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A common definition of black-box zero-knowledge considers strict polynomial time (PPT)
adversaries but expected polynomial time (EPT) simulation. This is necessary for constant
round black-box zero-knowledge in the plain model, and the asymmetry between simula-
tor and adversary an accepted consequence. Consideration of EPT adversaries naturally
leads to designated adversaries, i.e. adversaries which are only required to be efficient in the
protocol they are designed to attack. They were first examined in Feige’s thesis [Fei90],
where obstructions to proving security are shown. Prior work on (designated) EPT ad-
versaries by Katz and Lindell (TCC’05) requires superpolynomial hardness assumptions,
whereas the work of Goldreich (TCC’07) postulates “nice” behaviour under rewinding.

In this work, we start from scratch and revisit the definition of efficient algorithms. We
argue that the standard runtime classes, PPT and EPT, behave “unnatural” from a crypto-
graphic perspective. Namely, algorithms can have indistinguishable runtime distributions,
yet one is considered efficient while the other is not. Hence, classical runtime classes are
not “closed under indistinguishability”, which causes problems. Relaxations of PPT which
are “closed” are (well-)known and used.

We propose computationally expected polynomial time (CEPT), the class of runtimes
which are (computationally) indistinguishable from EPT, which is “closed”. We analyze
CEPT in the setting of uniform complexity (following Goldreich (JC’93)) with designated
adversaries, and provide easy-to-check criteria for zero-knowledge protocols with black-
box simulation in the plain model which show that many (all known?) such protocols
handle designated CEPT adversaries in CEPT.

1. Introduction

Interactive proof systems allow a prover & to convince a verifier ¢ of the “truth” of a statement z, i.e.
that x € L for some language L. Soundness of the protocol ensures that if the verifier accepts, then

x € L with high probability. Zero-knowledge proof systems allow & to convince ¥ of x € L with-
out revealing anything else. The definition of zero-knowledge relies on the (more general) simulation

paradigm: It stipulates that, for every (malicious) verifier /*, there is a simulator Sim which, given

only the inputs x, aux of V*, can produce a simulated output (or viewm) out = Sim(z, aux), which is

indistinguishable from the output out« (P (x, w), V*(z, aux)) of a real interaction. Thus, anything ¢/*

learns in the interaction, it could simulate itself — if Sim and V* lie in the same complexity class.

Let us write X /Y (zero-knowledge) for adversary complexity X and simulator complexity Y. The
two widespread notions of zero-knowledge are PPT/PPT and PPT/EPT. The former satisfies the “promise
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of zero-knowledge”, but comes at a price. Barak and Lindell [BL04] show that it is impossible to con-
struct constant round proof systems with black-box simulation and negligible soundness error in the
plain model. Since constant round black-box zero-knowledge is attractive for many reasons, the re-
laxation of PPT/EPT zero-knowledge is common. However, this asymmetry breaks the “promise of
zero-knowledge”. The adversary cannot execute Sim, hence it cannot simulate the interaction. More
concretely, this setting does not compose well. If we incorporate an EPT simulator into a (previously
PPT) adversary, the new adversary is EPT. This common approach — constructing simulators for more
complex systems from simulators of building blocks — therefore fails due to the asymmetry.

To remedy the asymmetry, we need to handle EPT adversaries. There are several sensible definitions
of EPT adversaries, but the arguably most natural choice are designated EPT adversaries. That is, ad-
versaries which only need to be EPT when interacting with the protocol they are designed to attack. Feige
[Fei90] first considered this setting, and demonstrates significant technical obstacles against achieving
security in the presence of such attacks.

The problems of EPT (and designated adversaries) are not limited to zero-knowledge, and extend to
the simulation paradigm, e.g. multi-party computation.

Preliminary conventions. Throughout, s denotes the security parameter. We generally consider
objects which are families (of objects) parameterized by x, but often leave the dependency implicit.
We abbreviate systems of (interactive) machines (or algorithms) by system. A system is closed, if it only
expects x as input, and produces some output. For example, a prover  does not constitute a closed
system, nor does the interaction (%, V), since it still lacks the inputs to # and ¥. Our primary setting
is uniform complexity [Gol93], where inputs to an (otherwise closed) system are generated efficiently
by so-called input generators. Interaction of algorithms A, B is denoted (A, B), the time spent in A is
denoted timea ({A, B)), and similarly for time spent in B or A + B. Oracle access to © is written A®.

1.1. Obstacles

We first recall some obstacles regarding expected runtime and designated adversaries which we have
to keep in mind. For more discussions and details, we refer to the excellent introductions of [KLOS§;
Gol10] and to [Fei90, Section 3].

Runtime squaring. Consider (a family of) random variables T}; over N, where P(7,, = 2") = 27F
and T is 0 otherwise. Then T, has polynomially bounded expectation E(7},) = 1, but E(T?2) = 2*.
That is S,, = T? is not expected polynomial time anymore. This behaviour not only prevents machine
model independence of EPT as an efficiency notion, but also the non-black-box simulation technique
of Barak [Bar01] (which suffers from a quadratic growth in runtime).

Composition and rewinding. Consider an oracle algorithm A® with access to a PPT oracle ©. Then
to check if the total time timea o (A®) is PPT, we can count an oracle call as a single step. Moreover,
it makes no difference if A has “straightline” or “rewinding” access to ©. For EPT, even a standalone
definition of “© is EPT” is non-trivial and possibly fragile. For example, there are oracles, where any
PPT A with “straightline” access to © results in an EPT interaction, yet access “with rewinding” to ©
allows an explosion of expected runtime. See [KL08] for a concrete example.

Designated EPT adversaries. For a designated adversary A against zero-knowledge of a proof
system (P, 1)), we require (only) that A is efficient when interacting with that protocol. Since a zero-
knowledge simulator deviates from the real protocol, the runtime guarantees of A are void.



1.2. Motivation: Reproving zero-knowledge of graph 3-colouring

The constant-round black-box zero-knowledge proof of Goldreich and Kahan [GK96] is our running
example for demonstrating problems and developing our approach.

Recall that (non-interactive) commitment schemes allow a committer to commit to a value in a way
which is hiding and binding, i.e. the commitment does not reveal the value to the receiver, yet it can
be unveiled to at most one value. A commitment scheme consists of algorithms (Gen, Com, VfyOpen).
The commitment key is generated via ck <— Gen (). For details, see Appendix [B.1.

1.2.1. The constant round protocol of Goldreich—Kahan

The protocol of [GK96] uses two different commitments, Com™ is perfectly hiding, Com® is perfectly
binding. The idea of protocol G3Cgy is a parallel, N-fold, repetition of the standard zero-knowledge
proof for G3C, with the twist that the verifier commits to all of its challenges beforehand. Let G =
(V, E)) be the graph and let ¢ be a 3-colouring of G. The prover is given (G, ¢) and the verifier G.

(P0O) & sends ckpige < Gen(H)(f@). (ckpind < Gen(B)(f@) is deterministic.)

(V0) ¥ picks N = & - card(E) challenge edges ¢; < E, and commits to them using Com™).

(P1) % picks randomized colourings for each of the N parallel repetitions of the standard graph 3-
colouring proof system, and sends the Com®)-committed randomized node colours to 1.

(V1) ¢ opens all commitments (to e;).

(P2) & aborts if any opening is invalid. Otherwise, # proceeds in the parallel repetition using these
challenges, i.e. in the i-th repetition # opens the committed colours for e;.

(V2) ¢ aborts iff any opening is invalid, any edge not correctly coloured, or if cky;ge is “bad”.

The soundness of this protocol follows from Com™ being statistically hiding. Therefore, each of the
N parallel repetitions is essentially an independent repetition of the usual graph 3-colouring proof. For
N = k - card(F) parallel rounds, the probability to successfully cheat is negligible (in ), see [GK94].

1.2.2. Proving zero-knowledge: A (failed?) attempt

Now, we prove black-box zero-knowledge for designated adversaries. That is, we describe a simulator
which uses the adversary {/* only as a black-box, which can be queried and rewound to a (previous)
state. We proceed in three game hops, gradually replacing the view of a real interaction with a sim-
ulated view. Successive games are constructed so that their change in output (which is a purported
view) is indistinguishable.

Go This is the real G3C protocol. The output is the real view.

G1 The prover rewinds a verifier which completes successfully (i.e. sends valid openings on
the first try) to and repeats until a second run where {/ validly opens all commitments.
The output is the view of this second succesful run. The prover uses fresh randomness in each
reiteration of (whereas the black-box has fixed randomness).

Go If the two openings in differ, return ambig, indicating ambiguity of the commitment. Oth-
erwise, proceed unchanged.

Gs The initial commitments (in [P1)) to a 3-colouring are replaced with commitments to 0. These
commitments are never opened. In successive iterations, the commitments to a 3-colouring are
replaced by commitments to a pseudo-colouring. These commitments, when opened, simulate a
valid 3-colouring at the challenge edges e;.

Evidently, Game G3 outputs a purported view independent of the witness. Thus, the simulator is
defined as in Gs: In a first try, it commits to garbage instead of a 3-colouring in [P1), in order to obtain
the verifier’s challenge (in [V1)). If the verifier does not successfully open the commitments (in [V1)),
Sim aborts (as an honest prover would) and outputs the respective view. Otherwise, Sim rewinds the



verifier to Step 2 and sends a pseudo-colouring (w.r.t. the previously revealed challenge) instead. Sim
retries until the verifier succesfully unveils (in [V1)) again. (If the verifier opens to a different challenge,
return view = ambig.)

Now, we sketch a security proof for Sim. We argue by game hopping.

Go to G;. The expected number of rewinds is at most 1. Namely, if {/* opens in with probability ¢,
then an expected number of % rewinds are required. Consequently, the expected runtime is polynomial
(and G; is EPT). The output distribution of the games is identical.

Gj to Gy. It is easy to obtain an adversary against the binding property of Com™) which succeeds
with the same probability that G2 outputs ambig. Thus, this probability is negligible.

Gy to G3. Embedding a (multi-)hiding game for Com®) in this step is straightforward. Namely,
using the left-or-right indistinguishability formulation, where the commitment oracle either commits
the first or second challenge message. Thus, by security of the commitment scheme, G2 and G3 are
indistinguishable.E

A closer look. The above proof is clear and simple. But the described simulator is not EPT! While
Gg and Gg are (computationally) indistinguishable, the transition does not necessarily preserve expected
polynomial runtime [Fei90; KL0§]. Feige [Fei90] points out a simple attack, where ¢/* brute-forces the
commitments with some tiny probability p, and runs for a very long time if the contents are not valid
3-colourings. This is EPT in the real protocol, but our simulator as well as the simulator in [GK96€] do
not handle ¢V* in EPT. The problem lies with designated adversaries as following example shows.

Example 1.1. Let V* sample in step a garbage commitment c to zeroes, just like Sim. Now ¢*
unveils e in if and only if it receives c. (c is a “proof of simulation”.) The honest prover always
aborts in because ¢* will never unveil. But if Sim queried c as its garbage commitment, the
simulation runs forever, because {/* unveils only for this ¢, which is not a pseudo-colouring.

Asdescribed, /* is a priori PPT, and indeed, the simulator in [GK96] uses a “normalization technique”
which prevents this attack. However, exploiting designated PPT, {/* may instead run for a very long
time, when it receives c.

Obstructions to simple fixes. Let us recall a few simple, but insufficient fixes. A first idea is to
truncate the execution of A at some point. For PPT adversaries, this may seem viable B However, there
are EPT adversaries, or more concretely runtime distributions, where any strict polynomial truncation
affects the output in the real protocol noticeably. So we cannot expect that such a truncation works
well for Sim. See [Fei90, Section 3] for a more convincing argument against truncation.

Being unable to truncate, we could enforce better behaviour on the adversary. Intuitively, it seems
enough to require that /* runs in expected polynomial time in any interaction [KL08; Gol10]. However,
even this is not enough. Katz and Lindell [KL08] exploit the soundness error of the proof system to
construct an adversary which runs in expected polynomial time in any interaction, but still makes the
expected runtime of the simulator superpolynomial. The problem is that these runtime guarantees are
void in the presence of rewinding.

Modifications of these fixes work, but at a price: Katz and Lindell [KL08] use superpolynomial trun-
cation and need to assume superpolynomial hardness. Goldreich [Gol10] restricts to algorithms (hence
adversaries) which behave well under rewinding. We discuss these in Section [.5. Our price are proof
techniques, which become more technical and, perhaps, more limited.

Our fix: There is no problem. Our starting point is the conviction that the given “proof” should
evidently establish the security of the scheme for any cryptographically sensible notion of runtime. If

*We rely on security of binding and hiding against expected time adversaries, which easily follows from PPT-security.

