
Streaming Merkle Proofs within Binary Numeral Trees

Luke Champine
The Sia Foundation

luke@sia.tech

January 10, 2021

Abstract

We describe the binary numeral tree—a type of bi-
nary tree uniquely suited to processing unbounded
streams of data—and present a number of algorithms
for efficiently constructing and verifying Merkle
proofs within such trees. Specifically, we present exis-
tence proofs for single leaves, for a contiguous range
of leaves, and for multiple disjoint ranges. We also
introduce Merkle “diff” proofs, which assert that an
arbitrary modification was correctly applied to an
existing tree. Each algorithm, operating on a tree
with n leaves and k disjoint proof ranges, requires
O(log2(n)) space and O(n) time, and yields proofs of
size O(k log2(n)). Furthermore, each algorithm op-
erates in streaming fashion, requiring only a single
in-order pass over the leaf data.

1 Introduction

Merkle trees[4] are the prototypical authenticated
data structure: they permit the construction and ver-
ification of compact cryptographic proofs that as-
sert various properties of the tree, most commonly
the presence of a specific leaf within the tree (an
existence proof ). They are frequently employed in
protocols that deal with large amounts of data in
an untrusted context, such as BitTorrent, Certificate
Transparency, and cryptocurrencies. Recent renewed
interest in Merkle trees has given rise to an explosion
of tree variants, including sparse Merkle trees, bloom
trees, and others.

This paper discusses Merkle proofs in the context

of a single tree type: the binary numeral tree, or BNT.
A BNT consists of a set of perfect binary subtrees
of distinct sizes—its eigentrees—recursively joined
smallest-to-largest into a single tree. For any num-
ber of leaves n, there is exactly one possible BNT
structure, which we will refer to as the n-BNT. As
such, it may be instructive to conceive of the BNT
as a tree structure imposed upon a flat sequence of
leaves, rather than as a mutable object into which
leaves are progressively inserted.

Binary numeral trees are so named because of their
correspondence to the binary numeral system: the
eigentrees of an n-BNT correspond to the 1 bits in
the binary representation of n. For example, the 11-
BNT in Figure 1 comprises eigentrees of sizes 20, 21,
and 23. Additionally, an n-BNT can be transformed
into an (n + 1)-BNT via a process analgous to incre-
menting a binary integer: to “add” a new leaf to the
11-BNT, we begin by merging the new leaf—itself a
20 subtree—with the existing 20 eigentree, forming
a 21 subtree; we then “carry” this subtree, merging
it with the existing 21 eigentree, to form a 22 sub-
tree. Here, the process stops, as there is no other 22

eigentree to merge with. The result is a 12-BNT, com-
prising a 22 eigentree and a 23 eigentree.

What makes the BNT structure interesting is that
it can “ingest” an unbounded number of leaves in
this way while preserving two important properties.
First, the tree’s bottom layer remains flat, with the
maximum leaf depth capped at dlog2(n)e. Second,
the eigentrees are immutable: adding a new leaf may
cause existing eigentrees to be merged, but no eigen-
tree will ever gain or lose leaves.

1



Figure 1: Adding a leaf to an 11-BNT to produce a 12-BNT. Eigentrees are highlighted in black.

These properties are particularly desirable in a
Merkle tree. The depth limit prevents proofs from
growing too large: existence proofs requireO(log2(n))
space and time, regardless of which leaf is cho-
sen. More importantly, since the eigentrees are im-
mutable, their Merkle root hash will never change;
thus, once we have finished processing an eigentree,
we can discard its leaves, retaining only the root.

Another convenient property of BNTs is that they
inherit an isomorphism from perfect binary trees: the
path from any leaf i to the root of the tree is uniquely
described by the bit pattern of i. As we will demon-
strate, this property can be exploited for various pur-
poses. Moreover, since computer hardware is designed
for operating on binary integers, the resulting algo-
rithms are extremely efficient in practice.

