
2-Step Multi-Client Quadratic Functional Encryption
from Decentralized Function-Hiding Inner-Product

Michel Abdalla1,2[0000−0002−2447−4329], David Pointcheval1,2[0000−0002−6668−683X], and
Azam Soleimanian1,2[0000−0001−9881−6435]

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
{michel.abdalla,david.pointcheval,azam.soleimanian}@ens.fr

2 INRIA, Paris, France

Abstract. In this paper, we present a multi-client quadratic functional encryption
(MCQFE) scheme from function-hiding inner-product (FHIP). The main challenge in
such construction is that all the clients require the access to the master secret key of
the underlying FHIP scheme, which clearly breaches the security.
To overcome this challenge, we present an efficient decentralized version of FHIP
scheme of Lin (Crypto 16). This leads to a 2-step MCQFE (2-MCQFE) scheme. In a
2-step MCQFE scheme, the encryption phase is a (non-interactive) protocol among
clients and a set of honest-but-curious authorities. More precisely, clients are the
owner of messages and the master secret-key of the underlying FHIP is shared among
authorities. In the first step, the client publishes a pre-ciphertext pct associated with
its message. Then in the second step, each authority generates its share cti extracted
from the pre-ciphertext. The public aggregation of these shares cti will generate the
target ciphertext ct which then would be applied on the functional key skF to compute
the quadratic functionality. The security model is strong enough to consider no trust
among clients and authorities, and also the revelation of some secret keys (of clients or
authorities) through corruptions. We instantiate our 2-MCQFE scheme and prove its
security in the random-oracle model based on the SXDH assumption. Moreover, we
show that its security holds as long as at least one of the authorities is not corrupted.

1 Introduction

Functional Encryption. Functional encryption is a strong and general tool enabling compu-
tation over encrypted data with non-interactive decryption3. Given a functional-key skF and
ciphertext ctm, everyone can compute fF (m) in the clear where the system is parameterized
by the functionality f .

The idea of functional encryption originated as an extension of Identity-Based Encryption
(IBE) [11,29], Searchable Encryption [1, 10], Attribute-based encryption [22] and Predicate
Encryption [21, 23]., where a special form of functionality f in FE can specify it as the
mentioned encryption systems. On the other hand, all known constructions supporting
general functionality, mainly suffer from: inefficiency, relying on strong assumptions or some
limitations on the number of collusions [16, 19, 20]. Thus, as a trade-off one should see FE as
a general concept but try to focus on the other special but still wield classes of functionalities.
As the special cases of functionality in FE, inner-product [3, 6] and quadratic functionality
3 Homomorphic Encryption is another tool for computation over encrypted data, where for the
decryption it needs to interact with the owner of the secret-key. While in FE everyone holding
the ciphertext and functional-key can decrypt the message.

mailto:michel.abdalla@ens.fr,david.pointcheval@ens.fr,azam.soleimanian@ens.fr

2 M. Abdalla et al.

[7, 17,26] have attracted more attention due to their use in real-world applications and other
theoretical primitives [8, 26].

Inner-Product and Quadratic Functionalities. When a FE system is parameterized by
the inner-product functionality (IPFE) [3, 6], the ciphertext ctx and the functional-key
sky are associated with vectors with the same dimension, namely x = (x1, . . . , xn) and
y = (y1, . . . , yn) (res.). Then, the decryption returns fy(x) = 〈x,y〉 =

∑n
i=1 xiyi. While

the traditional security of IPFE mainly focuses on the privacy of message x, the security
requirement for function-hiding IP (FHIP) is stronger and it concerns the privacy of both
vectors x and y. For quadratic functionality [7,26], the ciphertext and the functional-key are
respectively associated with message (x,y) ∈Mn ×Mm and the matrix F ∈ Fn×m where
M,F are the message and function space. The decryption algorithm returns fF (x,y) =
xTF y. Most of the existing works have focused on IPFE ([3, 6, 24, 28]), while FE for the
quadratic functionality (QFE) has got less attention. To the best of our knowledge, so far
there are four works in this field: Lin [26] presented a (single-input) QFE scheme from FHIP
based on the SXDH assumption and in the standard model. In [7], authors present a QFE
scheme based on the MDDH and 3-party DDH assumptions in the standard model. The
more efficient construction of [7] and also the construction in [17] are proved to be secure in
the generic group model. In [17], the QFE scheme is also based on the SXDH assumption.

Multi-Client FE. In a multi-client setting of FE (MCFE), message comes from different sources
namely, there are (polynomially) many clients who do not trust each other [4, 5, 12,13,18].
Each client is assigned a secret-key enabling the autonomous encryption secure against other
clients. In MCFE, each ciphertext is also associated with a label giving a good flexibility to
control the leaked information. More precisely, while for the same label one can have a kind
of mix-and-match among messages from different clients, for different labels this would not
be possible.

1.1 Contributions

While MCFE for IP has been well studied [2, 4, 12, 13, 25], there is no construction for
multi-client quadratic FE (MCQFE). In this paper:

An Extended Syntax and its Applications. We introduce an extended syntax of MCQFE such
that the encryption phase is a protocol among clients and some authorities. This syntax can
overcome some difficulties (in multi-client setting) by allowing some communications during
the encryption phase. We also present some applications to show how the mentioned syntax
can be used/realized by the real world problems.

Efficient Non-Interactive Instantiation. We instantiate our suggested syntax without any
interactions among clients and authorities. More precisely, clients are considered to be the
owner of data while the authorities, holding their own secret-keys, are in charge of some
computations over encrypted data from clients. Such instantiation also avoid the trust among
clients and authorities. The main security requirement is that at least one of the authorities
should not collude with others (should not be corrupted) to recover a master secret-key
shared among them. Our presented applications explain how this requirement can be fulfilled
naturally or by some strategies. Our instantiation is inspired from single-input QFE scheme
of Lin [26], while its extension to multi-client setting can be challenging, mainly due to the

MC-QFE from FH-IPFE 3

corruption of secret-keys (collusion of parties against each other). We explain these challenges
and how to go around them (see Section 1.3). Moreover, the size of the ciphertext in our
scheme is linear w.r.t the number of clients/slots, making it more interesting to be used in
the real-world applications.

Decentralized FHIP. Our instantiation needs a decentralized FHIP (d-FHIP) as a building
block. Thus, we present a decentralized FHIP scheme in the standard model and based on
the SXDH assumption. We believe this d-FHIP scheme also can be of independent interest,
since it is the first decentralized FHFE construction efficiently realizing the inner-product
functionality.

1.2 Scenario and Applications

In a standard syntax of MCQFE scheme, each client encrypts its message by its own secret-
key and without any help from other parties. We extend this syntax where the encryption
phase is a protocol among clients and a set of authorities. The client is the owner of the
message and each authority owns an individual secret-key. Clients can generate the target
ciphertexts communicating with authorities. While this new syntax may help to go around
some challenges, it make sense only if it can be realized by constructions with a reasonable
security level, efficiency and number of interactions. Our suggested 2-MCQFE construction
realizes such syntax with efficient computational overhead and number of communications
(see Fig. 1). The suggested security model avoids any trust among clients and authorities.
Moreover, the adversary can corrupt a set of clients and authorities to access some secret-keys
as well.

A curious reader may ask why we need to go for such extension and whether it was
not possible to have a MCQFE in its standard syntax. Though we do not present any
impossibility result in this paper, we discuss the main challenges giving the intuition that
the instantiation of MCQFE in its classical syntax and without 3-linear maps can be hard.

First of all, note that a trivial QFE scheme is to encrypt all the multiplications xiyj for
i ∈ [n], j ∈ [m] by a IPFE scheme, though due to its quadratic ciphertext-size (w.r.t the
number of slots) it is not interesting. This trivial scheme (even though it is of quadratic
ciphertext-size) does not work for the multi-client setting as xi and yj come from different
users. Moreover, in the following we see how one can probably get MCFE from 3-linear maps
in a not so trivial way.

Generally speaking, in a QFE scheme, to make different combinations possible (in an
efficient way4), each part is encrypted separately as ctxi

and ctyj
(i.e., ctx,y = (ct0, ctxi

, ctyj
)i,j

where ct0 is either empty or the encoding of some randomness). We believe that two main
cases are possible based on the existing works:
(1) either the ciphertexts ctxi and ctyj use different randomness (e.g., r for all xi and r′ for
all yj), but a combination of these randomness should be embedded in the ciphertext as ct0
(or instead, they may use related randomnesses like a matrix and its inverse). Having this
combination in ct0 allows to combine ciphertexts associated with xi or yj . This strategy is
used in [7, 17].
(2) or the ciphertexts are generated based on the same secret-key allowing to combine the
ciphertexts [26].

For a multi-client setting in the first case, we need separate encodings of randomnesses
(e.g., [r]1 and [r′]2 generated by random oracles) such that they can be combined during

4 See the mentioned trivial QFE scheme to understand why we need to encrypt each part separately.

4 M. Abdalla et al.

the decryption (by pairing as [rr′]T). The problem here is that in the decryption we need to
combine the randomness with a functional-key skF (see [7, 17]) and for the security reason,
specially in the multi-client setting that corruptions are possible, skF is also involved with
some encodings. This means that for the schemes falling in this category [7,17], one probably
can avoid communications through other tools like 3-linear maps, which is out of the scope
of this paper.

In the second case, as the clients are not trusted, instead of giving them the same secret-
key, one may share the secret-key among some authorities, and add some communications
to generate the shares of ciphertexts associated with data from each client. In this paper
we are following this idea. We intuitively believe, this strategy needs reasonable number of
communications, first because the number of authorities can be independent of the number of
clients, and second we can generate and share the key once in the setup phase. Particularly,
the linear and homomorphic property of building blocks in our instantiation, allows the
authorities to generate and aggregate their shares without communicating with each other.

Fig. 1 explains the scenario of our construction called 2-step MCQFE (2-MCQFE). In
a 2-MCQFE scheme, the encryption protocol is a 2-step process: in the first step, each
client (independently) publishes a pre-ciphertext pctm of its message m. Then, in the second
step, the authority i receiving pctm generates its share as ctm,i. The decryption is done
without any help from authorities: first, the shares ctm,i are aggregated to generate a target
ciphertext ctm. Then, the given functional-key skF is applied over ciphertexts ctm to compute
the value of the quadratic functionality. The aggregation phase does not need any secret
information and can be run by the decryptor or by clients where each client aggregates the
shares concerning its own message. Clearly, the latter one needs one round of interaction
among clients and authorities, and thus we prefer to put the aggregation on the decryptor
side. We instantiate this scenario based on SXDH assumption in the random oracle model
such that our presented 2-MCQFE is secure as long as at least one of the authorities is not
colluding with others (is not corrupted).

Cxi

Cyj

A1

...
Ak

A1

...
Ak

Decryptor

skF

...

...

...

...

Enc

Aggr

Aggr

XTFY

pctxi

pctyj

ctxi,1

ctxi,k

ctyj ,1

ctyj ,k

ctxi

ctyj

Fig. 1: Scenario of our 2-MCQFE construction. Client Cxi and Cyj independently generate their
pre-ciphertexts pctxi

and pctyj
. Then, ctm,t is the share of authority At extracted from pctm, and

ctm is the aggregation of {ctm,t}t.

Applications. As an application of 2-MCQFE scenario, one can think of data classification
where the messages are strings of bits and

∑
i,j fi,jxiyj computes (weighted) similarity

between two collections x and y of data. As a special example, imagine that for the sake of
a global research, World Health Organization (WHO) needs to collect some medical records
from different countries to analyze the behavior of a pandemic or disorder based on similarity
of data from different regions. They make a committee, where each country has its own

MC-QFE from FH-IPFE 5

representative. Each hospital (pre-) encrypts its data and sends it to the committee, were the
committee can compute the target ciphertext and send it to WHO. Then WHO uses these
ciphertexts to extract its required information regarding the similarities. In this example,
though a representative may be interested in getting access to the data from its own country
but at the same time it does not want others to access this information (criticizing their
crisis-management, e.g.). Our 2-MCQFE scheme leads to a “no-one or every-one” situation
where if all the representatives (playing the role of authorities) collude to reveal their secret-
key in order to get access to the information from its country or others, it gives this privilege
to others as well.

