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Abstract. Lattice-based cryptography, the study of cryptographic prim-
itives whose security is based on the hardness of so-called lattice prob-
lems, has taken center stage in cryptographic research in recent years.
It potentially offers favorable security features, even against quantum
algorithms. One of the main obstacles for wide adoption of this type
of cryptography is its unsatisfactory efficiency. To address this point,
efficient lattice-based cryptography usually relies on the intractability
of problems on lattices with additional algebraic structure (such as so-
called ideal-lattices or module-lattices). It is an important open question
to evaluate the hardness of such lattice problems, and their relation to
the hardness of problems on unstructured lattices.

It is a known fact that an unstructured lattice, which is simply an ad-
ditive discrete group in Euclidean space, can be cast as an ideal-lattice
in some order of a number field (and thus, in a rather trivial sense, that
ideals in orders are as general as unstructured lattices). However, it is not
known whether this connection can be used to imply useful hardness re-
sults for structured lattices, or alternatively new algorithmic techniques
for unstructured lattices.

In this work we establish a gradient of hardness for the Order-LWE
problem (a generalization of the well known Ring-LWE problem), as it
varies over orders in a number field. Furthermore, we show that, in every
number field, there are certain orders such that the corresponding Order-
LWE problem is at least as hard as the (unstructured) LWE problem. So
in general one should not hope to solve (any) Order-LWE more efficiently
than LWE. However, we show that this connection holds in orders that
are very “skewed” and hence, perhaps, irrelevant for improving efficiency
in cryptographic applications. We further improve the hardness result for
Order-LWE, to include all ideal lattices, closing a gap left in prior work.
This establishes a direct connection between problems on unstructured
lattices and the structured problem of Order-LWE.
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1 Introduction

The Learning with Errors (LWE) problem, as defined by Regev [Reg05], is a
convenient way to construct numerous cryptographic primitives such that their
security is based on the hardness of solving worst-case lattice problems on in-
teger lattices.3 See [Pei16] for an exposition. However, there is a drawback in
basing cryptographic primitives on LWE in practice. It induces relatively high
computational complexity and large instance size, at least quadratically in se-
curity parameter; an LWE-based encryption scheme, for instance, has long keys
and ciphertexts, along with high encryption complexity.

It was known since the introduction of the NTRU cryptosystems [HPS98]
and more rigorously by the results in [LM06, PR06] that the efficiency of the
lattice-based cryptosystems could be significantly improved by instead using
lattices stemming from algebraic number theory. Popularly known as ideal lat-
tices, these are additive discrete groups residing in number fields that, owing
to the works of Minkowski, can be viewed as lattices in the Euclidean space
as well4. This (Minkowski) embedding of the number field into the Euclidean
space preserves the algebraic structure. Inspired by this view, in [SSTX09], and
then in [LPR10, LPR13], the authors defined the first known algebraic number
theoretic analogs of LWE: Polynomial-LWE (PLWE) and Ring-LWE (RLWE),
respectively. Roughly, they replaced the abelian group Znq appearing in LWE by
abelian groups that have an additional ring structure. For PLWE, it is the ring
of polynomials Z[x]/(f(x)), and for RLWE, it is the ring of integers OK in a
number field K. We will explain the properties of these algebraic objects below
when needed. Similar to Regev’s original result, the authors showed that each
of these problems, PLWE and RLWE, is as hard as solving worst-case lattice
problems on (a certain subset5 of) their respective ideal lattices. Moreover, the
PLWE and RLWE problems collapse in a single one, in the case of a power-of-two
cyclotomic field.

Naturally, fixing a field K, not all lattices can be expressed as ideals of the
ring OK considered in the RLWE problem defined over K. Therefore, (such)
ideal lattices constitute a subset of the class of all lattices. Furthermore, the al-
gebraic structure on these lattices makes ideal-lattice problems potentially easier
to solve than their counterparts on general lattices. Indeed, recently it has been
shown that on some parameter regimes, state of the art quantum algorithms for
ideal lattices asymptotically significantly outperform the best known (classical
or quantum) algorithms for general lattices [CGS, CDPR16, CDW17, DPW19,
PHS19, BRL20, BLNRL22]. A more recent work, [PXWC21], proves that there

3 We prefer to keep the discussion at a high level at this point and not specify the exact
lattice problem. In this context, relevant problems include Discrete Gaussian Sam-
pling (DGS), Shortest Independent Vectors Problem (SIVP) and Bounded Distance
Decoding (BDD). See the preliminary section for definitions.

4 See Section 2.3 for details.
5 This subset is the set of invertible ideals of the polynomial ring considered in PLWE.

However, this subset forms the full set of ideals for the ring considered in the RLWE
problem.
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are prime ideals (lattices) in the power-of-two cyclotomic fields that admit effi-
cient classical SVP algorithms and it is further generalized by [BGP22].

On the other hand, it is known that unstructured integer lattices can be
endowed with an algebraic structure by embedding them into a (fixed) number
field K. See Section 1.1. Under this embedding, the image of an integer lattice
is an ideal of a subring (order6) in K. But there is no efficient way, known to us,
to decide if the set of all integer lattices maps to the subset of ideals captured by
the existing hardness results of RLWE (and its variant Order-LWE, described
below). Therefore, in spite of making unstructured integer lattices into ideal
lattices in this way, one may still not be able to compare the hardness of lattice
problems on the two sets. We provide a way out of this problem, in this work,
by extending the hardness results to include all ideals in K, not just a proper
subset.

Since the introduction of Ring-LWE, various algebraically structured vari-
ants of the LWE problem have been defined, each with their own worst-case to
average-case reduction: Module-LWE [LS12], Middle-Product LWE [RSSS17],
and Order-LWE [BBPS19]. The Order-LWE problem, which will be of inter-
est in this work, is a generalization of the Ring-LWE problem, and is obtained
by replacing the ring of integers in Ring-LWE by one of its full-rank subrings,
i.e. an order.7 Improving and extending the results from [RSW18], the authors
in [PP19] proved that all the above mentioned variants are at least as hard as
Ring-LWE (with some order-dependent penalty in the parameters). On the other
hand, by merely forgetting the ring (or module) structure on these structured
LWE problems, one obtains (multiple) LWE samples, thereby proving that all
the algebraically structured LWE problems are not harder than the (unstruc-
tured) LWE.

In this paper, we prove that every number field has certain orders such that
their corresponding Order-LWE problem is equivalent to the unstructured LWE
problem. Therefore, in a sense, Order-LWE can be viewed as a generalization of
Regev’s LWE. The result emphasizes how devious certain algebraic structures
can be, and that it would be näıve to assume that algebraic versions of unstruc-
tured problems are necessarily simpler. We describe our work in more detail
now.

1.1 This Work: General Lattices as Ideals

To compare lattice problems on (unstructured) integer lattices with the algebraic
LWE problems, one may make a lattice into an ideal lattice as follows. Given a
number field K over Q of degree n, the elements in K can be considered as formal
polynomials of degree at most (n − 1) with rational coefficients. This induces
a correspondence between (rational) n-dimensional vectors and field elements

6 See the preliminary section for a definition.
7 The current authors, in their previous work [BBPS19], provided a detailed back-

ground and motivation for the Order-LWE problem, and invite the reader to refer
to it, if needed.
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known as the coefficient embedding (from the field K into Qn ⊆ Rn). Once
a number field K is chosen and fixed, this correspondence allows to present
any (rational) lattice as an additive subgroup of K, but not necessarily as an
ideal in the aforementioned ring-of-integers. However, it is known that any such
(discrete) subgroup L that corresponds to a full-rank lattice L in Qn constitutes
an ideal in some full-rank subring of the ring of integers (See Section 2.3). Such
subrings are known as orders, and the maximal order in which the group L is
an ideal is called its ring of multipliers8, denoted as OL.

Previously, [BBPS19] showed that solving the Order-LWE problem is at least
as hard as solving lattice problems on ideals of that order. We could therefore
hope that the above embedding would imply that for any lattice (respectively
distribution over lattices) there exists an order (respectively distribution over
orders) for which solving Order-LWE is at least as hard as solving short vector
problems on this lattice (or distribution). Alas, [BBPS19] only relates the hard-
ness of Order-LWE with the hardness of a subset of ideal lattices in the order,
namely the set of invertible ideals. We recall that an ideal in the ring is invertible
if it has an inverse which is also a (possibly fractional) ideal in the ring. While
all ideals of the ring of integers are invertible, this is not necessarily the case
for ideals of orders. Although a naive sounding restriction, it left the infinite
set of non-invertible ideals uncaptured by an important average-case problem.
In particular, the lattice L is not necessarily invertible in its ring of multipliers
and we are unaware of an efficient way of deciding that. Therefore, prior to this
work, the above derivation could not be made.

In Section 3, we improve the existing hardness result for Order-LWE to show
that this problem is at least as hard as solving lattice problems on all ideal
lattices of the order, under a regularity condition on the Order-LWE modulus.
The approximation factor obtained is identical to the one in [BBPS19]. The
novelty of this improvement is our generalization of the so-called Cancellation
Lemma that is at the heart of ideal lattice hardness results such as [LPR10,
PRSD17, BBPS19].9 We believe that this extended lemma is of interest beyond
the LWE setup. Inspired by the techniques used in the proof of the generalized
Cancellation Lemma, we also show an equivalence between two variants of Order-
LWE that were defined in [BBPS19] (a primal and dual variant).

Lastly, in Section 3, we extend the Ring-LWE hardness result. The strength-
ened result now includes solving lattice problems (DGS) for lattices that are not
necessarily ideals in the ring of integers, but rather ideals in orders whose index
is coprime with the Ring-LWE modulus. This comes at a cost on the approxima-
tion factor (for DGS) if the lattice is not an OK-ideal, which is directly related

8 Some works, for e.g. [PP19], also call such ring as coefficient ring.
9 The Cancellation Lemma provides a way to map a lattice point into its coefficient

vector with respect to a basis of another, fixed and perhaps denser, lattice. The
coefficient vector will constitute the LWE secret s. In order to preserve the algebraic
structure, this needs to be done via multiplication by a field element. Prior results
used the invertibility of the ideal to show that this is possible. See more details in
Section 1.2.
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to the conductor of the ring of multipliers of the lattice.10 This result generalizes
the Order-LWE to Ring-LWE reduction proved in [BBPS19]. See Section 3 for
full statements and proofs.

In Section 4, we show that every number field has chain(s) of orders begin-
ning from OK such that their corresponding Order-LWE problems become (not
necessarily strictly) harder. We prove that this gradient of hardness terminates
at special ‘skewed’ orders. That is, we show that Order-LWE corresponding to
these orders is equivalent to the unstructured LWE problem. More precisely,
we show that for “reasonable” Gaussian noise, from say Dα, the noise in the
(skewed) Order-LWE sample drowns the last n − 1 coordinates of the Order-
LWE instance. Thus only one coefficient survives, which is distributed like a
(standard) LWE sample with a related noise parameter. We call such orders
α-drowning and describe a recipe to construct them.

The α-drowning property makes the algebraic structure of the order unuseful
for building efficient cryptographic schemes based on the hardness of the corre-
sponding Order-LWE problem. However, in our opinion, since the Order-LWE
problem covers the whole spectrum of the LWE problem, structured and un-
structured, it is a useful problem to consider. Indeed, the chain of reductions
described in Section 4, that starts with the Ring-LWE problem, and ends in the
LWE problem disguised as an Order-LWE avatar, proposes several intermedi-
ate orders such that their corresponding Order-LWE problems are potentially
harder than the Ring-LWE problem. This interpolation of Order-LWE between
structured and unstructured problems, reminiscent of Module-LWE, sheds light
on the interplay of the algebraic structure and the hardness of the LWE prob-
lem. It may perhaps in the future help yield an order that may be hard enough
and algebraic enough for constructing a secure and yet efficient cryptographic
scheme.

1.2 Technical Overview

In this section, we provide a somewhat more technical outline of our results in
Sections 3, 4. To keep this overview simple, we present all the algebraic results
for the case of a power-of-two cyclotomic field, i.e., K = Q[x]/(xn + 1), where n
is a power of two. We will specify when the result holds in more generality, and
invite the enthusiastic reader to seek details in the relevant section.

We begin with a brief description of the LWE problem: a secret vector ~s is
sampled from Znq , for a modulus q, and an adversary gets access to an oracle that

outputs pairs of the form (~a, b = 1
q 〈~a,~s〉+ e mod Z), for a uniform ~a ∈ Znq and

a small ‘noise’ e ∈ R/Z, that typically follows a Gaussian distribution. The goal
of the adversary is to distinguish this oracle from the one that outputs (~a, b),
with b uniform over R/Z. The Ring-LWE setup is described in a more algebraic
environment, where the sample spaces are algebraic objects isomorphic to Znq .

10 The conductor of an order is the maximal ideal which is shared between the order
and the ring of integers. Properties of the conductor are often used to relate the
order and the ring of integers.
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It is well-known that the ring of integers of K is the ring of integer polynomials
OK := Z[x]/(xn + 1).11 Observe that OK is a Z-module of rank n, much like an
integer lattice. Further, one can also define the dual O∨K of OK , exactly like the
dual of a lattice.12 There is a canonical way of embedding the field K into Rn
(more accurately, a copy of Rn that lies inside Cn), with the so-called Minkowski
embedding of K. (See Section 2.3.) The R-vector space generated by the image of
K is denoted by KR. Under this embedding one can view ideals in K as lattices
in KR. For a modulus q, the Ring-LWE problem is defined as follows: for a secret

polynomial s ∈ O∨K
qO∨K

, the adversary gets access to an oracle that outputs pairs

of the form

(a,
1

q
· a · s+ e) ∈ OK

qOK
× KR

O∨K
,

where a is drawn uniformly over OK
qOK , and e is drawn from a small Gaussian

over KR. Intuitively, in this case, e can be thought of as a polynomial with very
small coefficients. The goal of the adversary here is to distinguish between the
output of this oracle and the output of an oracle that gives uniform pairs over
the same domain.

