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Abstract. We focus on exploring more potential of Longa and Sica’s algo-

rithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algo-
rithm that can compute short bases for 4-GLV decompositions. The algo-

rithm consists of two sub-algorithms, the first one in the ring of integers

Z and the second one in the Gaussian integer ring Z[i]. We observe that
Z[i] in the second sub-algorithm can be replaced by another Euclidean do-

main Z[ω] (ω = −1+
√
−3

2
). As a consequence, we design a new twofold

Cornacchia-type algorithm with a theoretic upper bound of output C · n1/4,

where C = 3+
√
3

2

√
1 + |r|+ |s| with small values r, s given by the curves.

The new twofold algorithm can be used to compute 4-GLV decompositions

on two classes of curves. First it gives a new and unified method to compute all
4-GLV decompositions on j-invariant 0 elliptic curves over Fp2 . Second it can

be used to compute the 4-GLV decomposition on the Jacobian of the hyperel-
liptic curve defined as C/Fp : y2 = x6 +ax3 + b, which has an endomorphism φ

with the characteristic equation φ2 + φ+ 1 = 0 (hence Z[φ] = Z[ω]). As far as

we know, none of the previous algorithms can be used to compute the 4-GLV
decomposition on the latter class of curves.

1. Introduction. The 2-GLV method, introduced by Gallant, Lambert and Van-
stone [1] in 2001, is a generic approach to speed up the computation of scalar multi-
plication on certain elliptic curves (GLV curves) defined over fields with large prime
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characteristic by using endomorphisms of the curves to decompose the scalar mul-
tiplication. The GLV curves, however, are special curves with special j-invariants,
one might wonder whether it matters in practice. In 2002, for elliptic curves over
Fp2 with j-invariant in Fp, Iijima, Matsuo, Chao and Tsujii [2] constructed an ef-
ficient computable homomorphism arising from the Frobenius map on a twist of
E. In 2009, Galbraith, Lin and Scott [3] generalized the construction of [2] to a
large class of elliptic curves over Fp2 so that the GLV method is applicable. In
2012, Longa and Sica [5] introduced a 4-GLV method by combining GLV and GLS
methods (GLV+GLS), which is a natural extension of Zhou et al. idea [4] of con-
structing 3-GLV decompositions. When E is a GLV curve with an efficient complex
multiplication, then two endomorphisms φ and ψ can be constructed on the GLS
curve E′/Fp2 . Let G ⊂ E′(Fp2) be a cyclic subgroup of large prime order n. The
two endomorphisms satisfying φ2 + rφ+ s = 0 and ψ2 + 1 = 0 were used to get the
4-GLV decomposition [k]P = [k1]P+[k2]φ(P )+[k3]ψ(P )+[k4]φψ(P ) for integers ki
bounded by n1/4, and any P ∈ G. The GLV method can also be extended to genus
2 curves, one can refer [6] for the 4-GLV decomposition and [10] for the 8-GLV
decomposition.

Scalar decomposition is the crucial step to make the GLV method successful, and
it can be reduced to solving the closest vector problem (CVP), as a result the LLL
algorithm [12] is used. For the 2-GLV decomposition, Gallant et al. [1] exploited
the efficient Cornacchia’s algorithm, an application of the extended Euclidean al-
gorithm. For the 4-GLV decomposition on the special class of elliptic curves with
j-invariant 0, Hu, Longa and Xu [7] proposed an explicit lattice-based decomposi-

tion method with an almost optimal upper bound of coefficients O(2
√

2n1/4). For
the general 4-GLV decompositions, Longa and Sica [5] designed a specific and more
efficient reduction algorithm called the twofold Cornacchia-type algorithm, which
consists two parts, the first part in the ring of integers Z and the second part in the
Gaussian integer ring Z[i].

We focus on exploring more potential of Longa and Sica’s algorithm, which is an
easy-to-implement and very efficient algorithm with complexity O(log2(n)). It is our
observation that the second part of Longa and Sica’s algorithm can be implemented

not only in Z[i] but also in the ring of integers Z[ω] = Z[−1+
√
−3

2 ] of Q(
√
−3). We

construct a new twofold Cornacchia-type algorithm for scalar decomposition, the
first part in Z and the second part in Z[ω]. Moreover, our new algorithm gain a

theoretic upper bound of output C ·n1/4, where C = 3+
√
3

2

√
1 + |r|+ |s| with small

values r, s given by the curve.
Our new twofold Cornacchia-type algorithm can be used to compute 4-GLV

decompositions on two classes of curves. First it gives a new and unified method
to compute all 4-GLV decompositions on j-invariant 0 elliptic curves over Fp2 . We
exploit the fact that this family of curves must have a “restricted” endomorphism
φ satisfying φ2 + φ+ 1 = 0 (and hence Z[φ] = Z[ω]). Of the two previous methods
on this class of elliptic curves, the first one was proposed by Hu et al. [7] but is
applicable only to curves which are twists of degree 6 and possess a “restricted”
endomorphism ψ satisfying ψ4 − ψ2 + 1 = 0, the second one follows from the the
work of Longa and Sica [5] and is applicable only to curves with an endomorphism ψ
satisfying ψ2 + 1 = 0. Second it can be used to compute the 4-GLV decomposition
on the Jacobian of the hyperelliptic curve defined as C/Fp : y2 = x6 + ax3 + b,
which has an endomorphism φ with the characteristic equation φ2 + φ + 1 = 0
(hence Z[φ] = Z[ω]).
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This paper is organized as follows. In §2, we give an overview of previous work on
the GLV decomposition. §3 contains the main work of this paper, the construction
of the new twofold Cornacchia-type algorithm. In §4 we give applications of our
new twofold Cornacchia-type algorithm and experimental results. Finally, in §5 we
make a conclusion.