*Even there, the situation is far from easy. In a UC setting with an a posteriori efficiency notion (and designated adversaries),
Hofheinz, Unruh, and Miller-Quade show in [HUM13, Section 9] that (pathological) functionalities can make simulation
in PPT is impossible (if one wants security under composition for just a single instance).



one could distinguish the runtime of G2 and Gs, then this would break the hiding property of the
commitment scheme. Thus, the runtimes are indistinguishable. Following, in computational spirit,
Leibniz’ “identity of indiscernibles”, we declare runtimes which are indistinguishable from efficient by
efficient distinguishers as efficient per definition. With this, the proof works and the simulator, while
not expected polynomial time, is computationally expected polynomial time (CEPT), which means its
runtime distribution is indistinguishable from EPT.

We glossed over a crucial detail: We solved the problem with the very strategy we claim to fix —
different runtime classes for Sim and /*! Fortunately, Sim also handles CEPT adversaries in CEPT.

1.3. Contribution

Our main contribution is the reexamination of the notion of runtime in cryptography. We offer a novel,
and arguably natural, alternative solution for a problem that was never fully resolved. Our contribution
is therefore primarily of explorational and definitional nature. More concretely:

« We define CEPT, a small relaxation of EPT with a convenient characterization.

« To the best of our knowledge, this is the first work which embraces uniformE complexity, expected
time, and designated adversaries.

+ We develop general tools for this setting, most importantly, a hybrid lemma.

« Easy-to-check criteria show that many (all known?) black-box zero-knowledge arguments from
standard assumptions in the plain modelf have CEPT simulators which handle designated CEPT
adversaries. Consequently, security against designated adversaries is natural. For example, the
proof systems [GMW86; GK96; Lin13; Ros04; KP01; PTV14] satisfy our criteria.

« We impose no (non-essential) restrictions on the adversary, nor do we need additional (hardness)
assumptions.

« We sketch the application of our techniques to secure function evaluation (SFE), and demonstrate
that auxiliary input security implies modular sequential composition.

All of this comes at a price. Our notions and proofs are not complicated, yet somewhat technical.
This is, in part, because of a posteriori runtime and uniform complexity. Still, we argue that we have
demonstrated the viability of our new notion of efficiency, at least for zero-knowledge.

A complexity theoretic perspective. This work is only concerned with the complexity class of fea-
sible attacks, and does not assume or impose complexity requirements on protocols. Due to designated
adversaries, the complexity class of adversaries is (implicitly) defined per protocol, similar to [KL08].
We bootstrap feasibility from complexity classes for (standalone) sampling algorithms, i.e. algorithms
with no inputs except x. Hence a (designated) adversary is feasible if the completed system of protocol
and adversary (including input generation) is CEPT (or more generally, in some complexity class of
feasible sampling algorithms).

The complexity class of simulators is relative to the adversary, and thus depends both on the protocol
and the ideal functionality. Namely, feasibility of a simulator Sim means that if an adversary A is
feasible (w.r.t. the protocol), then “Sim(A)” is feasible (w.r.t. the ideal functionality).

Comments on our approach. The uniform complexity setting drives complexity, yet is necessary,
since a notion of time that depends on non-uniformity is rather pathological. Losing the power of
non-uniformity (and strictness of PPT) requires many small adjustments to definitions.! Moreover,

*Our results are applicable to a minor generalization of the non-uniform setting as well, namely non-uniformly generated
input distributions, see Appendix [E.1.3.

5 Unfortunately, problems might arise with superpolynomial hardness assumptions, see Section §.

SFor example, we need a stateful distinguisher for modular sequential security, whereas non-uniformly, state and even ran-
domness can be trivially removed by coin-fixing, demonstrating the equivalence of many variations, whose equivalence
in the uniform setting not clear. Thus, our definition of auxiliary input zero-knowledge deviates slightly from [Gol93].



annoying technical problems with efficiency arise inadvertently, depending on formalizations of games
and models. As in prior work, we mostly ignore them, but do point them out and propose solutions.
They are easily fixed by adding “laziness”, “indirection”, or “caching”.

An important point raised by a reviewer of TCC’20 is the “danger of zero-knowledge being triv-
ialized” by “expanding the class of attacks”, and a case for “moving towards knowledge tightness”
(with which we fully agree). Many variations of zero-knowledge, from weak distributional [Dwo+03;
CLP15] to precise [MP04; DG12], exist. We argue that our notion is very close to the “standard” notion
with EPT simulation, but allows designated (C)EPT adversaries. Indeed, it seems to gravitate towards
“knowledge tightness” [Gol10], as seen by runtime explosion examples due to expectation.

1.4. Technical overview and results

We give an overview of our techniques, definitions, and results. Recall that we only consider runtimes
for closed systems (which receive only x as input and produce some output). W.r.t. uniform complexity
and designated adversaries, i.e. adversaries which only need to be efficient in the real protocol [Fei90],
closed systems are the default situation anyway. A runtime class 7 is a set of runtime distributions.
A runtime (distribution) is a family (7} ), of distributions 7}, over Ny. We use runtime and runtime
distribution synonymously. Computational J -time indistinguishability of oracles and distributions is
defined in the obvious way (c.f. Section .6). For statistical 7 -query indistinguishability, we count only
queries as steps, and require 7 -time w.r.t. this. (In our setting, unbounded queries often imply perfect
indistinguishability, which is too strong.)

1.4.1. The basic tools

Statistical vs. computational indistinguishability. The (folklore) equivalence of statistical and
computational indistinguishability for distributions with “small” support is a simple, but central, tool.
For polynomial time, “small” support means polynomial support, say {0, ..., poly, ()} since we con-
sider runtime distributions. Assuming non-uniform advice, the advice is large enough to encode the
optimal decisions, achieving statistical distance as distinguishing advantage. This extends to “poly-
nomially-tailed” runtime distributions 7". There, by assumption, for any poly, there is a poly; such
that P(7,, > poly;(k)) < m, Hence, we can reduce to strict polynomial support by truncating
at poly,, sacrificing 1/poly, in statistical distance. The Markov bound shows that expected polyno-
mial time is polynomially tailed. Removing non-uniformity is possible with repeated sampling, e.g. by
approximating the distribution.

Standard reduction. Another simple, yet central, tool is the standard cutoff argument (Section [&.1)).
It is the core tool to obtain efficiency from indistinguishability.

Lemma 1.2 (Standard reduction to PPT). Let @ be a distinguisher for two oracles ©y, ©y (which may

sample distributions, or model an IND-CPA game, or ...). Suppose D has advantage at least € > po'i’adv

(infinitely often). Suppose furthermore that D®° is CEPT with expected time poly,. Then there is an a
priori PPT distinguisher A with advantage at least 5 (infinitely often).

We stress that we require no runtime guarantees for D+ — it may never halt for all we know. For
a proof sketch, define N = 4poly, - poly,4, and let A be the runtime cutoff of © at N. The outputs
of A9 and D are 7 close. For A% and D' this may be false. However, if D1 exceeds N steps
with probability higher than %, then the runtime is a distinguishing statistic with advantage 7. Thus,
we can assume the outputs of 4! and D" are 2745 close. Now, a short calculation shows that A has

advantage at least §. Namely, A(A 9, A%) > A(D, D) — A(A%, D) — A(D%, A).



1.4.2. Computationally expected polynomial time

We define the runtime classes PPT (resp. EPT ), as usual, ie. (Ty), € PPT <= ITpoly: P(T,, <
poly(k)) = 1 (resp. (Tk)x € 8PT <= Fpoly: E(T)) < poly(k)).

Definition 1.3 (Simpliﬁedﬂ Definition B.5). A runtime S, i.e. a family of random variables S, with values
in Ny, is computationally expected polynomial time (CEPT), if there exists a runtime 7" which is
(perfectly) expected polynomial time (i.e. EPT), such that any a priori PPT distinguisher has negligible
distinguishing advantage for the distributions 7" and S. The class of CEPT runtime distributions is
denoted CEPT . Computationally strict polynomial time (CPPT) is defined analogously.

Characterizing CEPT. At a first glimpse, CEPT looks hard to handle. Fortunately, this is a mirage.
We have following characterization of CEPT.

Proposition 1.4 (Simpliﬁed[Z Corollary B.9). Let T be a runtime. The following are equivalent:

(0) T isin CEPT .

(1) 35 € EPT which is computationally PPT-indistinguishable from T .

(2) 3S € 8PT s.t. T and S are statistically indistinguishable (given polynomially many samples).

(3) Thereis a set of good events G, withP(G,) > 1—e(k) such thatE(T,|CG.) = t. (for the conditional
expectation), where ¢ is negligible and t is polynomiall.

Let 7" be a runtime. Item [3) defines virtually expected time (t,c) with virtual expectation t and
virtuality . Thus, the characterization says that computational, statistical and virtual EPT coincide.

Proposition [1.4 follows essentially from the statistical-to-computational reduction and a variant of
Lemma [.4. Thanks to this characterization, working with CEPT is feasible. One uses item [1) to justify
that indistinguishability transitions preserve CEPT. And one relies on item [3) to simplify to the case
of EPT, usually in unconditional transitions, such as efficiency of rewinding.

An intrinsic characterization. The full Corollary B.9 not only reveals that CEPT is “well-behaved”.
It also shows that the runtime class CE2T is “closed under indistinguishability”: Any runtime S which
is CEPT-indistinguishable from some 7' € CEPT lies in CEPT . This intrinsic property sets it apart
from EPT. (Indeed, CEPT is the closure of EP7.) PPT and CPPT behave analogously.

Example 1.5. Let A be an algorithm which outputs 42 in exactly 10'° steps, and let A act identical to
A, except with probability 2%, in which case it runs 22 steps. Then A’ is neither PPT nor EPT. Yet,
A and A’ are indistinguishable even given timed black-box access. That is, observing both output and
runtime of the black-box, it is not possible to tell A and A’ apart. Thus, it is rather unexpected that
A’ is considered inefficient. For many properties, e.g. correctness or soundness, statistical relaxations
from “perfect” exist. CPPT and CEPT should be viewed as such relaxations for efficiency.

Working with CEPT. Applying the characterization of CEPT to a whole system (%, {/*), the good
event ¢ may induce arbitrary stochastic dependencies on (internal) random coins of the parties. This
is inconvenient. We are interested only in one party, namely ¢/*. Moreover, in a simulation, there is
no # anymore and the probability space changed, hence there is no event . To account for this, we
observe that only the messages 1/* receives from & are relevant for {*’s behaviour, not #’s internal
randomness. We formulate a convenience lemma (Lemma B.12) for handling this. Roughly Lemma
states that for interacting algorithms (A, B), there is a modification B’ (which need not be efficiently
computable), which immediately aborts “bad executions” by sending timeout. If the closed system
(A, B) is CEPT, i.e. timeayg((A,B)) is CEPT, the probability for timeout is negligible. Then, by
construction, timeg/ ((A, B’)) will be EPT. This makes B’ into a convenient tool to track the evolution

7 Formally, “triple-oracle” instead of “standard” indistinguishability is used. Assuming non-uniform advice, or runtimes
T, S which are induced by algorithms, the simplified definition is equivalent to the actual one.



of runtime and virtuality under actions such as rewinding. By using B’ only via oracle-access, its
possible inefficiency poses no problems. After the (runtime) analysis, oracle-access to B’ is replaced
with B again. Importantly, B’ is just a means to reason about changes in runtime when applying
rewinding to B. One can also reason without introducing B’, by using the analysis in Lemma
directly.

1.4.3. Definitions and tools for zero-knowledge

For uniform auxiliary input zero-knowledge, the input (x, w, aux, state) <— J(k) is efficiently gener-
ated by an input generator 9. A designated adversary (J, V/*) consists of input generation, malicious
verifier, and distinguisher, but we leave ¢ often implicit. The distinguisher receives out and state, the
latter is needed for modular sequential composition.B Here, out = outg- (P(x,w), V*(x, aux)) or
out = outs;,Sim(code(V*), x, aux), where (x, w, aux, state) is sampled by J(k). As a shorthand, for
the system which lets J sample inputs and passes them as above, we write (, V) g. From designated
CEPT adversaries, we require that timeg p4 ¢+ ((state, outy=P(x, w), V*(x, aux))) is CEPT.

Concrete example. Recall that in Section [.4, we showed zero-knowledge of the graph 3-colouring
protocol G3Cgx of Goldreich and Kahan [GK94] as follows:

Step 1: Introduce all rewinding steps as in G;. Here, virtually expected runtime and virtuality at most
doubles. To see this, one can use Lemma to “replace” ¢* with an modified ¢ which yields an
EPT execution and outputs timeout for “bad” queries. Since Game G; at most doubles the probability
that some query query is asked, bad queries are only twice as likely, i.e. virtuality at most doubles. It
is easy to see that the virtually expected runtime also (at most) doubles.

