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Abstract. This paper describes Djed, an algorithmic stablecoin proto-
col that behaves like an autonomous bank that buys and sells stablecoins
for a price in a range that is pegged to a target price. It is crypto-backed
in the sense that the bank keeps a volatile cryptocurrency in its reserve.
The reserve is used to buy stablecoins from users that want to sell them.
And revenue from sales of stablecoins to users are stored in the reserve.
Besides stablecoins, the bank also trades reservecoins in order to capi-
talize itself and maintain a reserve ratio significantly greater than one.
To the best of our knowledge, this is the first stablecoin protocol where
stability claims are precisely and mathematically stated and proven. Fur-
thermore, the claims and their proofs are formally verified using two
different techniques: bounded model checking, to exhaustively search for
counter-examples to the claims; and interactive theorem proving, to build
rigorous formal proofs using a proof assistant with automated theorem
proving features.

1 Introduction

In the narrowest sense, a stablecoin is a cryptocurrency that has its price pegged
to a fiat currency (e.g. USD) and is fully backed by reserves denominated in the
same fiat currency. More broadly, a stablecoin can be defined as a digital asset that
has mechanisms to maintain a low deviation of its price from a target price. Since
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the invention of bitcoin and other cryptocurrencies, a major obstacle for their wider
adoption and recognition as proper currencies, particularly as means of exchange and
units of account, has been the instability (volatility) of their price in relation to fiat
currencies. Stablecoins aim to overcome this obstacle.

Various mechanisms can contribute to a stablecoin’s stability. Ultimately, they are
all grounded on the basic economic principles of supply and demand. If demand for
buying/selling stablecoins is higher than the current supply of sale/purchase orders,
this supply must be increased to avoid an increase/decrease in the stablecoin’s price.

Backing the stablecoins by reserves and using these reserves to actively buy and sell
stablecoins for prices close to the target price is currently the most common mechanism.
This mechanism is not exclusive to stablecoins; it can be seen in pegged national
currencies such as the HKD (Hong Kong Dollar). Centrally operated fiat-pegged fiat-
backed stablecoins such as USDT and USDC use variations of this mechanism that
may differ, for instance, on the actual composition of the reserves and with whom
the operator interacts to buy and sell stablecoins. As long as the stablecoin is fully
backed by reserves in the currency to which it is pegged and the operator can react
quickly enough to variations in the demand, it is easy to see that stability will be
guaranteed. Typically, the reserves will not be kept all in cash in a vault, safe or bank
account, but rather at least partly in interest-bearing financial instruments such as
bonds. The returns from such investments provide revenue for the operator. The risks
associated with these investments may imply that the stablecoin may eventually lose
its full-backing, compromising the stability in the long-term. Lack of liquidity of these
investments may cause the operator to be unable to react quickly enough to changes
in demand, compromising the stability in the short-term. Another source of revenue
are the fees or spread practiced when buying and selling the stablecoin. For example,
if the operator sells USDT for 1.005 USD and buys USDT for 0.995 USD, it has a
revenue of 1 cent for every USDT that it buys and then sells, while keeping the price
stable within the range from 0.995 and 1.005.

The main drawback of fiat-backed stablecoins is that they require trust on the en-
tities keeping the reserves. This is not only a theoretical concern. Lack of transparency
about the reserves and skepticism about its full-backing claim, combined with ineffi-
cient stabilization measures by Tether, have actually already caused USDT to trade
for at least as low as 0.91 USD.

Interestingly, issues related to transparency of the reserves do not arise when the
backing asset is a cryptocurrency on a public blockchain. Furthermore, issues related to
the inefficient and unreliable execution of stabilization measures can be eliminated by
implementing the stabilization mechanisms as smart contracts that are automatically,
reliably and transparently executed.

This paper describes Djed: a crypto-backed algorithmic stablecoin contract. Djed
acts as an autonomous bank, keeping a reserve R of BaseCoins (BCs), and minting and
burning StableCoins (SCs) and ReserveCoins (RCs). It maintains the peg of the SCs
to a target price by buying and selling SCs, using its reserve. While doing so, it charges
fees and accumulates them in its reserve. The beneficiaries of this revenue stream are
ultimately the RC holders, who contribute with additional funds to the reserve and
take the risk of price fluctuation.

First a simpler version, Minimal Djed, is defined in Section 2. This version is de-
signed to be as intuitive and straightforward as possible, while still being stable, safe
and secure, as shown in Section 3. However, as discussed in Section 4, it still suffers
from some non-critical minor issues. A more complex version, Extended Djed, is defined
in Section 5. It addresses some of the known minor issues from Minimal Djed, but is



more complex. Several stability properties are stated and proven as theorems in Section
3 . Sections 6 and 7 describe and discuss the formal verification of the theorems and
proofs using, respectively, model checking and interactive theorem proving techniques.
Current implementations of Djed are briefly discussed in Section 8. Section 9 discusses
related work, with a focus on three algorithmic stablecoins that were influential in the
design of Djed.

2 Minimal Djed

The target price of an SC is denoted P tSC . For example3, in the case of a stablecoin
pegged to some peg currency PC (e.g. EUR, USD, . . . ):

P tSC = X PC
BC BC (1)

where X PC
BC is the price of 1 unit of the peg currency in BCs.

Because Djed’s reserve may be insufficient to buy back all stablecoins for the target
price, Djed sets the actual price PSC of SCs according to the following equation:

PSC =

{
P tSC if NSC = 0

min(P tSC ,
R
NSC

) otherwise
(2)

where NSC is the number of stablecoins in circulation.

The portion of Djed’s reserve that would need to be used to buy back all stablecoins
is known as its liabilities:

L(NSC ) = NSCPSC (3)

Because PSC is volatile, Djed strives to keep a high reserve ratio:

r(R,NSC ) =
R

L(NSC )
(4)

Djed does so by having aminimum reserve ratio rmin and disallowing users from buying
SCs or selling back RCs if, after these actions, r(R,NSC ) < rmin . To prevent dilution for
the RC holders, Djed also has a maximum reserve ratio rmax and disallows users from
buying more RCs if, before or after the purchase, r(R,NSC ) > rmax ; unless NSC < N∗SC ,
where N∗SC is the threshold number of stablecoins parameter4. Note that, even though

3 Djed does not need to be pegged to a fiat currency. It just needs a target price.
The target price could be a weighted average of the price of a volatile asset, a stock
index, an inflation index, . . .

4 The main purpose of this parameter is to allow users to buy reservecoins, and hence
contribute to the quick growth of the reserve, soon after initialization. If it were
not for this, it is easy to see that users would be able to buy neither stablecoins
nor reservecoins right after initialization when NSC = 0 and NRC = 0. Moreover,
this parameter also allows a quick re-initialization in the unlikely event that all
stablecoins and reservecoins are sold back and a state where NSC = 0 and NRC = 0
is reached again.



Djed disallows some types of purchases and sales when the reserve ratio is above the
maximum or below the minimum, the reserve ratio may still go above the maximum
or below the minimum due to price fluctuations.

The reserve surplus is Djed’s equity :

E(R,NSC ) = R− L(NSC ) (5)

Djed’s equity is shared equally among RC holders, and thus the target price of RCs is:

P tRC (R,NSC , NRC ) =
E(R,NSC )

NRC

(6)

where NRC is the number of RCs in circulation.

However, the target price is undefined when NRC = 0 and a price equal to 0 when
E(R,NSC ) = 0 would be problematic, because users would be able to buy an arbitrary
number of RCs without any cost. Therefore, Djed sets the actual buying price P bRC

according to the following equation:

P bRC (R,NSC , NRC ) =

{
max (P tRC , P

min
RC ) if P tRC is defined

Pmin
RC otherwise

(7)

where Pmin
RC is a parameter of Djed.

From the user’s point of view, there are 4 actions:

Action User Sends User Receives Condition56

Buy SCs n(1 + fee)PSC n SCs r(R,NSC ) ≥ rmin

Sell SCs n SCs n(1− fee)PSC

Buy RCs n(1 + fee)P bRC n RCs r(R,NSC ) ≤ rmax or NSC < N∗SC
Sell RCs n RCs n(1− fee)P tRC r(R,NSC ) ≥ rmin

Djed has 3 state variables (R, NSC , NRC ) and 5 parameters (rmin , rmax , fee, N∗SC , Pmin
RC ).

The parameters are assumed to be set to values that satisfy the following constraints:
rmin > 1 + fee; rmax ≥ rmin ; 0 < fee ≤ 1; N∗SC > 0; Pmin

RC > 0.
Djed also depends on one (and only one) external variable: the oracle exchange

rate X PC
BC . The models and formalizations assume that X PC

BC > 0. This is a reasonable
assumption7, because X PC

BC = 0 (or, worse, X PC
BC < 0) would imply that the value of the

peg currency has collapsed. In such cases, a stablecoin pegged to it would be worthless
anyway.
5 The conditions must hold before and after the actions.
6 The conditions in the table are stated in a way to ease readability and intuitive
understanding. However, note that the calculation of the reserve ratio potentially
involves a division by zero. Implementations should circumvent this issue by using the
standard technique of multiplying both sides of the inequation by the denominator
of the reserve ratio. Thus, for instance, the condition r(R,NSC ) ≥ rmin should be
understood and implemented as R ≥ L(NSC )rmin .

7 In practice, depending on how much the implementation trusts the oracle, it would
be important to check this assumption when receiving data from the oracle.



3 Stability Properties

Minimal Djed enjoys several stability properties. The first one is that, in the normal
reserve ratio range where purchases and sales are not restricted8, users have no incentive
to trade stablecoins outside the peg range in a secondary market.

Theorem 1 (Peg Maintenance - Upper Bound). If r(R,NSC ) > rmin + ε (for a
sufficiently large ε) and a user u wants to sell a stablecoin in the secondary market for
a price P such that P > (1 + fee)P tSC , then there is no rational user u∗ who would buy
from u.

Proof. Assume, for the sake of contradiction, that such a rational u∗ exists. Then u∗

would have had two options: to buy a stablecoin from u for P ; or to buy a stablecoin
directly from the bank for P ′ where P ′ = (1 + fee)PSC . Note that the second option
is available because, for a sufficiently large ε, the post-action condition for the action
of buying stablecoins from the bank holds. By definition of PSC , P ′ < (1 + fee)P tSC .
Therefore, buying directly from the bank for P ′ would have been less costly than buying
from u for P , and would have been the preferred option for a rational user. Hence u∗

is irrational. ut

Theorem 2 (Peg Maintenance - Lower Bound). If r(R,NSC ) > 1 and a user
u wants to buy a stablecoin in the secondary market for a price P such that P <
(1− fee)P tSC , then there is no rational user u∗ who would sell to u.

Proof. Assume, for the sake of contradiction, that such a rational u∗ exists. Then u∗

would have had two options: to sell a stablecoin to u for P ; or to sell a stablecoin
directly to the bank for P ′ where P ′ = (1− fee)PSC . By definition of PSC and the fact
that r(R,NSC ) > 1, P ′ = (1 − fee)P tSC . Therefore, selling directly to the bank for P ′

would have been more profitable than selling to u for P , and would have been the
preferred option for a rational user. Hence u∗ is irrational. ut

The second stability property is that stablecoins remain pegged despite market crashes
up to a magnitude that depends on the reserve ratio.

Theorem 3 (Peg Robustness during Market Crashes). If NSC > 0, r is the
current reserve ratio, x and x′ are the exchange rates before and after the crash, r > 1,
then the bank can tolerate a basecoin price crash of r−1

r
and the new stablecoin price

would still be P tSC .

Proof. By the definition of PSC , the peg is maintained as long as P tSC ≤ R
NSC

. By
the definition of P tSC , reserve ratio and liabilities, this inequation can be simplified to
x′ ≤ rx. Since x and x′ are the exchange rates of 1 unit of pegged currency in BCs,
the exchange rates of 1 BC in pegged currency are 1

x
and 1

x′ . The inequation can then
be rewritten as y′ ≥ y

r
. Therefore, y−y

′

y
≤ r−1

r
. ut

Another crucial property is that the bank never becomes insolvent, which is a condition
defined by having negative equity.

8 In practice, there are other factors beyond the reserve ratio that may restrict inter-
action of the user with the bank, such as blockchain congestion and high blockchain
transaction fees. Such factors would have an effect on the ability of the bank to
maintain the peg range in secondary markets.



Theorem 4 (No Insolvency). In all bank states and for any exchange rate,
E(R,NSC ) ≥ 0.

Proof. By definition, E(R,NSC ) = R − L(NSC ) = R − NSCPSC . By the definition of
PSC , there are 3 cases to consider:

– NSC = 0: in this case, E(R,NSC ) = R− 0P tSC = R and R ≥ 0.
– NSC 6= 0 and R

NSC
≤ P tSC : in this case, E(R,NSC ) = R−NSC

R
NSC

= 0.
– NSC 6= 0 and R

NSC
> P tSC : in this case, E(R,NSC ) = R−NSCP

t
SC . Since R

NSC
> P tSC ,

it must be the case that E(R,NSC ) > R−NSC
R
NSC

. Therefore, E(R,NSC ) > 0.
ut

Another important property is that, provided that the exchange remains constant, the
bank is never in a state susceptible to bank runs where stablecoin holders would feel
incentivized to race against each other to sell their stablecoins.

Theorem 5 (No Bank Runs for Stablecoins). Let u1 and u2 be two stablecoin
holders. Let P 1

SC be the price of stablecoins obtained by u1 by selling its stablecoins back
to the bank. Let P 2

SC be the price of stablecoins obtained by u2 by selling its stablecoins
back to the bank. Assume, without loss of generality, that u2’s sale occurs after u1’s
sale. Then, in all bank states and for any constant exchange rate, P 2

SC ≥ P 1
SC .

Proof. Firstly, note that the sale of stablecoins back to the bank is never restricted
by a post-action condition. Therefore, it cannot be the case that the sale by u1 would
bring the bank to a state where u2’s sale would be blocked. Let q be the quantity of
stablecoins sold by u1 and R1 be the reserve after the sale by u1. Then, following the
definition of PSC , there are two cases to consider:

– P 1
SC = P tSC : in this case, P tSC ≤ R

NSC
and R1 = R− q(1− fee)P tSC . Then:

P 2
SC = min

(
P tSC ,

R− q(1− fee)P tSC
NSC − q

)
Using the fact that P tSC ≤ R

NSC
, we have that:

R− q(1− fee)P tSC
NSC − q

≥
R− q(1− fee) R

NSC

NSC − q

Simplifying, we obtain:

R− q(1− fee)P tSC
NSC − q

≥ R

NSC

NSC − q + qfee

NSC − q

And hence:
R− q(1− fee)P tSC

NSC − q
≥ R

NSC

Therefore:
P 2

SC = P tSC = P 1
SC

– P 1
SC = R

NSC
: in this case, P tSC ≥ R

NSC
and R1 = R− q(1− fee) R

NSC
. Then:

P 2
SC = min

(
P tSC ,

R− q(1− fee) R
NSC

NSC − q

)
We now have two cases:



• P 2
SC = P tSC : in this case, P 2

SC > P 1
SC .

• P 2
SC =

R−q(1−fee) R
NSC

NSC−q
: in this case, simplifying, we have P 2

SC = R
NSC

NSC−q+qfee
NSC−q

and therefore P 2
SC ≥ P 1

SC .
ut

The following theorem shows that, provided that the exchange rate remains constant,
the equity per reservecoin always increases.

Theorem 6 (Monotonically Increasing Equity per Reservecoin). Assuming
that the exchange rate remains constant and NRC > 0, for every action a, E(Ra,Na

SC )

Na
RC

≥
E(R,NSC )
NRC

, where Ra, Na
SC , Na

RC > 0 are respectively, the reserve, number of stablecoins
and number of reservecoins after action a.

Proof. There are 4 cases:

– Buy n SCs. In this case, E(Ra,Na
SC )

Na
RC

=
R+n(1+fee)PSC−(NSC+n)Pa

SC
NRC

. By the assump-
tion of constant exchange rate and given that P aSC = PSC (due to restriction of the
buying operation if PSC < P tSC ) we have that E(Ra,Na

SC )

Na
RC

= R−NSCPSC+nfeePSC
NRC

>
R−NSCPSC

NRC
= E(R,NSC )

NRC
.

– Sell n SCs. In this case, E(Ra,Na
SC )

Na
RC

=
R−n(1−fee)PSC−(NSC−n)Pa

SC
NRC

. It is easy to

see that inequality R−n(1−fee)PSC−(NSC−n)Pa
SC

NRC
≥ R−NSCPSC

NRC
= E(R,NSC )

NRC
holds if

n(1 − fee)PSC + (NSC − n)P aSC ≤ NSCPSC . We will prove the latter for 2 different
cases:
• If PSC = R

NSC
≤ P tSC : given that P aSC ≤ Ra

Na
SC

, we can define P aSC = Ra

Na
SC
γ for

some γ ∈ (0, 1]. Provided that Ra = R−n(1−fee) R
NSC

and doing substitutions
we have:

n(1− fee)
R

NSC

+ (NSC − n)
R− n(1− fee) R

NSC

NSC − n
γ ≤ NSC

R

NSC

,

n(1− fee)

NSC

(1− γ) ≤ 1− γ,

which holds due to NSC > n(1− fee).
• If PSC <

R
NSC

: first let’s show that R
NSC

< Ra

Na
SC

. Given that PSC <
R
NSC

we can

define PSC = R
NSC

σ for some σ ∈ (0, 1). Hence, Ra

Na
SC

=
R−n(1−fee) R

NSC
σ

NSC−n
. Then

we have:

R

NSC

<
R− n(1− fee) R

NSC
σ

NSC − n
, 1 <

NSC − n(1− fee)σ
NSC − n

,

which is true due to n > n(1 − fee)σ. From R
NSC

< Ra

Na
SC

follows that PSC =

P aSC = P tSC , hence we have that:

n(1− fee)P tSC + (NSC − n)P tSC ≤ NSCP
t
SC ,

which holds due to NSC − n+ n(1− fee) ≤ NSC .



– Buy n RCs. First let’s show that R < Ra. It is easy to see given that Ra =
R + n(1 + fee)P bRC , where P bRC ≥ Pmin

RC > 0. Then, by definition of PSC , it holds
that PSC = min(P tSC ,

R
NSC

) ≤ P aSC = min(P tSC ,
Ra

NSC
). Now we will prove the theorem

for 2 different cases:
• If PSC = R

NSC
≤ P tSC : in this case P aSC ≤ Ra

Na
SC

, hence we can define P aSC = Ra

Na
SC
γ

for some γ ∈ (0, 1]. Note that from PSC = R
NSC

follows that E(R,NSC ) =

R−NSC
R
NSC

= 0. Making substitutions we have:

E(Ra, Na
SC )

Na
RC

=
Ra −Na

SCP
a
SC

Na
RC

≥ E(R,NSC )

NRC

,

R+ n(1 + fee)P bRC −NSC
R+n(1+fee)P b

RC
NSC

γ

NRC + n
≥ 0,

(R+ n(1 + fee)P bRC )(1− γ)
NRC + n

≥ 0,

which holds due to (1− γ) ≥ 0.
• If PSC < R

NSC
: in this case PSC = P aSC = P tSC . By definition P bRC ≥ R−NSCPSC

NRC

and given that R − NSCPSC > 0 we can define P bRC = R−NSCPSC
NRC

α for some
α ≥ 1. Making substitutions we have:

E(Ra, Na
SC )

Na
RC

=
R+ n(1 + fee)P bRC −NSCPSC

NRC + n
≥ R−NSCPSC

NRC

=
E(R,NSC )

NRC

,

R−NSCPSC

NRC + n
+
n(1 + fee)R−NSCPSC

NRC
α

NRC + n
≥ R−NSCPSC

NRC

,

NRC

NRC + n
+
n(1 + fee)α

NRC + n
≥ 1,

NRC + n(1 + fee)α

NRC + n
≥ 1,

which holds given that α ≥ 1.
– Sell n RCs. Given that Ra = R − n(1 − fee)P tRC , where P tRC = R−NSCPSC

NRC
≥

0, it follows that R ≥ Ra. Then, by definition of PSC , it holds that PSC =
min(P tSC ,

R
NSC

) ≥ P aSC = min(P tSC ,
Ra

NSC
). Note that the Sell RC operation is allowed

only if r(Ra, Na
SC ) ≥ rmin, hence P aSC = P tSC and PSC = P tSC . Making substitutions

we get:

E(Ra, Na
SC )

Na
RC

=
R− n(1− fee)P tRC −NSCP

t
SC

NRC − n
≥ R−NSCP

t
SC

NRC

=
E(R,NSC )

NRC

,

R−NSCP
t
SC

NRC − n
−
n(1− fee)R−NSCP

t
SC

NRC

NRC − n
≥ R−NSCP

t
SC

NRC

,

NRC

NRC − n
− n(1− fee)

NRC − n
≥ 1,

NRC − n(1− fee)
NRC − n

≥ 1,

which holds due to n(1− fee) ≤ n.
ut

As a corollary, the bank is therefore never subject to draining of its reserves by malicious
users, provided that the exchange rate remains constant.



Theorem 7 (No Reserve Draining). Assuming that the exchange rate remains
constant, for any initial bank state (R0, N0

SC , N
0
RC ), there is no sequence of actions

a1, a2, . . . , an that would bring the bank to a state (Rn, Nn
SC , N

n
RC ) such that Rn < R0,

Nn
SC = N0

SC and Nn
RC = N0

RC , assuming N i
SC > 0, N i

RC > 0 for all i ∈ {0..n− 1}.

Proof. We will consider two separate cases:

– If E(R0, N0
SC ) > 0: assume, for the sake of contradiction, that such a sequence

exists. Then note that the equity per reservecoin after the sequence of actions
would be smaller than the equity per reservecoin before the sequence of actions.
Therefore, the assumption leads to a contradiction with Theorem 6.

– If E(R0, N0
SC ) = 0: note that in this case P 0

SC = R0

N0
SC

. Let’s first prove that for any

action a it holds that Ra

Na
SC
≥ R0

N0
SC

. There are 4 different actions to consider:

• Sell RCs and Buy SCs are disallowed if E(R0, N0
SC ) = 0 (due to r < rmin).

• Buy RCs: in this case Ra > R0 and Na
SC = N0

SC , hence Ra

Na
SC

> R0

N0
SC

holds.

• Sell SCs: in this case Ra = R0−n(1−fee) R0

N0
SC

, where n is the number of sold
SCs, hence

R0 − n(1− fee) R0

N0
SC

N0
SC − n

≥ R0

N0
SC

,
N0

SC − n(1− fee)
N0

SC − n
≥ 1,

which holds due to n(1− fee) ≤ n.
Now, let assume, for the sake of contradiction, that there is a sequence a1, a2, . . . , an
such that Rn < R0, Nn

SC = N0
SC and Nn

RC = N0
RC . In this case Rn

N0
SC

< R0

N0
SC

, which
contradicts the just proved statement.
Note that if the sequence contains ai, i ∈ [1, n] such that equity becomes
E(Ri, N i

SC ) > 0, any further aj , j > i would make it zero again as it contradicts
Theorem 6. Hence, Rn < R0 and Nn

SC = N0
SC is impossible in this case due to

E(Rn, Nn
SC ) > E(R0, N0

SC ).
ut

And, finally, the dilution to which reservecoin holders may be subject is bounded.

Theorem 8 (Bounded Dilution). Assuming that NSC ≥ N∗SC and provided that the
exchange rate and the number of stablecoins NSC > 0 remains constant, if P bRC is the
current price of reservecoins, NRC > 0 is the current number reservecoins and R is the
current reserve, then the maximum number of RCs that can be bought additionally is
rmaxNSCP

t
SC−R

(1+fee)P b
RC

(or 0 if this number is negative).

Proof. Let’s consider an operation a to buy n reservecoins such that ra = rmax is
the reserve ratio after the operation. Given that ra = Ra

NSCP
a
SC

, where Ra = R +

n(1 + fee)P bRC , we can find the maximum number n of RCs to be bought from the
equation R+n(1+fee)P b

RC
NSCP

a
SC

= rmax . Provided that ra = rmax > 1 it follows that P aSC = P tSC

and, thus, n =
rmaxNSCP

t
SC−R

(1+fee)P b
RC

. Note that splitting operation a into two (or more)

operations will not yield more reservecoins as the price P bRC monotonically grows for
every operation (see Theorem 6). ut



4 Known Minor Issues of Minimal Djed

The design of Minimal Djed described in Section 2 is the result of a non-trivial com-
promise between attempting to satisfy many desirable properties and taming the com-
plexity that tends to arise from such an attempt. The outcome is an intentionally
simple solution that addresses major stability concerns, as demontrated in Section 3.
However, this simple solution is susceptible to a few known minor issues. These minor
issues are addressed in Extended Djed, described in Section 5, which is significantly
more complex, but retains the same stability principles as Minimal Djed.

The known minor issues are:

– Reserve Draining Attack with Price Foresight: a variation of Theorem 7
dropping the assumption of constant exchange rate does not hold. A malicious user
who can foresee how the exchange rate will evolve, perhaps because of an excessive
oracle delay or active price manipulation, can perform sequences of actions that
will drain the bank’s reserves.

– Wholesale Discount: in Minimal Djed the price is fixed before the action. But
every action changes the balance of reserves and SCs/RCs and hence affects the
future price. Therefore, the total price paid (or received) for a given quantity of
SCs or RCs depends on how this quantity is bought or sold. For example, assuming
constant exchange rate, buying 10 RCs at once is cheaper than buying 10 RCs in
two consecutive purchase of 5 RCs each.