2. An overview of previous work.

2.1. The GLV elliptic curves. Let E be an elliptic curve defined over a finite
field Fq with infinity point denoted by OE . Suppose n is a large prime such that
n‖#E(Fq) and so there is only one subgroup G ⊂ E(Fq) of order n. Assume P ∈ G
is a point of order n and ρ is a fast endomorphism of E defined over Fq with the
characteristic polynomial x2 + rx + s. By hypothesis ρ(P ) = [λ]P ∈ E(Fq)[n] and
λ is a root of x2 + rx+ s = 0 mod n. For k ∈ [1, n− 1], the 2-GLV decomposition
of [k]P is

[k]P = [k1]P + [k2]ρ(P ), (1)

where k1 and k2 ∈ Z are bounded by c
√
n for some constant c > 0. To compute

the coefficients k1 and k2, Gallant et al. [1] constructed the reduction map f :
Z × Z → Z/nZ, (i, j) 7→ i + λj mod n. Since f is of finite image, its kernel
K := {(i, j) | i + λj = 0 mod n} is a sublattice of Z × Z of full rank. Gallant et
al. exploited an efficient algorithm, the Cornacchia’s algorithm, to compute a short
basis of K. Assume that υ1, υ2 are two linearly independent vectors of K satisfying
max{|υ1|, |υ2|} < c

√
n for some positive constant c, where | · | denotes the maximum

norm. Express (k, 0) = β1υ1 + β2υ2 where βi ∈ Q and then round βi to the nearest
integer bi. Then (k1, k2) = (k, 0) − (b1, b2) satisfies the decomposition condition.

By further analysis in [9], one can choose the constant c =
√

1 + |r|+ s.

Remark 1. Gallant et al. provided examples of curves with a fast endomorphism

φ given by complex multiplication by
√
−1 (j = 1728), −1+

√
−3

2 (j = 0),
√
−2 (j =

8000),
√
−3 (j = 54000), 1+

√
−7

2 (j = −3375) and 1+
√
−11
2 (j = −32768). These

curves are called GLV curves.

2.2. The GLS elliptic curves. Galbraith, Lin and Scott [3] implemented the 2-
GLV method by using an efficiently computable endomorphism on a large class of
elliptic curves. Let E be an elliptic curve defined over Fp and E′/Fp2 be a twist of
E/Fp. By the definition of twist in [11], E and E′ are isomorphic over Fp2d with the
degree of twist d ∈ {2, 3, 4, 6}. Galbraith, Lin and Scott described how to obtain
the 2-GLV decomposition on E′(Fp2) for d = 2 and the 4-GLV decompositions on
E′(Fp2) for d = 4 and 6.

Theorem 2.1 ([3]). Let p > 3 be a prime and E an elliptic curve defined over
Fp. Let π0 be the p-power Frobenius map on E and tπ0

the trace of π0. Let E′/Fp2
be the quadratic twist of E(Fp2) and τ : E → E′ be the twist isomorphism defined
over Fp4 . Let n | #E′(Fp2) such that n > 2p and ψ = τπ0τ

−1. The characteristic
equation of ψ is ψ2 − tπ0ψ + p = 0. ψ2(P ) + P = OE′ for P ∈ E′(Fp2). Moreover,
for P ∈ E′(Fp2)[n], we have ψ(P ) = [µ]P where µ ≡ t−1π0

(p− 1) mod n.

Galbraith, Lin and Scott [3] also used twists of degree 4 or 6 to construct a 4-GLV
decomposition. Hence the only two examples of interest are y2 = x3 + b (having
a sextic twist) and y2 = x3 + ax (having a quartic twist) with a, b ∈ F∗p. Here we
only recall the case of constructing a 4-GLV decomposition on the sextic twist of a
curve with j-invariant 0.
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Theorem 2.2 ([3]). Let p ≡ 1 mod 6 and E : y2 = x3 + b (b ∈ F∗p). Choose

ω ∈ F∗p12 such that ω6 ∈ Fp2 and set E′ : y2 = x3 + ω6b. Then E′/Fp2 is a sextic

twist of E(Fp2) with the twist isomorphism τ : E → E′, τ(x, y) = (ω2x, ω3y). Then
ψ = τπ0τ

−1 is an endomorphism of E′ given by ψ(x, y) = (ω2xp/ω2p, ω3yp/ω3p),
which is defined over Fp2 . The characteristic equation of ψ is ψ2 − tπ0ψ + p = 0.
For P ∈ E′(Fp2), we have ψ4(P )− ψ2(P ) + P = OE′ .

Hence, the 4-GLV decomposition can be efficiently applied to these curves. Let
n > 2p be a prime factor of #E′(Fp2). For P ∈ E′(Fp2)[n] and k ∈ [1, n− 1], [k]P
can be decomposed as

[k]P = [k1]P + [k2]ψ(P ) + [k3]ψ2P + [k4]ψ3(P ). (2)

Hu et al. [7] described the complete implementation of the 4-GLV method on GLS
curves with j-invariant 0. They essentially exploited a specific way and led to an
almost optimal upper bound of coefficients 2

√
2p = O(2

√
2n1/4).

Remark 2. The characteristic equation of ψ is ψ2 − tπ0
ψ + p = 0, for any point

Q ∈ E′(F̄p2), we have ψ2(Q) − tπ0
ψ(Q) + [p]Q = OE′ . Furthermore, when ψ acts

on points in E′(Fp2), it also satisfies ψ2 + 1 = 0 or a quartic equation for the degree
of twist 2 or 4,6. Here, we call the endomorphism restricted to points in E′(Fp2)
the “restricted” endomorphism. The curve E′/Fp2 which is a twist of E(Fp2) is
called the GLS curve and the 2-GLV decomposing method using the “restricted”
endomorphism ψ with ψ2 + 1 = 0 is called the GLS method.

