle \; m, \; 0 ≤ q ⇒ \Pr [G_G.\_init(q); A(G_G).\_play() @ m; \; G_G.\_win] ≤ q / (\text{support size } bD).
```

(In EasyCrypt, \(X <: T \) states that the module \(X \) satisfies the module type \(T \).) Note that the module type \(\text{Adversary} \) also includes adversaries who simply set the value \(G_G._win = \text{true} \). EasyCrypt allows us to write \(\text{Adversary} \{G_G\} \) to denote a subset of adversaries who has disjoint set of global variables from the module \(G_G \).

3 Toolkit for Probabilistic Reflection

In this section, we discuss a derivation of probabilistic reflection for programs (i.e., modules) in EasyCrypt. Recall that by probabilistic reflection, we mean tools to get access to probabilistic denotational semantics of imperative programs inside EasyCrypt proofs. (Without needing any meta-reasoning.) Also, we use the probabilistic reflection to derive a powerful toolkit of lemmas which are common in pen-and-paper proofs when arguing about distributions underlying programs.

3.1 Probabilistic Reflection

Recall that in Sec. 1.2, we introduced Thm. 1.2 that proves the existence of a distribution corresponding to a program’s denotational semantics. In EasyCrypt, we formally state this theorem as follows:

```plaintext
lemma reflection_simple : \exists \; \varphi : G_A \rightarrow G_A \varphi,
```
∀ m M, μ (D g_A) M = Pr[A. main() @ m : M g_A^{fin}].

Here, D g corresponds to the family D^g_A from Thm. 1.2, i.e., D g_A is the supposed distribution of final states of the program after running on initial memory m.

Inside an EasyCrypt proof, this lemma could be used as elim (reflection_simple A) ⇒ D H; D: this will introduce a variable D in the environment of the proof, together with its defining property H; D stating the relationship between D and Pr[A. main()...,].

However, reflection_simple as stated is not general enough for many purposes. In particular, if A. main takes an argument i or returns a value r then we cannot reason about the distribution of r and express how D depends on r. The following more general reflection lemma removes these limitations:

lemma reflection : ∃ (D : G_A → at → (rt × G_A) D),
∀ m M i, μ (D g_A^i) M = Pr[r ← A. main(i) @ m : M (r, g_A^{fin})].

The intuition behind this lemma and the previous one is the same. The only difference is that D now has an additional argument i, referring to the input of A. main, and the resulting distribution (D g_A^i) is a distribution over pairs (r, g_A^{fin}) of output and final memory.

Note that while EasyCrypt allows us to all-quantify over the module A and over the argument and input types (i.e., at and rt), we cannot quantify over the name main of the procedure. Similarly, the number of arguments of procedure main is fixed in the lemma. Fortunately, this only constitutes a minor inconvenience, not a real restriction because we can always define a wrapper module A’ that has a procedure main with a single argument i (possibly of a tuple type). Then main can untuple i and invoke the procedure that we actually want to investigate. A simple call to the tactic inline A’. main in the proof will then unwrap this wrapper procedure.

In EasyCrypt, we directly prove reflection and derive reflection_simple as an immediate corollary. For readability, we proceed with describing a direct proof of reflection_simple instead.

Proof. We start the proof by defining a predicate P on probabilities which is parameterized by an initial state g of type G_A and an element x of type G_A. Below we use the EasyCrypt tactic pose to give a definition which is local to the proof.

pose P g x := λ p. ∀ n, g_A^n = g ⇒ Pr[r ← A. main() @ n : g_A^{fin} = x] = p.

The probability p satisfies the predicate (P g x) if it equals to the probability of A. main terminating in the state x by starting its run from a memory n which has G_A variables equal to g.

Before continuing with the proof, we explain that the standard library of EasyCrypt provides the formalization of the Axiom of Choice in the form of the operator choiceb and its corresponding property choicebP:

axiom choicebP [‘a] : ∀ (P : ‘a → bool),
(∃ (x : ‘a), P x) ⇒ P (choiceb P).

It states that for any predicate P if there exists an element which satisfies it then the element denoted by (choiceb P) satisfies P. Here, it is worth mentioning that all propositions in EasyCrypt have type bool.

The next step of the proof is to define a function (Q g x) which uses the choice operator on the predicate (P g x) to assign a probability to x.

pose Q g x := choiceb (P g x).

The intuition is that (Q g x) returns “the” probability Pr[A. main() @ n : g_A^{fin} = x] for all n with g_A^n = g.

Note that a priori we do not know that there is such a probability, because probability could depend on n. To show that (Q g x) is a well-defined we need to prove that the value (Q g x) satisfies the predicate (P g x). Because in the lemma, (D g) is only used for g of the form g_A^n, we specifically need to show the following claim:

have Q_well_def : P g_A^n x (Q g A x).

(Here we use the EasyCrypt tactic have name : fact which allows to locally prove the fact and call it name.)

If we can show that there exists a probability q, so that (P g_A^n x q) then the proof Q_well_def amounts to a simple application of the choicebP property. The obvious candidate for this probability q is the Pr-expression:

Pr[A. main() @ m : g_A^{fin} = x].

To show that this candidate satisfies (P g_A^n x), we must prove the following (by definition of P):

have good_q : ∀ n, g_A^n = g_A^n ⇒
Pr[A. main() @ m : g_A^{fin} = x] = Pr[A. main() @ n : g_A^{fin} = x].

The good_q is intuitively simple and we prove it using the pRHL which is available in EasyCrypt.

Now, as we know that (Q g) assigns adequate probabilities to elements of type G_A, we use the standard EasyCrypt constructor mk which turns any function of type ‘a → real into distribution of type ‘a D.

pose D g := mk (Q g).

The above defines a parameterized distribution D typed as G_A → G_A D. We skip the technical details of a proof which shows that D is a well-formed probability distribution. We only show the final derivation which proves that D is the denotation of A. main. To achieve this we show the pointwise equality of distribution D and Pr-expression. Let x be an element of type G_A:

have pointwise :
\(\mu_1 (D \mathcal{G}_A^m) x = \Pr[A.\text{main()} @ m : \mathcal{G}_A^{\text{fin}} = x]. \)

The proof is as follows:

\[
\mu_1 (D \mathcal{G}_A^m) x = \mu_1 (\text{mk} (Q \mathcal{G}_A^m)) x \\
= Q \mathcal{G}_A^{\text{fin}} x \\
= \text{choicen} (P \mathcal{G}_A^m x) \\
= \Pr[A.\text{main()} @ m : \mathcal{G}_A^{\text{fin}} = x].
\]

The first equality is by definition of \(D \), in the second equality \(\mu_1 \) cancels application of \(\text{mk} \) since \(D \) is a well-defined distribution (see \(\text{mk} \) from EasyCrypt standard library), the third equality is by definition of \(Q \), the fourth equality is an application of the previously proved property \(\text{Q.well_def} \).