– Zero equity: when the reserve ratio falls to one, the equity falls to zero making
the target price of RCs also zero. To avoid purchase of an unlimited number of
RCs with price equal to zero, a minimal price was introduced. The problem of this
simple fix is that the artificially set minimal price might be inconsistent with the
market price, discouraging users from buying RCs in times it is most needed. For
example, if P tRC = 5 BCs and Pmin

RC = 10 BCs, then users might not want to pay
10 BCs for a coin that is backed by 5 BCs.

– Rigid Fees: the pricing model doesn’t allow to increase or decrease fees smoothly
to encourage operations that drive the reserve ratio to an optimal level and to
discourage operations that drive it away from the optimum.

– “Haircut” for Stablecoin Holders: when the peg is lost, the SC holders suffer
financial losses. Minimal Djed does not have mechanisms to cover these losses.

– RC Bank Runs: the analogue of Theorem 5 for reservecoins does not hold. When
the reserve ratio is close to rmin , RC holders may feel encouraged to race against
each other to sell their RCs, because every RC sale brings the reserve ratio closer
to rmin and further sales of RC would be blocked when rmin is reached, and they
do not want to be blocked.

5 Extended Djed

Section 4 raises a number of minor issues with the Minimal Djed construction. In this
section we present Extended Djed aiming to overcome those issues. The core principles
remain the same: the contract keeps a reserve R of basecoins allowing minting and
burning stablecoins and reservecoins. The difference with Minimal Djed is the modified
pricing model that introduces additional features helping to solve identified problems.

The same notations and definitions are used as in Section 2 except a few differ-
ences. Previously, the liabilities were defined as L(NSC ) = NSCPSC (Eq. (3)). In this



section we will call L(NSC ) normalized liabilities. In contrast, we define target liabili-
ties Lt(NSC ) = NSCP

t
SC , which represent the full amount of debt owed to stablecoins

holders if the bank were to buy back stablecoins for the target price instead of the
actual price. Importantly, the reserve ratio is redefined as r = R

Lt . Additionally, we
introduce system parameters ropt and rpeg (ropt > rpeg ≥ 1) denoting, correspondingly,
the optimal reserve ratio and the minimal reserve ratio for which the stablecoin’s price
peg holds. Finally, fee0 defines the base fee in the system (analogous to fee in Minimal
Djed).

In the following sections we often omit arguments of functions and simply write,
for instance, Lt or L for better readability.

We start by defining equations for the nominal price of stablecoins and reservecoins.
These equations are the base for pricing specific operations. The nominal price shows
amount of basecoins worth of one stablecoin or one reservecoin respectively.

The nominal price of a stablecoin is defined as follows:

PSC = k · P tSC , k = min(1,
r

rpeg
), (8)

where k ∈ (0, 1] is a coefficient that maintains the peg between the value of the sta-
blecoin and corresponding pegged currency. When k = 1, stablecoins are worth their
intended target price. If r < rpeg , k becomes less than one meaning that at this point
the peg is lost. If rpeg is configured to be more than one, the stablecoins start to lose
their peg even before the bank becomes under-capitalized.

The nominal price of a reservecoin is defined as follows:

PRC =
R − L

NRC
, L = NSCPSC , (9)

where L is normalized liabilities. Note that L = k · Lt .
Given that E = R− L is the equity of the bank shared among reservecoin holders,

we can see that once the reserve ratio falls below rpeg , a part of the target liabilities
Lt (determined by k) is converted to equity. This is done to prevent equity and, cor-
respondingly, the reservecoin price falling to zero when the peg is lost eliminating the
need to introduce a minimal price for reservecoins. Fig. 1 shows the dependence of
the stablecoin and reservecoin nominal prices on the reserve ratio. As can be seen, the
dependence is refracted at point r = rpeg so that the reservecoin price approaches zero
gradually as r approaches zero.

The ultimate goal of the pricing model is to incentivize users to keep the reserve
ratio at an optimal level. In this case, the system is considered to be at an equilibrium
that provides robust stability for stablecoin holders and attractive rewards for reserve-
coin holders. To achieve this goal, the extended model introduces dynamic fees that
are increased for operations that shift the reserve ratio away from the optimum and
decreased for operations that bring it closer to the optimum.

Recall that there are four types of operations:

1. Buy SCs – mints new stablecoins increasing reserves but decreasing reserve ratio.
2. Sell SCs – burns stablecoins paying back from reserves; increases the reserve ratio.
3. Buy RCs – mints new reservecoins increasing both reserves and reserve ratio, but

dilutes relative shares of existing reservecoin holders.
4. Sell RCs – burns reservecoins paying back from reserves; decreases the reserve

ratio and enlarges relative shares of existing reservecoin holders.

The following subsections define precise prices for particular types of operations.



Fig. 1. Stablecoin (on the left) and reservecoin (on the right) prices depending on the
reserve ratio. The price is normalized by the target price (i.e., P sc = PSC

P t
SC

, P rc = PRC

P t
SC

).
It is assumed the reserve ratio is changed due to exchange rate fluctuations.

5.1 Price for Buying Reservecoins

The price of buying one reserve coin is defined as follows:

Pbuy
rc = PRC · (1 + fee(R)), (10)

fee(R) =

fee0 + krm · R−Lt ·ropt
Lt ·ropt

, if r ≥ ropt ,

fee0, if r < ropt ,

where krm is a system parameter defining a linear correlation coefficient between the
reserves deviation from the optimal level and fee deviation from fee0.

fee(R) defines the dynamic fee dependent on the current reserve ratio. Provided
that the reserve ratio is increased when RCs are bought, the fee is minimized when
r < ropt and linearly grows if r ≥ ropt (see Fig. 2). By carefully configuring krm it is
possible to discourage reservecoins buying by imposing a high fee (up to 100%) when
the reserve ratio grows too much, thus eliminating the need to have an explicit rmax

bound as in Minimal Djed.
Given that the nominal price of a reservecoin depends on the current amount of

reserves and amount of already issued reservecoins, it means that it is changed after
each new reservecoin is bought.

Thus, if a user wants to buy N reservecoins, the price for each coin i ∈ [0, N − 1]
should be calculated iteratively:

Pbuy
rc,i =

Ri − Li

NRCi

(1 + fee(Ri)),

Li =

Lt , if ri ≥ rpeg ,

Ri
rpeg

, if ri < rpeg ,
NRCi = NRC0 + i, Ri+1 = Ri + Pbuy

rc,i ,

where

– Ri – the amount of basecoins in reserve just before buying coin i;
– NRCi – the amount of reservecoins just before buying coin i;
– ri – the reserve ratio just before buying coin i (ri = Ri

Lt );



Fig. 2. The dependence of a reservecoin buying fee on the reserve ratio. Because a
buying operation increases the reserve ratio, the fee linearly increases when the current
reserve ratio is above the optimum and stays at the base level fee0 when it is below.

– R0, NRC0 – the initial amounts of reserves and reservecoins before the operation
begins.

Then, the total price for N coins is:

Pbuy
rc (N) =

N−1∑
i=0

Pbuy
rc,i =

N−1∑
i=0

Ri − Li

NRCi

(1 + fee(Ri)). (11)

Such iterative price recalculation for every coin allows to prevent price manipulations
by combining several buying operations together, thus making the overall operation
cheaper. But iterative calculation might be expensive, especially if we consider its
implementation in a smart contract. Reducing the equation to a closed form without
the cycle in the discrete setting seems infeasible, but can be done in the continuous
setting. The basic idea is to assume that each coin is divisible into infinite number of
pieces (so that each piece approaches zero) and to recalculate the price after buying
each smallest piece. In such a setting we are in the field of mathematical analysis
which allows to derive the needed function. See the details of deriving formulas in the
continuous setting in Appendix A.

5.2 Price for Selling Reservecoins

When reservecoins are sold, price calculation follows the same pattern as for buying.
The base price is defined as follows:

P sell
rc = PRC · (1− fee(R)), (12)

fee(R) =

fee0 + krr · L
t ·ropt−R

Lt ·ropt
, if r < ropt ,

fee0, if r ≥ ropt ,

where krr is a system parameter.
The sold reservecoins are burned and corresponding amount of basecoins is returned

to a user from the reserve.
As in the buying case, fee(R) defines the dynamic fee dependent on the current

reserve ratio. But in this case the fee linearly grows if the reserve ratio is below the
optimum, because the operation further decreases it (see Fig. 3).



Fig. 3. The dependence of the reservecoin selling fee on the reserve ratio. Because the
operation decreases reserves, the fee linearly decreases when the current reserve ratio
is below the optimum and stays at the minimal level fee0 when it is above.

If a user sells N reservecoins, the price for each coin i ∈ [0, N − 1] is calculated as
follows:

P sell
rc,i =

Ri − Li

NRCi

(1− fee(Ri)),

Li =

Lt , if ri ≥ rpeg ,

Ri
rpeg

, if ri < rpeg ,
NRCi = NRC0 − i, Ri+1 = Ri − Pbuy

rc,i ,

Then, the total amount of returned basecoins for selling N reservecoins is:

P sell
rc (N) =

N−1∑
i=0

P sell
rc,i =

N−1∑
i=0

Ri − Li

NRCi

(1− fee(Ri)). (13)

Equation (13) requires iterative price calculation, we can apply similar techiques
and consider reservecoins selling in the continuous setting to simplify the equation. See
full details of derivation in Appendix B.

5.3 Price for Buying Stablecoins

The base price of buying one stablecoin is defined as follows:

Pbuy
sc = PSC · (1 + fee(R,NSC )), (14)

fee(R,NSC ) =

fee0 + ksm · L
t ·ropt−R

Lt ·ropt
, if r < ropt ,

fee0, if r ≥ ropt ,

where ksm is a system parameter and Lt = NSCP
t
SC .

Similarly to other operations, fee(R,NSC ) defines the dynamic fee. In case of buying
stablecoins, the reserve ratio is decreased, so the fee is increased when the current ratio
is below the optimum and stays at the minimum level fee0 otherwise (the behaviour of
fee(R,NSC ) is analogous to as in the case of selling reservecoins (see Fig. 3)).

Assuming that buying stablecoins is not allowed if r < rpeg (either due to raising
fees to 100% or due to a hard stop limit), the equation can be simplified:

Pbuy
sc = P tSC · (1 + fee(R,NSC )), (15)



Even though the nominal price does not depend on reserves (if r ≥ rpeg), the
dynamic fee calculation does, so the fee is slightly changed as each subsequent coin is
bought. Thus, if a user wants to buy N stablecoins, the price for each coin i ∈ [0, N−1]
is calculated iteratively:

Pbuy
sc,i = P tSC · (1 + fee(Ri,NSCi )), Ri+1 = Ri + Pbuy

sc,i , NSCi = NSC0 + i

where R0 is the initial amount of reserves.
Then, the total price for buying N stablecoins is:

Pbuy
sc (N) =

N−1∑
i=0

Pbuy
sc,i =

N−1∑
i=0

P tSC · (1 + fee(Ri,NSCi )). (16)

The continuous setting is considered in Appendix C.

5.4 Price for Selling Stablecoins

The amount of basecoins to be returned for selling one stablecoin is defined as follows:

P sell
sc = PSC · (1− fee(R,NSC )), (17)

fee(R,NSC ) =

fee0 + ksr · R−Lt ·ropt
Lt ·ropt

, if r > ropt ,

fee0, if r ≤ ropt ,

where ksr is a system parameter and Lt = NSCP
t
SC .

Given that stablecoins selling increases the reserve ratio, fee(R,NSC ) grows if the
ratio is above the optimal level to discourage further distancing (the behaviour of
fee(R,NSC ) is the same as in the case of reservecoins buying, see Fig. 2).

Note that the nominal price of stablecoins remains constant while r ≥ rpeg . If
r < rpeg , the stablecoins lose their value according to the coefficient k defined by (8).

Similarly to other operations, the price of selling N stablecoin is calculated itera-
tively for each coin i ∈ [0, N − 1]:

P sell
sc,i = k(ri) · P tSC · (1− fee(Ri,NSCi )), (18)

k(ri) = min(1,
ri
rpeg

) = min(1,
Ri

NSCi · P tSC · rpeg
),

Ri+1 = Ri − P sell
sc,i , NSCi = NSC0 − i.

Then, the total amount of returned basecoins is:

P sell
sc (N) =

N−1∑
i=0

P sell
sc,i =

N−1∑
i=0

k(ri) · P tSC · (1− fee(Ri,NSCi )). (19)

The continuous setting is considered in Appendix D.



5.4.1 Debt-for-equity swaps. Since keeping the value of stablecoins is an ulti-
mate goal of the system, it is undesirable to cut it when r < rpeg without any compen-
sation. Thus, it is suggested to compensate a user with reservecoins on the equivalent
amount of retained basecoins. This exchange resembles what is known as "debt-for-
equity swaps" in the traditional financial world.

The number of compensated reservecoins for one sold stablecoin is defined as fol-
lows:

S sell
sc =

(1− k(r)) · P tSC
PRC

· (1− fee0), (20)

where k(r) = min(1, r
rpeg

) as defined by Eq. (8).
Note that if r ≥ rpeg , a user will receive zero reservecoins as the stablecoin value

is fully returned. If 1 ≤ r < rpeg , the compensated amount of reservecoins is fully
backed by retained basecoins so its value and nominal price is preserved. But if r < 1,
to compensate full value of a stablecoin, the system will have to mint new reserve-
coins without sufficient backing by retained basecoins which will dilute its value (and,
correspondingly, decrease the nominal price).

The amount of compensated reservecoins should be calculated iteratively for every
sold stablecoin. Thus, if a user wants to sell N stablecoins, the number of reservecoins
returned for each stablecoin i ∈ [0, N − 1] is calculated as follows:

S sell
sc,i =

(1− k(ri)) · P tSC
PRC ,i

· (1− fee0),

PRC ,i =
Ri − Li

NRCi

, Li = k(ri) · P tSC ·NSCi , NRC i+1 = NRC i + S sell
sc,i ,

where Ri, k(Ri) and NSCi are defined by (18).
Then, the total amount of compensated reservecoins for selling N stablecoins is:

S sell
sc (N) =

N−1∑
i=0

S sell
sc,i =

N−1∑
i=0

(1− k(ri)) · P tSC ·NRCi

Ri − k(ri) · P tSC ·NSCi

· (1− fee0). (21)

Due to dilution of reservecoins with every sold stablecoin, in this case it is even
more important to consider the continuous setting (see details in Appendix D).

6 Model-Checking Djed’s Stability Properties

In order to ensure that the Minimal Djed requirements are sufficient to guarantee
stability, the stablecoin contract is formalized in an extension of the Lustre syn-
chronous dataflow language [1] as an infinite-state system. The Kind2 SMT-based
model checker [2] is used to validate the stability properties. It takes as input one or
more Lustre files annotated with the properties to be verified and outputs whether
each property is satisfied or not. In particular, Bounded Model Checking (BMC) [3] is
used for detecting any property violation. The search for an execution trace leading to
a violation starts from the set of possible initial states of the system. A counterexample
is generated whenever a property is not satisfied. Concretely, BMC determines whether
a counterexample at a given discrete time step k exists for a property P by verifying
the following propositional formula:

bmc(k) ≡ I(x0) ∧
k−1∧
i=0

( C(xi) ∧ T (xi,xi+1) ) ∧ C(xk) ∧ ¬P (xk) (22)



Here, x represents the set of state variables. Notation x0, . . . ,xk is used to represent
vector copies of x at each time step i ∈ [0..k]. Quantifier-free formula I(x0) specifies
the set of initial states. Quantifier-free formula C(xi) characterizes any assumption
imposed on x, while formula T (xi,xi+1) represents the transition relation between xi
and xi+1 over one time step. Finally, formula P (xk) denotes the property (or set of
properties) to be satisfied.

For invariant satisfaction, a proof by induction strategy called K-Induction is
used [4]. Intuitively, the base case aims at determining whether a property holds from
the initial states of the system. As for the induction step, it aims at proving that if
a property holds for any arbitrary state of the system then, it must also hold in the
next possible reachable states. When both cases are proved, the property is considered
as an invariant of the system. Induction at a given discrete time step k is therefore
characterized by the following formulae:

base(k) ≡ I(x0) ∧
d−1∧
i=0

( C(xi) ∧ T (xi,xi+1) ) ∧ C(xd)→ P (xd), for 0 ≤ d ≤ k

(23)

step(k) ≡
k−1∧
i=0

( P (xi) ∧ C(xi) ∧ T (xi,xi+1) ) ∧ C(xk)→ P (xk) (24)

It can be observed that the base case is verified from time step 0. The step case is
quite similar to base(k), except that the initial constraint (i.e., I(x0)) is removed and
property P is assumed to hold on all states up to time step k − 1 9. Formula step(k)
may also fail to hold, especially when conjunction P (xi) ∧ C(xi) is not sufficient to
establish induction (i.e., it may correspond to an over-approximation of states reachable
by the system). In this case, an induction trace leading to the falsification of step(k) is
produced by Kind2. This induction trace is generally referred to as a counterexample
to induction (CTI) and can be analyzed to deduce strong enough invariants about the
system’s states establishing the inductiveness of property P .

6.1 Data Types

The following data types are used to specify the input, output and state variables
maintained by the stablecoin contract in Lustre.

Listing 1: StableCoin Data Types

type Order = enum { MintSC, MintRC, NoOrder };
type Proceed = enum { MintedSC, MintedRC, RedeemedSC, RedeemedRC, Error, NoReply };
type ErrorInfo = enum { Min_Ratio_Violated, Max_Ratio_Violated, Invalid_Mint_Value, None };

type InputMsg = struct { order: Order; qnt: AmountType };

type OutputMsg = struct { ack: Proceed; err: ErrorInfo; price: ReserveType };

type Parameters = struct { r_min: RatioType; r_max: RatioType; fee: ReserveType; n_sc_s: N_Type; p_min: ReserveType };

function imported params () returns (out: Parameters );

The user input to the contract is defined as a structure specifying the type of order sub-
mitted to the contract and the number of coins to be bought (i.e., positive value) or sold

9 Note that formula step(k) is reduced in proving whether P (x0) can solely be inferred
from C(x0) when k = 0, i.e., the proof by induction really starts when k = 1.



(i.e., negative value). The NoOrder literal is introduced to model the non-invocation of
the contract’s functions. The contract also produces a structure as output to indicate
whether or not an order was processed successfully. On a successful order, the price
field indicates the actual buying price (i.e., value increasing reserve) or selling price
(i.e., value decreasing reserve). Field ErrorInfo is significant only when an order is
aborted and indicates the type of failure encountered. Otherwise, it is set to None.
Alias types AmountType, ReserveType, N_Type and RatioType are introduced to add
some genericity and are defined with concrete ones according to the implementation
to be verified. For instance, the stability properties have been proved w.r.t. an imple-
mentation using unbounded integer representation. Finally, type Parameters specifies
the parameters characterizing the Djed specification and abstract function params (i.e.,
imported directive) is introduced to provide a global access to parameters.

6.2 Infinite-State System Specification

The code excerpt in Listing 2 illustrates how the stablecoin state-transition system is
specified in Lustre. The full specification is provided in Appendix ??. In Lustre, the
notion of node is used to model transition systems. Plainly speaking, a node is like
a function except that it can make use of temporal combinators to characterize state
variables or to specify stateful behaviours. Function definitions (see Listing 3) are also
supported in Lustre. However, functions should be stateless in the sense that: outputs
and local variables should be non-temporal combinations of inputs; a function is not
allowed to call a node but only other functions.

Listing 2: StableCoin State-Transition System

node StableCoin(i_msg: InputMsg; rate: RateType)
returns (p_reserve: ReserveType; p_sc: N_Type; p_rc: N_Type; reserve: ReserveType;

n_sc: N_Type; n_rc: N_Type; o_msg: OutputMsg)
let
p_reserve = 0 -> pre reserve;
p_sc = 0 -> pre n_sc;
p_rc = 0 -> pre n_rc;

o_msg = if i_msg.order = NoOrder then
NullReply

else if i_msg.order = MintSC then
mintSC(i_msg.qnt, rate, p_reserve, p_sc)

else
mintRC(i_msg.qnt, rate, p_reserve, p_sc, p_rc, t_bootstrap);

reserve = if o_msg.ack = Error then p_reserve else p_reserve +o_msg.price;
n_sc = if o_msg.ack = MintedSC or o_msg.ack = RedeemedSC then p_sc +i_msg.qnt else p_sc;
n_rc = if o_msg.ack = MintedRC or o_msg.ack = RedeemedRC then p_rc +i_msg.qnt else p_rc;
tel

The stablecoin node takes two arguments as input, namely: the user’s order and
the exchange rate. Operator -> ("followed by") is used to initialize the state variables,
while operator pre makes reference to the previous value of an expression. Variables
reserve, n_sc and n_rc respectively correspond to the bank reserve, number of stable-
coins in circulation and number of reservecoins in circulation. They are updated only
when an order is successfully processed. Otherwise, they retain their previous value.
Note that, node StableCoin (see Listing 2) corresponds to the unfolded version of
node StableCoin_InitState (see Listing ?? in Appendix ??) to ease comprehension.
Node StableCoin_InitState has been introduced to unify as much as possible the
formalization of the various aforementioned theorems.

The minting and redeeming logics for both stablecoins and reservecoins are re-
spectively specified in functions mintSC and mintRC. Note that buying and selling



of reservecoins are authorized when there are no stablecoins in circulation (see Sec-
tion 6.4). Moreover, all minting and redeeming actions are not authorized when the
exchange rate is not greater than zero (see Section 6.4). Selling of stabecoins (resp.
reservecoins) is also forbidden when the number of coins being sold is greater than the
number of stablecoins (resp. reservecoins) in circulation. Listing 3 shows how function
mintSC is defined.

Listing 3: Minting and Redeeming StableCoin

function mintSC(d_sc: N_Type; rate: RateType; reserve: ReserveType; n_sc: N_Type) returns (o_msg: OutputMsg)
var s_price, fee, t_price, t_reserve: ReserveType;
let
s_price = price_sc(reserve, n_sc, rate) * d_sc;
t_price = computeFee(s_price);
t_reserve = reserve +t_price;
o_msg = if d_sc > 0 then

if rate > 0 and t_reserve >= (n_sc +d_sc) * rate * params().r_min
then
OutputMsg { ack = MintedSC; err = None; price = t_price }
else
ErrorCode1

else if -d_sc <= n_sc and rate > 0 then
OutputMsg { ack = RedeemedSC; err = None; price = t_price }

else
ErrorCode3;

tel

6.3 Property Specification

Each stability property is formalized in a specific Lustre node so as not only to
facilitate individual proof analysis but also to explicitly identify the necessary inductive
lemmas required for each one of them. Listing 4 shows how Theorem 5 is formally
specified. Properties about the stablecoin contract are expressed in a black-box fashion
(i.e., only formulated in terms of inputs and outputs of the contract). Hence, each
property node is parameterized with the inputs necessary to invoke the contract. The
assert directive is used to specify assumptions under which the property hold. The
two main assumptions concern the contract’s parameters, namely: parameters remain
constant from one time step to the next; and parameters should satisfy the min and
max values necessary to guarantee stability.

Data structure SCSellerType is introduced to model SC holders that may sell their
coins back to the bank, with field sold_once indicating whether at least one SC was
sold and field price_per_sc denoting the price obtained per SC. In node Theorem5,
state variable p_seller is used to indicate whether an SC holder has previously sold
SCs to the bank (i.e., sold_once set to true). Variable c_seller is updated with the
current seller information on each successful selling order (see node update_SCSeller).
Otherwise, it is assigned to the value of the previous seller. Note that the Lustre for-
malization is even stronger than the formulation in Section 3, as it also covers situations
whereby there can be an arbitrary number of actions between two successful selling SC
events.

Directive check is used to specify properties to be verified. An optional identifier
can be provided for each property. When several properties are specified, they are
implicitly conjoined and proved as a whole. This feature is practical when inductive
lemmas are required to establish invariant satisfaction. When a counterexample is
detected, the violated properties are automatically removed from the conjunction and
the satisfaction of the remaining ones is reassessed. In the formalization, property
"THEOREM_5" states the following:



If the exchange rate remains constant and at least one SC was already sold
then, on a successful selling order, the current selling price per SC is greater
than or equal to the previously applied price.

The inductive lemmas necessary to prove "THEOREM_5" are also provided. In addition to
the theorems listed in Section 3, the following ones were also proved on the stablecoin
specification:

check "THEOREM_10" o_msg.ack = MintedSC => o_msg.price = sc_price_pc;
check "THEOREM_11" o_msg.ack = RedeemedSC and p_reserve >= p_sc * rate => o_msg.price = sc_price_pc;
check "THEOREM_12" o_msg.ack = RedeemedRC => equity(p_reserve, p_sc, rate) > 0;
check "THEOREM_13" reserve >= 0 and n_sc >= 0 and n_rc >= 0;
check "THEOREM_14" n_rc > 0 => reserve > 0;
check "THEOREM_15" n_sc > 0 => reserve > 0;

Property "THEOREM_10" states that the buying price for SCs is always 1 PC in BCs, while
"THEOREM_11" states that the selling price for SCs is always 1 PC in BCs when R ≥
L(NSC ). As for "THEOREM_12", it states that RCs can be sold only when E(R,NSC ) > 0.
The three remaining ones are self-explanatory.