2.3. Combining GLV and GLS (GLV+GLS). Longa and Sica [5] showed how
to get a 4-GLV decomposition for twists of any GLV curve over Fp2 . Let E/Fp be
a GLV curve. As in §2.2, let E′/Fp2 be a quadratic twist of E via the twist map
τ : E → E′. Let ρ be the GLV endomorphism coming with the definition of a GLV
curve. Then ρ satisfies the equation ρ2+rρ+s = 0. We thus get two endomorphisms
φ = τρτ−1 and ψ = τπ0τ

−1 of E′, both defined over Fp2 . For P ∈ E′(Fp2) of a large
prime order n, then φ and ψ satisfy φ2(P )+rφ(P )+sP = OE′ and ψ2(P )+P = OE′

respectively. For any scalar k ∈ [1, n− 1], we obtain a 4-GLV decomposition

[k]P = [k1]P + [k2]φ(P ) + [k3]ψ(P ) + [k4]φψ(P ) with max
i

(|ki|) < 2Cn1/4 (3)

for some constant C.
Similar to the 2-GLV method, we consider the 4-GLV reduction map F : Z4 →

Z/nZ with respect to {1, φ, ψ, φψ}. It is easy to know L := kerF is a full sublat-
tice of Z4. To compute a short basis of L, Longa and Sica proposed the twofold
Cornacchia-type algorithm under the assumption that the “restricted” endomor-
phisms φ and ψ are Z-linearly independent. Review the implementation of the
algorithm: the “restricted” endomorphism ψ satisfies ψ2 +1 = 0, then Q(ψ) = Q(i)
and Q(φ, i) is a biquadratic (Galois of degree 4, with Galois group Z/2Z × Z/2Z)
number field. They considered the ring Z[φ, i] of Q(φ, i) to factor the reduction
map F and constructed the twofold Cornacchia-type algorithm, which is an easy-
to-implement algorithm in two parts, the first part in Z and the second part in
Z[i]. In particular, for the case E/Fp with j-invariant 1728, this can be treated
separately with a quartic twist as described in [5, Appendix B].

The twofold algorithm is efficient, but more importantly, it gives a better and
uniform upper bound with constant C = 51.5

√
1 + |r|+ s. Recently, Yi et al.

[8] obtained an improved twofold Cornacchia-type algorithm and showed that it
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possesses a better theoretic bound of output Cn1/4 with C = 3.41
√

1 + |r|+ s. In
particular, their proof is much simpler than Longa and Sica’s.

3. A new twofold Cornacchia-type algorithm.

3.1. Analysis of the new twofold algorithm. In the following, let A/Fq be an
elliptic curve or Jacobians of genus 2 curves. First, we consider a curve A which has
two fast endomorphisms φ, ψ with minimal polynomials x2 + x+ 1 and x2 + rx+ s
respectively. Let λ and µ be the eigenvalues of φ and ψ on a cyclic subgroup of
order n, respectively, λ, µ ∈ [0, n− 1]. Viewing φ and ψ as algebraic integers, then
Q(φ) = Q(

√
−3). Moreover, Changing φ to −φ if necessary, then we may identify

φ with ω = −1+
√
−3

2 . Assume Q(ψ) 6= Q(
√
−3), then K = Q(φ, ψ) is a biquadratic

number field. Let OK be its ring of integers.
The existence of λ and µ above means that n splits in Q(φ) and Q(ψ), thus n splits

completely in K. Hence there exists a prime ideal n of OK of norm n dividing nOK .
Let n′ = n ∩ Z[φ, ψ] and n′′ = n ∩ Z[ω]. The inclusions Z ↪→ Z[ω] ↪→ Z[φ, ψ] ↪→ OK
induce isomorphisms Z/nZ ∼= Z[ω]/n′′ ∼= Z[φ, ψ]/n′ ∼= OK/n. In particular we can
suppose φ ≡ λ mod n′ and ψ ≡ µ mod n′. Consider the map F :

F : Z4 → Z/nZ ∼= Z[φ, ψ]/n′, (x1, x2, x3, x4) 7→ x1+x2λ+x3µ+x4λµ mod n. (4)

Then F is a surjective homomorphism and kerF = f−1(n′) is a full sublattice
of Z4 of index n where f is the isomorphism Z4 → Z[φ, ψ], (x1, x2, x3, x4) 7→
x1 + x2φ+ x3ψ + x4φψ.

We identify Z[φ, ψ] with the free Z[ω]-module of rank 2 with basis {e1, e2} =
{1, ψ}. To find a short Z-basis of n′, we first find out a generator ν = a + bω of
n′′ in the Euclidean domain Z[ω], which is equivalent to finding a, b ∈ Z such that
a2 − ab + b2 = n. This can be achieved by using the first Cornacchia’s algorithm
in Z (see §3.2 Algorithm 1). Then ν = νe1 and ψ − µ = −µe1 + e2 are both in
n′, and {νe1,−µe1 + e2} generates a sub-Z[ω]-module of Z[φ, ψ] of index n, so this
submodule must be n′, i.e.,

n′ = νZ[ω] + (ψ − µ)Z[ω]. (5)

We now use the second Cornacchia’s algorithm in Z[ω] to find a short Z[ω]-basis
{υ1, υ2} of n′ (see §3.2 Algorithm 2) with maxi(|υi|) ≤ Cn1/4 for some constant
C > 0. Thus we get a short Z-basis {υ1, υ1ω, υ2, υ2ω} of n′. Moreover, write
υ1 = (a1 + b1ω) + (c1 + d1ω)ψ and υ2 = (a2 + b2ω) + (c2 + d2ω)ψ, then

n′ = (a1 + b1ω + (c1 + d1ω)ψ)Z[ω] + (a2 + b2ω + (c2 + d2ω)ψ)Z[ω]. (6)

By kerF = f−1(n′), we get a short basis of kerF , which are the rows of the following
matrix. 

a1 b1 c1 d1
−b1 a1 − b1 −d1 c1 − d1
a2 b2 c2 d2
−b2 a2 − b2 −d2 c2 − d2

 . (7)

Let {υ̃1, υ̃2, υ̃3, υ̃4} be the row vectors of the matrix (7) with maxi(|υ̃i|) ≤ Cn1/4.

