
A Gas-Efficient Superlight
Bitcoin Client in Solidity

Stelios Daveas2, Kostis Karantias3, Aggelos Kiayias1,3, and Dionysis Zindros2,3

1 University of Edinburgh
akiayias@inf.ed.ac.uk
2 University of Athens

sdaveas@gmail.com, dionyziz@gmail.com
3 IOHK

kkarantias@gmail.com

Abstract. Superlight clients enable the verification of proof-of-work-
based blockchains by checking only a small representative number of
block headers instead of all the block headers as done in simplified pay-
ment verification (SPV). Such clients can be embedded within other
blockchains by implementing them as smart contracts, allowing for cross-
chain verification. One such interesting instance is the consumption of
Bitcoin data within Ethereum by implementing a Bitcoin superlight
client in Solidity. While such theoretical constructions have demonstrated
security and efficiency in theory, no practical implementation exists. In
this work, we put forth the first practical Solidity implementation of
a superlight client which implements the NIPoPoW superblocks pro-
tocol. Contrary to previous work, our Solidity smart contract achieves
sufficient gas-efficiency to allow a proof and counter-proof to fit within
the gas limit of a block, making it practical. We provide extensive ex-
perimental measurements for gas consumption. The optimizations that
enable gas-efficiency heavily leverage a novel technique which we term
hash-and-resubmit, which almost completely eliminates persistent stor-
age requirements, the most expensive operation of smart contracts in
terms of gas. Instead, the contract asks contesters to resubmit data and
checks their veracity by hashing it. Other optimizations include off-chain
manipulation of proofs in order to remove expensive look-up structures,
and the usage of an optimistic schema. We show that such techniques
can be used to bring down gas costs significantly and may be of indepen-
dent interest. Lastly, our implementation allows us to calculate concrete
cryptoeconomic parameters for the superblocks NIPoPoWs protocol and
in particular to make recommendations about the monetary value of the
collateral parameters. We provide such parameter recommendations over
a variety of liveness settings.

Keywords: Blockchain; Superlight clients; NIPoPoWs; Solidity; Design Pat-
terns

1 Introduction

Blockchain interoperability [48]is the ability of distinct blockchains to communi-
cate. This crosschain [47,23] communication enables useful features across block-
chains such as the transfer of assets from one chain to another (one-way peg) [25]
and back (two-way peg) [27], as well as the generic passing of information from
chain to chain [30]. To date, there is no commonly accepted decentralized pro-
tocol that enables cross-chain transactions.

In general, crosschain-enabled blockchains A, B support the following oper-
ations:

– Crosschain trading: a user with deposits in blockchain A, makes a payment
to a user in blockchain B.

– Crosschain fund transfer: a user transfers her funds from blockchain A to
blockchain B. After the transfer, these funds no longer exist in blockchain
A. The user can later decide to transfer any portion of the original amount
to the blockchain of origin.

In order to perform crosschain operations, mechanism that allows users of
blockchain A to discover events that have occurred in chain B, such as settled
transactions, must be introduced. One tricky aspect is to ensure the atomicity
of such operations, which require that either the transactions take place in both
chains, or in neither. This is achievable through atomic swaps [36,22]. However,
atomic swaps provide limited functionality in that they do not allow the generic
transfer of information from one blockchain to a smart contract in another. For
many applications, a richer set of functionalities is needed [30,26]. To communi-
cate the fact that an event took place in a source blockchain, a naïve approach is
to have users relay all the source blockchain blocks to a smart contract residing
in the target chain, which functions as a client for the remote chain and validates
all incoming information [10]. This approach, however, is impractical because a
sizable amount of storage is needed to host entire chains as they grow in time.
As of June 2020, Bitcoin [35] chain spans roughly 245 GB, and Ethereum [44,5]
has exceeded 300 GB4.

One early solution to compress the extensive size of blockchain and improve
the efficient of a client is addressed by Nakamoto [35] with the Simplified Pay-
ment Verification (SPV) protocol. In SPV, only the headers of blocks are stored,
saving a considerable amount of storage. However, even with this protocol, the
process of downloading and validating all block headers still demands a consid-
erable amount of resources since they grow linearly in the size of the blockchain.
In Ethereum, for instance, headers sum up to approximately 4.8 GB5 of data.
These numbers quickly become impractical when it comes to consuming and
storing the data within a smart contract.
4 Size of blockchain derived from https://www.statista.com, https://etherscan.io
5 Calculated as the number of blocks (10,050,219) times the size of header (508 bytes).

Statistics by https://etherscan.io/.

2

Towards the goal of delivering more practical solutions for blockchain transac-
tion verification, a new generation of superlight clients has emerged [28,29,24,4].
In these protocols, cryptographic proofs are generated, that prove the occur-
rence of events in a blockchain. These proofs require only a polylogarithmic
size of data compared to the SPV model, resulting in better performance. By
utilizing superlight client protocols, a compressed proof for an event in chain
A is constructed and dispatched to chain B. If chain B supports smart con-
tracts, the proof is then verified automatically and transparently on-chain. This
communication is realized without the intervention of trusted third-parties. An
interesting application of such a protocol is the communication between Bitcoin
and Ethereum and in particular the passing of Bitcoin events to Ethereum smart
contracts.

The first protocol in this family is the superblocks Non-Interactive Proofs of
Proof-of-Work (NIPoPoWs) protocol. This cryptographic primitive is provably
secure and provides succinct proofs about the existence of an arbitrary event in a
chain. We leverage NIPoPoWs as the fundamental building block of our solution.
Related Work. NIPoPoWs were introduced by Kiayias, Miller and Zindros [29]
and their application to cross-chain communication was described in follow-up
work [30], but only theoretically and without providing an implementation. A few
cryptocurrencies already include built-in NIPoPoWs support, namely ERGO [8],
Nimiq [40], and WebDollar [41]; these chains can natively function as sources in
cross-chain protocols. Christoglou [11] provided a Solidity smart contract which
is the first implementation of crosschain events verification based on NIPoPoWs,
where proofs are submitted and checked for their validity, marking the first
implementation of an on-chain verifier. This solution, however, is impractical
due to extensive usage of resources, widely exceeding the Ethereum block gas
limit. Other attempts have been made to address the verification of Bitcoin
transactions to the Ethereum blockchain, most notably BTC Relay [10], which
requires storing a full copy of all Bitcoin block headers within the Ethereum
chain.
Our contributions. Notably, no practical implementation for an on-chain su-
perlight clients exists to date. In this paper, we focus on constructing a practical
client for superblock NIPoPoWs. For the implementation of our client, we refine
the NIPoPoW protocol based on a series of keen observations. These refinements
allow us to leverage useful techniques that construct a practical solution for proof
verification. We believe this achievement is a decisive and required step towards
establishing NIPoPoWs as the standard protocol for cross-chain communication.
A summary of our contributions in this paper is as follows:

1. We develop the first on-chain decentralized client that securely verifies cross-
chain events and is practical. Our client establishes a trustless and efficient
solution to the interoperability problem. We implement6 our client in Solid-
ity, and we verify Bitcoin events to the Ethereum blockchain. The security
assumptions we make are no other than SPV’s [21,45].

6 Our implementation, unit tests and experiments can be found in https://github.
com/sdaveas/nipopow-verifier and are released as open source software.

3

https://github.com/sdaveas/nipopow-verifier
https://github.com/sdaveas/nipopow-verifier

2. We present a novel pattern which we term hash-and-resubmit. Our pattern
significantly improves performance of Ethereum smart contracts [44,5] in
terms of gas consumption by utilizing the calldata space of Ethereum block-
chain to eliminate high-cost storage operations.

3. We create an optimistic schema which we incorporate into the design of
our client. This design achieves significant performance improvement by re-
placing linear complexity verification of proofs with constant complexity
verification.

4. We demonstrate that superblock NIPoPoWs are practical, making it the first
efficient cross-chain primitive.

5. We present a cryptoeconometric analysis of NIPoPoWs. We provide concrete
values for the collateral/liveness trade-off.

Our implementation meets the following requirements:

1. Security: The client implements a provably secure protocol.
2. Decentralization: The client is not dependent on trusted third-parties and

operates in a transparent, decentralized manner.
3. Efficiency: The client complies with environmental constraints, i.e. block

gas limit and calldata size limit of the Ethereum blockchain.