Step 2: Apply indistinguishability transitions, which reduce to hiding resp. binding properties of
the commitment. From this, we obtain both good output quality and efficiency of Sim. Concretely,
indistinguishability and efficiency follow by an application of the standard reduction (to PPT).

We abstract this strategy to cover a large class of zero-knowledge proofs.E Intuitively, we apply the
ideas of [Gol10] (“normality”) and [KL08] (“query indistinguishability”), but separate the unconditional
part (namely, that rewinding preserves efficiency), and the computational part (namely, that simulated
queries preserve efficiency).

Abstracting Step 1 (Rewinding strategies). A rewinding strategy RWS has black-box rewinding
(bb-rw) access to a malicious verifier /*, and abstracts a simulator’s rewinding behaviour. Unlike the
simulator, RWS has access to the witness. For RWS to be normal, we impose three requirements.

Firstly, a normal rewinding strategy outputs an adversarial view which is distributed (almost) as in
the real execution. Secondly, there is some poly so that

E (timepwso+« (RWSY")) < poly(k) - E(timegp o« ((P, V%))

for any adversary ¢/*. We call this (polynomial) runtime tightness of Rws.H Thirdly, RWS has (poly-
nomial) probability tightness, which is defined as follows: Let pr,,(query) be the probability that
RWS asks ¢* a query query. Let pr,,(query) be the probability that the prover & asks query. Then
RWS has probability tightness poly if for all queries query

prrws(query) < pOIy(’%) : prreal(query)'

Intuitively, runtime tightness ensures that RWS preserves EPT, whereas probability tightness bounds
the growth of virtuality. Indeed, the virtuality § in (2, V*) increases to at most poly - § in RWS"". This

8While [Gol93] passes no extra state, only sequential repetition is proven there.

?Strictly speaking, we concentrate on zero-knowledge arguments, since we need efficient provers.

"We significantly deviate from [KLO8] to obtain simpler reductions. See Appendix [ for an approach similar to [KL0g].
""Up to minor technical details, polynomial runtime tightness of RWS coincides with “normality” of Sim in [Gol10, Def. 6].



follows because the probability for a “bad” query (a timeout of the modified ¢/’ from Lemma B.12) in
RWS"" is at most poly-fold higher than in (%, U*).

Lemma 1.6 (Informal Lemma p.5). Let RWS be a normal rewinding strategy for (@,V) with runtime
and probability tightness poly. Let (9,1*) be an adversary. If (P, V*) ¢ is CEPT with virtually expected
time (t, <), then RWS(V*) composed with d is CEPT with virtually expected time (poly - t, poly - €).

(Weak) relative efficiency. We generalize the guarantees of rewinding strategies to relative effi-
ciency of (oracle) algorithms. An oracle algorithm B is efficient relative to A with runtime tight-
ness (polyi ., poly,) if for all oracles O: If timea,o(A®) is virtually expected (¢, ¢)-time, then
timeg o (BY) is virtually expected (polyyime - t, POlyyiy; - €)-time.

We call B weakly efficient relative to A, if whenever timea ;o (A®) is efficient (e.g. CEPT), then
timeg,0(B?) is efficient (e.g. CEPT).

Abstracting Step 2 (Simple assumptions). A “simple” assumption is a pair of efficiently com-
putable oracles Cp and C1, and the assumption that Cy = (1, i.e. Cg and C; cannot be distinguished in
PPT.1 For example, hiding resp. binding for commitment schemes are simple assumptions.

In Step 2, we reduce the indistinguishability of RWS"" and Sim"" to a simple assumption. That is,
there is some algorithm R such that RWS"" = R%(¢*), and R®* (¢*) = Sim"". Moreover, we assume
that R (*) is efficient relative to RWS"", and Sim"" is efficient relative to R ({/*).

Putting it together (Benign simulators). Black-box simulators whose security proof follows the
above outline are called benign. See Fig. [Il for an overview of properties and their relation.

standard reduction CEPT characterization comp. ind. to stat. ind.
Section @ Corollary E Section @ & Appendix @
I
n
1
1 \
1 \
normal RWS eff. rel. to simple ass. P normal RWS “efficiency notion”™  query ind.

\ . .
Definition p.4 Section .4 Section p.3 ’ \ Definition p4 Appendix F4 Appendix 1

N I N

: . . .
benign Ve aux. input ZK ~a query-benign

Definition Definition .3 Definition

< > Lemma [£7

sequential ZK
Definition

Figure 1: A rough overview of dependencies of core results and definitions. The greyed out approach
follows [KL08] more closely. The top line is used everywhere implicitly.

Lemma 1.7 (Informal Lemma b.23). Argument systems with benign simulators are auxiliary-input zero-
knowledge against CEPT adversaries.

Proof summary. The proof strategy above can be summarized symbolically:

outp= (P, V*) = RWS(U*) = RO (U*) & R (V%) = Sim(V*).

“Technically, our definition of “simple assumption” corresponds to falsifiable assumptions [Nao03] in the sense of [GW10].
We deliberately do not call them falsifiable, since our proof techniques should extend to a larger class of assumptions,
which includes non-falsifiable assumptions.



More precisely, consider a CEPT adversary (9, /*). By normality of RWS, outg« (%, V*) and RWS(V*)
have (almost) identical output distributions, and RWS(¢*) is CEPT. By relative efficiency, R (0*) is
CEPT if RWS"" is CEPT. Since Cy ~ Cy, by a standard reduction, if R%(¢*) is CEPT, so is R°1 (%),
and their outputs are indistinguishable. Finally, since Sim"" is efficient relative to R° ({/*), also Sim"”
is CEPT. All in all, Sim"" is efficient and produces indistinguishable outputs. O

Benign simulators are common, e.g. the classic, constant round, and concurrent zero-knowledge
protocols in [GMW386; GK96; Lin13; Ros04; KP01; PTV14] satisfy this property.

1.4.4. Sequential composition and hybrid arguments

It turns out, that the sequential composition theorem and the hybrid argument in general are non-
trivial in the setting of a posteriori efficiency.

Intermezzo: Tightness bounds. The use of relative efficiency with polynomial tightnesss bounds
is not strictly necessary. Nevertheless, it offers “more quantifiable” security and is easier to handle. For
example, benign simulators are easily seen to “compose sequentially” because, (1) normal RWS and
relative efficiency compose sequentially, and (2) “simple” assumptions satisfy indistinguishability un-
der “repeated trials”. Together, this translates to sequential composition of benign simulation. Hence,
argument systems with benign simulators are sequential zero-knowledge against CEPT adversaries. Un-
fortunately, the general case is much more involved.

The hybrid lemma. To keep things tidy, we consider an abstract hybrid argument, which applies
to zero-knowledge simulation and much more. Due to a posteriori efficiency, the lemma is both non-
trivial to prove and non-trivial to state.

Lemma 1.8 (Lemma 7). Let Oy and O, be two oracles and suppose that O, is weakly efficient relative
to Oy and Oy ~ Oy. Denote by rep(©p) and rep(©y) oracles which give repeated access to independent
instances of ©y. Then rep(©1) is weakly efficient relative to rep(©q) and rep(©Qy) ~ rep(©q).

Lemma [L.§ hides much of the complexity caused by a posteriori efficiency, and is often a suitable
black-box drop-in for the hybrid argument. We sketch how to adapt the usual hybrid reduction. In our
setting, rep(©,) gives access to arbitrarily many independent instances of ©y. The usual hybrids H; use
O for the first i instances, and switch to O for all other instances. W.lo.g., only g = poly(x) many
O-instances are accessed by @. The hybrid distinguisher D’ guesses an index i* < {0,...,q — 1},
and simulates a hybrid H;;, embedding its challenge oracle Oy .

If D has advantage ¢, then the hybrid distinguisher @’ has advantage £/q. In the classic PPT setting,
we assume that Oy and O are classical PPT, and hence find that @' is PPT and therefore efficient. In
an a posteriori setting, the efficiency of @' is a bigger hurdle. We make the minimal assumptions, that
timeg 4 rep(0y) (DreP(0)) is efficient and that O is efficient relative to (90.E Hence, we do not trivially
know whether time@+rep(@1)(®'ep((91)) or the hybrid distinguisher @’, which has to emulate many
oracle instances, is efficient. Indeed, a naive argument would invoke weak relative efficiency ¢ times.
In the case of PPT, this would mean ¢g-many polynomial bounds. But, for all we know, these could
have the form 2’poly () in the i-th invocation, leading to an inefficient simulation.

The core problem is therefore to avoid a superconstant application of relative efﬁciency.E Essen-
tially this problem was encountered by Hotheinz, Unruh, and Miiller-Quade [HUM13] in the setting
of universal composability and a posteriori PPT. They provide a nifty solution, namely to randomize

The hybrid proof technique requires the hybrid distinguisher to emulate all but one oracle instance, and for this we need
weak relative efficiency.

"For reference, even for a priori PPT sequential composition for zero-knowledge, one must avoid a superconstant invocation
of the existence of simulators. There, the solution is to consider a “universal” adversary and its “universal” simulator.
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the oracle indexing. This ensures that, in each hybrid, every emulation of QO (resp. ©) has identical
runtime distribution Tj (resp. 77). This is gives a uniform bound on runtime changes. Now, we show
how to extend the proof of [HUM13], which is limited to CPPT.

We prove the hybrid argument in game hops, starting from the real protocol G;. In G, we replace
one oracle instance of Oy by ©; (at a random point). In Gz, every instance of @ but one is replaced

by ©;. In G4, only ©; is used. Since O is weakly efficient relative to Oy and Oy ~ ©9, the transitions
from G; to Go (resp. G3 to G4) preserve efficiency and are indistinguishable. The step from G to G3 is
the crux. Note that we have at least one O (resp. ©) instance in either game. Take any one and denote
the time spent in that instance by Tg (resp. 71). Since we randomized the instances, the distribution of
Tp (resp. T1) does not depend on the concrete instance. Importantly, even in the hybrid reduction, there
is an instance which can be used to cor%pute Tp (resp. T1). Moreover, the total time spent in computing
instances of Oy and ©; is “dominated”® by q-Ty+ q-T}. Thus, it suffices to prove that S = T+ T+ T}
is CEPT, where T” is the time spent outside emulation of instances of Oy and ©;. (Note that S, T, Tj,
T} depend on the hybrid Hy, where ¢ € {1,...,q— 1}, we suppressed this dependency.) Now, we have
two properties:

« Sy is CEPT if and only if time(H,) is CEPT for the ¢-th hybrid H,.
« The reduction can compute and output Sy.

Thus, it suffices that 57 and S, are indistinguishable, since we know that 57 is CEPT. Curiously, we
now reduced efficiency to indistinguishability.E To prove indistinguishability, we can truncate the

reduction (or rather, the hybrids) to strict PPT as in the standard reduction. Thus, we obtain S} ~ Sg-
The hybrid lemma follows. The actual reasoning of this last step is a bit lengthier, but follows [HUM13]
quite closely: We truncate each oracle separately to maintain symmetry of timeout probabilities. Un-
fortunately, the reduction does not give the usual telescoping sum, since the challenge oracle cannot
be truncated. Due to symmetry, the error is “dominated” by observed timeouts. Hence, it suffices to
find a (uniform) bound for the timeout probabilities over all Hy. Our reasoning for this is mildly more
complex than [HUM13], since we do not have negligible bounds for timeouts, but only polynomial
tail bounds, and we make a weaker assumption on efficiency of ©y and ©;.

Modular sequential composition. With Lemma [1.§ at hand, it is straightforward to prove that aux-
iliary input zero-knowledge composes sequentially. In fact, it is possible to prove a modular sequential
composition theorem similar to [KL08]. (In [KL08], the subprotocols must have simulators which are
EPT in any interaction. In our setting, there is no such restriction and the straightforward proof works.
The bulk of the complexity is absorbed by the hybrid lemma.)

1.5. Related work

We are aware of three (lines of) related works w.r.t. EPT: The results by Katz and Lindell [KL0§] and
those of Goldreich [Gol10], both focused on cryptography. And the relaxation of EPT for average-
case complexity by Levin [Lev86]. A general difference of our approach is, that we treat the security
parameter separate from input sizes, whereas [KL08; Gol10] assume x = |JU\E With respect to a
posteriori runtime, [HUM13] is a close analogue, although for PPT and in the UC setting.