At the first glance, it seems that this implies that \((D \mathcal{G}_A^m) \) indeed describes the probability distribution corresponding to \(A.\text{main} \). That is, we want:

have onsubs : \(\mu (D \mathcal{G}_A^m) M = \Pr[A.\text{main()} @ m : \mathcal{G}_A^{\text{fin}}] \).

meaning that the probability that a value sampled from \((D \mathcal{G}_A^m) \) satisfies \(M \) equals the probability that the final state of \(A.\text{main} \) satisfies \(M \). Unfortunately, this is not immediate. For example, hypothetically, the function \(M \rightarrow \Pr[A.\text{main()} @ m : \mathcal{G}_A^{\text{fin}}] \) might not be a discrete probability measure and thus it might not be determined by its values on singleton sets. To show onsubs, we need to use one more trick: We define an auxiliary module and procedure \(P.\text{sampleFrom} \) such that \(P.\text{sampleFrom}(d) \) simply returns some \(x \leftarrow d \). Then \((\mu (D \mathcal{G}_A^m) M) \) equals to \(\Pr[x \leftarrow P.\text{sampleFrom}(D \mathcal{G}_A^m @ m : M x)] \) and we get:

have aux1 : \(\Pr[x \leftarrow P.\text{sampleFrom}(D \mathcal{G}_A^m) @ m : M x] = \Pr[A.\text{main()} @ m : M^{\text{fin}}] \).

For goals of this shape, we use a combination of the \textit{byequiv} and \textit{bypr} tactics from EasyCrypt; \textit{byequiv} changes this goal into a pRHL judgment relating the programs \(A.\text{main} \) and \(P.\text{sampleFrom} \). And \textit{bypr} converts such a pRHL judgment back to an equality of probabilities. It seems that we are back at onsubs now. However, the final equality is actually:

have aux2 : \(\forall x, \Pr[r \leftarrow P.\text{sampleFrom}(D \mathcal{G}_A^m) @ 1 : r = x] = \Pr[A.\text{main()} @ 2 : \mathcal{G}_A^{\text{fin}} = x] \).

(for memories 1 and 2 that are equal to \(m \) in global variables of \(\mathcal{G}_A \)). But this follows from \textit{pointwise} proved above.

We clarify that reflection results are proved “once and for all” by using the EasyCrypt’s module cloning mechanism the \textit{reflection} lemma could be instantiated for arbitrary adversaries.

Note that in our proof we rely on the fact that the tactics \textit{byequiv} and \textit{bypr} in combination imply that the probability \(\Pr[\ldots : M x] \) (even for infinite \(M \)) can be related to \(\lambda \ y \ \Pr[\ldots : x = y] \).

3.2 Finite Pr-Approximation

In this section, we derive a well-known result from probability theory which states that the support of a distribution can be finitely approximated with arbitrary precision. We formally prove finite approximation for distributions first and then use the probabilistic reflection to extend it to programs. In Sec. 3.3 the finite approximation will be used in the derivation of averaging which in its turn is needed to prove the sum-binding inequality and then conclude the security of a coin-toss protocol (see Sec. 1.1).

Let \(d \) be a distribution of type \('a \ D \) Then there exists a sequence of lists \((L \ n) \) so that the probability that an element sampled from \(d \) is not in the list \((L \ n) \) converges to 0 (for \(n \rightarrow \infty \)). (This holds for discrete distributions only.)

\[
\text{lemma fin_pr_approx_distr_conv ['a] : } \forall (d : 'a D), \exists (L : int \rightarrow 'a \ L), \text{converge_to (L n, } \mu d (\lambda x. x \notin L n)) \theta.
\]

\[
\text{Proof. The proof of this lemma is mainly based on the results from standard library of EasyCrypt. In particular, lemma muE proves that for any distribution } d \text{ and predicate } M \text{ the probability } \mu d M \text{ equals to the sum of probabilities of individual elements satisfying the predicate } M. \text{ Below, the operator sum f denotes a sum of all f-images. }
\]

\[
\text{have muE ['a] : } \forall (d : 'a D), (M : 'a \rightarrow 'a bool), \mu d M = \text{sum (} \lambda x. x \in L n) \theta.
\]

Another important component of our proof is the result from a standard library \textit{sum_to_enum} which shows that any finite sum can have no more than a countable number of nonzero components. Here, \textit{summable s} is a predicate which ensures that the sum of all elements of \(s \) is bounded from above by some real number; \textit{support s} is the predicate that filters out elements with weight 0 (i.e., \(s x = 0 \)); and \textit{enumerate L P} is a predicate which ensures that \(L \) is injective and each element which satisfies \(P \) appears in \(L \) at some (non-negative) index:

\[
\text{have sum_to_enum ['a] : } \forall (s : 'a \rightarrow \text{real}), \text{summable s } \Rightarrow \exists (L : \text{int } \rightarrow 'a \ O), \text{enumerate L (support s)}. \text{ Also, the standard library proves that any upper-bounded sum can be seen as a limit: }
\]

\[
\text{have sumE ['a] : } \forall (s : 'a \rightarrow \text{real})(L : \text{int } \rightarrow 'a \ O), \text{enumerate L (support s) } \Rightarrow \text{summable s } \Rightarrow \text{sum s } = \text{lim (} \lambda (n : \text{int}). \Sigma_{x \in (L n)} s x). \text{ (Here, } \Sigma_{x \in (L n)} f x \text{ denotes a finite sum which in EasyCrypt is implemented via operator big g.) As a consequence of these facts (i.e., muE, sum_to_enum, and sumE) we prove that for any distribution } d \text{ there exists a family of lists } (L \ n) \text{ so that the total weight of the probability distribution equals to } \Sigma_{x \in (L n)} \mu_1 d x \text{ as } n \text{ goes to infinity. }
\]
have cntbl_sum : ∀ (d : 'a D), ∃ (L : (int → 'a L)), μ d (λ λ. true) = lim (λ (n : int). ∑ε∈(L n) μ1 d x) x.

Next, we can show by induction on list xs that the total probability weight of elements in the duplicate-free list xs equals to the sum of probabilities of individual elements.

have fin_fragment : ∀ xs, uniq xs ⇒ μ d (λ x. x ∈ xs) = ∑ε∈(L n) μ1 d x.

Finally, we conclude fin_pr_approx_distr as follows:

Given a particular ϵ we combine the lemma cntbl_sum and the definition of limits to get a list (L n) which makes the sum (∑ε∈(L n) μ1 d x) at most ϵ-away from the limit lim (λ (n : int). ∑ε∈(L n) μ1 d x). We finish the proof by arguing as follows:

μ d (λ x. x ∈ L n)
= μ d (λ x. x ∈ L n) = lim (λ (n : int). ∑ε∈(L n) μ1 d x)
= lim (λ (n : int). ∑ε∈(L n) μ1 d x) - ∑ε∈(L n) μ1 d x < ϵ.