2 Related Work

Given its favorable properties, it should not come as
a surprise that the BNT structure has been indepen-
dently discovered and employed in multiple projects,
including Certificate Transparency[3], the Sia storage
protocol[8], Dryja’s Utreexo[2] proposal for Bitcoin,
and the BLAKE3 hash function[5], all of which per-
form Merkle operations on input streams of arbitrary
size. Variations on the BNT are also known, includ-
ing “history trees”[1], “Merkle Mountain Ranges”[7],
and the (unnamed) tree structure used in BitTorrent,
all of which preserve the “flat base” property of the
BNT, but differ in how they handle imperfect tree
sizes and/or how they combine eigentree roots.

It is notable that all of the aforementioned exam-
ples operate specifically on Merkle BNTs. While the
BNT structure is not necessarily authenticated, it

would appear that no unauthenticated applications
have yet been discovered.

Most existing work on Merkle trees is concerned
with existence proofs for single leaves within a tree.
Ramabaja and Avdullahu[6] explore existence proofs
for multiple disjoint leaf ranges, but assume random-
access input. To our knowledge, this is the first treat-
ment of Merkle trees (of any type) that describes
streaming algorithms for constructing and verifying
multi-range proofs.

3 Streaming Merkle Roots

We begin by presenting an algorithm for computing
the Merkle root of a BNT from an input stream of
unknown size. As a refresher, to compute the root
of a perfect tree with n leaves, we could employ the
elegant recursive algorithm:

fn PerfectRoot(stream, n):

if n == 1:

return leafHash(readLeaf(stream))

else:

return parentHash(

PerfectRoot(stream, n/2),

PerfectRoot(stream, n/2))

(In the interest of brevity, we will omit the defini-
tions of procedures such as readLeaf, parentHash,
etc. whose meaning is clear from their surround-
ing context. All such procedures will be written
in camelCase, while defined procedures will use
PascalCase.)

This algorithm could also be modified to work on
a BNT by splitting the input at 2dlog2(n)e−1 rather
than n/2. Unfortunately, in a streaming context, we

2



Figure 2: Visualization of the stack structure for a 13-BNT. The hash in position 1 is ignored because its
corresponding bit is 0. Note that array is ordered “little-endian”, matching the endianness of v.

do not know n, so a different approach is needed.

In lieu of recursion, our algorithm uses an explicit
“stack” of accumulated values. We repeatedly read
the next leaf from the stream, hash it to create a node
of height 20, and add it to our stack with the Insert

procedure, which merges pairs of nodes with height
2k into nodes of height 2k+1, “carrying” as necessary.
Our stack is thus a compressed representation of a
BNT, storing only its eigenroots—the root hashes of
the eigentrees. When the stream is exhausted, we ap-
ply a standard right-fold to the eigenroots to obtain
the total root of the n-BNT.

fn Insert(s, k, node):

if has(s, k):

node <- parentHash(node, get(s, k))

delete(s, k)

return Insert(s, k+1, node)

else:

s <- set(s, k, node)

return s

fn Finalize(s):

nodes <- []

for k in len(s)..0:

if has(s, k):

nodes <- append(nodes, get(s, k))

return foldr1(nodes, parentHash)

fn Root(stream):

stack <- makeStack()

while !empty(stream):

node <- leafHash(readLeaf(stream))

stack <- Insert(stack, 0, node)

return Finalize(stack)

This pseudocode implies that stack is a map from
heights to nodes; in practice, we can implement this
data structure using a simple array, nodes, and an
integer v. Each time we read a leaf, we increment
v; thus, thanks to the BNT isomorphism, the bit
pattern of v will correspond to the “live” indices of
nodes. That is, if v = 13, we will know that nodes

contains eigenroots at indices 0, 2, and 3, while the
other indices should be ignored. Consequently, an ex-
plicit delete procedure is unnecessary. As an added
bonus, the stack may be “reset” simply by setting
v = 0.

4 Single-leaf Proofs

A single-leaf proof—the simplest form of Merkle
proof—asserts the presence of a single leaf within
the tree by presenting the verifier with a set of sib-
ling hashes. The verifier combines the leaf and sibling
hashes as they would appear within the tree; if the
resulting root matches the root previously known to
the verifier, then the proof is considered valid.

