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Abstract. Progress in quantum technologies forces the development of new 

cryptographic primitives that are resistant to attacks of an adversary with a 

quantum computer. A large number of key establishment schemes have been 

proposed for two participants, but the area of group post-quantum key estab-

lishment schemes has not been studied a lot. Not so long ago, an isogeny-based 

key agreement scheme was proposed for three participants, based on a gradual 

increase in the degree of the key. We propose another principle for establishing 

a key for a group of participants using a tree-structure. The proposed key estab-

lishment scheme for four participants uses isogeny of elliptic curves as a math-

ematical tool. 
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1 Introduction 

Key agreement schemes are one of the clue primitives of modern cryptography since 

they play an important role in ensuring the information security of all kinds of objects 

and systems. Progress in the development of quantum computers has led to the fact 

that most of the key agreement schemes currently used algorithms that are resistant to 

attacks with a classical computer can be unstable to attacks with a quantum computer.  

It is necessary to create, implement and certify new cryptographic primitives. Re-

cently, a large number of post-quantum key agreement schemes have been created, 

based on infeasible mathematical problems that are considered resistant to attacks 

using a quantum computer. One of these mathematical problems is finding isogeny 

between two isogenic elliptic curves. Protocols, using isogenies of elliptic curves, 

usually have small key sizes and compatible with elliptic curve cryptography. In re-

cent years, several isogeny-based schemes have been proposed for sharing a common 

key between two participants. The most famous of them are SIDH [1], SIKE [2], 

CSIDH [3]. However, another task, namely sharing a common key for a group, is 

much less studied and illuminated. 
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2 Related works 

2.1 Group Diffie-Hellman schemes 

The classic Diffie-Hellman [4] algorithm allows getting a common key for two or 

more participants without transmitting secret data over an open channel. 

The sequence of actions of participants A, B, C for receiving a shared key: 

1. Participants choose the general parameters of the algorithm: numbers p and g; 

2. Participants A, B, C generate their secret keys - a, b and c, respectively; 

3. Participant A computes ga
 (mod p) and sends the result to Participant B; 

4. Participant B computes (ga
)b (mod p) = gab

 (mod p) and sends the result to par-

ticipant C; 

5. Participant C calculates (gab
)
c
 (mod p) = gabc

 (mod p) and receives a shared se-

cret key; 

6. Participant B computes gb
 (mod p) and sends the result to Participant C; 

7. Participant C computes (gb
)
c
 (mod p) = gbc

 (mod p) and sends the result to par-

ticipant A; 

8. Participant A calculates (gbc
)
a
 (mod p) = gbca

 (mod p) = gabc
 (mod p), which is a 

shared secret key; 

9. Participant C computes gc
 (mod p) and sends the result to Participant A; 

10. Participant A calculates (gc
)
a
 = g

ca and sends the result to Participant B; 

11. Participant B calculates (gca
) b = g

cab
 = g

abc and also obtains a shared secret 

key. 

Thus, if an attacker intercepts the transmitted messages at any stage, he will be able 

to get only the values g, g
a
, g

b
, g

c
, g

ab
, g

ac
, g

bc, from which it will not be possible to 

calculate the secret keys a, b, c for attacks from classical computers. 

The scheme for obtaining a key for three participants was developed based on the 

isogeny of elliptic curves [4]. The initial parameter is � =  ��
�� ∗ �	

�
 ∗ ��
�� ∗ 
 ± 1, 

where lA, lB, lC are primes and f is a cofactor. E is a supersingular elliptic curve de-

fined over ��� (a finite field of size p2). Torsion groups and corresponding generators 

are determined:  

����
��� =  〈��, ��〉 

�[�	
�
] =  〈�	 , �	〉 

�[��
��] =  〈�� , ��〉 

Each party of the protocol generates two numbers as its private key and computes 

the corresponding isogenic core. The resulting curve and the mapping of the base 

points of other sides on this curve is a public key. 

The sequence of actions of participants A, B, C for receiving a shared key: 

1. Participant A sends to participant B his public key, which contains EA and 

mapping points PB, QB, PC and QC to EA. When participant B receives data 

from participant A, he calculates the public key PubAB, calculating the curve 

EAB and mapping points PC and QC to EAB. 