□

Having the finite probabilistic approximation for distributions allows us to use the probabilistic reflection mechanism to extend the finite probabilistic approximation to programs. More specifically, let A. main be a procedure which takes an argument of type rt and produces the result of type rt. In this case, there exists a sequence of lists (L n), so that the result and the final state produced by A. main(i) are not in (L n) with probability converging to 0.

lemma fin_pr_approx_prog_conv : ∀ m i,
∃ (L : int → (rt × G_A) L), convergeto
(λ n. Pr[r ← A. main(i) @ m: (r, G_A) /∈ L n]) 0.

3.3 Averaging

Averaging is another standard result from probability theory which is frequently used in cryptographic proofs. In our case, we need averaging to derive sum-binding of commitments which in its turn will enable us to conclude the security of a coin-toss (see Sec. 1.1).

Averaging allows one to express the probability of an event of a program x d; A. main(x) in terms of probabilities of the event of a program A. main(x) for every individual x in the support of d. In this sense, the averaging technique can be seen as a generalized version of case-analysis in the case of distributions with finite support. Indeed, if d is a distribution of Boolean values and our program starts with sampling a Boolean b from d and then continues with a procedure call A. main then by using the finite case-distinction we can prove the following equalities:

Pr[b d; r ← A. main(b, i) @ m: M r] = μ1 d true · Pr[r ← A. main(false, i) @ m: M r]
+ μ1 d true · Pr[r ← A. main(true, i) @ m: M r]
= sum (λ b. μ1 d b · Pr[r ← A. main(x, i) @ m: M r])

Below, we state and prove a general version of averaging for an arbitrary distribution d : rt D which might have an infinite support:

lemma averaging : ∀ m i d,
Pr[x d; r ← A. main(x, i) @ m: M r] = lim (λ x. μ1 d x · Pr[r ← A. main(x, i) @ m: M r]).

Proof. The standard library of EasyCrypt provides a lemma summable_cnvto which states that if there exists a family of duplicate-free lists (L n), so that as n goes to infinity the expression ∑ε∈(L n) f x has a limit then sum (λ x. f x) equals to that limit. Therefore, to prove the averaging lemma it remains to show the following convergence:

have averaging_conv : ∀ m i d,
∃ (L : int → rt D),
Pr[x d; r ← A. main(x, i) @ m: M r] = lim (λ n. ∑ε∈(L n) μ1 d x · Pr[r ← A. main(x, i) @ m: M r])

The proof of averaging_conv we start by showing that if in the event of the probability expression we additionally require that the elements sampled from d must belong to a duplicate-free list xs then this probability can be rewritten as a finite sum of the respective probabilities of elements of list xs. This is proved by induction on the list xs:

have averaging_fin : ∀ m i d xs, uniq xs ⇒ Pr[x d; r ← A. main(x, i) @ m: M r] = lim (λ n. ∑ε∈(L n) μ1 d x · Pr[r ← A. main(x, i) @ m: M r])

Next, we use the finite probabilistic approximation of distribution d (from Sec. 3.2) to get a family of duplicate-free lists (L n) so that:

have fin_approx_d : ∀ m i d, ∀ (ϵ : real), ∃ (n : int), Pr[x d; x /∈ L n] < ϵ.

According to the definition of lim, to prove averaging_conv we need to show that for any value ϵ there exists a list (L n) so that the following difference:

Pr[x d; r ← A. main(x, i) @ m: M r] - ∑ε∈(L n) μ1 d x · Pr[r ← A. main(x, i) @ m: M r]

is less than ϵ. To achieve that, we use fin_approx_distr to get the respective list (L n) and finish the proof of averaging_conv by arguing as follows:

Pr[x d; r ← A. main(x, i) @ m: M r] = Pr[x d; r ← A. main(x, i) @ m: M r ∧ x /∈ (L n)]
+ Pr[x d; r ← A. main(x, i) @ m: M r ∧ x /∈ (L n)]
≤ Pr[x d; r ← A. main(x, i) @ m: M r ∧ x /∈ (L n)]
+ Pr[x d; x /∈ (L n)]
≤ ∑ε∈(L n) μ1 d x · Pr[r ← A. main(x, i) @ m: M r] + ϵ.

□
3.4 Jensen’s Inequality

Jensen’s inequality is another well-known result which is widely used in cryptography. In general, it relates the value of a convex function of an integral/sum to the integral/sum of the convex function. In the context of probability theory, it is generally stated in the following form: if \(X \) is a distribution, \(g \) maps elements of \(X \) to reals, and \(f \) is convex then \(f(E X (g X)) \leq E X (f \circ g) \). Here, \(E X \) is an expected value and \(\circ \) denotes function composition.

We prove a slightly restricted version of Jensen’s inequality. In particular, we assume that on the support of \(X \) the function \(g \) takes values in an interval between some parameter-values \(a \) and \(b \) and that \(f \) takes values in an interval between parameter-values \(c \) and \(d \) if \(a \leq x \leq b \). Also, the standard assumptions are that \(f \) is convex, that the distribution \(X \) is lossless (i.e., \(\mu X (\lambda x. \text{true}) = 1 \)), and that the expectations \(E X (g X) \) and \(E X (f \circ g) \) exist.

\[
\text{lemma Jensen_inf ['a]} : \quad \forall (X : 'a D) \quad g f (\sigma a b c d : \text{real}) \quad \text{is_lossless X} \Rightarrow \exists (X : 'a D) \quad g f (\sigma a b c d : \text{real})
\]

(The EasyCrypt standard library derives Jensen’s inequality for distributions with \text{finite} support only.)

3.5 Reflection of Composition

In this section we address the probabilistic reflection of the sequential composition of programs. For example, let us analyze the program: \(r_1 \leftarrow A.ex() ; A.ex2(r_1) \). We can use the \text{reflection_simple} lemma from Sec. 3.1 to get access to a distribution \(D_{12} \) such that:

\[
\forall m M, \mu D_{12} G^\sigma_m M \Rightarrow \text{Pr}[r_1 \leftarrow A.ex(); A.ex2(r_1) @ m : M G^\sigma_m].
\]

The distribution \(D_{12} \) corresponds to a composite program as a whole. However, being able to reflect the distribution corresponding to a composite program is not enough to enable reasoning about composite programs based on the properties of its components; we do not know how \(D_{12} \) is related to \(A.ex1 \) and \(A.ex2 \) separately.

In the following, we prove a lemma for reflection of composition which allows us to show that there exist distributions \(D_1 \) and \(D_2 \) which are the probabilistic reflection of procedures \(A.ex1 \) and \(A.ex2 \), and that the composition of \(D_1 \) and \(D_2 \) is \(D_{12} \). So, the main goal is to prove lemmas that allow us to derive the distribution of a more complex program from the distributions which correspond to its components.