Listing 4: Theorem 5 Formalization

type SCSellerType = struct { sold_once: bool; price_per_sc: ReserveType };

node update_SCSeller (p_reserve: ReserveType; p_sc: N_Type; rate: RateType; o_msg: OutputMsg; seller: SCSellerType)
returns (out: SCSellerType)

let
out = if o_msg.ack = RedeemedSC then

SCSellerType { sold_once = true; price_per_sc = min(p_reserve div p_sc, rate) }
else
seller;

tel

const defaultSeller_SC = SCSellerType { sold_once = false; price_per_sc = 0 };

node Theorem5 (i_msg: InputMsg; rate: RateType ) returns (o_msg: OutputMsg)
var reserve: ReserveType; n_sc: N_Type; n_rc: N_Type; p_reserve: ReserveType; p_sc: N_Type;

p_rc: N_Type; constant_rate: bool; p_seller: SCSellerType; c_seller: SCSellerType;
let
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming that parameters remain constant
assert true ->

params().r_min = pre params().r_min and
params().r_max = pre params().r_max and
params().fee = pre params().fee and
params().n_sc_s = pre params().n_sc_s and
params().p_min = pre params().p_min;

−− Assuming min and max value constraints
assert params().r_min > 1 and params().r_max >= params().r_min and

params().fee > 0 and params().fee <= 100 and
params().n_sc_s > 0 and params().p_min > 0;

constant_rate = true -> pre constant_rate and rate = pre rate;
p_seller = defaultSeller_SC -> pre c_seller;
c_seller = update_SCSeller(p_reserve, p_sc, rate, o_msg, p_seller);

−− Stability Property
check "THEOREM_5"
(constant_rate and p_seller.sold_once and o_msg.ack = RedeemedSC) => c_seller.price_per_sc >= p_seller.price_per_sc;

−− Lemmas
check (constant_rate and p_seller.sold_once) => p_seller.price_per_sc <= rate;
check (constant_rate and p_seller.sold_once and p_sc > 0) => p_seller.price_per_sc <= min(p_reserve div p_sc, rate);

tel

6.4 Improvements from Falsified Properties

Several improvements to earlier versions of the Minimal Djed specification were made
due to various property violations detected by BMC. Many of these improvements in-
volved making explicit various assumptions that had previously been left implicit. The



minimal parameter constraints required to guarantee stability were also validated via
counterexample detection. Some of these improvements are discussed below.

Reserve Draining. The following counterexample was detected when attempting to
prove "THEOREM_13" on the initial Djed specification, with rmin = 4, rmax = 8, fee = 1%
and Pmin

RC = 100:

cycle : 0 1 2 3

i_msg.order : MintRC MintSC MintSC MintRC

i_msg.qnt : 6 100 −100 −4
P t

SC : 0 2 5 5

PSC : 0 2 5 5

P b
RC : 100 101 51.333 . . . 52.1666 . . .

R : 606 808 313 −83
NSC : 0 100 0 0

NRC : 6 6 6 2

o_msg.ack : MintedRC MintedSC RedeemedSC RedeemedRC

o_msg.err : None None None None

o_msg.price : 606 202 −495 −396

In fact, an earlier version of the Minimal Djed specification specified P bRC as both buy-
ing and selling prices for RCs. The above counterexample shows that this configuration
can lead to a reserve draining scenario, especially when P tRC is less than Pmin

RC on a sell-
ing RC action. This particular situation arises at time step 3 with P tRC evaluating to
52.1666 . . . (i.e., 313÷ 6). The default price of 100 is therefore considered when selling
the 4 RCs, thus leading to a negative bank reserve. It should be noted that, with the
exception of price computation10, the value for each state variable in the above exe-
cution trace corresponds to the value obtained at the end of each time step. It is also
worth recalling that R, NSC and NRC are all initialized to zero. (see Listing 2). The
same interpretation should be applied in the remaining of this section.

Theorem 7 Violation. Another reserve draining situation was detected when at-
tempting to prove the initial formulation of Theorem 7. The counterexample obtained
shows that there may exist a sequence of n possible actions for which Rn < R0,
Nn

SC = N0
SC and Nn

RC = N0
RC , when solely assuming a constant exchange rate. Such a

sequence of actions is illustrated by the execution trace given below, with rmin = 3,
rmax = 5, fee = 5% and Pmin

RC = 10. Notation ⊥ is used for undefined values. Indeed,
P tRC cannot be computed when NRC is zero. As can be seen, the initial bank state
(i.e., R0, N0

SC and N0
RC ) has a reserve value that largely backs the number of RCs,

even though there are no stabecoins in circulation. This situation is possible due to
the accumulation of fees over a significant number of buying/selling orders. At time
step 1, it can also be observed that RCs can still be sold even when there are no SCs
in circulation. Indeed, the minimum reserve ratio check cannot be performed in this
particular case as NSC is zero. The draining situation arises mainly because default
price Pmin

RC is used when buying back the 4 RCs in the last time step (i.e., target price
P tRC is undefined).

10 P tSC , P bRC and P tSC are computation w.r.t. the value of the bank state at the begining
of each time step



cycle : 0 1 2

i_msg.order : NoOrder MintRC MintRC

i_msg.qnt : 0 −4 4

P b
RC : 430 430 10

P t
RC : 430 430 ⊥

R : 1720 86 128

NSC : 0 0 0

NRC : 4 0 4

R0 : 1720 1720 1720

N0
SC : 0 0 0

N0
RC : 4 4 4

o_msg.ack : NoReply RedeemedSC MintedRC

o_msg.err : None None None

o_msg.price : 0 −1634 42

Liveness issues. The formal modelling of an earlier version of the Minimal Djed
specification in Lustre has also led to the detection of some liveness issues mainly
related to the potential re-initilization of the stablecoin smart contract. For instance,
when NRC is set back to zero11, selling SCs may be the only feasible actions once
the bank reserve is no more sufficient to satisfy the minimum reserve ratio for any
buying SC action. This is the expected behaviour of the stablecoin algorithm due to
the mechanisms put in place to guarantee stability.

However, the blocking situation arises when NSC reverts to zero. Indeed, the earlier
specification authorizes the buying of RCs only when the maximum reserve ratio is sat-
isfied or when the buying action happens within an initilization period (i.e., unlimited
buying of RCs to capitalize the reserve). However, once the initialization period is over
and after a sequence of buying and selling actions leading to a state where NSC = 0 and
r < rmin , we can end in a blocking situation where no action is authorized: any buying
RC action to bring in more reserve will be rejected as condition R ≤ L(NSC )rmax will
no more be satisfied 12; no futher action will be authorized once there are no more
RCs in circulation13. Parameter N∗SC was therefore introduced to palliate this blocking
situation. It mainly authorizes the buying of RCs when the number of stabelcoins in
circulation is below a certain threshold and irrespective of the maximum reserve ratio.

Null Exchange Rate Prohibition. With the Minimal Djed specification, it is con-
ceivable to buy SCs during the initilization period without having any RCs in circula-
tion, while still having post-condition r ≥ rmin satisfied. For instance, 14 SCs can be
bought at P tSC = 200 with fee = 50% and rmin = 1.5. The resulting R is therefore 4200

11 This scenario is possible mainly due to the accumulation of fees. In particular, all
RCs can be sold while the minimum reserve ratio is still preserved and there are still
stablecoins in circulation.

12 Once at least one buying/selling action has been authorized, R can never be set back
to zero even when there are no more SCs and RCs in circulation. This is mainly due
to the fees accumulated on each action. Hence, condition R ≤ L(NSC )rmax always
evaluates to false when NSC is set back to zero.

13 Selling of RCs is still authorized as condition R ≥ L(NSC )rmin is always satisfied
when NSC = 0.



BCs with r evaluating to 1.5 (i.e., 4200÷ (14× 200)). However, if a null exchange rate
is authorized then, a large amount of SCs might be bought without any accumulation
of fees. This scenario was confirmed by a counterexample detected when attempting to
prove "THEOREM_15", whereby R is still set to zero with n amount of SCs in circulation.

Minimum Fee Percentage. Another counterexample, detected when attempting to
prove "THEOREM_14", explicitly confirms that the minimum fee percentage must be greater
than zero. Otherwise, we may end in a situation where there is no more reserves to
back RCs in circulation. The following execution trace illustrates this scenario, with
rmin = 2, rmax = 8, fee = 0% and Pmin

RC = 2:

cycle : 0 1 2

i_msg.order : MintRC MintSC MintSC

i_msg.qnt : 1 2 −2
P t

SC : 1 1 5

PSC : 0 1 2

R : 2 4 0

NSC : 0 2 0

NRC : 1 1 1

o_msg.ack : MintedRC MintedSC RedeemedSC

o_msg.err : None None None

o_msg.price : 1 2 4

As can be seen, the absence of accumulated fees during the buying actions occurring
at the first two time steps causes a complete depletion of the reserve when all SCs are
sold within the last time step.

Minimum Reserve Ratio (rmin). BMC also confirms that rmin should be greater
than 1+fee for stability to be guaranteed. Indeed, there is a possibility to buy SCs for
less than 1 peg currency in BCs even when rmin is set to one. The following execution
trace exhibits this scenario, with rmin = 1, rmax = 2, fee = 96% and Pmin

RC = 2:

cycle : 0 1

i_msg.order : MintSC MintSC

i_msg.qnt : 3 1

P t
SC : 8 17

PSC : 8 15.68

R : 47.04 77.773

NSC : 3 4

NRC : 0 0

o_msg.ack : MintedSC MintedSC

o_msg.err : None None

o_msg.price : 47.04 30.733

It can be noticed that the resulting reserve ratio is greater than one (i.e., ≈ 1.1437)
even when R

NSC
is used as the actual buying price for SCs in the last time step.



Default RC Price (Pmin
RC ). As stated in Section 2, default price Pmin

RC is used for RCs
when the target price is undefined (i.e., NRC = 0). However, if a null default price is
specified then, a large amount of RCs might be bought without any accumulation of
fees. This scenario was confirmed by a counterexample obtained when attempting to
prove "THEOREM_14". In particular, a null default price may induce a situation whereby
there is no reserves to back RCs in circulation.

7 Formalization in Isabelle/HOL

Isabelle [6] is a generic proof assistant. It allows mathematical formulas to be expressed
in a formal language and provides tools for proving those formulas in a logical calculus.
The main application is the formalization of mathematical proofs and in particular
formal verification of computer hardware and software. Isabelle can cope with a large
class of object-logics, including several first-order logics (intuitionistic and classical),
Martin–Löf’s Type Theory, and Zermelo–Fraenkel set theory. Each new logic is formal-
ized within Isabelle’s meta-logic, which is an intuitionistic fragment of Church’s type
theory. The most widespread instance of Isabelle nowadays is Isabelle/HOL [7], which
provides a higher-order logic theorem proving environment that is ready to use for big
applications.

In this work, Isabelle/HOL is used to formalize parts of Djed’s informal description.
The formalization covers Minimal Djed as defined in Section 2, including machine-
checked proofs for the stability properties stated in Section 3 (see the formalization
details in Appendix E). Remarkably, the effort spent on the formalization (roughly
four weeks) appears to be cost-effective.

7.1 Design Considerations

We highlight the following important design decisions of our Isabelle formalization:

– Isabelle/HOL. Isabelle/HOL is by far the most developed object-logic, including
powerful specification tools and a vast library of formally verified mathematics,
thus being the logic of choice for our work.

– Isabelle/Isar. Our proofs are conducted in the structured proof language Isar, al-
lowing for proof texts naturally understandable for both humans and computers,
while preserving the structure of the Djed’s informal proofs to aid the reader.

– Locales. We use locales (Isabelle’s module system) to bundle Djed’s parameters
and their constraints. This also permits the specification of a proof context shared
by all theorems, thus avoiding duplication.

– Exact real arithmetic. The Isabelle/HOL library includes exact real arithmetic,
which we use for our formalization. This allows to formally reason at the same
level of abstraction as Djed’s informal description, ignoring implementation issues
such as rounding errors.

– Transition systems. Using Isabelle’s principle of inductive predicates, we define
transition systems that model the execution of individual Djed actions and se-
quences thereof.

– Notational convenience. Isabelle provides excellent notational support: new nota-
tions can be introduced using normal mathematical symbols. We leverage such
support and define special syntax to match that used by Djed’s informal descrip-
tion, thus improving readability.



7.2 Uncovered Issues

The Isabelle/HOL formalization uncovered numerous issues in earlier versions of the
informal description of Minimal Djed and in earlier drafts of the informal proofs of the
stability properties. The process of formalizing Minimal Djed and its stability theorems
in Isabelle contributed to the more precise description and proofs that can now be found
in Sections 2 and 3. To illustrate the classes of issues uncovered by the formalization,
we can enumerate the following:

– Implicit and/or missing constraints on variables/actions in the informal model:
Lower and upper bounds (e.g., fee ∈ [0, 1)), non-negativity assumptions (e.g.,
NSC > 0), and pre-action conditions (e.g., n ≤ NSC for a ‘Sell n SCs’ action).

– Implicit and/or missing assumptions in the informal proofs: E.g., the exchange
rates must be constant in Theorem 5, and NSC > 0 must be an assumption in
Theorem 8 .

– Falsifiable formulas in the informal proofs: E.g., the conclusion of Theorem 6 had
to be relaxed to ≥ due to impossible cases in the informal proof, which in turn
caused the proof of Theorem 7 to be reworked.

– Superfluous assumptions in theorems: E.g., in Theorem 3, P = P tSC [x] is redundant
since it is implied by r > 1.

– Missing case distinctions in the informal proofs required to address specific cases
that do not hold in the general case.

– Steps in the informal proofs that are missing or found to be non trivial, particularly
in the proofs of Theorems 6 and 7 .

– Ambiguous wording: E.g, NSC > 0 and NRC > 0 in the context of the statement of
Theorem 7 .

8 Implementations

Minimal and Extended Djed already have the following implementations:

– SigmaUSD on Ergo:14 Minimal Djed was implemented in ErgoScript. It was de-
ployed anonymously with the name SigmaUSD by the Ergo community in early Q1
2021 on Ergo with a fee of 1% and an oracle that updated the exchange rate every
hour. This initial version was subject to the reserve draining attack mentioned in
Section 4 by an anonymous user who owned a large number of ERGs (the base coin
on Ergo). The attack was ultimately unsuccessful and it is estimated that the user
lost approximately 100000 USD trying to perform the attack. To further discourage
such attacks, this initial deployment of Minimal Djed was replaced by a variant
where the fee was set to 2%, the oracle15 is updated every 12 minutes and every
oracle update is allowed to change the price by at most 0.49%, unless the price
difference is greater than 50%. This variant has not been attacked. Furthermore,
its success is evidenced by the following indicators: SigmaUSD’s reserve captured
6% of the entire supply of ERG; the stablecoin market cap quickly rose to a peak of
10 million USD; there are approximately 30 transactions per day buying or selling
stablecoins or reservecoins from or to the bank, and this amounts to approximately

14 https://sigmausd.io/ and https://github.com/Emurgo/age-usd.
15 https://explorer.ergoplatform.com/en/oracle-pool-state/ergusd,

https://github.com/ergoplatform/oracle-core/blob/master/src/api.rs#L41-L67.

https://sigmausd.io/
https://github.com/Emurgo/age-usd
https://explorer.ergoplatform.com/en/oracle-pool-state/ergusd
https://github.com/ergoplatform/oracle-core/blob/master/src/api.rs#L41-L67


1% of the total number of transactions per day on Ergo; the reserve ratio is being
kept consistently at healthy levels between 300% and 400%; and the stablecoin
was able to maintain its peg during the market crash of May 2021, when the price
of ERG (along with most other cryptocurrencies) fell 44% in 1 day and 60% in 5
days. Notably, SigmaUSD is, to the best of our knowledge, the first stablecoin to
be implemented on a blockchain that uses UTxO-style accounting and contracts.

– Implementation in Solidity: Minimal Djed was implemented in Solidity in two
different variants: one where the basecoin is the native currency of the blockchain;
and another one where the basecoin can be any ERC20-compliant coin. The im-
plementations still need to be audited, but they have already been deployed to the
following testnets16: Binance Smart Chain’s testnet; Avalanche’s Fuji; Polygon’s
Mumbai; Ethereum’s Kovan; Ethereum’s Rinkeby; RSK’s testnet.

– Preliminary Implementation in Plutus for Cardano: An implementation of
an earlier version of Minimal Djed in the Plutus language17 [8–10] is available18.
This version uses monetary policies [11] and the native assets (i.e. stablecoins and
reservecoins) are uniquely identified by the hash of the monetary policy [12]. There-
fore, the contract is not update-able after deployment. This may be an advantage
or disadvantage, depending on one’s preferences regarding immutability. This im-
plementation also assumes a single oracle entity that provides signed exchange rate
data in an off-chain manner directly to the transactions instead of posting data to
the chain as usual.

– Ongoing OpenStar Implementation: OpenStar is a framework for private per-
missioned blockchains developed in Scala. The implementation of Djed using Open-
Star is following the idea of off-chain smart contract execution [13] in order to have
a stablecoin on Cardano that does not depend on smart contracts being executed
on-chain on Cardano.

– Prototype in Scala:19 Both Minimal and Extended Djed have prototype imple-
mentations in Scala that were used, besides other things, for various economic sim-
ulations. They also implement test suites for checking price calculation formulas.
The prototype can be used as a reference for future production implementations.

9 Related Work

There are hundreds of stablecoins and dozens of algorithmic stablecoins nowadays. The
three stablecoin protocols that were most influential in the design of Djed were:

16 https://testnet.bscscan.com/../0x1dc9ff8b018a091bee9dc908c5b89fb687d21a63,
https://testnet.bscscan.com/../0x77b6b5cf465836b856b30078590dd8355cd6e3c4,
https://testnet.avascan.info/../0xb1bfad591c8de6fcd19da8338b9771d333ef8515,
https://polygon-explorer-mumbai.chainstacklabs.com/tx/0x74c7c9a9bf6b155eb422
fd192400095b77a5a40df18886c9043bc49400e32e2c/internal-transactions,
https://kovan.etherscan.io/address/0x8450b2a8eede87f605bfa837ea7f3c686218d0c0,
https://rinkeby.etherscan.io/../0xd617065ddd8023cad50320c639b6c9f3f2861052,
https://explorer.testnet.rsk.co/../0x14feeb2fff4ef99eafe07f4ea5ee598771d87de7.

17 https://testnets.cardano.org/en/programming-languages/plutus/overview/,
https://github.com/input-output-hk/plutus.

18 https://github.com/input-output-hk/plutus/blob/master/plutus-use-cases/src/
Plutus/Contracts/Stablecoin.hs.

19 https://github.com/input-output-hk/djed-stablecoin-prototype.

https://testnet.bscscan.com/address/0x1dc9FF8b018a091bee9Dc908c5b89fb687D21a63
https://testnet.bscscan.com/address/0x77b6b5Cf465836B856b30078590Dd8355Cd6E3C4
https://testnet.avascan.info/blockchain/c/address/0xB1BfAD591C8DE6FcD19DA8338B9771d333EF8515
https://polygon-explorer-mumbai.chainstacklabs.com/tx/0x74c7c9a9bf6b155eb422fd192400095b77a5a40df18886c9043bc49400e32e2c/internal-transactions
https://polygon-explorer-mumbai.chainstacklabs.com/tx/0x74c7c9a9bf6b155eb422fd192400095b77a5a40df18886c9043bc49400e32e2c/internal-transactions
https://kovan.etherscan.io/address/0x8450b2A8EeDE87f605bFA837Ea7f3C686218D0C0
https://rinkeby.etherscan.io/address/0xd617065ddd8023cad50320c639b6c9f3f2861052
https://explorer.testnet.rsk.co/address/0x14feeb2fff4ef99eafe07f4ea5ee598771d87de7
https://testnets.cardano.org/en/programming-languages/plutus/overview/
https://github.com/input-output-hk/plutus
https://github.com/input-output-hk/plutus/blob/master/plutus-use-cases/src/Plutus/Contracts/Stablecoin.hs
https://github.com/input-output-hk/plutus/blob/master/plutus-use-cases/src/Plutus/Contracts/Stablecoin.hs
https://github.com/input-output-hk/djed-stablecoin-prototype


Seigniorage Shares: One of the earliest examples of algorithmic stablecoin is the
seigniorage shares protocol [14]. Its stabilization mechanisms are similar to the mecha-
nisms used by most central banks. The protocol aims to adjust the circulating supply.
If the price is too high, the circulating supply will be increased. If it is too low, the
circulating supply will be decreased. To take stablecoins out of circulation, users are
encouraged to sell their stablecoins in exchange for seigniorage shares; conversely, when
the supply needs to be increased, stablecoins are issued and distributed to seigniorage
share holders. In this way, the seigniorage (i.e. the revenue from printing money) goes
to seigniorage share holders. Djed’s reservecoins are similar to seigniorage shares, but
Djed is more like a different kind of central bank, whose currency is pegged to and
fully backed by another one, and hence its revenue comes from market making instead
of seigniorage.

DAI:20 Crypto-collateralized stablecoins, of which DAI is currently the most promi-
nent example, are similar to crypto-backed stablecoins, with the subtle but important
difference, however, that cryptocurrencies are used to provide collateral for stablecoin-
denominated loans instead of reserves. Similarly to how a house that serves as collateral
in a mortgage does not count as reserves in the bank that is providing the loan, the
collateral provided for the issuance of a crypto-collateralized stablecoin does not count
as reserve. Due to the lack of reserves, pure crypto-collateralized stablecoins resemble
an extreme form of fractional reserve banking (with a fraction of 0%). Unlike com-
mercial bank money (i.e. money in a bank account), which can be exchanged at any
time by anyone holding it for central bank money by withdrawing cash from the bank’s
reserves, crypto-collateralized stablecoins cannot be exchanged for anything by with-
drawing from the stablecoin contract’s reserves, simply because there are no reserves.
When interacting with the contract, users can only use stablecoins to repay their own
loans and recover their own collateral or to bid in auctions for liquidated collateral
from others.

Staticoin:21 The Staticoin protocol has a riskcoin whose function is very similar to
Djed’s reservecoin. The main difference, from a user’s perspective, is that riskcoin’s
appeal rests in the leverage it provides with respect to base coins, whereas reservecoin’s
appeal rests mostly in the market making revenue through fees, even though it also
provides some leverage. Djed also has minimum and maximum reserve ratio thresholds,
which protect stablecoin holders from market crashes and reservecoin holders from
dilution, whereas Staticoin does not.

10 Conclusions and Future Work

Djed is an algorithmic crypto-backed pegged stablecoin that strives to keep a reserve
ratio significantly greater than one in order to guarantee the peg. This was an inten-
tionally conservative design decision, because stability is of paramount importance and
achieving stability with fractional reserves or even with no reserve (or collateralization)
at all appears to be a much more elusive goal. This decision paid off. As shown in this
paper, Djed is not only provably stable in theory but its implementation and deploy-
ment on Ergo, which survived the market crash of 2021 with the peg unscathed, has
already provided strong empirical evidence of its stability in practice as well.
20 https://makerdao.com/en/.
21 http://staticoin.com.

https://makerdao.com/en/
http://staticoin.com


Minimal Djed was intentionally designed with simplicity as a goal. As it is fully
defined in just 1.5 pages (cf. Section 2), this goal can arguably be considered achieved.

Thanks to its simplicity, it is highly amenable to the use of formal methods, such
as model checking and interactive theorem proving. It took only roughly 4 weeks of
work to obtain the results discussed in Sections 6 and 7. Therefore, the work presented
here can also be considered a success story for the discipline of formal methods, which
has a reputation to be time-consuming.

The commitment to simplicity required some tough compromises. Consequently,
Minimal Djed is subject to a few minor issues, which we fully disclosed. We have
partially addressed these issues in Extended Djed. It is important to note, however,
that the application of formal methods to Extend Djed remains for future work.

With the benefit of hindsight, the decision to focus on a crypto-backed stablecoin
with reserve ratio greater than one also turned out to be wise, considering that recent
stablecoin projects that attempted to achieve stability with fractional reserves (e.g.
FEI 22 and Iron 23) failed.

Despite the difficulty of the challenge, we believe that designing a stablecoin with
fractional reserve (or no reserve at all) is a worthy endeavor, especially because, as
is well-known, it is not economically efficient to leave capital idling in the reserve.
Although backing and collateralization facilitate stability and tend to increase the
public’s trust on the stability, it is not impossible to achieve stability without them.
To see this, consider that a central bank digital currency (CBDC) would be pegged to
the central bank’s fiat currency and, like the fiat currency itself, would not need to be
backed by anything, by definition of fiat. And, despite this, it would nevertheless be
stable in relation to the prices of goods and services, at least in the short term, just
like their associated fiat currencies in countries that enjoy low inflation.

In the case of Djed, a path of future work towards fractional reserves could start
by exploring more deeply the debt for equity swap mechanism described in Subsection
5.4.1. In the meantime, until a provably stable fractional or unbacked stablecoin is
created, the concern of reserve capital inefficiency can be partially addressed at the
implementation level by staking or lending the reserve, depending on the availability of
reliable, safe and secure decentralized staking or lending protocols on the chains where
the stablecoin is deployed.
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Note that the price of buying N reservecoins is a difference between the amount of
reserves before and after the operation:

Pbuy
rc (N) = RN − R0, RN = R0 + Pbuy

rc (N).

Let R(t),NRC (t) be continuous functions on [0, N ] defining the amount of reserves
and reservecoins in circulation at time t (i.e., after buying t reservecoins), where R(0) =
R0 and NRC (0) = NRC0 are the initial amounts. Then, the price Pbuy

rc (t) of buying t
coins can be defined as a derivative of the function R(t):

dR(t)

dt
= Pbuy

rc (t),

dR(t)

dt
=

R(t)− L(t)

NRC (t)
(1 + fee(t)), NRC (t) = NRC0 + t, (25)

L(t) =

Lt , if r(t) ≥ rpeg ,

R(t)
rpeg

, if r(t) < rpeg ,

fee(t) =

fee0 + krm · R(t)−Lt ·ropt
Lt ·ropt

, if r(t) ≥ ropt ,

fee0, if r(t) < ropt ,

where r(t) = R(t)
Lt is a reserve ratio after buying t coins.