For any k ∈ [1, n − 1], write (k, 0, 0, 0) =
4∑
j=0

βj υ̃j with βj ∈ Q. Then υ :=

4∑
j=0

bβjeυ̃j ∈ kerF . Let κ = (k1, k2, k3, k4) = (k, 0, 0, 0) − υ. By the triangle
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inequality, |κ| = |
∑4
i=1(bβie − βi)υ̃i| ≤ 4× 1

2 maxi(|υ̃i|) ≤ 2Cn1/4. Then

[k]P = [k1]P + [k2]φ(P ) + [k3]ψ(P ) + [k4]φψ(P ) with max
i

(|ki|) ≤ 2Cn1/4.

Second, we consider a curve A which has an endomorphism ψ satisfing ψ4 −
ψ2 + 1 = 0. Hence the 4-GLV decomposition can be implemented on the curve
as described as in (2). View ψ as an algebraic integer satisfying x4 − x2 + 1 = 0.
Let K = Q(ψ) be the quartic extension over Q and OK be the ring of integers of
K. Since ψ is a primitive 12-th root of unity, then K/Q is a Galois extension and
OK = Z[ψ]. Let µ be the eigenvalue of ψ on a cyclic subgroup of order n, then
±µ and ±µ−1 are the roots of x4 − x2 + 1 = 0 in Fn, which means that n splits
completely in OK . Denote by n′ the prime ideal lying over n which contains n and
ψ − µ. We also get a map

F : Z4 → Z/nZ ∼= OK/n
′, (x1, x2, x3, x4) 7→ x1 + x2µ+ x3µ

2 + x4µ
3 mod n. (8)

To compute a short basis of kerF is equivalent to computing a short basis of n′.
Note that φ := −ψ2 satisfies x2 +x+1 = 0, hence Z[φ] = Z[ω] ⊂ OK . Let λ := −µ2

mod n, using Algorithm 1 on input n, λ, we can get a generator ν = a + bω of
n′ ∩ Z[ω]. Subsequently, n′ = νZ[ω] + (ψ − µ)Z[ω], then we use Algorithm 2 on
input ν, µ to find a short Z[ω]-basis {υ1, υ2} of n′. Moreover, in this case, the new
twofold Cornacchia-type algorithm can be used for scalar decomposition as well.

3.2. Specific algorithm. We now describe our new twofold Cornacchia-type al-
gorithm to compute 4-GLV decomposition coefficients. The first part is to find
ν = a + bω ∈ Z[ω] such that Norm(ν) = a2 − ab + b2 = n. We can find ν by
Cornacchia’s algorithm in Z, which is a truncated form of the extended Euclidean
algorithm.

Algorithm 1: The first part of the new algorithm
Input: n, 1 < λ < n such that λ2 + λ+ 1 ≡ 0 mod n, i.e, λ ≡ ω mod n.
Output: ν = a+ bω dividing n.
1. initialize
r0 ← n, r1 ← λ, r2 ← n,
t0 ← 0, t1 ← 1, t2 ← 0,
q ← 0.

2. main loop
while r22 ≥ n do
q ← br0/r1c,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,
t2 ← t0 − qt1, t0 ← t1, t1 ← t2.

return: ν = r1 − ωt1, a = r1, b = −t1

Lemma 3.1. Algorithm 1 is valid and the output ν = r1 − ωt1 is really lying over
n.

Proof. Let λ ∈ [1, n− 1] such that λ ≡ ω mod n, with ω being defined by φ(P ) =
ωP . To compute the g.c.d of n and λ, the extended Euclidean algorithm produces
three terminating sequences of integers (rj)j≥0, (sj)j≥0 and (tj)j≥0 such that(

rj+2 sj+2 tj+2

rj+1 sj+1 tj+1

)
=

(
−qj+1 1

1 0

)(
rj+1 sj+1 tj+1

rj sj tj

)
, (9)
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for some integers qj+1 > 0 and the initial data(
r1 s1 t1
r0 s0 t0

)
=

(
λ 0 1
n 1 0

)
. (10)

This means that at step j ≥ 0,

rj = qj+1rj+1 + rj+2, sj = qj+1sj+1 + sj+2, tj = qj+1tj+1 + tj+2.

The sequences (rj), (sj) and (tj) with qj+1 = brj/rj+1c satisfy the following prop-
erties, valid for all j ≥ 0:

P1 rj > rj+1 ≥ 0 and qj+1 ≥ 1,
P2 (−1)jsj ≥ 0 and |sj | < |sj+1| (this last inequality valid for j ≥ 1),
P3 (−1)j+1tj ≥ 0 and |tj | < |tj+1|,
P4 sj+1rj − sjrj+1 = (−1)j+1λ,
P5 tj+1rj − tjrj+1 = (−1)jn,
P6 nsj + λtj = rj .

P4 and P5 can be reformulated as

|sj+1rj |+ |sjrj+1| = λ and |tj+1rj |+ |tjrj+1| = n. (11)

The algorithm stops at m when rm ≥
√
n and rm+1 <

√
n. For j = m in (11),

this yields |tm+1rm| < n or |tm+1| <
√
n. Since by P6, we have rm+1 − λtm+1 =

nsm+1 ≡ 0 mod n, we deduce that

r2m+1 + rm+1tm+1 + t2m+1 = (rm+1 − λtm+1)(rm+1 + λtm+1 + tm+1) ≡ 0 mod n.

Moreover, since tm+1 6= 0 by P3,

0 < r2m+1 + rm+1tm+1 + t2m+1 = (rm+1 +
1

2
tm+1)2 +

3

4
t2m+1 <

9

4
n+

3

4
n = 3n,

which implies that r2m+1 + rm+1tm+1 + t2m+1 = n or 2n. Since r2m+1 + rm+1tm+1 +
t2m+1 6≡ 2 mod 4 but 2n ≡ 2 mod 4 (n is a prime), r2m+1 + rm+1tm+1 + t2m+1 6= 2n.
Therefore r2m+1 + rm+1tm+1 + t2m+1 = n. For ν = rm+1 − ωtm+1, νν = n.