Merkle proofs conventionally proceed “vertically,”
from the leaf to the root. This is arguably the most
intuitive way to build and verify proofs, and it can
directly leverage the aforementioned leaf index iso-
morphism. That is, to build a proof for leaf i, an
algorithm can iterate over the bits of i, with each bit
determining the next subtree to hash; and to verify
a proof for leaf i, the bits of i can be examined to
determine the relative position of each sibling hash
in the proof.

This approach can be modified for use in BNTs as

3



Figure 3: Single-leaf Merkle proofs for leaf indices 1, 6, and 9, demonstrating the correspondence between proof
paths (highlighted in black) and index bits. Note the “missing” subtree in the path for index 9.

well. Unfortunately, while elegant, it is ill-suited to
working with streams of unknown size. In a streaming
context, we want an algorithm that examines each
leaf in order; a leaf-to-root algorithm would entail
jumping back and forth in the stream repeatedly.

How might we construct a single-leaf proof in
streaming fashion? Looking at the proof for index
6 in Figure 3, this would mean first computing the
root of the first 4 leaves (moving left-to-right); then
of the next 2 leaves; then skipping over leaf 6 itself;
then computing the root of the next leaf, and finally
the root of the last 3 leaves.

We know that each of these roots corresponds to
a bit in the leaf index. Observe that each subtree
root to the left of the leaf corresponds to a 1 bit:
there are 1 bits in positions 22 and 21, matching the
roots of the first 22 leaves and the following 21 leaves,
respectively. Likewise, each root to the right of the
leaf corresponds to a 0 bit, with one caveat: the 0

bit at position 23 implies a subtree with 8 leaves, but
only three remain in the tree. In this case, the root
simply covers fewer leaves than its bit suggests.

Further observe that the “left subtrees” shrink in
size until reaching the proof index, whereas the “right
subtrees” grow in size thereafter. So, to construct
the proof, we first examine the 1 bits of the in-
dex, moving from most-significant to least-significant;
for each bit position k, we read 2k leaves from the
stream and compute their Merkle root, which we
append to our proof. We then read a single leaf—
the leaf being proven. Finally, we examine the 0
bits, this time moving from least-significant to most-
significant, again computing the Merkle root of each
sequence of 2k leaves and appending them to our

proof. Here, though, we must be careful: there may
be fewer than 2k leaves remaining in the stream, as
in Figure 3. To account for this, we define a helper
procedure, Subroot, that returns the root of at most
2k leaves.

fn Subroot(stream, k):

return Root(limit(stream, 1<<k))

The proof algorithm is then straightforward:

fn ProveLeaf(stream, index):

proof <- []

for k in reverse(ones(index)):

node <- Subroot(stream, k)

proof <- append(proof, node)

leaf <- readLeaf(stream)

for k in zeros(index):

if empty(stream):

break

node <- Subroot(stream, k)

proof <- append(proof, node)

return (leaf, proof)

The verification algorithm is structured similarly, and
uses our stack structure to compute the root:

fn VerifyLeaf(index, leaf, proof):

s <- makeStack()

for k in reverse(ones(index)):

s <- Insert(s, k, proof[0])

proof <- proof[1..len(proof)]

Insert(s, 0, leafHash(leaf))

for k in zeros(index):

if len(proof) == 0:

break

s <- Insert(s, k, proof[0])

proof <- proof[1..len(proof)]

return Finalize(s)

4



Figure 4: Single-range Merkle proof for leaf indices 3, 4, 5, and 6. The 1 bits of 3 correspond to “left-hand” sibling
hashes, while the 0 bits of 6 correspond to “right-hand” sibling hashes. The other bits have no significance.

The proof is considered valid if the result of
VerifyLeaf matches the known root.