Equation (25) is a first-order separable differential equation with two variables t
and R(t). The solution provides the unknown function R(t). Then, the price of buying
N reservecoins can be calculated as follows:

Pbuy
rc (N) = R(N)− R0. (26)

We solve (25) by moving different variables into different sides and integrating each
side separately on the interval [0, N ]:

dR(t)

(R(t)− L(t))(1 + fee(t))
=

dt

NRC (t)
,

∫ R(N)

R(0)

dR(t)

(R(t)− L(t))(1 + fee(t))
=

∫ N

0

dt

NRC0 + t
. (27)

Note that L(t) and fee(t) are piecewise linear functions depending on the variable
R(t). To solve the integral on the left-hand side of (27), we need to decompose it into
intervals defined by L(t) and fee(t). Depending on what intervals R0 and R(N) fall
into, the integral might be decomposed in 6 different ways:



∫ R(N)

R(0)

dR(t)

(R(t)− L(t))(1 + fee(t))
=

∫ R(N)

R(0)

dR(t)

(R(t)−R(t)
rpeg

)(1+fee0)
, if R0 < R(N) < rpeg · Lt ,∫ rpeg ·Lt

R(0)

dR(t)

(R(t)−R(t)
rpeg

)(1+fee0)
+

+
∫ R(N)

rpeg ·Lt
dR(t)

(R(t)−Lt )(1+fee0)
, if R0 < rpeg · Lt ≤ R(N) < ropt · Lt ,∫ rpeg ·Lt

R(0)

dR(t)

(R(t)−R(t)
rpeg

)(1+fee0)
+

+
∫ ropt ·Lt

rpeg ·Lt
dR(t)

(R(t)−Lt )(1+fee0)
+

+
∫ R(N)

ropt ·Lt
dR(t)

(R(t)−Lt )

(
1+fee0+krm

R(t)−Lt ·ropt
Lt ·ropt

) , if R0 < rpeg · Lt < ropt · Lt ≤ R(N),∫ R(N)

R(0)

dR(t)
(R(t)−Lt )(1+fee0)

, if rpeg · Lt ≤ R0 < R(N) < ropt · Lt ,∫ ropt ·Lt

R(0)

dR(t)
(R(t)−Lt )(1+fee0)

+

+
∫ R(N)

ropt ·Lt
dR(t)

(R(t)−Lt )

(
1+fee0+krm

R(t)−Lt ·ropt
Lt ·ropt

) , if rpeg · Lt ≤ R0 < ropt · Lt ≤ R(N),∫ R(N)

R(0)

dR(t)

(R(t)−Lt )

(
1+fee0+krm

R(t)−Lt ·ropt
Lt ·ropt

) , if rpeg · Lt < ropt · Lt ≤ R0 < R(N).

Solving all variants separately we obtain the following solutions for R(N):

R(N) =



R1(N), if R0 < R(N) < rpeg · Lt ,

R2(N), if R0 < rpeg · Lt ≤ R(N) < ropt · Lt ,

R3(N), if R0 < rpeg · Lt < ropt · Lt ≤ R(N),

R4(N), if rpeg · Lt ≤ R0 < R(N) < ropt · Lt ,

R5(N), if rpeg · Lt ≤ R0 < ropt · Lt ≤ R(N),

R6(N), if rpeg · Lt < ropt · Lt ≤ R0 < R(N),

(28)

where R1(N), ..,R6(N) are defined by (29), (30), (31), (32), (33), and (34) correspond-
ingly. We omit full details of solving the equations as it is straightforward using well-
known integration techniques.

Since we do not know beforehand what exactly interval the final result R(N) will
fall into, we have to calculate all possible variants and pick the correct one by analyzing
the results. For example, if initial reserves R0 < rpeg · Lt , we need to calculate R1(N),
R2(N), and R3(N). Then, by observing where final results appear relatively to rpeg ·Lt

and ropt · Lt , we pick the correct one and neglect the other two.
The algorithm (1) defines the procedure of calculating new reserves R(N). Then,

the price of buying N reservecoins can be calculated using (26).



Algorithm 1 Calculating new reserves when buying reservecoins
1: procedure CalculateNewReserves
2: R0 ← initial amount of reserves
3: if R0 < rpeg · Lt then
4: R1 ← R1(N)
5: if R1 < rpeg · Lt then
6: newReserves← R1

7: else
8: R2 ← R2(N)
9: if rpeg · Lt ≤ R2 and R2 < ropt · Lt then
10: newReserves← R2

11: else
12: newReserves← R3(N)

13: else if rpeg · Lt ≤ R0 and R0 < ropt · Lt then
14: R4 ← R4(N)
15: if R4 < ropt · Lt then
16: newReserves← R4

17: else
18: newReserves← R5(N)

19: else
20: newReserves← R6(N)

21: return newReserves

A.1 The first variant (R0 < R(N) < rpeg · Lt)

R1(N) = R0 ·
(
NRC0 +N

NRC0

)X
, (29)

where X = (1− 1
rpeg

)(1 + fee0).

A.2 The second variant (R0 < rpeg · Lt ≤ R(N) < ropt · Lt)

R2(N) =

(
NRC0 +N

NRC0

)1+fee0

·
(
rpeg · Lt

R0

)−X
·
(
rpeg · Lt − Lt)+ Lt , (30)

where X = 1

1− 1
rpeg

.

A.3 The third variant (R0 < rpeg · Lt < ropt · Lt ≤ R(N))

R3(N) =
Z · E + V · Lt

V − Z krm
Lt ·ropt

, (31)

where

Z =

(
(NRC0 +N)(R0)

X(rpeg − 1)Y

NRC0 · (rpeg · Lt)X(ropt − 1)Y

) 1
A

, X =
Y

1− 1
rpeg

, Y =
1

1 + fee0

,

V =
1 + fee0

ropt · Lt − Lt
, E = 1 + fee0 − krm, A =

ropt
ropt · E + krm

.



A.4 The fourth variant (rpeg · Lt ≤ R0 < R(N) < ropt · Lt)

R4(N) = (R0 − Lt)

(
NRC0 +N

NRC0

)1+fee0

+ Lt . (32)

A.5 The fifth variant (rpeg · Lt ≤ R0 < ropt · Lt ≤ R(N))

R5(N) =
Z · E + V · Lt

V − Z krm
Lt ·ropt

, (33)

where
V =

1 + fee0

ropt · Lt − Lt
, E = 1 + fee0 − krm,

Z =

(
NRC0 +N

NRC0

·
(

R0 − Lt

ropt · Lt − Lt

) 1
1+fee0

) 1
A

, A =
ropt

ropt · E + krm
.

A.6 The sixth variant (rpeg · Lt < ropt · Lt ≤ R0 < R(N))

R6(N) =
Z · E + V · Lt

V − Z krm
Lt ·ropt

. (34)

where

V =
1 + fee0 + krm

R0−Lt ·ropt
Lt ·ropt

R0 − Lt
, Z =

(
NRC0 +N

NRC0

) 1
A

,

E = 1 + fee0 − krm, A =
ropt

ropt · E + krm
.

B Price for selling reservecoins in the continuous setting

The same techniques as for buying are used to calculate the reservecoins selling price.
We omit to repeat some notations and explanations as they are practically the same
as in Appendix [A]. Read Appendix [A] first for better understanding.

The price P sell
rc (t) of selling t coins can be defined as a derivative of the function

R(t) in the following way:
dR(t)

dt
= −P sell

rc (t),

dR(t)

dt
= −R(t)− L(t)

NRC (t)
(1− fee(t)), NRC (t) = NRC0 − t, (35)

L(t) =

Lt , if r(t) ≥ rpeg ,

R(t)
rpeg

, if r(t) < rpeg ,

fee(t) =

fee0 + krr · L
t ·ropt−R(t)

Lt ·ropt
, if r(t) ≤ ropt ,

fee0, if r(t) > ropt .



Equation (35) is a first-order separable differential equation with two variables t
and R(t). The solution provides the unknown function R(t). Then, the price of selling
N reservecoins is calculated as follows:

P sell
rc (N) = R0 − R(N). (36)

The solution of (35) is similar to the one of (25). The variables are moved into
different sides and integrated separately on the interval [0, N ]:

dR(t)

(R(t)− L(t))(1− fee(t))
= − dt

NRC (t)
,

∫ R(N)

R(0)

dR(t)

(R(t)− L(t))(1− fee(t))
= −

∫ N

0

dt

NRC0 + t
. (37)

The integral on the left-hand side of (37) has to be decomposed into intervals
defined by L(t) and fee(t). Depending on what intervals R0 and R(N) fall into, it
might be decomposed in 6 different ways:

∫ R(N)

R(0)

dR(t)

(R(t)− L(t))(1− fee(t))
=

∫ R(N)

R(0)

dR(t)

(R(t)−R(t)
rpeg

)

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

) , if R(N) < R0 < rpeg · Lt < ropt · Lt ,∫ rpeg ·Lt

R(0)

dR(t)

(R(t)−Lt )

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

)+
+
∫ R(N)

rpeg ·Lt
dR(t)

(R(t)−R(t)
rpeg

)

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

) , if R(N) < rpeg · Lt ≤ R0 < ropt · Lt ,∫ ropt ·Lt

R(0)

dR(t)
(R(t)−Lt )(1−fee0)

+

+
∫ rpeg ·Lt

ropt ·Lt
dR(t)

(R(t)−Lt )

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

)+
+
∫ R(N)

rpeg ·Lt
dR(t)

(R(t)−R(t)
rpeg

)

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

) , if R(N) < rpeg · Lt < ropt · Lt ≤ R0,∫ R(N)

R(0)

dR(t)

(R(t)−Lt )

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

) , if rpeg · Lt ≤ R(N) < R0 < ropt · Lt ,∫ ropt ·Lt

R(0)

dR(t)
(R(t)−Lt )(1−fee0)

+

+
∫ R(N)

ropt ·Lt
dR(t)

(R(t)−Lt )

(
1−fee0−krr

Lt ·ropt−R(t)

Lt ·ropt

) , if rpeg · Lt ≤ R(N) < ropt · Lt ≤ R0,∫ R(N)

R(0)

dR(t)
(R(t)−Lt )(1−fee0)

, if rpeg · Lt < ropt · Lt ≤ R(N) < R0.

Solving all variants separately we obtain the following solutions for R(N):

R(N) =



R1(N), if R(N) < R0 < rpeg · Lt < ropt · Lt ,

R2(N), if R(N) < rpeg · Lt ≤ R0 < ropt · Lt ,

R3(N), if R(N) < rpeg · Lt < ropt · Lt ≤ R0,

R4(N), if rpeg · Lt ≤ R(N) < R0 < ropt · Lt ,

R5(N), if rpeg · Lt ≤ R(N) < ropt · Lt ≤ R0,

R6(N), if rpeg · Lt < ropt · Lt ≤ R(N) < R0,

(38)



where R1(N), ..,R6(N) are defined by (39), (40), (41), (42), (43), and (44) correspond-
ingly. We omit full details of solving the equations as it is straightforward using well-
known integration techniques.

The algorithm (2) defines the procedure of calculating new reserves R(N). Then,
the price of selling N reservecoins can be calculated using (36).

Algorithm 2 Calculating new reserves when selling reservecoins
1: procedure CalculateNewReserves
2: R0 ← initial amount of reserves
3: if R0 < rpeg · Lt then
4: newReserves← R1(N)
5: else if rpeg · Lt ≤ R0 and R0 < ropt · Lt then
6: R4 ← R4(N)
7: if R4 ≥ rpeg · Lt then
8: newReserves← R4

9: else
10: newReserves← R2(N)

11: else
12: R6 ← R6(N)
13: if R6 ≥ ropt · Lt then
14: newReserves← R6

15: else
16: R5 ← R5(N)
17: if R5 ≥ rpeg · Lt then
18: newReserves← R5

19: else
20: newReserves← R3(N)

21: return newReserves

B.1 The first variant (R(N) < R0 < rpeg · Lt)

R1(N) =
Z · E

V − Z krr
Lt ·ropt

, (39)

where

Z =

(
NRC0 −N

NRC0

) (rpeg−1)·E
rpeg

, E = 1− fee0 − krr, V =
E + R0

krr
Lt ·ropt

R0
.

B.2 The second variant (R(N) < rpeg · Lt ≤ R0 < ropt · Lt)

R2(N) =
Z · E

V − Z krr
Lt ·ropt

, (40)



where

Z =

NRC0 −N
NRC0

·

 (R0 − Lt)
(
E +

rpeg ·krr
ropt

)
(rpeg · Lt − Lt)

(
E + R0

krr
Lt ·ropt

)
C

E− E

rpeg

E = 1− fee0 − krr, C =
ropt

ropt · E + krr
, V =

E +
rpeg ·krr

ropt

rpeg · Lt
.

B.3 The third variant (R(N) < rpeg · Lt < ropt · Lt ≤ R0)

R3(N) =
Z · E

V − Z krr
Lt ·ropt

, (41)

where

Z =

NRC0 −N
NRC0

·
(

R0 − Lt

(ropt − 1)Lt

)(1−fee0)
−1

·

 ropt − 1

rpeg − 1
·
E +

rpeg ·krr
ropt

1− fee0

CE− E
rpeg

,

E = 1− fee0 − krr, C =
ropt

ropt · E + krr
, V =

E +
rpeg ·krr

ropt

rpeg · Lt
.

B.4 The fourth variant (rpeg · Lt ≤ R(N) < R0 < ropt · Lt)

R4(N) =
Z · E + V · Lt

V − Z krr
Lt ·ropt

, (42)

where

Z =

(
NRC0 −N

NRC0

) ropt ·E+krr
ropt

, E = 1− fee0 − krr, V =
E + R0

krr
Lt ·ropt

R0 − Lt
.

B.5 The fifth variant (rpeg · Lt ≤ R(N) < ropt · Lt ≤ R0)

R5(N) =
Z · E + V · Lt

V − Z krr
Lt ·ropt

, (43)

where

Z =

((
NRC0 −N

NRC0

)
·
(

R0 − Lt

ropt · Lt − Lt

) 1
1−fee0

) 1
C

,

E = 1− fee0 − krr, C =
ropt

ropt · E + krr
, V =

1− fee0

ropt · Lt − Lt
.

B.6 The sixth variant (rpeg · Lt < ropt · Lt ≤ R(N) < R0)

R6(N) = (R0 − Lt)

(
NRC0 −N

NRC0

)1−fee0

+ Lt . (44)



C Price for buying stablecoins in the continuous setting

Recall that the price of buying N stablecoins in the discrete setting was defined by (16)
as:

Pbuy
sc (N) =

N−1∑
i=0

Pbuy
sc,i =

N−1∑
i=0

P tSC · (1 + fee(Ri,NSCi )),

fee(Ri,NSCi ) =

fee0, if ri ≥ ropt ,

fee0 + ksm · L
t
i ·ropt−Ri

Lt
i ·ropt

, if ri < ropt ,

where Lt
i = NSCiP

t
SC , NSCi = NSC0 + i, and ri =

Ri

Lt
i
.

Recall also that the price is a difference between the amount of reserves before and
after the operation:

RN = R0 + Pbuy
sc (N).

Let R(t), NSC (t) be continuous functions on [0, N ] defining the amount of reserves
and issued stablecoins at time t (i.e., after buying t stablecoins), where R(0) = R0 and
NSC (0) = NSC0 are the initial amounts. Then, the price Pbuy

sc (t) of buying t coins is a
derivative of the function R(t):

dR(t)

dt
= Pbuy

sc (t), NSC (t) = NSC0 + t,

dR(t)

dt
= P tSC (1 + fee(t)), (45)

where

fee(t) =

fee0, if r(t) ≥ ropt ,

fee0 + ksm · L
t (t)·ropt−R(t)

Lt (t)·ropt
, if r(t) < ropt ,

Lt(t) = NSC (t) · P tSC , r(t) =
R(t)

Lt(t)
.

The solution of the differential equation (45) provides the unknown function R(t).
It is solved separately for every interval defined by fee(t):

dR(t)
dt

= P tSC (1 + fee0), if r(t) ≥ ropt ,

dR(t)
dt

= P tSC (1 + fee0 + ksm · L
t (t)·ropt−R(t)

Lt (t)·ropt
), if r(t) < ropt .

(46)

Note that we do not consider r < rpeg because buying of stablecoins is not allowed in
this case.

Solving (46) we will obtain:

R(t) =


R1(t) = t · P tSC (1 + fee0) + R0, if r(t) ≥ ropt ,

R2(t,R0,NSC0 ) = P
NSC0

+t

1+K
+

(
R0−P

NSC0
1+K

)
(NSC0

)K

(NSC0
+t)K

, if r(t) < ropt ,

(47)

where P = P tSC · (1 + fee0 + ksm) and K = ksm
ropt

. We omit full details of solving the
equations noting only that the first one is a simple separable differential equation and
the other one is a first-order non-homogeneous linear differential equation solved by
using variation of parameters method24.
24 www.sfu.ca/math-coursenotes/../sec_first_order_homogeneous_linear.html

https://www.sfu.ca/math-coursenotes/Math%20158%20Course%20Notes/sec_first_order_homogeneous_linear.html


The equation (47) can be used to calculate reserves only when the reserve ratio
belongs strictly to one of the intervals, i.e., either r(t) ≥ ropt or r(t) < ropt for every
t ∈ [0..N ].

Given that the reserve ratio is decreased when stablecoins are bought it is possible
that starting with the initial ratio r(0) > ropt , at some point X < N the ratio will drop
to r(X) = rpeg . In this case, the new reserve should be calculated using both intervals
defined by (47). Let R3(N) define the reserve in such a case:

R3(N) = R1(X) + R2(N
′,R′0,N

′
SC0

)− R0, (48)

where
N ′ = N −X, R′0 = R1(X), N

′
SC0

= NSC0 +X.

X is basically an amount of stablecoins that should be bought until the optimal
reserve ratio is reached. It can be found from the following equation:

ropt · Lt(X) = R1(X), Lt(X) = P tSC (NSC0 +X),

ropt · P tSC (NSC0 +X) = X · P tSC (1 + fee0) + R0,

X =
R0 − ropt · P tSC ·NSC0

P tSC (ropt − 1− fee0)
. (49)

Putting everything together, the function R(N) that defines reserves after buying
N stablecoins is the following:

R(N) =


R1(N), if r(0) > r(N) ≥ ropt ,

R2(N,R0,NSC0 ), if r(N) < r(0) ≤ ropt ,

R3(N), if r(N) < ropt < r(0).

where R1(N), R2(N) are defined by (47) and R3(N) is defined by (48).
The algorithm (3) defines the procedure of selecting correct equation for calculating

new reserves R(N). Then, the price of buying N stablecoins is Pbuy
sc (N) = R(N)−R0.

Algorithm 3 Calculating new reserves when buying stablecoins
1: procedure CalculateNewReserves
2: R0 ← initial amount of reserves
3: r0 ← initial reserves ratio
4: NSC0 ← initial amount of stablecoins
5: N ← number of stablecoins to be bought
6: if r0 > ropt then
7: X ← number of stablecoins to be bought until optimum is reached
8: if N ≤ X then
9: newReserves← R1(N)
10: else
11: newReserves← R3(N)

12: else
13: newReserves← R2(N,R0,NSC0 )

14: return newReserves



D Price for selling stablecoins in the continuous setting

The amount of returned basecoins for selling N stablecoins in the discrete setting was
defined by (19) as:

P sell
sc (N) =

N−1∑
i=0

P sell
sc,i =

N−1∑
i=0

k(ri) · P tSC · (1− fee(Ri,NSCi )).

fee(Ri,NSCi ) =

fee0 + ksr · Ri−Lt
i ·ropt

Lt
i ·ropt

, if ri > ropt ,

fee0, if ri ≤ ropt ,
k(ri) = min(1,

ri
rpeg

)

where Lt
i = NSCi · P tSC , NSCi = NSC0 − i, and ri =

Ri

Lt
i
.

Let R(t), NSC (t) be continuous functions on [0, N ] defining the amount of reserves
and issued stablecoins at time t (i.e., after selling t stablecoins), where R(0) = R0 and
NSC (0) = NSC0 are the initial amounts. Then, the price P sell

sc (t) of selling t coins is a
derivative of the function R(t):

dR(t)

dt
= −P sell

sc (t), NSC (t) = NSC0 − t,

dR(t)

dt
= −k(r(t)) · P tSC (1− fee(t)). (50)

The solution of the differential equation (50) provides the unknown function R(t).
It is solved separately for every interval defined by fee(t) and k(r(t)):

dR(t)
dt

= −P tSC (1− fee0 − ksr ·
R(t)−Lt (t)·ropt

Lt (t)·ropt
), if r(t) > ropt ,

dR(t)
dt

= −P tSC (1− fee0), if rpeg ≤ r(t) ≤ ropt ,

dR(t)
dt

= − r(t)
rpeg

P tSC (1− fee0), if r(t) < rpeg .

(51)

Solving (51) provides:

R(t) =



R1(t,R0,NSC0 ) =

−P NSC0
−t

1+K
+

(
R0+P

NSC0
1+K

)
(NSC0

)K

(NSC0
−t)K , if r(t) > ropt ,

R2(t,R0) =

R0 − t · P tSC (1− fee0), if rpeg ≤ r(t) ≤ ropt ,

R3(t) = R0 ·
(

NSC0
−t

NSC0

) 1−fee0
rpeg , if r(t) < rpeg .

(52)

where P = −P tSC · (1 − fee0 + ksm) and K = ksm
ropt

. We omit full details of solving the
equations, they are solved analogously to the equations in the previous sections using
well-known mathematical techniques.

Note that the equation (52) can be used to calculate reserves only when reserve
ratio belongs strictly to one of the intervals for every t ∈ [0..N ]. Given that the reserve
ratio is increased when stablecoins are sold it is possible that it will stretch to several
intervals in which case we need to use different equations to calculate the price for each
particular interval.



(53) shows all possible variants of calculating reserves depending on the dynamics
of the reserve ratio.

R(N) =



R1(N,R0,NSC0 ), if rpeg < ropt ≤ r(0) < r(N),

R2(N,R0), if rpeg ≤ r(0) < r(N) ≤ ropt ,

R3(N), if r(0) < r(t) < rpeg < ropt ,

R4(N,R0,NSC0 ) =

R2(X,R0)− R0+

+R1(N −X,R′0,N
′
SC0

) if rpeg ≤ r(0) < ropt < r(N),

R5(N) = R3(Y )− R0+

+R4(N − Y,R′′0 ,N
′′
SC0

), if r(0) < rpeg < ropt < r(N),

R6(N) = R3(Y )− R0+

+R2(N − Y,R′′0 ), if r(0) < rpeg < r(N) ≤ ropt .

(53)

where

X – amount of stablecoins to be sold until optimal reserve ratio is reached;
Y – amount of stablecoins to be sold until minimal reserve ratio (rpeg) is reached;
R′0 = R2(X), N

′
SC0

= NSC0 −X;
R′′0 = R3(Y ), N

′′
SC0

= NSC0 − Y .

X can be found from the following equation:

ropt · Lt(X) = R2(X), Lt(X) = P tSC (NSC0 −X),

ropt · P tSC (NSC0 −X) = R0 −X · P tSC (1− fee0),

X(R0,NSC0 ) =
R0 − ropt · P tSC ·NSC0

P tSC (1− fee0 − ropt)
. (54)

Y can be found from the following equation:

rpeg · Lt(Y ) = R3(Y ),

rpeg · P tSC (NSC0 − Y ) = R0 ·
(
NSC0 − Y

NSC0

) 1−fee0
rpeg

,

Y (R0,NSC0 ) = NSC0 −
(
rpeg · P tSC · (NSC0 )

d

R0

) 1
d−1

, d =
1− fee0

rpeg
. (55)

The algorithm (4) defines the procedure of calculating new reserves R(N) after
selling N stablecoins. Then, the amount of returned basecoins to the user is P sell

sc (N) =
R0 − R(N).



Algorithm 4 Calculating new reserves when selling stablecoins
1: procedure CalculateNewReserves
2: R0 ← initial amount of reserves
3: r0 ← initial reserves ratio
4: NSC0 ← initial amount of stablecoins
5: N ← number of stablecoins to be sold
6: if r0 ≥ ropt then
7: newReserves← R1(N,R0,NSC0 )
8: else
9: if r0 < rpeg then
10: newReserves← InitRatioBelowPeg(N,R0,NSC0 )
11: else
12: newReserves← InitRatioAbovePeg(N,R0,NSC0 )

return newReserves
13:
14: procedure InitRatioAbovePeg(N ′,R′0,N

′
SC0

)
15: X ← X(R′0,N

′
SC0

) – number of stablecoins to sell until ropt is reached
16: if N ′ ≤ X then
17: res← R2(N

′,R′0,N
′
SC0

)
18: else
19: R′′0 ← R2(X,R

′
0,N

′
SC0

)

20: N
′′
SC0
← N

′
SC0
−X

21: res← R′′0 − R′0 + R1(N
′ −X,R′′0 ,N

′′
SC0

)
return res

22:
23: procedure InitRatioBelowPeg(N ′,R′0,N

′
SC0

)
24: Y ← Y (R′0,N

′
SC0

) – number of stablecoins to sell until rpeg is reached
25: if N ′ ≤ Y then
26: res← R3(N

′,R′0,N
′
SC0

)
27: else
28: R′′0 ← R3(Y,R

′
0,N

′
SC0

)

29: N
′′
SC0
← N

′′
SC0
− Y

30: res← R′′0 − R′0 + InitRatioAbovePeg(N ′ − Y,R′′0 ,N
′′
SC0

)
return res



D.1 Debt-for-equity swap in the continuous setting

As was discussed in Section [5.4.1], a user is compensated with reservecoins for selling
stablecoins in case r < rpeg . The amount of reservecoins forN stablecoins in the discrete
setting was defined by (21) as:

S sell
sc (N) =

N−1∑
i=0

S sell
sc,i =

N−1∑
i=0

(1− k(ri)) · P tSC ·NRCi

Ri − k(ri) · P tSC ·NSCi

· (1− fee0).