Our 2-MCQFE scenario can be generally used in the decentralized data storage or
classified search. In a decentralized storage system, there is a set of servers in charge of
data storage. Finding the similarities among data from different clients allows for the data
classification during the storage phase which then can reduce the storage-space, retrieval
or search time.In this example, servers play the role of authorities. If the servers have no
interest in the privacy of stored data, one can use a self-enforcement methodology to avoid
them from revealing their 2-MCQFE secret-key. For example, each server has to encrypt a
valuable information, like its secret-key associated with a deposit, and gives a zero-knowledge
proof that they have encrypted this secret-key. Then the ciphertext would be stored on the
storage as well. This forces the server to care about the privacy of data and do not reveal its
2-MCQFE secret-key share.

1.3 Overview and Challenges

Here we give an overview of our 2-MCQFE scheme. The FHIP scheme of Lin (Lin-FHIP)
[26] is the main building block of our 2-MCQFE construction. In Lin-FHIP scheme, ctx
associated with message x, belongs to the group G1 while cty associated with function y,
belongs to G2. The decryption algorithm needs a discrete-logarithm (DLog) computation to
return 〈x,y〉.

For the sake of generality, we divide the clients into two main categories called: x-side and
y-side clients. Where the i-th client on the x-side encrypts xi, and similarly the j-th client
on the y-side encrypts the message yj . To encrypt the message xi, the client i (on the x-side)
uses its secret-key Ui to build x′i = (xi||[α]1Ui) where [α]1 = H(`) ∈ G1 is generated by the
random oracle providing the access to the same randomness for all the clients. Similarly, the
j-th client on the y-side builds y′j = (yj ||Tj) holding its secret-key Tj . Then seeing x′i and y′j
as the message and function of Lin-FHIP scheme, they encrypt their messages and output
the results as ctxi

and ctyj
(res.). The decryption of Lin-FHIP over ctxi

and ctyj
returns

Aij = [xiyj + αUiTj]T . Now generating the functional-key skF as [
∑
fijUiTj]2, associated

with the matrix F = [fij]i,j , allows to recover
∑
fijxiyj holding Aij for all i and j.

This is so similar to the idea of the single-input QFE scheme of Lin [26]. We progressively
change this construction confronting the security requirements and challenges in the multi-
client setting, which can be summarized as follows:
FHIP in the Public-Key Setting. Note that the clients can not have access to the same
master secret-key of FHIP scheme, since the adversary can clearly breaches the security by
corrupting only one client. On the other hand, it is required that the decryption of Lin-FHIP
should be possible over ctxi

(as the ciphertext for FHIP) and ctyj
(as the functional-key for

FHIP) for all i and j. We call this requirement as the mix-and-match property which can
be achieved if all the values ctxi and ctyj are generated via the same master secret-key of
FHIP scheme. To satisfy these conflicting requirements, we propose a decentralized FHIP

6 M. Abdalla et al.

scheme where the master secret-key is shared among some authorities and the clients have
access only to the master public-key. Each authority, holding its secret-key, produces its own
share of the inner-product value, these shares then can be aggregated to obtain the final
inner-product value. The linear property of inner-product and homomorphic property of
Abdalla et al. [3] scheme (as the building block for Lin-FHIP), makes the generation and
aggregation of ciphertext-shares possible, without any interaction among authorities.

For the general functionality, a similar idea was introduced in [15] to present a decentralized
FHFE scheme using spooky encryption and based on the LWE assumption in the common
reference string (CRS) model. Here we study an efficient construction for the special case of
inner-product functionality based on SXDH assumption in the standard model.

Corruption Queries. In the security proof, due to the mix-and-matches among ctxi and ctyj ,
one can expect that changing x0

i to x1
i should be involved with a hybrid over index j. For

this hybrid, we use Matrix-DDH (MDDH) assumption to give the same structure to vectors
Tj for j 6= j∗ as Tj = [bT rj]2 while Tj∗ is uniformly sampled from G2. This would allows us
to treat all the indices j 6= j∗ in the same way. While for index j∗ we can change x0

i y
0
j∗ to

x1
i y

0
j∗ . On the other hand, we can simulate the corruption queries on the secret-keys Tj if

and only if Tj belongs to G2 (and not Tj ∈ Zq where in the above [Tj]2 is simulated). This is
because the samples for MDDH belong to the algebraic group G2 which are used to simulate
Tj .

Note that the similar reasoning works for changing y0
j to y1

j . While the previous strategy
(i.e., considering Ui ∈ G1 instead of Ui ∈ Zq) does not work here, since the output of
the random oracle is already in the group G1 and so the computation of ctxi

for Ui ∈ G1
is not possible. Instead, we extend the message x′i and y′j as: x′i = (xi||[α]1Ui||U ′i) and
y′j = (yj ||Tj ||T ′j [β]2) where [β]2 is generated by another random oracle, and Tj and U ′i
belong to G2 and G1, respectively. We also need to modify the functional-key as skF =
([
∑
fijUiTj]2, [

∑
fijU

′
iT
′
j]1).

Putting together, our construction (see Fig. 1) can be abstractly presented as:

ctx,y =
{

ctxi
= {ctxi,k}k ← dFH.Enc(xi||αααUi||U ′i) ∀i

ctyj
= {ctyj ,k}k ← dFH.KeyGen(yj ||Tj ||T ′jβββ) ∀j

skF = ([
∑

fijUiTj]2, [
∑

fijU
′
iT
′
j]1)

where Hα(`) = [ααα]1, Hβ(`) = [βββ]2 are random oracles and k stands for the index of the
authority in the decentralized FHIP scheme dFH. And as we discussed U ′i and Tj are vectors
respectively in groups G1 and G2.

Exponentially many labels with optimal communications. In the (single-input) QFE scheme
of Lin, the master secret-key of the underlying FHIP scheme is generated freshly for each
ciphertext. This means in our extension to the multi-client setting, the master secret-key
of the underlying decentralized FHIP should be sampled freshly and shared for each label.
Therefore; either we should limit the number of labels to polynomially many labels such that
the master secret-key of FHIP is shared in the setup phase, for all the labels. Or accept more
communications during the encryption phase to share the master secret-key for each label.
We avoid this issue, by increasing the length of the message and the dimension of secret-keys,
which then allows us to use a long-term master secret-key of the decentralized FHIP scheme,
for all the labels.

MC-QFE from FH-IPFE 7

2 Preliminaries

Notations. In this paper, κ stands for the security parameter. The inner-product of two
vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is denoted by 〈x,y〉 =

∑
i xiyi. All the

algorithms are considered probabilistic-polynomial-time (PPT). For an PPT algorithm A,
the notation y ← A(x) means, on input x the algorithm A outputs y. For a given set X,
x R← X, stands for uniform sampling of x from X. Two strings or values are concatenated
by (·||·). We define [n] = {1, . . . n}. For a vector x = (x1, . . . , xn) we often use x = (xi)i or
x = {xi}i, and |x| = n stands for the dimension of the vector. The notation ∼= is used to
show the indistinguishability of two distributions.
Definition 1 (Matrix Distribution [14]). Let `, k ∈ N with ` > k. We call D`,k a matrix
distribution if it outputs (in polynomial time and with overwhelming probability) matrices in
Z`×kp of full rank k. We define Dk = Dk+1,k.

Definition 2 (D`,k-Matrix Diffie-Hellman Assumption [14]). Let D`,k be a matrix
distribution. We define the advantage of an adversary A for the D`,k-Matrix Diffie-Hellman
Assumption in the following way:

AdvMDDH
D`,k,A(κ) := |Pr[A(1κ,G, [A], [Aw]) = 1]− Pr[A(1κ,G, [A], [u]) = 1]|,

where G = (G, g, p)← GGen(1κ),A← D`,k,w ← Zkp,u← Z`p. We say that the D`,k-Matrix
Diffie-Hellman Assumption (D`,k-MDDH) holds in group G, if for all PPT adversaries A,
there exists a negligible function negl such that: AdvMDDH

D`,k,A(κ) ≤ negl(κ).

2.1 Functional Encryption
A functional encryption scheme is formally defined as follows.
Definition 3 (Functional Encryption Scheme). A FE scheme for a functionality
f :M×F → Z parameterized by ρ := (M,F ,Z), is defined by four following algorithms.
- (mpk,msk) ← Setup(1κ): where Setup receives the security parameter κ, and returns
a pair of master public/secret key. The public-key implicitly defines the functionality-
parameter ρ.

- ct← Enc(mpk,M): where Enc receives the master public-key mpk and a message M ∈M,
and it returns a ciphertext ct.

- skF ← KeyGen(msk, F): where KeyGen receives the master secret-key msk and function
F , then it returns a functional-key skF .

- Y := Dec(ct, skF): it receives a ciphertext ct and a functional-key skF , and returns ⊥ or
a value in the range of f .

If in this definition Enc receives msk, instead of mpk, we say the resulting FE scheme is a
private-key FE scheme.

Correctness. For a correct execution of the above encryption system, Dec(ct, skF) would return
fF (M) where ct← Enc(mpk,M), skF ← KeyGen(msk, F) and (msk,mpk)← Setup(1κ).

Here we extend the syntax of FE to a decentralized version which seems in public-key
setting from the client’s point of view. Comparing with the standard definition of FE, we
have added new parties called authorities where the encryption and decryption phase are
protocols among clients and authorities. Clients are the owner of data and authorities are in
charge of some computation holding their secret-keys.

8 M. Abdalla et al.

Definition 4 (Decentralized Functional Encryption (dFE)). A FE scheme for a
functionality f :M×F → Z parameterized by ρ := (M,F ,Z), is defined by four following
algorithms.

- (mpk,msk)← Setup(1κ, 1k): where Setup receives the security parameter κ, and returns
the public parameters mpk and a set of secret keys eki as msk = {eki}i∈k. The public-key
implicitly defines the functionality-parameter ρ.

- ct← Enc(mpk,msk,M): is a protocol among a clint and the set of authorities. They all
receive the master public-key mpk. The authority i receives the secret key eki and the
client receives the message M ∈M. They communicate and return the ciphertext ct.

- skF ← KeyGen(mpk,msk, F): is a protocol among the owner of function F and the set
of authorities. They communicate and return a functional-key skF .

- Y := Dec(ct, skF): it receives a ciphertext ct and a functional-key skF , and returns ⊥ or
a value in the range of f .

IPFE and QFE. In this paper, we mainly distinct two special FE schemes. For inner-
product FE (IPFE), the ciphertext and functional-key are respectively associated with
vectorsM = x and F = y of the same dimension. And a correct decryption returns fF (M) =
〈x,y〉 =

∑
i∈[n] xiyi. For a quadratic-FE (QFE) scheme, the ciphertext and functional-

key are respectively associated with vector-pairs M = (x,y) ∈ Mn ×Mm and matrix
F = [fij] ∈ Fn×m, while a correct decryption outputs fF (M) = xTF y =

∑
i,j fijxiyj .

Function-Hiding FE (FHFE). Informally, the security of FE says that no information about
M should be leaked beyond fF (M). While in FH-security, the confidentiality of function F
should be preserved as well. Note that in the public-key setting, getting the function-hiding
property is not possible. Having access to the public-key, the adversary can encrypt its chosen
messages and execute correct decryptions on these ciphertexts and a given functional-key.
Which then obtains a system of equations with enough number of equations to find the
unknown (here the unknown is the function F). Here we formally present the function-hiding
(FH) property.

Definition 5 (FH-Security of FE). For a functional encryption scheme FE, a PPT
adversary A and a bit b ← {0, 1}, we define the game INDbFE,A(κ) as shown in Fig. 2.
Where the oracle LREnc on input (M0,M1) outputs Enc(msk,M b), the oracle LRKey on
input (F 0, F 1) outputs KeyGen(msk, F b).

The condition (*) is that for any message-challenge (M0,M1) sent to the oracle LREnc
and for any function-challenge (F 0, F 1) sent to the oracle LRKey,

fF 0(M0) = fF 1(M1)

We say that a FE scheme is FH-secure if for any PPT adversary A, there exists a
negligible function negl such that,

AdvINDb
FE

A (κ) = |Pr[INDbFE,A(κ) = 1]− Pr[INDbFE,A(κ) = 0]| ≤ negl(κ)

Moreover, it is selectively FH-secure, if all the calls to the oracles LREnc and LRKey has
been done all together and before seeing the public-key.
The weak FH-security (wFH-security) is referred to the case that the constraints on challenges
are replaced with fF 0(M0) = fF 0(M1) = fF 1(M1).