We have seen how to construct ν by the Algorithm 1. From the analysis in §3.1,
n′ is the sub-Z[ω]-module of Z[φ, ψ] or Z[ψ] generated by (ν, 0) and (−µ, 1) under
the basis {1, ψ} if ψ2 + rψ+ s = 0 or ψ4 −ψ2 + 1 = 0. Similar to the GLV original
paper [1], we can use the extended Euclidean algorithm to the pair (ν, µ) on Z[ω]
to get a short basis of n′.

For the Cornacchia’s algorithm in Z[ω], we also have three such sequences. In
the j-th step with rj = qj+1rj+1 + rj+2, positive quotient qj+1 and nonnegative
remainder rj+2 are not available in Z[ω]. We will choose qj+1 as the closest inte-
ger to rj/rj+1 denoted by brj/rj+1e (see the following Lemma 3.3). Let us note
that P4-P6 of Lemma 3.1 still hold and P1 holds in modulus (in particular, the
algorithm terminates). Hence the (11), which plays a crucial role in the analysis of
Cornacchia’s algorithm in Z, becomes invalid in Z[ω]. For controlling {|sj |}, we give
a neater and shorter argument (see the following Lemma 3.4), which is similar to
the improved analysis in [8, Lemma 1]. By some deduction we obtain an optimized
terminal condition of the sequence {|rj |}, which is an absolute constant independent
of the curve.

We give the pseudo-code of Cornacchia’s Algorithm in Z[ω] in two forms, working
with complex numbers (see Algorithm 2) and separating real and imaginary parts
(see Algorithm 3 in Appendix). The outputs of Algorithm 3 are a short basis
of kerF as the rows in matrix (7) in §3.1. Note that the imaginary part in the
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Algorithm 3 denotes the coefficient of ω, i.e. the imaginary part of a+ bω is b. The
running time of Algorithm 2, 3, similar to that of Cornacchia’s Algorithm in Z[i],
that is O(log2 n). One may refer to [5].

Algorithm 2: The second part of the new algorithm—compact form
Input: ν ∈ Z[ω], 1 < µ < n such that µ2 + rµ+ s ≡ 0 mod n.
Output: Two vectors in Z[ω]2: υ1, υ2.
1. initialize:
if µ2 ≥ 3n then
r0 ← µ

else
r0 ← µ+ n

r1 ← ν, r2 ← n,
s0 ← 1, s1 ← 0, s2 ← 0, q ← 0.

2. main loop:

while 2|r1|2 ≥ (3 +
√

3)n1/2 do
q ← br0/r1e,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,
s2 ← s0 − qs1, s0 ← s1, s1 ← s2.

3. compute:
q ← br0/r1e, r2 ← r0 − qr1, s2 ← s0 − qs1.

4. return: υ1 = (r1,−s1),
υ2 = (r0,−s0) if max {|r0|, |s0|} ≤ max {|r2|, |s2|}
υ2 = (r2,−s2) otherwise.

3.3. Proof of the upper bound.

Theorem 3.2. The two vectors υ1, υ2 output by Algorithm 2 are Z[ω]-linearly

independent. They belong to n′ and satisfy |υ1|∞ ≤
√

3 +
√

3

2
n

1
4 and |υ2|∞ ≤

3 +
√

3

2
(
√

1 + |r|+ |s|)n 1
4 .

Before proving the Theorem 3.2, we need the following lemmas. Since in the
Algorithm 2, qj+1 ∈ Z[ω] is the closest integer to rj/rj+1. Here, we define a lattice
diamond that a diamond of side length one with vertices in Z[ω], also a fundamental
region of the lattice Z[ω]. We single out a lattice diamond with a vertex of modulus 1
(such as, ±1 or ±ω) but not containing the origin as a vertex (since qj+1 6= 0). First,
we discuss a property that the closest lattice point to a point in the fundamental
parallelogram of the lattice Z[ω] .

Lemma 3.3. For any point P of a lattice diamond, different from the vertices,

there exists a vertex V which is the closest vertex to P , and satisfy V P ≤ 1√
3

.

Proof. This is one case where a picture is worth one thousand words. Refer to Fig.
1 and Lemma 2 in Section 6 of [9], we can easily give an explanation of why the
distance works.

For any point in the lattice diamond ABCD, then it must also lie inside two
triangles, and the vertices of the triangles are lattice points. For example, the point
P in Fig. 1, it falls into the triangle ABD and CBD. From the Lemma 2 in Section
6 of [9] about the maximum distance R from any point in a triangle to any vertex
of the triangle, we can obtain that
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—: ABD is an equilateral triangle, then R =
1√
3

is the radius of the circum-

scribed circle of ABD;
—: CBD is an isosceles triangle with CD = BD and ∠CDB = 1200 , then

R =
CD

2cos∠BCD
=

1√
3

.

So, for any point P lying inside the lattice diamond ABCD, there exists a vertex V

which is the closest vertex to P , and satisfy V P ≤ R =
1√
3

.

Figure 1. A lattice diamond in Z[ω]

Let V1 := qj+1 corresponds to the vertice of the lattice diamond, which is the one
closest to the point P of affix rj/rj+1 lying in the lattice diamond. When applying
Lemma 3.3, it is essential that we be able to choose from the set of all vertices of
the lattice diamond which one is the adequate V1. Since qj 6= 0, it means that we
must be careful to avoid all four diamonds which have the origin as a vertex. But
this follows from the fact that at all steps j ≥ 0 we always have |rj/rj+1| ≥

√
3.