In EasyCrypt, the composition of distributions is implemented as an operator \text{dlet} which has the following type: \('a D \rightarrow ('a \rightarrow 'b D) \rightarrow 'b D \). Intuitively, the distribution \(\text{dlet} d_1 \ d_2 \) could be described imperatively as: \(x_1 \leftarrow d_1 \; ; \; x_2 \leftarrow d_2 \; x_1 \; ; \; \text{return} \; x_2 \).

We can formally state the theorem of reflection of composition as follows:

\[
\text{lemma refl_comp_simple :} \quad \exists (D_1 : G \rightarrow (r_1 \times G) D) \quad (D_2 : G \rightarrow r_1 \rightarrow G A D),
\]

\[
\forall m M, \mu \text{dlet} D_1 D_2 G^\sigma M \Rightarrow \text{Pr}[r_1 \leftarrow A.ex1(); A.ex2(r_1) @ m : M G^\sigma].
\]

We give only a rough sketch of the proof. First, by using the \text{reflection} lemma from Sec. 3.1 we get distributions \(D_1 \) and \(D_2 \) which correspond to procedures \(A.ex1 \) and \(A.ex2 \), respectively. Next, we use pRHL reasoning to prove that the imperative composition of \(D_1 \) and \(D_2 \) corresponds to composition of \(A.ex1 \) and \(A.ex2 \):

\[
\text{Pr}[x_1 \leftarrow D_1 \; ; \; x_2 \leftarrow D_2 \; x_1 @ m : M x_2] = \text{Pr}[r_1 \leftarrow A.ex1(); A.ex2(r_1) @ m : M G^\sigma].
\]

Finally, we prove that the imperative composition of \(D_1 \) and \(D_2 \) corresponds to their declarative composition, namely, \(\text{dlet} D_1 D_2 \).

\[
\text{Pr}[x_1 \leftarrow D_1 \; ; \; x_2 \leftarrow D_2 \; x_1 @ m : M G^\sigma] = \mu \text{dlet} D_1 D_2 G^\sigma M.
\]

This step uses averaging (see Sec. 3.3). In EasyCrypt formalization we prove a stronger lemma \text{refl_comp} which generalizes \text{refl_comp_simple} in the following aspects:

- The procedures \(A.ex1 \) and \(A.ex2 \) take all-quantified arguments \(i_1 \) of type \(at_1 \) and \(i_2 \) of type \(at_2 \), respectively. As a result, the distributions \(D_1 \) and \(D_2 \) also become parameterized by values of types \(at_1 \) and \(at_2 \), respectively.
- The distribution \(D_2 \) over \(g \) is over pairs \((r, G^\sigma) \) of output of \(A.ex2 \) and final memory (not just the final memory).
- In the event part of the probability expression (i.e., \(\text{Pr}[... : M (r_1, r_2, G^\sigma)] \)) we allow the predicate \(M \) to depend on the \(r_1 \) (output of \(A.ex1 \)), \(r_2 \) (output of \(A.ex2 \)), and the final memory \(G^\sigma \) (not just the final memory).

In EasyCrypt, we prove the following general version of reflection of composition:

\[
\text{lemma refl_comp :} \quad \exists (D_1 : at_1 \rightarrow G \rightarrow (r_1 \times G A D)) \quad (D_2 : at_2 \rightarrow r_1 \times G \rightarrow (r_2 \times G A D)),
\]

\[
\forall m M i_1, \mu (\text{dlet} D_1 D_2 G^\sigma M) \Rightarrow \text{Pr}[r_1 \leftarrow A.ex1(i_1); A.ex2(i_2, r_1) @ m : M (r_1, r_2, G^\sigma)].
\]
Here, \((\text{dmap } d f)\) denotes the distribution of \((f \ x)\) for \(x \sim d\).

4 Rewinding

In Sec. 1, we briefly explained that rewinding is a commonly used technique which allows one module (i.e., program) to save a state of another module and also restore that state at some later time. More precisely, we say that a module \(A\) is rewindable iff:

1. There exists an injective mapping \(f\) from \(G_A\) to some parameter type \(sbits\).
2. The module \(A\) must have a terminating procedure \(\text{getState}\), so that whenever \(A.\text{getState}\) is called from the state \(g : G_A\), the result of the call must be equal to \((f \ g)\) and the state of \(A\) must not change.
3. The module \(A\) must have a terminating procedure \(\text{setState}\), so that whenever it is given an argument \(x : sbits\), so that \(x = f \ g\) for some \(g : G_A\) then \(A\) must be set into a state \(g\).

In EasyCrypt, we start formalizing this definition by defining a module type \(\text{Rew}\) for rewindable programs:

```plaintext
module type Rew = {
  proc getState () : sbits
  proc * setState(s : sbits) : unit
}.
```

(Here, the symbol \(*\) indicates that the procedure \(\text{re}initializer\) all global variables of a module.)

We formalize the rewinding properties of \(\text{getState}\) and \(\text{setState}\) procedures as a predicate \(\text{RewProp}\) on modules typeable as \(\text{Rew}\). Unfortunately, in EasyCrypt we cannot define an operator like \(\text{RewProp}\) because its definition depends on a module which is not allowed. As a result, in the actual EasyCrypt code the workaround is to copy-and-paste the verbose definition of \(\text{RewProp}(A)\). This reduces readability, but is conceptually the same.

```plaintext
op RewProp(A : Rew) : bool =
  \exists (x y : G_A, \text{inj}\ f \wedge
  (\forall m, \text{Pr}[r \leftarrow A.\text{getState}()] @ m:
    g_A^{f(A)} = g_A^r \land r = f g_A^r] = 1) \land
  (\forall m (g : G_A), \text{Pr}[A.\text{setState}(f g) @ m:
    g_A^{f(A)} = g] = 1) \land \text{islossless A.setState}.
```

(\text{In EasyCrypt, } \text{islossless X.p expresses that the procedure } p \text{ of module } X \text{ must terminate on all inputs.})

Then, whenever we do a proof using rewinding, we will need to explicitly assume that our adversary \(A\) satisfies property \(\text{RewProp}(A)\), or, equivalently, quantify only over adversaries of module type \(\text{Rew}\) satisfying \(\text{RewProp}(A)\).

The first litmus test of our definition of rewinding is to show that modules without global variables are (trivially) rewindable. For a module without global variables, \(G_A\) will be a singleton type (i.e., \(\forall (x y : G_A), x = y\)). Then we can generically state that \(A\) will be rewindable, as long as we implement \(\text{getState}\) and \(\text{setState}\) as terminating procedures (it does not matter what they do):

```plaintext
lemma no_globs_rew : \forall (x <: \text{Rew}),
  (\forall (x y : G_A), x = y)
  \implies \text{islossless A.getState \land islossless A.setState}\n  \implies \text{RewProp}(A).