MC-QFE from FH-IPFE 9

Definition 6 (dFH Security). The dFH security concerns the function-hiding property
of a dFE scheme and is defined similar to the FH-security where the adversary can issue the
following corruption queries:
QCor(A, i): the response is a secret-key share eki associated with authority i.
And the other queries are modified as follows.
LREnc on input (M0,M1) outputs Enc(mpk,msk,M b) and also a transcription of the associ-
ated communications among the client and the authorities.
LRKey on input (F 0, F 1) outputs KeyGen(mpk,msk, F b) and also a transcription of the
associated communications among the client (the owner of F) and the authorities.

Security of FE (without Function-Hiding). In the above definition if the adversary is
restricted to issue functional-keys F 0 = F 1, we just say FE scheme is (selectively) secure.

Multi-Client Functional Encryption. Here we present an generalized syntax of MCFE
scheme. . Again, comparing with the standard definition of MCFE in [12], we have added
new parties called authorities where the encryption phase is a protocol among clients and
authorities.
Definition 7 (Multi-Client Functional Encryption). Let f be a functionality (indexed
by ρ), and Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client functional encryption
scheme (MCFE) for the functionality f and the label set Labels is a tuple of four algorithms
MCFE = (Setup,KeyGen,Enc,Dec):
Setup(1κ, 1n, 1k): Takes as input a security parameter κ, the number of clients n, and the

number of authorities k (where for the standard definition k is zero), then generates
public parameters pp. The public parameters implicitly define the functionality-index ρ.
It outputs n secret-keys {eki}i∈[n], the authorities’ secret-key ask = {ek′i}i∈[k], the master
secret-key msk = {eki}i∈[n] and pp.

KeyGen(pp,msk, F): Takes as input the public parameters pp, the master secret-key msk and
a function F , and outputs a functional-key skF .

Enc(pp, ask, eki,mi, `): It is a protocol among authorities and the client i, where the client
and each authority respectively receive the secret key eki and ek′i. They all receive the
public parameters pp and a label ` ∈ Labels. Moreover, the client receives the message
mi to encrypt. They communicate to output the ciphertext cti,` (where cti,` might be a
set of ciphertexts indexed by k).

Dec(pp, skF , ct1,`, . . . , ctn,`): Takes as input the public parameters pp, a functional-key skF
and n ciphertexts under the same label ` and outputs ⊥ or a value in range f .

A scheme MCFE is correct, if for all κ, n, k ∈ N, functionality f , ` ∈ Labels, message mi,
when (pp, {eki}i∈n, ask,msk) ← Setup(1κ, 1n, 1k), skF ← KeyGen(pp,msk, F),and cti,` ←
Enc(pp, ask, eki,mi, `) we have

Pr[Dec(pp, skF , {cti,`}i∈[n]) = fF (m1, . . . ,mn)] = 1.

INDbFE,A(κ):

(mpk,msk)← Setup(1κ)

α← ALREnc(·,·),LRKey(·,·)(mpk)

Output α if condition (*) is satisfied

otherwise output a random bit β.
Fig. 2: Game for adaptive FH-security

10 M. Abdalla et al.

Clients-Categorizing. To be clear, the correct decryption for a MCQFE scheme, returns
xTFy where xT = (x1, . . . , xn), y = (y1, . . . , ym) and a client may own any possible data
xi or yj . For the sake of generality, we define two sides of clients: x-side and y-side clients.
Where xi and yj are respectively assigned to the i-th x-side client and j-th y-side client.

Security Notion. As we noticed in a MCFE scheme each slot i has a different secret key eki,
which can be individually corrupted. Comparing with the standard security-notion of MCFE
[12], in our definition authorities may also be corrupted, while the encryption-quires are only
issued w.r.t the clients (since they are the data owners and authorities just help them during
the computations/encryption). In the following, we formally define the security notion of a
MCFE scheme. Here id = {C,A} where C stands for the clients and A stands for authorities.

Definition 8 (Security of MCFE). Let MCFE be an MCFE scheme and Labels a label
set. For β ∈ {0, 1}, we define the experiment INDMCFE

β in Fig. 3, where the oracles are defined
as:

Corruption oracle QCor(id, i): Outputs the encryption key eki of slot i, if id = C, otherwise
outputs ek′i. We denote by CS the set of corrupted clients at the end of the experiment.

Left-Right oracle QLeftRight(i,m0
i ,m

1
i , `): On a query (i,m0

i ,m
1
i , `), outputs

cti,` = Enc(pp, ask, eki,mβ
i , `) and a transcription of associated communications among

the client i and the authority set.
Encryption oracle QEnc(i,mi, `): On a query (i,mi, `), outputs cti,` = Enc(pp, ask, eki,mi, `)

and a transcription of communications among the client i and the authority set.
Key derivation oracle QKeyGen(F): Outputs skF = KeyGen(pp,msk, F).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS: for any query QLeftRight(i,m0
i ,m

1
i , `), m0

i = m1
i .

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i,m0
i ,m

1
i , `) or

QEnc(i,mi, `)}i∈[n]\CS , for any family of inputs {mi ∈ X}i∈CS , for any query QKeyGen(F),
we define m0

i = m1
i = mi for any slot i ∈ CS and any slot queried to QEnc(i,mi, `), we

require that: f(m0) = f(m1) where mb = (mb
1, . . . ,m

b
n) for b ∈ {0, 1}.

We insist that if one index i /∈ CS is not queried for the label `, there is no restriction.

The weaker versions of the security are defined as xx-yy-INDMCFE
β (xx, yy are empty where

we don’t have their corresponding following restrictions), where,

– When xx = one: for any slot i ∈ [n] and ` ∈ Labels, the adversary is limited to exactly
one encryption/challenge query on each (i, `).

– When yy = sel: the adversary should output the challenges at the beginning of the game,
and it does not have access to the oracle QLeftRight after that. This case is referred as
the selective security.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (κ, n, k) =

∣∣Pr[xx-yy-INDMCFE
0 (κ, n, k,A) = 1]

− Pr[xx-yy-INDMCFE
1 (κ, n, k,A) = 1]

∣∣.
A multi-client functional encryption scheme MCFE is xx-yy–IND secure, if for any PPT
adversary A, there exists a negligible function negl such that: Advxx-yy-IND

MCFE,A (κ, n, k) ≤ negl(κ).
In this paper we mainly work with one-sel-IND security.

MC-QFE from FH-IPFE 11

INDMCFE
β (κ, n, k,A)

(pp,msk)← Setup(1κ, 1n, 1k)

α← AQCor(·),QLeftRight(·,·,·,·),QEnc(·,·,·),QKeyD(·)(pp)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

Fig. 3: Security games for MCFE

2.2 A Review on the FHIP Scheme of Lin[26]

The FHIP scheme of Lin [26] (Lin-FHIP) plays a very important role in all our constructions.
She presented an elegant FHIP scheme from IPFE scheme in a double-layer way and based
on SXDH assumption. Informally, for the encryption one encrypts the message by the Enc
algorithm of the inner-layer IPFE and then applies the KeyGen algorithm of the outer-layer
IPFE (see Fig. 6). Similarly, to generate the functional-key, one needs to put an outer-layer
Enc over an inner-layer KeyGen. Here we recap the FHIP construction of Lin [26] in Fig. 5. Let
G = (q, g1, g2,G1,G2,GT , e) be the description of a bilinear map where e : G1 ×G2 → GT .
The IPFE scheme IPi = (Setupi,Enci,KeyGeni,Deci) for i = 1, 2 is instantiated based on
DDH assumption and the encryption and decryption algorithms work in Gi space. More
precisely, the underlying IPFE scheme IPi is instantiated with the scheme of Abdalla et al.
[3] as follows, which we call it as ABDP-IPFE:

(pki, ski)← Setup(1κ, 1ni),

KeyGeni(ski,y) = (−〈y, ski〉,y) = sky

Enci(pki,x) = [r,x + rski]i = [ct]i
Deci([ct]i, sky) = DLog[〈ct, sky〉]i

Fig. 4: ABDP-IPFE [3]

Here we emphasize on properties of their scheme which we widely use in our constructions.

Property 1. In ABDP-IPFE scheme,
i. As long as we don’t need to compute DLog, the message can belong to the set Zq or Gi.
On the other hand, the function may belong to the set Zq or Gj , j 6= i.
ii. Under the same randomness, it is key and message homomorphic. Namely, Enc(pk1,x1; r)+
Enc(pk2,x2; r) = Enc(pk1 + pk2,x1 + x2; r).

While Fig. 5 presents a more detailed version of Lin-FHIP scheme, we mainly use the
compact form of Lin-FHIP presented in Fig. 6.

Theorem 1 (Lin [26]). If IPi is selectively secure for i = 1, 2, then FHIP scheme of Lin
is selectively-wFH-secure.

Lin and Vaikuntanathan [27] showed that any FHIP scheme with weak function-hiding
(wFH) security can be generically “lifted” to a FHIP scheme. Where the vector x is encrypted
as x||0 (similarly y as y||0) by a wFH-secure IP scheme where 0 is a zero-vector of dimension
n = |x|.

12 M. Abdalla et al.

Setup(1κ):
- run (sk1, pk1)← Setup1(1κ, 1n) and (sk2, pk2)← Setup2(1κ, 1n+1).

Return msk = (sk1, sk2) and pp = (pk1, pk2).
Enc(msk,x):
- run ct← Enc1(pk1,x) and CT← KeyGen2(sk2, ct). Return CT.

KeyGen(msk,y):
- run sk← KeyGen1(sk1,y) and SK← Enc2(pk2, sk). Return SK.

Dec(SK,CT):
Return Dec2(SK,CT)

Fig. 5: Lin-FHIP [26]

(sk1, pk1)← Setup1(1κ, 1n), (sk2, pk2)← Setup2(1κ, 1n+1)
CT = KeyGen2(Enc1(x)), SK = Enc2(KeyGen1(y))
x ∈ Zq ∨G1,y ∈ Zq ∨G2, as long as ski ∈ Zq, for i = 1, 2.

Fig. 6: Compact form of Lin-FHIP

Property 2. By applying the Lin’s construction over the scheme of ABDP-IPFE one can
verify the following properties.
i. The ciphertext is in the form of,

CT = (−〈sk2, ctx〉, ctx) where ctx = Enc1(pk1,x)

and the functional-key is as,

SK = Enc2(pk0
2,−〈sk1,y〉; r)||Enc2(pk1

2,y; r)
= Enc2(sk0

2,−〈sk1,y〉; [r]2)||Enc2(pk1
2,y; r)

ii. Applying the outer-layer does not change the output of the inner-layer and it is just to
preserve the security of y (while the inner-layer preserves the security of x). Namely, by
applying Enc1(x) over KeyGen1(y), the output of the inner-layer is 〈x,y〉. While the output
of the outer-layer, by applying CT over SK is also 〈x,y〉.

3 A 2-Input QFE Scheme

Here we present a (2-input) QFE scheme which is also the sketch of our MCQFE scheme (see
Fig. 7), assisting us to explain the requirements for the multi-client setting. In this construction
FH = (FH.Setup,FH.Enc,FH.KeyGen,FH.Dec) is Lin-FHIP scheme where ctxi

∈ G1 and
ctyj
∈ G2. The decryption algorithm FH.Dec in similar to the decryption algorithm of Lin-

FHIP, except that, the DLog-computation is ignored. Note that our general construction is
using a FHIP scheme in the encryption stage which means the construction gives a private-key
QFE.

Correctness:

Aij = [fi,j · 〈xi||0||αααUi||U ′i , yj ||0||Tj ||T ′jβββ〉]T = [fi,jxiyj +αααfi,jUiTj + fi,jU
′
iT
′
jβββ]T

B = [−αααΣfi,jUiTj −Σfi,jU ′iT ′jβββ]T C =
∏

Ai,j ·B = [
∑

fi,jxiyj]T

MC-QFE from FH-IPFE 13

Setup(1κ, n,m):

– sample Ui, T ′j ∈ Z2×2
q and U ′i , TTj ∈ Z1×2

q

for i ∈ [n], j ∈ [m]

– run (mskFH, ppFH)← FH.Setup(1κ)

Output msk = (Ui, [U ′i]1, [Tj]2, T ′j ,mskFH)i,j .