2. Member B sends his public key and the calculated PubAB to the member C. 

Member C can calculate the shared secret and PubBC using public key B. 
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3. After calculating PubBC, participant C sends its public key and the generated 

PubBC to the member A. Member C calculates the shared secret and PubAC for 

transferring to member B. 

4. Member A sends the generated PubAC to the member B. Member B can calcu-

late the shared secret key. 

The common key is the invariant j(EABC). All obtained curves EABC, EBCA, and ECAB 

are isomorphic to E/KA, KB, KC and, therefore, have the same j-invariant. 

It can be seen that the minimum number of message forwarding between partici-

pants is 4. In general, the number of transfers is calculated using the formula (2n-2), 

where n is the number of protocol participants. 

 

2.2 Tree-based schemes 

The tree data structures are used in some post-quantum group schemes for shared key 

generation. A tree structure is usually represented as a set of related nodes (see a sim-

ple tree in Figure 1). The root node is the topmost node of the tree (node 7 in Figure 

1). A leaf is a node without any child elements (nodes 2, 6, 9 in Figure 5). An internal 

node is a tree node with descendants and ancestors (nodes 4, 8 in Figure 6). 

 

Fig. 1. A simple tree 

There were proposed several group key agreement schemes using tree data struc-

tures, for example at [6]. The main idea of such schemes is the generation a common 

key for pairs of participants. Each node of the tree is one of the participants. Partici-

pants follow these steps to receive a shared key: 

1. Each participant generates a pair of keys: a secret key and a public key. 

2. Participants perform the Diffie-Hellman algorithm in pairs to obtain the com-

mon key for the pair. For example, participants exchange the public keys, raise 

them to the power of their secret key and receive the common key of the pair. 

Then they translate the common key into a number and get a new key for the 

pair, which they can work with. 

3. The sequential execution of the second step leads to the receipt of the key, 

common to all participants. 

The total number of Diffie-Hellman operations can be determined by the formula 

(n-1), where n is the number of group members. 

Another scheme based on the Diffie-Hellman tree was proposed for using in mes-

sengers like Signal and WhatsApp [7]. It also takes into account the possibility of 

asynchronous key updates. But there are still no such schemes on isogenies of elliptic 

curves. 
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3 Post-quantum group scheme for shared key generation 

3.1 Proposed post-quantum scheme 

We proposed a post-quantum scheme for key derivation for n participants, where 

n ≥  3, based on the tree structure (Figure 2). 

The proposed scheme for four participants is shown in Figure 2 The steps for ob-

taining a shared key: 

Initial data selection. Participants select the elliptic curve E and the points Pi, Qi 

located on it. 

First stage. Each of the participants generates secret keys �� , �� ∈ �{0 … ��
$%} and 

obtains his public key  

�'� = [�� , (�)�*+, (�)�*+] 
The public key consists of: 

1. Isogeny 

(� : � → ��/〈'�〉 
where Ki is the generating point obtained by multiplying the initial points Pi, Qi on the 

secret key and adding them 

'� = [��]�� + [��]�� 

2. the starting points Pk, Qk, mapping to the points (�)�*+, (�)�*+ on the ob-

tained isogeny (�. 

Second stage. The participant receives a common for the pair key j, which is an 

invariant of a new elliptic curve with generation point, obtained by multiplying the 

secret key mk, nk on the points (�)�*+, (�)�*+: 

'�0�1 = [�*](2
)�3+  + [�*](24�35 

(�0�1 : �� → ��0�1/〈'�0�1〉 

The points (�)�*+, (�)�*+ are a part of the public key of the second member of 

the pair. At this stage, it is necessary to go from the common for the pair key j to a 

secret key mik, nik, select the initial elliptic curve �′ and the points �� ′, ��′ on it. In this 

case, in the next step, it is possible to obtain a common key for a pair of two pairs of 

participants. After selecting new initial data, the participants calculate a new point  

'�′ = [��*]��′ + [��*]��′ 
This point is a generating point for the isogeny  

(�′: �′ → ��*/〈'�′〉 
After that, the starting points of another pair of participants �* ′, �* ′ are transferred 

to points on this isogeny. 