```

On the necessity of the \text{RewProp} axiom. The reader may wonder whether adding the explicit assumption in a security proof that the adversary \(A\) satisfies \(\text{RewProp}(A)\) does not weaken the security proof. After all, it means that security only holds with respect to such adversaries, but not with respect to adversaries that do not satisfy \(\text{RewProp}(A)\).

We argue that \(\text{RewProp}(A)\) is not a true restriction of the adversary, merely a requirement that the adversary has a certain interface with certain properties. The only actual restriction about the inner workings of the adversary that \(\text{RewProp}(A)\) makes is that the adversary’s state can be encoded as a sequence of bits \((sbits)\). Usually, in cryptography, we make even stronger assumptions about the adversary, namely that its state is a sequence of bits (or a Turing machine tape). In contrast, here we only assume that its state can be encoded as a sequence of bits.

We stress that we only need to make this assumption for abstract (i.e., all-quantified) adversaries. For adversaries that we explicitly construct as part of a reduction, we can actually prove \(\text{RewProp}\), see the next section.

4.1 Transformations

Cryptographic proofs are commonly based on transformations of adversaries (or reduction of adversaries). In EasyCrypt, a transformation is a module which receives other modules as parameters, defines its own global variables, and has procedures which can call procedures of its parameter-modules. Typically, one of the parameter-modules will be the original adversary.

In this section, we show how to prove rewinding of a module which is parameterized by rewindable modules and which has at most countable state. We illustrate this by implementing a module \(T\) which is parameterized by rewindable modules \(A\) and \(B\) and has a global variable \(x\) of a parameter type \(ct\). As a result, the global state of module \(T(A,B)\) consist of variable \(T.x\) and all global variables of modules \(A\) and \(B\) (i.e., \(G_{T(A,B)} = ct \times G_A \times G_B\)). Since, by the definition of rewinding, we need to embed elements of type \(G_{T(A,B)}\) into \(sbits\) then we parameterize our development by an injection from \(ct\) to \(sbits\):

```plaintext
op ct_sbits : ct \rightarrow sbits.
axiom bcu : \text{inj}\ ct_sbits.
```
The multiplication rule from probability theory states that the probability of independent events occurring simultaneously is found by multiplying the probabilities of each event.

In terms of probabilistic programs it is natural to say that an execution of a procedure \(P \).run is independent of an execution of \(Q \).run if after termination of \(P \).run the state of \(Q \) is not affected. In EasyCrypt, it is easy to prove the multiplication rule for modules with disjoint states:

\[
\text{lemma rew_mult_simple : } \forall (P :> \text{Runnable}) (Q :> \text{Runnable}(P)) \cdot M_1 M_2 i_1 i_2, \quad \Pr[r_1 \leftarrow P.\text{run}(i_1); r_2 \leftarrow Q.\text{run}(i_2) @ m: M_1 r_1 \land M_2 r_2] = \Pr[r_1 \leftarrow P.\text{run}(i_1) @ m: M_1 r_1] \cdot \Pr[r_2 \leftarrow Q.\text{run}(i_2) @ m: M_2 r_2].
\]

However, if we need independent runs of the procedure(s) of the same module then we need rewinding. Recall, that the main goal of rewindability is to be able to restore the state of a module after running one of its procedures. Let \(A \) be a rewindable module (i.e., \(A \) satisfies \(\text{RewProp}(A) \)) with procedures \(\text{ex}_1 \) and \(\text{ex}_2 \) which take all-quantified arguments \(i_1: \text{at}_1 \) and \(i_2: \text{at}_2 \) and compute results \(r_1: \text{rt}_1 \) and \(r_2: \text{rt}_2 \), respectively. Let us analyze the following program:

1. Save the initial state of \(A \) by \(s \leftarrow A.\text{getState()} \).
2. Run the procedure \(r_1 \leftarrow A.\text{ex}_1(i_1) \).
3. Restore the initial state by calling \(A.\text{setState}(s) \).
4. Run the procedure \(r_2 \leftarrow A.\text{ex}_2(i_2) \).

First, we analyze the steps (1)–(3) as a standalone program. In particular we must show that the \(\text{getState} \) and the \(\text{setState} \) calls do not affect the result computed by \(A.\text{ex}_1 \) procedure and also show that the final state of \(A \) equals to its initial state.

\[
\text{lemma rew_clean : } \forall m M_1 i_1, \quad \Pr[s \leftarrow A.\text{getState}(); r_1 \leftarrow A.\text{ex}_1(i_1); \quad A.\text{setState}(s) @ m: M_1 r_1 \land \mathcal{G}_A = \mathcal{G}_A^\text{fin}] = \Pr[r_1 \leftarrow A.\text{ex}_1(i_1) @ m: M_1 r_1].
\]

(The proof requires only basic pHL tactics and rewindability axioms.) This result allows us to derive the multiplication rule which states that the probability of a joint event \(M_1 r_1 \land M_2 r_2 \) for the program (1)–(4) on memory \(m \) equals to the product of probabilities of events \(M_1 r_1 \) and \(M_2 r_2 \) occurring after independent runs of \(A.\text{ex}_1 \) and \(A.\text{ex}_2 \) on \(m \), respectively. In EasyCrypt this is stated as follows:

\[
\text{lemma rew_multLaw : } \forall m M_1 M_2 i_1 i_2, \quad \Pr[s \leftarrow A.\text{getState}(); r_1 \leftarrow A.\text{ex}_1(i_1); \quad A.\text{setState}(s); r_2 \leftarrow A.\text{ex}_2(i_2) @ m: M_1 r_1 \land M_2 r_2] = \Pr[r_1 \leftarrow A.\text{ex}_1(i_1) @ m: M_1 r_1] \cdot \Pr[r_2 \leftarrow A.\text{ex}_2(i_2) @ m: M_2 r_2].
\]

In its essence, \(\text{rew_multLaw} \) is derived by a single call to the built-in \(\text{seq} \) tactic.

Commutativity. In its turn, the multiplication rule opens for us an easy route to proving commutativity for rewindable modules. Consider a program consisting of steps (1)–(4)–(3)–(2) (i.e., \(A.\text{ex}_1 \) and \(A.\text{ex}_2 \) calls are swapped). We can prove that it computes the same distribution of pairs \((r_1, r_2) \) as the program (1)–(4).

\[
\text{lemma rew_comm_law : } \forall m M_1 i_1 i_2, \quad \Pr[s \leftarrow A.\text{getState}(); r_1 \leftarrow A.\text{ex}_1(i_1); \quad A.\text{setState}(s); r_2 \leftarrow A.\text{ex}_2(i_2) @ m: M_1 r_1 \land M_2 r_2] = \Pr[s \leftarrow A.\text{getState}(); r_2 \leftarrow A.\text{ex}_2(i_2) @ m: M_2 r_2].
\]
A.setState(s); r₂ ← A.ex₂(i₂) @ m: M (r₁, r₂)]

= \Pr[s ← A.getState(); r₂ ← A.ex₂(i₂);
A.setState(s); r₁ ← A.ex₁(i₁) @ m: M (r₁, r₂)].