In this section we describe how to calculate this amount in the continous setting.
Let R(t), NSC (t), and NRC (t) be continuous functions on [0, N ] defining the amount

of reserves, amount of issued stablecoins, and amount of issued reservecoins correspond-
ingly at time t (i.e., after selling t stablecoins), where R(0) = R0, NSC (0) = NSC0 , and
NRC (0) = NRC0 are the initial amounts. Then, the amount of compensated reservecoins
S sell
sc (N) for N stablecoins can be defined as a derivative of the function NRC (t):

dNRC (t)

dt
= S sell

sc (t), S sell
sc (t) =

(1− k(r(t))) · P tSC ·NRC (t)

R(t)− k(r(t)) · P tSC ·NSC (t)
(1− fee0),

NSC (t) = NSC0 − t, k(r(t)) =

1, if r(t) ≥ rpeg ,

r(t)
rpeg

, if r(t) < rpeg .

Note that if k(r(t)) = 1 then S sell
sc (t) = 0, so we need to solve the equation only for the

case k(r(t)) < 1 (i.e., r(t) < rpeg):

dNRC (t)

dt
=

(1− R(t)

P t
SC ·NSC (t)·rpeg

)P tSC ·NRC (t)

R(t)− R(t)
rpeg

(1− fee0), (56)

where R(t) is defined by (52) for the interval r(t) < rpeg .
(56) is a first-order separable differential equation. The solution provides the un-

known function NRC (t):
NRC (t) = eA ·NRC0 , (57)

where

A =
1− fee0

1− 1
rpeg

(
1

rpeg
ln

NSC0 − t
NSC

− P tSC (NSC0 )
d((NSC0 − t)1−d − (NSC0 )

1−d)

R0(1− d)

)
,

d =
1− fee0

rpeg
.

Since the reserves ratio grows when stablecoins are sold and the equation calculates
reservecoins only for the case r(t) < rpeg we need to apply it only for the amount t = Y ,
where Y is the number of stablecoins to be sold until rpeg is reached. Y is defined by
(55).

The algorithm (5) defines the full procedure of calculating amount of compensated
reservecoins S sell

sc (N).



Algorithm 5 Calculating amount of compensated reservecoins
1: procedure CalculateReservecoins
2: r0 ← initial reserves ratio
3: NRC0 ← initial amount of reservecoins
4: N ← number of stablecoins to be sold
5: if r0 < rpeg then
6: Y ← number of stablecoins to be sold until rpeg is reached
7: if N < Y then
8: reservecoins← NRC (N)−NRC0

9: else
10: reservecoins← NRC (Y )−NRC0

11: else
12: reservecoins← 0
13: return reservecoins

E Isabelle/HOL Formalization

theory StableCoin
imports Complex-Main

begin

type-synonym base-coin = real

type-synonym stable-coin = real

type-synonym reserve-coin = real

type-synonym exchange-rate = real

locale stablecoin =
fixes rmin :: real
and rmax :: real
and fee :: real
and N SC-threshold :: stable-coin (〈N ∗SC 〉)
and p-min-rc :: base-coin (〈PminRC 〉)

assumes rmin-lower-bound : rmin > 1 + fee
and rmin-upper-bound : rmax ≥ rmin
and fee-is-percentage: fee ∈ {0<..1}
and N SC-threshold-positivity : N ∗SC > 0
and p-min-rc-positivity : PminRC > 0

begin

abbreviation stable-coin-target-price :: exchange-rate ⇒ base-coin (〈P tSC [-]〉)
where
P tSC [X ] ≡ X

definition stable-coin-actual-price :: exchange-rate ⇒ base-coin ⇒ stable-coin
⇒ base-coin (〈PSC ′(-,-,- ′)〉) where



PSC(X , R, N SC) = (if N SC = 0 then P tSC [X ] else min P tSC [X ] (R /
N SC))

definition liabilities :: exchange-rate ⇒ base-coin ⇒ stable-coin ⇒ base-coin
(〈L ′(-,-,- ′)〉) where
L(X , R, N SC) = N SC ∗ PSC(X , R, N SC)

definition equity :: exchange-rate ⇒ base-coin ⇒ stable-coin ⇒ base-coin
(〈E ′(-,-,- ′)〉) where
E(X , R, N SC) = R − L(X , R, N SC)

definition reserve-ratio :: exchange-rate ⇒ base-coin ⇒ stable-coin ⇒ real
(〈r ′(-,-,- ′)〉) where
r(X , R, N SC) = R / L(X , R, N SC)

definition reserve-coin-target-price :: exchange-rate ⇒ base-coin ⇒ stable-coin
⇒ reserve-coin ⇒ base-coin (〈P tRC ′(-,-,-,- ′)〉) where
P tRC(X , R, N SC , NRC) = E(X , R, N SC) / NRC

definition reserve-coin-buying-price :: exchange-rate ⇒ base-coin ⇒ stable-coin
⇒ reserve-coin ⇒ base-coin (〈PbRC ′(-,-,-,- ′)〉) where
PbRC(X , R, N SC , NRC) = (if NRC = 0 then PminRC else max P tRC(X ,

R, N SC , NRC) PminRC)

type-synonym bank-state = base-coin × stable-coin × reserve-coin

fun is-valid-bank-state :: bank-state ⇒ bool where
is-valid-bank-state (R, N SC , NRC) = (R ≥ 0 ∧ N SC ≥ 0 ∧ NRC ≥ 0 )

datatype action = BuySCs stable-coin | SellSCs stable-coin | BuyRCs reserve-coin
| SellRCs reserve-coin

type-synonym transaction = action × exchange-rate

fun tx-rate :: transaction ⇒ exchange-rate where
tx-rate (-, X ) = X

fun is-valid-transaction :: transaction ⇒ bank-state ⇒ bool where
is-valid-transaction (BuySCs n, X ) (R, N SC , NRC) = (X > 0 ∧ n > 0 ∧

r(X , R, N SC) ≥ rmin ∧ r(X , R + n ∗ (1 + fee) ∗ PSC(X , R, N SC), N SC

+ n) ≥ rmin)
| is-valid-transaction (SellSCs n, X ) (R, N SC , NRC) = (X > 0 ∧ n > 0 ∧
n ∗ (1 − fee) ∗ PSC(X , R, N SC) ≤ R ∧ n ≤ N SC)
| is-valid-transaction (BuyRCs n, X ) (R, N SC , NRC) = (X > 0 ∧ n > 0
∧ (r(X , R, N SC) ≤ rmax ∨ N SC < N ∗SC) ∧ r(X , R + n ∗ (1 + fee) ∗
PbRC(X , R, N SC , NRC), N SC) ≤ rmax)
| is-valid-transaction (SellRCs n, X ) (R, N SC , NRC) = (X > 0 ∧ n > 0 ∧ n
∗ (1 − fee) ∗ P tRC(X , R, N SC , NRC) ≤ R ∧ n ≤ NRC ∧ r(X , R, N SC) ≥
rmin ∧ r(X , R − n ∗ (1 − fee) ∗ P tRC(X , R, N SC , NRC), N SC) ≥ rmin)



inductive transition :: bank-state ⇒ transaction ⇒ bank-state ⇒ bool (〈-
→{|-|} -〉 [51 , 0 , 51 ] 50 ) where
buy-scs: S →{|tx |} S ′
if is-valid-transaction tx S
and is-valid-bank-state S
and (BuySCs n, X ) = tx
and (R, N SC , NRC) = S
and R ′ = R + n ∗ (1 + fee) ∗ PSC(X , R, N SC)
and N ′SC = N SC + n
and N ′RC = NRC

and S ′ = (R ′, N ′SC , N ′RC)
| sell-scs: S →{|tx |} S ′

if is-valid-transaction tx S
and is-valid-bank-state S
and (SellSCs n, X ) = tx
and (R, N SC , NRC) = S
and R ′ = R − n ∗ (1 − fee) ∗ PSC(X , R, N SC)
and N ′SC = N SC − n
and N ′RC = NRC

and S ′ = (R ′, N ′SC , N ′RC)
| buy-rcs: S →{|tx |} S ′

if is-valid-transaction tx S
and is-valid-bank-state S
and (BuyRCs n, X ) = tx
and (R, N SC , NRC) = S
and R ′ = R + n ∗ (1 + fee) ∗ PbRC(X , R, N SC , NRC)
and N ′SC = N SC

and N ′RC = NRC + n
and S ′ = (R ′, N ′SC , N ′RC)

| sell-rcs: S →{|tx |} S ′
if is-valid-transaction tx S
and is-valid-bank-state S
and (SellRCs n, X ) = tx
and (R, N SC , NRC) = S
and R ′ = R − n ∗ (1 − fee) ∗ P tRC(X , R, N SC , NRC)
and N ′SC = N SC

and N ′RC = NRC − n
and S ′ = (R ′, N ′SC , N ′RC)

inductive sequence-transition :: bank-state ⇒ transaction list ⇒ bank-state
⇒ bool (〈- →∗{|-|} -〉 [51 , 0 , 51 ] 50 ) where
tx-seq-base:
S →∗{|[]|} S

| txs-seq-ind :
S →∗{|txs @ [tx ]|} S ′
if S →∗{|txs|} S ′′
and S ′′ →{|tx |} S ′
and S ′′ = (R ′′, N ′′SC , N ′′RC)
and N ′′SC > 0
and N ′′RC > 0



lemma sequence-transition-cons:
assumes S →∗{|tx # txs|} S ′
shows ∃S ′′ R N SC NRC . S = (R, N SC , NRC) ∧ S →{|tx |} S ′′ ∧ S ′′
→∗{|txs|} S ′ ∧ N SC > 0 ∧ NRC > 0
using assms

proof (induction txs arbitrary : S ′ rule: rev-induct)
case Nil
then have S →{|tx |} S ′
by (metis append .simps(1 ) snoc-eq-iff-butlast sequence-transition.cases)

then show ?case
by (metis Nil .prems append-Nil sequence-transition.cases snoc-eq-iff-butlast

tx-seq-base)
next
case (snoc tx ′ txs)
from snoc.prems have S →∗{|(tx # txs) @ [tx ′]|} S ′
by auto
then obtain S ′′ R ′′ N ′′SC N ′′RC where S ′′ = (R ′′, N ′′SC , N ′′RC) S
→∗{|tx # txs|} S ′′ and S ′′ →{|tx ′|} S ′ and N ′′SC > 0 and N ′′RC > 0

by (auto intro: sequence-transition.cases)
from 〈S →∗{|tx # txs|} S ′′〉 obtain S ′′′ R N SC NRC where S = (R, N SC ,

NRC) and S →{|tx |} S ′′′ and S ′′′ →∗{|txs|} S ′′ and N SC > 0 and NRC >
0

using snoc.IH by blast
from 〈N ′′RC > 0 〉 and 〈N ′′SC > 0 〉 and 〈S ′′ = (R ′′, N ′′SC , N ′′RC)〉 and
〈S ′′′ →∗{|txs|} S ′′〉 and 〈S ′′ →{|tx ′|} S ′〉 have S ′′′ →∗{|txs @ [tx ′]|} S ′

by (simp add : txs-seq-ind)
with 〈NRC > 0 〉 and 〈N SC > 0 〉 and 〈S = (R, N SC , NRC)〉 and 〈S →{|tx |}
S ′′′〉 show ?case

by blast
qed

lemma sequence-transition-alt :
assumes S →∗{|txs|} S ′
obtains Γ
where length Γ = length txs + 1
and S = Γ ! 0
and S ′ = Γ ! (length txs)
and ∀ i ∈ {0 ..<length txs}. Γ ! i →{|txs ! i |} Γ ! (i + 1 )

using assms
proof (induction txs arbitrary : S ′ thesis rule: rev-induct)
case Nil
let ?Γ = [S]
have S ′ = S
by (blast intro: sequence-transition.cases Nil .prems)

moreover have length ?Γ = length [] + 1
by simp

moreover have S = ?Γ ! 0
by simp

moreover have S = ?Γ ! length []



by simp
moreover have ∀ i ∈ {0 ..<length []}. ?Γ ! i →{|[] ! i |} ?Γ ! (i + 1 )
by simp

ultimately show ?case
using Nil .prems by blast

next
case (snoc tx txs)
from 〈S →∗{|txs @ [tx ]|} S ′〉 obtain S ′′ where S →∗{|txs|} S ′′ and S ′′
→{|tx |} S ′

by (blast intro: sequence-transition.cases)
from 〈S →∗{|txs|} S ′′〉 and snoc.IH obtain Γ where length Γ = length txs

+ 1 and S = Γ ! 0 and S ′′ = Γ ! length txs and ∀ i ∈ {0 ..<length txs}. Γ
! i →{|txs ! i |} Γ ! (i + 1 )

by blast
let ?Γ = Γ @ [S ′]
from 〈length Γ = length txs + 1 〉 have length ?Γ = length (txs @ [tx ]) + 1
by simp

moreover from 〈S = Γ ! 0 〉 and 〈length ?Γ = length (txs @ [tx ]) + 1 〉
have S = ?Γ ! 0

by (simp add : nth-append)
moreover from 〈length Γ = length txs + 1 〉 have S ′ = ?Γ ! length (txs @

[tx ])
by (metis Suc-eq-plus1 length-append-singleton nth-append-length)
moreover from 〈S ′′ = Γ ! length txs〉 and 〈S ′′ →{|tx |} S ′〉 and 〈∀ i ∈
{0 ..<length txs}. Γ ! i →{|txs ! i |} Γ ! (i + 1 )〉 〈length Γ = length txs + 1 〉
have ∀ i ∈ {0 ..<length (txs @ [tx ])}. ?Γ ! i →{|(txs @ [tx ]) ! i |} ?Γ ! (i + 1 )

by (metis (no-types, lifting) Suc-eq-plus1 Suc-leI add-diff-cancel-right ′

add-less-cancel-left atLeastLessThan-iff length-append-singleton nat-less-le nth-append
nth-append-length plus-1-eq-Suc)
ultimately show ?case
using snoc.prems(1 ) by blast

qed

datatype market-offer = BuySCOffer | SellSCOffer

type-synonym secondary-market = market-offer × base-coin

datatype market-choice = Bank | Secondary

fun one-sc-transaction :: exchange-rate ⇒ market-offer ⇒ transaction where
one-sc-transaction X SellSCOffer = (BuySCs 1 , X ) —a ‘Buy 1 SC’ transaction
| one-sc-transaction X BuySCOffer = (SellSCs 1 , X ) —a ‘Sell 1 SC’ transaction

fun rational-choice :: bank-state ⇒ exchange-rate ⇒ secondary-market ⇒
market-choice where
rational-choice S X (action, price) = (
let
(R, N SC , NRC) = S;
tx = one-sc-transaction X action

in



if ¬ (is-valid-bank-state S ∧ is-valid-transaction tx S)
then

Secondary — Bank does not allow the transaction, thus secondary
market is chosen

else
case action of
SellSCOffer ⇒ (if price > (1 + fee) ∗ PSC(X , R, N SC) then Bank

else Secondary)
| BuySCOffer ⇒ (if price < (1 − fee) ∗ PSC(X , R, N SC) then Bank

else Secondary))

theorem peg-maintenance-upper-bound :
assumes action = SellSCOffer
and tx = one-sc-transaction X action — a ‘Buy 1 SC’ transaction
and S →{|tx |} S ′ — the transaction is allowed
and secondary-market = (action, price)
and price > (1 + fee) ∗ P tSC [X ]

shows ¬ rational-choice S X secondary-market = Secondary
proof −
obtain R and N SC and NRC where (R, N SC , NRC) = S
by (metis (no-types) is-valid-bank-state.cases)

let ?P ′ = (1 + fee) ∗ PSC(X , R, N SC)
have ?P ′ ≤ (1 + fee) ∗ P tSC [X ]
unfolding stable-coin-actual-price-def using fee-is-percentage by auto

with 〈price > (1 + fee) ∗ P tSC [X ]〉 have ?P ′ < price
by linarith

moreover from 〈S →{|tx |} S ′〉 have is-valid-bank-state S and is-valid-transaction
tx S

by (blast intro: transition.cases)+
ultimately have rational-choice S X secondary-market = Bank
using assms(1 ,2 ,4 ) and 〈(R, N SC , NRC) = S〉 by (simp split : prod .splits)

blast
then show ?thesis
by simp

qed

lemma peg-when-reserve-ratio-greater-than-one:
assumes r(X , R, N SC) > 1
shows PSC(X , R, N SC) = P tSC [X ]

proof −
from assms have R / (N SC ∗ PSC(X , R, N SC)) > 1
using liabilities-def and reserve-ratio-def by simp

then have R / N SC > PSC(X , R, N SC)
unfolding stable-coin-actual-price-def using less-divide-eq-1 by fastforce

then show ?thesis
unfolding stable-coin-actual-price-def by auto

qed

corollary peg-when-reserve-ratio-within-lower-bound :
assumes r(X , R, N SC) ≥ rmin



shows PSC(X , R, N SC) = P tSC [X ]
using assms and rmin-lower-bound and fee-is-percentage and peg-when-reserve-ratio-greater-than-one
by auto

theorem peg-maintenance-lower-bound :
assumes action = BuySCOffer
and tx = one-sc-transaction X action — a ‘Sell 1 SC’ transaction
and S →{|tx |} S ′ — the transaction is allowed
and secondary-market = (action, price)
and price < (1 − fee) ∗ P tSC [X ]
and (R, N SC , NRC) = S
and r(X , R, N SC) > 1

shows ¬ rational-choice S X secondary-market = Secondary
proof −
let ?P ′ = (1 − fee) ∗ PSC(X , R, N SC)
from 〈r(X , R, N SC) > 1 〉 have ?P ′ = (1 − fee) ∗ P tSC [X ]
using peg-when-reserve-ratio-greater-than-one by simp

with 〈price < (1 − fee) ∗ P tSC [X ]〉 have ?P ′ > price
by linarith

moreover from 〈S →{|tx |} S ′〉 have is-valid-bank-state S and is-valid-transaction
tx S

by (blast intro: transition.cases)+
ultimately have rational-choice S X secondary-market = Bank
using assms(1 ,2 ,4 ) and 〈(R, N SC , NRC) = S〉 by (simp split : prod .splits)

blast
then show ?thesis
by simp

qed

theorem peg-robustness-during-market-crashes:
assumes X > 0
and X ′ > 0
and N SC > 0
and r = r(X , R, N SC)
and r > 1 — The peg is maintained before the crash
and Y = 1 / X — BC price before the crash
and Y ′ = 1 / X ′ — BC price after the crash
and (Y − Y ′) / Y ≤ (r − 1 ) / r — BC price crash of at most (r − 1 )

/ r
shows PSC(X ′, R, N SC) = P tSC [X ′] — The peg is maintained after the

crash
proof −
have P tSC [X ′] ≤ R / N SC

proof −
from 〈r = r(X , R, N SC)〉 and 〈r > 1 〉 have PSC(X , R, N SC) = P tSC [X ]
using peg-when-reserve-ratio-greater-than-one by simp

with 〈X > 0 〉 have P tSC [X ′] ≤ R / N SC ←→ P tSC [X ′] ≤ (R / N SC)
∗ (P tSC [X ] / P tSC [X ])

by auto



also from 〈PSC(X , R, N SC) = P tSC [X ]〉 and 〈r = r(X , R, N SC)〉 have
. . . ←→ P tSC [X ′] ≤ r ∗ P tSC [X ]

unfolding liabilities-def and reserve-ratio-def by simp
also from 〈X > 0 〉 and 〈X ′ > 0 〉 and 〈r > 1 〉 have . . . ←→ 1 / P tSC [X ′]

≥ 1 / (r ∗ P tSC [X ])
by (smt divide-cancel-left frac-le mult-less-cancel-right1 )

also have . . . ←→ 1 / P tSC [X ′] ≥ (1 / r) ∗ (1 / P tSC [X ])
by simp

also from 〈X > 0 〉 and 〈X ′ > 0 〉 and 〈Y = 1 / X 〉 and 〈Y ′ = 1 / X ′〉
have . . . ←→ Y ′ ≥ Y / r

by (simp add : mult .commute)
also have . . . ←→ Y ′ ≥ Y ∗ ((r + 1 − r) / r)
by simp

also have . . . ←→ Y ′ ≥ Y ∗ ((r / r) + ((1 − r) / r))
by (metis add-diff-cancel-left ′ add-divide-distrib diff-add-cancel)

also from 〈r > 1 〉 have . . . ←→ Y ′ ≥ Y ∗ (1 + ((1 − r) / r))
by force

also have . . . ←→ Y ′ ≥ Y + Y ∗ ((1 − r) / r)
by (simp add : distrib-left)

also have . . . ←→ Y ′ − Y ≥ Y ∗ ((1 − r) / r)
by linarith

also from 〈X > 0 〉 have . . . ←→ (Y ′ − Y ) ∗ X ≥ (Y ∗ ((1 − r) / r))
∗ X

by (metis mult .commute mult-le-cancel-left-pos)
also from 〈X > 0 〉 and 〈Y = 1 / X 〉 have . . . ←→ (Y ′ − Y ) / Y ≥ (1

− r) / r
by auto

also have . . . ←→ (Y − Y ′) / Y ≤ (r − 1 ) / r
by (smt divide-minus-left)

finally show ?thesis
using 〈(Y − Y ′) / Y ≤ (r − 1 ) / r 〉 by blast

qed
then show ?thesis
unfolding stable-coin-actual-price-def by auto

qed

theorem no-insolvency :
assumes X ≥ 0 and R ≥ 0 and N SC ≥ 0
shows E(X , R, N SC) ≥ 0

proof −
consider (a) N SC = 0 | (b) N SC 6= 0 and R / N SC ≤ P tSC [X ] | (c)

N SC 6= 0 and R / N SC > P tSC [X ]
by linarith

then show ?thesis
proof cases
case a
from 〈N SC = 0 〉 have E(X , R, N SC) = R
unfolding liabilities-def and equity-def by simp

with 〈R ≥ 0 〉 show ?thesis
by auto



next
case b
from 〈N SC 6= 0 〉 and 〈R / N SC ≤ P tSC [X ]〉 have E(X , R, N SC) = R

− N SC ∗ (R / N SC)
unfolding liabilities-def and equity-def and stable-coin-actual-price-def

by (simp add : min.absorb2 )
also from 〈N SC 6= 0 〉 have . . . = 0
by simp

finally show ?thesis
by simp

next
case c
from 〈N SC 6= 0 〉 have 0 = R − N SC ∗ (R / N SC)
by simp

also from 〈N SC ≥ 0 〉 and 〈N SC 6= 0 〉 and 〈R / N SC > P tSC [X ]〉 have
. . . < R − N SC ∗ P tSC [X ]

by (smt mult-le-cancel-left-pos)
also from 〈N SC 6= 0 〉 and 〈R / N SC > P tSC [X ]〉 have . . . = E(X , R,

N SC)
unfolding liabilities-def and equity-def and stable-coin-actual-price-def

by simp
finally show ?thesis
by simp

qed
qed

theorem no-bank-runs-for-stable-coins:
assumes S →{|tx1|} S1

and S1 →{|tx2|} S2

and tx1 = (SellSCs n1, X 1)
and tx2 = (SellSCs n2, X 2)
and S = (R, N SC , NRC)
and S1 = (R ′, N ′SC , N ′RC)
and P1SC = PSC(X 1, R, N SC)
and P2SC = PSC(X 2, R ′, N ′SC)
and X 1 = X 2

shows P2SC ≥ P1SC
proof −
from assms(1−6 ) have N SC > 0 and N ′SC > 0 and n1 > 0 and N ′SC

= N SC − n1

using transition.simps and stablecoin-axioms by auto
from assms(1 ,5 ) and 〈N SC > 0 〉 have R / N SC ≥ 0
by (metis divide-nonneg-pos is-valid-bank-state.simps transition.cases)

have simpl : R / N SC ≤ (R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n1)
proof −
have R / N SC ≤ (R / N SC) ∗ ((N SC − n1 + n1 ∗ fee) / (N SC − n1))
proof −
from 〈N ′SC > 0 〉 and 〈n1 > 0 〉 〈N ′SC = N SC − n1〉 have (N SC − n1

+ n1 ∗ fee) / (N SC − n1) ≥ 1
using fee-is-percentage by auto



with 〈R / N SC ≥ 0 〉 show ?thesis
using mult-le-cancel-left1 by fastforce

qed
also have . . . = (R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n1)
proof −
have (R / N SC) ∗ ((N SC − n1 + n1 ∗ fee) / (N SC − n1)) = (R /

N SC) ∗ ((N SC − n1 ∗ (1 − fee)) / (N SC − n1))
by (simp add : diff-add-eq diff-diff-eq2 right-diff-distrib ′)

also have . . . = (R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n1)
proof −
{
fix x y z w :: real
assume z 6= 0
then have (x − y ∗ (x / z )) / w = (x / z ) ∗ ((z − y) / w)
by (simp add : assms diff-divide-eq-iff right-diff-distrib ′)

}
with 〈N SC > 0 〉 show ?thesis
by auto

qed
finally show ?thesis
by blast

qed
finally show ?thesis .

qed
show ?thesis
proof (cases P tSC [X 1] ≤ R / N SC)
case True
from 〈P tSC [X 1] ≤ R / N SC 〉 have PSC(X 1, R, N SC) = P tSC [X 1]
using stable-coin-actual-price-def by auto

with assms(1 ,3 ,5 ,6 ) have R ′ = R − n1 ∗ (1 − fee) ∗ P tSC [X 1]
using transition.cases by fastforce

with 〈N ′SC > 0 〉 and 〈N ′SC = N SC − n1〉 and assms(8 ) have P2SC
= min P tSC [X 2] ((R − n1 ∗ (1 − fee) ∗ P tSC [X 1]) / (N SC − n1))

unfolding stable-coin-actual-price-def by simp
moreover have R / N SC ≤ (R − n1 ∗ (1 − fee) ∗ P tSC [X 1]) / (N SC