The (primal variant of the) Order-LWE problem is a genuine generalization
of the Ring-LWE problem. For, once OK is replaced by an order O, a full rank
subring of OK , the problem is defined exactly as above and denoted as O-LWE.
Some simple examples of orders to keep in mind could be the ring OK itself, or
Z + dOK , for any integer d, or the ring of integer polynomials modulo f , i.e.,
Z[x]/(f), if the field in discussion is defined as K = Q[x]/(f). Moreover, in this
problem the integer modulus q can be replaced by an O ideal modulus Q, but for
the sake of simplicity, we will present here our results with an integer modulus.
A dual variant of this problem is defined by swapping the domains of the secret
s and of the a.13

Extended hardness result of Order-LWE (Section 3). The authors in
[BBPS19] defined the Order-LWE problem and showed that it is at least as
hard as solving lattice problems on the ‘invertible’ ideal (lattices) of the or-
der. When specialized to the order OK , this is the hardness result as proved
in [LPR10, PRSD17], where there is no mention of invertibility of the ideal lat-
tices considered, since all OK-ideals are invertible. This distinction only arises
when working with ideals of a proper order O (6= OK).14As the proof of the
Order-LWE hardness result given in [BBPS19] followed the exact same blueprint

11 See [Was83, Thm 2.6] for a proof.
12 Formally this is done by replacing the Euclidean inner product by its number-

theoretic analog, the bilinear Trace map Tr : K ×K → Q. The trace coincides with
the Hermitian inner product on the Minkowski space KR, as 〈σ(x), σ(y)〉 := Tr(xy),
where σ(x), σ(y) are the images of x, y in KR, respectively, via the Minkowski
embedding σ and σ(y) is the complex conjugate of σ(y).

13 This primal-dual terminology, from [BBPS19], differs from the one of [RSW18,
PP19], as there, only the domain of s differs: in the primal variant, it is OK/qOK ,
whereas in the dual variant, it is O∨

K/qO∨
K .

14 There exist ideals in orders that are not invertible. See [Conb, Example 3.5].
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described for the hardness of Ring-LWE [PRSD17], it needed, using addition-
ally discrete Gaussian samples (DGS) over an O-ideal I, to convert Bounded
Distance Decoding (BDD) samples on its dual to LWE samples. This conversion
required compatible isomorphisms, namely I/qI ' O/qO, respectively its dual
counterpart, that send the discrete Gaussian sample to the first coordinate of
an O-LWE sample, respectively the BDD secret to the O-LWE secret (See Sec-
tion 2.5 for more details on the blueprint of the Order-LWE hardness proof.).
Prior to this work, these maps were constructed using the so-called Cancellation
Lemma, which necessarily required the O-ideal involved in DGS to be invertible.
That was the only reason the O-LWE hardness result needed to be restricted to
this sub-class of invertible O-ideals. In this work, we show that the conclusion
of the Cancellation Lemma holds even if the ideal is not invertible, as long as
a regularity condition is satisfied (i.e., the LWE modulus q is coprime to the
index [OK : O]15). To prove this lemma, we use a generalization of ideal fac-
torization, known as Jordan-Hölder filtration. To the best of our knowledge, the
Jordan-Hölder filtration has not been used in this context prior to this work.
Using this filtration, we observe that I, a non-invertible O-ideal, can be viewed
as a sublattice of an invertible O-ideal p. Therefore, we can apply the (usual)
Cancellation Lemma to p and map the elements of I to the elements of p using
the inclusion relation. The latter (inclusion) relation is of course not an isomor-
phism of O-modules, a condition that is necessary to maintain the algebraic
structure. However, in the context of Order-LWE reduction, what we need is
an O-isomorphism between the modulo q versions of these ideals (where q is
the LWE modulus). Indeed, we show that under the aforementioned regularity
condition, the inclusion relation between the ideals implies an O-isomorphism
modulo q.16 This suffices to allow the proof to go through.

Additionally, under the coprimality condition, (q, [OK : O]) = 1,17 we show
that the dual and the primal O-LWE problems from [BBPS19] are equivalent,
thereby further strengthening the hardness result for the dual Order-LWE prob-
lem, as well. Previously, [BBPS19] showed the equivalence between these prob-
lems, but requiring a more involved condition on the order in use and not on the
LWE modulus.

In the same section, we also extend the Ring-LWE hardness result. We de-
scribed the details of the strengthened results previously. See the introduction
above.

15 This holds more generally, for arbitrary ideal moduli Q coprime with [OK : O]O,
but for the simplicity of exposition, we treat the LWE modulus as integer.

16 A concurrent work, namely an updated version of [PP19], showed that Cancellation
Lemma also holds for non-invertible ideals, but requires instead invertibility modulo
an ideal Q. In our case, the ideal modulus Q is coprime with [OK : O]O, therefore,
in particular, coprime with the conductor as well. This implies, by their remark, that
all fractional ideals are invertible modulo Q. Therefore, [PP19, Lem. 2.14] provides
an isomorphism O/QO ' I/QI, for all fractional ideals I and thus, an alternative
proof to ours.

17 This holds more generally, for arbitrary ideal moduli coprime with the conductor of
the order.
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Equivalence of Order-LWE and (unstructured) LWE (Section 4). Let K
be the power-of-two cyclotomic and let p be a prime such that pOK = p1p2·. . .·pn,
where pi’s are prime ideals in OK . Then, the following chain of orders exists

OK ⊇ Z + p1 ⊇ Z + p1p2 ⊇ . . . ⊇ Z + p1 · . . . · pn−1 ⊇ Z + pOK .

As proven in [PP19, Thm. 4.7], for orders O′ ⊆ O, there is an error preserving
reduction from O-LWE to O′-LWE, as long as the modulus q is coprime to [O :
O′]. Therefore we can derive the following chain of error preserving reductions,
as long as (p, q) = 1,

OK-LWE→ (Z+p1)-LWE→ . . .→ (Z+p1 ·. . . ·pn−1)-LWE→ (Z+pOK)-LWE.

Observe that the Z-basis of the order Z+pOK is given by the set {1, pζ, . . . , pζn−1},
as OK = Z[ζ], for a primitive root of unity ζ. For a large p, one of these basis
elements is much shorter than the rest. It is in this sense that we call this order
‘skewed’. We show that this skewed order is α-drowning. That is, for p ≥ 1

α , the
error sampled from a spherical Gaussian distribution Dα over KR drowns the
last n− 1 coordinates of KR/O∨ and it is only the coefficient corresponding to
the basis element 1 that survives in this Order-LWE sample and looks like the
second coordinate of an LWE sample. This implies that the Order-LWE problem
corresponding to Z + pOK is equivalent to the unstructured LWE problem. To
get an intuitive idea of the proof that Z + pOK is α-drowning, observe that the
set (Z + pOK)∨, in this special case, looks like 18

(Z + pζZ + . . .+ pζn−1Z)∨ =
1

n
Z +

1

pn
ζZ + . . .+

1

pn
ζn−1Z.

Consider a noise term e drawn from a spherical (in KR) Gaussian Dα.19 Its
coefficients in this basis are Gaussian with a diagonal covariance matrix whose
diagonal entries are (α2n, α2p2n, . . . , α2p2n). In the specified choice of parame-
ters, αp

√
n is greater than the smoothing parameter of Z, thereby proving that

the last n − 1 coefficients of e are indistinguishable from uniform elements in
R/Z. Whereas the first coefficient looks like a part of a LWE-sample with error
from Dα

√
n. In Section 4, we describe α-drowning orders in any number field K

and show that Order-LWE corresponding to them is equivalent to LWE. The
proof, in this general case, requires a more involved analysis since the covariance
matrix of the Gaussian over the basis of the order is not in general diagonal
which makes it much more difficult to analyze.

Related work A concurrent work, [JL22], showed a variant of Cancellation
Lemma, by presenting the isomorphisms I/qI ' O/qO, for all ideals I of the
order O and for an integer modulus q satisfying (q, [OK : O]) = 1. The map is
described as multiplication by some special element t, obtained by a randomized

18 See [Conc, Thm 3.7] for a proof.
19 The Order-LWE problem is often considered with noise sampled from an elliptical

Gaussian, or even a family of elliptical Gaussians, but we can simply consider the
largest spherical Gaussian that is contained in that distribution.
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algorithm and is classically efficient, without knowing the factorization of q.
Using the [PRSD17] framework as we do, they develop the hardness result of
decision Order-LWE for all ideals I in the given order, under the coprimality
condition. We present the hardness result using any O ideal modulus Q, as long
as it is coprime with [OK : O]O, although the maps we describe for its proof are
quantum efficient with the knowledge of factorization of the modulus.

2 Preliminaries

We describe the well-known results and some standard notations. Given a dis-
tribution D, when writing x ← D, we mean an element x sampled from this
distribution. Given a set X, we denote by U(X), the uniform distribution over
this set. For a vector x ∈ Cn, we let ‖x‖ be its Euclidean norm, defined as
‖x‖ = (

∑
i |xi|2)1/2 and its infinity norm, defined as ‖x‖∞ = maxi |xi|.

2.1 The Space H

To be able to speak about the geometric properties of a number field K of degree
n = s1 + 2s2, (defined below), we embed it into the following space,

H = {x ∈ Rs1 × C2s2 |xs1+s2+j = xs1+j , for any 1 ≤ j ≤ s2} ⊆ Cn.

H is an n-dimensional vector space over R, equipped with the inner product
induced on Cn, and hence isomorphic to (a copy of) Rn. This is the space KR,
up to an isomorphism, mentioned in the introduction.

2.2 Lattices

Given a finite dimensional vector space V over R (e.g. Rn or H ⊆ Cn) a
Z-lattice L is an (discrete) additive group generated by a set (basis) B =
{v1,v2, . . . ,vk} ⊆ V of elements that are linearly independent over R. In other
words,

L := {
k∑
i=1

aivi : ai ∈ Z,vi ∈ B}.

The integer k is called the rank of the lattice L and when k = dimRV , the lattice
L is said to be of full rank. Under the inner product on V (e.g. the Euclidean
product for Rn or the Hermitian product for H), the dual lattice L∗, is of the
same rank as L, and is defined as

L∗ := {v ∈ V : 〈v,x〉 ∈ Z ∀x ∈ L}.

Let B(0, r) denote the closed Euclidean ball of radius r around 0. The successive
minimum of the lattice L is defined, for 1 ≤ i ≤ n, as

λi(L) := inf{r > 0 : rankZ(spanZ(L ∩B(0, r))) ≥ i}.

Lemma 2.1 ([Ban93]). 1 ≤ λ1(L) · λn(L∗) ≤ n.



10 M. Bolboceanu, Z. Brakerski, D. Sharma

Gaussians and Smoothing Parameter Let V be a real inner product space
of dimension n with an orthonormal basis (vi)1≤i≤n. We identify an element
x ∈ V in a unique way with a vector x ∈ Rn, of its coordinates with respect
to this basis. Recall that a symmetric matrix Σ ∈ Mn(R) is said to be positive
(semi)definite if xTΣx > 0 (or xTΣx ≥ 0, resp.), for any non-zero x ∈ Rn.
This property puts a partial order on the set of symmetric matrices: Σ1 ≥ Σ2 if
xT (Σ1 −Σ2)x ≥ 0, for any nonzero x ∈ Rn.

Definition 2.2. For a positive definite matrix Σ ∈ Mn(R) and a mean vec-
tor c ∈ Rn, define the Gaussian function ρc,

√
Σ : V → (0, 1] as ρc,

√
Σ(x) =

e−π(x−c)
TΣ−1(x−c). We denote by Dc,

√
Σ, the normalized continuous Gaussian

distribution over V corresponding to ρc,
√
Σ.

When c is the zero vector, it is dropped from the subscript. When Σ = diag(r2i ),
for some r = (r1, . . . , rn) ∈ Rn, the distribution is called an elliptical Gaussian
and is denoted as ρr and Dr. If all ri’s equal r, it is called a spherical Gaussians
and is written as ρr and Dr. We will frequently use the fact that if x follows
a Gaussian distribution of covariance matrix Σ, i.e., x ← D√Σ , then Tx ←
D√TΣT∗ , where T is a linear transformation on V , and T ∗ is the conjugate-
transpose operator. When working with elliptical Gaussians over H, we restrict
our parameters to belong to the set G = {r ∈ (R+)n| rs1+s2+j = rs1+j , 1 ≤ j ≤
s2}. We say for r1 and r2 in G that r1 ≥ r2 if r1i ≥ r2i, for all 1 ≤ i ≤ n, and
by r ≥ r we mean that ri ≥ r, for all 1 ≤ i ≤ n.

Given a lattice L in V and a real positive definite matrix Σ, we define the

discrete Gaussian distribution DL,
√
Σ on L as DL,

√
Σ(x) :=

ρ√Σ(x)

ρ√Σ(L) , for any

x ∈ L.

Definition 2.3 (Smoothing Condition [Pei10, Def 2.2, 2.3]). For a lattice
L in V of rank n and a parameter ε > 0, we define the smoothing parameter
of L, ηε(L), as the smallest r > 0 such that ρ1/r(L∗ \ {0}) ≤ ε. For a positive

definite matrix Σ, we say that
√
Σ ≥ ηε(L) if ρ√Σ−1(L∗ \ {0}) ≤ ε.

We drop ε from the subscript of ηε(L) when it is an unspecified negligible func-
tion in n.

Lattice problems Let L be a full-rank lattice in a n dimensional real space V .
We state the following standard lattice problems:

Definition 2.4 (Shortest Independent Vector Problem). For an approx-
imation factor γ = γ(n) ≥ 1 and a family of rank-n lattices L, the L-SIVPγ
problem is: given a lattice L ∈ L, output n linearly independent lattice vectors of
norm at most γ · λn(L).

Definition 2.5 (Discrete Gaussian Sampling). For a family of rank-n lat-
tices, L, and a function γ : L → G = {r ∈ (R+)n| rs1+s2+j = rs1+j , 1 ≤
j ≤ s2}, where n = s1 + 2s2, the L-DGSγ problem is: given a lattice L ∈ L
and r ≥ γ(L), output a sample x ∈ L which follows a distribution statistically
indistinguishable from DL,r.



On Algebraic Embedding for Unstructured Lattices 11

Definition 2.6 (Bounded Distance Decoding). For a family of rank-n lat-
tices L and a function δ : L→ R+, the L-BDDδ problem is: given a lattice L ∈ L,
a distance bound d ≤ δ(L) and a coset e+ L, where ‖e‖ ≤ d, find e.

Definition 2.7 (Gaussian Decoding Problem [PRSD17]). For a rank-n
lattice L ⊂ H and a Gaussian parameter g > 0, the L-GDPγ problem is: given as
input a coset e+ L, where e ∈ H is drawn from Dg, output e.

We recall here the reduction from SIVP to DGS from [Reg09].

Lemma 2.8 ([Reg09, Lem 3.17]). For ε = ε(n) ≤ 1
10 and γ ≥

√
2ηε(L),

there is a reduction from L − SIVP2
√
n/λn(L)·γ to L − DGSγ .