Enc(msk,x,y):

– sample ααα,βββT ← Z1×2
q

– set ctα ← [ααα]1 and ctβ ← [βββ]2.

– run ctxi ← FH.Enc(mskFH, xi||0||αααUi||U ′i)

for i ∈ [n] and 0 ∈ Z1×2
q .

– run ctyj ← FH.KeyGen(mskFH, yj ||0||Tj ||T ′jβββ)

for j ∈ [m] and 0 ∈ Z2×1
q .

Output ctx,y = (ctα, ctβ , {ctxi}i, {ctyj}j)

KeyGen(msk,F):

Output skF where,

skF = ([
∑

i,j
fi,jUiTj]2, [

∑
i,j
fi,jU

′
iT
′
j]1).

Dec(ctx,y, skF ,F):

- pars ctx,y as (ctα, ctβ , {ctxi}i, {ctyj}j),

and skF as (skf , sk′f)

– run Ai,j ← FH.Dec(ctxi , ctyj)fi,j

for i ∈ [n], j ∈ [m].

– set B := e(ctα, sk−1
f) · e(sk′f

−1
, ctβ)

– compute C =
∏
i,j
Ai,j ·B

Output logC.

Fig. 7: Our (2-input) QFE scheme (the sketch of our MCQFE scheme)

This construction can not handle corruption or labels and it just supports two clients: one
holds the whole vector x and the other holds y 5. Later we extend this construction to a
multi-client setting, thus here we ignore the security-proof.

To extend our (2-input) QFE to the general multi-client setting, each ciphertext ctxi
or

ctyj
(associated with ctx,y) should be assigned to a separate client. As it was mentioned, we

distinct the clients by two sides; x-side and y-side. But this categorization is just to explain
the scheme and does not make any limitation on the functionality, as one client can have
data on both sides or we can combine several clients in one client.

In a multi-client setting, the client i on the x-side (similarly, the client j on the y-
side) should be able to compute ctxi

(similarly ctyj
) only by its own secret-key. Therefore

specifically for our QFE, the client i on x-side should have access to Ui, ααα and mskFH. Since
Ui is not appearing in other parts we can consider it as the secret-key for the client i. On the
other hand, ααα has to be the same for all the clients on the x-side, but since the only term
involved with ααα is [αααUi]1, and Ui ∈ Zq is the secret-key of the i-th client, it is possible to
replace [ααα]1 with a random oracle such that all the clients can share the same randomness
(i.e., H(`) = [ααα]1, which is a standard technique to share the randomness [9, 12])

Regarding the secret-key mskFH, the same technique that we used for sharing ααα can not
work here, as in the FHIP scheme we need mskFH ∈ Zp (and not in Gi).

Another point is about mix-and-match property among different values of ctxi and ctyj .
This property simply says that FHIP decryption over (ctxi

, ctyj
) should be possible for any

i ∈ [n] and j ∈ [m] (over the same label). This is an essential requirement for our QFE
scheme and any modification of FHIP scheme should preserve this property.

4 Public-Key FHIP Scheme in Decentralized Setting

To go around the mentioned challenges regarding the master secret-key mskFH, we present a
FHIP scheme such that it seems in public-key setting, from clients’ point of view, while it
still preserves mix-and-match property.
5 thus, we call it 2-input rather than 2-client.

14 M. Abdalla et al.

4.1 Single-Authority FHIP (warm-up)

We introduce a new party called authority to the underlying FHIP scheme. Introducing this
authority will somehow change the FHIP from private-key setting to the public-key setting
(w.r.t the client-view). While the authority is in charge of some computations holding the
secret-key, the client, as the data owner, has access only to the public-key. Fig. 8 depicts
our single-authority FHIP scheme. Here IPi = (Setupi,Enci,KeyGeni,Deci) for i = 1, 2 and
IP ′2 = (Setup′2,Enc′2,KeyGen′2,Dec′2) are ABDP-IPFE scheme respectively in groups Gi and
G2. As one sees the difference with a usual FHIP scheme is that in an authority-based IPFE,
the Enc and KeyGen algorithms are protocols between a client (data-owner) and an authority
(secret-key owner).

The underlying idea is as follows. Basically, the goal is to generate the same ciphertext
and functional-key of Lin-FHIP without revealing x or y to the authorities. By Property2
the ciphertext of Lin-FHIP can be written as,

(−〈sk2, ctx〉, ctx) where ctx = Enc1(pk1,x) (1)

and the functional-key is as:

Enc2(pk0
2,−〈sk1,y〉; r)||Enc2(pk1

2,y; r) = Enc2(sk0
2,−〈sk1,y〉; [r]2)||Enc2(pk1

2,y; r) (2)

Now for the encryption, the client just needs to publish ctx. The authority holding sk2 can
compute the target ciphertext (Eq. (1)).

For the functional-key generation, the client publishes ctv ← Enc′2(pkv,y) and (ct0y, ct1y)←
Enc2(pk1

2,y; r) where the former is used to generate the first part of the functional-key and
the latter for the second part. The authority holding sk′v ← KeyGen′2(skv, sk1) as its secret-key
and given ctv, can now compute [〈sk1,y〉]2. Finally, it uses ct0y = [r]2 and its secret-key sk0

2
to encrypt [〈sk1,y〉]2 under the same randomness that the client has used. Therefore, it can
efficiently compute the functional-key (Eq. (2)).

The reason that we need IP′2 to work in the group G2, is that in our construction Dec′2 is
computed over some data that their inner-product value can be large and so the decryption
would fail (since having small inner-product is a requirement for the ABDP-IPFE scheme [3]).
Therefore, the idea is to use IP′2 over G2 and Dec′2 is the decryption algorithm of ABDP-IPFE
scheme without discrete-logarithm computation. This means the output of the decryption is
in group G2 which is also compatible with what we need in KeyGen(pp, ek,y).

Correctness. By the correctness of Lin-FHIP (Fig. 5), it is enough to show that CT =
KeyGen2(Enc1(x)) and SK = Enc2(KeyGen1(y)). For CT, the relation is clearly true. For SK,
we have sk′ = Enc2(sk0

2,−sk; ct0y) = Enc2(pk0
2, sk; r). Thus,

SK = (Enc2(pk0
2,−sk; r), ct1y) = Enc2(pk2,−〈sk1,y〉||y; r) = Enc2(KeyGen1(y))

Security Properties. One can verify that if the adversary does not have access to ek (i.e.,
Authority is not corrupted), our single-authority FHIP inherits the FH-security of Lin-FHIP.

4.2 Decentralized FHIP (d-FHIP)

To increase the security, we are interested to relax the condition “uncorrupted authority” by
adding more authorities; such that if at least one of the authorities is uncorrupted (while it

MC-QFE from FH-IPFE 15

Setup(1κ):
- run (sk1, pk1)← Setup1(1κ, 1n) and (sk2, pk2)← Setup2(1κ, 1n+1).
- parse sk2, pk2 as sk0

2||sk1
2 ∈ Zq × Znq and pk0

2||pk1
2 ∈ G2 ×Gn2

- run (skv, pkv)← Setup′2(1κ, 1n) and sk′v ← KeyGen′2(skv, sk1)
Return ek = sk2||sk′v as the secret-key for the Authority, and pp = (pk1, pk2, pkv).
Enc(pp, ek,x ∈ Znq):
- Client(pp,x): sends ctx ← Enc1(pk1,x) to Authority.
- Authority(sk2, ctx): returns CT where CT← KeyGen2(sk2, ctx)

Return CT
KeyGen(pp, ek,y ∈ Znq):
- Client(pp,y): sends ctv ← Enc′2(pkv,y) and cty to Authority where
cty = (ct0y, ct1y)← Enc2(pk1

2,y; r) and ct0y = [r]2.
- Authority(sk′v, cty): computes sk = Dec′2(sk′v, ctv) = [〈sk1,y〉]2 and

then computes sk′ ← Enc2(sk0
2,−sk; ct0y).

Return SK = (ct0y, sk′, ct1y)
Dec(SK,CT): Output Dec2(SK,CT)

Fig. 8: Single-authority FHIP

is still curious), the FH-security notion is still satisfied. Note that in our single-authority
FHIP scheme the secret-key of Authority is fixed for all the ciphertexts. Thus, one can use
a secret-sharing protocol to share the key among n authorities, once in the setup phase.
Then each authority should compute its share of the inner-product value holding only its
secret-key share. Putting all the inner-product shares together will generate the desired final
inner-product value. The underlying idea is similar to our single-authority construction while
the ciphertext and the functional-key can be computed in a decentralized way, thanks to the
linearity of inner-product and homomorphic property of ABDP-IPFE scheme [3] (Property
1). The resulting construction is depicted in Fig. 9 where n (maximum number of authorities)
equals the length of the message-vector (independent of the number of clients).
Correctness. By the correctness of Lin-FHIP (Fig. 5), It is enough to show that CT′ =
KeyGen2(Enc1(x)) and SK′ = Enc2(KeyGen1(y))
For CT′:

CT′ = (
∏
i

cti0, ctx) = (−
∏
i

〈sk2,i, ctx〉, ctx) = (
∏
i

ctsk2,i
x , ctx)

= (−〈
∑
i

sk2,i, ctx〉, ctx) = (−〈sk2, ctx〉, ctx) = KeyGen2(Enc1(x))

For SK′: we know that
∑
i ski =

∑
i〈sk1,i,y〉 = 〈sk1,y〉 and sk′i = Enc2(sk0

2,i,−ski; ct0y) =
Enc2(pk0

2,i, ski; r) therefore,∏
i

sk′i =
∏
i

Enc2(pk0
2,i,−ski; r) = Enc(pk0

2,−
∑
i

ski; r) = Enc(pk0
2,−〈sk1,y〉; r)

where the second equality is due to the homomorphic property of underlying IP scheme. We
also have, (ct0y, ct1y) = Enc(pk1

2,y; r). Thus,

SK′ = (ct0y,
∏
i

sk′i, ct1y) = Enc2(pk2,−〈sk1,y〉||y; r) = Enc2(KeyGen1(y))

16 M. Abdalla et al.

Setup(1κ):
- run (sk1, pk1)← Setup1(1κ, 1n) and (sk2, pk2)← Setup2(1κ, 1n+1).
- run {sk1,i}i ← SecretShare(sk1) such that sk1 =

∑
i
sk1,i.

- run {sk2,i}i ← SecretShare(sk2) such that sk2 =
∑

i
sk2,i =

∑
i
sk0

2,i||sk1
2,i.

- parse sk2, pk2 as sk0
2||sk1

2 ∈ Zq × Znq and pk0
2||pk1

2 ∈ G2 ×Gn2
- run (skv, ppv)← Setup′2(1κ) and set sk′v,i = KeyGen′2(skv, sk1,i).

Return pp = (pk1, pk2, pkv), eki = sk2,i||sk′v,i as the secret-key for i-th authority for i ∈ [n] .
Enc(pp, {eki}i,x):
- Client(pp,x): publishes ctx where ctx ← Enc1(pk1,x; r′)
- Authorityi(eki, ctx): returns CTi where CTi ← KeyGen2(sk2,i, ctx) = (−〈sk2,i, ctx〉, ctx)

Return CT = {CTi}i.
KeyGen(pp, {eki}i,y):
- Client(pp,y): publishes ctv = Enc′2(pkv,y) and cty = (ct0y, ct1y)← Enc2(pk1

2,y; r),
where ct0y = [r]2.

- Authorityi(eki, cty): computes ski = Dec′2(sk′v,i, ctv) = [〈sk1,i,y〉]2 and
sk′i ← Enc2(sk0

2,i,−ski; ct0y) and returns SKi = (ct0y, sk′i, ct1y)
Return SK = {SKi}i
Dec({CTi}i, {SKi}i):

Aggregation:
{
parse SKi as (ct0y, sk′i, ct1y) and CTi as (ct0i, ctx)
set SK′ = (ct0y,

∏
i
sk′i, ct1y) and CT′ = (

∏
i
ct0i, ctx)

Return Dec2(SK′,CT′).

Fig. 9: our d-FHIP scheme

Remark 1. Note that in our d-FHIP, the maximum number of authorities is n. We emphasize
that one can simply extend our construction to any arbitrary maximum number k of
authorities by adding zeros to the message as x||0 ∈ Zkq and random values to the function
as y||r∗ ∈ Zkq . Such extension may have some advantage in MCQFE where the clients can
play the role of authorities.