Comparison with [KL08]. Katz and Lindell [KL08] tackle the problem of expected polynomial time
by using a superpolynomial runtime cutoff. They show that this cutoff guarantees a (strict) EPT adver-
sary. However, for the superpolynomial cutoff, they need to fix one superpolynomial function o and
have to assume security of primitives w.r.t. (strict) a-time adversaries. Squinting hard enough, their

*To be exact, dominated with slack ¢: P(timeo,+o0, (He) > t) < q-P(q(Te,0 + Tr,1) > t).
"®The CEPT characterization (Corollary B.10) does not strictly apply here, but a simple variation does.
For completeness, we show how to mirror this weakened security in Appendix E.4.3.
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approach is dual to ours. Instead of assuming superpolynomial security and doing a cutoff, we “ignore
negligible events” in runtime statistics, thus doing a “cutoff in the probability space”. Moreover, we
require no fixed bound.

Interestingly, their first result [KL08, Theorem 5] holds for “adversaries which are EPT w.r.t. the real
protocol”. Their notion is minimally weaker than ours, as it requires efficiency of the adversary for all
inputs instead of a sequence of input distributions. 1 [KL08, Section 3.5] claims that other scenarios, e.g.
sequential composition, fall within [KL08, Theorem 5]. Their modular sequential composition theorem,
however, requires that subprotocol simulators are “expected polynomial time in any interaction”, which
is not implied by [KL08, Theorem 5].

Comparison with [Gol10]. Goldreich [Gol10] strengthens the notion of expected polynomial time
to obtain a complexity class which is stand-alone and suitable for rewinding based proofs. He requires
expected polynomial time w.r.t. any reset attack, hence restricts to “nice” adversaries. With this, nor-
mal (in the sense of [Gol10]) black-box simulators run in expected polynomial time, essentially by
assumption. This way of dealing with designated adversaries is far from the spirit of our work.

Comparison with [Lev86]. The relaxation of expected polynomial time adopted by Levin [Lev86]
and variations [Gol11b; Gol10; BT06] are very strong. Let 1" be a runtime distribution. One definition
requires that for some poly and v > 0, P(T,, > C) < %ﬁ'{) for all k and all C' > 0. Equivalently,
E(T) is polynomially bounded (in ) for some v > 0. Allowing negligible “errors” relaxes the notion
further. This definition fixes the composition problems of expected polynomial time. But arguably, it
stretches what is considered efficient far beyond what one ng be willing to accept. Indeed, runtimes
whose expectation is “very infinite” are considered efficient.®2 The goals of average case complexity
theory and cryptography do not align here. We stress that our approach, while relaxing expected
polynomial time, is far from being so generous, see Section [1.6.1. (For completeness, we note that we
are not aware of work on designated adversaries in this setting.)

Related work on CPPT. The notion of CPPT is (in different forms) used and well-known. For
example, Boneh and Shoup [BS20] rely on such a notion. This sidesteps technical problems, such as
sampling uniformly from {0, 1,2} with binary coins. With a focus on complexity theory, Goldreich
[Gol114d] defines typical efficiency similar to CPPT. As the relaxations for strict bounds is very straight-
forward, we suspect more works using CPPT variations for a variety of reasons.

Comparison with [HUM13]. Hofheinz, Unruh, and Miiller-Quade [HUM13] define PPT with over-
whelming probability (w.o.p.), i.e. CPPT, and consider a posteriori efficiency. They work in the setting
of universal composability (UC), and their main focus is an overall sensible notion of runtime, which
does not artificially restrict evidently efficient functionalities, such as databases or bulletin boards. Their
notion of efficiency is similar to our setting with CPPT. In fact, we use their techniques for the hybrid ar-
gument. Since [HUM13] defines and assumes protocol efficiency, which we deliberately neglect, there
are some differences. Reinterpreting [HUM13], their approach is based on: “If for all (stand-alone)
efficient @ the machine D0 is efficient, then for all (stand-alone) efficient @ the machine DOt s
efficient”® Our approach is based on: “For all @, if the machine D efficient, then the machine D
is efficient” The stronger (protocol) efficiency requirements are harder to justify in our setting. (Even
classical PPT O can be “inefficient” for expected poly-size inputs. E.g., disallowing quadratic time
protocols seems harsh.)

8Their definitions are a consequence of their non-uniform security definition and complexity setting. The proof of [KLO0S,
Theorem 5] never changes adversarial inputs, so there is no obstruction to handling designated adversaries in our sense.

Setting ¢ = 2 and v = 3 in Remark [L.9 yields a runtime T with E(T) = > o2, n, which is still considered efficient. (The
limit — % is not applicable here.)

“Think of @ as the environment, O as the protocol, and ©; as the simulator.
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More related work. Halevi and Micali [HM98] define a notion of efficiency for extractors in proofs
of knowledge, which closely resembles our notion of normal rewinding strategies. Precise zero-knowl-
edge [MPO06; Pas06] requires that simulation and real execution time are closely related. Due to Feige’s
“attack” (or Example [L1)), this does not seem to help with designated EPT adversaries.

1.6. Separations

We briefly provide separations between some runtime notions. Here, we focus only on efficiency of
adversaries, and ignore requirements imposed on protocol efficiency, since we deliberately neglected
those. We consider basic runtime classes (i.e. runtimes of sampling algorithms) and how they are lifted
to interactive algorithms.

Both [KL08, Definition 1] and [HUM13, Definitions 1 and 2] use an “a posteriori” lifting. The former
lifts EPT, the latter lifts CPPT; both allow designated adversaries and are similar to our setting. “A
priori” liftings, such as [Gol10, Definitions 1-4] are far more restrictive (on adversaries), effectively
disallowing designated adversaries.

Regarding the underlying runtime classes, the works [KLO08; Gol1(] deal with (perfect) EPT, neg-
ligible deviations are not allowed. The notion of PPT w.o.p. from [HUM13] and CPPT coincide. To
separate PPT, EPT, CPPT, CEPT, and Levin’s relaxations, we first recall fat-tailed distributions.

Remark 1.9 (Fat-tailed distributions). The sum ) n~¢is finite if and only if ¢ > 1. Thus, we obtain a
random variable X withP(X =n) «x n™ ¢ Fory > Owehave E(X7) o< Y., n~“"7. Ifc—~ < 1, then
E(X7) = oo. Moreover, P(X > k) > k™¢, i.e. X has fat tails. In particular, for ¢ = 3, E(X) < oo but
E(X?) =Y, n"!=o00,and P(X > poly) > po—}yg, for any poly.

Allowing a negligible deviation clearly separates perfect runtime distributions from their compu-
tational counterparts. Clearly, PPT is strictly contained in EPT. The separation of CPPT and CEPT
follows from fat-tailed distributions. In Section below, we separate CEPT from Levin’s relax-
ations of EPT, denoted -L'J, and Vadhan’s relaxation of L7, denoted V7, which allows negligible
deviation. In the following diagram, strict inclusions are denoted by arrows.

PP] ——— EPT —— LT

| | |

CPPT —— CEPT —— VT

1.6.1. Levin’s relaxation and CEPT

We noted in Remark [1.9, that Yoo n ¢ < oofor ¢ > 1 gives rise to a distribution Z. over N via
normalizing the sum. Let X = Z3. Then E(X) = > °°  n = cc. Since Z is fat-tailed, so is X. Let
Yi = X|(_2k),_>0. It follows immediately that E(Y}) = E(X|(.2k).—>o) > %k‘z/?’ for any k£ € N. Thus,
for any superpolynomial cutoff K, we find E(Yx) > %K 2/3 is superpolynomial, and as a consequence,
there is no superpolynomial cutoff which makes X EPT. (We interpret X (and Yk ) as a constant family
of runtimes, i.e. X, = X for all .)

Formally, CEPT uses v-quantile cutoffs (i.e. we may condition on an event § of overwhelming prob-
ability 1 — v that minimizes E(T" | ¢)). For X, any v-quantile cutoff for negligible v induces some
bound k which maximizes P(T' < k) > v. If k were polynomial, then (due to “fat tails”) v must also
be polynomial. Hence, k must be superpolynomial, and consequently there is no negligible quantile
cutoff which makes X EPT. All in all, the runtime distribution X is allowed by Levin’s relaxation, but
is not CEPT.

13



1.7. Structure of the paper

In Section B we clarify preliminaries, such as (non-)standard (notational) conventions, shorthands and
terminology, and some basic concepts and results. In Section B, we define CEPT and prove the char-
acterization as well as generalizations and convenience lemmas. In Section [, introduce the standard
reduction, relative efficiency and the hybrid lemma. In Section , we apply CEPT to zero-knowledge.
We define (uniform complexity auxiliary input) zero-knowledge, and consider the example of G3Cgx in
detail. Then, we define sequential zero-knowledge and prove that it is implied by auxiliary input zero-
knowledge. In Section f, we define rewinding strategies, simple assumptions, and benign simulation,
Moreover, we give a simple proof that benign simulators are (sequential) zero-knowledge. In Section [,
we sketch the application of CEPT to (uniform complexity) multiparty computation. In Section [, we
conclude and highlight some open questions.

In Appendix [A], we give a detailed discussion on the effect of machine models and their (in)compatibility
with expected time. Appendix [ contains supplementary definitions for commitment schemes. The
remaining appendices contain further material and discussion. Appendix [J contains some simple but
useful results and reminders for our general discussion of runtime classes. Appendix [J treats runtime
more abstractly. It justifies the notion of “closed runtime classes” formally and demonstrates how most
of our results extend to algebra-tailed runtime class. In Appendix H, we discuss asides for each chap-
ter, and more. These provide clarifications, justify decisions, technical details, effects of variations in
definitions, give (simple) examples, and so on. Finally, for completeness, we show in Appendix f that
our approach is applicable even if we follow the work of Katz and Lindell [KL08] much more closely,
although at the expense of more convoluted proofs.

See page [p4 for the table of contents.

2. Preliminaries

In this section, we state some basic definitions and (non-)standard conventions.

2.1. Notation and basic definitions

We denote the security parameter by ; it is often suppressed. Similarly, we often speak of an object X,
instead of a family of objects (X))« %arameterized by x. We always assume binary encoding of data,
unless explicitly specified otherwise.=2 We write X ~ Y if a random variable X is distributed as Y.
For random variables X, Y over a set A We write X/, ,; (resp. X|g, ,;, resp. X| 4. ;) for the random
variable where a (resp. any a satisfying a € S resp. pred(a) = 1) is mapped to b, and everything else
unchanged, e.g. X|, ,,or X|g oo0r X| -y n-

For a countable set & and a function ¢: & — R, let ||¢]l, = (3 ,cy #(z)?])V/P be the p-norms
for p € [1,...,00]. (Recall that ||¢||oc = sup,c¢|p(x)|.) We define statistical distances A, (p, o) =
3llp — o[ of distributions p,o: & — [0, 1]. Recall that Ay(p, 0) = sup yq|p(X) — o(X)|. We refer
to the variational distance A(+,-) := A1(-, ) as the statistical distance.

We call Dyat(p/0) = sup, % (where 8 := 0) the sup-ratio of p over o; p and o may be arbitrary
non-negative functions.

With poly, polylog, and negl we denote polynomial, polylogarithmic and negligible functions (in x)
respectively. Usually, we (implicitly) assume that poly, polylog, and negl are monontone. A function
negl is (polynomially) negligible if lim,_,~, poly(x)negl(x) = 0 for every polynomial poly. In many
definitions, we assume the existence of a negligible bound negl on some advantage ¢ = £(k). We
generally use “strict pointwise <” for bounds, e.g. ¢ < negl denotes Vk: £(k) < negl(k). We avoid

In classical efficiency settings, unary encoded data is primarily used to model efficiency restrictions implicitly. We model
these explicitly, and, due to a posteriori, efficiency depends only on x anyway. It is irrelevant if  is passed as binary or
unary to the machines, hence we use binary encodings unless otherwise specified.
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“eventually <”, denoted ¢ <., negl (defined via ICVk > C: g(k) < negl(k)). If ¢ <.y negl, then
max{e(k), negl(x)} =: v(k) is negligible and £ < v, hence this makes no difference in most situations.
However, “<” behaves “more intuitively” than “<,” in some sense.24

2.2. Systems, algorithms, interaction and machine models

More detailed discussion of (unexplained) terms in this section are in Appendix [Al.

Machine models. We fix some admissible machine model, which in particular implies that emulat-
ing a system of interacting machines has small overhead. The reader may assume a RAM model without
much loss. In particular, polylogarithmic (emulation) overhead is acceptable in our setting, see. Ap-
pendix @.@ Another irksome technicality are non-halting computations. One may follow [Gol10],
and assume all algorithms halt after a finite number n (k) of steps. Instead, we deal with non-halting
executions explicitly. For this, we define the symbol nohalt as the “output” of such a computation,
and assume that any system which receives nohalt also outputs nohalt, if not specified otherwise.