2.3 Lattices in number fields: Orders and Ideals

A number field K := Q(θ) of degree n is a Q-vector space obtained by attaching
a root θ of a monic, irreducible polynomial f(x) of degree n. It is well-known
that each such K has exactly n field embeddings σi : K → C, that map θ to
each complex root of the minimal polynomial f . Embeddings whose image lie
in R are called real embeddings, otherwise they are called complex embeddings.
It is via these (s1 real and 2s2 complex) embeddings that K is embedded into
the space H, defined in Section 2.1. This is known as the Minkowski embedding,
σ : K ↪→ H. The R-vector space generated by σ(K) in H is called the Minkowski
space KR. Given a geometric norm ‖ · ‖ on H, such as the Euclidean or infinity
norm, we can define a norm on field elements by identifying them with their
Minkowski embeddings, i.e. ‖x‖ = ‖σ(x)‖, for any x ∈ K. By a lattice in K,
we mean the image in KR, of a finitely generated Z-module in K. The most
extensively studied lattice in K is its ring of integers

OK := {β ∈ K : ∃ (monic) g(x) ∈ Z[x] such that g(β) = 0}.

This ring is a full-rank lattice in K, i.e., rankZ OK = n. If OK happens
to coincide with Z[θ], we say K is monogenic. A subring O of OK satisfy-
ing rankZ O = n is said to be an Order. In other words, an order O equals
Zg1 ⊕ . . . ⊕ Zgn, for some basis {g1, g2, . . . , gn} ⊆ O of K/Q. The set of all or-
ders is a partial ordered set with respect to set containment and has OK as the
unique maximal element. We provide the proof of the next result in A.3.

Lemma 2.9. Let O be an order in K. Then, O has a Z-basis containing 1.

An (integral) ideal I in O is an additive subgroup that is closed under scalar
multiplication by O, i.e. x · a ∈ I for every x ∈ O and a ∈ I. Every ideal is a
Z-module of rank n. Further, ideals in K can be thought of as integers in Z, since
they can be added, multiplied and (sometimes) divided. We invite the reader to
refer to A.4 for a full exposition on ideals in K. A fractional ideal I ⊂ K of O
is an ideal such that dI ⊂ O for some d ∈ O. A fractional ideal I is invertible if
there exists a fractional ideal J such that I · J = O. If there exists such a J ,
then it is unique and equal to (O : I) = {x ∈ K| xI ⊆ O}, and is denoted by



12 M. Bolboceanu, Z. Brakerski, D. Sharma

I−1. In general, an ideal in an order may not be invertible. See [Conb, Example
3.5]. However, in the special case where O = OK is the maximal order, every
fractional ideal is invertible. Integral ideals I,J of O are coprime, if I +J = O
and therefore we also have, IJ = I ∩ J and (I ∩ J )L = IL ∩ JL, for any
ideal L. For the sake of this work, we assume that orders and ideals in K are
described in terms of their Z-bases.

The following lemma, known as the Cancellation Lemma, plays a crucial role
in the hardness result for algebraic LWE’s. Note that it uses the invertibility of
the ideal I.

Lemma 2.10 ([BBPS19, Thm 2.35]). Let I and J be integral ideals of an
order O and M a fractional ideal. Assume that I is an invertible ideal. Then,
given the associated primes p1, . . . , pr of J , and an element t ∈ I \

⋃r
i=1 Ipi,

the multiplication by t map θt, θt(x) = t · x, induces the following isomorphism
of O-modules

M
JM

∼−→ IM
IJM

.

This map can be efficiently inverted using I, J , M and t can be found using I
and p1, . . . , pr.

Remark 2.11. The above result is proved in [BBPS19, Thm. 2.35] under a con-
dition weaker than demanding that I be an invertible O-ideal. The proof only
requires the tuple (t, I,J ,M) to satisfy tM+ IJM = IM.

In the improved hardness result in Section 3.1, we will deal with the scenario of
non-invertible ideals. To circumvent this issue in some cases, we use the following
result, which shows that under a coprimality condition, the inclusion induces an
isomorphism. For general cases, where the coprimality condition does not hold,
we give another recipe. See Section 3.1 for details.

Lemma 2.12 ([PP19, Lem. 2.15]). Let L′ ⊆ L be two lattices in an order
O in a number field K and Q an O ideal modulus such that it is coprime with
(L′ : L) = {x ∈ K : xL ⊆ L′}. Then the natural inclusion L′ ⊆ L induces the
bijections

f :
L′

QL′
∼
↪→ L
QL

f(x) = x+QL, f∨ :
L∨

QL∨
∼
↪→ L′∨

QL′∨
f∨(x) = x+QL′∨.

Moreover, this map is efficiently computable and invertible given a basis of L′
relative to a basis of L.

Notice that the result above holds also for ideal moduli being coprime with the
(principal O ideal generated by the) index [L : L′], since this condition implies

the coprimality with the set (L′ : L), as [L : L′]O ⊆ (L′ : L). We denote by
∼
↪→

the isomorphism induced by the inclusion considered.
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Duality For an element a ∈ K, the trace Tr(a) is the sum
∑n
i=1 σi(a), of

images of a under all the embeddings of K. In other words, it is the sum of all
coordinates of σ(a).

Definition 2.13. The dual of the lattice L is defined as

L∨ = {x ∈ K| Tr(x · L) ⊆ Z}.

The space H ⊆ Cn inherits the usual Hermitian inner product from Cn. There-
fore, for x, y ∈ K, the trace Tr(xy) =

∑n
i=1 σi(xy) =

∑n
i=1 σi(x)σi(y) =

〈σ(x), σ(y)〉. This implies that σ(L∨) = σ(L)∗.

Embedding lattices into number fields We describe the (inverse of the)

well-known coefficient embedding. Let ~θ = (1, θ, θ2, . . . , θn−1). Let

L = Z~a1 + Z~a2 + · · ·+ Z~an ⊆ Zn,

be an integer lattice generated by n linearly independent elements ~a1, . . . ,~an ∈
Zn, with ~ai = (a1i, a2i, . . . ani)

t. In Section 3, we will deal with a special class of
integer lattices, known as p-ary integer lattices, i.e., integer lattices L that satisfy
pZn ⊆ L ⊆ Zn. Embed ~ai in K as ai = 〈~ai, ~θ〉 = a1i + a2iθ + . . . + aniθ

n−1. It
follows from the definition of the Trace function on K that ai’s are Z-linearly
independent and hence form an n-dimensional lattice in K. Denote by

L = Za1 + Za2 + · · ·Zan ⊆ Z[θ],

the embedding of L in K via this coefficient embedding. Define the Minkowski
embedding; σ : K −→ Cn as σ(a) = (σ1(a), σ2(a) . . . σn(a)), where σi’s are the
field embeddings defined earlier. Let Vf = (σi(θ

j−1))1≤i,j≤n denote the Van-
dermonde matrix corresponding to f . Then, the coefficient and the Minkowski
embedding are related as follows: for any a ∈ K, the image σ(a) = Vf · coef(a),
where coef(a) ∈ Qn is made of the coefficients of a with respect to the power

basis ~θ. In other words, the image of L, under the Minkowski map, equals the
image of L, under the C-linear transformation defined by Vf : σ(L) = Vf ·L. We
would like to clarify that we consider σ(L) as a lattice in KR and hence a lattice
in Rn.

Let sn(Vf ) ≤ . . . ≤ s1(Vf ) be the singular values of Vf . Recall that the
spectral norm of Vf is given by the maximum singular value, s1(Vf ), whereas
the spectral norm of V −1f is given by the inverse of the smallest singular value,
sn(Vf ). The following result describes how the embedding distorts the Euclidean
norm and volume. A proof is included in A.5.

Lemma 2.14. Let L be the image of L in K, under the coefficient embedding,
with respect to ~θ. Then,

(i) sn(Vf ) · λ1(L) ≤ λ1(L) ≤ s1(Vf ) · λ1(L).
(ii) L-DGSα is equivalent to L-DGSα·

√
(V ∗f Vf )

−1 .



14 M. Bolboceanu, Z. Brakerski, D. Sharma

The Ring of Multipliers For any lattice L in a number field K, we define a
multiplier of L as an element x ∈ K such that xL ⊆ L. It turns out that the set
of these multipliers has a ring structure, and moreover, forms an order in the
field K. For more details, see [Neu99, Chapter 1, Sect.12].

Definition 2.15. For a lattice L ⊂ K, we define its ring of multipliers as

OL = {x ∈ K| xL ⊆ L}.

Both L and L∨ are ideals of OL. In fact, OL is the largest such order. In par-
ticular, if the lattice L is an order itself, then it is its own ring of multipliers.
An interesting and important characterisation of OL is that O∨L = LL∨. (See
[Conb, Rem 4.2].) The following result describes an order that is contained in
OL. See A.6 for a proof.

Lemma 2.16. Let O be an order in K and let I be an integral O-ideal. Then,
the set Z + I, contained in O, is an order in K. Further, given an additive
subgroup L ⊆ O, it is an ideal of the order Z+mO, where m is the exponent of
the (additive) quotient group O/L.

Remark 2.17. When L is a p-ary integer lattice, i.e., pZn ⊆ L ⊆ Zn, the em-
bedded lattice L ⊆ K satisfies pOK ⊆ L ⊆ OK . It is straightforward to check
that L is closed under scalar multiplication by elements of Z+pOK , which is an
order, by Lemma 2.16.

The Conductor Ideal The non-maximality of an order O is reflected in a
special ideal of O called the conductor ideal. We describe how this ideal is also
closely related to the invertibility and unique factorization of O-ideals.

Definition 2.18. The conductor of an order O is defined to be the ideal

CO = (O : OK) := {x ∈ K : xOK ⊆ O}.

It is the maximal OK-ideal contained in O.

There is a distinction between O-ideals, based on invertibility. This distinc-
tion did not exist when dealing with OK-ideals, since all OK-ideals are invertible.
But the picture is not all that bad.

Theorem 2.19. [Conb, Th. 3.8, Cor. 3.11] The nonzero O-ideals coprime to
CO are invertible and also have unique factorization into prime ideals over O.
Further, they are in a multiplicative bijection with the set of nonzero OK-ideals
coprime to CO, via the maps I 7→ IOK and J 7→ J ∩ O.

Jordan-Hölder filtrations Jordan-Hölder filtrations may be considered as the
analog of unique decomposition into prime ideals for O-ideals, when O is a non-
maximal order. Let m = [OK : O] be the index of O in OK . As mOK is an
OK-ideal contained in O, we have CO|mOK . Recall that, given two O-ideals I,



On Algebraic Embedding for Unstructured Lattices 15

J , we say that I divides J , i.e. I|J , if there exists an O-ideal L such that
J = IL. Define, for an ideal I of a ring R, SpecR(I) to be the set of prime
ideals in R that contain I. This set coincides with the set of associated primes
of I, defined in A.4.

Theorem 2.20 ([Cond, Thm 8.9]). Let O be an order. Then for any integral
ideal I there is a descending chain of ideals

O = I0 ⊃ I1 ⊃ . . . ⊃ Il = I, (2.3.1)

where each quotient Ii/Ii+1 is a simple O-module, i.e. for any 0 ≤ i ≤ l − 1,
Ii/Ii+1 ∼ O/pi for some prime ideal pi of O. These primes are the primes of
O that contain I and their number is independent on the choice of the series.

Furthermore, [O : I] =

l−1∏
i=0

[O : pi].

Definition 2.21. A finite chain for an O-ideal I as in Theorem 2.20 is called
a Jordan-Hölder filtration of I.

Lemma 2.22. Let I be an integral O-ideal. Then, there exists an invertible ideal
q such that I ⊆ q ⊆ O and SpecZ([q : I]) ⊆ SpecZ(m), where [q : I] denotes the
index of I in q. Further, given Z bases for I, O, OK , a Z-basis for such a q can
be computed quantumly efficient.

See A.8 for a detailed proof.

2.4 The LWE problem

Let n and q be positive integers.

Definition 2.23 (LWE distribution). For ~s ∈ (Z/qZ)n and an error dis-
tribution ψ over R/Z, define a sample of the distribution A~s,ψ by generating
~a← U((Z/qZ)n), e← ψ and outputting the pair (~a, 1q · 〈~a,~s〉+ e mod Z).

Definition 2.24 (LWE, Average-Case Decision problem). Let q = q(n)
be an integer and Υ a family of error distributions over R/Z. The average case
decision LWE problem, denoted as LWEn,q,ψ requires to distinguish independent
samples from the distribution A~s,ψ, where ~s← U((Z/qZ)n) and ψ ← Υ , and the
same number of samples from the uniform distribution over (Z/qZ)n × R/Z.

Definition 2.25 (LWE, Average-Case Search problem). Let q = q(n) be
an integer and Υ a family of error distributions over R/Z. The search LWE
problem, denoted as search LWEq,ϕ, requires, given samples from the distribution
A~s,ϕ, where ~s← U((Z/qZ)n) and ϕ← Υ , find ~s.
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2.5 The Order LWE problem

There is a line of work in studying algebraic versions of LWE: Ring-LWE [LPR10],
Polynomial-LWE [SSTX09], Order-LWE [BBPS19] and L-LWE [PP19]. In this
paper we will focus on Order-LWE. To set it up, let K be a number field, O an
order in it, Q an integral ideal of O and u ∈ (O : Q) := {x ∈ K| xQ ⊆ O}. For
fractional O-ideals I and J , we denote by IJ := I/J I. We let TO∨ := KR/O∨.
The Order-LWE distribution and problem are stated as follows:

Definition 2.26 (O-LWE distribution). For s ∈ O∨Q and an error distribu-
tion ψ over TO∨ , define a sample of the distribution Os,ψ,u over OQ × TO∨ by
generating a← U(OQ), e← ψ and outputting the pair (a, b = u·a·s+e mod O∨).

Definition 2.27 (O-LWE, Average-Case Decision problem). Let Υ a fam-
ily of error distributions over KR. The average case decision O-LWE problem,
denoted as O-LWE(Q,u),Υ , requires to distinguish independent samples from the
distribution Os,ψ,u, where s ← U(O∨Q) and ψ ← Υ and the same number of
samples from the uniform distribution over OQ × TO∨ .

Definition 2.28 (O-LWE, Average-Case Search problem). Let Υ a family
of error distributions over KR. The average case search O-LWE problem, denoted
as search O-LWE(Q,u),Υ , requires, given independently many samples from the
distribution Os,ψ,u, where s← U(O∨Q) and ψ ← Υ , find s.

In Section 3 we will also deal with the dual variant of the O-LWE problem,
denoted as the O∨-LWE problem, and defined in [BBPS19, Def 3.3]. The only
difference lies in swapping the domains of the secret s, O∨/QO∨, and of the a,
O/QO, in the definitions above. 20

We mention that when O = OK , Q = qOK and u = 1/q, the Order-LWE
problem becomes the Ring-LWE problem. We describe the proof of the hardness
result for the decision O-LWE problem defined in Definition 2.27. The hardness
results of Ring-LWE ([PRSD17]) and Order-LWE ([BBPS19]) involve the follow-
ing family of error distributions. We denote by s1 the number of real embeddings
and by 2s2 the number of complex embeddings of the field. Recall the definition
of the set G from Section 2.2.