Lemma 3.4. If | sj
sj+1

| < 1, then we have

|sj+1rj | ≤
3 +
√

3

2
|ν|, |sjrj+1| ≤

5 +
√

3

2
|ν|.

Proof. First we have sj+1rj−sjrj+1 = (−1)j+1ν. If the condition | sj
sj+1

| < 1 holds,

and noticing that |rj/rj+1| ≥
√

3, then | sj
sj+1

· rj+1

rj
| < 1√

3
. We can get∣∣∣∣1− sjrj+1

sj+1rj

∣∣∣∣ ≥ 1−
∣∣∣∣sjrj+1

sj+1rj

∣∣∣∣ ≥ 1− 1√
3

Together with sj+1rj − sjrj+1 = (−1)j+1ν we have

|ν| = |sj+1rj − sjrj+1| >
(

1− 1√
3

)
|sj+1rj |,
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which implies

|sj+1rj | ≤
1

1− 1√
3

|ν| = 3 +
√

3

2
|ν|.

By |sjrj+1| = |sj+1rj + (−1)jν|, then |sjrj+1| ≤
5 +
√

3

2
|ν|.

Lemma 3.5. For any nonzero (υ1, υ2) ∈ n′ ⊂ Z[ω]2, we have

max(|υ1|, |υ2|) ≥
√
|ν|√

1 + |r|+ |s|
.

Proof. If (0, 0) 6= (υ1, υ2) ∈ n′, then υ1 + µυ2 ≡ 0 mod ν. If µ′ is the other root of
x2 + rx+ s mod n, we get that

υ21 − rυ1υ2 + sυ22 ≡ (υ1 + µυ2)(υ1 + µ′υ2) ≡ 0 mod ν

Since x2 + rx+ s is irreducible in Q(ω) because the two quadratic fields are linearly
disjoint, we therefore have |υ21 − rυ1υ2 + sυ22 | ≥ |ν|. On the other hand, if

max(|υ1|, |υ2|) <
√
|ν|√

1 + |r|+ |s|
,

then

|υ21 − rυ1υ2 + sυ22 | ≤ |υ1|2 + |r||υ1||υ2|+ s|υ2|2| < |ν|,

a contradiction. This proof uses an argument already appearing in the proof of the
original GLV algorithm [9].

Proof of Theorem 3.2. According to the property P4: sj+1rj − sjrj+1 = (−1)j+1ν
and the property P6: (rj ,−sj) = tj(ν, 0) + (−sj)(−µ, 1), the vectors υ1, υ2 belong
to kerF .

We denote the output {r, s} of the j-th step in the loop of Algorithm 2 by
{rj+1, sj+1}, and assume Algorithm 2 stops at the m-th step (m ≥ 1). Then

υ1 = (rm+1,−sm+1) and |rm| ≥
√

3+
√
3

2 n
1
4 and |rm+1| <

√
3+
√
3

2 n
1
4 . We need to

consider two cases. For brevity, we denote two constants
√

1 + |r|+ |s|,
√

3+
√
3

2 by

c1, c2 respectively.

Case 1:

∣∣∣∣ smsm+1

∣∣∣∣ < 1. Using Lemma 3.4 we have |sm+1| ≤ c2
√
|ν|, together with

|rm+1| < c2
√
|ν| we can easily deduce

|υ1|∞ ≤ c2n
1
4 .

Moreover, if |rm+1| <
√
|ν|
c1

, by Lemma 3.5 we have a lower bound |sm+1| ≥√
|ν|
c1

which implies |rm| ≤ c1 3+
√
3

2

√
|ν| using again Lemma 3.4. Together with the

restricted condition |sm| < |sm+1| ≤ c2
√
|ν| < c1

3+
√
3

2

√
|ν| we can obtain

|(rm,−sm)|∞ ≤ c1
3 +
√

3

2
n

1
4 .
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If |rm+1| ≥
√
|ν|
c1

, when |sm+1| ≥ |sm+2| we have |sm+2| ≤ c2
√
|ν|, |rm+2| ≤

|rm+1| < c2
√
|ν|. When |sm+1| < |sm+2|, by the Lemma 3.4 we can deduce |sm+2| ≤

c1
3+
√
3

2

√
|ν|. Hence in both cases we have

|(rm+2,−sm+2)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Finally by the definition of v2 we always have

|υ2|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Case 2: |sm| ≥ |sm+1|. Let 2 ≤ k ≤ m be the index satisfying

|sk| ≥ |sk+1| ≥ · · · ≥ |sm| ≥ |sm+1| and |sk−1| < |sk|.

Applying Lemma 3.4 to the (k − 1)-th step we have |skrk−1| ≤ 3+
√
3

2

√
|ν|. Since

|rk−1| ≥ |rk| ≥ · · · ≥ |rm| ≥ c2
√
|ν| we can easily deduce |sk| ≤ c2

√
|ν| and then

|sm+1| ≤ |sk| ≤ c2
√
|ν|. Together with |rm+1| < c2

√
|ν| we obtain

|υ1|∞ ≤ c2n
1
4 .

Similarly, if |rm+1| <
√
|ν|
c1

we have |sm+1| ≥
√
|ν|
c1

by Lemma 3.5. which im-

plies |sk| ≥
√
|ν|
c1

and then |rk−1| ≤ c1
3+
√
3

2

√
|ν| by Lemma 3.4. Hence |rm| ≤

c1
3+
√
3

2

√
|ν|. Together with |sm| ≤ |sk| ≤ c2

√
|ν| < c1

3+
√
3

2 n
1
4 we have

|(rm,−sm)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

On the other hand, if |rm+1| ≥
√
|ν|
c1

, following the same argument described in the

case |sm| < |sm+1| we also have

|(rm+2,−sm+2)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Therefore,

|υ2|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Following Theorem 3.2 and the argument in §3.1, we can easily obtain the con-
clusion.