Systems, algorithms and oracles. We always consider (induced) systems, which offer interfaces
for (message-based) communication. 2 Input and output are modelled as interfaces as well. The se-
curity parameter « is an implicit input interface of (almost) every system; a system is closed if its
only interfaces are for k and output, i.e. it is a “sampling algorithm” (which takes x and samples some
output). A system is a “mathematical” object, which defines (probabilistic) behaviour of the offered
interfaces. An algorithm is given by code, a ﬁniteE string describing the behaviour and interfaces, and
has a notion of runtime and randomness interface (e.g. random tape) which are imparted on it by the
machine model. Oracles or parties are, unless stated otherwise, algorithms, which are only used via
their interface. To emphasize availability of a certain oracle to some algorithm, we speak of oracle
algorithms. A timed oracle offers an extended interface to its caller, which allows to bound the maxi-
mum time spent in an invocation (and return timeout if the allotted time is exceeded), and also returns
the elapsed time of any invocation. Oracles also serve as a means to make subroutine calls explicit. A
timeful oracle (or system) comes with some notion of purported elapsed runtime. For consistency, the
purported elapsed runtime is always at least the answer length of an invocation, and this is usually
also the runtime notion of interest. Timeful oracles (or systems) are used as convenience abstractions
to specify and analyze unconditional properties. Timed timeful are defined in the obvious way.

Interaction. It will always be clear from the context how interfaces are used or connected. Interactiv-
ity is implicit, and implied by open interfaces. Let Aq, A be a algorithms (or more generally, systems).
For connecting A and Ay, i.e. interaction, with (fixed) inputs x, y, z, we write (A1 (z, 2), A2(y, z)). The
result is another algorithm (or system), where we write outa, (A1, A2) for the output (interface) of A;
for i = 1,2. We write A® for an algorithm (or system) A, with access to an oracle © (where © may be
a subroutine, e.g. a commitment scheme). This notation emphasizes, that the output of the system is
that of A. Otherwise, the system is equivalent to (A, ©), or even OA. We view interaction, oracle, and
subroutine calls as essentially identical and use the notation interchangeably if no confusion arises.

2When infinitely many functions are considered, < and <., behave differently. For <, any countable set of negligible
functions is <.,-dominated by some negl, c.f. [Bel02]. This is false for <. Indeed, <., behaves unintuitive. Consider
a sum of a growing number (in ) of negligible functions v;. It is well-known that (k) = >.7_, vi(x) need not be
negligible, even if all v; are negligible. But if all v; are “strictly dominated” by some v, i.e. v; < v, then p(k) < kv (k)
hence p is negligible. However, if all v; are only “eventually dominated”, i.e. v; <ev v, then the standard counterexample
(vi(j) = 1ifi = j and O else) shows that y need not be negligible. Concretely, v = 0 eventually dominates all v;, yet
u(n) = 1> 0= nv(n). Due to this behaviour, we avoid “<.,”.

»More precisely, CEPT is robust w.r.t. polylogarithmic overhead, due to virtuality. For robustness of EPT, an additional
strict a priori runtime bound is needed, e.g. 2°°¥(*) works.

*We use an ad-hoc definition of system. A compatible, precise notion was recently (concurrently) introduced in [LM2(].

»Non-uniform notions deviate here and allow infinite descriptions.
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Black-box rewinding (bb-rw) access to an algorithm A (or timeful system) means access to an oracle
bbrw(A) emulating A with fresh but fixed randomness, which allows to feed A messages and rewind it
to any visited state. For notational simplicity, we treat bbrw(A) like a NextMsg, function, which upon
a query query = (my, ..., my,) returns the result of A when given m; as its i-th message. The query
(my,...,my,) is viewed as a logical handle (my, ..., m,_1) to a previously visited state, and a message
my, to A when in that state. Implementations of bbrw(A) use short handles, say a counter. A timed
bb-rw oracle truncates and returns the elapsed runtime of its emulated program. By abuse of notation,
we often write BA instead of BP®™(A) if it is clear that B has bb-rw access to A.

Remark 2.1 (Efficient implementations). Access to NextMsga and bbrw(A) is “logically equivalent”, yet,
the efficiency characteristics differ vastly. For expected time, this is a critical point. We encounter such
issues also in other situations, and will offer a brief warning but proceed with the usual notation. Using
more efficient “logically equivalent” implementations solves such problems. See Appendix [A.3.

2.3. Input generation: Conventions and shorthands

In non-uniform complexity settings, it is possible to quantify over all inputs to a protocol universally.
In uniform complexity settings [Gol93], these inputs must be efficiently samplable. For this, we use
efficient algorithm, usually denoted 9, called the input generator. For non-uniform security, J is non-
uninform, i.e. has tape-like access to an (unbounded) non-uniform advice string advc,;. This deviates
from standard definitions [Gol01] slightly by allowing input distributions.

Notation 2.2 (Shorthand expressions for composing systems). Let #, {* be two (interacting) parties and
let 9 be an input generator. We use the shorthand notation (?, V/*) ¢ for the system resp. interaction
of (#,V) completed with J, where it is either clear how to connect the interfaces or it is explicitly
described. We also say: “Let outy« (P (z, w), V*(x, aux)), where (x, w, aux) « J(k)”

What we mean by this is: Consider the system obtained by composing J, & and V* as indicated,
that is, the system which first runs J to obtain (z, w, aux), then passes (x, w) to & as input, and passes
(2, aux) to V*, and then runs & and V* (i.e. letting them interact). Of this composed system, take and
return the output of ¥*.

Note that we do not mean to quantify over all inputs (z, w, aux) which J may produce, except if
made explicit, e.g. by stating “for all (z, w, aux) <— 9” or more precisely “for all (z,w, aux) € supp(J)”.
Since we almost exclusively consider closed systems, and fixed inputs make little sense in a uniform
asymptotic setting, no confusion should arise.

2.4. Preliminary remarks on runtime

An abstract treatment of runtime is in Appendix [, and meant for the inclined reader only. This section
contains all essential definitions for Section [§ and later sections, which only deal with polynomial times,
namely PPT, EPT, CPPT and CEPT.

For an oracle algorithm A, we write timea (A®) for the time spent in A (called oracle-excluded time),
timeo (A?) for the time spent in ©, and timea o (A?) for the time spent in both (called oracle-included
time). This notation extends naturally to interaction and composite systems built from interacting
machines. Note that T = timea (A?) is a random variable, or more precisely, a sequence of random
variables T}, parameterized by x. We assume that that runtimes sum up, i.e. timep (A?) +timeg (AY) =
timea,o(A?), as dependent random variables.

Definition 2.3. A runtime (distribution) 7" is a family of random variables (resp. distributions) over Ny
parameterized by the security parameter k. We (only) view a runtime as a random variable T}, : €2,; —
Ny, when stochastic dependency is relevant.

Definition 2.4. A runtime class J is a set of runtime distributions.?d An algorithm A is 7 -time if
timea(A) € 7.

%For our general treatment of runtimes, we use a more restrictive definition, c.f. Appendix D.3.
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Example 2.5. The runtime classes PPJ and EPT of strict polynomial time (PPT) and expected poly-
nomial time (EPT) are defined in the obvious way, i.e.: T € PPT (resp. T € EPT) if there exists a
polynomial poly such that P(7,;, > poly(x)) = 0 (resp. E(T}.) < poly(k)).

Our central tool for dealing with expected time is truncation. Also recall that timed oracles abstract
the ability to truncate executions.

Definition 2.6 (Runtime truncation). Let A be an algorithm. We define ASY as the algorithm which
executes A up to N steps, and then returns A’s output. If A did not finish in time, ASY returns timeout.

A priori time, a posteriori time, and designated adversaries. In any closed system, every
component has an associated random variable, describing the time spent in it. We only consider such
runtimes (most often, the total runtime). Hence, efficiency depends only on &, since closed systems
have no (other) input. In particular, we do not assign a stand-alone notions of efficiency or runtime to
a non-closed system, e.g. an algorithm A which still needs inputs (or oracle access, or communication
partners). The exception to the rule are a priori PPT (resp. a priori EPT) algorithms A, for which there
is a bound poly such that timea(...) < poly (resp. E(timea(...)) < poly) for any choice of inputs,
oracles, and communication partners.

A posteriori efficiency of algorithms (or systems) considers them in a complete context, i.e. as part of a
closed system. Let A be an algorithm and & be an environment such that (&, A) is a closed system. For
a posteriori time, there are two sensible definitions: We can call A a posteriori PPT (resp. EPT, ...) w.r.t.
&, if timea((8,A)) is PPT (resp. EPT, ...), or if timeg A ((&, A) ) is PPT (resp. EPT, ...). We generally use
the latter, but are always explicit about it. Applied to security notions, we get designated adversaries,
which need only be efficient for the protocol they are designed to attack, see [Fei90] or [KL08; Gol10].

2.5. Probability theory

By Dists(X) we denote the space of probability distributions on X. The underlying probability space
for random variables is usually denoted by (2, the associated o-algebra is always left implicit. We
neglect measurability questions because they do not pose any problems and are merely trivial technical
overhead, see Appendix E.§ for a brief discussion.

We allow product extension of €2 to suit our needs, say extending to ' = Q x X with Bernoulli
distribution Ber(%) on ¥ = {0, 1}. Random variables over (2 are lifted implicitly and we again write 2
instead of . Let Ny U {00, timeout} be totally ordered via n < oo < timeout for all n € Ny. For
X: Q=R ifP(X > ¢) < tail(c), we call tail a tail bound. For families X;: 2 — R, we sometimes
sloppily call ¢, a tail bound for ¢, if P(X, > ¢x) < t,. We denote the cumulative density function
(CDF) of X by CDFx(c) = P(X < c¢)andlet CDFy(-):=1—-CDFx(-)=P(X > ).

For convenience, we use a relaxation of stochastic domination.

Definition 2.7 (Domination with slack). Let X,Y: 2 — & be random variables and & be a totally
ordered set (usually § = R U {timeout}). Let L > 1. We say Y dominates X with slack L (in
distribution), if CDFx < L - CDFy, that is, if

VeeS: P(X >¢)<L-PY >c¢).

d d
We denote this by X <; Y. If L = 1, we write X < Y. We use the same notation for families of
d d
random variables, i.e. we write X < Y and mean X, < Y, for all ».

Instead of truncating runtimes in the domain, we often “truncate” in the probability space.

“’By definition, a priori PPT is the essentially same as a priori PPT in any interaction of [KL0§; Gol10], but in our setting
where only the security parameter grants runtime. Note that “classical” PPT algorithms are not a priori PPT in our sense,
since their runtime bound depends on the input size, while ours are fixed by  alone. We can mitigate this discrepancy
by size-guarding (see Appendix E.4.3).
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Definition 2.8 (v-quantile cutoff). Let 7" be a distribution on Ng U {oco} and v > 0. Suppose that
P(T = 00) < v.B8 The (exact) v-quantile (cutoff) T" is following distribution on Ny U timeout. Let
CDFp(-): NgU{oo} — [0, 1] be the CDF of 7. Then CDF7v( - ): Ny U timeout — [0, 1] is defined
by CDF7v(n) = min{1l — v, CDF7(n)} for n € N, and CDF7v (00) = lim;,—yoo min{1 — v, CDF7(n)},
hence P(T% = 00) = 0, and CDF7v (timeout) = 1,

An exact v-quantile cutoff for a random variable 7': © — Ny U {oco} can be constructed by: First
pick N = inf{n | P(T > n) < v}. fP(T > N) =/ equals v, let T” := T| _ n ¢ ineout- ElSe, pick a
(measurable) subset of A = {w € Q | T'(w) = N} of probability v — v/, and let T% := T'| 4, 1 ineout- If
necessary, modify (2. So we assume w.L.o.g. that there is such a set of events. An approximate v-quantile
cutoff with error ¢ is an exact v'-quantile cutoff, where v <1/ < v + .

In case of discrete distributions, one can find a unique maximal (measurable) subset A (e.g. minimal
by lexicographic order), and a unique atomic event which may have to be split between N and timeout.
By modifying € to © x {0,1}", an approximate cutoff with error at most to 27" is possible. Using
Q x Ber(v — /'), exact cutoffs are possible.

Remark 2.9 (Equal-unless). If X, Y : 2 — & are random variables and coincide (as functions), except
for an event & C (), then X and Y are (pointwise) equal unless &. Typically, § = {w | Y (w) = bad}
(for some symbol bad), and we say X equals Y unless bad happens. We also say X and Y coincide
unless (or agree except) if bad happens. The definition naturally extends to oracles and systems.

Remark 2.10 (Truncation of values vs. quantiles). Consider random variables X, Y over R with X % I
Y (for some L > 1). As seen in Lemma [C.7, quantile-truncation preserves domination even if we
additionally condition on —timeout. Truncating in the domain does not preserve domination if we
additionally condition on —timeout. For example, over {1,2,3,4} consider the probability vectors
px = (8,0,1—3,0) and py = (0,,0,1 — a). Truncating X, Y at 3 and conditioning on —timeout

d
yields X', Y’ with pxs = px and py» = (0,1,0), and thus X’ £, Y”, even for L = 1.