Definition 2.29 ([BBPS19, Def 3.6]). Fix an arbitrary f(n) = ω(
√

log n).
For a positive real α and u ∈ K, a distribution sampled from Υu,α is an elliptical
Gaussian Dr, where r ∈ G has the entries sampled as follows: for each 1 ≤
i ≤ s1, sample xi ← D1 and set r2i = α2(x2i + (f(n) · |σi(u)| / ‖u‖∞)2)/2.
For each s1 + 1 ≤ i ≤ s1 + s2, sample xi, yi ← D1/

√
2 and set r2i = r2i+s2 =

α2(x2i +y2i +(f(n)·|σi(u)| / ‖u‖∞)2)/2. When u ∈ K is such that |σi(u)| = ‖u‖∞,
for all i, we denote the distribution as Υα.

The proof of the hardness results for algebraic LWE (Ring-LWE [LPR10,
PRSD17], Polynomial-LWE [SSTX09], Module-LWE [LS12], Order-LWE [BBPS19])

20 We stress on the fact that we use the terminology from [BBPS19], which differs from
the primal-dual terminology from [RSW18, PP19].
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follow the same blueprint. For a detailed proof, we refer the reader to [BBPS19].
Briefly, it iterates the following quantum step: given discrete Gaussian samples
and an oracle for algebraic LWE, the quantum algorithm outputs narrower dis-
crete Gaussian samples. To do this, it first transforms an O-LWE oracle, using
polynomially many discrete Gaussian samples, into a BDD solver, and then uses
the BDD solver to output discrete Gaussian samples of narrower parameter. A
sufficient condition required to make BDD-samples on a dual lattice L∨, along
with discrete Gaussian samples over L, into O-LWE samples is that there must
exist (O-module) isomorphisms f : L/QL ∼−→ O/QO, and g : O∨/QO∨ ∼−→
L∨/QL∨, that satisfy the compatibility condition u · z · x = u · f(z) · g−1(x)
mod O∨, for all z ∈ L/QL, x ∈ L∨/QL∨ with u ∈ (O : Q). For efficiency
reasons, we require the isomorphisms f and g to be both efficiently computable
and invertible. The compatibility condition yields well-defined LWE samples.
Formally,

Theorem 2.30. Let K be an arbitrary number field of degree n and let O ⊂ K
an order. Let Q be an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be
such that α/‖u‖∞ ≥ 2 · ω(1). Let S be a subset of O-ideal lattices such that,
for any L ∈ S, there exist (O-module) isomorphisms f : L/QL ∼→ O/QO and
g : O∨/QO∨ ∼→ L∨/QL∨, both efficiently computable and invertible, such that
u · z · x = u · f(z) · g−1(x) mod O∨ for any x ∈ L∨/QL∨ and z ∈ L/QL. Then,
there is a polynomial-time quantum reduction from S-DGSγ to O-LWE(Q,u),Υu,α ,
where

γ = max

{
η(QL) ·

√
2‖u‖∞/α · ω(1),

√
2n

λ1(L∨)

}
.

Proof. (Overview) We first prove that the compatibility condition yields well-
defined Order-LWE samples. Recall that the isomorphism f maps the discrete
Gaussian sample z to the a part of the LWE sample, whereas the isomorphism
g−1 maps the BDD-secret x to the LWE secret s. Then the compatibility con-
dition yields u · z · x = u · a · s mod O∨. Under well chosen parameters, as in
Lemma [BBPS19, Lem 3.16], the discrete Gaussian distribution over L mod QL
is almost the uniform distribution over L/QL (see Lemma A.2) and since f is
an isomorphism, a is almost uniform over O/QO. Let y = x+e be the BDD coset
and e′, an additional error term. Then the LWE samples are defined as,

(a, b) =(f(z), u · z · y + e′ mod O∨)

=(f(z), u · z · x+ ẽ mod O∨)

=(f(z), u · a · s+ ẽ mod O∨).

For a detailed analysis of the error term, we refer the reader to the proof of
[BBPS19, Lem 2.36]. This shows that the compatibility condition implies the
well-defined LWE samples and hence the algorithm in Lemma [BBPS19, Lem
3.16].

As described earlier, the hardness proof relies on applying Lemma [BBPS19,
Lem 3.15] iteratively for transforming discrete Gaussian samples into discrete
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Gaussian samples of a narrower parameter. This iterative step uses Lemma [BBPS19,
Lem 3.16] and Lemma [PRSD17, Lem 6.7]. As a starting point for the iteration,
samples from a discrete Gaussian distribution of a large enough parameter are
efficiently generated using [Reg05, Lem 3.2]. �

Hardness results for Ring-LWE [LPR10] [PRSD17], Polynomial-LWE [SSTX09]
and Order-LWE [BBPS19] use invertibility of the ideal lattices considered, to
derive the compatible maps f and g.

Remark 2.31. Although Theorem 2.30 presents the hardness result for Order-
LWE, a similar proof also derives the hardness result for the dual setting of
Order-LWE, as defined in [BBPS19, Def 3.3], where a ∈ O∨/QO∨ and s ∈
O/QO. The only difference consists in switching the maps f and g in the BDD-
to-O∨-LWE reduction.

Gaussian distributions over KR and KR/O∨ The proofs of the following
results follow from basic properties of the Gaussian vector distributions. See
Section A.9. For an order O ⊆ K with a Z-basis {pi}1≤i≤n, let PO = (Tr(pi ·
pj))1≤i,j≤n.

Lemma 2.32 ([PP19, Sect 5.3.]). Let e be drawn according to a Gaussian
distribution Dα over KR. Then the coefficients of e with respect to a Z-basis
of O∨ satisfy a Gaussian distribution over Rn of covariance matrix α2 · PO. In
particular, e mod O∨ follows a Gaussian distribution over Rn mod Zn of the
same covariance matrix.

3 New Hardness Results for O-LWE

In this section, we extend and enhance the hardness results for decision Order-
LWE from [BBPS19] as follows:

– We prove extended versions of worst-case hardness results for both decision
primal and dual variants of Order-LWE that follow for all O-ideals, with
same approximation factors as in the previous hardness statements for Order-
LWE and Ring-LWE.

– We extend the worst-case hardness result for decision Ring-LWE that fol-
lows not only for OK-ideals, but also for O-ideals, for any order O of index
coprime to the Ring-LWE ideal modulus Q. However, it incurs a penalty in
the approximation factor, which depends on the conductor of the order. This
result is complementary to [BBPS19, Thm 3.8 & Cor. 5.2].

We mention that these reductions are non-uniform, as short ring elements and
Z-bases of orders and ideals involved are given as advice.
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3.1 Worst-Case Hardness for All O-ideals

We begin this section with a non-maximal order O in the number field K. Let
m = [OK : O] be the index of O in OK and CO its conductor. Recall that for
an ideal I of a ring R, SpecR(I) is the set of all prime ideals in R that contain
I. We denote by Id(O) the set of all fractional O-ideals and further remark
that Id(OK) ( Id(O). For an ideal modulus Q coprime with the principal O
ideal generated by the index [OK : O] and u ∈ (O : Q) = {x ∈ K|xQ ⊆ O}, we
denote the primal Order-LWE problem as O-LWE(Q,u) and the dual Order-LWE
problem ([BBPS19, Def 3.3]) as O∨-LWE(Q,u). Our improved hardness results
for these decision problems are as follows.

Theorem 3.1. Let K be an arbitrary number field of degree n. Choose an ideal
modulus Q, coprime to [OK : O]O and u ∈ (O : Q). Let α ∈ (0, 1) such that
α/‖u‖∞ ≥ 2 · ω(1). Then there are polynomial time quantum reductions

Id(O)-DGSγ −→ O-LWE(Q,u),Υu,α (3.1.1)

Id(O)-DGSγ −→ O∨-LWE(Q,u),Υu,α (3.1.2)

where γ = max
{
η(QL) ·

√
2‖u‖∞/α · ω(1),

√
2n

λ1(L∨)

}
.

As mentioned in the introduction, the hardness result for Order-LWE, as proved
in [BBPS19], showed that O-LWE is at least as hard as lattice problems on
lattices that are invertible O-ideals. The theorem above extends the result to
include non-invertible O-ideals as well, thereby closing the gap. We, however,
restrict to the ideal modulus being coprime to [OK : O]O, which also implies
being coprime with the conductor ideal CO = (O : OK), as [OK : O]O ⊆ CO. In
the case of Q = qO and u = 1/q, for some integer q, we can choose q as being
coprime with the index [OK : O]. No such assumption was made on the modulus
in [BBPS19, Thm 3.8].

Note that both the hardness results compare the LWE problems with lattice
problems on the same set of number field lattices, the O-ideals. This is because
the O-LWE and O∨-LWE problems are equivalent as long as the ideal modulus
Q is coprime to CO. This equivalence was also studied in [BBPS19, Rem. 3.5],
but under a stronger assumption of O∨ being an invertible O-ideal. Moreover,
this equivalence is also a consequence of [PP19, Cor.4.3], under the assumption
of O and O∨ being both invertible modulo Q ([PP19, Def 2.10]), a condition
already implied by our choice of Q.

Proposition 3.2. Let K be an arbitrary number field of degree n and O be an
order. Choose an O ideal modulus Q, coprime to CO, u ∈ (O : Q), and Υ a
distribution over a family of error distributions over KR. Then, given bases for
O and OK , the (search or decision) O-LWE(Q,u),Υ and the (search or decision)
O∨-LWE(Q,u),Υ problems are equivalent by an efficient reduction, given bases of
O, OK , O∨K , O∨, Q and prime ideals containing Q.
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Proof. Define a map f : O
QO −→

O∨
QO∨ as a composition of the following three

isomorphisms

O
QO

∼
↪→ OK
QOK

∼−→ O∨K
QO∨K

∼
↪→ O∨

QO∨

a → a+QOK → ta+QO∨K → ta+QO∨ := f(a)

The first and the last isomorphisms follow from Lemma 2.12, under the co-
primality condition on Q. The middle map is an application of the Cancella-
tion Lemma 2.10 and we let t ∈ O∨K be the element, multiplication by which,
yields the isomorphism. The multiplier can be efficiently computed as in previous
works [RSW18, Thm 3.1], [BBPS19, Prop 4.7], [PP19, Lem 2.13].21 Then, for
a ∈ O/QO and s ∈ O∨/QO∨, the cosets u·a·s+O∨ and u·f(a)·f−1(s)+O∨ are
equal. To see this, let s′ = f−1(s) ∈ O/QO. Notice that, as f is isomorphism,
then f(a) and f−1(s′) are uniform over their corresponding sets, as a and s are.
Then,

u · a · s+O∨ = u · a · f(s′) +O∨

= u · a · (ts′ +QO∨) +O∨

= u · ta · s′ +O∨ as u · a · QO∨ ⊆ O∨

= u · (ta+QO∨) · s′ +O∨ as u · s′ · QO∨ ⊆ O∨

= f(a) · f−1(s) +O∨

Therefore, the O-LWE samples (a, b := u · a · s+ e mod O∨), where e← ϕ for
some ϕ← Υ , can be transformed to O∨-LWE samples by considering (f(a), b :=
u · f(a) · f−1(s) + e mod O∨), where f(a) ∈ O∨/QO∨ and f−1(s) ∈ O/QO.
Conversely, the O∨-LWE samples (a′, b′ := u ·a′ ·s′+e′ mod O∨), where e′ ← ϕ
for some ϕ ← Υ , can be made into O-LWE samples by taking (f−1(a′), b :=
u · f−1(a′) · f(s′) + e′ mod O∨), where f−1(a′) ∈ O/QO and f(s′) ∈ O∨/QO∨.
It is easy to check that the transformation above sending (a, b) to (f(a), b) maps
uniform samples over O/QO × KR/O∨ to uniform samples over O∨/QO∨ ×
KR/O∨. �

Taking the particular case of Theorem 3.1 for Q = qO and u = 1/q, cou-
pled with the reduction from SIVP to DGS (see Lemma 2.8) yields the following
generalization of [LPR10, Thm 3.6], [PRSD17, Corollary 6.3]. See Section B.1.

Corollary 3.3. Let K be an arbitrary number field of degree n. Let α ∈ (0, 1)
satisfy α · q ≥ 2ω(1) and q be an integer coprime to [OK : O]. Then there is a
polynomial time quantum reduction from

Id(O)-SIVPγ′ −→ O-LWE(qO,1/q),Υα ,

where γ′ = ω( 1
α ).

In order to prove Theorem 3.1, we need the following lemma.

21 The size of the multiplier is not relevant here.
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Lemma 3.4. Let Q be an ideal modulus coprime to mO, for m := [OK : O]
and u ∈ (O : Q). Let I be an integral O-ideal. Then, there exist (quantumly)
efficiently computable and invertible O-module isomorphisms,

f :
I
QI

∼−→ O
QO

and g :
O∨

QO∨
∼−→ I∨

QI∨
,

given bases of I, I∨,O, O∨, Q and prime ideals containing Q. Further, if a ∈
O/QO is the image of z ∈ I/QI and s ∈ O∨/QO∨ is the pre-image of x ∈
I∨/QI∨, then u · z · x = u · a · s mod O∨.

Proof. Let p be the invertible ideal that contains I as described in Lemma 2.22.
Moreover, a basis of this ideal can be found quantumly efficient, thanks to the
same lemma. Then, the modulus Q is coprime with [p : I]O, as SpecZ([p : I]) ⊆
SpecZ(m). Indeed, assume by contrary that Q is not coprime to the index [p : I].
Then there exists a maximal ideal m for which Q+ [p : I]O ⊆ m. In particular,
this says Q ⊆ m and [p : I]O ⊆ m. Denote by [p : I] = pn1

1 · . . . · p
nk
k , for some

prime integers pi of positive integer exponents ni. Then since
∏
i(piO)ni = [p :

I]O ⊆ m and m is in particular a prime ideal, we also have piO ⊆ m, for some
i ∈ {1, . . . , k}. Moreover, as SpecZ([p : I]) = {p1, . . . , pk} ⊆ SpecZ(m), we get
that mO ⊆ piO ⊆ m. Together with Q ⊆ m, we reach a contradiction with our
choice of Q.