By using the combination of byequiv and bypr tactics we reduce the above lemma to a point-wise equality of programs:

have aux1 : ∀ x₁, x₂,

Pr[s ← A.getState(); r₁ ← A.ex₁(i₁);
A.setState(s); r₂ ← A.ex₂(i₂) @ m
: r₁ = x₁ ∧ r₂ = x₂]

= Pr[s ← A.getState(); r₂ ← A.ex₂(i₂);
A.setState(s); r₁ ← A.ex₁(i₁) @ m
: r₁ = x₁ ∧ r₂ = x₂].

Then:

have aux2 : ∀ x₁, x₂,

Pr[s ← A.getState(); r₁ ← A.ex₁(i₁);
A.setState(s); r₂ ← A.ex₂(i₂) @ m
: r₁ = x₁ ∧ r₂ = x₂]

= Pr[r₁ ← A.ex₁(i₁) @ m : r₁ = x₁] // rew_mult

• Pr[r₂ ← A.ex₂(i₂) @ m : r₂ = x₂]

• Pr[r₂ ← A.ex₂(i₂) @ m : r₂ = x₂] // comm of

• Pr[r₁ ← A.ex₁(i₁) @ m : r₁ = x₁]

= Pr[s ← A.getState(); r₂ ← A.ex₂(i₂);
A.setState(s); r₁ ← A.ex₁(i₁) @ m
: r₁ = x₁ ∧ r₂ = x₂]. // rew_mult

(In the second invocation of rew_mult, the procedure names ex₁ and ex₂ are exchanged. Since lemmas in EasyCrypt are not parametric in the procedure names, we achieve this by using a wrapper module.)

In the actual EasyCrypt formalization, we prove a slightly more general version of commutativity for rewirable modules. In particular, we allow the program to start with a call to B.init (which might not be disjoint from A). As a result of this change, the proof starts by reflecting the composition of B.init with the rest of the program and then using the lemma rew_comm_law_simple.

lemma rew_comm_law : ∀ m M i₀,

Pr[r₀ ← B.init(i₀); s ← A.getState();
 r₁ ← A.ex₁(r₀); A.setState(s);
 r₂ ← A.ex₂(r₀) @ m: M (r₀, r₁, r₂)]

= Pr[r₀ ← B.init(i₀); s ← A.getState();
 r₂ ← A.ex₂(r₀); A.setState(s);
 r₁ ← A.ex₁(r₀) @ m: M (r₀, r₁, r₂)].

Note that the reflection of composition relies on “averaging technique” which relies on finite probabilistic approximation (see Sec. 3).

4.3 Rewinding with Initialization

In Thm. 1.1 we sketched a derivation of the equation which is needed to prove sum-binding property for commitments (see Sec. 5). More specifically, we analyzed a program which starts with an explicit state initializer, saves the resulting state of module A, runs a procedure A.run for the first time, restores the saved state, and then runs the A.run procedure for the second time. We proved that the probability of a success (according to some predicate) in two sequential runs of A.run is lower-bounded by a square of probability of a success in a “initialize-then-run” case (i.e., initialize the state and execute the A.run procedure once).

In EasyCrypt, we derive a similar equation, but for a more general case:

• The initialization is done with a procedure B.init, where B is a module with a state which can possibly intersect with the state of module A.

• The initialization produces a result r₀ of a parameter type which is then supplied to A.run.

• The procedure B.init receives all-quantified argument i of a parameter type.

• The procedure A.run returns a result of a parameter type rt. The success of a run is defined by a parameter predicate M(r₀, r₁), where r₀ and r₁ are the values returned by B.init and A.run procedures, respectively.

The EasyCrypt statement of the lemma is as follows:

\[
\begin{align*}
\text{lemma rew_with_init : } & \forall m M i, \\
& \Pr[r₀ ← B.init(i); s ← A.getState(); \\
& r₁ ← A.run(r₀); A.setState(s); \\
& r₂ ← A.run(r₀) @ m: M (r₀, r₁) \land M (r₀, r₂)] \\
& \geq \Pr[r₀ ← B.init(i); r ← A.run(r₀) @ m: M (r₀, r)]^2.
\end{align*}
\]

We skip the proof as it roughly follows the steps sketched in Thm. 1.1.

5 Case Study: Coin-Toss Protocol

As a case study for our techniques we prove the security of a coin-toss protocol based on bit-commitment. Historically, Blum described the problem of coin-toss protocol with the following example: Alice and Bob are recently divorced, living in two separate cities, and want to decide who gets to keep the car. To decide, Alice wants to flip a coin over the telephone. However, Bob is concerned that if he were to tell Alice the result of his coin toss, she would adjust hers and automatically tell him that she wins. Thus, the problem with Alice and Bob is that they do not trust each other; the only resource they have is the telephone communication channel, and there is not a third party available to read the coin [10].

In the following, we describe the coin-toss protocol based on a bit-commitment scheme which is similar to the original Blum’s solution to the coin-toss problem:

1. Alice chooses a random bit r₁ and then generates a commitment c containing that bit (let d be the respective opening).
2. Alice sends the commitment c to Bob.
3. Bob chooses a random bit r₂ and sends it to Alice.
4. Alice opens her commitment by sending the bit r₁ and the opening d to Bob.
5. Bob verifies that d is a valid opening of r_1 for c. Otherwise Bob aborts.
6. Alice and Bob compute the final bit as r_1 + r_2 (xor).

The coin-toss protocol must ensure the following property: if at least one of the parties correctly generates a random bit, then the final bit will be (nearly) random.

Security of the coin-toss is almost immediate if the commitment scheme satisfies a property called "sum-binding" in [18]. This property says that the probability of Alice opening the commitment to false and the probability of Alice opening it to true add to at most 1 (plus a negligible error). This property in turn is implied by the usual "computationally binding" property which says that Alice cannot open to both false and true simultaneously (except with negligible probability). Showing that "computationally binding" implies "sum-binding", however, requires rewinding. Therefore that proof is a prime candidate for our case-study. (In the post-quantum setting, for example, computationally binding is only a shortcut notation.) This illustrates that this seemingly trivial implication is not as easy as it might seem, and that we indeed need rewinding here.)

5.1 Commitments

The standard library of EasyCrypt defines the module type CommitmentScheme which requires a scheme S to implement the following procedures:

1. p ← S.gen() generates the public key of a commitment scheme (also known as the public parameters).
2. (c, d) ← S.commit(p, m) produces commitment-opening pair for a message m and a public key p.
3. b ← S.verify(p, m, c, d) returns b = true iff d is a valid opening for message m, commitment c, and public key p.