2.6. Indistinguishability and oracle-related notions

We define (oracle-)indistinguishability, repeated trials, and query sequences.

2.6.1. Oracle-indistinguishability

The (in)distinguishability of oracles (or systems) is a folklore abstraction. “Bit-guessing” experiments,
such as indistinguishability of distributions, and more generally game-based security notions can be
straightforwardly rephrased as an oracle pair, see Appendix E.1.3. Depending on the oracles (or sys-
tems) and their interfaces, distinguishing can encompass (adversarial) input generation, protocol runs,
and more. For example, an oracle may present an IND-CPA game for public key encryption, or it may
present the distinguisher with a concurrent zero-knowledge setting.

Definition 2.11 (Oracle-indistinguishability). Let ©p and ©; be (not necessarily computable) oracles
with identical interfaces. A distinguisher @ is a system which connects to all interfaces or ©y, Oy,
resulting in a closed system . The (standard) distinguishing advantage of @ is defined by

AdVE, 0, (K) = [P(D (k) = 1) = P(D (k) = 1)].

By abuse of notation, we sometimes abbreviate Adv%s’bm@l by AdV%S’EQ.

Let 7 be a runtime class. Then ©p and ©; are computationally (standard) indistinguishable in 7 -
time, written O ~5 O if for any 7 -time distinguisher @ with timeg (D% ®) (k)) € 7 (forb = 0, 1)&

®1t is straightforward to deal with general v > 0. But distributions S over Ng U {co} U timeout with P(S = 00) > 0 are
not particularly useful for us.
*This is equivalent to being efficient in the respective distinguishing experiment.
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there is some negligible negl such that Adv%ft@(fi) < negl. We define statistical 7 -query indistin-

guishability by counting only oracle-queries as runtime.
Perfect indistinguishability is special, and we reserve the notation “=” for it.

Definition 2.12. Oracles ©p, O (or systems, or algorithms), for which all (unbounded) distinguishers
have advantage 0 are called perfectly indistinguishable. We also write Oy = ©; to emphasize this.

Remark 2.13 (Indistinguishability of distributions). Indistinguishability of distributions X and Y (under
repeated samples) is defined in the natural compatible way, namely via oracles Ox and Oy which
output a single (a fresh) sample of X resp. Y (for each query).

2.6.2. Repeated trials

It is useful to make repeated oracle access explicit.

Definition 2.14 (Repeated oracle access). Let © be an oracle. We denote by rep(©) an oracle which
offers repeated access to independent instances of ©. For example, rep(©) may implement this by
expecting message tuples (i,m) of oracle index i and query m, and a special message which starts a
new independent copy of ©, increasing the maximal admissible index i by 1. We denote by rep,(©)
an oracle which limits access to a total of at most ¢ instances of ©. (Effectively, the admissible indices
are 1,...,q. Also observe that rep(©) = rep(©).)

Definition 2.15 (Indistinguishability under repeated trials). Let Oy and ©; be two oracles. We say
Op and Oy are T -time computationally indistinguishable under ¢ (repeated) trials, if rep,(©p) and
rep,(O1) are T -time computationally indistinguishable. We say Oy and © are 7 -time indistinguish-
able under (unbounded many) repeated trials, if they are 7 -time indistinguishable for ¢ = oo re-
peated trials. The definition for I -query statistically indistinguishable is analogous.

2.6.3. Query-sequences

We use following definition and notation for the sequence of queries made by an algorithm to its oracle.

Definition 2.16 (Query-sequence). Let A® be an oracle algorithm. The query-sequence gseqq (A” (x))
is the (distribution of the) sequence of queries made by A to ©. We view gseqq(A”(x)) as an oracle,
which grants lazy (tape-like) access to the queries.

3. Computationally expected polynomial time

In this section, we define computationally expected polynomial time (CEPT), briefly recap the general
results of Appendix D for polynomial runtime classes, and have a first glimpse of the behaviour of
CEPT. The inclined reader may wish to continue with Appendix D instead; it deals with runtime classes
in more generality.

3.1. A brief recap
3.1.1. Virtually expected time

We are interested in properties, which need only hold with overwhelming probability. We formalize
this for the expectation of non-negative random variables as follows.

Definition 3.1 (Virtual expectation). Let X: Q — R>q U {oo} Let ¢ > 0. We say X has e-virtual
expectation (bounded by) ¢ if

CCOPC)>1—c AEXI|G) <t
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We extend this to families by requiring it to hold component-wise. Moreover, we say a runtime 7" is -
virtually t-time if T" has e-virtual expectation bounded by t. We abbreviate this as virtually expected
(t,e)-time and call € the virtuality of time (¢,¢).

Virtual properties have a “probably approximately” flavour. They are closely related to “c-smooth
properties”, such as e-smooth min-entropy, which smudge over statistically close random variables
(instead of conditioning).@ Virtual properties must behave well under restriction (up to a certain
extent).

Lemma 3.2. Let X: Q — R>( be a random variable and E(X) = t. Then any restriction of X to an
event G of measure 1 — ¢ implies E(X | §) < (1 — )~ !t

The upshot of Lemma B.9 is that, if we condition on an overwhelming (in fact, noticeable) event G,
polynomially bounded expectation is preserved. Also, consecutive restrictions of {2 are unproblematic.

3.1.2. Triple-oracle indistinguishability

Using triple-oracle indistinguishability, instead of standard indistinguishability, for (runtime) distribu-
tions abstracts technical details and prevents technical problems. Recall that we always use binary en-
codings, and this includes runtime oracles (even though unary encodings work there without change).

Definition 3.3. A triple-oracle distinguisher & for distributions X, X7, receives access to three oracles
Oy, O resp. Oy, which sample according to some distributions X, X1, resp. Xj. The distinguishing
. 3dist ©0,01,07 ©0,01,08
advantage is Advy; 6, o, = [P(D7070%1 (k) — P(D70 %1% (k))].
Two runtime distributions 7', S' are computationally J -time triple-oracle indistinguishable, de-

&
noted by 7' Ny S, if any T -time distinguisher has advantage o(1). If 7 contains PPT, then (by am-
plification) any distinguisher has negligible advantage. For statistical triple-oracle indistinguishability,

we only count oracle queries as steps (and often explicitly speak of statistical I -query distinguishers)
S

and write T' Rg S.
A runtime class 7 is computationally closed if for all runtimes S, if there exists some T € J such

that T' Ng S, then S € T . Statistically closed is defined analogously.

In the definition, we sketched our approach for general runtime classes (namely requiring o(1) ad-
vantage bound, see Appendix D). This definition applies to runtime classes from other algebras, such as
polylog or quasi-polynomial time, and implicitly uses the notion of negligible function for these alge-
bras. The use of tail bounds as our proof technique seems limited to the setting, where “advantage” and
“time” algebras coincide. From now on, we specialize to the polynomial setting, where amplification
enforces negligible advantage.

Triple-oracle distinguishing should be interpreted as distinguishing with repeated samples, plus
sampling access to the distributions X, X;. It allows for quite modular reductions, as we see now.

Remark 3.4 (Standard and triple-oracle indistinguishability). To clearly distinguish triple-oracle and
“normal” indistinguishability, we call the latter standard when in doubt. We use (and defined) triple-
oracle indistinguishability only for (runtime) distributions, not for general oracles.

3.2. Characterizing CEPT

We begin with the fundamental definition of this section.

*We borrowed the terminology of virtual properties from group theory.
*'We never consider unbounded queries for statistical triple-oracle distinguishing, as this trivially coincides with perfect
indistinguishability.
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Definition 3.5 (CEPT and CPPT). The runtime class CEXJ of computationally expected polynomial
time contains all runtimes which are (triple-oracle) ##J -time indistinguishable from expected poly-
nomial time. In other words: A runtime 7T is CEPT if there is an EPT T, such that 7" and 7" are triple-

Cc ~
oracle PP T -time indistinguishable, i.e. T~ T.
Computationally (strict) probabilistic polynomial time is defined analogously and denoted CPPT .

Now, we turn towards the characterization of CEPT. We start with a few simple lemmata. Their
central technique is to approximate probability distributions with suitable precision, and then use this
information for distinguishing.

Lemma 3.6. Suppose S and T" are runtimes and T’ € CEPT . Then statlstlcal CEPT -query and com-

putational CEPT -time triple-oracle indistinguishability coincide, i.e. S Ngppy T <= S Npps T.
Moreover, a priori PPT distinguishers are sufficient.

Proof sketch. 1t is clear that statistical indistinguishability implies computational indistinguishability.
Thus, we concentrate on the converse. For T' € CEPT there exists, by definition, some T' € EPT such

C

that T & T (triple-oracle computational indistinguishability). Hence, for any (efficiently computable)
N = N(k), we have |P(T' > N) — P(T > N)| < negl.

We show that 7" and T are statistically triple-oracle indistinguishable as well. Assume the statis-
tical distance A (T, T ) is at least § = infinitely often. Note that IP’(T > N) < oY1 where

oly N >
E(T) poly;. Thus, by truncating 7, T after, say N = 4poly,poly;, we know that 7<" and T<" are
distributions with polynomial support in {0, ..., N} and non-negligible statistical distance g infinitely

often. Since we have (repeated) sample access to 7, T and the challenge runtime we can approximate
the probability distributions (by the empirical probabilities) up to any o precision in polynomial
time, see Appendix C.4. Consequently, we can construct a (computatlonal) PPT distinguisher if 7" and
T are not statistically PPT -query indistinguishable.

The described statistical-to-computational distinguisher works for 7" and S as well. Let 6 = A(T, S).
Since T € CEPT, there is a suitable tail bound N with A(T,T<V) < 5. It is easy to see that
A(TSN,S<N) > 5 B s > p% infinitely often, then there is a su1tab1e polynomial N, such

A(TSN,S<N) > 1 1nﬁn1tely often. Thus, we are in the same setting as before, and can distinguish by
approximation. Lastly, note that the distinguisher we constructed is a priori PPT. O

The proof of Lemma .4 also shows closedness of CEPT .
c/s c/s
Corollary 3.7. Let T, S be two runtimes and T € CEPT . Then S = ppg T <= S Negpg T, ie.
statistical PPT -query and computational PPT -time triple-oracle indistinguishability coincide.

m
Thus, we have shown that all relations Ny for m € {¢,s}, T € {PPT,CEPT } coincide. For
concrete applications, we want to use standard indistinguishability instead of triple-oracle indistin-
guishability whenever possible.

Lemma 3.8. Let I and S be runtimes induced by algorithms A, B, and suppose I’ € CEPT . Then triple-
c/s
oracle and standard PPT -time indistinguishability coincide, i.e. S Lyyy T < S Ngpg T.

1
polyg
infinitely often. The distinguisher @’ from the proof of Lemma .6 is a priori PPT with advantage g
infinitely often. Moreover, @’ truncates all samples at polynomial N, i.e. D actually distinguishes <"

and SSV. These truncated runtime distributions can be sampled via emulation in strict polynomial

Proof sketch. Suppose 1" and S are triple-oracle distinguishable with advantage at least § =

*Intuitively, either timeout accumulates a difference in probability of %, or a difference of % in probability is present on
{0,..., N}, see Corollary C.3.
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time. By sampling via emulation and a hybrid argument, we find an a priori PPT distinguisher 0 with
advantage at least % infinitely often. O]

We stress that to efficiently distinguish two induced runtimes, it is sufficient that one of the two
algorithms is efficient.
Putting things together yields following convenient characterization of CEPT and CPPT:

Corollary 3.9 (Characterization of CEPT). LetT" be a runtime. The following conditions are equivalent:

(0) T isin CEPT . B

(1) T is PPT -time triple-oracle computationally indistinguishable from someT' € EPT .

(2) T is PPT -query triple-oracle statistically indistinguishable from some T € EPT .

(3) T is virtually expected polynomial time. Explicitly: There is a negligible function negl, an event ¢
with P(G) > 1 — negl, and a polynomial poly, such that E(T; | G) < poly(k).

Furthermore, T € CEPT satisfies the following tail bound

P(T,, > N) < po'yN(”)

+ negl(k)
for poly and negl as in|(3). Consequently, C§PT distinguishers are not more powerful than PPT distin-
guishers. In particular, CEPJ is a closed runtime class. (In fact, it is the closure of EPT .)

For induced runtimes T' = timea(A), S = timeg(B), where T' € CEPT, and S is arbitrary, compu-
tational CEPT -time (resp. statistical CEPT -query) triple-oracle indistinguishability and standard com-
putational (resp. statistical) indistinguishability coincide.

The analogous characterization and properties hold for CPPT.