Another point is that, since all the operations for the aggregation are linear, our con-
struction could work also with a threshold sharing of sk1 and sk2 instead of a n-out-of-n.
Indeed, instead of sk =

∑
ski, we would have sk =

∑
λiski where λi is the i-th Lagrange

interpolation coefficient for the appropriate subset.

Security Analysis. Here we claim that as long as there exists at least one uncorrupted
authority called i∗, our d-FHIP scheme is dFH-secure. Obviously, knowing shares eki for
i 6= i∗, can not directly help the adversary to break the security since by the security of
secret-sharing, it can not recover eki∗ . Rather, it may use the inner-product share of i∗
(available via encryption queries) to get information about x or y. Intuitively, the parts
which may leak information are mainly ctx, cty and ctv, sk′v,i∗ . The latter is due to the fact
that leaking 〈sk1,i∗ ,y〉 can totally reveal y, since the adversary already has access to the
values 〈sk1,i,y〉 for i 6= i∗ via corruption queries. By the security of IP′2, no information about
y is leaked via ctv as long as the condition 〈sk1,i,y1 − y0〉 = 0 is satisfied (e.g., by allowing
maximum (n-1) independent vectors y1 − y0 and (n-1) authorities in the game). Moreover
we discuss that in the adversary point of view, the information ctx and cty respectively
are equivalent with the ciphertext and functional-key of the Lin-FHIP scheme where the
secret-keys associated with the inner-layer and outer-layer are respectively sk1,i∗ and sk2,i∗ .

MC-QFE from FH-IPFE 17

From there, we can reduce the security to the FH-security of Lin-FHIP. The sequence of
games is summarized in Fig. 10.

G0
sk′v,i ← KeyGen2(skv, sk1,i)
ctv ← Enc2(pkv,y0)

ctx ← Enc1(pk1,x0)
cty ← Enc2(pk1

2,y0; r)
real game
b = 0

G1
sk′v,i = KeyGen2(skv, sk1,i)
ctv ← Enc2(pkv, y1)

ctx ← Enc1(pk1,x0; r′)
cty ← Enc2(pk1

2,y0; r)

security of IPv
associated with

skv

G2
sk′v,i = KeyGen2(skv, sk1,i)
ctv ← Enc2(pkv,y1)

ctx ← [r′
∑

i 6=i∗ sk1,i]1 · Enc1([sk1,i∗]1, x1 ; r′)

cty ← [r
∑

i 6=i∗ sk1
2,i]2 · Enc2([sk1

2,i∗]2, y1 ; r)

FH-security
associated with
(sk1,i∗ , sk2,i∗)

Fig. 10: overview of games for our d-FHIP scheme

Theorem 2. If Lin-FHIP scheme is (weakly/fully) FH-secure, Our d-FHIP scheme in Fig. 9
is (weakly/fully) selective dFH-secure, as long as there exists at least one honest authority
and the condition 〈sk1,i,y1 − y0〉 = 0 is satisfied on all the indices i and key queries.

Proof. We assume the i∗-th authority is honest, namely the simulation samples i∗ from [n]
as the honest authority, at the very beginning of the game. If at some point the adversary
corrupts it, the simulation aborts. The probability that i∗ is the honest authority is non-
negligible and thus the reduction works with non-negligible probability (resulting in breaking
the SXDH assumption with non-negligible probability). We start with the real game when
the chosen bit is b = 0, while the last game is the real game associated with b = 1. The
adversary A is the attacker trying to distinguish two adjacent games. Note that based on
the security notion, in the simulation of encryption, we have to simulate the communications
among the client i and all the authorities, this means we also have to simulate ctv (while ctx,
cty are already part of the output of the protocols).

G0 : is the real game in dFH-security (Definition 6) when the chosen bit is b = 0.
G1 : is similar to the game G0, except that in ctv, y0 is replaced with y1. We reduce the
indistinguishability of G0 and G1 to the security of IPFE scheme IP ′2. Since all function-
challenges are issued at the beginning of the game, the simulator can sample {sk1,i}i such
that: 〈sk1,i,y1 − y0〉 = 0 for every index i and key queries, and then set

∑
i sk1,i = sk1.

The simulator simulates games G0 or G1 for A by running the real algorithms, except for
the simulation of sk′v,i and ctv, where it sends functional-key queries sk1,i, and the challenges
(y0,y1) to the challenger of IPFE scheme IP′2.
G2 : is similar to the previous game, except that, in ctx and cty, the values x0 and y0 are
respectively replaced with x1 and y1.

The transition from G1 to G2 relies on the FH-security of Lin-FHIP scheme when it is
associated with keys sk1,i∗ and sk2,i∗ . In this transition we are using the following facts which
are thanks to the homomorphic properties of ABDP-IPFE scheme [3] (see Fig. 4).

Enc1(pk1,x; r′) = Enc1(
∑
i

sk1,i,x; r′) = [r′
∑
i 6=i∗

sk1,i]1 · Enc1([sk1,i∗]1,x; r′)

Enc2(pk1
2,y; r) = Enc2(

∑
i

sk1
2,i,y; r) = [r

∑
i 6=i∗

sk1
2,i]2 · Enc2([sk1

2,i∗]2,y; r) (3)

18 M. Abdalla et al.

The simulator, simulates games G1 or G2 for A by running the real algorithms (on the
concerned inputs), except for CTi∗ = (ct0,i∗ , ctx), SKi∗ = (ct0y, sk′i∗ , ct1y):

– it samples all the keys except, sk1,i∗ and sk2,i∗ .
– simulation of CTi∗ : when A submits the challenge (x0,x1), the simulator sends it to its

challenger and receives FH.Enc((sk1,i∗ , sk2,i∗),xb; r′) = (ct0i∗ , [r′]1, k) where FH stands
for the Lin-FHIP scheme, and by the construction of FH:

Enc1(sk1,i∗ ,xb; r′) = ([r′]1, k), ct0i∗ = −〈sk2,i∗ , ([r′]1, k)〉

Then it sends CTi∗ = (ct0i∗ , ctx) to A where ctx = ([r′]1, [r′
∑
i 6=i∗ sk1,i]1 · k)).

– simulation of SKi∗ : when A issues the challenge (y0,y1), the simulator sends it directly
to its challenger to receive FH.KeyGen((sk1,i∗ , sk2,i∗),yb; r) = ([r]2, h′, h′′), where by the
construction of FH:

Enc2(sk0
2,i∗ ,−〈sk1,i∗ ,yb〉; r) = ([r]2, h′), Enc2(sk1

2,i∗ ,yb; r) = ([r]2, h′′)

Then it simulates cty and sk′i∗ as cty = (ct0y, ct1y) = ([r]2, [r
∑
i 6=i∗ sk1

2,i]2 · h′′) and
sk′i∗ = h′. And sends SKi∗ = (ct0y, sk′i∗ , ct1y) to A.

This is now the real game for b = 1. ut

Theorem 3. If in our construction we replace x with x||0 and y with y||r for a random
value r (and extend the dimension of keys sk1, sk1

2 to n+ 1). Then, Theorem 2 holds without
condition 〈sk1,i,y1 − y0〉 = 0.

Proof. By this transformation we can find the keys sk1,i such that 〈y1||r1−y0||r0, sk1,i〉 = 0.
Because we have n(n+ 1) keys sk1,i as unknowns and n equations associated with maximum
n linearly independent vectors y1 − y0, which totally gives n2 equations. ut

5 2-Step MCQFE

In this section we present a 2-MCQFE scheme based on the d-FHIP scheme. Basically, we
consider the 2-input QFE scheme (Fig. 7) where FH is replaced with our d-FHIP scheme
(Fig. 9) denoted as dFH. We extend such 2-input QFE scheme to a 2-MCQFE with (n+m)
clients where n and m are respectively the number of slots of vector x and y.

Our 2-MCQFE scheme is presented in Fig. 11. Here Hα : Labels → G1×2
1 and Hβ :

Labels→ G2×1
2 are hash function modeled as random oracles. The secret-key ekk is defined

as ekk,x when the concerning client is on the x-side and it is ekk,y when the client is on the
y-side. Note that by Remark 1 we consider the number of authorities to be an arbitrary
integer t = poly(κ) (i.e., one needs to apply the changes from Remark 1). Finally, the
decryption algorithm dFH.Dec is similar to the decryption algorithm of our d-FHIP scheme,
except that, the DLog-computation is ignored.

Intuitively as the confidentiality of both messages xi and yj should be preserved, we need
a kind of symmetric structure. Namely, all one needs to do to preserve the privacy of xi, the
same methodology should be done for yj . This is possible by operating on groups G1 and
G2 where the pairing allows us to combine/mix the results. In fact, this is the underlying
idea for the Lin-FHIP scheme which is so connected to the requirement for a QFE scheme.
Here we additionally have functional-key skF and random oracles Hα and Hβ which we try

MC-QFE from FH-IPFE 19

Setup(1κ):

– sample Ui, T ′j
R← Z2×2

q and U ′i , TTj
R← Z1×2

q for i ∈ [n], j ∈ [m].

– run ({eki}i∈[t], pp)← dFH.Setup(1k)

Return pp, ask = {eki}i∈[t], msk = (eki,x, ekj,y)i,j and

eki,x = (Ui, [U ′i]1), ekj,y = ([Tj]2, T ′j) as the secret keys respectively for

the x-side and y-side clients.

Enc(pp, ask, ekk,mk, `):

– set Hα(`) = [ααα]1 =∈ G1×2
1 ,Hβ(`) = [βββ]2 ∈ G2×1

2 , and 0 = (0, 0).

– if this is a x-side clients: run ctxk,` ← dFH.Enc(pp, ask,mk||0||αααUk||U ′i)

– if this is a y-side client: run ctyk,` ← dFH.KeyGen(pp, ask,mk||0T ||Tk||T ′kβββ)

Return ctxk,` or ctyk,`.

KeyGen(msk,F):

Return skF = (skf , sk′f) = ([Σfi,jUiTj]2, [Σfi,jU ′iT ′j]1).

Dec((ctxi,`, ctyj ,`)i,j ,F , skF):

– run Ai,j ← dFH.Dec(ctxi,`, ctyj ,`)fi,j for i ∈ [n], j ∈ [m].

– set B ← e(Hα(`), sk−1
f) · e(sk′−1

f ,Hβ(`)) and C =
∏
i,j
Ai,j ·B

Return logC.

Fig. 11: our 2-step Multi-Client QFE (2-MCQFE) from decentralized FHIP
to keep this symmetric structure for them as well. More precisely, the output of Hα is in
G1 and its associated part of skF is skf which belongs to G2, similarly about Hβ and sk′f .
The main challenges in a multi-client setting are the corruption-queries and the separate
encryption queries on each slot where mix-and-match over them (possible thanks to the
underlying dFH scheme) should not leak additional information. Since in our construction
ciphertexts are indexed by labels, and indices i or j, one can expect that the sequence of
games includes hybrids on `,i,j. Slightly more in details, in the security proof, to show that
one can (indistinguishably) change a message x`0i to x`0i ,

1. at first, a hybrid of games over labels ` is defined such that every time we change xγ0
i to

xγ1
i for the current label ` = γ while for all other labels nothing would be changed;

2. this discussion over label γ also needs a hybrid on index i, where every time for a specific
index i∗ we change xγ0

i∗ to xγ1
i∗ ;

3. finally such change also needs a hybrid over index j to show that in hybrid j∗ we can
(loosely speaking) change xγ0

i∗ y
`0
j∗ to xγ1

i∗ y
`0
j∗ while for j 6= j∗ nothing would be changed.

For 1., by MDDH assumption we change the structure of the random-oracle H1 such that
for every label, except γ, it has the same form. This allows to change the challenge bit for γ
(by relying on dFH-security as well), without being interrupted by other labels ` 6= γ. For
2., we change the secret-key Ui∗ , which makes it possible to change the challenge bit for i∗
(again by relying on dFH-security as well), without being interrupted by other index i 6= i∗.
For 3., by MDDH assumption we change the structure of Tj∗ such that for every j 6= j∗, it
has the same form. This allows to change the challenge bit for combinations involved with
j∗. We discuss details in the security proof.