− n1)
proof −
from simpl have R / N SC ≤ (R − n1 ∗ (1 − fee) ∗ (R / N SC)) /

(N SC − n1) .
also have . . . ≤ (R − n1 ∗ (1 − fee) ∗ P tSC [X 1]) / (N SC − n1)
proof −
from 〈n1 > 0 〉 have n1 ∗ (1 − fee) ≥ 0
using fee-is-percentage by auto

moreover have N SC − n1 > 0
using 〈N ′SC > 0 〉 and 〈N ′SC = N SC − n1〉 by blast

ultimately show ?thesis
using 〈P tSC [X 1] ≤ R / N SC 〉 and divide-le-cancel and mult-left-mono

by fastforce
qed
finally show ?thesis .



qed
ultimately have P2SC = P tSC [X 2]
using 〈P tSC [X 1] ≤ R / N SC 〉 and assms(9 ) by linarith
with assms(7 ,9 ) and 〈PSC(X 1, R, N SC) = P tSC [X 1]〉 have P2SC =

P1SC
by auto

then show ?thesis
by simp

next
case False
from 〈¬ P tSC [X 1] ≤ R / N SC 〉 and 〈N SC > 0 〉 have PSC(X 1, R, N SC)

= R / N SC

unfolding stable-coin-actual-price-def by auto
with assms(1 ,3 ,5 ,6 ) have R ′ = R − n1 ∗ (1 − fee) ∗ (R / N SC)
using transition.cases by fastforce

with 〈N ′SC > 0 〉 and 〈N ′SC = N SC − n1〉 and assms(8 ) have ∗: P2SC
= min P tSC [X 2] ((R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n1))

unfolding stable-coin-actual-price-def by simp
show ?thesis
proof (cases P tSC [X 2] ≤ ((R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC −

n1)))
case True
from 〈P tSC [X 2] ≤ ((R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n1))〉

and ∗ have P2SC = P tSC [X 2]
by linarith
also from 〈¬ P tSC [X 1] ≤ R / N SC 〉 and 〈PSC(X 1,R,N SC) = R /

N SC 〉 and assms(7 ,9 ) have . . . > P1SC
by linarith

finally show ?thesis
by simp

next
case False
from assms(7 ) and 〈PSC(X 1, R, N SC) = R / N SC 〉 have P1SC = R

/ N SC

by simp
also from simpl have . . . ≤ (R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC

− n1) .
also from 〈¬ P tSC [X 2] ≤ ((R − n1 ∗ (1 − fee) ∗ (R / N SC)) / (N SC

− n1))〉 and ∗ have . . . = P2SC
by auto

finally show ?thesis .
qed

qed
qed

lemma buy-scs-actual-price-invariancy :
assumes S →{|tx |} S ′
and S = (R, N SC , NRC)
and S ′ = (R ′, N ′SC , N ′RC)
and (BuySCs n, X ) = tx



shows PSC(X , R, N SC) = PSC(X , R ′, N ′SC) (is ?PSC = ?P ′SC)
proof −
from assms have is-valid-transaction tx S and R ′ = R + n ∗ (1 + fee) ∗

?PSC and N ′SC = N SC + n
by (blast intro: transition.cases)+

with assms(2 ,4 ) have r(X , R, N SC) ≥ rmin and r(X , R ′, N ′SC) ≥ rmin
using is-valid-transaction.simps(1 ) by (blast , blast)

then show ?thesis
using peg-when-reserve-ratio-within-lower-bound by presburger

qed

lemma unpegged-stable-coin-actual-price-correction:
assumes X > 0
and N SC > 0

obtains α
where PSC(X , R, N SC) = (R / N SC) ∗ α
and α ∈ {0<..1}

proof −
let ?PSC = PSC(X , R, N SC)
assume ∗:

∧
γ. [[?PSC = R / N SC ∗ γ; γ ∈ {0<..1}]] =⇒ thesis

from assms(1 ) have ∀ x . 0 < x ∨ X ≥ x
by linarith

moreover have ∀ x y z . (x ::real) ∗ z / y / (z / y) = x ∨ z / y = 0
by fastforce

moreover have ∀ x y z . ((x ::real) / z ∈ {y<..1} ∨ x > z ) ∨ y ≥ x / z ∨
0 ≥ z

by auto
moreover from assms(2 ) have N SC 6= 0
by auto

ultimately have (N SC 6= 0 ∧ (X < R / N SC −→ ?PSC 6= X )) ∨ (N SC

6= 0 ∧ (X ≤ R / N SC −→ (∃α. ?PSC = R / N SC ∗ α ∧ α ∈ {0<..1})))
using assms(1 ) by (metis (no-types, hide-lams) not-le divide-eq-0-iff

divide-strict-right-mono mult .commute times-divide-eq-right)
then obtain α :: real where N SC 6= 0 ∧ α ∈ {0<..1} ∧ ((X < R / N SC

−→ ?PSC 6= X ) ∨ (X ≤ R / N SC −→ ?PSC = R / N SC ∗ α))
using fee-is-percentage by blast

with ∗ show ?thesis
using greaterThanAtMost-iff and mult .commute and mult .left-neutral
unfolding stable-coin-actual-price-def and min-def
by (metis (no-types, hide-lams) divide-le-eq-1 dual-order .order-iff-strict

eq-divide-eq-1 times-divide-eq-left)
qed

theorem monotonically-increasing-equity-per-reserve-coin:
assumes S →{|tx |} S ′
and X = tx-rate tx
and S = (R, N SC , NRC)
and S ′ = (R ′, N ′SC , N ′RC)
and X = X ′

and N ′RC > 0



and NRC > 0
and N ′SC > 0

shows E(X ′, R ′, N ′SC) / N ′RC ≥ E(X , R, N SC) / NRC

proof −
from assms(1 ) show ?thesis
proof cases
case (buy-scs n X R N SC NRC R ′ N ′SC N ′RC)
let ?PSC = PSC(X , R, N SC)
let ?P ′SC = PSC(X ′, R ′, N ′SC)
from assms(2 ,3 ,5 ,7 ) and buy-scs(3 ,4 ) have X = X ′ and NRC > 0
by auto

from assms(1 ) and buy-scs(3 ,4 ,8 ) and 〈X = X ′〉 have ?P ′SC = ?PSC
using buy-scs-actual-price-invariancy by force

from buy-scs(5 ,6 ,7 ) have E(X , R ′, N ′SC) / N ′RC = E(X , R + n ∗ (1
+ fee) ∗ ?PSC , N SC + n) / NRC

by simp
also from buy-scs(5 ,6 ) and 〈X = X ′〉 have . . . = (R + n ∗ (1 + fee) ∗

?PSC − (N SC + n) ∗ ?P ′SC) / NRC

unfolding equity-def and liabilities-def by presburger
also have . . . = (R + n ∗ ?PSC + n ∗ fee ∗ ?PSC − N SC ∗ ?P ′SC − n

∗ ?P ′SC) / NRC

by (simp add : distrib-left distrib-right)
also from 〈?P ′SC = ?PSC 〉 have . . . = (R − N SC ∗ ?PSC + n ∗ fee ∗

?PSC) / NRC

by auto
also from 〈NRC > 0 〉 and buy-scs(1 ,3 ,4 ) have . . . > (R − N SC ∗ ?PSC)

/ NRC

using fee-is-percentage and is-valid-transaction.simps(1 ) and peg-when-reserve-ratio-within-lower-bound
by (smt divide-strict-right-mono greaterThanAtMost-iff mult-pos-pos)

finally show ?thesis
using assms(3−5 ) and buy-scs(4 ,8 ) and 〈X = X ′〉 unfolding equity-def

and liabilities-def by auto
next
case (sell-scs n X R N SC NRC R ′ N ′SC N ′RC)
let ?PSC = PSC(X , R, N SC)
let ?P ′SC = PSC(X ′, R ′, N ′SC)
from sell-scs(1 ,3 ,4 ) have N SC > 0
by auto

from assms(2−5 ,7−8 ) and sell-scs(3 ,4 ,8 ) have X = X ′ and NRC >
0 and N ′SC > 0

by auto
from assms(3 ) and sell-scs(1 ,3 ) have X > 0
by auto

from assms(1 ) and sell-scs(3 ) have n > 0
by (auto intro: transition.cases)

from sell-scs(2 ,4 ) have R ≥ 0
using is-valid-bank-state.simps by blast

from 〈N ′SC > 0 〉 and sell-scs(6 ) have N SC − n > 0
by blast

have ∗: n ∗ (1 − fee) ∗ ?PSC + (N SC − n) ∗ ?P ′SC ≤ N SC ∗ ?PSC



proof (cases ?PSC = R / N SC)
case True
from 〈N ′SC > 0 〉 and 〈X > 0 〉 and 〈X = X ′〉 obtain γ where ?P ′SC

= (R ′ / N ′SC) ∗ γ and γ ∈ {0<..1}
using unpegged-stable-coin-actual-price-correction by blast

from 〈N SC − n > 0 〉 and 〈n > 0 〉 have N SC > n ∗ (1 − fee)
by (smt fee-is-percentage greaterThanAtMost-iff mult-left-le)
with 〈N SC > 0 〉 and 〈γ ∈ {0<..1}〉 have ((n ∗ (1 − fee)) / N SC) ∗

(1 − γ) ≤ 1 − γ
by (smt greaterThanAtMost-iff le-divide-eq-1-pos mult-less-cancel-right1 )
with 〈R ≥ 0 〉 have n ∗ (1 − fee) ∗ (R / N SC) ∗ (1 − γ) ≤ (1 − γ) ∗

R
by (simp add : divide-inverse mult .commute mult .left-commute mult-left-mono)
then have n ∗ (1 − fee) ∗ (R / N SC) ∗ (1 − γ) + γ ∗ R ≤ R
by (simp add : mult .commute right-diff-distrib ′)

then have n ∗ (1 − fee) ∗ (R / N SC) + γ ∗ R − n ∗ (1 − fee) ∗ (R /
N SC) ∗ γ ≤ R

by (smt distrib-left mult-cancel-left1 )
then have n ∗ (1 − fee) ∗ (R / N SC) + (R − n ∗ (1 − fee) ∗ (R /

N SC)) ∗ γ ≤ R
by (smt mult .commute ring-class.ring-distribs(2 ))

with 〈N SC − n > 0 〉 and 〈N SC > 0 〉 have n ∗ (1 − fee) ∗ (R / N SC)
+ (N SC − n) ∗ ((R − n ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n)) ∗ γ ≤
N SC ∗ (R / N SC)

by auto
with True and 〈?P ′SC = (R ′ / N ′SC) ∗ γ〉 and sell-scs(5 ,6 ) show

?thesis
by fastforce

next
case False
with sell-scs(1 ,3 ,4 ) have ?PSC < R / N SC

unfolding stable-coin-actual-price-def by fastforce
then have ?PSC = P tSC [X ]
unfolding stable-coin-actual-price-def by fastforce

have R / N SC < R ′ / N ′SC
proof −
from 〈N SC > 0 〉 and 〈X > 0 〉 obtain σ where ?PSC = (R / N SC)

∗ σ and σ ∈ {0<..1}
using unpegged-stable-coin-actual-price-correction by blast

with False have σ < 1
by force

with 〈n > 0 〉 have n > n ∗ (1 − fee) ∗ σ
by (smt fee-is-percentage greaterThanAtMost-iff mult-le-cancel-left1

mult-less-cancel-left mult-not-zero)
then have N SC − n < N SC − n ∗ (1 − fee) ∗ σ
by simp

with 〈N SC − n > 0 〉 have 1 < (N SC − n ∗ (1 − fee) ∗ σ) / (N SC

− n)
using less-divide-eq-1-pos by blast

moreover from sell-scs(2 ,4 ) have R / N SC ≥ 0



by fastforce
ultimately have R / N SC < (R / N SC) ∗ ((N SC − n ∗ (1 − fee) ∗

σ) / (N SC − n))
using False and 〈?PSC = (R / N SC) ∗ σ〉 by (metis (no-types)

less-eq-real-def linorder-not-less mult-eq-0-iff mult-le-cancel-left2 )
then have R / N SC < ((R / N SC) ∗ (N SC − n ∗ (1 − fee) ∗ σ)) /

(N SC − n)
by simp
then have R / N SC < ((R / N SC) ∗ N SC − n ∗ (1 − fee) ∗ (R /

N SC) ∗ σ) / (N SC − n)
by (simp add : mult .assoc mult .left-commute right-diff-distrib ′)

with False and 〈?PSC = (R / N SC) ∗ σ〉 have R / N SC < (R − n
∗ (1 − fee) ∗ (R / N SC) ∗ σ) / (N SC − n)

by auto
moreover from 〈?PSC = (R / N SC) ∗ σ〉 and sell-scs(5 ,6 ) have R ′

/ N ′SC = (R − n ∗ (1 − fee) ∗ (R / N SC) ∗ σ) / (N SC − n)
by simp

ultimately show ?thesis
by simp

qed
with 〈?PSC = P tSC [X ]〉 and 〈?PSC < R / N SC 〉 have P tSC [X ] < R ′

/ N ′SC
by linarith

with 〈X = X ′〉 have ?P ′SC = P tSC [X ]
unfolding stable-coin-actual-price-def by auto

then have n ∗ (1 − fee) ∗ P tSC [X ] + (N SC − n) ∗ P tSC [X ] = (n ∗
(1 − fee) + N SC − n) ∗ P tSC [X ]

by (metis add-diff-eq distrib-left mult .commute)
also have . . . = (N SC − n ∗ fee) ∗ P tSC [X ]
by (simp add : right-diff-distrib ′)

also from 〈X > 0 〉 and 〈n > 0 〉 have . . . ≤ N SC ∗ P tSC [X ]
using fee-is-percentage by auto

finally have n ∗ (1 − fee) ∗ P tSC [X ] + (N SC − n) ∗ P tSC [X ] ≤ N SC

∗ P tSC [X ] .
with 〈?PSC = P tSC [X ]〉 and 〈?P ′SC = P tSC [X ]〉 show ?thesis
by presburger

qed
with 〈NRC > 0 〉 have (R − n ∗ (1 − fee) ∗ ?PSC − (N SC − n) ∗

?P ′SC) / NRC ≥ (R − N SC ∗ ?PSC) / NRC

by (fastforce simp add : divide-le-cancel)
with assms(3−5 ) and sell-scs(4−8 ) 〈X = X ′〉 show ?thesis
unfolding equity-def and liabilities-def by fast

next
case (buy-rcs n X R N SC NRC R ′ N ′SC N ′RC)
let ?PSC = PSC(X , R, N SC)
let ?P ′SC = PSC(X ′, R ′, N ′SC)
let ?PbRC = PbRC(X , R, N SC , NRC)
from assms(4 ,8 ) and local .buy-rcs(6 ,8 ) have N SC > 0
by blast



from assms(2−5 ,7 ,8 ) and buy-rcs(3 ,4 ,8 ) have X = X ′ and NRC > 0
and N ′SC > 0

by auto
from assms(3 ) and buy-rcs(1 ,3 ) have X > 0
using is-valid-transaction.simps(3 ) by blast

from assms(1 ) and buy-rcs(3 ) have n > 0
using is-valid-transaction.simps(3 ) by (blast intro: transition.cases)

have R < R ′

proof −
have ?PbRC ≥ PminRC
unfolding reserve-coin-buying-price-def by simp

then have ?PbRC > 0
using p-min-rc-positivity by linarith

with 〈n > 0 〉 have n ∗ (1 + fee) ∗ ?PbRC > 0
using fee-is-percentage by fastforce

with buy-rcs(5 ) show ?thesis
by simp

qed
with assms(2 ,4 ,5 ,8 ) and buy-rcs(3 ,6 ,8 ) have ?PSC ≤ ?P ′SC
unfolding stable-coin-actual-price-def by (fastforce dest : divide-strict-right-mono)
show ?thesis
proof (cases ?PSC = R / N SC)
case True
from 〈N ′SC > 0 〉 and 〈X > 0 〉 and 〈X = X ′〉 and buy-rcs(6 ) obtain

γ where ?P ′SC = (R ′ / N SC) ∗ γ and γ ∈ {0<..1}
using unpegged-stable-coin-actual-price-correction by blast

have E(X ′, R ′, N ′SC) / N ′RC = (R ′ − N ′SC ∗ ?P ′SC) / N ′RC
unfolding equity-def and liabilities-def by simp

also from 〈?P ′SC = (R ′ / N SC) ∗ γ〉 and buy-rcs(5−7 ) have . . . = (R
+ n ∗ (1 + fee) ∗ ?PbRC − N SC ∗ ((R + n ∗ (1 + fee) ∗ ?PbRC) / N SC)
∗ γ) / (NRC + n)

by auto
also from 〈N SC > 0 〉 have . . . = (R + n ∗ (1 + fee) ∗ ?PbRC − 1 ∗

((R + n ∗ (1 + fee) ∗ ?PbRC) ∗ γ)) / (NRC + n)
by auto

also have . . . = (R + n ∗ (1 + fee) ∗ ?PbRC − R ∗ γ − n ∗ (1 + fee)
∗ ?PbRC ∗ γ) / (NRC + n)

by (smt divide-cancel-right left-diff-distrib)
also have . . . = (R ∗ (1 − γ) + n ∗ (1 + fee) ∗ ?PbRC − n ∗ (1 +

fee) ∗ ?PbRC ∗ γ) / (NRC + n)
by (simp add : right-diff-distrib ′)

also have . . . = (R ∗ (1 − γ) + (n ∗ (1 + fee) ∗ ?PbRC) ∗ (1 − γ)) /
(NRC + n)

by (simp add : left-diff-distrib ′ mult .commute)
also have . . . = ((R + n ∗ (1 + fee) ∗ ?PbRC) ∗ (1 − γ)) / (NRC +

n)
by (simp add : ring-class.ring-distribs(2 ))

also have . . . ≥ 0
proof −
from 〈γ ∈ {0<..1}〉 have 1 − γ ≥ 0



by auto
moreover from 〈R < R ′〉 and buy-rcs(2 ,4 ,5 ) have R + n ∗ (1 +

fee) ∗ ?PbRC > 0
by auto

moreover from 〈NRC > 0 〉 and 〈n > 0 〉 have NRC + n > 0
by auto

ultimately show ?thesis
by auto

qed
also from 〈N SC > 0 〉 have 0 = (R − N SC ∗ (R / N SC)) / NRC

by auto
also from True have . . . = E(X , R, N SC) / NRC

unfolding equity-def and liabilities-def by presburger
finally show ?thesis
using 〈X = X ′〉 and assms(3−5 ) and buy-rcs(4 ,8 ) by blast

next
case False
with 〈N SC > 0 〉 have ?PSC < R / N SC

unfolding stable-coin-actual-price-def by auto
then have ?PSC = P tSC [X ]
unfolding stable-coin-actual-price-def by fastforce

with 〈?PSC ≤ ?P ′SC 〉 and 〈X = X ′〉 have ?P ′SC = P tSC [X ]
unfolding stable-coin-actual-price-def by auto

have ?PbRC ≥ (R − N SC ∗ ?PSC) / NRC

proof −
from 〈NRC > 0 〉 have ?PbRC ≥ P tRC(X , R, N SC , NRC)
using reserve-coin-buying-price-def by auto

then show ?thesis
unfolding equity-def and liabilities-def and reserve-coin-target-price-def

by simp
qed
moreover from 〈N SC > 0 〉 and 〈?PSC < R / N SC 〉 have R − N SC

∗ ?PSC > 0
by (metis diff-gt-0-iff-gt mult .commute pos-less-divide-eq)

ultimately obtain α where ?PbRC = ((R − N SC ∗ ?PSC) / NRC) ∗
α

using 〈NRC > 0 〉 by (metis divide-inverse less-irrefl mult .left-commute
nonzero-mult-div-cancel-left)

with 〈NRC > 0 〉 and 〈?PbRC ≥ (R − N SC ∗ ?PSC) / NRC 〉 and 〈R
− N SC ∗ ?PSC > 0 〉 have α ≥ 1

by (metis divide-pos-pos mult-le-cancel-left1 )
let ?E = (R − N SC ∗ ?PSC) / NRC

have E(X ′,R ′,N ′SC) / N ′RC = ((NRC / (NRC + n)) + ((n ∗ (1 +
fee) ∗ α) / (NRC + n))) ∗ ?E

proof −
have E(X ′, R ′, N ′SC) / N ′RC = (R ′ − N ′SC ∗ ?P ′SC) / N ′RC
unfolding equity-def and liabilities-def by simp

also from 〈?PSC = P tSC [X ]〉 and 〈?P ′SC = P tSC [X ]〉 and buy-rcs(5−7 )
have . . . = (R + n ∗ (1 + fee) ∗ ?PbRC − N SC ∗ ?PSC) / (NRC + n)

by force



also have . . . = ((R − N SC ∗ ?PSC) / (NRC + n)) + ((n ∗ (1 +
fee) ∗ ?PbRC) / (NRC + n))

by (metis add .commute add-diff-eq add-divide-distrib)
also from 〈?PbRC = ((R − N SC ∗ ?PSC) / NRC) ∗ α〉 have . . . =

((R − N SC ∗ ?PSC) / (NRC + n)) + ((n ∗ (1 + fee) ∗ ?E ∗ α) / (NRC +
n))

by simp
also have . . . = ((NRC / (NRC + n)) ∗ ((R − N SC ∗ ?PSC) / NRC))

+ (((n ∗ (1 + fee) ∗ α) / (NRC + n)) ∗ ?E)
proof −
from 〈NRC > 0 〉 have NRC 6= 0
by blast

then show ?thesis
by (simp add : mult .commute)

qed
finally show ?thesis
by (metis (no-types) ring-class.ring-distribs(2 ))

qed
moreover have E(X , R, N SC) / NRC ≤ ((NRC / (NRC + n)) + ((n

∗ (1 + fee) ∗ α) / (NRC + n))) ∗ ?E
proof −
have (R − N SC ∗ ?PSC) / NRC ≤ ((NRC / (NRC + n)) + ((n ∗ (1

+ fee) ∗ α) / (NRC + n))) ∗ ?E
proof −
have (NRC + (n ∗ (1 + fee) ∗ α)) / (NRC + n) ≥ 1
by (smt 〈NRC > 0 〉 〈α ≥ 1 〉 〈n > 0 〉 fee-is-percentage greaterThanAtMost-iff

le-divide-eq-1 mult-less-cancel-left2 )
then have (NRC / (NRC + n)) + ((n ∗ (1 + fee) ∗ α) / (NRC +

n)) ≥ 1
by (simp add : add-divide-distrib)

with 〈NRC > 0 〉 and 〈R − N SC ∗ ?PSC > 0 〉 show ?thesis
by (metis divide-pos-pos less-eq-real-def mult .commute mult-less-cancel-left2

not-le)
qed
then show ?thesis
unfolding equity-def and liabilities-def by simp

qed
ultimately show ?thesis
using 〈X = X ′〉 and assms(3−5 ) and buy-rcs(4 ,8 ) by auto

qed
next
case (sell-rcs n X R N SC NRC R ′ N ′SC N ′RC)
let ?PSC = PSC(X , R, N SC)
let ?P ′SC = PSC(X ′, R ′, N ′SC)
let ?PtRC = P tRC(X , R, N SC , NRC)
from assms(4 ,8 ) and sell-rcs(6 ,8 ) have N SC > 0
by blast

from assms(2−7 ) and sell-rcs(3 ,4 ,8 ) have X = X ′ and NRC > 0 and
N ′RC > 0

by auto



from 〈N SC > 0 〉 have R − N SC ∗ ?PSC ≥ 0
unfolding stable-coin-actual-price-def by (smt divide-strict-right-mono

nonzero-mult-div-cancel-left)
with 〈NRC > 0 〉 have ?PtRC ≥ 0
unfolding equity-def and liabilities-def and reserve-coin-target-price-def

by auto
have R ≥ R ′

proof −
from sell-rcs(1 ,3 ,4 ) have n ∗ (1 − fee) ∗ ?PtRC ≤ R
using is-valid-transaction.simps(4 ) by blast

with assms(3 ) and sell-rcs(1 ,3 ,5 ) and 〈?PtRC ≥ 0 〉 show ?thesis
using fee-is-percentage by auto

qed
have ?PSC = P tSC [X ]
proof −
from sell-rcs(1 ,3 ,4 ) have rmin ≤ r(X , R, N SC)
using is-valid-transaction.simps(4 ) by blast

then show ?thesis
by (rule peg-when-reserve-ratio-within-lower-bound)

qed
have ?P ′SC = P tSC [X ]
proof −
from sell-rcs(1 ,3 ,4 ,5 ) have rmin ≤ r(X , R ′, N SC)
using is-valid-transaction.simps(4 ) by blast

with sell-rcs(6 ) and 〈X = X ′〉 show ?thesis
using peg-when-reserve-ratio-within-lower-bound by simp

qed
let ?E = (R − N SC ∗ ?PSC) / NRC

have ?PtRC = ?E
unfolding equity-def and liabilities-def and reserve-coin-target-price-def

by simp
have E(X ′,R ′,N ′SC) / N ′RC = ((NRC / (NRC − n)) − ((n ∗ (1 − fee))

/ (NRC − n))) ∗ ?E
proof −
have E(X ′, R ′, N ′SC) / N ′RC = (R ′ − N ′SC ∗ ?P ′SC) / N ′RC
unfolding equity-def and liabilities-def by simp
also from sell-rcs(5−7 ) and 〈?PSC = P tSC [X ]〉 and 〈?P ′SC =