We selected Bitcoin as the source blockchain as it the most popular cryp-
tocurrency, and enabling crosschain transactions in Bitcoin is beneficial to the
majority of the blockchain community. We selected Ethereum as the target block-
chain because, besides its popularity, it supports smart contracts, which is a re-
quirement in order to perform on-chain verification. We note here that prior to
Bitcoin events being consumable in Ethereum, Bitcoin requires a velvet fork [46],
a matter treated in a separate line of work [37].
Structure. In Section 2 we describe the blockchain technologies that are rele-
vant to our work. In Section 3 we put forth the hash-and-resubmit pattern. We
demonstrate the improved performance of smart contracts using the pattern,
and how it is incorporated into our client. In Section 4, we present an alteration
to the NIPoPoW protocol that enables the elimination of look-up structures.
This allows for efficient interactions due to the considerably smaller size of dis-
patched proofs. In Section 5, we put forth an optimistic schema that significantly
lowers the complexity of a proof’s structural verification from linear to constant,
by introducing a new interaction which we term dispute phase. Furthermore, we
present a technique that leverages the dispatch of a constant number of blocks in
the contest phase. Finally, in Section 6, we present our cryptoeconomic analysis
on our client and establish the monetary value of collateral parameters.

2 Preliminaries

Model. We consider a setting where the blockchain network consists of two
different types of nodes: The first kind, full nodes, are responsible for the main-
tenance of the chain including verifying it and mining new blocks. The second

4

kind, verifiers, connect to full nodes and wish to learn facts about the block-
chain without downloading it, for example whether a particular transaction is
confirmed. The full nodes therefore also function as provers for the verifiers.
Each verifier connects to multiple provers, at least one of which is assumed to
be honest.
Blockchain. Each honest full node locally maintains a chain C, a sequence of
blocks. In understanding that we are developing an improvement on top of SPV,
we use the term block to mean what is typically referred to as a block header.
Each block contains the Merkle Tree root [34] of transaction data x, the hash
s of the previous block in the chain known as the previd, as well as a nonce
value ctr. As discussed in the Introduction, the compression of application data
x is orthogonal to our goals in this paper and has been explored in independent
work [9] which can be composed with ours. Each block b = s ∥ x ∥ ctr must
satisfy the proof-of-work [13] equation H(b) ≤ T where T is a constant target, a
small value signifying the difficulty of the proof-of-work problem. Our treatment
is in the static difficulty case, so we assume that T is constant throughout the
execution7. H(B) is known as the block id.

Blockchains are finite block sequences obeying the blockchain property: that
in every block in the chain there exists a pointer to its previous block. A chain
is anchored if its first block is genesis, denoted G, a special block known to all
parties. This is the only block the verifier knows about when it boots up. For
chain addressing we use Python brackets C[·]. A zero-based positive number in
a bracket indicates the indexed block in the chain. A negative index indicates
a block from the end, e.g., C[−1] is the tip of the blockchain. A range C[i:j] is
a subarray starting from i (inclusive) to j (exclusive). Given chains C1,C2 and
blocks A,Z we concatenate them as C1C2 or C1A (if clarity mandates it, we also
use the symbol ∥ for concatenation). Here, C2[0] must point to C1[−1] and A
must point to C1[−1]. We denote C{A:Z} the subarray of the chain from block A
(inclusive) to block Z (exclusive). We can omit blocks or indices from either side
of the range to take the chain to the beginning or end respectively. As long as
the blockchain property is maintained, we freely use the set operators ∪, ∩ and
⊆ to denote operations between chains, implying that the appropriate blocks are
selected and then placed in chronological order.

During every round, every party attempts to mine a new block on top of
its currently adopted chain. Each party is given q queries to the random oracle
which it uses in attempting to mine a new block. Therefore the adversary has
tq queries per round while the honest parties have (n − t)q queries per round.
When an honest party discovers a new block, they extend their chain with it
and broadcast the new chain. Upon receiving a new chain C′ from the network,
an honest party compares its length |C′| against its currently adopted chain C
and adopts the newly received chain if it is longer. It is assumed that the honest
parties control the majority of the computational power of the network. If so,

7 A treatment of variable difficulty NIPoPoWs has been explored in the soft fork
case [48], but we leave the treatment of velvet fork NIPoPoWs in the variable diffi-
culty model for future work.

5

the protocol ensures consensus among the honest parties: There is a constant k,
the Common Prefix parameter, such that, at any round, all the chains belonging
to honest parties share a common prefix of blocks; the chains can deviate only
up to k blocks at the end of each chain [17]. Concretely, if at some round r two
honest parties have C1 and C2 respectively, then either C1[:− k] is a prefix of C2

or C2[:− k] is a prefix of C1.

Superblocks. Some valid blocks satisfy the proof-of-work equation better than
required. If a block b satisfies H(b) ≤ 2−µT for some natural number µ ∈ N
we say that b is a µ-superblock or a block of level µ. The probability of a new
valid block achieving level µ is 2−µ. The number of levels in the chain will be
log |C| with high probability [28]. Given a chain C, we denote C↑µ the subset of
µ-superblocks of C.

Non-Interactive Proofs of Proof-of-Work (NIPoPoW) protocols allow verifiers
to learn the most recent k blocks of the blockchain adopted by an honest full
node without downloading the whole chain. The challenge lies in building a
verifier who can find the suffix of the longest chain between claims of both honest
and adversarial provers, while not downloading all block headers. Towards that
goal, the superblock approach uses superblocks as samples of proof-of-work. The
prover sends superblocks to the verifier to convince them that proof-of-work has
taken place without actually presenting all this proof-of-work. The protocol is
parametrized by a constant security parameter m. The parameter determines
how many superblocks will be sent by the prover to the verifier and security is
proven with overwhelming probability in m.

Prover. The prover is a friendly but untrusted node that submits proofs of
events that happen on a source chain. These proofs are advertised to a different
target chain and their validity is ensured by other honest nodes. Provers need
to monitor both source and target chains in order to (a) create proofs of events
from the source chain and (b) validate proofs that are submitted by other nodes
to the target chain.

The prover selects various levels µ and, for each such level, sends a carefully
chosen portion of its µ-level superchain C↑µ to the verifier. In standard blockchain
protocols such as Bitcoin and Ethereum, each block C[i + 1] in C points to its
previous block C[i], but each µ-superblock C↑µ [i + 1] does not point to its
previous µ-superblock C↑µ [i]. It is imperative that an adversarial prover does
not reorder the blocks within a superchain, but the verifier cannot verify this
unless each µ-superblock points to its most recently preceding µ-superblock. The
proposal is therefore to interlink the chain by having each µ-superblock include
an extra pointer to its most recently preceding µ-superblock. To ensure integrity,
this pointer must be included in the block header and verified by proof-of-work.
However, the miner does not know which level a candidate block will attain prior
to mining it. For this purpose, each block is proposed to include a pointer to the
most recently preceding µ-superblock, for every µ as illustrated in Figure 1. As
these levels are only log |C|, this only adds log |C| extra pointers to each block
header.

6

Even though a proof can be structurally correct, an adversary prover can
dispatch a proof of an dishonest chain. This is addressed by establishing a con-
test period, in which honest provers can submit honest proofs that invalidate the
originally submitted. The rationale behind this is that the honest chain encapsu-
lates the most proof-of-work, and thus achieves better score among other proofs
that represent shorter, dishonest chains. To provide incentives for honest nodes
to contest fraud proofs, a collateral is included to the submission of proofs which
is paid to the party that achieves to present a better proofs than the originally
submitted. If no contest happen, the collateral is returned to the original issuer.

Algorithm 1 The Prove algorithm for the NIPoPoW protocol in a soft fork
1: function Provem,k(C)
2: B ← C[0] ▷ Genesis
3: for µ = |C[−k − 1].interlink| down to 0 do
4: α← C[: −k]{B :}↑µ
5: π ← π ∪ α
6: if m < |α| then
7: B ← α[−m]
8: end if
9: end for

10: χ← C[−k :]
11: return πχ
12: end function

0 0 0 0 0 00

22
1 1 1 1

3
4

3

Fig. 1: The interlinked blockchain. Each superblock is drawn taller according to
its achieved level. Each block links to all the blocks that are not being overshad-
owed by their descendants. The most recent (right-most) block links to the four
blocks it has direct line-of-sight to.