For our development, we additionally require the existence of a verification function Ver (an “operator” in EasyCrypt parlance) which must agree with the procedure S.verify on all arguments:

\[
\text{axiom verify-det : } \forall m a, \quad \Pr[r \leftarrow S.\text{verify}(a) \mid m: r = \text{ver} a] = 1.
\]

This means that verification is side-effect free (and deterministic). Otherwise, two runs of the verification algorithm could interfere with each other (and with calls to S.commit) and give different results.

In cryptography, a commitment scheme is called computationally binding iff the probability that adversary A can produce a commitment with openings of two different messages is negligible. The EasyCrypt standard library defines a module type Binder with a single procedure bind; we can then define the probability of success of adversary A : Binder in the "binding-game":

\[
\text{op binding_pr}(A, m) = \Pr[p \leftarrow S.\text{gen}(); \quad (c, m_1, d_1, m_2, d_2) \leftarrow A.\text{bind}(p); \quad v_1 \leftarrow S.\text{verify}(p, m_1, c, d_1); \quad v_2 \leftarrow S.\text{verify}(p, m_2, c, d_2) \mid m: v_1 \land v_2 \land m_1 \neq m_2].
\]

(Here, binding_pr is only a shortcut notation used in this text.) Hence, scheme is binding iff binding_pr(A, m) is negligible for all A and m.

Sum-Binding. Next we define the “sum-binding” property of commitments. Let A be an adversary and p_R be a probability that A can open the commitment to contain b given input b = false, true. The commitment scheme is sum-binding iff for all such adversaries the p_R + p_L ≤ 1 + ϵ, where ϵ is negligible. We define a module type SumBinder with procedures commit and open. Then we define the probability of success of adversary A : SumBinder in the "sum-binding-game":

\[
\text{op sum_binding_pr}(A, m) = \Pr[p \leftarrow S.\text{gen}(); \quad c \leftarrow A.\text{commit}(p); \quad d \leftarrow A.\text{open}(false); \quad v \leftarrow S.\text{verify}(p, false, c, d) \mid m: v]
\]

(And, sum_binding_pr is only a shortcut notation.) Hence, scheme is sum-binding if and only if for all A and m, there exists a negligible ϵ, so that we can show that sum_binding_pr(A, m) ≤ 1 + ϵ. Before addressing the sum-binding property for commitments, we prove a more generic sum-binding inequality which shows that the sum of probabilities of success of independent runs of arbitrary procedures A.ex_1 and A.ex_2 is related to the probability of joint success in the same run. More specifically, assume that module A is rewindable and B.init is some initialization procedure. We let p_1 be the probability that after initialization the procedure A.ex_1 succeeds according to some predicate M (similarly for p_2 and A.ex_2, mutatis mutandis). In this case, we can prove that the sum of probabilities p_1 + p_2 is upper-bounded by a sum 1 + 2 · q, where q is the probability that A.ex_1 and A.ex_2 both succeed in the same run (i.e., both starting from the same initial state produced by B.init). In EasyCrypt, we state this equation as follows:

Lemma sum_binding-generic: \[\forall m M i, \quad \Pr[r_0 \leftarrow B.\text{init}(i); \quad r \leftarrow A.\text{ex}_1(r_0) \mid @m: M \mid r] \leq 1 + 2 \cdot \Pr[r_0 \leftarrow B.\text{init}(i); \quad r \leftarrow A.\text{ex}_2(r_0) \mid @m: M \mid r] \]

The proof revolves around the rew_with _init inequality.

Proof. Let us define the following shortcut-notification:

\[P_j = \Pr[r_0 \leftarrow B.\text{init}(i); \quad r \leftarrow A.\text{ex}_1(r_0) \mid @m: M \mid r]. \]

\[P_k = \Pr[r_0 \leftarrow B.\text{init}(i); \quad s \leftarrow A.\text{getstate}(s)]. \]

\[P_k = \Pr[r_0 \leftarrow B.\text{init}(i); \quad s \leftarrow A.\text{getstate}(s)] \]

This generic lemma may also be useful when analyzing extractors for proof of knowledge protocols with two challenges, e.g., the zero-knowledge protocols for Hamiltonian cycles [11] and graph isomorphism [12].
where both
\[R(A) \]
To prove
\[f \]
A. ex \(_j\) (in EasyCrypt, we implement A. ex \(_j\) using the if-then-else construct). \(P_{j,k}\) denotes a probability of a joint success of a run of procedures \(A. ex \(_j\)(r_0)\) and \(A. ex \(_k\)(r_0)\) from the same initial state. \(P_5\) denotes a success of a run of a procedure \(A. ex \(_j\)\) where \(j\) is sampled uniformly from \(\{1,2\}\). Finally, \(P_{SS}\) denotes a probability of a joint success of a run of procedures \(A. ex \(_j\)\) and \(A. ex \(_k\)\), where both \(j\) and \(k\) are uniformly sampled from \(\{1,2\}\).

Using our notation, the statement of the lemma \(\text{sum_binding_generic}\) can be therefore expressed as:

\[
\text{have } \text{goal} : P_1 + P_2 \leq 1 + 2 \cdot P_{12}.
\]

Before continuing with the proof we list some basic facts about these definitions:

\[
\begin{align*}
\text{have } f_1 &: P_5 = 1/2 \cdot (P_1 + P_2). \\
\text{have } f_2 &: P_{SS} = 1/4 \cdot (P_{11} + P_{12} + P_{21} + P_{22}). \\
\text{have } f_3 &: \forall x y, P_3 \geq P_{xy} \\
\text{have } f_4 &: P_{SS} \geq P^2
\end{align*}
\]

The facts \(f_1\) and \(f_2\) are by case analysis. The fact \(f_3\) is by event inclusion. The fact \(f_4\) is by rewinding with initialisation equation \(\text{rew_with_init}\) derived in Sec. 4.3.

To prove the goal we first derive an equation which connects \(P_{12}\) and \(P_{21}\) to \(P_1\) and \(P_2\):

\[
\text{have } \text{aux} : P_{12} + P_{21} \geq P_1 + P_2 - 1.
\]

To prove \(\text{aux}\) we argue as follows:

\[
\begin{align*}
P_{12} + P_{21} &= 4 \cdot (1/4 \cdot (P_{12} + P_{21} + P_{11} + P_{22}) \\
&\quad - 1/4 \cdot (P_{11} + P_{22})) \quad \text{// math} \\
&= 4 \cdot (P_{SS} - 1/4 \cdot (P_{11} + P_{22})) \quad \text{// } f_2 \\
&\geq 4 \cdot (P_{SS} - 1/4 \cdot (P_1 + P_2)) \quad \text{// } f_3 \\
&= 4 \cdot (P_{SS} - 1/2 \cdot P_1) \quad \text{// } f_4 \\
&\geq 2 \cdot P_3 - 1 \quad \text{// math} \\
&= P_1 + P_2 - 1. \quad \text{// } f_1
\end{align*}
\]

Finally, the goal is concluded by using the \(\text{aux}\) inequality and observing that \(P_{12} = P_{21}\) (due to commutativity rule \(\text{rew_comm_law}\), see Sec. 4.2).