P tSC [X ]〉 have . . . = (R − n ∗ (1 − fee) ∗ ?PtRC − N SC ∗ ?PSC) /
(NRC − n)

by force
also from 〈?PtRC = ?E〉 have . . . = ((R − N SC ∗ ?PSC) / (NRC −

n)) − ((n ∗ (1 − fee) ∗ ?E) / (NRC − n))
by (simp add : diff-divide-distrib)

also from 〈NRC > 0 〉 have . . . = ((NRC / (NRC − n)) ∗ ?E) − (((n
∗ (1 − fee)) / (NRC − n)) ∗ ?E)

by auto
finally show ?thesis
by (metis left-diff-distrib ′)

qed



moreover have E(X , R, N SC) / NRC ≤ ((NRC / (NRC − n)) − ((n ∗
(1 − fee)) / (NRC − n))) ∗ ?E

proof −
from assms(3 ) and sell-rcs(1 ,3 ) have n ∗ (1 − fee) ≤ n
using fee-is-percentage by force

with 〈N ′RC > 0 〉 and sell-rcs(7 ) have (NRC − n ∗ (1 − fee)) / (NRC

− n) ≥ 1
by auto

then have (NRC / (NRC − n)) − ((n ∗ (1 − fee)) / (NRC − n)) ≥ 1
by (simp add : diff-divide-distrib)
with 〈?PtRC ≥ 0 〉 and 〈?PtRC = ?E〉 have ((NRC / (NRC − n)) −

((n ∗ (1 − fee)) / (NRC − n))) ∗ ?E ≥ ?E
by (metis mult-le-cancel-right1 not-le)

then show ?thesis
unfolding equity-def and liabilities-def by simp

qed
ultimately show ?thesis
using assms(3−5 ) and sell-rcs(4 ,8 ) and 〈X = X ′〉 by auto

qed
qed

lemma sequence-monotonically-increasing-equity-per-reserve-coin:
assumes S →∗{|txs|} S ′
and ∀ tx ∈ set txs. tx-rate tx = X
and S = (R, N SC , NRC)
and S ′ = (R ′, N ′SC , N ′RC)
and NRC > 0
and N ′RC > 0
and N ′SC > 0

shows E(X , R ′, N ′SC) / N ′RC ≥ E(X , R, N SC) / NRC

using assms
proof (induction txs arbitrary : S ′ R ′ N ′SC N ′RC rule: rev-induct)
case Nil
then show ?case
using sequence-transition.simps by force

next
case (snoc tx txs)
from snoc.prems(1 ) obtain S ′′ R ′′ N ′′SC N ′′RC where S →∗{|txs|} S ′′

and S ′′→{|tx |} S ′ and S ′′= (R ′′, N ′′SC , N ′′RC) and N ′′SC > 0 and N ′′RC
> 0
using sequence-transition.simps by (metis Nil-is-append-conv append1-eq-conv

list .simps(3 ))
moreover from snoc.prems(2 ) have ∗: tx-rate tx = X if tx ∈ set txs for

tx
by (simp add : that)

ultimately have E(X , R ′′, N ′′SC) / N ′′RC ≥ E(X , R, N SC) / NRC

using 〈S →∗{|txs|} S ′′〉 and snoc.IH and snoc.prems(3−6 ) by simp
moreover from snoc.prems(2 ,4 ,6 ,7 ) and 〈S ′′→{|tx |} S ′〉 and 〈S ′′ = (R ′′,

N ′′SC , N ′′RC)〉 and 〈N ′′RC > 0 〉 and 〈N ′′SC > 0 〉 and ∗ have E(X , R ′,
N ′SC) / N ′RC ≥ E(X , R ′′, N ′′SC) / N ′′RC



using monotonically-increasing-equity-per-reserve-coin by (metis in-set-conv-decomp-first)
ultimately show ?case
by simp

qed

lemma monotonically-increasing-reserve-per-stable-coin:
assumes S →{|tx |} S ′
and S = (R, N SC , NRC)
and N SC > 0
and S ′ = (R ′, N ′SC , N ′RC)
and X = tx-rate tx
and E(X , R, N SC) = 0
and N ′SC > 0

shows R ′ / N ′SC ≥ R / N SC

proof −
from assms(3 ,6 ) have P0SC-def : PSC(X , R, N SC) = R / N SC

unfolding equity-def and liabilities-def by (metis eq-iff-diff-eq-0 min.strict-order-iff
nonzero-mult-div-cancel-left)
with assms(6 ) have r(X , R, N SC) < rmin
unfolding equity-def and reserve-ratio-def using rmin-lower-bound and

fee-is-percentage by auto
from assms show ?thesis
proof cases
case buy-scs
with assms(2 ,5 ) and 〈r(X , R, N SC) < rmin〉 show ?thesis
by force

next
case (sell-scs n X R N SC NRC R ′ N ′SC N ′RC)
from assms(2 ,3 ) and sell-scs(4 ) have N SC > 0
by blast

with assms(4 ,7 ) and sell-scs(6 ,8 ) have N SC − n > 0
by blast

from assms(2 ) and sell-scs(1 ,3 ) have n > 0
using is-valid-transaction.simps(2 ) by blast

then have n ∗ (1 − fee) ≤ n
using fee-is-percentage by auto

then have − n ∗ (1 − fee) ≥ − n
by simp

then have N SC − n ∗ (1 − fee) ≥ N SC − n
by simp

with 〈N SC − n > 0 〉 have (N SC − n ∗ (1 − fee)) / (N SC − n) ≥ 1
using le-divide-eq-1 by blast

then have ((R ∗ (N SC − n ∗ (1 − fee))) / (N SC − n)) ∗ (1 / R) ≥ R
∗ (1 / R)

by simp
with 〈N SC − n > 0 〉 and sell-scs(2 ,4 ) have (R ∗ (N SC − n ∗ (1 −

fee))) / (N SC − n) ≥ R
using is-valid-bank-state.simps by (smt divide-nonneg-nonneg divide-pos-pos

mult-not-zero mult-strict-right-mono)



with 〈N SC > 0 〉 have (1 / N SC) ∗ (R ∗ (N SC − n ∗ (1 − fee))) / (N SC

− n) ≥ (1 / N SC) ∗ R
by (smt divide-nonneg-pos mult-less-cancel-left times-divide-eq-right)

then have ((R / N SC) ∗ (N SC − n ∗ (1 − fee))) / (N SC − n) ≥ R /
N SC

by simp
then have ((R / N SC) ∗ N SC − (R / N SC) ∗ n ∗ (1 − fee)) / (N SC −

n) ≥ R / N SC

proof −
have (R / N SC) ∗ (N SC − n ∗ (1 − fee)) = (R / N SC) ∗ N SC − (R

/ N SC) ∗ n ∗ (1 − fee)
by (simp add : right-diff-distrib ′)

then show ?thesis
using 〈(R / N SC) ∗ (N SC − n ∗ (1 − fee)) / (N SC − n) ≥ R / N SC 〉

by auto
qed
with 〈N SC > 0 〉 have (R − n ∗ (1 − fee) ∗ (R / N SC)) / (N SC − n)

≥ R / N SC

by (metis (no-types, hide-lams) divide-inverse divide-self-if mult .commute
mult .left-commute mult .left-neutral not-le order-refl)

moreover from assms(2 ,5 ) and sell-scs(3−6 ) and P0SC-def have R ′

= R − n ∗ (1 − fee) ∗ (R / N SC) and N ′SC = N SC − n
by auto

ultimately show ?thesis
using assms(2 ,4 ) and sell-scs(4 ,8 ) by blast

next
case (buy-rcs n X R N SC NRC R ′ N ′SC N ′RC)
have R ′ > R
proof −
from buy-rcs(5 ) have R ′ = R + n ∗ (1 + fee) ∗ PbRC(X , R, N SC ,

NRC)
by auto

moreover from buy-rcs(1 ,3 ,4 ) have n > 0
using is-valid-transaction.simps(3 ) by blast

moreover have (1 + fee) ∗ PbRC(X , R, N SC , NRC) > 0
unfolding reserve-coin-buying-price-def using p-min-rc-positivity and

fee-is-percentage by auto
ultimately show ?thesis
using fee-is-percentage by (fastforce dest : zero-less-mult-pos)

qed
with assms(2−4 ) and buy-rcs(4 ,6 ,8 ) show ?thesis
by (fastforce simp: divide-le-cancel)

next
case sell-rcs
with assms(2 ,5 ) and 〈r(X , R, N SC) < rmin〉 show ?thesis
by force

qed
qed

lemma constant-exchange-rate-non-negativity :



assumes txs 6= []
and S →∗{|txs|} S ′
and ∀ tx ∈ set txs. tx-rate tx = X

shows X ≥ 0
proof −
from assms(2 ) and assms(1 ,3 ) show ?thesis
proof cases
case tx-seq-base
with assms(1 ) show ?thesis
by auto

next
case (txs-seq-ind txs ′ S ′′ tx R ′′ N ′′SC N ′′RC)
from 〈S ′′ →{|tx |} S ′〉 have tx-rate tx ≥ 0
by (auto intro: transition.cases)

with assms(3 ) and txs-seq-ind(1 ) show ?thesis
by simp

qed
qed

lemma bank-state-validity-invariancy :
assumes S →{|tx |} S ′
shows is-valid-bank-state S ′
using assms

proof cases
case buy-scs
then show ?thesis
using fee-is-percentage and peg-when-reserve-ratio-within-lower-bound by

auto
next
case buy-rcs
then show ?thesis
unfolding reserve-coin-buying-price-def using fee-is-percentage and p-min-rc-positivity

by auto
qed auto

theorem no-reserve-draining-alt :
assumes S →∗{|txs|} S ′
and ∀ tx ∈ set txs. tx-rate tx = X
and S = (R, N SC , NRC)
and S ′ = (R ′, N ′SC , N ′RC)
and NRC > 0
and N ′RC > 0
and N ′SC > 0
and N SC > 0
and ∀ tx ∈ set txs. ∀S S ′ R N SC NRC . S →{|tx |} S ′ ∧ S = (R, N SC ,

NRC) −→ N SC > 0 ∧ NRC > 0
and txs 6= []

shows ¬ (R ′ < R ∧ N ′SC = N SC ∧ N ′RC = NRC)
proof (cases E(X , R, N SC) = 0 )
case True



with assms(8 ) have P0SC-def : PSC(X , R, N SC) = R / N SC

unfolding equity-def and liabilities-def by (metis eq-iff-diff-eq-0 min.strict-order-iff
nonzero-mult-div-cancel-left)
from assms(1 ,2 ,10 ) have X ≥ 0
using constant-exchange-rate-non-negativity by blast

show ?thesis
proof (rule ccontr)
assume ∗: ¬ ?thesis
from ∗ and assms(7 ) have R-N SC-div : R ′ / N ′SC < R / N SC

by (blast intro: divide-strict-right-mono)
moreover from 〈S →∗{|txs|} S ′〉 and assms(2 ,9 ,5−8 ) and 〈S = (R,

N SC , NRC)〉 and 〈S ′ = (R ′, N ′SC , N ′RC)〉 and 〈E(X , R, N SC) = 0 〉
have R ′ / N ′SC ≥ R / N SC

proof (induction txs arbitrary : S R N SC NRC)
case Nil
then show ?case
by (auto intro: sequence-transition.cases)

next
case (Cons tx txs)
from Cons.prems(4 ,7 ) and 〈S →∗{|tx # txs|} S ′〉 obtain S ′′ where S

→{|tx |} S ′′ and S ′′ →∗{|txs|} S ′ and N SC > 0 and NRC > 0
using sequence-transition-cons by blast

moreover obtain R ′′ N ′′SC N ′′RC where S ′′-def : S ′′ = (R ′′, N ′′SC ,
N ′′RC)

by (meson is-valid-bank-state.elims(2 ,3 ))
moreover from Cons.prems(2 ) have const-rate: ∀ tx ∈ set txs. tx-rate

tx = X
by simp

moreover from Cons.prems(3 ) have init-state-pos: ∀ tx ∈ set txs. ∀S
S ′ R N SC NRC . S →{|tx |} S ′ ∧ S = (R, N SC , NRC) −→ 0 < N SC ∧ 0 <
NRC

by auto
moreover have N ′′RC > 0 and N ′′SC > 0
proof −
from 〈S ′′ →∗{|txs|} S ′〉 obtain Γ where length Γ = length txs + 1

and S ′′ = Γ ! 0 and S ′ = Γ ! length txs and ∀ i ∈ {0 ..<length txs}. Γ ! i
→{|txs ! i |} Γ ! (i + 1 )

using sequence-transition-alt by blast
then have N ′′RC > 0 ∧ N ′′SC > 0
proof (cases txs = [])
case True — S ′′ = S ′
with assms(4 ,6 ,7 ) and S ′′-def and 〈S ′′ = Γ ! 0 〉 and 〈S ′ = Γ !

length txs〉 show ?thesis
by auto

next
case False
with 〈S ′′ = Γ ! 0 〉 and 〈∀ i ∈ {0 ..<length txs}. Γ ! i →{|txs ! i |} Γ !

(i + 1 )〉 obtain i where i ∈ {0 ..<length txs} and S ′′ →{|txs ! i |} Γ ! (i +
1 )

using atLeastLessThan-iff by blast



moreover from 〈i ∈ {0 ..<length txs}〉 have txs ! i ∈ set txs
by auto

ultimately show ?thesis
using S ′′-def and init-state-pos by blast

qed
then show N ′′RC > 0 and N ′′SC > 0
by (rule conjunct1 , rule conjunct2 )

qed
ultimately have R ′′ / N ′′SC ≥ R / N SC

using Cons.prems(2 ,8 ,10 ) and monotonically-increasing-reserve-per-stable-coin
by simp

moreover have R ′′ / N ′′SC ≤ R ′ / N ′SC
proof −
have E(X , R ′′, N ′′SC) = 0
proof (rule ccontr)
assume E(X , R ′′, N ′′SC) 6= 0
have E(X , R ′′, N ′′SC) > 0
proof −
from 〈S →{|tx |} S ′′〉 and S ′′-def have R ′′ ≥ 0
using bank-state-validity-invariancy by fastforce

with 〈E(X , R ′′, N ′′SC) 6= 0 〉 and 〈X ≥ 0 〉 and 〈N ′′SC > 0 〉 show
?thesis

using no-insolvency unfolding less-eq-real-def by auto
qed
with assms(4 ,6 ,7 ) and 〈S ′′→∗{|txs|} S ′〉 and const-rate and S ′′-def

and 〈N ′′RC > 0 〉
have E(X , R ′′, N ′′SC) / N ′′RC ≤ E(X , R ′, N ′SC) / N ′RC
using sequence-monotonically-increasing-equity-per-reserve-coin by

blast
moreover have E(X , R ′′, N ′′SC) / N ′′RC > E(X , R ′, N ′SC) /

N ′RC
proof −
from P0SC-def and R-N SC-div have R ′ / N ′SC < P tSC [X ]
unfolding stable-coin-actual-price-def by (metis min-less-iff-conj )
then have E(X , R ′, N ′SC) = 0
proof −
have E(X , R ′, N ′SC) = R ′ − N ′SC ∗ PSC(X , R ′, N ′SC)
unfolding equity-def and liabilities-def by simp

also from 〈R ′ / N ′SC < P tSC [X ]〉 have . . . = R ′ − N ′SC ∗ (R ′
/ N ′SC)

unfolding stable-coin-actual-price-def by (simp add : min.commute
min.strict-order-iff )

finally show ?thesis
using assms(7 ) by auto

qed
with 〈E(X , R ′′,N ′′SC) > 0 〉 and 〈N ′′RC > 0 〉 show ?thesis
by simp

qed
ultimately show False
by force



qed
with assms(6 ,7 ) and 〈S ′′→∗{|txs|} S ′〉 and 〈N ′′RC > 0 〉 and 〈N ′′SC

> 0 〉 and S ′′-def and 〈S ′ = (R ′, N ′SC , N ′RC)〉 and init-state-pos and
const-rate show ?thesis

using Cons.IH by blast
qed
ultimately show ?case
by fastforce

qed
ultimately show False
by fastforce

qed
next
case False
then have P0SC-def : PSC(X , R, N SC) = P tSC [X ]
unfolding equity-def and liabilities-def and stable-coin-actual-price-def

by (smt divide-eq-eq mult .commute)
with assms(8 ) have P tSC [X ] ≤ R / N SC

unfolding stable-coin-actual-price-def by auto
have E(X , R, N SC) > 0
proof −
from P0SC-def have E(X , R, N SC) = R − N SC ∗ P tSC [X ]
unfolding liabilities-def and equity-def by simp

with False and 〈N SC > 0 〉 and 〈P tSC [X ] ≤ R / N SC 〉 have P tSC [X ]
< R / N SC

unfolding less-eq-real-def by force
with 〈N SC > 0 〉 and 〈E(X , R, N SC) = R − N SC ∗ P tSC [X ]〉 show

?thesis
by (simp add : mult .commute pos-less-divide-eq)

qed
show ?thesis
proof (rule ccontr)
assume ∗: ¬ ?thesis
have E(X , R ′, N ′SC) < E(X , R, N SC)
proof −
from ∗ and assms(7 ) have N SC > 0
by blast

from ∗ have E ′-def : E(X , R ′, N ′SC) = R ′ − N SC ∗ PSC(X , R ′, N SC)
unfolding liabilities-def and equity-def by blast

moreover from ∗ have E-def : E(X , R, N SC) = R − N SC ∗ PSC(X ,
R, N SC)

unfolding liabilities-def and equity-def by blast
ultimately show ?thesis
proof −
consider (a) P tSC [X ] ≤ R ′ / N SC | (b) R ′ / N SC < P tSC [X ]
using 〈P tSC [X ] ≤ R / N SC 〉 by linarith

then show ?thesis
proof cases
case a
with E ′-def have E(X , R ′, N ′SC) = R ′ − N SC ∗ P tSC [X ]



unfolding stable-coin-actual-price-def by auto
also from ∗ have . . . < R − N SC ∗ P tSC [X ]
by auto
also from 〈P tSC [X ] ≤ R / N SC 〉 and E-def have . . . = E(X , R,

N SC)
unfolding stable-coin-actual-price-def by auto

finally show ?thesis .
next
case b
with assms(8 ) have PSC(X , R ′, N SC) = R ′ / N SC

unfolding stable-coin-actual-price-def by auto
with E ′-def have E(X , R ′, N ′SC) = R ′ − N SC ∗ (R ′ / N SC)
unfolding stable-coin-actual-price-def by auto

also from assms(8 ) have . . . = 0
by auto
also from assms(8 ) and False and E-def and P0SC-def and

〈P tSC [X ] ≤ R / N SC 〉 have . . . < E(X , R, N SC)
by (smt mult .commute pos-le-divide-eq)

finally show ?thesis .
qed

qed
qed
moreover have E(X , R ′, N ′SC) ≥ E(X , R, N SC)
proof −
from assms(1−7 ) and ∗ have E(X , R ′, N ′SC) / N ′RC ≥ E(X , R,

N SC) / NRC

using sequence-monotonically-increasing-equity-per-reserve-coin by simp
with assms(6 ) and ∗ show ?thesis
using divide-le-cancel by blast

qed
ultimately show False
by linarith

qed
qed

corollary no-reserve-draining :
assumes NRC > 0
and N ′RC > 0
and N ′SC > 0
and N SC > 0

shows @ txs. txs 6= [] ∧ (R, N SC , NRC) →∗{|txs|} (R ′, N ′SC , N ′RC) ∧ (∀ tx
∈ set txs. ∀S S ′ R N SC NRC . S →{|tx |} S ′ ∧ S = (R, N SC , NRC) −→ N SC

> 0 ∧ NRC > 0 ) ∧ (∀ tx ∈ set txs. tx-rate tx = X ) ∧ R ′ < R ∧ N ′SC =
N SC ∧ N ′RC = NRC

using assms and no-reserve-draining-alt by blast

theorem bounded-dilution:
assumes S →{|tx |} S ′
and (BuyRCs n, X ) = tx
and S = (R, N SC , NRC)



and S ′ = (R ′, N ′SC , N ′RC)
and X = X ′

and N ′SC = N SC

and NRC > 0
and N SC > 0
and r(X ′, R ′, N ′SC) = rmax
shows n = (rmax ∗ N SC ∗ P tSC [X ] − R) / ((1 + fee) ∗ PbRC(X , R,

N SC , NRC))
proof −
let ?PSC = PSC(X , R, N SC)
let ?P ′SC = PSC(X ′, R ′, N ′SC)
have rmin > 1
using fee-is-percentage and rmin-lower-bound by auto

from assms(6 ) have r(X ′, R ′, N ′SC) = R ′ / (N SC ∗ ?P ′SC)
unfolding reserve-ratio-def and equity-def and liabilities-def by simp

moreover from assms(9 ) and rmin-upper-bound and 〈rmin > 1 〉 have
r(X ′, R ′, N ′SC) > 1

by linarith
ultimately have R ′ / N SC > ?P ′SC
unfolding stable-coin-actual-price-def using assms(6 ) and less-divide-eq-1

by fastforce
with assms(5 ,9 ) have ?P ′SC = P tSC [X ]
using peg-when-reserve-ratio-within-lower-bound and rmin-upper-bound

by simp
moreover from assms(1−4 ) have R ′ = R + n ∗ (1 + fee) ∗ PbRC(X , R,

N SC , NRC)
by (blast intro: transition.cases)

ultimately have (R + n ∗ (1 + fee) ∗ PbRC(X , R, N SC , NRC)) / (N SC

∗ P tSC [X ]) = rmax
using assms(9 ) and 〈r(X ′,R ′,N ′SC) = R ′ / (N SC ∗ ?P ′SC)〉 by auto

moreover from assms(9 ) and 〈r(X ′, R ′, N ′SC) > 1 〉 have rmax > 1
by blast

ultimately have R + n ∗ (1 + fee) ∗ PbRC(X , R, N SC , NRC) = rmax ∗
N SC ∗ P tSC [X ]

by fastforce
then have n ∗ (1 + fee) ∗ PbRC(X , R, N SC , NRC) = rmax ∗ N SC ∗

P tSC [X ] − R
by argo

moreover have 1 + fee 6= 0
using fee-is-percentage by auto

ultimately have n ∗ PbRC(X , R, N SC , NRC) = (rmax ∗ N SC ∗ P tSC [X ]
− R) / (1 + fee)

by (metis mult .assoc nonzero-mult-div-cancel-left times-divide-eq-right)
moreover have PbRC(X , R, N SC , NRC) 6= 0
unfolding reserve-coin-buying-price-def using p-min-rc-positivity by auto
ultimately show ?thesis
using divide-divide-eq-left and eq-divide-imp by blast

qed

end



end





F Lustre Formalization

Listing 5: Base.lus File

−− Basic Types
−− These types are to be defined for each specific implementation

−− type ReserveType = ...;
−− type N_Type = ...;

−− type RateType = ...;
−− type AmountType = ...;
−− type RatioType = ...;

−− Define Enumerations for Order and Reply
type Order = enum { MintSC, MintRC, NoOrder};
type Proceed = enum { MintedSC, MintedRC, RedeemedSC, RedeemedRC, Error, NoReply};
type ErrorInfo = enum { Min_Ratio_Violated, Max_Ratio_Violated, Invalid_Mint_Value, None };

−− Input Msg Type :Order Invocation
type InputMsg = struct { order: Order; qnt: AmountType };

−− Output Msg Type
type OutputMsg = struct { ack: Proceed; err: ErrorInfo; price: ReserveType };

−− Constant Definitions
−− ErrorMsg when transaction aborted
const ErrorCode1 = OutputMsg { ack = Error; err = Min_Ratio_Violated; price = 0 };
const ErrorCode2 = OutputMsg { ack = Error; err = Max_Ratio_Violated; price = 0 };
const ErrorCode3 = OutputMsg { ack = Error; err = Invalid_Mint_Value; price = 0 };

−− Null Reply Msg
const NullReply = OutputMsg { ack = NoReply; err = None; price = 0 };

−− StableCoin parameters type
type Parameters = struct { r_min: RatioType; r_max: RatioType; fee: ReserveType; n_sc_s: N_Type; p_min: ReserveType };

−− Function params is introduced to provide global access to the stablecoin parameters.
−− It can either be defined concretely with specific values or left abstract with
−− constraints characterizing the min value and max value allowed for each parameters.
−− For a concrete specification the following syntax should be used:
−− function params () returns (out: Parameters)
−− let
−− out = Parameters { r_min = < value> ; r_max = < value> ; fee = < value> ; n_sc_s = < value> ;

p_min = < value> };
−− tel

−− For an abstract specification the following syntax should be used:
−− function imported params () returns (out: Parameters);
−−
−− with the constraints expressed on the stablecoin parameters to be specified in the Properties node.

function min (a: ReserveType; b: ReserveType )
returns (out :ReserveType)

let
out = if a < b then a else b;
tel

function max (a: ReserveType; b: ReserveType )
returns (out: ReserveType)

let
out = if a < b then b else a;
tel

function abs (a: ReserveType )
returns (out: ReserveType)

let
out = if a < 0 then -a else a;
tel

−− computeFee(t_price) computes transaction fee accroding to total price t_price.
−− In Lustre, Ecludien division is used where the type of rounding applied is
−− correlated depends on the sign of the divisor:
−− − Rounding towards negative infinity when divisor is positive
−− − Rounding towards positive infinity when divisor is negative
−− The computeFee function forces rounding towards infinity when computing
−− the fee percentage to guarantee accumulation of fees.
function computeFee(t_price: ReserveType)

returns (out: ReserveType)
var t_fee :ReserveType;

let
t_fee = (abs(t_price) * params().fee +99 ) div 100;
out = t_price +t_fee;

tel



Listing 6: StableCoin.lus File

include "Base.lus"