20 M. Abdalla et al.

Game Description

G0
ctxi ← dFH.Enc(ppFH,mskFH, x

0
i ||0||αααUi||U ′i)

ctyj ← dFH.KeyGen(mskFH, y
0
j ||0||Tj ||T ′jβββ)

skF = ([
∑

fi,jUiTj]2, [
∑

fi,jU
′
iT
′
j]1)

Hα(`) = [ααα]1, Hβ(`) = [βββ]2

Justif. SXDH

G0.γ ctxi =
{

dFH.Enc(ppFH,mskFH, x
1
i ||0||αααUi) ` < γ

dFH.Enc(ppFH,mskFH, x
0
i |0||αααUi) ` ≥ γ

ααα =
{
r`a
⊥ ` 6= γ

ααα` ` = γ

Justif. dFH-security

G0.γ.i∗
ctxi =


dFH.Enc(ppFH,mskFH, x

1
i ||0||αααUi) ` < γ

dFH.Enc(ppFH,mskFH, x
1
i ||ααα ||αααUi) ` = γ, i = i∗

dFH.Enc(ppFH,mskFH, x
0
i |0||αααUi) ` > γ ∨ (` = γ, i 6= i∗)

ctyj ← dFH.KeyGen(y0
j ||a/〈a,αααγ〉(x0

i∗ − x1
i∗)y0

j ||Tj)

ααα =
{
r`a
⊥ ` 6= γ

ααα` ` = γ

Justif. SXDH

G0.γ.i∗.j∗ Tj =
{

b⊥rj j 6= j∗

Tj j = j∗

Justif. dFH-security

G′0.γ.i∗.j∗

ct xi∗ =


dFH.Enc(ppFH,mskFH, x

1
i ||0||αααŨi) ` < γ

dFH.Enc(ppFH,mskFH, x
1
i ||ααα||αααŨi) ` = γ

dFH.Enc(ppFH,mskFH, x
0
i |0||αααŨi) ` > γ

ctyj =


dFH.KeyGen(mskFH, y

0
j ||ααα⊥γ y0

j ||Tj) j < j∗

dFH.KeyGen(mskFH, y
0
j ||ααα⊥γ y0

j ||Tj) j = j∗

dFH.KeyGen(mskFH, y
0
j ||a/〈a,αααγ〉(x0

i∗ − x1
i∗)y0

j ||Tj) j > j∗

Ui∗ = a/〈a,αααγ〉 · (x1γ
i∗ − x

0γ
i∗)y0γ

j∗ · b/〈b, Tj∗〉+ Ũi∗

G′0.γ.i∗ skf =
∑

j∈[m],i 6=i∗ fi,jUiTj + a/〈a,αααγ〉
∑

j∈[m] fi∗,j(x
1γ
i∗ − x

0γ
i∗)y0γ

j +
∑

j∈[m] fi∗,jŨi∗Tj

Justif. dFH-security

G′′0.γ.i∗ ctxi∗ =
{

dFH.Enc(ppFH,mskFH, x
1
i || 0 ||αααŨi) ` ≤ γ

dFH.Enc(ppFH,mskFH, x
0
i |0||αααŨi) ` > γ

ctyj = dFH.KeyGen(mskFH, y
0
j || 0 ||Tj)

G′0.γ skf =
∑

j∈[m],i∈[n] fi,jŨiTj

G1
ctxi ← dFH.Enc(ppFH,mskFH, x

1
i ||0||ααα Ui ||U ′i)

ctyj ← dFH.KeyGen(mskFH, y
0
j ||0||Tj ||T ′jβββ)

skF = ([
∑

fi,j Ui Tj]2, [
∑

fi,jU
′
iT
′
j]1)

Hα(`) = ααα, Hβ(`) = βββ

G2
ctxi ← dFH.Enc(ppFH,mskFH, x

1
i ||0||αααUi||U ′i)

ctyj ← dFH.KeyGen(mskFH, y
1
j ||0||Tj ||T ′jβββ)

skF = ([
∑

fi,jUiTj]2, [
∑

fi,jU
′
iT
′
j]1)

Hα(`) = ααα, Hβ(`) = βββ

Fig. 12: Overview of games for 2-MCQFE. Here mskFH = ask

In the following theorem we prove the security of our 2-MCQFE for a weaker security
notion where the constraint xT0 F y0 = xT1 F y1 is replaced with xT0 F y0 = xT1 F y0 = xT1 F y1
(referred as the weak security). We later give a transformation to turn back to the standard
constraints.

Theorem 4. If dFH is dFH-secure, then our 2-MCQFE scheme is weakly one-sel-IND secure.

Proof. The proof proceeds via a sequence of the games which are summarized in Fig. 12. At
first we define a hybrid over labels ` where two such adjacent hybrids are indistinguishable via
a hybrids over index i, and similarly two adjacent hybrids (over i) are indistinguishable via

MC-QFE from FH-IPFE 21

a hybrids over index j. More detailed, we pass through the games (Fig. 12) in the following
order: G0

`
 G1

`
 G2, where the transition from G0 to G1 changes the message x0

i to x1
i for

all the labels and `
 includes the following hybrids on the labels. Which means each time we

change x0
i to x1

i associated with label γ = 1, . . . , Q where Q is the number of labels:
G0.1

i
 G′0.1G0.Q

i
 G′0.Q

where for label γ, the transition from G0.γ to G′0.γ changes the message x0
i to x1

i for all
indices i. That is, each time we change x0

i∗ to x1
i∗ for index i∗ = 1, . . . , n. Thus in the above

sequence, i
 stands for the following hybrids on index i.

G0.γ.1
j
 G′0.γ.1 G′′0.γ.1G0.γ.n

j
 G′0.γ.n G′′0.γ.n

where for label γ and index i∗, the transition from G0.γ.i∗ to G′′0.γ.i∗ , loosely speaking, changes
x0
i∗y

0
j to x1

i∗y
0
j for all the indices of j (more precisely, it changes x0

i∗ to x1
i∗ in the leakage

from mix-and-matches depending on the indices i, j). Meaning that, each time we change
x0
i∗y

0
j∗ to x1

i∗y
0
j∗ for j∗ = 1, . . . ,m. Thus in the above sequence, j

 includes the following
hybrids on index j:

G0.γ.i∗.1 G′0.γ.i∗.1G0.γ.i∗.m G′0.γ.i∗.m
The transition from G1 to G2 proceeds similarly to change y0

j to y1
j . Here we precisely

describe each game.

G0 : is the real game associated with bit b = 0.

G0,γ : is similar to its previous game, except that, the random oracle queries Hα(`) associated
with labels ` 6= γ are answered with the same structure [r`a⊥]1 for fresh randoms r` and a
fixed uniformly chosen vector a⊥ ∈ Z1×2

q . While the random oracle for ` = γ is answered
by a uniformly sampled [αααγ]1 ∈ G1×2

1 . To prove the indistinguishability of these adjacent
games, we rely on the MDDH assumption in the group G1, w.l.g for the simplicity one can
consider the indistinguishability of G0 and G0.1.

By Random Self-Reducibility (RSR) of MDDH assumption (Lemma 1 in [14]), we have,
(ga⊥ , {ga⊥r`}`∈[Q]) ∼= (ga⊥ , {gR`}`∈[Q]) where a⊥, R` R← Z1×2

q , r`
R← Zq.

The simulator receives the challenges (ga⊥
1 , {gb`

1 }`∈[Q]) from the challenger of RSR-MDDH.
For ` 6= 1 it sets [ααα`]1 = gb`

1 , and for ` = 1 it samples [ααα1]1 R← G1×2
1 . Now if b` = a⊥r`, it

simulates the game G0,1 otherwise it simulates the game G0. In fact, it simulates all the
queries based on the real algorithms (w.r.t the new values ααα). Since all the queries involved
with ααα, can be answered via [ααα]1, this is a correct reduction (note that Ui ∈ Zq, and thus in
ctxi

, αααUi can be replaced with [αααUi]1).

G0.γ.i∗ : is similar to the previous game, except for the simulation of ctxi
, ctyj

:

– in ctxi
, for ` = γ, i = i∗ we replace the message-part Xi,` = x0

i ||0 with X ′i,` = x1
i ||αααγ .

– in ctyj
for all `, j, Yj,` = y0

j ||0 is replaced with Y ′j,` = y0
j ||a/〈a,αααγ〉(x0

i∗ − x1
i∗)y0

j .

We emphasize that for ` 6= γ or i 6= i∗ message is not changed i.e., Xi,` = X ′i,` Also note that
in any case, the other parts of the message, namely αααUi||U ′i and Tj ||T ′jβββ are not changed.

Now, one can verify that:

X ′i,` · Y ′j,` = Xi,` · Yj,` ∀i, j, ` (4)

we consider different cases:

22 M. Abdalla et al.

– for ` < γ, i 6= i∗(same reasoning for all ` ∈ [Q], and i 6= i∗):

Xi,` · Yj,` = 〈x1
i ||0 , y0

j ||0〉 = x1
i y

0
j = 〈x1

i ||0 , y0
j ||a/〈a,ααα1γ〉(x0

i∗ − x1
i∗)y0

j 〉 = X ′i,` · Y ′j,`

– for ` > γ, i = i∗ (same reasoning for ` < γ, i = i∗):

Xi,` · Yj,` = 〈x0
i ||0, y0

j ||0〉 = x0
i y

0
j = 〈x0

i ||0 , y0
j ||a/〈a,ααα1γ〉(x0

i∗ − x1
i∗)y0

j 〉 = X ′i,` · Y ′j,`

– for ` = γ, i = i∗:

Xi,` · Yj,` = 〈x0
i ||0, y0

j ||0〉 = x0
i y

0
j = 〈x1

i ||αααγ , y0
j ||a/〈a,αααγ〉(x0

i∗ − x1
i∗)y0

j 〉 = X ′i,` · Y ′j,`

The relation X ′i,` · Y ′j,` = Xi,` · Yj,` is exactly the required constraint on the challenges
for dFH-security of dFH. Thus, by relying on the dFH-security of dFH, games G0.γ.i∗ is
indistinguishable from its previous game. Note that in this reduction all other queries are
answered by the real algorithms, and corruption on the authorities can be simulated by
forwarding them to the challenger of dFH. The detailed simulation is as follows:

– the simulator samples all the keys except (mskFH,mpkFH) = (ask, pp).
– when it receives the challenge (x0

i , x
1
i) for label `, the simulator buildsm0 = (Xi,`||αααUi||U ′i)

and m1 = (X ′i,`||αααUi||U ′i) where Xi,`, X ′i,` are defined as above. Then it sends (m0,m1)
to its challenger.

– when it receives the challenge (y0
j , y

1
j) for label `, the simulator builds F0 = (Yj,`||Tj ||T ′jβββ)

and F1 = (Y ′j,`||Tj ||T ′jβββ) where Yj,`, Y ′j,` are defined as above. Then it sends (F0, F1) to
its challenger.

– the other queries are simulated by the real algorithms.

By Eq. (4), we have 〈m0, F0〉 = 〈m1, F1〉 which means this is a correct simulation. If the
challenger of d-FHIP scheme responds by bit b = 1, this is the simulation of game G0.γ.i∗ .
Otherwise it is the simulation of previous game (which is G0,γ or G′′0,γ,i∗−1).

G0.γ.i∗.j∗ : is similar to the previous game, except that, the values of Tj ∈ G2 for j 6= j∗

is replaced with [b⊥rj]2 for a fixed vector b⊥ ∈ Z2×1
q and fresh randoms rj . While for j∗

we sample Tj∗ uniformly from G2×1
2 . A similar reasoning to the transition from G0 to G0,γ

on group G2 works here. Since in our construction the values Tj only appear in the group
G2, the reduction to RSR-MDDH assumption in G2 is doable. In fact, in the construction
we have [Tj]2 as the secret-key and skf = [

∑
i,j fi,jUiTj]2 as the functional-key making the

simulation of corruption and functional-key queries completely doable.

G′0.γ.i∗.j∗ : is similar to the game G0.γ.i∗j∗ , except for the simulation of ctxi
, ctyj

:

– in ctxi
, for all ` and i = i∗, we replace the message-part Ui∗ with Ũi∗ where the following

relation holds for a uniformly sampled Ũi (Note that here we are looking at Ui as a part
of the message in the inputs of dFH.Enc(·)).