Equipped with the generic sum-binding inequality, we can now finish the proof that binding commitment schemes are also sum-binding. We start by implementing a reduction \(R(A)\) which runs \(A. \text{commit}\) (to produce the commitment), stores the state of \(A\), runs \(A. \text{open}(\text{false})\) (to produce the first opening), restores the state of \(A\), and runs \(A. \text{open}(\text{true})\) (to produce the second opening). Then we show that the probability that \(R(A)\) produces two valid openings (i.e., breaks binding) is lower-bounded in terms of the probability that \(A\) is successful in producing one valid opening.

\[
\text{module } R(A : \text{SumBinder}) : \text{Binder} = \\
\quad \text{proc } \text{bind}(p : \text{pubkey}) = \\
\quad \quad \text{var } c, s, d_1, d_2; \\
\quad \quad c \leftarrow A. \text{commit}(p); \\
\quad \quad s \leftarrow A. \text{getState}(); \\
\quad \quad d_1 \leftarrow A. \text{open}(\text{false}); \\
\quad \quad A. \text{setState}(s); \\
\quad \quad d_2 \leftarrow A. \text{open}(\text{true}); \\
\quad \quad \text{return } (c, \text{false}, d_1, \text{true}, d_2); \\
\}
\]

Next, we implement wrapper-modules \(B\) and \(A'\), so that \(B. \text{init}\) is a wrapper around the "commitment initialization" phase \(p \leftarrow S. \text{gen}(); c \leftarrow A. \text{commit}(p)\). The procedure \(A'.ex_1\) is defined as \(A. \text{open}(\text{false})\), and \(A'.ex_2\) as \(A. \text{open}(\text{true})\). In this case, sum-binding for commitments becomes an immediate consequence of the inequality \(\text{sum_binding_generic}\) and we can conclude:

\[
\text{lemma } \text{commitment_sum_binding} : \forall m, \\
\text{sum_binding_pr}(A, m) \leq 1 + 2 \cdot \text{binding_pr}(R(A), m).
\]

5.2 Coin-Toss Protocol

Recall, that a coin-toss protocol is considered secure if it is ensured that if at least one of the parties correctly generates a random bit then the final bit will be (nearly) random.

In the first case, we assume that Alice is honest and Bob is cheating. To simplify this case, we additionally assume that the commitment scheme is perfectly hiding. This means that Bob gets no information about \(r_1\) after receiving the commitment \(c\). Therefore, if Alice follows the protocol honestly and \(r_1\) is uniformly random and independent of \(r_2\) (due to the perfect hiding) then the bit \((r_1 \oplus r_2)\) is also uniformly random. (The case of cheating Bob does not involve rewinding and is therefore not the focus of this paper.)

In the second case, we are left to show that if Bob honestly follows the protocol, then for any Alice (adversary \(A : \text{CoinTossAlice}\)) the resulting bit is nearly uniform. Below we assume that module type \(\text{CoinTossAlice}\) requires a module to have procedures \(\text{commit}\) and \(\text{toss}\), where \(\text{commit}\) produces a commitment \(c\), and \(\text{toss}\) gets a Bob's bit \(r_2\) as an argument and then computes a bit together with its opening for \(c\). We write \(\text{coin_toss_pr}(A, m, b)\) to denote a probability of \(A\) being able to open the commitment to Boolean \(b\).
We define $B_r(A)$ and $B_t(A)$ as the transformations of coin-toss adversary into an adversary that breaks binding for the cases $b = \text{false}$ and $b = \text{true}$, respectively:

```plaintext
//getState and setState procedures are skipped
module $B_t(A : \text{CoinTossAlice}) : \text{SumBinder} =$
  proc commit(p : pubkey) = {
    return A.commit(p);
  }
  proc open(x : bool) = {
    var d, r1;
    (r1,d) ← A.toss(x);
    return d;
  }
}

module $B_t(A : \text{CoinTossAlice}) : \text{SumBinder} =$
  proc commit(p : pubkey) = {
    return A.commit(p);
  }
  proc open(x : bool) = {
    var d, r1;
    (r1,d) ← A.toss(not x);
    return d;
  }
}
```

$B_r(A)$ delegates the commitment generation to A and when asked to open a commitment to bit x then x is submitted to $A.\text{toss}$ and the resulting opening is returned. $B_t(A)$ is different in that the negation of x is submitted to $A.\text{toss}$. Finally, we can derive that if Bob is honest then for any Alice the resulting bit is nearly uniform.

Lemma coin_toss_alice: $\forall m b, \text{coin_toss_pr}(A,m,b) \leq 1/2 + \text{max binding_pr}(R(B_t(A)),m)$.

Proof: We start the proof with analysis of the case when $b = \text{true}$ (i.e., $r_1 \oplus r_2 = \text{true}$). We prove that this case is upper-bounded by $1/2 + \epsilon$, where ϵ is the probability of breaking the binding of S by $R(B_t(A))$.

```
have coin_toss_alice_t : coin_toss_pr(A,m,true) \leq 1/2 + \text{binding_pr}(R(B_t(A)),m).
```

We prove this case by arguing as follows:

```
1/2 * (Pr[p ← S.gen(); c ← A.commit(p);
      (r1,d) ← A.toss(false) @ m:
      Ver (p,r1,c,d) ∧ r1 \oplus r2 = \text{true}]
+ Pr[p ← S.gen(); c ← A.commit(p);
      (r1,d) ← A.toss(true) @ m:
      Ver (p,r1,c,d) ∧ r1 \oplus r2 = \text{true}])
```

6 Conclusions

In this paper we focused on probabilistic reflection and rewinding of adversaries. First, we implemented a powerful toolkit for probabilistic reflection which includes finite-probabilistic approximation, averaging, and reflection of composition inside EasyCrypt. Second, we described a notion of rewindable adversaries and derived their basic properties: transformations, multiplicity rule, commutativity, rewinding with initialization. Third, by combining these results together we were able to derive a generic sum-binding equation for arbitrary rewindable computations. Fourth, we instantiated the sum-binding property for commitments and proved that if a commitment scheme is binding then it is also sum-binding. Finally, we used this result to prove the security of a bit-commitment based coin-toss protocol.

To the best of our knowledge, probabilistic reflection, rewindable adversaries, and security of a coin-toss protocol have not yet been addressed in theorem provers.

Acknowledgments

This work was partially supported by the ESF-funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001) and by the ERC consolidator grant CerQuS (819317), by the Estonian Centre of Excellence in IT (EXCITE) funded by ERDF, by PUT team grant PRG946 from the Estonian Research Council.

Index

ambient logic, 4
axiom (keyword), 4
bind (in Binder), 13
Binder (module type), 13
binding game, 13
binding_pr (abbreviation), 13
References