As Q is indeed coprime with [p : I]O, it becomes also coprime with (I : p),
as needed in Lemma 2.12, since [p : I]O ⊆ (I : p). By Lemma 2.12, this yields
the following (classically) efficiently computable and invertible isomorphisms in-
duced by inclusion,

f1 :
I
QI

∼
↪→ p

Qp
and g1 :

p∨

Qp∨
∼
↪→ I∨

QI∨
z 7→ f1(z) = z̃ x̃ 7→ g1(x̃) = x

z +Qp = z̃ +Qp x̃+QI∨ = x+QI∨

Invertibility of p and the Cancellation Lemma (Lemma 2.10) yield a t ∈ p such
that multiplication by t−1 induces the following efficiently computable and in-
vertible isomorphisms:

f2 :
p

Qp
∼−→ O
QO

and g2 :
O∨

QO∨
∼−→ p∨

Qp∨

z̃ 7→ f2(z̃) = t−1z̃ := a s 7→ g2(s) = t−1s := x̃

t−1z̃ +QO = a+QO t−1s+Qp∨ = x̃+Qp∨

The above map uses the fact that p∨ = p−1O∨. See Proposition A.7(iv). The
multiplier can be efficiently computed as in previous works [RSW18, Thm 3.1],
[BBPS19, Prop 4.7], [PP19, Lem 2.13].22 Define f = f2 ◦ f1 : I/QI → O/QO
and g = g1◦g2 : O∨/QO∨ → I∨/QI∨. Since all the maps involved are efficiently
computable O-module isomorphisms, so are f and g.

22 The size of the multiplier is not relevant here.
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Finally, we prove that f and g are compatible, i.e., for all z ∈ I/QI and
x ∈ I∨/QI∨, u · z · x = u · a · s mod O∨, whenever f(z) = a and g(s) = x.
Consider the coset,

u · z · x+O∨ = u · z · (x+QI∨) +O∨ as u · z · QI∨ ⊂ uQII∨ ⊆ O∨

= u · z · (x̃+QI∨) +O∨

= u · z · x̃+O∨

= u · (z +Qp) · x̃+O∨ as u · Qp · x̃ ⊂ u · Qpp∨ ⊆ O∨

= u · (z̃ +Qp) · x̃+O∨

= u · z̃ · x̃+O∨.

Therefore, u · z ·x = u · z̃ · x̃ mod O∨. According to the notations, a = f2(z̃) and
s = g−12 (x̃). Using the definitions of f2 and g2,

u · z̃ · x̃+O∨ = u · t−1(z̃ +Qp) · t(x̃+Qp∨) +O∨

= u · (a+QO) · (s+QO∨) +O∨

= u · a · s+O∨,

therefore u · a · s = u · z̃ · x̃ mod O∨. This concludes the proof. �

Notice that the maps from Lemma 3.4 are constructed as quantumly efficient,
because of the quantum construction of the basis of the intermediary ideal p
from Lemma 2.22.23

Proof (of Theorem 3.1). We use Theorem 2.30 to prove the hardness results. We
show that in this case the set S, as described in Theorem 2.30, equals the set of
all O-ideals for both O-LWE and O∨-LWE. The novelty of this generalization
is in the fact that we convert BDD samples on non-invertible O-ideals into
LWE samples. Previously, as in the proof of [BBPS19, Theorem 3.7 & 3.8], this
step used the Cancellation Lemma (Lemma 2.10) which unavoidably required
the ideal for the BDD problem (or the dual ideal, which ever is relevant), to be
invertible. We overcome this by using the improved cancellation Lemma 3.4. Let
I be a non-invertible O-ideal. Recall that without loss of generality, we may
assume that I ⊂ O. Then, for all ideal moduli Q coprime to [OK : O]O, we
obtain isomorphisms f : I/QI ∼−→ O/QO and g : O∨/QO∨ ∼−→ I∨/QI∨.
Further, Lemma 3.4 shows that these maps are compatible with respect to the
condition mentioned in Theorem 2.30.

Now, let I be an integral O-ideal. Given a BDD sample y = x+ e on I∨ and
a discrete Gaussian sample z from I, we define (a, b) ∈ O/QO × KR/O∨ as
a = f(z) and b = u · z · y+ e′ mod O∨, for a small error e′. The compatibility of
the maps f and g implies that the tuple (a, b) is a well-definedO-LWE sample, i.e.
b = u·f(z)·g−1(x)+ ẽ mod O∨, for an error ẽ depending on e and e′. Eq. (3.1.2)
then follows from the equivalence of O-LWE and O∨-LWE, Proposition 3.2. �
23 This is improved in a concurrent work, [JL22, Lem.5.7], which presents in their Ideal

Clearing Lemma a classical efficient algorithm to construct the same isomorphisms,
for an ideal modulus Q generated by an integer q coprime to the index of the order.
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3.2 Ring-LWE Hardness for Some Non OK-ideal Lattices

The authors in [LPR10, PRSD17] showed that solving Ring-LWE is at least
as hard as solving short vector problems on the set of all ideals of the ring of
integers OK . We extend this result to include lattice problems on lattices that
are not necessarily ideals of OK . Although, in our reduction, we extend the set
of lattices to a strict superset of OK-ideal lattices, a lattice L that is not an
OK-ideal incurs a cost of an OL-dependent factor in the approximation factor
γ. We prove our generalized hardness result for Ring-LWE, often denoted as
OK-LWE, by giving a polynomial time reduction from O-LWE to OK-LWE and
pre-composing it with our hardness result, Theorem 3.1, for O-LWE. In our O-
LWE to OK-LWE reduction, the error parameter gets inflated by the conductor
CO of O in OK .

Fix an order O. Let Q be an O ideal modulus coprime to the conductor CO =
(O : OK), and therefore by Theorem 2.19 admits a unique factorization into a
product of prime ideals over O. Let SpecO(Q) := {q1, . . . , qr}. Let u ∈ (O : Q).
Notice that by definition, it also belongs to (OK : QOK).

Proposition 3.5. Let K be a number field and O ⊂ OK , an order. Let Q be
an ideal modulus coprime with CO, u ∈ (O : Q). Let Υ be a distribution over
a family of error distributions over KR/QO∨, and let t ∈ CO \

⋃
i qiCO. Then

there is a polynomial time reduction from (search or decision) O-LWE(Q,u),Υ to
(search or decision) OK-LWE(QOK ,u),t·Υ , given the bases of O, OK , CO, Q and
the primes qi.

Notice that the reduction increases the noise by a factor of t. We remark that
the error parameter of the OK-LWE problem in Theorem 3.6 would be the least
when t is the shortest lattice vector in CO \

⋃
i qiCO. The existence of such a

short multiplier can be proven either by using the combinatorial argument from
[BBPS19, Lem 2.36] or by sampling according to a Gaussian distribution over
the conductor ideal with a wide parameter, as in [RSW18, Thm 3.1], [BBPS19,
Prop 4.7].24 We would like to clarify that the statements in these previous works
require that the ideal we sample t from be invertible. Their proofs, however, hold
true for the conductor ideal. See Section B.3 for a discussion on the size of this
multiplier.

Proof (of Prop. 3.5). Define the following maps,

f :
O
QO

→ OK
QOK

, f∨ :
O∨

QO∨
·t→ O∨K
QO∨K

.

The first map f is induced by the inclusion O ⊂ OK and is an isomorphism under
the assumption that Q is coprime to the conductor (Lemma 2.12). The second

24 We would also like to point out that [PP19, Le. 2.13] shows another efficient way of
constructing a multiplier t, via the Chinese Remainder Theorem application, but this
does not give any control on its size. Same discussion holds also for [JL22, Lem.4.1],
as the multiplier is constructed via a randomized algorithm that considers a linear
combination of basis elements of the involved order.
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map f∨ is induced by multiplication by t. It is an isomorphism for I = CO,
J = Q and M = O∨ as tM + IJM = IM. See Remark 2.11 and [BBPS19,
Rem 2.33]. Both maps can be efficiently computed. We further extend the second
map to KR, f∨ : KR/O∨ −→ KR/O∨K as f∨(u·x) = u·t·x, for any x ∈ KR/QO∨.
With these maps, define the following transformation

O
QO
× KR

O∨
−→ OK

QOK
× KR

O∨K
(a, b) 7→ (a′ = f(a), b′ = f∨(b) := t · b mod O∨K).

Since the maps, f and f∨ are isomorphisms, this transformation maps uniform
samples to uniform samples. Further, if b = u ·a ·s+e mod O∨ is sampled from
the O-LWE distribution O(Q,u),s,ϕ, where s is uniform in O∨/QO∨ and e← ϕ,
for ϕ← Υ , then,

b′ = u · f∨(a · s) + f∨(e) mod O∨K
= u · a · f∨(s) + f∨(e) mod O∨K
= u · f(a) · f∨(s) + f∨(e) mod O∨K .

The second equality follows from the fact that f∨ is an O-module homomor-
phism. The third equality follows from the fact that these cosets are equal:
u · a · f∨(s) +O∨K = u · (a+QOK) · f∨(s) +O∨K = u · f(a) · f∨(s) +O∨K . Finally,
as e ← ϕ, its image f∨(e) ← t · ϕ. Moreover, the secret s, as is uniform over
O∨/QO∨, is mapped to f∨(s), which is also uniform over O∨K/QO∨K , as f∨ is
an isomorphism. This yields an efficient transformation from O-LWE(Q,u),Υ to
OK-LWE(QOK ,u),t·Υ . �

Pre-composing this reduction (Proposition 3.5) by the decision O-LWE hard-
ness result, Theorem 3.1 yields the following improved hardness result for deci-
sion OK-LWE.

Theorem 3.6. Let K be a number field of degree n and O ⊂ OK , an order.
Let Q be an ideal modulus coprime to [OK : O]O and u ∈ (O : Q). Let Id(O)
denote the set of O-ideals. Choose t ∈ CO \

⋃
i qiCO and choose α ∈ (0, 1) such

that α/‖u‖∞ ≥ 2ω(1). Then there is a polynomial time quantum reduction from

Id(O)-DGSγ −→ OK-LWE(QOK ,u),t·Υu,α ,

where

γ = max

{
η(QL) ·

√
2 · ‖u‖∞/α · ω(1),

√
2n

λ1(L∨)

}
.

Comparison with previous work. We note that [BBPS19, Thm 3.8, Cor 5.2]
also showed a connection between Order-LWE and Ring-LWE. While the error
and the approximation factors obtained from the two reductions are comparable,
the results are complementary in terms of other parameters. Further, the prior
requires a set of field elements that generate O∨ over O∨K to map between the
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order and the ring of integers, which is similar to the role of our t. Our result
poses a significant improvement in the size of the set of lattices and the set
of relevant moduli, since it considers solving lattice problems on the set of all
O-ideals, whereas the prior result considers solving lattice problems on the set
of O-ideals whose duals are invertible. Our theorem also expands the choice of
the moduli for the Ring-LWE problem: the previous result only holds under the
assumption that the modulus q be a factor of [OK : O], reducing the choice for q
to a finite set, whereas, Theorem 3.6 assumes that the ideal modulus Q (and in
particular, the principal ideal qO) is coprime to [OK : O]O, tapping an infinite
set of choices and also complementing the previous result by bridging the gap.

Solving DGS on p-ary lattices. We view Theorem 3.6 in a different light. We
first consider its particular case Q = qO and u = 1/q, for q an integer coprime
with the index [OK : O]. Instead of solving DGS on O-ideals, where O varies over
the set of orders of indices coprime to a fixed modulus q, we use the OK-LWE
oracle to solve DGS on the set of (embeddings of) all p-ary lattices. Recall that,
when K is a monogenic field, the embedding L of an integer p-ary lattice satisfies
pOK ⊆ L ⊆ OK . This makes L an ideal of the order Z+pOK . See Remark 2.17.
However, this order may be strictly contained in the ring of multipliers OL of
L. The reduction described below, would, in turn solve DGS on integer p-ary
lattices up to an approximation factor related to the field (of embedding) K.
See Lemma 2.14. Owing to the results of [Ajt96, Reg05], it is sufficient to solve
lattice problems on p-ary lattices, as solving lattice problems on p-ary lattices is
at least as hard as solving lattice problems on general integer lattices.

Before going into the next result, we would like to remark that given a Z-
basis of an input lattice L, we can derive a basis for its dual, and hence a set
of generators for O∨L = LL∨ (See [Conb, Rem 4.2]). Thanks to Hermite Normal
Form, we therefore get a basis for O∨L, and further for OL. Moreover, as C∨OL =
OKO∨L ([BBPS19, Lem. 2.32]), we can get a basis for C∨OL and then for COL .
Knowing these bases help us derive the efficient maps involved in Theorem 3.6.

Corollary 3.7. Let K be a monogenic number field. Let L ⊂ K be a lattice
such that pOK ⊆ L, for a fixed prime p, along with its basis. Let an integer q,
coprime to p, and an α ∈ (0, 1) such that αq/‖t‖∞ ≥ 2ω(1). Given the primes
qi containing qOL and t ∈ COL \

⋃
i qiCOL , there is a polynomial time quantum

reduction

L-DGSγ̃ −→ OK-LWE(qOK ,1/q),Υα , where γ̃ = max

{
η(L) ·

√
2 · ‖t‖∞/α · ω(1),

√
2n

λ1(L∨)

}
.

See B.2 for a detailed proof. Observe that for the embedding L of an integer
p-ary lattice, the approximation factor γ obtained above only makes sense as
long as ‖t‖∞ < p. This may be achievable if COL is a proper factor of pOK .
We also provide in Section B.3 examples of lattices L and multipliers t whose
infinity norm are less than p. However, the DGS problem on L can also be solved
using either an OL-LWE oracle or a (Z+pOK)-LWE oracle. The approximation
factor from both of these reductions is equal to γ, as in the hardness result,
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Theorem 3.1, which is an improvement by ‖t‖∞ from the approximation factor
in the Corollary 3.7.

4 Gradients of hardness between Ring-LWE and LWE

In this section, we describe chains of Order-LWE problems that begin with the
well-known Ring-LWE problem (often denoted as OK-LWE) and increase in
hardness until they reach an Order-LWE problem that is equivalent to the un-
structured LWE problem. The descending chain of orders (with respect to in-
clusion) creates a gradient of increasing hardness from Ring-LWE to LWE. Its
relevance is two-fold; it describes a collection of orders in K such that their cor-
responding (Order-)LWE problems lie between Ring-LWE and LWE, the former
being the most efficient and the latter, hardest and least efficient. Secondly, it
instantiates the LWE problem in an algebraic avatar, as an Order-LWE prob-
lem. All the results in this section hold for both search and decision versions
of the Order-LWE and LWE problems. Note that the equivalence between the
LWE problem and the Order-LWE problem, Theorem 4.4, is non-uniform, since
it uses as advice a special Z-basis for the order in consideration.