This is a dramatic departure from traditional
Merkle proof verification algorithms. Instead of com-
puting the root hash recursively, or following a path
from leaf to root, we proceed horizontally, processing
the stream in-order and examining each leaf exactly
once. The first for loop fills our stack with subtree
hashes of distinct heights; no merging takes place.
When we add the leaf hash and subsequent subtree
hashes, the Insert function merges them into the ex-
isting stack, ultimately producing all of the eigentrees
of the original BNT, from which we compute the final
root.

5 Single-range Proofs

We now seek to extend our single-leaf algorithm to
cover a range of leaves, as shown in Figure 4. We use
closed intervals to denote ranges; the range in Figure
4 is [3,6].

It is immediately apparent that single-range proofs
look very similar to single-leaf proofs. Indeed, the
“left-hand” sibling hashes in a proof for the range
[a,b] are identical to those in a single-leaf proof for
leaf a; and the “right-hand” sibling hashes likewise for
leaf b. Consequently, our algorithm requires very lit-
tle modification: when processing the left-hand data,
we use the bit pattern of a; we then process each leaf
within the proof range; and finally, we process the
right-hand data with the bit pattern of b:

fn ProveRange(stream, start, end):

leaves <- []

proof <- []

for k in reverse(ones(start)):

node <- Subroot(stream, k)

proof <- append(proof, node)

for _ in start..end:

leaf <- readLeaf(stream)

leaves <- append(leaves, leaf)

for k in zeros(end):

if empty(stream):

break

node <- Subroot(stream, k)

proof <- append(proof, node)

return (leaves, proof)

Verification of single-range proofs requires making
similar modifications to our single-leaf algorithm:

fn VerifyRange(start, end, leaves, proof):

s <- makeStack()

for k in reverse(ones(start)):

s <- Insert(s, k, proof[0])

proof <- proof[1..len(proof)]

for leaf in leaves:

insert(s, 0, leafHash(leaf))

for k in zeros(end):

if len(proof) == 0:

break

s <- Insert(s, k, proof[0])

proof <- proof[1..len(proof)]

return Finalize(s)

As expected, these algorithms are equivalent to the
single-leaf algorithms when start is equal to end.

5



Figure 5: Multi-range Merkle proofs within various BNTs.

6 Multi-range Proofs

Generalizing further, we now aim to construct and
verify proofs for multiple disjoint ranges within a
BNT. Some examples of multi-range proofs are given
in Figure 5.

Encouragingly, the pattern of sibling hashes seems
broadly similar to that of the single-leaf and single-
range proofs: observe how the subtrees increase in
size when moving “outward” from each proof range.
Knowing this, we’re already pretty close to a solution.
We can easily confirm, for example, that the sizes of
the sibling subtrees to the right of [0,0] in Figure 5
match the 0 bits of 0 (20, 21, 22...), while the sizes of
those to the left of [11,13] match the 1 bits of 11
(23, 21, and 20). But how do we know when to stop
using the 0 bits of 0, and start using the 1 bits of 11?

For this, we can leverage another property of per-
fect binary trees: we can compute the “merge height”
of any two indices by xor’ing their bit patterns. This
is perhaps more intuitive when the index is inter-
preted as a path down from the root: each bit repre-
sents a branch, so as soon as two paths diverge, their
bit patterns will begin to differ. xor turns matching
bits into zeros and differing bits into ones, so to de-
termine when the two paths converge, we simply look
for the most significant 1 bit. Thus, the merge height
of indices x and y occurs at blog2(x⊕ y)c.

Using the previous example, 000000...⊕110100... =
110100..., so these paths merge at height 3. This im-
plies that there cannot be a sibling subtree of size
23 (or larger) between leaves 0 and 11. And this, in
turn, tells us to stop using 0 bits of 0 after the 3rd
bit, whereupon we switch to using the 1 bits of 11.
This produces the sequence 20, 21, 22, 21, 20, just as
expected.