The essence of Corollary B.9 is the equivalence of items [1)] and [3). The former is easy to prove, as it
is follows by reductions to indistinguishability assumptions. The latter is easy to use, as it guarantees
that, after ignoring a negligible set of bad events, one can work with perfect EPT.

Proof sketch of Corollary .. Equivalence of items [1) and [2) follows from Lemma B.6. Now, we show
that [2) implies [3). For our triple-oracle notion, being statistically indistinguishable implies being
statistically close, as one can see by approximating the probability distribution, as in Lemma B.d. Say
the statistical distance is 0. Let 7" be the respective v-quantile of T". Clearly, 7|, .out.,o Minimizes
the value of E(.S) under the constraint that S is a non-negative random variable with A(T,S) < e.
By assumption, there is some d-close EPT S. Hence, we have E(7° ’ timeoutrso) < Poly. Consequently
E(T? | ~timeout) < ﬁpoly, and the claim follows.

The converse is trivial: If E(7'|¢) < poly for an event § of overwhelming probability 1 — negl, then
T=T s 18 evidently EPT and has statistical distance at most negl. This finishes the equivalence of
items m and [3).

To see the tail bound, note that for T € CEPT there is a “good” runtime T € &PT with A (T, T) <
negl. Thus, the tail bound follows immediately from Markov’s bound (Lemma [C.d) applied to T and
statistical distance of negl. That PPT distinguisher suffice and CEPT is closed was already shown in
B.7, but follows easily from the tail bound.

Finally, for induced runtimes, Lemma .§ demonstrates the equivalence of triple-oracle and standard

distinguishing. O

As noted before, non-uniform advice can replace sampling access. For non-uniform distinguishers,
triple-oracle and standard indistinguishability coincide. In fact, all the above results follow almost
trivially by using the optimal decision table of a distinguisher for <" and S=% as advice.

Applications require a further corollary which, though unmotivated, best fits here.

3If neither runtime is efficient, we are in a setting where the truncation argument does not work. Indeed, strings can be
encoded as numbers, hence runtimes. Thus, this is indistinguishability of general distributions.
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Corollary 3.10. Let A, B be two algorithms which output a number in Ny. Let A, B denote the output

distribution and let T' = timea(A), S = timeg(B). Suppose T %L q-AandS %L q-BandletL = L(k)
and q = q(k) polynomial in k. Suppose furthermore A € CEPT (and hence T € CEPT ).

IfA ~ B then S € CEPT. In particular, A € CEPT <= B € CEPT and statistical and
computational (standard and triple-oracle) indistinguishability coincide. The claims generalize to oracle
algorithms w.r.t. T = timea(A94), S = timeg (BY5).

The corollary says that, if we measure (and output) a statistic which bounds the runtime (up to
polynomial slack), then indistinguishability of that statistic implies preservation of efficiency. This is a
core step for the hybrid argument. We stress that the claim is non-trivial, as equivalence of standard and
triple-oracle indistinguishability was only proven for induced runtimes. Nevertheless, after “rescaling”
the tail bound from N to N - q - L, the argument is quite analogous to Lemma B.§.

Proof sketch. By assumption, A € CEPT, and therefore T € CEPT (by Lemma [C.7). By the tail
bound for CEPT (see Corollary B.9), for any polynomial § = 1/poly, there exists a polynomial N with
P(A > N) < 0. Usually, we would choose such an N for suitable small § and truncate A and B at
N, and argue with a standard cutoff argument. However, we cannot truncate A (resp. B) w.r.t. A (resp.
B), since these are not the runtimes, and the standard cutoff argument does not apply. Nevertheless,
we have a relation between T (resp. S) and A (resp. B) which we can use. So instead, we truncate at
K,where P(A > K) < %. Then

CDFr(K) < Lg- CDF4(K) < Lq% = 4.
q

Note that % is again polynomial. Thus, we can approximate the distribution of A up to precision 9 by
using ASK,

The first inequality also works with S and B, but as in the standard cutoff argument, we do not
know if CDF 4(K) < %. Suppose A(A, B) > ¢ = 1/poly infinitely often. Take 6 = ¢/4 and fix the
respective cutoff K from above. Then |[P(B > K) — P(A > K)| < /4 as this yields a distinguisher
(and we assume A ~ B). Hence, A(A,A") < /4, and A(B,B’) < ¢/4. Thus, we can sample
approximations A’ (resp. B’) of A (resp. B) via ASK (resp. BSX) which are £/4 statistically close.
With this, we can retrace the steps of the CEPT characterization, in particular Lemma .8, to prove
equivalence of triple-oracle and standard indistinguishability. (That is, we approximate the distribution
of A, B, and compute from this a decision table for the challenge sample. With non-uniform advice,
we can again skip this just the advice contains the optimal decisions.)

O]

3.3. From CEPT to EPT

The characterization of CEPT ensures that, conditioning on “good” events yields a strict EPT algorithm.
For interacting parties, this is not yet very useful, because it “entangles” their probability spaces.

Example 3.11. Let (#, V) be an interactive protocol. Suppose P sends a random message r € R.
Suppose {/ picks a random number s € R, and if r = s, it loops forever. Otherwise the protocol
finishes. Now, the bad event is {(r,7) | r € R} (or some superset).

This “entanglement” of probability spaces prevents one core separation, namely the random coins
of honest and adversarial parties. Fortunately, they can be “disentangled” as far as possible. Namely,
only the (distribution of) messages of (honest) parties are of relevance, but no internal coin tosses. This
essentially follows from the fact, that the interacting systems have “independent” randomness spaces,
and the interaction is mediated solely by messages between the systems.
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Lemma 3.12 (Timeout oracles). Let A be an interactive algorithm and © be a (probablistic) timeful oracle.
Suppose timeg ((A, ©O)) is CEPT with virtual runtime (t,c). Then there exists an oracle ©’, modelled as
a timeful oracle, such that: © and O’ behave identically except when O’ sends timeout (and halts) to
signal bad executions. If A aborts upon receiving timeout, then?! timeo ((A, @) is EPT with expected
runtimet+ O(1) (with small hidden constant).2d The probability for a timeout message in (A, ©') is B

We stress that O is a timeful oracle. While the construction shows that O’ is computable from timed
bb-rw access to ©, it is generally far from efficiently computable. The usage of Lemma is roughly
as follows: Replace © with the timeful ©’. Now, the runtime problems are is easier to analyse, since
we have guaranteed EPT runtime. In the analysis, track the effects on runtime and timeout messages
of ©'. Finally, replace ©' with © again, noting that only if timeout occurs, there is a difference. Of
course, such arguments can be made directly, without introducing ©’ at all. However, the explicit
modification simplifies the presentation.

The construction of @' is straightforward, one defines O’ by a runtime truncation at N, i.e. © acts
exactly as O until the total elapsed time exceeds N. Then, O’ aborts with timeout. Exact v-quantile
cutoffs are achieved by extension of (), as usual.

Proof of Lemma3.13. A runtime truncation of © at N is defined in the obvious way, i.e. O<" returns
timeout if| after an invocation, the purported elapsed runtime exceeds N. An exact v-quantile cutoff
is constructed as usual, i.e. let NV be the minimal such that

V' =P((A, O=N) has timeout) < v.

If this is an equality, let O be defined as O<" . Else, extend Qo via b ~ Ber(v — 1), so that there is
an exact cutoff if one truncates at time ¢ for t > N and for t = N if additionally b = 1.
Let To = timeg((A, ©)). Then
Té = timeo((A,O")),

assuming the execution of (A, ©”) stops with timeout (and the purported runtime is N = N(v).) In
other words, truncating the runtime distributions and truncating the oracle have the “same” effect.

Our timeout oracle ©' is defined as the v-quantile truncated oracle, except that ©’ additionally pays
a small constant time overhead for sending timeout. (Recall that due to consistency reasons, sending
messages sets lower bounds for purported runtime for timeful oracles.) Note that P((A, O<") has timeout) =
v by construction. Moreover

timeo ((A, Q")) < timeo((A, ©")) + O(1),
hence the claims follow (as in Corollary B.9). O

In our setting, we usually deal with “multi-oracle” adversaries. For example, zero-knowledge needs
input generation J and a malicious verifier VV* (and a distinguisher % which of lesser concern). Clearly,
we can view J and V* as a single oracle (or party), by merging everything except the prover & into
one entity. The new entity first runs ¢ to produce inputs, and then continues as ¢/*. For completeness,
this is discussed more explicitly in Appendix

4. Towards applications

In this section, we gather the basic tools to deal with a posteriori efficiency. While we focus on CEPT,
it will again be evident that our techniques work for “algebra-tailed” runtime classes, and the results
generalize to any such class (where the algebra for negligible functions coincides with the algebra for
runtime), see Appendix [J for the definitions.

*More formally, one should lift A to an algorithm which aborts upon receiving timeout, since timeout is a special symbol
which A cannot receive/interpret.

*The constant O(1) merely accounts for Q' and outputting timeout.

36The probability space may be enlarged to achieve an exact cutoff, see Section B.5.
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4.1. Standard reductions and truncation techniques

In this section, we give some semi-abstract reduction and truncation techniques, which are the workhorse
for dealing with designated CEPT adversaries.

Lemma 4.1 (Reduction to a priori runtime). Let Oy and ©; be two oracles. Suppose D is a distinguisher
with advantage ¢ ‘= AdV%ft@m(gl. Let Ty = timeg (D) and let vy € [0, 1] be some negligible function.
Suppose there is a tail bound to for Ty withP(Ty > tg) < %E + v. Then there is a (standard) distinguisher
A with runtime strictly bounded by t = to (up to emulation overhead), and advantage at least § — vg

infinitely often. More concretely, A is a runtime truncation of D aftert steps with tiny overhead.

The only reason for stating Lemma [.1] in the asymptotic setting is convenience. We also note that
instead of runtime, any “runtime-like” statistic, e.g. the number of oracle queries, can be used.

Proof sketch. Let A run b <— D<= and output b, except if b = timeout, where 4 returns a random
bit instead. The outputs of D and A have statistical distance at most %e + 1 by assumption on
the tail bound t.

Suppose the output of A" has statistical distance § of D, If § > %, then necessarily, the prob-
ability that A1 exceeds t( steps is greater than %. Thus, this runtime statistic can be used as a dis-
tinguishing property, with advantage at least  — 14 (infinitely often). (The distinguisher A’ obtained
from this returns 1 on timeout and 0 otherwise.)

Now suppose § < 24—5. Then the advantage of A is at least § — v (by statistical distance of the
outputs). The promised runtime bounds for A and A’ follow immediately. O

Plugging in the tail bounds for CEPT, we get the following.

Corollary 4.2 (Standard reduction to PPT). Let Oy and O be two oracles. Suppose D a distinguisher
with advantage Adv%figoy@l at least € = p%w infinitely often, and timeq, (D®°) € CEPT . Then there is

an a priori PPT (standard) distinguisher A with advantage at least 5 — negl infinitely often.
Note that @ need only be efficient for O, and that the constructed A has roughly the same runtime
distribution as @.

Remark 4.3 (Standard cutoff argument). The strategy in the proof of Lemma [£.1 and Corollary .9 is
the standard cutoff argument. It works with minor variations in many situations.

Notation 4.4. We often sloppily write ~ instead of ~7 when specifying indistinguishability. Corol-
lary .9 justifies this (for the runtime classes of interest).

4.2. Relative efficiency

By considering a posteriori runtime and designated adversaries, we lack a notion of “absolute” effi-
ciency of an algorithm (or timeful system). Instead, we rely on a relative notion of efficiency, which is
a definitional cornerstone in our setting.

Definition 4.5 (Weak relative efficiency). Let A and B be two (interactive) algorithms (or timeful sys-
tems) with identical interfaces. We say that B is weakly (7, §)-efficient relative to A w.r.t. (implicit)
runtime classes 7, 8, if for all distinguishing environments & (which yield closed systems (&, A), (&, B))

timeg+A(<6,A>) ceJ = timEg+A(<€, B>) es

We say B is weakly efficient relative to A w.r.t. an (implicit) runtime class 7, if it is weakly (7,7 )-
efficient relative to A.
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Efficiency relative to a “base” algorithm is the notion of efficiency we need in security definitions
and reductions. Indeed, if an adversary is not efficient in the real protocol, the simulator (or reduction)
need not be efficient either. However, whenever the adversary is efficient, so should the simulation (or
reduction) be B A stronger, unconditional form of relative efficiency is the following. In the following,
the runtime classes 7 and & are from {PPT,EPT ,CPPT ,CEPT }, and they decide whether strict
or expected time is measured. This allows us to specify cases 7 = & = PPT, (T,S8) = (PPT ,EPT ),
and I = & = EPT, as well as variations with virtuality succinctly.