Theorem 3.6. In the 4-dimensional GLV scalar multiplication using the combina-
tion of GLV and GLS, the new twofold Cornacchia-type algorithm will result in a
decomposition of any scalar k ∈ [1, n) into integers k1, k2, k3, k4 such that

[k]P = [k1]P + [k2]φ(P ) + [k3]ψ(P ) + [k4]φψ(P ),

with ki ∈ Z bounded by 4.74(
√

1 + |r|+ |s|)n1/4.
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Remark 3. Note that maxi(|ki|) was bound by the form 2C(
√

1 + |r|+ s)n1/4

in the original paper [5, 8], since the endomorphism φ is always separable with
s = deg(φ). However, in this paper, we use a “restricted” endomorphism satisfying
x2 + rx + s = 0 with s may negative, see the example: the 4-GLV decomposition
(13) on Curve 2 in §4. This change doesn’t affect the proof.

4. Applications and Experimental Results. In the following, we mainly de-
scribe the implementation of our methods. Note that our new algorithm can be
used to compute all 4-GLV decompositions on elliptic curves with j-invariant 0 and
on Jacobians of a family of hyperelliptic curves defined over Fp.

We describe the count of corresponding operation when computing scalar mul-
tiplications at the 128-bit security level on representative x86-64 processors under
some efficient parameters selection. If computing endomorphisms is more expensive
than point addition then we use precomputation. For the remainder, we use M and
S, to denote the cost of multiplication and squaring over field Fp2 , respectively, and
m and s represent the same operations over Fp. In order to give global estimates,
we will assume that m ∼ s and that M ∼ 3m and S ∼ 3s. For all implementations
using the curves following, we just apply the width-ω non-adjacent form (ω-NAF)
method [15, Alg. 3.36] for the case ω = 2 to perform the scalar multiplication with
dimension 4.

Curve 1: E1/Fp21 : y2 = x3 + 9u6, p1 = 2127− 58309. #E1(Fp21) = n1, where n1

is a 254-bit prime. We use Fp21 = Fp1 [X]/(X2 + 1) and u6 = 1 +
√
−1 ∈ Fp21 .

E1 is the quadratic twist of the curve y2 = x3 + 9. φ1(x, y) = [λ1]P = (ξx, y)
(ξ3 = 1 mod p1) and ψ1(x, y) = [µ1]P = (u2(1−p1)xp1 , u3(1−p1)yp1). We have
that φ21 + φ1 + 1 = 0 and ψ2

1 + 1 = 0.
Curve 2: E2/Fp22 : y2 = x3 + 4u6, p2 = 2127 − 10711. #E2(Fp22) = n2, where

n2 is a 254-bit prime. We use Fp22 = Fp2 [X]/(X2 − 5) and u6 =
√

5 ∈ Fp22 ,

u ∈ Fp122 . E2 is the sextic twist of the curve y2 = x3 + 4. φ2(x, y) = [λ2]P =

(ξx, y) with ξ3 = 1 mod p2, ψ2(x, y) = [µ2]P = (u2(1−p2)xp2 , u3(1−p2)yp2)

and φ̃2(x, y) = [ν2]P =
(

1
3

(
xp2 + 16u6

x2p2

)
, y

p2

3
√
3

(
1 + 32u6

x3p2

))
for all points in

E2(Fp22). We have that φ22 + φ2 + 1 = 0, ψ4
2 − ψ2

2 + 1 = 0 and φ̃22 − 3 = 0.

Hyperellitic Curve: C/Fp : y2 = x6 − 3x3 − 92, a = −3 and b = −92 which is
neither a square nor a cube, p = 2127 − 1. Let Fp2 = Fp[x]/(x2 + 1) = Fp[i],
c = a√

b
∈ Fp2\Fp and Ec/Fp2 : y2 = x3 + 3(2c − 5)x + c2 − 14c + 22. A few

seconds computation gives us tp2 = 0x6089c0341e5414a24bef1a1a93c54fd2
and 2p − tp2 = 3n2 as expected with n = ±0x74a69cde5282dbb6 and 2p +
tp2 = m2D′ withm = 4, D′ = 0x16089c0341e5414a24bef1a1a93c54fd. Hence
#JC(Fp) = p2 + p + 1 + 3n(p + 1) + 3n2. Using few random points on the
Jacobian, we find n < 0 and that #JC(Fp) has a 250-bit prime factor: r =
0x25ed097b425ed0974c75619931ea7f1271757b237c3ff3c5c00a037e7906557.
Two endomorphisms φ and ψ on JC satisfy φ2 +φ+ 1 = 0 and ψ2 + 2D′mψ+
4D′p = 0.

Remark 4. The endomorphism φ̃2 in Curve 2 satisfies φ̃2 = I3 ◦πp, where I3 is an
isogeny with degree 3 and constructed by Vélu’s formula [13, 14] with kernel H =
{O, (0, 2u3), (0,−2u3)}. More details can be found in [6]. From the endomorphisms

of curve E2, we can get [Q(ψ2) : Q] = [Q(φ̃2, φ2) : Q] = 4. For P ∈ E2(Fp22)[n2] and
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any integer k ∈ [1, n2 − 1], two 4-GLV decompositions are constructed as follows:

[k]P = [k1]P + [k2]ψ2(P ) + [k3]ψ2
2(P ) + [k4]ψ3

2(P ); (12)

[k]P = [k1]P + [k2]φ2(P ) + [k3]φ̃2(P ) + [k4]φ2φ̃2(P ). (13)

Remark 5. The class of hyperelliptic curve C in the above was proposed for use in
cryptography by Freeman and Satoh [18], who showed that it is isogenous over Fp
to the Weil restriction of a curve of the form Ec. This property is exploited to derive
fast point counting algorithms and pairing-friendly constructions [18, 19]. Guillevic
and Ionica [6] investigated efficient scalar multiplication via the GLV technique on
the Jacobian, they gave 4-GLV decompositions on JC but didn’t give examples or
algorithms to compute them. In this paper, we use our algorithm to compute 4-GLV
decompositions on JC .