Verifier. The verifier is an application that performs operations on proofs and
does not need to be aware of the state of each chain. Upon receiving two proofs,
π1 and π2, the NIPoPoW verifier first checks that they form valid chains. To check

7

Algorithm 2 The Verify algorithm for the NIPoPoW protocol
1: function best-argm(π, b)
2: M ← {µ : |π↑µ {b :}| ≥ m} ∪ {0} ▷ Valid levels
3: return maxµ∈M{2µ · |π↑µ {b :}|} ▷ Score for level
4: end function
5: operator πA ≥m πB

6: b← (πA ∩ πB)[−1] ▷ LCA
7: return best-argm(πA, b) ≥ best-argm(πB , b)
8: end operator
9: function VerifyQm,k(P)

10: π̃ ← (Gen) ▷ Trivial anchored blockchain
11: for (π, χ) ∈ P do ▷ Examine each proof in P
12: if validChain(πχ) ∧ |χ| = k ∧ π ≥m π̃ then
13: π̃ ← π
14: χ̃← χ ▷ Update current best
15: end if
16: end for
17: return Q̃(χ̃)
18: end function

Algorithm 3 The verify algorithm for the NIPoPoW infix protocol
1: function ancestors(B, blockById)
2: if B = Gen then
3: return {B}
4: end if
5: C← ∅
6: for id ∈ B.interlink do
7: if id ∈ blockById then
8: B′ ← blockById[id] ▷ Collect into DAG
9: C← C ∪ ancestors(B′, blockById)

10: end if
11: end for
12: return C ∪ {B}
13: end function
14: function verify-infxDℓ,m,k(P)
15: blockById← ∅
16: for (π, χ) ∈ P do
17: for B ∈ π do
18: blockById[id(B)]← B
19: end for
20: end for
21: π̃ ← best π ∈ P according to suffix verifier
22: return D(ancestors(π̃[−1], blockById))
23: end function

8

that they are valid chains, the verifier ensures every block in the proof contains a
pointer to its previous block inside the proof through either the previd pointer in
the block header, or in the interlink vector. If any of these checks fail, the proof is
rejected. It then compares π1 against π2 using the ≤m operator, which works as
follows. It finds the lowest common ancestor block b = (π1∩π2)[−1]; that is, b is
the most recent block shared among the two proofs. Subsequently, it chooses the
level µ1 for π1 such that |π1{b:}↑µ1 | ≥ m (i.e., π1 has at least m superblocks of
level µ1 following block b) and the value 2µ1 |π1{b:}↑µ1 | is maximized. It chooses
a level µ2 for π2 in the same fashion. The two proofs are compared by checking
whether 2µ1 |π1{b:}↑µ1 | ≥ 2µ2 |π2{b:}↑µ2 | and the proof with the largest score is
deemed the winner. The comparison is illustrated in Algorithm 2.

An adversary prover could skip the blocks of interest and present an honest
and longer chain that is considered a better proof. For that reason, the last step
of the algorithm in the suffix verifier is changed to not only store the best proof
but also combine the two proofs by including all of the ancestor blocks of the
losing proof. This is called infix verification and is guaranteed to include the
blocks of interest. The resulting best proof is stored as a DAG(Directed Acyclic
Graph), as in Algorithm 3.

3 The Hash-and-Resubmit Pattern

We now introduce a novel design pattern for Solidity smart contracts that results
into significant gas optimization due to the elimination of expensive storage
operations. We first introduce our pattern, and illustrate how smart contracts
benefit from using it. Then, we proceed to integrate our pattern in the NIPoPoW
protocol, and we analyze the performance in comparison with previous work [11].
Motivation. It is essential for smart contracts to store data in the blockchain.
However, interacting with the storage of a contract is among the most expensive
operations of the EVM [44,5]. Therefore, only necessary data should be stored
and redundancy should be avoided when possible. This is contrary to conven-
tional software architecture, where storage is considered cheap. Usually, data
access performance in traditional systems is measured with respect to time and
space. In Ethereum, however, performance is related to gas consumption. Ac-
cess to persistent data costs a substantial amount of gas, which has a direct
correspondence to a monetary cost.
Related patterns. Towards implementing gas-efficient smart contracts, several
methodologies have been proposed [6,7,15,19]. In order to eliminate storage oper-
ations using data signatures, the utilization of IPFS [2] has been proposed [39,20].
However, these solutions do not address availability, which is one of our main
requirements. Another solution uses logs [12] to replace storage in a similar
manner, sparing a great amount of gas. However, this approach does not ad-
dress consistency, which is also one of our critical targets. Lastly, there have
been proposals [43] to replace storage read operations, but they do not address
write operations.

9

txi
 signature: func1, input: d0

transactions

.txn

	func1(d0)	{
			d	=	process(d0);
			store	h	=	H(d);
	}

	call	func2(d);

	func2(d)	{
			require(h	==	H(d));
			...
	}

	d*	=	makeUp();
	call	func2(d*);

smart
contract

smart
contract

honest adversary

tx1 tx2 tx3

Fig. 2: The hash-and-resubmit pattern. First, an invoker calls func1(d0). Then d0 is processed on-chain and d is generated. The
commitment to d is stored in the blockchain as the digest of a hash function H(·). Then, a full node that observes invocations of
func1 retrieves d0, and generates d by performing the respective processing on d0 off-chain. An adversarial observer dispatches
d∗, where d∗ ̸=d. Finally, the nodes invoke func2(.). In func2, the validation of input data is performed, reverting the function
call if the hash of the input does not match with the stored commitment. By applying a hash-and-resubmit pattern, only the
fixed-size commitment of d is stored to the contract’s state, replacing arbitrarily large structures.

10

Applicability. To benefit from the hash-and-resubmit pattern, an application
needs to meet the following requirements:

1. The application is a Solidity smart contract.
2. Read/write operations are performed in large arrays that exist in storage.

Using the pattern for variables of small size may result in negligible gain or
even performance loss.

3. A full node observes function calls to the smart contract.

Participants and collaborators. The first participant is the smart contract S
that accepts function calls. Another participant is the invoker E1, who dispatches
a large array d0 to S via a function func1(d0). Upon submission, d0 is potentially
processed in func1, resulting to d. The last participant is the observer E2, who is a
full node that observes transactions towards S in the blockchain. This is possible
because nodes maintain the blockchain locally. After observation, E2 retrieves
data d. Since this is an off-chain operation, a malicious E2 potentially alters d
before interacting with S. We denote the potentially modified d as d∗. Finally,
E2 acts as an invoker by making a new call to S, func2(d∗). The verification that
d = d∗, which is a prerequisite for the secure functionality of the underlying
contract, forms a part of the pattern and is performed in func2.
Implementation. The implementation of this pattern is divided in two parts.
The first part covers how d∗ is retrieved by E2, whereas in the second part the
verification of d = d∗ is realized. The challenge here is twofold:

1. Availability: E2 must be able to retrieve d without the need of accessing
on-chain data.

2. Consistency: E2 must be prevented from dispatching d∗ that differs from d
which is a product of the originally submitted d0.