−− Base Types Definition
type ReserveType = int;
type N_Type = int;

type RateType = int;
type AmountType = int;
type RatioType = int;

−− Function params left abstract to consider all possible values.
function imported params () returns (out: Parameters);

−− equity(reserve, n_sc, rate) computes the surplus of reserve w.r.t. liabilities s.t.:
−− − equity = reserve − min(reserve, n_sc * rate)
function equity(reserve: ReserveType; n_sc: N_Type; rate :RateType)

returns (out :ReserveType)
let
out = if reserve > n_sc * rate then reserve - (n_sc * rate) else 0;

tel

−− price_sc(reserve, n_sc, rate) computes price for a single stable coin s.t.:
−− price_sc = min(reserve / n_sc, rate) if n_sc > 0
−− = rate otherwise
function price_sc(reserve: ReserveType; n_sc: N_Type; rate: RateType)

returns (out: ReserveType)
let
out = if n_sc > 0 then

if reserve >= n_sc * rate then rate else reserve div n_sc
else
rate;

tel

−− price_rc(d_rc, reserve, n_sc, n_rc, rate) computes price for a single reserve coin s.t.:
−− − price = p_min if n_rc = 0
−− − price = max(equity / n_rc, p_min) if d_rc >= 0
−− − price = equity / n_rc otherwise
function price_rc(d_rc: N_Type; reserve: ReserveType; n_sc: N_Type; n_rc: N_Type; rate: RateType)

returns (out: ReserveType)
let
out = if n_rc = 0 then

params().p_min
else
if d_rc >= 0 then
max(equity(reserve, n_sc, rate) div n_rc, params().p_min)

else
equity(reserve, n_sc, rate) div n_rc;

tel

−− mintSC(d_sc, rate, reserve, n_sc) performs buying and selling of stable coins s.t.:
−− − buying is performed when d_sc is positive, exchange rate > 0 and reserve ratio >= r_min
−− − selling is performed when d_sc is negative, | d_sc | <= n_sc and exchange rate > 0.
function mintSC(d_sc: N_Type; rate: RateType; reserve: ReserveType; n_sc: N_Type)

returns (o_msg: OutputMsg)

var s_price, t_price, t_reserve: ReserveType;

let
s_price = price_sc(reserve, n_sc, rate) * d_sc;
t_price = computeFee(s_price);
t_reserve = reserve +t_price;

o_msg = if d_sc >= 0 then
−− buying stable coin: check min reserve ratio
if rate > 0 and t_reserve >= (n_sc +d_sc) * rate * params().r_min
−− buying not authorized when rate < 0

then
OutputMsg { ack = MintedSC; err = None; price = t_price }
else
ErrorCode1

else if -d_sc <= n_sc and rate > 0 then
−− selling stable coin
−− selling not authorized when rate < 0
OutputMsg { ack = RedeemedSC; err = None; price = t_price }

else
−− error
ErrorCode3;

tel



−− mintRC(d_rc, rate, reserve, n_sc, n_rc) performs buying and selling of reserve coins s.t.:
−− − buying is performed when d_rc is positive and:
−− − n_sc < params().n_sc_s or
−− − reserve ratio <= r_max
−− − selling is performed when d_rc is negative and | d_rc | <= n_rc and:
−− − reserve ratio >= min ratio and exchange rate > 0 or
−− − N_SC = 0
function mintRC(d_rc: N_Type; rate: RateType; reserve: ReserveType; n_sc: N_Type; n_rc :N_Type)

returns (o_msg: OutputMsg)

var r_price, t_price, t_reserve: ReserveType;

let
r_price = price_rc(d_rc, reserve, n_sc, n_rc, rate) * d_rc;
t_price = computeFee(r_price);
t_reserve = reserve +t_price;

o_msg = if d_rc >= 0 then
−− buying reserve coin: check max reserve ratio or n_sc <= params().n_sc_s
if n_sc < params().n_sc_s or t_reserve <= n_sc * rate * params().r_max
then
−− buying not authorized when n_sc > 0 and rate <= 0
OutputMsg { ack = MintedRC; err = None; price = t_price }
else
ErrorCode2

else if -d_rc <= n_rc then
−− selling reserve coin :check min reserve ratio
if n_sc = 0 or (rate > 0 and t_reserve >= n_sc * rate * params().r_min)
−− selling not authorized when rate <= 0

then
OutputMsg { ack = RedeemedRC; err = None; price = t_price }

else
ErrorCode1

else
−− error
ErrorCode3;

tel

−− main node encoding the stablecoin logic and maintaining the bank state
node StableCoin_InitState(i_reserve: ReserveType; i_sc: N_Type; i_rc: N_Type; i_msg: InputMsg; rate: RateType)

returns (p_reserve: ReserveType; p_sc: N_Type;
p_rc: N_Type; reserve: ReserveType; n_sc: N_Type;
n_rc: N_Type; o_msg: OutputMsg)

let

p_reserve = i_reserve -> pre reserve;
p_sc = i_sc -> pre n_sc;
p_rc = i_rc -> pre n_rc;

o_msg = if i_msg.order = NoOrder then
NullReply

else if i_msg.order = MintSC then
mintSC(i_msg.qnt, rate, p_reserve, p_sc)

else
−− MintRC case
mintRC(i_msg.qnt, rate, p_reserve, p_sc, p_rc);

reserve = if o_msg.ack = Error
then
−− no modification
p_reserve

else
p_reserve +o_msg.price;

n_sc = if o_msg.ack = MintedSC or o_msg.ack = RedeemedSC
then
p_sc +i_msg.qnt

else
−− no modification
p_sc;

n_rc = if o_msg.ack = MintedRC or o_msg.ack = RedeemedRC
then
p_rc +i_msg.qnt

else
−− no modification
p_rc;

tel



−− stablecoin node with intial bank state (R = 0, N_SC = 0 and N_RC = 0)
node StableCoin (i_msg: InputMsg; rate: RateType )

returns (p_reserve: ReserveType; p_sc: N_Type;
p_rc: N_Type; reserve: ReserveType; n_sc: N_Type;
n_rc: N_Type; o_msg: OutputMsg )

let

p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin_InitState(0, 0, 0, i_msg, rate);

tel

Listing 7: Theorem_Base.lus File

−− Node specifying the constraints to be satisfied by the stablecoin parameters.
node ParameterConstraints () returns (out :bool)
let
−− Constraints on stablecoin parameters
−− Parameters remain unchanged
assert true ->

(params().r_min = pre params().r_min and
params().r_max = pre params().r_max and
params().fee = pre params().fee and
params().n_sc_s = pre params().n_sc_s and
params().p_min = pre params().p_min );

−− Parameters min and max value specification
assert params().r_min > computeFee(1) and

params().r_max >= params().r_min and
params().fee > 0 and
params().fee <= 100 and
params().n_sc_s > 0 and
params().p_min > 0;

−− dummy output
out = true;

tel



Listing 8: Theorem1_and_2.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

−− Types for modeling secondary market
type MarketAction = enum { BuyOffer, SellOffer, NoOffer};

type SecondaryMarket = struct { action :MarketAction; price :ReserveType; };

node Theorem1_and_2 (i_msg: InputMsg; rate: RateType; rational_user: bool;
s_market :SecondaryMarket)

returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

sufficient_reserve :bool;
let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− Rational user behavioural constraints for buying SC from Bank
assert (rational_user and s_market.action = SellOffer and

computeFee(price_sc(p_reserve, p_sc, rate)) <= s_market.price ) => (i_msg.order = MintSC and i_msg.qnt > 0 );

assert (rational_user and s_market.action = SellOffer and
computeFee(price_sc(p_reserve, p_sc, rate)) > s_market.price ) => i_msg.order = NoOrder;

−− Rational user behavioural constraints for Selling SC
assert (rational_user and s_market.action = BuyOffer and

- computeFee(price_sc(p_reserve, p_sc, rate) * -1) > s_market.price ) =>
(i_msg.order = MintSC and i_msg.qnt < 0 );

assert (rational_user and s_market.action = BuyOffer and
- computeFee(price_sc(p_reserve, p_sc, rate) * -1) <= s_market.price ) => i_msg.order = NoOrder;

sufficient_reserve = p_reserve +i_msg.qnt * rate >= (p_sc +i_msg.qnt ) * rate * params().r_min;

−− THEOREM 1: Peg Maintenance − Upper Bound
−− IF buying user is rational AND
−− the bank reserve ratio is sufficient for a buy SC order to be accepted AND
−− the exchange rate is greater than zero AND
−− secondary market is selling SC for a price P > (1 +fee) * rate
−− THEN
−− The rational user will always buy SC from the bank (i.e., o_msg.ack = MintedSC)

check "THEOREM_1"
(rational_user and
sufficient_reserve and −− epsilon sufficiently large for buy order to be accepted.
rate > 0 and −− rate should be greater than zero for buy order to be accepted.
s_market.action = SellOffer and −− secondary market is selling SC (buying for user)
s_market.price > computeFee(price_sc(p_reserve, p_sc, rate)) ) => o_msg.ack = MintedSC;

−− THEOREM 2: Peg Maintenance − Lower Bound
−− IF selling user is rational AND
−− bank reserve ratio >= 1 AND
−− the exchange rate is greater than zero AND
−− secondary market is buying SC for a price P < (1 − fee) * rate
−− THEN
−− The rational user will always sell SC to the bank (i.e., o_msg.ack = RedeemedSC)

check "THEOREM_2"
(rational_user and
p_reserve >= p_sc * rate and −− reserve ratio >= 1
rate > 0 and −− rate should be greater than zero for sell order to be accepted.
-i_msg.qnt <= p_sc and −− number of SC to be sold <= number of stablecoin in circulation
s_market.action = BuyOffer and −− secondary market is buying SC (selling for user)
s_market.price < - computeFee(price_sc(p_reserve, p_sc, rate) * -1) ) => o_msg.ack = RedeemedSC;

tel



Listing 9: Theorem3.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem3 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

p_rate :RateType;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

p_rate = rate -> pre rate;

−− THEOREM 3: Peg Robustness during Market Crashes
−− IF N_SC > 0 AND
−− p_rate and rate are the exchange rates before and after the crash s.t.,
−− p_rate > 0 and rate > p_rate AND
−− r is the current reserve ratio w.r.t. p_rate such that r > 1 AND
−− crash price ratio is satisfied s.t., (rate − p_rate) / rate <= (r − 1) / r
−− THEN
−− The new stablecoin price shall still be "rate" (i.e., SC price still 1 PC in BC)

check "THEOREM_3"
(n_sc > 0 and

p_rate > 0 and
rate > p_rate and
reserve > n_sc * p_rate and −− ratio > 1
(rate - p_rate ) * reserve <= (reserve - n_sc * p_rate) * rate ) =>

price_sc(reserve, n_sc, rate) = rate; −− SC price still 1 PC in BCs

−− Lemmas
check
(n_sc > 0 and p_rate > 0 and

rate > p_rate and
reserve > n_sc * p_rate and

(rate - p_rate ) * reserve <= (reserve - n_sc * p_rate) * rate ) => reserve >= n_sc * rate;

check
(n_sc > 0 and p_rate > 0 and

rate > p_rate and reserve > n_sc * p_rate ) => (reserve - n_sc * p_rate) * rate > 0;

tel



Listing 10: Theorem4.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem4 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− THEOREM 4 :No Insolvency
−− In all bank states and for any exchange rate, E(R, N_SC) >= 0

check "THEOREM_4" equity(reserve, n_sc, rate) >= 0;

tel



Listing 11: Theorem5.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

type SCSellerType = struct { sold_once: bool; price_per_sc: ReserveType };

node update_SCSeller (p_reserve: ReserveType; p_sc: N_Type; rate: RateType; o_msg: OutputMsg; seller: SCSellerType )
returns (out :SCSellerType)

let
out = if o_msg.ack = RedeemedSC then

SCSellerType { sold_once = true; price_per_sc = min(p_reserve div p_sc, rate) }
else
seller;

tel

const defaultSeller_SC = SCSellerType { sold_once = false; price_per_sc = 0 };

node Theorem5 (i_msg: InputMsg; rate: RateType ) returns (o_msg: OutputMsg);

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

constant_rate :bool;
p_seller :SCSellerType;
c_seller :SCSellerType;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

constant_rate = true -> pre constant_rate and rate = pre rate;
p_seller = defaultSeller_SC -> pre c_seller;
c_seller = update_SCSeller(p_reserve, p_sc, rate, o_msg, p_seller);

−− THEOREM 5: No Bank Runs for StableCoins
−− IF the exchange rate remains constant AND
−− at least one SC was already sold AND
−− a selling SC order is accepted
−− THEN
−− Current selling price per SC >= previously applied price

check "THEOREM_5"
(constant_rate and p_seller.sold_once and o_msg.ack = RedeemedSC ) =>

c_seller.price_per_sc >= p_seller.price_per_sc;

−− Lemmas
check (constant_rate and p_seller.sold_once ) => p_seller.price_per_sc <= rate;
check (constant_rate and p_seller.sold_once and p_sc > 0 ) => p_seller.price_per_sc <= min(p_reserve div p_sc, rate);

tel



Listing 12: Theorem6.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem6 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg);

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

constant_rate :bool;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

constant_rate = true -> pre constant_rate and rate = pre rate;

−− THEOREM 6: Monotonically Increasing Equity per Reservecoin
−− IF the exchange rate remains constant AND
−− previous N_RC is greater than zero AND
−− The bank state obtained after every action a is such that N_RC is still greater than zero
−− THEN
−− E(R, N_SC) / N_RC >= E(P_R, P_SC) / P_RC
−−
−− where,
−− − P_R, P_SC, P_RC are respectively the reserve, number of stablecoins and number of

reservecoins before action a
−− − R, N_SC, N_RC are respectively the reserve, number of stablecoins and number of

reservecoins after action a

check "THEOREM_6"
(constant_rate and p_rc > 0 and n_rc > 0 ) =>

equity(reserve, n_sc, rate) div n_rc >= equity(p_reserve, p_sc, rate) div p_rc;

−− Lemmas
check o_msg.ack = RedeemedRC => p_sc = n_sc;
check o_msg.ack = RedeemedSC => p_rc = n_rc;
check o_msg.ack = RedeemedRC => p_reserve >= reserve;

tel



Listing 13: Theorem7.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem7 (i_msg: InputMsg; rate: RateType; i_reserve: ReserveType; i_sc: N_Type; i_rc: N_Type)
returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve: ReserveType;
p_sc: N_Type;
p_rc: N_Type;

constant_rate: bool;

reserve_0 :ReserveType;
n_sc_0 :N_Type;
n_rc_0 :N_Type;

coins_positive :bool;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin_InitState(i_reserve, i_sc, i_rc, i_msg, rate);

constant_rate = true -> pre constant_rate and rate = pre rate;

−− Stores arbitrary initial bank state to check if a draining situation can happen.
reserve_0 = i_reserve -> pre reserve_0;
n_sc_0 = i_sc -> pre n_sc_0;
n_rc_0 = i_rc -> pre n_rc_0;

−− Checks whether N_SC and N_RC remain greater than zero.
coins_positive = (i_sc > 0 and i_rc > 0 ) -> pre coins_positive and p_sc > 0 and p_rc > 0;

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− Assuming the validity of initial bank state
assert i_reserve >= 0 and

i_sc >= 0 and
i_rc >= 0 and
(i_sc > 0 => i_reserve div i_sc > 0 ) and
(i_rc > 0 => i_reserve > 0 );

−− THEOREM 7 :No Reserve Draining
−− IF the exchange rate remains constant
−− THEN
−− For any initial bank state (R_0, N_SC_0, N_RC_0), there is no sequence of actions a1, a2,

..., a_n
−− leading to a state (R_n, N_SC_n, N_RC_n) s.t.:
−− − R_n < R_0 and N_SC_0 = N_SC_n and N_RC_0 = N_RC_n AND
−− − For all i in [0, n − 1], N_SC_i > 0 and N_RC_i > 0

check "THEOREM_7"
(constant_rate and coins_positive ) => not (reserve < reserve_0 and n_sc = n_sc_0 and n_rc = n_rc_0 );

−− Lemmas
check (constant_rate and n_rc_0 > 0 and p_rc > 0 ) =>

equity(p_reserve, p_sc, rate) div p_rc >= equity(reserve_0, n_sc_0, rate) div n_rc_0;

check (constant_rate and coins_positive and equity(reserve_0, n_sc_0, rate) = 0 and n_sc > 0 ) =>
reserve div n_sc >= reserve_0 div n_sc_0;

check (constant_rate and coins_positive and p_sc <> n_sc_0 ) => rate > 0;

check coins_positive => reserve_0 > 0;
check coins_positive => p_reserve > 0;
check coins_positive => (p_rc > 0 and p_sc > 0 );
check coins_positive => (n_rc_0 > 0 and n_sc_0 > 0);

check p_reserve >= 0 and p_sc >= 0 and p_rc >= 0;
check p_rc > 0 => p_reserve > 0;
check p_sc > 0 => p_reserve div p_sc > 0;

check i_reserve >= 0 and i_rc >= 0 and i_sc >= 0;
check i_rc > 0 => i_reserve > 0;
check i_sc > 0 => i_reserve div i_sc > 0;

check reserve_0 >= 0 and n_rc_0 >= 0 and n_sc_0 >= 0;
check n_rc_0 > 0 => reserve_0 > 0;
check n_sc_0 > 0 => reserve_0 div n_sc_0 > 0;

tel



Listing 14: Theorem8.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

function computeBound(reserve :ReserveType; n_sc: N_Type; n_rc: N_Type; rate: RateType)
returns (out: ReserveType)

var d_price :ReserveType;

let
d_price = price_rc(1, reserve, n_sc, n_rc, rate) * (100 +params().fee);

out = ((n_sc * rate * params().r_max - reserve ) * 100 +d_price - 1 ) div d_price;

tel

node Theorem8 (i_msg: InputMsg; rate: RateType; f_max: bool) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

constant_rate :bool;
constant_sc :bool;
max_bound :ReserveType;
bound_defined :bool;
no_rc_selling :bool;

d_price :ReserveType;
prev_d_price :ReserveType;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− max bound can be defined only when
−− rate > 0, N_SC > 0, N_RC > 0 and
−− R <= r_max * N_SC * rate and
−− N_SC > params().n_sc_s
max_bound = -1 -> if f_max and (pre max_bound = -1 ) and

rate > 0 and n_sc > 0 and n_rc > 0 and
n_sc >= params().n_sc_s and
reserve <= params().r_max * n_sc * rate and
o_msg.ack <> MintedRC

then
((n_sc * rate * params().r_max - reserve ) * 100 +d_price - 1 ) div d_price

else
pre max_bound;

−− detects rising edge on max bound definition
bound_defined = false -> (pre max_bound = -1 and max_bound >= 0);

−− N_SC remains constant once max bound is defined
constant_sc = false -> (bound_defined or pre constant_sc ) and n_sc = p_sc;

−− rate remains constant once max_bound is defined
constant_rate = false -> (bound_defined or pre constant_rate ) and rate = pre rate;

−− No Selling of RC once max bound is defined
no_rc_selling = false -> (bound_defined or pre no_rc_selling ) and p_rc <= n_rc;

d_price = price_rc(1, reserve, n_sc, n_rc, rate) * (100 +params().fee);
prev_d_price = price_rc(1, p_reserve, n_sc, p_rc, rate) * (100 +params().fee);

−− Stability Property
check "THEOREM_8"
(constant_rate and −− exchange rate remains constant
constant_sc and −− N_SC > 0 and remains constant
no_rc_selling and −− no selling of RC once max bound fixed
o_msg.ack = MintedRC ) => i_msg.qnt <= max_bound;

−− Lemmas
check (constant_rate and constant_sc and no_rc_selling ) =>
((n_sc * rate * params().r_max - reserve ) * 100 +d_price - 1 ) div d_price <= max_bound;



check (constant_rate and constant_sc and no_rc_selling ) => reserve <= n_sc * rate * params().r_max;
check (constant_rate and constant_sc and no_rc_selling ) => n_sc >= params().n_sc_s;
check (constant_rate and constant_sc and no_rc_selling ) => n_sc > 0;

check (constant_rate and constant_sc and no_rc_selling ) => rate > 0;
check (constant_rate and constant_sc and no_rc_selling ) => max_bound >= 0;
check (constant_rate and constant_sc and no_rc_selling ) => (p_rc > 0 and n_rc > 0 );

check p_reserve >= 0 and p_sc >= 0 and p_rc >= 0;

check (constant_rate and constant_sc and no_rc_selling ) => reserve >= p_reserve;
check (constant_rate and constant_sc and no_rc_selling ) => p_sc = n_sc;
check (constant_rate and constant_sc and no_rc_selling ) => n_rc >= p_rc;

check (constant_rate and constant_sc and no_rc_selling and reserve <> p_reserve ) => o_msg.ack = MintedRC;

check (constant_rate and constant_sc and no_rc_selling ) =>
n_sc * rate * params().r_max - reserve <= n_sc * rate * params().r_max - p_reserve;

check (constant_rate and constant_sc and no_rc_selling ) => d_price div prev_d_price >= 1;
check (constant_rate and constant_sc and no_rc_selling ) => d_price >= prev_d_price;
check (constant_rate and constant_sc and no_rc_selling ) =>

price_rc(1, reserve, n_sc, n_rc, rate) >= price_rc(1, p_reserve, n_sc, p_rc, rate);

check prev_d_price = price_rc(1, p_reserve, n_sc, p_rc, rate) * (100 +params().fee);
check d_price = price_rc(1, reserve, n_sc, n_rc, rate) * (100 +params().fee);

check price_rc(1, reserve, n_sc, n_rc, rate) >= 0;
check price_rc(1, p_reserve, p_sc, p_rc, rate) >= 0;
check params().fee > 0;
check params().r_max > 1;

tel

Listing 15: Theorem9.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem9 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

order_once: bool;
let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− Remains true once at least on order is successful.
order_once = false -> pre order_once or (o_msg.ack <> Error and o_msg.ack <> NoReply and i_msg.qnt <> 0);

−− Stability Property
−− Reserve is always greater than zero once at least one buying/ selling order is successful
check "THEOREM_9" order_once => reserve > 0;

−− Lemmas
check p_reserve >= 0 and p_sc >= 0 and p_rc >= 0;
check p_rc > 0 => p_reserve > 0;
check p_sc > 0 => p_reserve div p_sc > 0;

tel



Listing 16: Theorem10.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem10 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

rate_price :ReserveType;
sc_price_pc :ReserveType;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

rate_price = i_msg.qnt * rate;
sc_price_pc = computeFee(rate_price);

−− THEOREM 10 :SCs are always bought for 1 PC in BCs from bank.
check "THEOREM_10" o_msg.ack = MintedSC => o_msg.price = sc_price_pc;

−− Lemmas
check o_msg.ack = MintedSC => price_sc(p_reserve, p_sc, rate) = rate;

tel

Listing 17: Theorem11.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem11 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

rate_price :ReserveType;
sc_price_pc :ReserveType;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

rate_price = i_msg.qnt * rate;
sc_price_pc = computeFee(rate_price);

−− THEOREM 11 :When reserve ratio >= 1, SCs are always bough for 1 PC in BCs.
check "THEOREM_11" (o_msg.ack = RedeemedSC and p_reserve >= p_sc * rate ) => o_msg.price = sc_price_pc;

tel



Listing 18: Theorem12.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem12 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− THEOREM 12 :RCs can be sold only when E(R, N_SC) > 0.
check "THEOREM_12" o_msg.ack = RedeemedRC => equity(p_reserve, p_sc, rate) > 0;

−− Lemmas
check p_reserve >= 0 and p_sc >= 0 and p_rc >= 0;
check p_rc > 0 => p_reserve > 0;
check p_sc > 0 => p_reserve div p_sc > 0;

tel

Listing 19: Theorem13_to_15.lus File

include "StableCoin.lus"
include "Theorem_Base.lus"

node Theorem13_to_15 (i_msg: InputMsg; rate: RateType) returns (o_msg: OutputMsg)

var reserve: ReserveType;
n_sc: N_Type;
n_rc: N_Type;

p_reserve :ReserveType;
p_sc :N_Type;
p_rc :N_Type;

let

−−%MAIN;
p_reserve, p_sc, p_rc, reserve, n_sc, n_rc, o_msg = StableCoin(i_msg, rate);

−− Assuming Parameter Constraints
assert ParameterConstraints ();

−− Stability Properties
check "THEOREM_13" reserve >= 0 and n_sc >= 0 and n_rc >= 0;
check "THEOREM_14" n_rc > 0 => reserve > 0;
check "THEOREM_15" n_sc > 0 => reserve > 0;

−− Lemmas
check p_reserve >= 0 and p_sc >= 0 and p_rc >= 0;
check p_rc > 0 => p_reserve > 0;
check p_sc > 0 => p_reserve div p_sc > 0;

check o_msg.ack = RedeemedSC => rate > 0;
check o_msg.ack = RedeemedSC => reserve > (p_reserve div p_sc) * (p_sc +i_msg.qnt);
check o_msg.ack = RedeemedSC => p_sc +i_msg.qnt >= 0;
check o_msg.ack = RedeemedSC => p_sc > 0;
check o_msg.ack = RedeemedSC => (p_reserve div p_sc) > 0;

check o_msg.ack = RedeemedRC => p_sc * rate >= 0;
check o_msg.ack = RedeemedRC => p_reserve > 0;
check o_msg.ack = RedeemedRC => reserve > ((p_reserve - p_sc * rate) div p_rc ) * (p_rc +i_msg.qnt);
check o_msg.ack = RedeemedRC => p_rc +i_msg.qnt >= 0;
check o_msg.ack = RedeemedRC => p_rc > 0;

tel

-----BEGIN PGP MESSAGE-----
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