To encapsulate this operation, we define a new
helper procedure, RangeBits. For inputs 0 and 11,
RangeBits returns [0,1,2,1,0].

fn MergeHeight(x, y):

return floor(log2(xor(x, y)))

fn UpTo(xs, n):

for i in 0..len(xs):

if xs[i] > n:

return xs[0..i]

return xs

fn RangeBits(x, y):

mh <- MergeHeight(x, y)

z <- UpTo(zeros(x), mh)

o <- reverse(UpTo(ones(y), mh))

return concat(z, o)

The proof algorithm is then:

fn ProveMultiRange(stream, ranges):

leaves <- []

proof <- []

prev <- not(0)

for (start, end) in ranges:

for k in RangeBits(prev, start):

node <- Subroot(stream, k)

proof <- append(proof, node)

for _ in start..end:

leaf <- readLeaf(stream)

leaves <- append(leaves, leaf)

prev <- end

for k in zeros(prev):

if empty(stream):

break

node <- Subroot(stream, k)

proof <- append(proof, node)

return (leaves, proof)

6



As usual, verification is very similar to construction:

fn VerifyMultiRange(ranges, leaves, proof):

s <- makeStack()

prev <- not(0)

for (start, end) in ranges:

for k in RangeBits(prev, start):

s <- Insert(s, k, proof[0])

proof <- proof[1..len(proof)]

for _ in start..end:

node <- leafHash(leaves[0])

leaves <- leaves[1..len(leaves)]

s <- Insert(s, 0, node)

prev <- end

for k in zeros(prev):

if len(proof) == 0:

break

s <- Insert(s, k, proof[0])

proof <- proof[1..len(proof)]

return Finalize(s)

We can easily confirm that this algorithm gener-
alizes to the single-range and single-leaf cases. More-
over, it generalizes to any set of leaves within the tree,
since a range can consist of a single leaf.

7 Diff Proofs

Building on multi-range proofs, we now introduce a
novel type of Merkle proof: the “Merkle diff proof.”
Diff proofs were created for use in the Sia project, as
a solution to the following problem:

Bob is storing multiple terabytes of data on behalf
of Alice. The data is represented as a BNT, whose
Merkle root R is known to both Alice and Bob. Al-
ice asks Bob to apply some modifications to the data.
Bob claims that, after applying the modifications, the
new Merkle root is R′. How can such a claim be cryp-
tographically verified? In other words, what informa-
tion can Bob provide to Alice that would allow her
to independently compute R′?

First, we should define “modifications” more pre-
cisely. We will restrict ourselves to three operations:
appending new leaves to the end of the BNT; trim-
ming leaves from the end of the BNT; and swapping
two leaves within the BNT. These operations suffice
to achieve any modification. For example, to flip one
bit in the middle of the BNT, first append a copy of

the leaf with the bit flipped, then swap this leaf with
the original, and finally trim the original leaf from
the end.

Taken individually, it is not difficult to devise
proofs for these operations. To prove an append, Bob
supplies the eigenroots of the BNT. Alice can Insert

these roots into a stack and Finalize it, verifying
that it produces R, then Insert the appended leaf
and verify that Finalize now produces R′. The proof
for a trim looks much the same, but reversed: Bob
provides the post-trim eigenroots (having root R′), to
which Alice can append the trimmed leaf to produce
R. Lastly, to prove a swap, Bob provides a multi-
range proof for the leaves in the question. Alice can
verify that the proof produces R, then swap the sup-
plied leaves and recompute the proof to produce R′.

For large modifications, though, this approach be-
comes inefficient. Instead of a separate proof for each
operation, we would like to provide and verify a sin-
gle proof for the entire modification; that way, only
one pass over the data is required.

We can achieve this by coalescing the set of opera-
tions into a set of affected leaves—leaves in the origi-
nal tree that were swapped or trimmed. We then con-
struct a multi-range proof that covers each affected
leaf. Such a proof, along with any leaves that Alice
is appending, contains all the information that Alice
needs to verify the modification. This may become
more intuitive when we reframe our problem as fol-
lows: What is the minimal set of leaves and subtree
roots that is sufficient to recover both R and R′?