The hash-and-resubmit technique is performed in two stages to face these chal-
lenges: (a) the hash phase, which addresses consistency, and (b) the resubmit
phase which addresses availability and consistency.
Addressing availability: During the hash phase, E1 makes the function call func1(d0).
This transaction, which includes a function signature (func1) and the corre-
sponding data (d0), is confirmed in a block by a miner. Due to blockchain’s
transparency, the observer E2 of func1 retrieves a copy of d0 from the calldata,
without the need of accessing contract data. In turn, E2 performs locally the same
set of on-chain instructions operated on d0, generating d. Thus, availability is
addressed through observability.
Addressing consistency: We prevent an adversary E2 from dispatching data d∗ ̸= d
by storing the commitment of d in the contract’s state during the execution
of func1(.) by E1. In the context of Solidity, a commitment is the digest of
the structure’s hash. The pre-compiled sha256 is convenient to use in Solidity;
however we can make use of any cryptographic hash function H(·):

hash← H(d)

11

Then, in rehash phase, the verification is performed by comparing the stored
digest of d with the digest of d∗:

require(hash = H(d∗))

In Solidity, the size of this digest is 32 bytes. To persist such a small value in
the contract’s memory only adds a small constant gas overhead. We illustrate
the application of the hash-and-resubmit pattern in Figure 2.
Sample. We now demonstrate the usage of the hash-and-resubmit pattern with
a simplistic example. We create a smart contract that orchestrates a game be-
tween two players, P1 and P2. The winner is the player with the most valuable
array. The interaction between players through the smart contract is realized in
two phases: (a) the submit phase and (b) the contest phase.
Submit phase: P1 submits an N-sized array, a1, and becomes the holder of the
contract.
Contest phase: P2 submits a2. If the result of compare(a2, a1) is true, then P2

becomes the holder. We provide a simple implementation for compare, but we
can consider any notion of comparison, since the pattern is abstracted from such
implementation details.

We make use of the hash-and-resubmit pattern by prompting P2 to provide
two arrays to the contract during contest phase: (a) a∗1 , which is the originally
submitted array by P1, possibly modified by P2, and (b) a2, which is the con-
testing array.

We provide two implementations of the above described game. In Algorithm 4
we display the storage implementation, while in Algorithm 5 we show the im-
plementation leveraging the hash-and-resubmit pattern.
Gas analysis. The gas consumption of the two above implementations is dis-
played in Figure 3. By using the hash-and-resubmit pattern, the aggregated gas
consumption for submit and contest is decreased by 95%. This significantly affects
the efficiency and applicability of the contract. Note that the storage implemen-
tation exceeds the Ethereum block gas limit (10,000,000 gas as of June 2020), for
arrays of size 500 and above, contrary to the optimized version, which consumes
approximately only 1/10th of the block gas limit for arrays of 1,000 elements.
Consequences. The consequence of applying the hash-and-resubmit pattern
is the circumvention of storage, a benefit that saves a substantial amount of
gas, especially when stored structures are large. Therefore, smart contracts that
exceed the Ethereum block gas limit and benefit sufficiently from the alleviation
of storage can become practical.
Known uses. To our knowledge, we are the first to address consistency and
availability by combining blockchain’s transparency with commitments in a man-
ner that eliminates storage from smart contracts.
Enabling NIPoPoWs. We now present how the hash-and-resubmit pattern is
used in the context of the NIPoPoW superlight client. The NIPoPoW verifier
adheres to a submit-and-contest schema where the inputs of the functions are
arrays that are processed on-chain, and a node observes function calls towards
the smart contract. Therefore, it makes a suitable case for our pattern.

12

Algorithm 4 best array using storage
1: contract best-array
2: best← ∅; holder← ∅
3: function submit(a)
4: best ← a ▷ array saved in storage
5: holder ← msg.sender
6: end function
7: function contest(a)
8: require(compare(a))
9: holder ← msg.sender

10: end function
11: function compare(a)
12: require(|a| ≥ |best|)
13: for i← 1 to |best| do
14: require(a[i] ≥ best[i])
15: end for
16: return true
17: end function
18: end contract

Algorithm 5 best array using hash-and-resubmit
1: contract best-array
2: hash← ∅; holder← ∅
3: function submit(a1)
4: hash← H(a1) ▷ hash saved in storage
5: holder ← msg.sender
6: end function
7: function contest(a∗1 , a2)
8: require(H(a∗1) = hash) ▷ validate a∗1
9: require(compare(a∗1 , a2))

10: holder ← msg.sender
11: end function
12: function compare(a∗1 , a2)
13: require(|a∗1 | ≥ |a2|)
14: for i← 1 to |a∗1 | do
15: require(a∗1 [i] ≥ a2[i])
16: end for
17: end function
18: return true
19: end contract

13

200 400 600 800 1000
Array size

105

106

107

G
as

 c
on

su
m

pt
io

n
(lo

g
sc

al
e)

21 mil

3 mil

0.67 mil
0.38 mil

Block gas limit
Submit
Contest
Submit using hash-and-resubmit
Contest using hash-and-resubmit

Fig. 3: Gas-cost reduction of Algorithm 4 using the hash-and-resubmit pattern
(lower is better). By avoiding gas-heavy storage operations, the aggregated cost
of submit and contest is decreased by 95%.

14

In the submit phase, a proof is submitted. In the case the proof is fraudulent,
it is contested by another user in the contest phase. The contester is a node that
monitors the traffic of the verifier contract. The input of the submit function
includes the submit proof (πs) that claims the occurrence of an event (e) in the
source chain, and the input of the contest function includes a contesting proof
(πc). A successful contest of πs is realized when πc has a better score [29]. In this
section, we will not examine the score evaluation process since it is irrelevant
to the pattern. The size of proofs is dictated by the value m. We adopt the
recommended [29] parameter value m = 15.

In previous work, NIPoPoW proofs are maintained on-chain, resulting in
extensive storage operations. In our implementation, proofs are not stored on-
chain, and πs is retrieved by the contester from the calldata. Since we assume a
trustless network, πs can be altered by an adversarial contester. We denote the
potentially changed πs as π∗

s . In the contest phase, π∗
s and πc are dispatched in

order to enable the hash-and-resubmit pattern.
For our analysis, we create a blockchain similar to the Bitcoin chain with the

addition of the interlink structure in each block [11]. Our experimental chain
spans 650,000 blocks, representing a slightly larger chain than Bitcoin8. From
the tip of our chain, we branch two sub-chains that span 100 and 200 additional
blocks respectively, as illustrated in Figure 4. Then, we use the smaller chain to
create πs, and the larger chain to create πc. We apply the protocol by submitting
πs, and contesting with πc. The contest is successful, since πc represents a chain
consisting of a greater number of blocks than πs. We select this setting as it
provides maximum code coverage, and it describes the most gas-heavy scenario
for the verifier.

In Algorithm 6 we show how the hash-and-resubmit pattern is leveraged by
our modified NIPoPoW client.

 C1 C2
G: genesis
b: block of interest
lca: last common ancestor

lca bG

650,000 blocks

200 blocks

100 blocks

Fig. 4: Forked chains for our gas analysis.

In Figure 5, we illustrate how hash-and-resubmit improves client performance
compared to previous work. The graph illustrates the aggregated cost of the
submit and contest phases for each implementation. We observe that, by using
8 Bitcoin spans 633,022 blocks as of June 2020. Metrics by

https://www.blockchain.com/

15

the hash-and-resubmit pattern, we improve the gas consumption of the contract
by 50%. This is a decisive step towards creating a practical superlight client.

Note that, in our graph, gas consumption generally follows an ascending
trend; however it is not monotonically increasing. This is due to the fact that
NIPoPoWs are probabilistic structures, the size of which is determined by the
distribution of superblocks within the underlying chain. A proof that is con-
structed for a chain of a certain size can be larger than a proof constructed for a
slightly smaller chain, sometimes resulting in a slight decrease of gas consump-
tion between consecutive values of proof sizes.

Algorithm 6 The NIPoPoW client using hash-and-resubmit
1: contract crosschain
2: events← ⊥; G ← ⊥
3: function initialize(Gremote)
4: G ← Gremote

5: end function
6: function submit(πs, e)
7: require(events[e] = ⊥)
8: require(πs[0] = G)
9: require(valid-interlinks(π))

10: DAG ← DAG ∪ πs

11: ancestors ← find-ancestors(DAG, πs[-1])
12: require(evaluate-predicate(ancestors, e))
13: ancestors = ⊥
14: events[e].hash ← H(πs) ▷ enable pattern
15: end function
16: function contest(π∗

s , πc, e) ▷ provide proofs
17: require(events[e] ̸= ⊥)
18: require(events[e].hash = H(π∗

s)) ▷ verify π∗
s

19: require(πc[0] = G)
20: require(valid-interlinks(πc))
21: lca = find-lca(π∗

s , πc)
22: require(πc ≥m π∗

s)
23: DAG ← DAG ∪ πc

24: ancestors ← find-ancestors(DAG, π∗
s [-1])

25: require(¬evaluate-predicate(ancestors, e))
26: ancestors = ⊥
27: events[e] ← ⊥
28: end function
29: end contract

16

0 50 100 150 200 250
Proof size

106

107

G
as

 c
on

su
m

pt
io

n
(lo

g
sc

al
e)

47M

23M

block gas limit
m=15
previous work
hash-and-resubmit

Fig. 5: Gas consumption of our NIPoPoWs verifier enhanced with hash-and-
resubmit compared to previous work (lower is better) using a secure value of
m. Gas consumption is decreased by approximately 50%.