In Table 1, we give operation counts for 4-GLV decompositions on these curves.
For the curves E1 and E2 we use Jacobian coordinates. State-of-the-art formulas
can be found in [16, formula (6.7)], where a doubling costs 3M+4S and an addition
costs 12M + 4S. For genus 2 arithmetic on curves of the form y2 = x6 + ax3 + b,
we used formule given by Costello and Lauter [17] in projective coordinates. An
addition costs 43M + 4S and a doubling costs 30M + 9S.

Table 1. Total cost of scalar multiplication at a 128-bit security level.
Curve Method Operation counts Global estimation

E1(Fp21)
4-GLV(Algorithm in [5, 8])

4-GLV (Our algorithm)
885M + 580S 4395m

E2(Fp22)− (12)
4-GLV(Algorithm in [7])
4-GLV (Our algorithm)

834M + 560S 4182m

E2(Fp22)− (13) 4-GLV (Our algorithm) 834M + 556S 4170m

JC(Fp) 4-GLV(Our algorithm) 1623m+ 300s 1923m

First, we focus on 4-GLV decompositions on the curves E1 and E2 with j-
invariant 0 and compare our method with two previous methods in [7, 5, 8]. We can
see that the two previous methods can only compute 4-GLV decompositions under
specific conditions. Hu et al.’s method [7] can only compute 4-GLV decomposition
on GLS curves which are sextic twists, Longa and Sica’s method is only applicable
to those curves with the “restricted” endomorphism ψ satisfying ψ2 + 1 = 0. Also,
for these two 4-GLV decompositions on curve E2, the method in [7] can compute
the decomposition (12) but not the decomposition (13), and the method in [5, 8]
can not compute the decompositions either. Secondly, our algorithm can be used
to calculate the 4-GLV decomposition on JC(Fp), while the methods in [7, 5, 8] can
not to do.

In the Table 1, our method is the only one that can be used to calculate all 4-
GLV decompositions on these curves. Our method gives a new and unified method
for the 4-GLV on GLS curves with j-invariant 0 and can be used to calculate the 4-
GLV decomposition on the Jacobian JC , which can not be calculated by all previous
algorithms [7, 5, 8].

5. Conclusion. We have constructed a new twofold Cornacchia-type algorithm,

the first part in Z and the second part in the Euclidean domain Z[ω] (ω = −1+
√
−3

2 ),

with a theoretic upper bound of output C · n1/4, where C = 3+
√
3

2

√
1 + |r|+ |s|
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with r, s given by the curve. It is a variation of the twofold Cornacchia-type al-
gorithm [5, 8]. In the future, we will explore more allpications and more twofold
Cornacchia-type algorithms with the second Cornacchia’s algorithm implemented
on some orders of imaginary quadratic fields except Z[i].
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Appendix.

Algorithm 3: The second part of the new algorithm—real & imaginary parts
Input: ν ∈ Z[ω] , 1 < µ < n such that µ2 + rµ+ s ≡ 0 mod n.
Output: A short basis of kerF ⊂ Z4: υ̃1, υ̃2, υ̃3, υ̃4
1. initialize:
If µ2 ≥ 3n then
r0(R) ← µ

else
r0(R) ← µ+ n

r0(I) ← 0, r1(R) ← a, r1(I) ← b, r2(R) ← n, r2(I) ← 0,
s0(R) ← 1, s0(I) ← 0, s1(R) ← 0, s1(I) ← 0, s2(R) ← 0, s2(I) ← 0, qR ← 0, qI ← 0.
2. main loop:

while 2(r21(R) − r1(R)r1(I) + r21(I)) ≥ (3 +
√

3)n1/2 do

qR ← d
r0(R)r1(R)−r0(R)r1(I)+r0(I)r1(I)

r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

qI ← d
r0(I)r1(R)−r0(R)r1(I)
r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,
r2(R) ← r0(R) − (qRr1(I) − qIr1(I)),
r2(I) ← r0(I) − (qRr1(I) + qIr1(R) − qIr1(I)),
r0(R) ← r1(R), r0(I) ← r1(I), r1(R) ← r2(R), r1(I) ← r2(I),
s2(R) ← s0(R) − (qRs1(R) − qIs1(I)),
s2(I) ← s0(I) − (qRs1(I) + qIs1(R) − qIs1(I)),
s0(R) ← s1(R), s0(I) ← s1(I), s1(R) ← s2(R), s1(I) ← s2(I),
3. compute:

qR ← d
r0(R)r1(R)−r0(R)r1(I)+r0(I)r1(I)

r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

qI ← d
r0(I)r1(R)−r0(R)r1(I)
r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,
r2(R) ← r0(R) − (qRr1(I) − qIr1(I)), r2(I) ← r0(I) − (qRr1(I) + qIr1(R) − qIr1(I)),
s2(R) ← s0(R) − (qRs1(R) − qIs1(I)), s2(I) ← s0(I) − (qRs1(I) + qIs1(R) − qIs1(I)),

4. return:
υ̃1 = (r1(R), r1(I),−s1(R),−s1(I)), υ̃2 = (−r1(I), r1(R) − r1(I), s1(I), s1(I) − s1(R)),

a := max
{

(r20(R) − r0(R)r0(I) + r20(I)), (s
2
0(R) − s0(R)s0(I) + s20(I))

}
b := max

{
(r22(R) − r2(R)r2(I) + r22(I)), (s

2
2(R) − s2(R)s2(I) + s22(I))

}
if a ≤ b then
υ̃3 = (r0(R), r0(I),−s0(R),−s0(I)), υ̃4 = (−r0(I), r0(R) − r0(I), s0(I), s0(I) − s0(R))
otherwise
υ̃3 = (r2(R), r2(I),−s2(R),−s2(I)), υ̃4 = (−r2(I), r2(R) − r2(I), s2(I), s2(I) − s2(R))
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