To make things more concrete, we will walk
through the proof shown in Figure 6. Alice requests a
modification consisting of three modifications: trim-
ming one leaf, appending two new leaves, and swap-
ping two leaves. In total, three leaves in the old tree
are affected (at indices 3, 4, and 10) so Bob com-
putes a multi-range proof for [[3,4],[10,10]], pro-
ducing the subtree roots shown at the top of the di-
agram. Bob sends this proof, along with the affected
leaves, to Alice. Alice then runs VerifyMultiRange

on this proof, confirming that it produces R. Next,
she applies the modifications locally to the leaves and
ranges: she removes leaf 10, appends the two new
leaves, and swaps the positions of leaves 3 and 4. She
also removes the [10,10] proof range, and adds a

7



Figure 6: A Merkle diff proof. Three modifications are applied to the original tree (left): leaf 10 (red) is trimmed;
two new leaves (green) are appended; and leaves 3 (orange) and 4 (blue) are swapped, resulting in the new tree

(right). The five proof hashes (top), along with the affected leaves, are sufficient to recover the root of either tree.

new range, [10,11], to cover the new leaves. Finally,
Alice runs VerifyMultiRange again, using the same
subtree hashes, but modified leaves and proof ranges,
and confirms that it produces R′.

However, there is one complication that must be
dealt with. Consider the diff proof for appending a
single leaf: none of the leaves in the original tree
were affected, so Bob would compute an empty multi-
range proof. But this is incorrect: what we really
need is the eigenroots of the original tree. To ac-
count for this, we need to make a small tweak to
our multi-range algorithms: in the final for loop,
instead of looping over zeros(prev), we loop over
RangeBits(prev, n), where n is the size of the tree.
This ensures that Bob’s proof will always contain the
necessary subtree hashes. (Unfortunately, this also
means that diff proofs cannot be computed on trees
of unknown size.) We will refer to these modified al-
gorithms as ProveDiff and VerifyDiff.

8 Proof Sizes

It is often useful to know the exact number of hashes
required for a given proof. For the proof constructor,
this would allow the array of proof hashes to be allo-
cated once, instead of requiring dynamic reallocation
or excessive preallocation. For the proof verifier, this
would allow the size of the proof to be verified before
performing any hashing.

In a perfect tree with n leaves, a single-leaf proof
requires exactly log2(n) hashes, since the path from
leaf to root includes a sibling hash at each level of
the tree. But in a BNT, we must account for the

fact that some paths may not have a sibling hash at
each level: the left-hand hashes will always be present,
but some right-hand hashes may be missing. We can
identify these from the path of leaf n − 1: after the
path of leaf i intersects this path, it cannot have any
more right-hand hashes. So we adjust our algorithm
as follows: we count the number of 1 bits in i to get
the number of left-hand hashes; we then compute the
merge height of i and n−1, and count only the 0 bits
up to this height:

fn ProofSize(i, n):

left <- len(ones(i))

mh <- MergeHeight(i, n-1)

right <- len(UpTo(zeros(i), mh))

return left + right

As it so happens, the same approach works for
single-range proofs: we just need to count the 0 bits of
the end index instead of the start index. As a degen-
erate case, a proof size of 0 occurs when the range
covers the entire tree; conversely, the largest proof
size, 2 log2(n), occurs when the range covers the two
leaves in the middle of a perfect tree.

Multi-range proofs are more complicated, but we
can reuse our existing proof algorithm:

fn ProofSizeMulti(ranges, n):

s <- 0

prev <- not(0)

for (start, end) in ranges:

s <- s + ProofSize(prev, start)

prev <- end

mh <- MergeHeight(prev, n-1)

s <- s + len(UpTo(zeros(prev), mh))

return s

8



For a set of k ranges evenly distributed throughout
the tree, the proof requires k blog2(n/k)c hashes. The
largest possible proof therefore results from a set of
n/2 ranges, covering every other leaf; this requires
n/2 hashes.