To ease notation, we denote by O-LWEq,ψ, the Order-LWE problem for the
order O, with modulus ideal qO, the element u = 1/q and an error distribution
ψ over KR. The following result is a building block in creating the chains. It
gives an error preserving reduction between the Order-LWE problems, as long
as the index of the two orders is coprime to the LWE modulus.

Theorem 4.1 ([PP19, Theorem 4.7]). Given O ⊆ O′, an O ideal modulus
Q such that it is coprime with (O : O′) = {x ∈ K xO′ ⊆ O} and u ∈ (O : Q),
there is an efficient, deterministic and error preserving reduction from (search or
decision) O′-LWE(QO′,u),ψ to (search or decision) O-LWE(Q,u),ψ. In particular,
if O′ is the maximal order, OK , then we have an efficient, deterministic and
error preserving reduction from OK-LWE(QOK ,u),ψ to O-LWE(Q,u),ψ. Moreover,
if Q = qO and u = 1/q, for an integer q coprime with [OK : O], we have an
efficient, deterministic and error preserving reduction from OK-LWEq,ψ to O-
LWEq,ψ.

Notice that it suffices for the ideal Q to be coprime with [O′ : O]O in order for
Theorem 4.1 to hold, as again (O : O′) ⊆ [O′ : O]O. With repetitive application
of Theorem 4.1, we get a chain of algebraic LWEs as follows. Let L ⊂ OK be
a lattice in K. Then, L is an ideal of the order Z + mOK , where m is the
exponent of the quotient group OK/L. See Lemma 2.16. The order Z + mOK
may be strictly contained in the ring of multipliers, OL. Hence, the inclusion,
Z +mOK ⊆ OL ⊆ OK , by Theorem 4.1, implies the error preserving reduction

OK-LWE(QOK ,u),ψ −→ OL-LWE(QOL,u),ψ −→ (Z +mOK)-LWE(Q,u),ψ,

as long as the Z + mOK ideal modulus Q is coprime to mO. Coprimality of Q
with mO is sufficient as both the indices, [OL : (Z+mOK)] and [OK : OL] divide
[OK : mOK ] = mn, owing to the fact that mOK ⊂ Z + mOK and therefore,
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Spec([OL : (Z+mOK)]O) ⊆ Spec(mO) and Spec([OK : OL]OL) ⊆ Spec(mOL).
This chain of LWE problems, increasing in hardness, may be longer depending
on the factorization of mOK as an OK-ideal, as we describe in Theorem 4.2.

Let SpecOK (mOK) = {m1,m2, . . . ,mr}. Define Oi := Z+m1 · . . . ·mi. Then,
by Lemma 2.16, each Oi is an order in K. Further, Oi ⊂ Oj , for i ≥ j, and
Z + mOK ⊂ Oi, for all i. By the same argument, for any lattice, J ⊆ OK , the
order Z + mJ ⊆ Z + mOK . This yields the following chain of orders: OK ⊇
O1 ⊇ · · · ⊇ Or ⊇ Z +mOK ⊇ Z +mJ .

Theorem 4.2. Let m be an integer and J be a lattice in OK . Let Q be an ideal
modulus in Z +mJ such that it is coprime with m(Z +mJ ) and [OK : J ](Z +
mJ ). Let u ∈ (Z+mJ : Q). Then, we have the following efficient, deterministic
and error preserving reductions for the (search or decision) problems

OK-LWE(QOK ,u),ψ → · · · → Or-LWE(QOr,u),ψ →

(Z +mOK)-LWE(Q(Z+mOK),u),ψ → (Z +mJ )-LWE(Q,u),ψ.

In particular, for Q = q(Z + mJ ) and u = 1/q, where q is a positive integer
coprime with m and [OK : J ], we have the following efficient, deterministic and
error preserving reductions for the (search or decision) problems

OK-LWEq,ψ → · · · → Or-LWEq,ψ → (Z+mOK)-LWEq,ψ → (Z+mJ )-LWEq,ψ.

See C.1 for a detailed proof.
From now on, we focus on the Order-LWE problem with ideal modulus Q

generated by a positive integer q and u = 1/q.
We now describe (non-maximal) orders such that the corresponding Order-

LWE problems, with error sampled from a spherical Gaussian, become equivalent
to the unstructured LWE problem. Suppose O ⊆ K be such an order. In unison
with Theorem 4.2, this result yields various chains of algebraic LWEs in the field
K that begin with Ring-LWE and terminate at LWE.

The Z-bases of these special orders satisfy a particular property that we
describe now. Some notation: let O be an order of K and a Z-basis of it of
the form ~p = {p0 = 1, p1, . . . , pn−1}. See Lemma 2.9 for the existence of ~p.
Denote by ~p∨ = {p∨i }

n−1
i=0 , the Z-basis of O∨ that satisfies Tr(pip

∨
j ) = δij , where

Tr = TrKR/R.

Definition 4.3. Let K be a number field of degree n and e ∈ KR be sampled
from the distribution Dα over KR, for some α > 0. We say that an order O
in K is α-drowning if for a Z-basis ~p of O, as described above, such that the
coefficients (e0, e1, . . . , en−1) of e with respect to the Z-basis ~p∨ of O∨ satisfy the
following: the marginal distribution of e0 mod Z is

e0 mod Z← Dα
√
n mod Z,

and, for any x0 ∈ R, the conditional distribution,

(e1, e2, . . . , en−1) |e0 = x0 mod Zn−1 ≈s.i U((R/Z)n−1),

where ≈s.i means that the two distributions have statistical distance negligible in
n.
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Theorem 4.4. Let K be a number field of degree n and let O be an α-drowning
order, for α ·q ≥ 2 ·ω(1) and Z bases of O and O∨, ~p and ~p∨, as above. Then, the
(search or decision) O-LWEq,Dα problem is equivalent to the (search or decision
LWEn,q,Dα·√n problem.

Proof. We first give a reduction from LWE to O-LWE. This is the non-trivial
part of the proof. As is standard, for this reduction, we define a transformation
that sends uniform samples over (Z/qZ)n×R/Z to uniform samples over O/qO×
KR/O∨ and LWE samples to O-LWE samples.

Let Tr = TrKR/R denote the trace map. For i ∈ [n − 1], sample uniform
elements in R/Z; ui ← U(R/Z). We define the transformation as follows: given
a pair (~a, b0) ∈ (Z/qZ)n × R/Z, output

(a := a1p0+. . .+anpn−1, b := b0 p
∨
0 +u1 p

∨
1 +. . .+un−1 p

∨
n−1) ∈ O/qO×KR/O∨.

It is straightforward to see that this transformation is well-defined and maps
uniform samples from the domain to uniform samples in the range. We claim
that if b0 = 1

q · 〈~a,~s〉+ e, with a secret ~s← U((Z/qZ)n) and an error e← Dα
√
n,

then b ∈ KR/O∨, as defined above, is statistically indistinguishable from b′ :=
1
q · a · s + e′ ∈ KR/O∨, where s := 〈~s, ~p∨〉 = s1p

∨
0 + . . . + snp

∨
n−1 ∈ O∨/qO∨

and e′ ← Dα over KR. In fact, we show that the coefficients of b are statistically
indistinguishable from the coefficients of b′ in the basis {p∨i }i of O∨. Notice
that (a, b′) is an O-LWEq,Dα sample with the uniformly sampled secret s, since
~s← U((Z/qZ)n).

The linearity of the Trace map along with the equality, Tr(pip
∨
j ) = δij ,

implies that a · s =
∑n−1
i=0 Tr(a · s · pi) p∨i , and Tr(a · s) =

∑n
i=1 aisi = 〈~a,~s〉.

Therefore,

b =
1

q
·〈~a,~s〉 p∨0 +e p∨0 +

n−1∑
i=1

uip
∨
i =

(
1

q
· Tr(a · s) + e

)
· p∨0 +

n−1∑
i=1

uip
∨
i mod Õ∨,

whereas

b′ =

(
1

q
· Tr(a · s) + e′0

)
· p∨0 +

n−1∑
i=1

(
1

q
· Tr(a · s · pi) + e′i

)
· p∨i mod O∨.

Here, e′ =
∑n−1
i=0 e

′
i p
∨
i is the representation of the error (from the O-LWE sam-

ple) in the Z-basis of O∨. Since O is α-drowning, the marginal distribution of e0
mod Z is Dα

√
n mod Z, whereas the conditional distribution of (e′1, . . . , e

′
n−1)|e′0

equals x0 mod Zn−1 is statistically indistinguishable from U((R/Z)n−1), for
any x0 ∈ R. This shows that (e′0, e

′
1, . . . , e

′
n−1) mod Zn is statistically indis-

tinguishable from (e, u1, . . . , un−1) mod Zn ← (Dα
√
n mod Z)×U((R/Z)n−1).

Therefore, the coefficients of b and of b′ with respect to the Z-basis of O∨ are
statistically indistinguishable, as desired.
The converse, from O-LWE to LWE, is a special case of [PP19, Thm 6.1]. �
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Examples of α-drowning orders. We describe two orders and prove in Propo-
sition 4.5 below that they are α-drowning, for an α > 0 satisfying α · q > 2 ·ω(1)
and well chosen positive integer m.

(i) For a number field K, let {1, θ1, . . . , θn−1} be a fixed Z-basis for OK . See
Lemma 2.9 for its existence. For a d × d matrix M , let ed(M) denote the
smallest eigenvalue of M . Let τ := en−1(T ), where T = (Tr(θiθj) − 1

n ·
Tr(θi)Tr(θj))1≤i,j≤n−1. Choose r ∈ N such that τ · m2r−2 ≥ n. Let Õ :=

Z +mrOK . Then, a Z-basis for Õ is ~p := (pi)
n−1
i=0 = {1,mrθ1, . . . ,m

rθn−1}.
Let ~p∨ = (p∨0 , p

∨
1 , . . . , p

∨
n−1) be the (dual) Z-basis for Õ∨. Then, for α > 0

satisfying α · q ≥ 2ω(1), the order Õ is α-drowning. When OK has an
orthogonal Z-basis containing 1, then the matrix T is a diagonal matrix
with τ = en−1(T ) ≥

√
n. Therefore, the condition τ ·m2r−2 ≥ n is achieved

with r = 1. See Remark A.6.
(ii) In fields that are closed under complex conjugation, i.e. K ⊆ K, one may be

able to choose a smaller order Õ′ that is α-drowning. Note that all Galois
fields and totally real number fields are closed under complex conjugation.
As K ⊆ K, we get that TrK/Q(xy) ∈ Q, for x, y ∈ K. Therefore, by repeated
application of [Cona, Lem. 4.6], K = Q ·1⊕Q ·θ′1⊕ . . .⊕Q ·θ′n−1, decomposes
orthogonally into Q vector subspaces, for θ′i ∈ K. Consider the Z-module
generated by this orthogonal basis and call it J . It is a full-rank lattice and
hence an ideal in its ring of multipliers. We multiply by the integer scalar
m to make sure that J is an integral ideal. Then, by Lemma 2.16, the set
Õ′ := Z+mJ is an order, generated by ~p′ = (p′i)

n−1
i=0 := {1,mθ′1, . . . ,mθ′n−1}

over Z. Let ~p
′∨ = {p′∨i }

n−1
i=0 be the corresponding Z-basis for Õ′∨.

Recall that, when e← Dα over KR, the coefficients (e0, e1, . . . en−1) of e, with
respect to the Z-basis of the dual of the order in consideration, call it O, follow
the Gaussian distribution of covariance matrix α2 · PO. (See Lemma 2.32.) To
prove that this order is α-drowning, we show that the n−1×n−1 covariance ma-
trix of the conditional distribution of the coefficients (e1, . . . en−1) satisfies that
the smallest singular value of its square root exceeds the smoothing parameter of
Zn−1. This implies that given any value for e0, the tuple (e1, . . . en−1) mod Zn−1
is indistinguishable from a uniform element in (R/Z)n−1, by Lemma A.2. We
also show that e0 mod Z← Dα

√
n.

Proposition 4.5. Let K be a number field of degree n and m be an integer
greater than q. Then, for α > 0 satisfying α · q > 2 · ω(1),

(i) Õ is an α-drowning order;

(ii) when K ⊆ K, the order Õ′ is α-drowning.

Proof. For both the cases, let Xa := e0 and Xb := (e1, e2, . . . , en−1). The covari-

ance matrix for the appropriate order O = Õ or Õ′ can be expressed as,

α2PO = α2 (Tr(pipj))ij = α2

(
Σaa Σab
Σba Σbb

)
,
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where Σaa ∈ M1×1(R), Σbb ∈ Mn−1×n−1(R), and the matrices Σab = Σt
ba ∈

M1×n−1(R). The marginal distribution of Xa is a Gaussian distribution over
R of covariance matrix α2 · Σaa = α2 · Tr(p0p0) = α2 · n. The conditional
distribution of Xb|Xa = x0 is a Gaussian distribution over Rn−1 of mean
x0α

2Σba(α2Σaa)−1 = x0

n ·Σba and of covariance matrix α2
(
Σbb −ΣbaΣ−1aa Σab

)
.

Proof of (i) When O = Õ, the covariance matrix α2
(
Σbb −ΣbaΣ−1aa Σab

)
=

α2 ·m2r ·T , where T was defined above. As r was chosen such that τ ·m2r−2 ≥ n,
for τ = en−1(T ), the smallest singular value, sn−1(

√
T ), of

√
T equals

√
τ , and

α ·mr · sn−1(
√
T ) ≥ α ·mr ·

√
τ ≥ α ·m ·

√
n ≥ ω(1) ·

√
n > η(Zn−1).

The last inequality follows from the fact that η(Zn−1) <
√
n, for ε = (eπn/(2n−

2) − 1)−1. See Lemma A.3. Thus, since α2 · m2r · T ≥ α2 · m2r · sn−1(
√
T )2,

by Lemma A.2, the distribution of Xb|Xa = x0 mod Zn−1 is ε-close to the uni-
form distribution U((R/Z)n−1). Recall that, given symmetric matrices A, B, the
standard notation A ≥ B means that A − B is a positive semi-definite matrix.
This proves the result.

Proof of (ii) When O = Õ′, the Z-basis ~p′ is orthogonal. Therefore, the co-
variance matrix

α2
(
Σbb −ΣbaΣ−1aa Σab

)
= α2 · diag(m2‖θ′1‖2, . . . ,m2‖θ′n−1‖2).

Now, for 1 ≤ i ≤ n − 1, each ei is an independent variable drawn from D√αi ,

with αi = α2 ·m2‖θ′i‖2. As θ′i ∈ OK , ‖θ′i‖ ≥
√
n. (by Remark A.6.) Hence,

ei mod Z← D√αi mod Z for
√
αi ≥ α ·m ·

√
n.