Ui∗ = a/〈a,αααγ〉 · (x1γ
i∗ − x

0γ
i∗)y0γ

j∗ · b/〈b, Tj∗〉+ Ũi∗ (5)

– in ctyj
for all ` and j = j∗, we replace the message-part Yj,` = y0

j ||a/〈a,αααγ〉(x0
i∗ −

x1
i∗)y0

j ||Tj with Y ′j,` = y0
j ||ααα⊥γ y0

j ||Tj (Note that for j 6= j∗ nothing is changed).

MC-QFE from FH-IPFE 23

To be clear, this means for ctxi and ctyj we have:

ctxi =


dFH.Enc(ppFH,mskFH, x

1
i ||0||αααÛi||U ′i) ` < γ

dFH.Enc(ppFH,mskFH, x
1
i ||ααα||αααÛi||U ′i) ` = γ, i = i∗

dFH.Enc(ppFH,mskFH, x
0
i |0||αααÛi||U ′i) ` > γ ∨ (` = γ, i 6= i∗)

(6)

where in the previous game Ûi∗ = Ui∗ and in the current game Ûi∗ = Ũi∗ (for i 6= i∗, Ûi is
the same in both games).

ctyj
=


dFH.KeyGen(mskFH, y

0
j ||ααα⊥γ y0

j ||Tj ||T ′jβββ) j < j∗
dFH.KeyGen(mskFH, Ŷj,`||T ′jβββ) j = j∗
dFH.KeyGen(mskFH, y

0
j ||a/〈a,αααγ〉(x0

i∗ − x1
i∗)y0

j ||Tj ||T ′jβββ) j > j∗
(7)

where in the previous game Ŷj,` = Yj,` and in the current game Ŷj,` = Y ′j,` and Yj,` and Y ′j,`
are defined as above.

Note that the secret-key Ui∗ in Eq. (5) is perfectly indistinguishable from the secret-key
in the previous game. Moreover, one can verify that:

X ′i,` · Y ′j,` = Xi,` · Yj,` ∀i, j, `

where Yj,` and Y ′j,` (res. for the previous and current game) are generally defined to be the
message-part after removing T ′jβββ from the original message in ctyj

. Similarly, Xi,` and X ′i,`
are the message-part in ctxi

by ignoring U ′i from the original message.
Let us verify the mentioned relation for each case:

– for ` > γ, i 6= i∗, j < j∗ (similar reasoning for all ` ∈ [Q], i 6= i∗, j 6= j∗):

Xi,` · Yj,` = 〈x0
i ||0||αααÛi, y0

j ||ααα⊥γ y0
j ||Tj〉 = X ′i,` · Y ′j,`

– for ` < γ, i = i∗, j > j∗ (similar reasoning for ` 6= γ, i = i∗,j 6= j∗):

Xi∗,` · Yj,` = 〈x1
i ||0||αααUi , y0

j ||a/〈a,αααγ〉(x0
i∗ − x1

i∗)y0
j ||Tj〉 =

x1
i y

0
j +αααUi∗Tj = x1

i y
0
j +αααŨi∗Tj (∗)

= 〈x1
i ||0||αααŨi∗ , y0

j ||a/〈a,αααγ〉(x0
i∗ − x1

i∗)y0
j ||Tj〉 = X ′i∗,` · Y ′j,`

where the equality in line (*) is due to the fact that ααα`a = 0, for ` 6= γ.

– for ` = γ, i = i∗, j < j∗ (similar reasoning for ` = γ, i = i∗,j 6= j∗):

Xi∗,` · Yj,` = 〈x1
i ||αααγ ||αααUi , y0

j ||ααα⊥γ y0
j ||Tj〉 =

x1
i y

0
j +αααUi∗Tj = x1

i y
0
j +αααŨi∗Tj (∗∗)

= 〈x1
i ||αααγ ||αααŨi∗ , y0

j ||ααα⊥γ y0
j ||Tj〉 = X ′i∗,` · Y ′j,`

where the equality in line (**) is due to the fact that bTj = 0, for j 6= j∗.

24 M. Abdalla et al.

– for ` < γ, i 6= i∗, j = j∗ (similar reasoning for all ` ∈ [Q], i 6= i∗, j = j∗):

Xi,` · Yj,` = 〈x1
i ||0||αααÛi , y0

j ||a/〈a,αααγ〉(x0
i∗ − x1

i∗)y0
j ||Tj〉 =

= 〈x1
i ||0||αααÛi , y0

j ||ααα⊥γ y0
j ||Tj〉 = X ′i∗,` · Y ′j,`

– for ` > γ , i = i∗, j = j∗ (similar reasoning for ` < γ , i = i∗, j = j∗):

Xi∗,` · Yj,` = 〈x0
i ||0||αααUi , y0

j ||a/〈a,αααγ〉(x0
i∗ − x1

i∗)y0
j ||Tj〉 =

x0
i y

0
j +αααUi∗Tj = x0

i y
0
j +αααŨi∗Tj (∗′)

= 〈x0
i ||0||αααŨi∗ , y0

j ||ααα⊥γ y0
j ||Tj〉 = X ′i∗,` · Y ′j,`

where the equality in line (∗′) is due to the fact that ααα`a = 0, for ` 6= γ.
– for ` = γ, i = i∗, j = j∗:

Xi,` · Yj,` = 〈x1
i ||αααγ ||αααUi, y0

j ||a/〈a,αααγ〉(x0
i∗ − x1

i∗)y0
j ||Tj〉 =

x0
i y

0
j +αααUiTj = x0

i y
0
j + (x1γ

i∗ − x
0γ
i∗)y0γ

j∗ +αααγŨi∗Tj∗ (∗∗′)
= x1

i y
0
j +αααγŨi∗Tj∗ = 〈x1

i ||αααγ ||αααŨi, y0
j ||ααα⊥γ y0

j ||Tj〉 = X ′i,` · Y ′j,`

where the equality in line (∗∗′) is due to the Eq. (5) and the fact that ` = γ and j = j∗.

Thus, having X ′i∗,` · Yj,` = Xi∗,` · Yj,` ∀i, j, `, allows us to reduce the indistinguishability of
concerned games to the dFH-security of dFH. Note that other queries, including corruption-
queries and functional-key queries, can be simulated simply by running the real algorithms
while authority-corruptions would be forwarded to the challenger of dFH.

G′0.γ.i∗ : is the same as game G′0.γ.i∗.m when the functional-key skf ir rewritten based on
updates in the value of Ui∗ (so, these games are identical). Note that for each index i∗, we
have the following hybrids on index j leading to the updates in the value of Ui∗ :

G0.γ.i∗ −→ G0.γ.i∗.1 G′0.γ.i∗.1 . . . G0.γ.i∗.m G′0.γ.i∗.m −→ G′0.γ.i∗

Therefore, to see how the value of skf is changed between G0.γ.i∗ and G′0.γ.i∗ , we need to
follow the updates during the above path.

At the beginning, the value of skf in G0.γ.i∗.1 (and G0.γ.i∗) is :

skf =
∑

fi,jUiTj =
∑

j∈[m],i6=i∗
fi,jUiTj

K

+
∑
j∈[m]

fi∗,jUi∗Tj

Then skf in G′0.γ.i∗.1 is updated (by updating U∗i) to:

skf = K + a/〈a,αααγ〉 · fi∗,1(x1γ
i∗ − x

0γ
i∗)y0γ

1 +
∑
j∈[m]

fi∗,jŨi∗Tj (8)

where the second term is due to the fact that bTj = 0 for j 6= j∗ and bTj∗ 6= 0. Similarly
going through all the m hybrids, skf in the current game G′0.γ.i∗ is (note that in Eq. (8),
every time only the last term changes):

skf = K + a/〈a,αααγ〉
∑
j∈[m]

fi∗,j(x1γ
i∗ − x

0γ
i∗)y0γ

j +
∑
j∈[m]

fi∗,jŨi∗Tj

MC-QFE from FH-IPFE 25

G′′0.γ.i∗ : is similar to the game G′0.γ.i∗ , except that, for the simulation of ctxi and ctyj :
– in ctxi for ` = γ, i = i∗, we replace the message-part Xi,` = x1

i ||ααα with X ′i,` = x1
i ||0.

– in ctyj : for all ` and j, we replace the message-part Yj,` = y0
j ||ααα⊥γ y0

j with Y ′j,` = y0
j ||0.

Similar to the game G0.γ,i∗ , one can verify that: Xi,` · Yj,` = X ′i,` · Y ′j,` ∀i, j, ` allowing
to rely on the dFH-security of dFH.

G′0.γ : is the same as game G′′0.γ.n when the functional-key skf ir rewritten based on the
updates in values of Ui. Note that for each label γ, we have the following hybrids on index i:

G0.γ −→ G0.γ.1 G′0.γ.1 G′′0.γ.1 . . . G0.γ.n G′0.γ.n G′′0.γ.n −→ G′0.γ

Leading to the following functional-key in the current game (with a similar reasoning to the
game G′0.γ.i∗):

skf =
∑

j∈[m],i∈[n]

(
fi,jŨiTj + a/〈a,αααγ〉fi,j(x0γ

i − x
1γ
i)y0γ

j

)
=

∑
j∈[m],i∈[n]

fi,jŨiTj

where the last equality is due to the constraints xT1 F y0 = xT0 F y0.

G1 : is similar to G′0,Q ,except that, the secret-key Ũi is replaced with the key Ui in all the
queries and challenges. Here we are using the fact that for a corrupted client/slot i, we have
x1
i = x0

i leading to answer the corruption queries by Ũi (due to Eq. (5)). Meaning that, in
adversary’s point of view Ũi’s are the secret keys.

G2 : is similar to the previous game , except that, y0
j is replaced with y1

j . The transition
from game G1 to G2 is similar to the transition from G0 to G1 considering the hybrids on
indices j and then i, and using the constraint xT1 F y0 = xT1 F y1. ut

In the following we use a similar transformation used in [27] to lift the security from the
weak version to a stronger one with standard constraints over the queries. This transformation
is equivalent with adding n dummy clients on the x-side and m dummy clients on the y-side,
which encrypt 0 for all the labels.

Theorem 5. In Theorem 4, if we replace x with x||0 ∈ Z2n
q , y with y||0 ∈ Z2m

q and F

with F ′ = (F 0
0 F), the security holds w.r.t the standard constraints xT0 F y0 = xT1 F y1. More

Precisely, if our 2-MCQFE is weakly secure, then the mentioned transformation results in a
2-MCQFE scheme with standard constraints.

Proof. Let ctX be the set of all the x-side ciphertexts associated with message X (and ctY
is defined similarly) and skF ′ is the functional key associated with the matrix F ′ defined as
above. We proceed through a sequence of hybrids as:

{ctx0||0n , cty0||0m , skF ′} ∼= {ctx0||x1 , cty0||0m , skF ′}
∗∼=

{ctx1||x1 , cty1||0m , skF ′} ∼= {ctx1||0n , cty1||0m , skF ′}

Where all the relations ∼= holds due to the weak security of 2-MCQFE. Moreover,
∗∼= holds

by the standard constraints in the theorem. ut

26 M. Abdalla et al.

5.1 From one to many

Now we upgrade the security from “one” to “many” (see Definition 8). Intuitively, the
construction can not support many ciphertexts per label, because for a fixed label with
different ciphertexts there is no randomness. Thus, the idea is that we add randomness to
the ciphertext, but in a way that it can be removed later. To do so, we add a layer of 2-input
QFE (i.e., our scheme in Fig. 7)) over a 2-MCQFE.

For this at first we need to slightly modify our 2-input QFE in a way that the FHIP
scheme is replaced with our dFH scheme (Fig. 9). In the following corollary we analyze the
security of our extended 2-input QFE. The security notion is as Definition 8 when there are
only two clients and the label set Labels has only a single element. As there is only a fixed
label, we don’t need to explicitly write it.

Corollary 1. If dFH is secure, then our extended 2-input QFE scheme is many-sel-IND
secure.

Let xk and yt be the k-th and t-th queries issued by the first and the second client (res.).
The security proof is similar to the security proof of Theorem 4, where instead of the hybrid
over the labels we consider a hybrid over the query-number k (to go from G0 to G1) and a
hybrid over query-number t (to go from G1 to G2). In fact, every thing is the same except
that instead of working with the random oracles we work with randomnesses chosen by the
clients.