Lastly, since diff proofs are just multi-range proofs
with possible trailing eigenroots, we can implement
ProofSizeDiff by modifying ProofSizeMulti to in-
clude the final ones as well as the zeros. This actu-
ally simplifies the algorithm, because we can reuse
ProofSize:

fn ProofSizeDiff(ranges, n):

s <- 0

prev <- not(0)

for (start, end) in ranges:

s <- s + ProofSize(prev, start)

prev <- end

s <- s + ProofSize(prev, n)

return s

9 Hardware Sympathy

In the algorithms presented above, we assume the
existence of functions like ones and log2 for sim-
plicity. In practice, we can replace these functions
with far more efficient methods. In particular, instead
of allocating and populating arrays of bit positions,
our loops should iterate directly over the bits them-
selves, using shifts and masking operations to select
1 or 0 bits as necessary. Furthermore, virtually all
processors support a native instruction for obtaining
the position of the most significant 1 bit (e.g. bsr

on x86), which is equivalent to blog2(x)c. Thus our
MergeHeight function can be implemented in as little
as two instructions.

We can optimize our proof size algorithms even
more aggressively by using the popcnt instruction,
which returns the number of 1 bits in an integer. To
implement ProofSize, we can use one popcnt to ob-
tain the number of 1 bits, and another—after taking
the complement and applying a mask—to obtain the
number of 0 bits. In total, ProofSize only requires
about a dozen instructions.

But far greater performance improvements can be
achieved through the use of SIMD instructions, which

(among other things) allow us to compute multiple
hash digests simultaneously. This capability can be
directly applied to computing Merkle roots. Instead
of hashing each leaf immediately after reading it from
the stream, an implementation can buffer p leaves in
memory, then hash all of them together. The result-
ing digests can then be hashed together to produce a
single root, which is inserted into the stack.

Another approach is to redefine the stack itself.
Instead of storing one root per depth, a p-stack can
store p roots per depth. When the next p leaves are
hashed, the digests can be inserted into this stack
directly. Of course, the same merging rules apply: if
the “slot” for that depth is already occupied, the two
groups are hashed together to form a new set of di-
gests, and the insertion process recurses at a higher
depth. This approach allows us to use SIMD routines
for hashing both leaves and roots.

10 Conclusion

We introduced the binary numeral tree and explored
how its structure lends itself to elegant and efficient
algorithms on streams of arbitrary size. We then pre-
sented algorithms for constructing single-leaf, single-
range, multi-range, and “diff” Merkle proofs within
BNTs, and complementary algorithms for computing
the size of each such proof. Each algorithm requires
a single pass over the data and O(log2(n)) space. Fi-
nally, we discussed how specialized CPU instructions
can be leveraged to greatly improve the performance
of these algorithms.

11 Acknowledgements

Thanks to David Vorick and Ben Jones for many
fruitful discussions of Merkle trees. Thanks to Jack
O’Connor and Samuel Neves for inspiration and ad-
vice on SIMD hashing. Thanks to Lum Ramabaja for
inspiring me to publish these results.

9



References

[1] S. Crosby and D. Wallach. Efficient data struc-
tures for tamper-evident logging. Proceedings
of the 18th USENIX Security Symposium, Mon-
treal, 2009.

[2] T. Dryja. Utreexo: A dynamic hash-based ac-
cumulator optimized for the Bitcoin UTXO set.
Cryptology ePrint Archive, Report 2019/611,
2019. https://eprint.iacr.org/2019/611.

[3] B. Laurie, A. Langley, and E. Kasper. Certificate
transparency. RFC 6962, RFC Editor, June 2013.

[4] R. Merkle. Protocols for Public Key Cryptosys-
tems. In Proc. 1980 IEEE Symposium on Security
and Privacy, pages 122–133, 1980.

[5] S. Neves, J. O’Connor, J.P. Aumasson, and
Z. Wilcox-O’Hearn. BLAKE3: One function, fast
everywhere. GitHub, 2020. https://blake3.io.

[6] L. Ramabaja and A. Avdullahu. Compact Merkle
Multiproofs. arXiv:2002.07648, 2020.

[7] P. Todd. Merkle Mountain Ranges. GitHub, 2012.
https://opentimestamps.org.

[8] D. Vorick and L. Champine. Sia: Simple decen-
tralized storage. GitHub, 2014. https://sia.

tech/sia.pdf.

10