Under the assumption on α and the fact that m ≥ q, for i > 0, the parameter√
αi > η(Z). The last inequality follows from the fact that η(Z) <

√
n, for

ε = (eπn/2−1)−1. See Lemma A.3. Finally, by Lemma A.2, the distributionD√αi
mod Z, for i > 0, is statistically ε-close to the uniform distribution U(R/Z). This
proves the result. �

Remark 4.6. The parameters m ≥ q in Theorem 4.4 cannot satisfy m � q,
as the Order-LWE problem would become trivially impossible to solve. This is

because when m � q, the error parameter α > 2ω(1)
q � 1

m is greater than the

smoothing parameter of (Z + mOK)∨, thereby making the second coordinate
from the (Z + mOK)-LWE problem, b ∈ KR/(Z + mOK)∨, indistinguishable
from uniform.

The α-drowning orders from Proposition 4.5 are particularly easy to describe in
the case of the power-of-two cyclotomic extensions. See C.2 for a proof.

Corollary 4.7. Let K = Q(ζ2n) be a power of two cyclotomic extension. Let m
and q be distinct integers, with m ≥ q. Let α ∈ (0, 1) be such that α · q ≥ 2 ·ω(1).

Then, for Õ := Z + mOK , the problems Õ-LWEq,Dα and LWEn,q,Dα·√n are
equivalent.
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lattices with pre-processing. In Proceedings of EUROCRYPT, pages
685–716, 2019.

[PP19] C. Peikert and Z. Pepin. Algebraically structured lwe, revisited. In
Proceedings of TCC, pages 1–23, 2019.

[PR06] C. Peikert and A. Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In Proceedings of TCC,
pages 145–166, 2006.

[PRSD17] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandom-
ness of ring-lwe for any ring and modulus. IACR Cryptology ePrint
Archive, 2017:258, 2017.

[PXWC21] Y. Pan, J. Xu, N. Wadleigh, and Q. Cheng. On the ideal short-
est vector problem over random rational primes. In Proceedings of
EUROCRYPT, pages 559–583, 2021.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes,
and cryptography. In STOC, pages 84–93, 2005. Full version in
[Reg09].

[Reg09] O. Regev. On lattices, learning with errors, random linear codes,
and cryptography. J. ACM, 56(6), 2009.

https://eprint.iacr.org/2022/1631


[RSSS17] M. Rosca, A. Sakzad, D. Stehlé, and R. Steinfeld. Middle-product
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Appendix

A Additional definitions

A.1 More about space H

As a real vector space, it has a special orthonormal basis (hi)1≤i≤n given by the
columns of the following matrix:

B =

Ids1×s1 0 0
0 1√

2
Ids2×s2

i√
2
Ids2×s2

0 1√
2
Ids2×s2

−i√
2
Ids2×s2


A.2 Properties of Gaussian and smoothing parameters

Proposition A.1. [Was04, Thm 2.44] Let X be a Gaussian vector over Rn
of covariance matrix Σ. Suppose X splits as X = (Xa, Xb) and its covariance
matrix is written accordingly as:

Σ =

(
Σaa Σab
Σba Σbb

)
.

Then,
i) the marginal distribution of Xa is a Gaussian distribution of covariance matrix
Σaa, and
ii) the conditional distribution of Xb, given the value for Xa as xa, is a Gaussian
distribution of covariance matrix Σbb −ΣbaΣ−1aa Σab and mean ΣbaΣ

−1
aa xa.

Lemma A.2. [MR07, Lem.4.1] If L is a full-rank lattice in Rn, ε ∈ (0, 1) and√
Σ ≥ ηε(L), then the statistical distance between D√Σ mod L and the uniform

distribution over Rn/L is at most ε/2.

i



Lemma A.3. Let L be a full-rank lattice in V . Then the following hold:

(i) [MR07, Lem 3.2, 3.3] ηε(L) ≤
√
n

λ1(L∗) , for ε = 2−Ω(n). Moreover, for any

positive ε > 0, ηε(L) ≤
√

ln(2n(1+1/ε))
π · λn(L).

(ii) [Reg09, Claim 2.13] ηε(L) ≥
√

ln(1/ε)
π · 1

λ1(L∗) , for any ε ∈ (0, 1).

From Lemma A.3 (i), (ii), we deduce that for ε = e−n, ηε(L) = θ(
√
n)

λ1(L∗) .

A.3 Proof of Lemma 2.9

Proof. Let the notation A
φ→ B

ψ→ C mean that φ(A) ⊆ ker(ψ) := {b ∈ B :
ψ(b) = 0}, for A, B, C as Z modules. Then, the following is a short exact
sequence of Z-modules, where the second map is inclusion and the third map is
the projection.

0→ Z→ O → O/Z→ 0

To prove the claim, it suffices to show that O/Z is a torsion free Z-module, and
hence a free Z-module, [DF91, Chapter 12.1, Thm 5], as that would imply that
the above sequence splits, i.e., O = Z⊕O/Z. See [Chu, Lem. 2]. Then, a Z-basis
for O is the union of a Z-basis for O/Z and 1, a Z-basis for Z.

Finally, in order to see that O/Z is torsion free, assume, to the contrary, that
there is a non-zero x ∈ O/Z, such that mx = 0 mod Z. Then x ∈ 1

mZ ∩ O ⊆
Q ∩ OK = Z, by definition of the ring of integers OK . �

A.4 Supplementary algebraic number theory preliminaries

The sum of two ideals I,J ⊆ O is defined by I + J := {x+ y | x ∈ I, y ∈ J },
and their product is defined by I · J := {

∑
xiyi | xi ∈ I, yi ∈ J }. Their

intersection is simply their set theoretic intersection, and their quotient is defined
by (I : J ) := {x ∈ K | xJ ⊆ I}. All of the former sets are ideals in O.

An integral ideal p ⊂ O is prime if for every pair of elements x, y ∈ O,
whenever xy ∈ p, then either x ∈ p or y ∈ p. Every integral ideal I of O contains
a product of prime ideals I ⊇

∏
pi. For an integral ideal I ⊆ O, the set of

associated primes of I is the set of all prime ideals of O that contain I. We state
the well-known Chinese Remainder Theorem.

Theorem A.4 (Chinese Remainder Theorem). Let I be a fractional ideal
over an order O and J1,J2, . . . ,Jl pairwise coprime O-ideals. Then the canon-
ical map of O-modules

I/
∏
i

IJi →
⊕
i

I/IJi

is an isomorphism.

ii



The norm of an ideal I ⊂ O is its index as a subgroup of O, i.e. N(I) := [O :
I] = |O/I|. For the special case where O = OK is the maximal order, the norm
is a multiplicative function, i.e. N(IJ ) = N(I) ·N(J ) for any integral I,J . A
fractional ideal I ⊂ K of O is a set such that dI ⊂ O for some d ∈ O. We define
its norm to be N(I) := N(dI)/ |N(d)|. Note that for any fractional ideals I,J ,
their sum, product, quotient and intersection are again fractional ideals.

The next lemma shows a bound on the (Euclidean) norm on short vectors in
lattices in a number field K.

Lemma A.5 ([BBPS19, Lem 2.21]). Let K be a number field of degree n
and I an ideal over an order O. Then

√
n ·N(I)1/n ≤ λ1(I).

Remark A.6. Since every order O contains 1, it follows that λ1(O) ≤
√
n. On the

other hand, the first part in the inequality of Lemma A.5 tells that λ1(O) ≥
√
n,

since N(O) = 1. This proves that λ1(O) is exactly
√
n.

Duality Given a basis (bi)1≤i≤n of L, a basis (b∨i )1≤i≤n of L∨ can be found by
considering Tr(bi · b∨j ) = δij , for any 1 ≤ i, j ≤ n. When L is a fractional ideal
over an order O, it follows that L∨ is also a fractional ideal over O. We recall
briefly some properties of duality:

Proposition A.7 ([Conc, Section 3], [Conb, Section 4]). For any two lat-
tices I and J in a number field K:
i) (I∨)∨ = I.
ii) if I ⊂ J , then J ∨ ⊂ I∨.
iii) if I is an O ideal, then I · I∨ = {x ∈ K|xI ⊆ I}∨ ⊆ O∨. I · I∨ = O∨ if
O = OI . If O = OK , equality holds for any I.
iv) if I,J are ideals over O and I is invertible, then (IJ )∨ = I−1J ∨.

A.5 Proof of Lemma 2.14

Recall that coef is the coefficient embedding and σ is the canonical embedding
and they are related by the Vandermonde matrix Vf , as Vf · coef(a) = σ(a), for
any a ∈ K. For more details on these two embeddings and the distortion be-
tween them, one can check [RSW18, Sec.4.2] and [Bla20, Sec.2.2.3]. For proving
Lemma 2.14, we need to see how the canonical embedding distorts the Euclidean
norm:

Lemma A.8. Let L be the image of L in K, under the coefficient embedding,
with respect to ~θ. Then, for any a ∈ K,

sn(Vf ) · ‖coef(a)‖ ≤ ‖σ(a)‖ ≤ s1(Vf ) · ‖coef(a)‖.

Proof. The proof follows easily from the definition of the singular values. Since
σ(a) = Vf · coef(a), the norm

‖a‖ := ‖σ(a)‖ = ‖Vf · coef(a)‖ ≤ ‖Vf‖ · ‖coef(a)‖ = s1(Vf ) · ‖coef(a)‖.
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The converse follows similarly, using coef(a) = V −1f ·σ(a) and ‖V −1f ‖ = 1/sn(Vf ).

The following result follows easily from properties of Gaussian distributions. We
state it for the sake of completeness.

Lemma A.9. Let K = Q(θ) be a number field of degree n. If e = e0+e1θ+. . .+
en−1θ

n−1 drawn from Dα over KR then (e0, e1, . . . , en−1) satisfies the distribu-
tion D

α
√

(V f∗V f)−1 over Rn, where Vf is the Vandermonde matrix corresponding

to the roots of θ. In the special case, when K is the power-of-two cyclotomic ex-
tension, the error distribution simplifies to D

α
√

(V f∗V f)−1 = Dα/
√
n.

Proof of Lemma 2.14 i) By definition of the coefficient embedding, x ∈ L if
and only if ~x := coef(x) ∈ L. If ‖x‖ = λ1(L), then by Lemma A.8,

λ1(L) ≤ ‖~x‖ ≤ ‖x‖/sn(Vf ) = λ1(L)/sn(Vf ).

Conversely, let ~y ∈ L and let y ∈ L be such that ~y = coef(y). If ‖~y‖ = λ1(L),
then

λ1(L) ≤ ‖y‖ ≤ s1(Vf ) · ‖~y‖ = s1(Vf ) · λ1(L).

ii) Let x = x0 +x1θ+ . . .+xn−1θ
n−1 be sampled from the Gaussian distribution

Dα over KR. Then, by Lemma A.9, the coefficients, ~x := (x0, x1, . . . , xn−1) ←
Dα·
√

(V ∗f Vf )
−1 over Rn. The definition of the coefficient and the Minkowski em-

bedding implies that Dα(x) = Dα(Vf · ~x) = Dα
√

(V ∗f Vf )
−1(~x), for all x ∈ L. It

further implies that
∑
x∈L ρα(x) =

∑
~x∈L ρα

√
(V ∗f Vf )

−1(~x). Therefore, the two

discrete Gaussians coincide:

DL,α ≡ DL,α
√

(V ∗f Vf )
−1 .

This observation lies at the heart of the equivalence stated in the proposition.
The reduction from L-DGSα to L-DGS

α·
√
V −1
f (V −1

f )∗
is described by an algorithm

that takes as input a lattice L ⊂ K and outputs discrete Gaussian samples over
L, by using a DGS sampler for the lattice L = V −1f · σ(L) in Zn, as follows. Let

~x ← DL,α
√

(V ∗f Vf )
−1 , then x := 〈~x, ~θ〉 ∈ L follows the distribution DL,α. The

converse reduction is realized by a similar argument. �

A.6 Proof of Lemma 2.16

Proof. Since I is an ideal and hence, in particular, an additive group of rank n,
the set Z+ I is an additive group of rank n. It is also clear that it is a subgroup
of O and contains 1. To see that it is a ring, let z1+i1 and z2+i2 be two elements
in Z + I. Then,

(z1 + i1)(z2 + i2) = z1z2 + [i1(z2 + i2) + z1i2] ∈ Z + I,
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as I is closed under scalar multiplication by elements (z2 + i2), z1 ∈ O.
Since mO is an ideal of O, it follows by what we just proved that Z+mO is

an order. Recall that the exponent e of a group G is the smallest positive integer
such that e · g = 0, for all g ∈ G. In particular, this shows that since m is the
exponent of the (additive) group O/L, mO ⊆ L. To prove that L is an ideal of
Z + mO, we show that L is closed under scalar multiplication by elements in
Z +mO, or equivalently, by elements in mO. Using the fact that mO ⊆ L and
that L ⊆ O, we get that mO · L ⊆ mO · O ⊆ mO ⊆ L. �

A.7 Localization facts

We only describe the results used in the next section. To understand the concept
of localization more thoroughly, we refer the reader to [Neu99, Ch. 1].

Definition A.10. Let p be a prime ideal of an order O. Localization of O at p
is defined as the following set

Op =
{r
s
| r ∈ O, s /∈ p

}
.

It is straightforward to check that Op is a ring. Further, it has a unique maximal
ideal, namely pOp, and therefore is a local ring. The complement of the unique

maximal ideal is the group of units, O∗p :=
{
r
s | r, s /∈ p

}
. The ideals of Op

are the sets IOp =
{
r
s | r ∈ I, s /∈ p

}
, for any ideal I of O. Notice that for

ideals I such that I * p, we have 1 ∈ Ip, hence IOp = Op. Localization also
behaves nicely when performing ideal operations. In particular, for any fractional
O-ideals I and J and a prime O-ideal p, (IJ )p = IpJp and (I/J )p ' Ip/Jp.
Moreover, we can extend O-module maps f : I → J to maps fp : Ip → Jp as
fp(r/s) := f(r)/s.

We recall that if p is an invertible prime ideal, then Op is a Discrete Valuation
Ring, and hence a Unique Factorization Domain, i.e. any proper ideal of it can be
written as a unique product of prime ideals. ([Ste08, Prop 5.4], [DF91, Chapter
8.3,Thm 12])

A.8 Proof of Lemma 2.22

Lemma A.11 (Restatement of [Cond, Theorem 8.6]). Let m be the in-
dex [OK : O] of an order O. Let q be a prime ideal in O that does not lie in
SpecO(mO). Then, q is invertible.