4 Removing Look-up Structures

Now that we freely eliminate large arrays, we can focus on other types of storage
variables. The challenge we face is that the protocol of NIPoPoWs depends on a
Directed Acyclic Graph (DAG) of blocks which is constructed using a mutable
hashmap in the recommended implementation. This DAG is needed because, in
the infix part of a NIPoPoW, an adversary can skip blocks that should normally
be included in an honest proof. By using a DAG, the set of ancestor blocks of a
block is extracted by performing a simple graph search. For the evaluation of the
predicate, the set of previously encountered ancestors of the tip of the longest
blockchain is used. The set of ancestors is created to avoid an adversary who
presents an honest chain but skips the block of interest.

This logic is intuitive and efficient to implement in most traditional program-
ming languages. However, as our analysis demonstrates, such an implementation
in Solidity is expensive. Although Solidity supports constant-time look-up struc-
tures, native hashmaps are only possible to hold in storage. This affects the
performance of the client, especially for large proofs.

We make a series of observations regarding the potential positions of the block
of interest within proofs, which lead us to the construction of an architecture
that does not require maintaining a DAG, ancestors, or other complementary
structures. We consider the predicate p to be of the form: “does block B exist
inside proof π?”, where B denotes the block of interest of proof π. Let Es denote
the node that performs the submission and the Ec denote the node that initiates
a contest.

17

The node Es is submitting the proof πs in an attempt to convince the verifier
that the predicate p is true, while Ec is submitting the proof πc in an attempt to
convince the verifier that the predicate is false. We call a proof pointless if it does
not contribute to its purpose of convincing the verifier. Namely, πs is pointless if
it does contribute to convincing the verifier of the truth of the predicate, while
πc is pointless if it does not contribute to convincing the verifier of the falsity of
the predicate. We call non-pointless proofs meaningful.
Position of block of interest. NIPoPoWs are sets of sampled interlinked
blocks that form chains. Since proofs πs and πc differ (otherwise the contesting
proof would not be accepted), a fork is created at their last common ancestor
LCA. Since πs claims the truth of the predicate, the block of interest B lies at a
certain stable index [29,32] within πs. A submission in which B is absent from
πs is pointless, since no element of πs satisfies p. On the contrary, if the block of
interest is included in πc, then the contest is pointless.

In the NIPoPoW protocol, proof segments πs{:LCA} and πc{:LCA} are merged
into a single chronologically ordered chain to prevent adversaries from skipping
blocks, and the predicate is evaluated against πs{:LCA}∪ πc{:LCA}. We observe
that πc{:LCA} can be omitted during the predicate’s evaluation, because no
block B exists in πc{:LCA} that is missing from πs{:LCA} and for which the
predicate holds. This is due to the fact that, in a meaningful contest, B is not
included in πc. Consequently, πc is only meaningful if it forks πs at a block prior
to B.
Minimal forks. Given the above observation, we modify our construction to
ask the contester to only send those blocks of πc that follow the LCA block.
We term this truncated chain πf

c = πc{LCA:}. In Algorithm 7, we show how
the minimal fork technique is incorporated into our client, replacing DAG and
ancestor structures. Security is preserved by requiring that the provided πf

c is a
minimal fork, namely that it satisfies the following:

1. πs{LCA} = πf
c[0]

2. πs{LCA:} ∩ πf
c[1:] = ∅

The verifier checks that the above conditions are met in line 19.
In Figure 6 we show how the performance of the client improves. We use

the same test case as in hash-and-resubmit. We achieve a 55% decrease in gas
consumption. The submit phase now costs 4,700,000 gas, and the contest phase
costs 4,900,000 gas. Notably, after these changes, each phase individually fits
within an Ethereum block.

5 Processing fewer blocks

The complexity of most demanding on-chain operations of the verifier are linear
to the size of the proof. This includes the proof validation and the evaluation
of score. We now present two techniques that allow for equivalent operations of
constant complexity.

18

Algorithm 7 The NIPoPoW client using the minimal fork technique
1: contract crosschain
2: ...
3: function submit(πs, e)
4: require(πs[0] = G)
5: require(events[e] = ⊥)
6: require(valid-interlinks(πs))
7: require(evaluate-predicate(πs, e))
8: events[e].hash ← H(πs)
9: end function

10: function contest(π∗
s , πf

c, e, f) ▷ f : Fork index
11: require(events[e] ̸= ⊥)
12: require(events[e].hash = H(π∗

s))
13: require(valid-interlinks(πf

c))
14: require(minimal-fork(π∗

s , πf
c, f)) ▷ Minimal fork

15: require(πf
c ≥m π∗

s)
16: require(¬evaluate-predicate(πf

c, e))
17: events[e] ← ⊥
18: end function
19: function minimal-fork(π1, π2, f)
20: if π1[f] ̸= π2[0] then ▷ Check fork head
21: return false
22: end if
23: for b1 ∈ π1[f+1:] do ▷ Check disjoint proofs
24: if b2 ∈ π2[1:] then
25: return false
26: end if
27: end for
28: return true
29: end function
30: end contract

19

0 50 100 150 200 250
Proof size

105

106

107

G
as

 c
on

su
m

pt
io

n
(lo

g
sc

al
e)

47M
23M

10M

block gas limit
m=15
previous work
hash-and-resubmit
minimal fork

Fig. 6: Performance improvement using minimal fork (lower is better). The gas
consumption is decreased by approximately 55%.

Optimistic schemes. In smart contracts, in order to ensure that users comply
with the underlying protocol, certain actions are typically performed on-chain,
e.g., verification of data, balance checks, etc. In a different recently introduced
approach, the contract does not perform the verification initially, but accepts
the execution’s results at face value. Actions that deviate from the protocol are
reverted only after honest users indicate them, therefore disallowing them. Such
smart contracts that do not check the validity of actions by default, but rather
depend on the intervention of honest users are characterized “optimistic”. In
the Ethereum community, several projects [33,1,38,18,16] have emerged that
incorporate the notion of optimistic interactions. We observe that such an opti-
mization applies to the NIPoPoW protocol.

We discussed how the verification in the NIPoPoW protocol is realized in two
phases. In the submit phase, the verification of πs is performed. This is necessary
in order to prevent adversaries from submitting structurally invalid proofs. A
proof is structurally valid if: (a) the first block of the proof is the genesis block
of the underlying blockchain and (b) every block has a valid interlink that points
to the previous one in the proof.

Asserting the existence of genesis in the first index of a proof is an inexpensive
operation of constant complexity. However, confirming the interlink correctness
of all blocks is a process of linear complexity to the size of the proof. Although
the verification is performed in memory, sufficiently large proofs result into costly
submissions since their validation constitutes the most demanding function of
the submit phase. In Table 1 we display the cost of the valid-interlink function
which determines the structural correctness of a proof in comparison with the
overall gas used in submit.

20

Process Gas cost Total %
verify-interlink 2,200,000 53%

submit 4,700,000 100%
Table 1: Gas usage of verify-interlink compared to the overall gas consumption
of submit.

Dispute phase. We add a new dispute phase to our protocol. It alleviates
the burden of verifying all elements of the proof by enabling the indication of
an individual incorrect block. This phase allows an honest party to indicate a
particular index where πs is structurally incorrect. This check takes constant gas.

The process works as follows. Initially, a proof πs is submitted. An honest
contester monitors the network for proof submissions. This data can be found
in the calldata of a smart contract call transaction. In case she notices πs is
structurally invalid, she computes the index of the first block at which it contains
an invalid interlink connection. This computation occurs off-chain. The contester
calls dispute(πs, i), where i indicates the disputing index of πs. Therefore, the
interlink connection between only two subsequent blocks in the proof is checked
on-chain rather than the entire span of πs.