Let the ciphertext associated with xi, in 2-input QFE be as Eq. (9), and in 2-MCQFE
be as Eq. (10) (in a general form).

ct0,x = [r]1, ct0,y = [r′]2, ctxi
= FH.Enc(xi||Vi,r) ctyj

= FH(yj ||V ′j,r′) (9)

ct∗xi,`
= dFH.Enc(xi||Wi,`) ct∗yj,`

= dFH.Enc(yj ||W ′j,`) (10)

where Vi,r is a combination of some secret keys and randomness r andWi,` is a combination
of some secret keys and hash functions over ` (similarly about V ′i,r and W ′i,`). Then we build
our many-secure 2-MCQFE (called 2-MCQFE′) as follows:

ctxi,`
= dFH.Enc(xi||02k||Vi,r||Wi,`) ct0,xi = [r]1, ct0,yj = [r′]2 (11)

ctyj,`
= dFH.Enc(yj ||02k||V ′j,r′ ||W ′j,`) skF = ({skij}i,j , sk∗F)

Where ct0,xi
is associated with the randomness chosen individually by the x-side client i,

skij and sk∗F are the functional key for 2-input QFE and 2-MCQFE schemes respectively,
and F ∈ Zkn×kmq , xi,yj ∈ Zkq , where x = (x1, . . . ,xn), y = (y1, . . . ,ym).

For the index i, we denote k-th query as xik , the leakage from ideal functionality (i.e.,
xTF y) can be considered as:

xTik f i,jyjt
− xTi1f i,jyj1 (12)

Which means in the security game we have,

(x0
ik

)Tf i,jy0
jt
− (x0

i1)Tf i,jy0
j1

= (x1
ik

)Tf i,jy1
jt
− (x1

i1)Tf i,jy1
j1

MC-QFE from FH-IPFE 27

Remark 2. Here we discus on the leakage of ideal functionality. One can formulate the
leakage in different (but equivalent) ways so that it can help the proof.

1. if we start with the first query for index j∗ and we just change the query on index i∗
to the k-th query. Then the leakage is: (xi∗

k
− xi∗1)

∑
j f i∗,jyj1 .

2. in the previous case we assume that we have started with t-th query on the index j∗,
so: (xi∗

k
− xi∗1)(

∑
j 6=j∗ f i,jyj1 + f i∗,j∗yj∗t)

3. Putting two previous leakage we get: (xi∗
k
− xi∗1)f i∗,j∗(yj∗t − yj∗1) for any i∗k and j∗t

4. Now in the security game the adversary can issues queries, if it asks for a query
yj∗t = 0, then it can find (xi∗

k
− xi∗1)f i∗,j∗yj∗1 (via the equation in step 3).

5. Consequently it finds (xi∗
k
−xi∗1)f i∗,j∗yj∗

t′
for the t′-th query on j∗ (since the equation

in (3) holds for any j∗t).

6. Similarly it can find xi∗1 f i∗,j∗(yj∗
t′
− yj∗1).

7. Putting steps 5 and 6 together, it finds the leakage given in Eq. (12).

Note that we computed a special form of the leakage from the original one, so if the proof is
working for this leakage then the scheme is secure for the original case.
Now we address a special property of Lin’s FHIP scheme (and consequently our dFH scheme)
which is used in the proof.
Property 3. Given the encryption associated with x, one can compute the encryption of
x||x′. Similarly given the functional key associated with y, one can compute the functional
key for y||y′.

To see this, let FH generates the ciphertext and functional key corresponding with x and
y where msk = (sk1, sk2) is the master secret key. Then the ciphertext and functional key are
in the form given in Property 2, and by sampling msk′, and having the encoded randomness
used in ctx, we can compute.

FH.Enc(msk||msk′,x||x′) =
(
〈sk2||sk′2, ctx||ctx′〉, ctx||ctx′

)
where

〈sk2||sk′2, ctx||ctx′〉 = 〈sk2, ctx〉+ 〈sk′2, ctx′〉.
and the underlined part comes from the encryption of x. And similarly,

FH.KeyGen(msk||msk′,y||y′) =
(

Enc(sk0
2 + sk′02 ,−〈sk1||sk′1,y||y′〉; [r]2), cty||cty′

)
where

Enc(sk0
2 + sk′02,−〈sk1||sk′1,y||y′〉; [r]2)

= Enc(sk0
2,−〈sk1,y〉; [r]2) + Enc(sk′02,−〈sk

′
1,y′〉; [r]2)

Note that the ciphertexts ctx and ctx′ share the same randomness, thus one can write
ctx||ctx′ = ctx||x′ (similarly cty||cty′ = cty||y′). Putting to gather we get the ciphertext
and functional key for x||x′ and y||y′ generated by FH associated with the master key
msk′′ = (msk,msk′) = (sk1||sk′1, sk

0
2 + sk′02, sk

1
2||sk

′1
2).

28 M. Abdalla et al.

Now we are ready to prove many-security of our 2-MCQFE′ construction.

Theorem 6. If dFH is secure, 2-input QFE is many-sel-IND secure, and 2-MCQFE is
one-sel-secure, our suggested construction 2-MCQFE′ is many-sel-secure.

Proof. We proceed via a sequence of the games, the first and the last games are the real
games respectively for b = 0 and b = 1. Fig. 13 summarizes the required games. In the
ciphertexts of our many-secure 2-MCQFE (Eq. (11)), we define Xik,` = (xik,`||02k) and
Yjt,` = (yjt,`||02k) as the messages associated with the label `.

G0: is the real game associated with b = 0.

G1: is similar to the previous game, except that in Xik,`, the vector 02k is replaced with
A0
i,` = x0

i1,`
||x0

i1,`
and in Yjk,`, the vector 02k is replaced with B0

jt,`
= −y0

j1,`
||y0

j1,`
. One can

verifies that:
A0
i,`B

0
jt,`′ = 0, ∀i, j, `, `′

Thus by relying on the security of dFH, games G0 and G1 are indistinguishable.

G2: is similar to the previous game, except that, we replace the last x0
i1,`

(in A0
i,`) with x1

i1,`

and correspondingly y0
i1,`

with y1
i1,`

. Games G1 and G2 are indistinguishable relying on the
one-security of 2-MCQFE. The simulator can simulate the encryption queries by Property 3.

G3: is similar to the previous game, except that, we define C0
ik,`

:= x0
ik,`
||x0

i1,`
and replace

it with C1
ik,`

, and also D0
jt,`

:= y0
jt,`
|| − y0

j1,`
with D1

jt,`
for all labels (see Fig. 13). This

transition needs a simple hybrid on the labels. In each hybrid, the constraints Eq. (12) allows
us to rely on the security of 2-input QFE. The simulator can simulate the encryption queries
by Property 3.

G4: is similar to the game G1 and allows us to replace, A1
i,` and B1

jt,`′
with vectors 02k and

02k where A1
i,` and B1

jt,`′
are defined in the game G1. This is then the real game associated

with b = 1. ut

Game Description justific.

G0 X0
ik,`

= x0
ik,`
||0 Y 0

jt,` = y0
jt,`||0 real game b = 0

G1
x0
ik,`
|| x0

i1,`||x
0
i1,`

y0
jt,`|| −y0

j1,`||y
0
j1,`

dFH

G2
x0
ik,`
||x0

i1,`|| x1
i1,`

y0
jt,`|| − y0

j1,`|| y1
j1,`

one-security

2-MCQFE

G3
x1
ik,`||x

1
i1,` ||x

1
i1,`

y1
jt,`|| − y1

j1,` ||y
1
j1,`

2-input QFE

G4 X1
ik,`

= x1
ik,`
|| 0 Y 1

jt,` = y1
jt,`|| 0 dFH, real game b = 1

Fig. 13: The sequence of games for many-secure 2-MCQFE.

MC-QFE from FH-IPFE 29

Acknowledgments.

This work was supported in part by the European Union’s Horizon 2020 Research and Innova-
tion Programme FENTEC (Grant Agreement no. 780108), by the European Union’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud), and
by the French FUI project ANBLIC.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven,
G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties, relation to
anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
205–222. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_13

2. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional
encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923,
pp. 552–582. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-34618-8_19

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for
inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg
(Mar / Apr 2015). https://doi.org/10.1007/978-3-662-46447-2_33

4. Abdalla, M., Bourse, F., Marival, H., Pointcheval, D., Soleimanian, A., Waldner, H.:
Multi-client inner-product functional encryption in the random-oracle model. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 525–545. Springer, Heidelberg (Sep 2020).
https://doi.org/10.1007/978-3-030-57990-6_26

5. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for
inner products: Function-hiding realizations and constructions without pairings. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 597–627. Springer,
Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-1_20

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from
standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816,
pp. 333–362. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/978-3-662-53015-3_12

7. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for
quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer, Heidelberg (Aug 2017).
https://doi.org/10.1007/978-3-319-63688-7_3

8. Barbosa, M., Catalano, D., Soleimanian, A., Warinschi, B.: Efficient function-hiding functional
encryption: From inner-products to orthogonality. In: Matsui, M. (ed.) CT-RSA 2019. LNCS,
vol. 11405, pp. 127–148. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/978-3-030-
12612-4_7

9. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving ag-
gregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21 (2016).
https://doi.org/10.1145/2873069, https://doi.org/10.1145/2873069

10. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword
search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522.
Springer, Heidelberg (May 2004). https://doi.org/10.1007/978-3-540-24676-3_30

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (Aug 2001).
https://doi.org/10.1007/3-540-44647-8_13

12. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-
client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer, Heidelberg (Dec 2018).
https://doi.org/10.1007/978-3-030-03329-3_24

https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-57990-6_26
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-030-12612-4_7
https://doi.org/10.1007/978-3-030-12612-4_7
https://doi.org/10.1145/2873069
https://doi.org/10.1145/2873069
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-030-03329-3_24

30 M. Abdalla et al.

13. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional
encryption with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021
(2018), https://eprint.iacr.org/2018/1021

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman
assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
129–147. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40084-1_8

15. Fan, X., Tang, Q.: Making public key functional encryption function private, distributively. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 218–244. Springer,
Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-76581-5_8

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In: 54th FOCS. pp. 40–49. IEEE
Computer Society Press (Oct 2013). https://doi.org/10.1109/FOCS.2013.13

17. Gay, R.: A new paradigm for public-key functional encryption for degree-2 polynomials. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110,
pp. 95–120. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45374-9_4

18. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A., Shi, E., Zhou,
H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (May 2014). https://doi.org/10.1007/978-3-
642-55220-5_32

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled
circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
45th ACM STOC. pp. 555–564. ACM Press (Jun 2013). https://doi.org/10.1145/2488608.2488678

20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via
multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 162–179. Springer, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-5_11

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In:
Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 503–523.
Springer, Heidelberg (Aug 2015). https://doi.org/10.1007/978-3-662-48000-7_25

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access
control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM
CCS 2006. pp. 89–98. ACM Press (Oct / Nov 2006). https://doi.org/10.1145/1180405.1180418,
available as Cryptology ePrint Archive Report 2006/309

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
146–162. Springer, Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3_9

24. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (May / Jun
2010). https://doi.org/10.1007/978-3-642-13190-5_4

25. Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in the standard model
from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923,
pp. 520–551. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-34618-8_18

26. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer,
Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63688-7_20

27. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on
constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS. pp. 11–20. IEEE Computer
Society Press (Oct 2016). https://doi.org/10.1109/FOCS.2016.11

28. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the
decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208.
Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7_11

29. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D.
(eds.) CRYPTO’84. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (Aug 1984)

https://eprint.iacr.org/2018/1021
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-76581-5_8
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1145/2488608.2488678
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1109/FOCS.2016.11
https://doi.org/10.1007/978-3-642-14623-7_11

	2-Step Multi-Client Quadratic Functional Encryption from Decentralized Function-Hiding Inner-Product
	Introduction
	Contributions
	Scenario and Applications
	Overview and Challenges

	Preliminaries
	Functional Encryption
	A Review on the FHIP Scheme of LinC:Lin17

	A 2-Input QFE Scheme
	Public-Key FHIP Scheme in Decentralized Setting
	Single-Authority FHIP (warm-up)
	Decentralized FHIP (d-FHIP)

	2-Step MCQFE
	From one to many