Proof. As q + mO, the two ideals are co-maximal, i.e. q+mO = O. Let π+mb =
1, for some π ∈ q and b ∈ O.

Consider the ideal q̃ := {y ∈ K : yq ⊂ O}. By [Cond, Thm 3.2, Section 8],
O ( q̃. Choose x ∈ q̃ \ O. Then, q ⊆ q + xq ⊆ O. As q is a maximal ideal, we
have the following two cases.
Case 1: q + xq = O. Then, q(O + xO) = O and q is invertible.
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Case 2: q + xq = q. This implies that xq ⊂ q. Since q is a finitely generated
Z-lattice, we get that x ∈ OK . Then,

x = x · 1 = x · (π +mb) ∈ xq +mOK ⊂ q +O = O

This contradicts the fact that x /∈ O. �

Remark A.12. Observe that if q is a non-invertible prime, then by Lemma A.11,
q ⊇ mO, and the index [O : q] | [O : mO] = mn. Therefore, SpecZ([O : q]) ⊆
SpecZ(m).

Lemma 2.22 makes use of localization facts from A.7 and Jordan–Hölder filtra-
tions for O-ideals.

Proof of Lemma 2.22 Without loss of generality, we assume that I is a non-
invertible O-ideal and SpecZ([O : I]) * SpecZ(m). For if ([O : I],m) = 1,
then I is an invertible O-ideal. Further, if SpecZ([O : I]) ⊆ SpecZ(m), we may
choose q = O. By [Cond, Thm 8.9], every integral O-ideal I has a Jordan-Hölder
filteration, i.e, there exist O-ideals I0, I1, . . . , Il such that

O = I0 ⊃ I1 ⊃ I2 · · · ⊃ Il = I

where each quotient Ii/Ii+1 is a simple O-module and hence isomorphic to O/pi,
for some prime ideal pi of O. We call such pi a Jordan–Hölder factor of I. Further

[O : I] =

l−1∏
i=0

[O : pi].

Let p be an invertible ideal that appears as a Jordan-Hölder factor of I, with
multiplicity mp. We claim that I ⊂ pmp .

Consider the localization of O at p, Op, and the following chain:

Op = I0Op ⊃ I1Op ⊃ I2Op · · · ⊃ IlOp = IOp (∗)

If Ii/Ii+1 ' O/q, for q 6= p, then IiOp = Ii+1Op. This is true, as

Ii/Ii+1 ' O/q =⇒ Ii ⊇ Ii+1 ⊇ qIi
=⇒ IiOp ⊇ Ii+1Op ⊇ qOpIiOp = IiOp,

where the last equality follows from the fact that q 6= p. If Ii/Ii+1 ' O/p, then
IiOp/Ii+1Op ' Op/pOp = O/p, as localization behaves nicely with respect to
isomorphisms. (Section A.7) Therefore, the series (∗) is the Jordan-Hölder filter-
ation of IOp as an Op-ideal. Recall that p is invertible and therefore, the local
ring Op is a Discrete Valuation Ring (DVR) ([Ste08, Prop 5.4]), and hence a
Unique Factorization Domain (UFD). ([DF91, Chapter 8, Thm 12]). By unique-
ness of the Jordan-Hölder filteration, we get that IOp = (pOp)mp . This shows
that I ⊂ IOp ∩ O = (pOp)mp ∩ O = pmp . Let pi (resp, p′j) the invertible (resp,
non-invertible) ideals that appear as Jordan-Hölder factors of I, with multiplic-

ity mi (resp, m′j). We claim that I ⊆ q :=
∏
i

pmii .
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Recall that, for each invertible factor pi, the ideal I ⊂ pmii . As the factors
pmii ’s are pairwise prime, we get

I = I(pm1
1 + pm2

2 ) ⊆ pm1
1 pm2

2

Continuing similarly, we get that I ⊆ q.
Finally, for the index discussion, observe that

[q : I] =
[O : I]

[O : q]

=

∏
i

[O : pi]
mi ×

∏
j

[O : p′j ]
m′j

∏
i

[O : pmii ]

=
∏
j

[O : p′j ]
m′j

Since q :=
∏
i

pmii , it follows from the Chinese remainder theorem (Theorem A.4)

that [O : q] =
∏
i

[O : pmii ]. Moreover, since each pi is invertible, the quotients

pni /p
n+1
i and O/pi are isomorphic (Lemma 2.10) and hence [O : pmii ] = [O :

pi] · [pi : p2i ] · . . . · [p
mi−1
i : pmii ] = [O : pi]

mi . Moreover, the non-invertible Jordan-
Hölder factors contain mO, by Lemma A.11. By Remark A.12, SpecZ([q : I]) ⊆
SpecZ(m).

In order to find a Z-basis for q, inflate the O-ideal I to the OK-ideal IOK
and factorize IOK into prime ideals in OK . Since C∨O = OKO∨, as in [BBPS19,
Lem 2.32], we can get a Z basis for CO, as Hermite Normal Form yields a Z
basis out of the set of generators of OKO∨. Therefore, we can find the primes of
IOK , coprime to CO. Let Q denote the product of primes in this decomposition,
coprime to CO. Then, by Theorem 2.19 and [Conb, Thm 6.1], q = Q ∩ O and
the Z-basis for q is efficiently obtained from the Z-bases of Q and O. �

A.9 Gaussian distributions over KR and KR/O∨

Let Tr = TrKR/R and by x the complex conjugation of an element x ∈ KR. For
an order O ⊆ K, let PO = (Tr(pi ·pj))1≤i,j,≤n, such that {pi}1≤i≤n is the Z-basis

of O. Fix an orthonormal R basis of KR, ~b = (bi)1≤i≤n, i.e. Tr(bi · bj) = δij .

Notice that for x ∈ KR, x =

n∑
i=1

Tr(x · bi)bi =

n∑
i=1

Tr(x · bi)bi. Consider the

matrix PO,~b = (Tr(bi · pj))1≤i,j≤n. Observe that P t
O,~b
· PO,~b = PO, since

(PO)ij = Tr(pi ·
n∑
k=1

Tr(pj · bk)bk) =

n∑
k=1

Tr(pi ·bk) ·Tr(bk ·pj) = (PO,~b)
t
i ·(PO,~b)j ,
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meaning the ith row of P t
O,~b

multiplied by the j-th column of PO,~b. We used in

the above equation the fact that Tr takes real values and it is R linear.

Proof of Lemma 2.32 First, notice that the coefficients of the error with
respect to the Z-basis of O∨, p∨, can be seen from the following vector Tr(e·~p) =
(Tr(e · pi))1≤i≤n. Indeed, let us write e in terms of the Z-basis elements of O∨
as e = e1p

∨
1 + . . .+ enp

∨
n . By using the linearity of the trace over R, we get that

Tr(e · pi) =

n∑
j=1

eiTr(p
∨
j · pi) = ei.

Recall from Section 2.2 that given an orthonormal R basis ~b = (bi)1≤i≤n
of KR, sampling e according to the Gaussian distribution Dα over KR means
sampling a vector of coefficients, e, with respect to this ~b according to the same
distribution over Rn. So e = ~bt ·e, where e follows the distribution Dα. Therefore,
by using again the linearity of the trace over R, we get the following:

Tr(~p · e) = Tr(~p ·~bt · e) = Tr(~p ·~bt) · e = P tO,~b · e.

Since e satisfies the Gaussian distribution of covariance matrix α2 · Idn×n, it
implies that Tr(~p · e) follows the Gaussian distribution of covariance matrix
α2 · P tO,b · PO,b = α2 · PO. This completes the proof. �

B Deferred Proofs from Section 3

B.1 Proof of Corollary 3.3

Proof. An O-LWE oracle with the error parameter α <
√

logn
n , solves DGS on an

O-ideal L up to an approximation factor γ = η(L) ·
√

2/α · ω(1). See [BBPS19,
Remark 3.10] for details. Then, for ε = e−n, Lemma A.3 ii) & 2.1 imply that,

γ = η(L) ·
√

2

α
· ω(1) ≥

√
n

λ1(L∨)
·
√

2

α
· ω(1) ≥ λn(L)√

n
·
√

2

α
· ω(1)

Finally, Lemma 2.8 yields that this O-LWE oracle solves SIVP on L up to an

approximation factor of γ′ = γ·
√
n

λn(L) = ω( 1
α ). �

B.2 Proof of Corollary 3.7

Proof. The result follows from Theorem 3.6 with the order O = OL, Q = qO
and u = 1/q, as the index [OK : OL] | [OK : pOK ] and therefore is a power of
p, coprime to q. By properties of Gaussian distribution and Definition 2.29 of
Υα, adding a compensatory Gaussian error leads to derive the reduction from
OK-LWE(qOK ,1/q),t·Υα′ to OK-LWE(qOK ,1/q),Υα where α′ = α/‖t‖∞, which helps
complete the proof. �
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B.3 On the size of the multiplier t

Let O be an order of conductor CO in the number field K of degree n and q be
an integer. Take the associated primes of qO, denoted as q1, . . . , qt. Recall that if
q is coprime to the conductor, these primes come from the unique factorization
of qO. The proofs of the previous results, [BBPS19, Le. 2.36], [RSW18, Thm
3.1] and [BBPS19, Prop. 4.7], when applied to the conductor ideal, yield the

existence of a short element t ∈ CO \
⋃
i

COqi. Here, we analyze the size of t we

gain, using these approaches.
As a corollary of [BBPS19, Le. 2.36], we obtain the following bound on the

size of t.

Corollary B.1. There exists an element t ∈ CO \
⋃
i

COqi such that

‖t‖ ≤ O(n ·
√
n log n ·∆1/n

O ·N(CO)1/n).

As a corollary of [RSW18, Thm 3.1] and [BBPS19, Prop. 4.7], we obtain another
bound on the size of t.

Corollary B.2. Assuming q is coprime to the conductor, there exists an ele-

ment t ∈ CO \
⋃
i

COqi, whose norm is bounded with high probability as

‖t‖ ≤
√
n · √q · q2δ ·∆1/n

O ·N(CO)1/n,

where δ ∈
[
4n+log∆O
n log q , 1

]
.

We mention that the coprimality of q is an essential assumption in sampling
t as in [RSW18, Thm 3.1], [BBPS19, Prop. 4.7] and hence, in deriving the sec-
ond bound, whereas [BBPS19, Le. 2.36] uses no such assumption. Both results

present bounds with common factors, namely
√
n, ∆

1/n
O and N(CO)1/n. There-

fore, analyzing these bounds reduces to comparing C · n ·
√

log n and
√
q · q2δ,

where C is the hidden constant involved in the first bound. For q = poly(n), the
first bound gets, asymptotically, better than the second one.

Examples for Corollary 3.7:
1) Let p be an integer and K a cyclotomic field of degree n, along with its

ring of integers, OK . Take a lattice L as a proper divisor of pOK , so in particular
it is an embedding of an integer p-ary lattice. Therefore L is in particular an
ideal of OK , and moreover, its ring of multipliers OL and its conductor COL are
both equal to OK . By [Was83, Prop 2.7], ∆K = nn. Therefore, by Corollary B.1,
we get

‖t‖∞ ≤ ‖t‖ ≤ O(n2 ·
√
n log n),

and by Corollary B.2

‖t‖∞ ≤ ‖t‖ ≤
√
n · √q · q2δ · n ≤

√
n ·
√
q5 · n.
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If p = poly(n), which typically is for p-ary lattices of rank n, and a convenient
choice of q, we can get small multipliers of infinity norm less than p.

2) Let K be the number field Q[X]/(x3−m2), for some integer m, and R be
its polynomial ring, Z[x]/(x3 −m2). Let p be an integer and let L be a proper
divisor of pR. In particular, the lattice L can be seen as an embedding of an
integer p-ary lattice. Then L is an ideal of R, and hence its ring of multipliers
OL contains R. Moreover, the conductor of OL contains the conductor of R, so
the upper bounds derived by Corollaries B.1 and B.2, for O = OL, can be further
bounded, from above with similar bounds obtained for O = R. The discriminant
of R, is 33 ·m4 ([Ste08, Example 7.9]), and the norm of conductor of R is m2

([RSW18, Lem D.1]). Therefore Corollary B.1 yields

‖t‖∞ ≤ ‖t‖ < O(n ·
√
n log n · (33 ·m6)1/n),

and Corollary B.2

‖t‖∞ ≤ ‖t‖ ≤
√
n · √q · q2δ · (33 ·m6)1/n ≤

√
n ·
√
q5 · (33 ·m6)1/n.

This computation can be generalized to the family of polynomials xn −m2, for
suitably chosen n and m. As in previous example, for convenient choices of p
and q, there can be found multipliers t of infinity norm less than p.

C Deferred Proofs from Section 4

C.1 Proof of Theorem 4.2

Proof. Each reduction follows from Theorem 4.1 under the observation that the
indices [OK : Oi] | [OK : mOK ] = mn, and [Z + mOK : Z + mJ ] is a factor of
m · [OK : J ], as it is equal to∣∣∣∣ (Z +mOK)/mJ

(Z +mJ )/mJ

∣∣∣∣ =
|(Z +mOK)/mOK |·|mOK/mJ |

|(Z +mJ )/mJ |
=
|Z/mZ|·|OK/J |
|Z/ (Z ∩mJ )|

.

Therefore, Spec([Z+mOK : Z+mJ ](Z+mJ )) ⊆ Spec(m · [OK : J ](Z+mJ )),
Spec([OK : O1]O1) ⊆ Spec(mO1), and Spec([Oi : Oi+1]Oi+1) ⊆ Spec(mOi+1),
which shows that [Z+mOK : Z+mJ ](Z+mJ ) and Q are coprime, [OK : O1]O1

and QO1 are coprime, and [Oi : Oi+1]Oi+1 and QOi+1 are coprime. �

C.2 Proof of Corollary 4.7

Proof. Let {θi}n−1i=0 = {1, ζ2n, . . . , ζn−12n } be a power basis of OK as a Z-module.
Note that this is an orthogonal Z-basis with respect to the Trace map, i.e.,
Tr(θiθj) = 0, when i 6= j, and Tr(θiθi) = n. Therefore, the matrix T =
(Tr(θiθj) − 1

n · Tr(θi)Tr(θj))1≤i,j≤n−1 is the diagonal matrix n · Idn−1×n−1,
and the smallest eigenvalue value τ := en−1(T ) equals n. This implies that we
may choose r = 1, for then τ ·m2r−2 ≥ n. Then, by either of the proofs of (i)

or (ii) in Proposition 4.5, we have Õ is α-drowning. The conclusion follows by
applying Theorem 4.4. �
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