Note that this additional phase does not imply increased rounds of inter-
actions between the parties. If πs is invalidated in the dispute phase, then the
contest phase is skipped. Similarly, if πs is structurally correct, but represents a
dishonest chain, then the contester proceeds directly to the contest phase without
invoking of dispute.

Phase Gas (millions) Phase Gas (millions) Phase Gas (millions)
submit 4.7 submit 2.2 submit 2.2
contest 4.9 dispute 1.3 contest 4.9

I. Total 9.6 II. Total 3.5 Total 7.1
Table 2: Performance per phase. Gas units are displayed in millions. I: Gas
consumption prior to dispute phase incorporation. II: Gas consumption for two
independent sets of interactions submit/dispute and submit/contest.

In Table 2 we display the gas consumption for two independent cycles of
interactions:

1. Submit and dispute for a structurally invalid πs.
2. Submit and contest for a structurally valid πs that represents a dishonest

chain.

In lines 9–14 of Algorithm 8, we show the implementation of the dispute
phase. The introduction of the dispute phase leaves contest unchanged.
Isolating the best level. As we discussed, dispute and contest phases are
mutually exclusive. Unfortunately, the same constant-time verification as in the

21

dispute phase cannot be applied in a contest without increasing the rounds of
interactions for the users. However, we derive a subsequent optimization for the
contest phase by observing the process of score evaluation.

In NIPoPoWs, after the last common ancestor is found, each proof fork is
evaluated in terms of the proof-of-work score of its blocks after the LCA block.
Each level captures a different score, and the level with the best score for the fork
is used for the comparison (see Algorithm 2). The position of LCA determines
the span of the proofs that will be included in the score evaluation process.
Furthermore, it is impossible to determine the score of a proof in the submit
phase because the position of LCA is yet unknown.

After πs is retrieved from the calldata, the contester can calculate off-chain
the score of both proofs. This means that the contester knows the level at which
each proof captures the best score for each fork. In light of this observation, it
suffices for the contester to submit the blocks that constitute the best level of
πc. The number of these blocks is constant, as it is determined by the security
parameter m, which is independent of the size of the underlying blockchain. We
illustrate the blocks that participate in the formulation of a proof’s score and
the best level of contesting proof in Figure 7.

An adversarial contester can send a level of πc which is different than the
best. However, this is pointless, since different levels only undermine her score.
On the contrary, due to the consistency property of hash-and-resubmit, πs cannot
be altered. We denote b the best level of πf

c and the subchain at that level as
πf
c ↑b.

G lca

πs

πc

best score evaluation

Fig. 7: Fork of two proofs. Striped blocks determine the score of each proof. Black
blocks belong to the level that has the best score. Only black blocks are part of
the best level of the contesting proof.

In Algorithm 8, we show the implementation of the contest phase under the
best-level enhancement. This greatly improves the performance of the client,
because the complexity of the majority of contest functions is proportional to
the size of πc. In Table 3, we demonstrate the difference in gas consumption
in the various stages of the contest phase before and after using best-level. The
performance of most functions is improved by approximately 85%. This is due
to the fact that the size of πc is decreased accordingly. For m = 15, πf

c ↑b consists

22

of 31 blocks, while πf
c consists of 200 blocks. Notably, the calculation of score for

πf
c ↑b needs 97% less gas than the naïve implementation, because the evaluation

of the score of an individual level is performed entirely in memory.

Process Gas
(×103) Total Gas

(×103) Total

valid-interlinks 900 18% 120 10%
minimal-fork 1,900 39% 275 18%

args (πs) 750 16% 750 51%
args (πc) 950 19% 20 1%

other 400 8% 300 20%
contest I. 4,900 100% II. 1,465 100%

Table 3: Gas usage in contest. I: Before utilizing best-level. II: After utilizing
best-level.

In Figure 8, we illustrate the performance gains of the client using the dispute
phase and the best-level method. The aggregated gas consumption of the submit
and contest phases is reduced to 3,500,000 gas. This makes the contract practical,
since a complete cycle of interactions now effortlessly fits inside a single Ethereum
block.

0 50 100 150 200 250
Proof size

105

106

107

G
as

 c
on

su
m

pt
io

n
(lo

g
sc

al
e)

47M
23M
10M

3.5M

block gas limit
m=15
previous work
hash-and-resubmit
minimal fork
optimistic submit &
best-level contest

Fig. 8: Performance improvement using optimistic evaluation in the submit phase
and best level contestation (lower is better). Gas consumption is decreased by
approximately 65%.

23

Algorithm 8 The NIPoPoW client enhanced with dispute phase and best-level
contesting
1: contract crosschain
2: ...
3: function submit(πs, e)
4: require(πs[0] = G)
5: require(events[e] = ⊥)
6: require(evaluate-predicate(πs, e))
7: events[e].hash ← H(πs)
8: end function
9: function dispute(π∗

s , e, i) ▷ i: Dispute index
10: require(events[e] ̸= ⊥)
11: require(events[e].hash = H(π∗

s))
12: require(¬valid-single-interlink(πs, i))
13: events[e] ← ⊥
14: end function
15: function valid-single-interlink(π, i)
16: µ← level(π[i])
17: return π[i+1].intelink[µ] = π[i]
18: end function
19: function contest(π∗

s , πf
c ↑b, e, f)

20: require(events[e] ̸= ⊥)
21: require(events[e].hash = H(π∗

s))
22: require(valid-interlinks(πf

c ↑b))
23: require(minimal-fork(π∗

s , πf
c ↑b, f))

24: require(arg-at-level(πf
c ↑b) > best-arg(π∗

s [f :]))
25: require(¬evaluate-predicate(πf

c ↑b, e))
26: events[e] ← ⊥
27: end function
28: function arg-at-level(π)
29: µ← level(π[−1]) ▷ Pick proof level from a block
30: for b ∈ π do
31: assert(level(b) = µ)
32: end for
33: return 2µ|π|
34: end function
35: end contract

24

6 Cryptoeconomics

We now present our economic analysis on our client. We have already discussed
that the NIPoPoW protocol is performed in distinct phases. In each phase, dif-
ferent entities are prompted to act. As in SPV, the security assumption that is
made is that at least one honest node is connected to the verifier contract and
serves honest proofs. However, the process of contesting a submitted proof by an
honest node does not come without expense. Such an expense is the computa-
tional power a node has to consume in order to fetch a submitted proof from the
calldata and construct a contesting proof, but, most importantly, the gas that
has to be paid in order to dispatch the proof to the Ethereum blockchain. There-
fore, it is essential to provide incentives to honest nodes, while adversaries must
be discouraged from submitting invalid proofs. In this section, we discuss the
topic of incentives and treat our honest nodes as rational. We propose concrete
monetary values to achieve incentive compatibility.

In NIPoPoWs, incentive compatibility is addressed by the establishment of a
monetary value termed collateral. In the submit phase, the user pays this collat-
eral in addition to the expenses of the function call, and, if the proof is contested
successfully, the collateral is paid to the user that successfully invalidated the
proof. If the proof is not contested, then the collateral is returned to the origi-
nal issuer. This treatment incentivizes nodes to participate to the protocol, and
discourages adversaries from joining. It is critical that the collateral covers all
the expenses of the entity issuing the contest and in particular the gas costs of
the contestation.
Collateral versus contestation period. The contestation period and the col-
lateral are generally inversely proportional quantities and are both hard-coded
in a particular deployment of the NIPoPoW verifier smart contract. If the con-
testation period is large, the collateral can be allowed to become small, as it
suffices for any contester to pay a small gas price to ensure the contestation
transaction is confirmed within the contestation period. On the other hand, if
the contestation period is small, the collateral must be made large so as to ensure
that it can cover the, potentially large, gas costs required for quick confirmation.
This introduces an expected trade-off between good liveness (fast availability of
cross-chain data ready for consumption) and cheap collateral (the amount of
money that needs to be locked up while the claim is pending). The balance
between the two is a matter of application and is determined by user policy.
Any user of the NIPoPoW verifier smart contract must at a minimum ensure
that the collateral and contestation period parameters are both lower-bounded
in such a way that the smart contract is incentive compatible. If these bounds
are not attained, the aspiring user of the NIPoPoW verifier smart contract must
refuse to use it, as the contract does not provide incentive compatibility and is
therefore not secure. Depending on the application, the user may wish to impose
additional upper bounds on the contestation period (to ensure good liveness) or
on the collateral (to ensure low cost), but these are matters of performance and
not security.