Third stage. Participants receive a common key 7′ for a pair of pairs. They multi-

ply the obtained secret key mik, nik on points ��′, ��′ and obtain a generation point for 

new isogeny. 
'89::9; = [��*](�0�1)��′+  + [��*](�0�1)��′+ 

(89::9;: ��* → �89::9;/〈'89::9;〉 
Then they transfer the points of another pair of participants to new isogenic ellip-

tic curve. Repeating the described actions as many times as necessary, they can get a 

common key for any number of participants. 
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Fig. 2. Post-quantum group scheme for shared key generation 

 

3.2 Important scheme goals 

1. It is necessary to formalize the choice of secret keys, form of which is �� , �� ∈
�{0 … ��

$�}, since this choice is directly related to the original elliptic curve defined 

over a finite field of size �<, �/���, � =  ��
�� ∗ �	

�
 ∗ ��
�� ∗ �=

�> ∗ 
 ± 1. lA, lB, lC, lD are 

primes, f is a cofactor.  

2. It is necessary to define a mapping that translates a shared key of the form j into 

a shared secret key of the form mi, ni. It is necessary to select the initial elliptic curve 

and points on it for a pair of pairs of participants. 

?@AB@C 3@D:  ��,  �� ∈ �{0 … ��
�� } 

�EF�2A 3@D: 
�'� =  [��,  (�)�	+, (�)�	+] 

(�: � → ��/〈'�〉 
'� = [��]�� + [��]�� 

Participant A 

 

?@AB@C 3@D:  �	 ,  �	 ∈ �{0 … �	
�
} 

�EF�2A 3@D: 
�'	 = [�	 , (	)��+, (	)��+] 

(	: � → �	/〈'	〉 
'	 = [�	]�	 + [�	]�	 

Participant B 

 

?@AB@C 3@D:  �� ,  �� ∈ �{0 … ��
�� } 

�EF�2A 3@D: 
�'� = [�� , (�)�=+, (�)�=+] 

(�: � → ��/〈'�〉 
'� = [��]�� + [��]�� 

Participant C 

?@AB@C 3@D:  �= ,  �= ∈ �{0 … �=
�> } 

�EF�2A 3@D: 
�'= = [�= , (=)��+, (=)��+] 

(=: � → �=/〈'=〉 
'= = [�=]�= + [�=]�= 

Participant D 

 

?@AB@C 3@D: 7)��	+ = 7)�	�+� ��	 , ��	
(	�: �	 → �	�/〈'	�〉 

'	� = [�	](�)�	+ + [�	](�)�	+ 

(�	: �� → ��	/〈'�	〉 
'�	 = [��](	)��+ + [��](	)��+ 

�EF�2A 3@D: ��	 , ��	 

(G�	: � → �G�	/〈'G�	〉 
'G�	 = [��	](G�	)��	+ 

+ [��	](G�	)��	+ 

�'G�	 =
[�G�	 , (G�	)��=+, (G�	)��=+] 

 

?@AB@C 3@D: 7)��=+ = 7)�=�+� ��= , ��=
(=�: �= → �=�/〈'=�〉 

'=� = [�=](�)�=+ + [�=](�)�=+ 

(�=: �� → ��=/〈'�=〉 
'�= = [��](=)��+ + [��](=)��+ 

�EF�2A 3@D: ��= , ��= 

(G�=: � → �G�=/〈'G�=〉 
'G�= = [��=](G�=)��=+ 

+ [��=](G�=)��=+ 

�'G�= =
[�G�= , (G�=)��	+, (G�=)��	+] 

 

?ℎIB@J K@AB@C: 7)�GG�	+ = 7)�GG�=+ 

(GGсв: �G�= → �GG�=/〈'GG�=〉 
'GG�= = [��=](G�	)��=+ + [��=](G�	)��=+ 
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4 Conclusions 

To sum up, success in the development and creation of a quantum computer have 

made significant changes in all areas of our lives related to technology. Currently, it is 

necessary to create quantum-resistant cryptographic tools and systems, including key 

distribution protocols. Post-quantum group key agreement schemes require special 

attention since this area is still poorly covered in studies and articles. We offer a 

group key agreement scheme based on isogenies of elliptic curves, the basic principle 

of which is the effective tree structure. 

Future work will consist in choosing the parameters of this scheme, such as the 

characteristic of the field p, and parameters ��
�%. The next step will be the application 

of this scheme in practical protocols and systems, such as messengers. 
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