25

Analysis. We give concrete bounds for the contestation period and collateral pa-
rameters. It is known [44] that gas prices affect the prioritization of transactions
within blocks. In particular, each block mined by a rational miner will contain
roughly all transactions of the mempool sorted by decreasing gas price until a
certain minimum gas price is reached. We used the Etherchain explorer [14] to
download recent blocks and inspected their included transactions to determine
their lowest gas price. In our measurements, we make the simplifying assumption
that miners are rational and therefore will necessarily include a transaction of
higher gas price if they are including a transaction of lower gas price. We sampled
200 blocks of the Ethereum blockchain around March 2020 (up to block height
9,990,025) and collected their respective minimum gas prices. Starting with a
range of reasonable gas prices, and based on our miner rationality assumption,
we modelled the experiment of acceptance of a transaction with a given gas price
within the next block as a Bernoulli trial. The probability of this distribution
is given by the percentage of block samples among the 200 which have a lower
minimum gas price, a simple maximum likelihood estimation of the Bernoulli
parameter. This sampling of real data gives the discretized appearance in our
graph. For each of these Bernoulli distributions, and the respective gas price,
we deduced a Geometric distribution modelling the number of blocks that the
party must wait for before their transaction becomes confirmed.

Given these various candidate gas prices (in gwei), and multiplying them by
the gas cost needed to call the NIPoPoW contest method, we arrived at an ab-
solute minimum collateral for each nominal gas price which is just sufficient to
cover the gas cost of the contestation transaction (real collateral must include
some additional compensation to ensure a rational miner is also compensated for
the cost of monitoring the blockchain). For each of these collaterals, we used the
previous geometric distribution to determine both the expected number of blocks
needed to wait prior to confirmation, as well as an upper bound on the number
of blocks needed for confirmation. For the purpose of an upper bound, we plot
one standard deviation above the mean. This upper bound corresponds to the
minimum contestation period recommended, as this bound ensures that, at the
given gas price, if the number of blocks needed to wait for falls within one stan-
dard deviation of the geometric distribution mean, then the rational contester
will create a transaction that will become confirmed prior to the contestation
period expiring. Critical applications that require a higher assurance of success
must consider larger deviations from the mean.

We display the cost of submitting a proof in Figure 9. The horizontal axis
shows the cost of submit in USD and Ether (using ether prices of 1 ether =
217.41 USD as of June 2020). The vertical axis shows the number of blocks
needed for at least one confirmation. We observe that 0.50 USD are enough to
ensure that the submission is confirmed within 5 blocks.

We plot our cryptoeconomic recommendations based on our measurements in
Figure 10. The horizontal axis shows the collateral denominated in both Ether
and USD (using ether prices of 1 ether = 246.41 USD as of June 2020). We
assume that the rational contester will pay a contestation gas cost up to the

26

collateral itself. The vertical axis shows the recommended contestation period.
The solid line is computed from the block wait time needed for confirmation
according to the mean of the geometric distribution at the given gas price. The
shaded area depicts one standard deviation below and above the mean of the
geometric distribution.

Our experiments are based on the contestation transaction gas cost of the
previous section; namely they are conduced on a blockchain of 650,000 blocks
with a NIPoPoW proof of 250 blocks. The contesting proof stands at a fork point
after which the original proof deviates with 100 blocks, while the contesting proof
deviates with 200 disjoint blocks.

The analysis of this experiment is displayed in Figure 10a. We also illustrate
the expected price of contesting proofs when the fork point of the adversarial
chain is at Genesis. Although we claim that this is an improbable case, we show
that the verifier can handle such extreme scenarios. The analysis of genesis-fork
is displayed in Figure 10b.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Submit Price (ether)

0 1 2 3 4 5 6 7
Submit Price (USD)

0

5

10

15

20

25

30

of

 ro
un

ds
 to

 c
on

fir
m

Fig. 9: Cost of submitting a NIPoPoW proof.

We conclude that consumption of cross-chain data within the Ethereum
blockchain can be obtained at very reasonable cost. If the waiting time is set
to just 10 Ethereum blocks (approximately 2 minute in expectation), a collat-
eral of just 0.50 USD is sufficient to cover for up to one standard deviation in
confirmation time. Note that the collateral of an honest party is not consumed
and is returned to the party upon the expiration of the contestation period. We
therefore deem our implementation to be practical.

27

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Collateral Price (ether)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Collateral Price (USD)

0

5

10

15

20

25

30

Re
co

m
m

en
de

d
Co

nt
es

ta
tio

n
Pe

rio
d

(a) Cost of collateral when the fork point is 100 blocks prior
to the tip (expected scenario).

0.00 0.02 0.04 0.06 0.08
Collateral Price (ether)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Collateral Price (USD)

0

5

10

15

20

25

30

Re
co

m
m

en
de

d
Co

nt
es

ta
tio

n
Pe

rio
d

(b) Cost of collateral when the fork point is Genesis (most
expensive scenario).

Fig. 10: Cryptoeconomic recommendations for the NIPoPoW superlight client.

28

Appendix

A Hash-and-Resubmit variations

In order to enable selective dispatch of a segment of interest, different hashing
schemas can be adopted, such as Merkle Trees [34] and Merkle Mountain Ranges
[31,42]. In this variation of the pattern, which we term merkle-hash-and-resubmit,
the commitment of an array d is a Merkle Tree Root (MTR). In the resubmit
phase, d[m:n] is dispatched, accompanied by the siblings that reconstruct the
MTR of d.

0 1 2 3 4 5 6 7

H(0) H(1) H(2) H(3) H(4) H(5)

H(01) H(23) H(45) H(67)

Root

d*

I.

H(0) H(1)

H(01)

H(0123)

Root

H(23) H(4567)

0 1

II.

H(6) H(7)

H(0123) H(4567)

siblings

d0:1*

Fig. 11: I. The calculation of root in hash phase. II. The verification of the root
in resubmit phase. H(k) denotes the digest of element k. H(kl) denotes the result
of H(H(k) | H(l))

This variation of the pattern removes the burden of sending redundant data,
however it implies on-chain construction and validation of the Merkle construc-
tion. In order to construct a MTR for an array d, |d| hashes are needed for the
leafs of the MT, and |d|−1 hashes are needed for the intermediate nodes. For the
verification, the segment of interest d[m:n] and the siblings of the MT are hashed.
The size of siblings is approximately log2(|d|). The process of constructing and
verifying the MTR is displayed in Figure 11.

In Solidity, different hashing operations vary in cost. An invocation of sha256(d),
copies d in memory, and then the CALL instruction is performed by the EVM

29

that calls a pre-compiled contract. At the current state of the EVM, CALL
costs 700 gas units, and the gas paid for every word when expanding memory
is 3 gas units [44]. Consequently, the expression 1 × sha256(d) costs less than
|d|×sha256(1) operations. A different cost policy applies for keccak [3] hash func-
tion, where hashing costs 30 gas units plus 6 additional gas far each word for
input data [44]. The usage of keccak dramatically increases the performance in
comparison with sha256, and performs better than plain rehashing if the product
of on-chain processing is sufficiently larger than the originally dispatched data.
Costs of all related operations are listed in Table 4.

The merkle variation can be potentially improved by dividing d in chunks
larger than 1 element. We leave this analysis for future work.

0 100 200 300 400 500
d (KB)

106

107

G
as

 c
on

su
m

pt
io

n
(lo

g
sc

al
e)

block gas limit
plain hash-and-resubmit (sha256)
merkle hash-and-resubmit (sha256)
plain hash-and-resubmit (keccak)
merkle hash-and-resubmit (keccak)

Fig. 12: Trade-offs between hash-and-resubmit variations. In the vertical axis the
gas consumption is displayed. In the horizontal axis the size of d. The size of d0
is 10KB bytes, and the hash functions we use are the pre-compiled sha256 and
keccak.

In Table 5 we display the operations needed for hashing and verifying the
underlying data for both variations of the pattern as a function of data size. In
Figure 12 we demonstrate the gas consumption for dispatched data of 10KB,
and varying size of on-chain process product.

30

Operation Gas cost
load(d) dbytes × 16

sha256(d) dwords × 3 + 700

keccak(d) dwords × 6 + 30

Table 4: Gas cost of EVM operations as of June 2020.

phase per
variance

plain hash
and resubmit

merkle hash
and resubmit

hash H(d) H(delem) × |d|
H(digest) × (|d| − 1)

resubmit load(d) + H(d)

load(d[m:n]) +
load(siblings) +

H(d[m:n]) +
H(digest)×|siblings|

Table 5: Summary of operations for hash-and-resubmit pattern variations. d is
the product of on-chain operations and delem is an element of d. H is a hash
function, such as sha256 or keccak, digest is the product of H(.) and siblings are
the siblings of the Merkle Tree constructed for d.

Acknowledgements

The authors wish to thank Patrick McCorry for providing an overview of known
optimistic protocols. We also wish to thank James Prestwich for pointing out an
error in the the load gas cost in Appendix A.

References

1. Adler, J., Quintyne-Collins, M.: Building scalable decentralized payment systems.
arXiv preprint arXiv:1904.06441 (2019)

2. Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561 (2014)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The keccak reference. Submission
to NIST (Round 3) 13, 14–15 (2011)

4. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-light clients for cryp-
tocurrencies. (2020)

5. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

6. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour
your money. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). pp. 442–446. IEEE (2017)

7. Chen, T., Li, Z., Zhou, H., Chen, J., Luo, X., Li, X., Zhang, X.: Towards saving
money in using smart contracts. In: 2018 IEEE/ACM 40th International Con-
ference on Software Engineering: New Ideas and Emerging Technologies Results
(ICSE-NIER). pp. 81–84. IEEE (2018)

8. Chepurnoy, A.: Ergo platform (2017), https://ergoplatform.org/

31

https://ergoplatform.org/

9. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with state-
less transaction validation. IACR Cryptology ePrint Archive 2018, 968 (2018)

10. Chow, J.: BTC Relay. Available at: https://github.com/ethereum/btcrelay
(Dec 2014), https://github.com/ethereum/btcrelay

11. Christoglou, G.: Enabling crosschain transactions using NIPoPoWs. Master’s the-
sis, Imperial College London (2018)

12. ConsenSys: A Guide to Events and Logs in Ethereum Smart Contracts.
Available at: https://consensys.net/blog/blockchain-development/
guide-to-events-and-logs-in-ethereum-smart-contracts/ (June
2016), https://consensys.net/blog/blockchain-development/
guide-to-events-and-logs-in-ethereum-smart-contracts/

13. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Annual
International Cryptology Conference. pp. 139–147. Springer (1992)

14. Etherchain developers: Etherchain. Available at: https://etherchain.org/ (Jun
2020), https://etherchain.org

15. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB). pp. 8–15. IEEE (2019)

16. Floersch, K.: Ethereum smart contracts in l2: Optimistic
rollup (August 2019), https://medium.com/plasma-group/
ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537

17. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. Annual International Conference on the Theory and Applications of
Cryptographic Techniques pp. 281–310 (2015)

18. Gluchowski, A.: Optimistic vs. zk rollup: Deep dive (November 2019), https://
medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075

19. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
max: Surviving out-of-gas conditions in ethereum smart contracts. Proceedings of
the ACM on Programming Languages 2(OOPSLA), 1–27 (2018)

20. H, A.: Off-Chain Data Storage: Ethereum &
IPFS. Available at: https://medium.com/@didil/
off-chain-data-storage-ethereum-ipfs-570e030432cf (October 2017), https:
//medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf

21. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium. pp. 129–144 (2015)

22. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM sympo-
sium on principles of distributed computing. pp. 245–254 (2018)

23. Karantias, K.: Enabling NIPoPoW Applications on Bitcoin Cash. Master’s thesis,
University of Ioannina, Ioannina, Greece (2019)

24. Karantias, K., Kiayias, A., Zindros, D.: Compact storage of superblocks for
nipopow applications. In: The 1st International Conference on Mathematical Re-
search for Blockchain Economy. Springer Nature (2019)

25. Karantias, K., Kiayias, A., Zindros, D.: Proof-of-burn. In: International Conference
on Financial Cryptography and Data Security (2019)

26. Karantias, K., Kiayias, A., Zindros, D.: Smart contract derivatives. In: The 2nd
International Conference on Mathematical Research for Blockchain Economy.
Springer Nature (2020)

27. Kiayias, A., Gaži, P., Zindros, D.: Proof-of-stake sidechains. In: IEEE Symposium
on Security and Privacy. IEEE, IEEE (2019)

32

https://github.com/ethereum/btcrelay
https://github.com/ethereum/btcrelay
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://consensys.net/blog/blockchain-development/guide-to-events-and-logs-in-ethereum-smart-contracts/
https://etherchain.org/
https://etherchain.org
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf

28. Kiayias, A., Lamprou, N., Stouka, A.P.: Proofs of proofs of work with sublinear
complexity. In: International Conference on Financial Cryptography and Data Se-
curity. pp. 61–78. Springer (2016)

29. Kiayias, A., Miller, A., Zindros, D.: Non-Interactive Proofs of Proof-of-Work. In:
International Conference on Financial Cryptography and Data Security. Springer
(2020)

30. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: International Conference on
Financial Cryptography and Data Security. Springer, Springer (2019)

31. Laurie, B., Langley, A., Kasper, E.: Rfc6962: Certificate transparency. Request for
Comments. IETF (2013)

32. Lu, Y., Tang, Q., Wang, G.: Generic superlight client for permissionless block-
chains. arXiv preprint arXiv:2003.06552 (2020)

33. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies. pp. 16–30 (2019)

34. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Conference on the Theory and Application of Cryptographic Techniques. pp.
369–378. Springer (1987)

35. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009), http://www.
bitcoin.org/bitcoin.pdf

36. Nolan, T.: Alt chains and atomic transfers. bitcointalk.org (May 2013)
37. Polydouri, A., Kiayias, A., Zindros, D.: The velvet path to superlight blockchain

clients (2020)
38. Poon, J., Buterin, V.: Plasma: Scalable autonomous smart contracts. White paper

pp. 1–47 (2017)
39. Tak: Store data by logging to reduce gas cost. Available at: https://github.com/

ethereum/EIPs/issues/2307 (October 2019), https://github.com/ethereum/
EIPs/issues/2307

40. Team, N.: Nimiq (2018), https://nimiq.com/en/
41. Team, W.: Webdollar - currency of the internet (2017), https://webdollar.io
42. Todd, P.: Merkle mountain ranges (October 2012), https://

github.com/opentimestamps/opentimestamps-server/blob/master/doc/
merkle-mountain-range.md

43. Volland, F.: Memory Array Building. Available at: https://github.com/
fravoll/solidity-patterns (April 2018), https://fravoll.github.io/
solidity-patterns/memory_array_building.html

44. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

45. Wüst, K., Gervais, A.: Ethereum eclipse attacks. Tech. rep., ETH Zurich (2016)
46. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottebelt, W.:

A wild velvet fork appears! inclusive blockchain protocol changes in practice. In:
5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and
Data Security. vol. 18 (2018)

47. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez,
P., Kiayias, A., Knottenbelt, W.J.: SoK: Communication across distributed ledgers
(2019)

48. Zindros, D.: Decentralized Blockchain Interoperability. Ph.D. thesis, University of
Athens (Apr 2020)

33

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
bitcointalk.org
https://github.com/ethereum/EIPs/issues/2307
https://github.com/ethereum/EIPs/issues/2307
https://github.com/ethereum/EIPs/issues/2307
https://github.com/ethereum/EIPs/issues/2307
https://nimiq.com/en/
https://webdollar.io
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/fravoll/solidity-patterns
https://github.com/fravoll/solidity-patterns
https://fravoll.github.io/solidity-patterns/memory_array_building.html
https://fravoll.github.io/solidity-patterns/memory_array_building.html

	A Gas-Efficient Superlight Bitcoin Client in Solidity