Definition 4.6 (Tight relative efficiency). Let A, B be as in Definition f.5. We say that B is (7, §)-
efficient relative to A with runtime tightness (poly;iye, POlYyirt ), if: For all timeful environments &, if
timea ((&, A)) is virtually strict/expected (to, £ )-time, then timeg((&, B)) is virtually strict/expected
(t1,e1)-time, with £1 (k) < polyyime(K)to(x) with 1(k) < poly(r)eo(r) (for all k).

4.3. Hybrid lemma

The formulation and proof of the hybrid lemma is more involved than for a priori definitions of run-
time. To state it, we require relative efficiency. To prove it, we use the random embedding trick from
[HUM13] to allow us to get a measure of runtime, which is closely related to the runtime of the full
hybrid, even though the time spent in the challenge oracle is inaccessible to a reduction.

Lemma 4.7 (Hybrid-Lemma for CEPT). Suppose that © is weakly efficient relative to ©y and that

Oy ~ O, Suppose that D is an algorithm with oracle-access to rep(Oy), and timey, | rep(0y) (Drer(@0)) ¢
CEPT . Then time@+rep(@1)(®rep(@1)) € C8PT and the distinguishing advantage is

AdvEly, o, = [P(@™P(D) = 1) — P(D"PO) = 1)| < negl.

In other words, rep(©1) is weakly efficient relative to rep(©y), and rep(©p) ~ rep(©y).
For a detailed sketch of the proof and the intuition, we refer back to Section [1.4.4.

Proof. We split the proof into several steps. We first show, that proving the claim for g-fold repeated
access, for arbitrary but fixed polynomial g(x), is enough.

Claim 4.8. Suppose the hybrid lemma holds for rep,(Op) and rep,(©1) for any polynomial q. That is, for
any distinguisher D with time®+repq(@0)(@'epq((%)) € CEPT , we have thattime@Jrrepq(@l)(@'epq(@l)) €

CEPT and advantage Advgois}%’(gl = [P(D"Ps(90) = 1) — P(D"*P4(9) = 1)| < negl. Then the hybrid
lemma holds.

Proof of Claim 4.4 Suppose @ is a distinguisher with time@+rep(@0)(@rep(@0)) € CEPT and non-
negligible advantage. Let the advantage exceed ¢ = 1/poly infinitely often. The number of Qo of Op-
instances generated in 0 "P(90) is certainly CEPT. Let Q1 denote the number of O -instances generated
in @"P(O1) Treating these statistics as “runtime”, the standard truncation argument (Corollary [.9),
ensures that there is a PPT distinguisher A which makes a strictly polynomial number g of queries and
has advantage at least £ /4 — negl infinitely often. Clearly, A rep(%) has runtime bounded by @ "eP(©0)
(up to emulation overhead), hence remains efficient. Consequently, we have reduced to the setting
where at most g queries are made for some polynomial g which depends on . O

From now on, we assume that &) generates at most g oracle instances, for some polynomial g. We
proceed in game hops, starting with D"P(%) and finishing with ®"P(“1) For each hop, we have to
ensure indistinguishable output bits and preservation of efficiency.

Strictly speaking, a simulator depends on the adversary, and Definition [t.5 should be applied “pointwise”, i.e. for every
adversary, the simulator should be efficient relative to the simulator. For completeness, we give a generalized definition

in Appendix E.3.3.

26



« Game Gy is simply the execution of D"P(©0),

« In Game G; we pick a random permutation 7: {1,...,¢} — {1,...,q} and reroute the access
to the oracles: If @ queries for the - th oracle, it is routed to the 7(7)-th oracle. More precisely,
in G the adversary @ has access to O = (O}, ...,0f), whereas in G; it has access to a random

permutation G™ = (O (1), SNCH (q)). Clearly, Gg and G; are perfectly indistinguishable and
have almost identical runtime (up to bookkeeping). The key change is, that all ©° now have
identical runtime distributions.

. In Game Gy, we replace the O} with O}, that is we consider @ = (O}, ©2,...,O). Indistin-
guishability (of outputs) of Gy follows directly from the standard reduction, whereas efficiency
of Gy follows from ©; being weakly efficient relative to ©y. Note that the runtime of Gy may
differ significantly from that of G;.

. In Game G, we have O = (01,..., @f_l, ©f). That is, all but one oracle instance is of O -type.
Proving that Gz is CEPT is the key point in this argument. Indistinguishability of Gy and G3
follows easily. We postpone the proof to Claim k.9, and finish up first.

. In Game G, we use O = (Of,...,01" ! ,©F), that is, we switched completely to ©; for every
instance. Efficiency and output 1ndlst1ngulshab1hty follow as from G; to Ga.
« In Game G5, we remove the random permutation 7. Thus, Gj is @'ep((gl), as claimed. O

Claim 4.9. If Gy is CEPT, so is G3. Moreover, their outputs are indistinguishable.

We will prove Claim }t.9 by establishing a relatively precise grasp on the runtime.

Proof. Recall that we have to switch the oracle setup from (O1,©Z,..., Of) to (Of,... ,(911_1, Of).
The core difficulty is the efficiency in the latter case. Following the trick of [HUM13], we randomized
the oracle order for @ using a random permutation . This spreads the runtime of Of and Of evenly
over all possible positions, and this property is at the heart of the reduction.

Let Hy denote the game with oracle setup O = (Of,...,0f, @ZH, ,O8). B4 By construction, Hy
equals Go and H,_1 equals G3. Thus, it suffices to prove 1ndlst1ngu15hablhty of Hy and Hy—1.

Clearly, hybrids Hy and Hy1q (for £ = 1,...,q — 2) are related by a direct reduction to Oy ~ @1.
The hybrid reduction R embeds the challenge oracle ©; in position £ + 1, plcklng C+—A{1,...,q—2}

uniformly. Denote by Ry the reduction with fixed choice /. By construction, R = Hy4p. Note that
0 has randomly permuted access, so the challenge oracle is embedded unlformly from @’s view.

One main complication is, that Rf* cannot keep runtime statistics of ©*. Yet, we need enough
control over the runtime to guarantee efficiency of R and H,_;. By randomizing the order of the oracle
instances (from the view of ), we can exploit the strong symmetry of the local runtimes of instances.
Let us now take a close look at these runtimes. To keep notation in check, we fix a hybrid Hy, and
notationally suppress the dependency of most variables on /.

« Let Ty = time(Hy) be the total runtime of Hy (as a random variable). Recall that it is understood
that H; emulates all oracles ©!, ... OY.

« Let 797 denote the time H; spends in 7.

« Let T denote the time H, spends outside ©7 (mostly emulating D).

« Wehave T; = T + Z?Zl T as random variables by definition.

By the symmetry introduced by the random permutation 7, the distributions of the 79+ for the same

. d )
type of oracle coincide. That is, 7% = T for all (i,5) € {1,...,£} for O;-type instances, and
likewise with (7,7) € {4+ 1,...,q} for all Op-type instances.

Claim 4.10. Let Sy = T? + T + T4, Then we have

d
CDFTZ( ) <(q+ 1)CDF(q+1)S£( ) thatis Ty §(q+1) (g+1)-Sp. (4.1)
*Note that all hybrids have Of and Of fixed. Thus there ¢ — 1 hybrids and g — 2 hybrid transitions.
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Proof. Using the definition and symmetries, we argue that

L q
CDFq, (1) =P(T? + ) T9"+ > 197 > 1)
i=1 j=0+1
y4 q

1 , l . oq—/
<PT? > — ) +P(> T9"> —— )+ P 799 > 2 "¢
- ( q—i—1)+ (; q+1)+ S;l q+1)

¢ q
<P(T? > ——t P(T9 > ——t)+ Y P(T97 > ——t
=H q+1)+; ( q+1)+jze+1 ( g1
=P((q+1)-T? >t)+£-P((g+1) - T9" > t) + (¢— ) - P((g+1) - T9 > 1)
<(q+1)-P((qg+1)-Se>1t).

The first two inequalities use that for any sum Z:‘L:l N X; > x with \; > 0 and Z?:l A; = 1, there
exists some ¢ such that X; > \;x. The next (in)equalities follow from symmetries and simplifications.
The final inequality holds, because by construction, Sy dominates TP, 79! and T94. Also, we bound
1,¢ and q — ¢ by q + 1. Thus the claim follows. O]

Note that Sy can be computed, even in a reduction between hybrids, since Q' and ©1 are fixed
and there is never a challenge-embedding there. This is crucial. Using Eq. (£.1), the generalized CEPT
characterization, Corollary B.10, is applicable. Therefore, it suffices to prove that S ~ Sq¢—1, and
Corollary ensures that T, 1 is CEPT if T is CEPT This is our next step. (In a sense, we have now
reduced efficiency to indistinguishability.)

Claim 4.11. For Sy defined as above, we have S ~ —1-

C

To prove S1 ~ S,—1, we modify the hybrids H, to also output this quantity. That is, the hybrid
H; outputs the runtime Sy and output of @, obtained by emulating @ given access to O™ with O =
(O1,..., @f, @g“, ..., Of)for £ =1,...,q — 1. For now, we focus solely on the output ;.

Recall that R denotes the hybrid reduction, which embeds its challenge-oracle ©O* into O for i* =
i+1, wherei < {1,...q—2}), and simulates the remaining oracles. Recall, that R; denotes reduction
R with fixed choice 7. Hence, ng simulates Hy,p.

If R9 were efficient, this would almost finish the proof. However, we do not yet know whether R%
is efficient. Since we only need to prove S; and S,_; indistinguishable, we truncate the hybrids and
the reduction. We then need to prove that the truncations are close to the originals, i.e. the probability
for timeout is (arbitrarily polynomially) small. We define:

« [H¢] is the hybrid which imposes a strict time bound of ¢,y (to be chosen later) on each oracle
emulation (i.e. each ©?) individually as well as the emulation of @. If a bound is exceed, [H]
aborts with timeout. (That is, [Hy] aborts if T > tyay or T >t foranyi =1,...,q.)

« [R], is defined analogously to [H¢]. Note that [R] cannot truncate its challenge oracle O*.

+ [O] (resp. [D]) denotes same cutoff at ¢y« applied to an oracle (resp. D).

By definition
[He) = (R = [R);™

if the expressions are defined. The technical problem, is that we can only compute [R]?*, but not

[R]L@ ) Yet, the latter is necessary in the usual telescoping sum. To quantify the introduced error, we

define:

« hy :=P([H¢] = timeout), the timeout probability of [H].
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.« b= IP’([R];QZ’ = timeout), the timeout probability of [R]?b. Note that the challenge oracle
©p cannot time out.

Claim 4.12. For all § = 1/poly, there exists a polynomial ty,.x such that foralll =1,...q—1
he <8 and |hy—r} (| <8 and |hy—1rY <6.

Similar to before, and as in [HUM13], it is easy to use the symmetry of timeouts to showBd

14
T < hg < -1 T (4.2)
-/
0ch< 12" 49 43
reshes T (4.3)
forall/ =1,...,q — 2. This implies
L l l 14 l
he < 7= 17“5}—1 = 6_717“2—1 + m(ﬁ}—l — ) < mhe—l + P
where we let p; = r} — 7). Inductively we find®d
/—1 ¢
he < €-hy + 2} ~pi (4.4)
iz

Recall that we can make h; arbitrarily polynomially small by picking .« large enough. Now, we want
to prove that hy is also small for all /. Hence we are looking for a (small) upper bound on Zf;% % Di-

If all p; were positive, we could just guess a good ¢ and use a completely standard hybrid argument,
but we do not know this. In [HUM13], non-uniform advice is used, namely the index ¢* which maxi-
mizes |p;«|. It is easy to see that [R];« is a distinguisher with advantage |p;« |, hence |p;+| is negligible
and consequently |Zf;% fpzl < q - |pi~| is also negligible. It is also noted in [HUM13], that one can
approximate £* using [R]“" to obtain a uniform distinguisher. In [HUM13], [R]° is efficient by as-
sumption, which makes approximation of i* straightforward. In our setting, efficiency of [R]“° does
not hold by assumption. Thus, we need to argue differently.

We approximate a good index ¢*, where p;« is large by using the following inequality

(-1

Pr_q = The —hy1 < po1 =T)_q 1 (4.5)
where we used Eqs. (.9) and (#.3). Observe that Ber(h;) can be sampled in time([H;]) < (¢ + 1) - tmax
(up to emulation overhead), since h; = P([H;] = timeout). Hence, we can approximate h; (and hence
p; ) via sampling to arbitrary polynomial precision. By induction, we find

/—1 /
m:e4u+§:ﬂg (4.6)

=1

which is an equality by definition. Note that if max?:_f p; < v for some negligible v, we get hy <
¢hy + . This is sufficient for our purposes. We stress that we do not consider absolute values here,
as we only need an upper bound for the timeout probability.@

*This is the reason we applied timeouts to each oracle individually, instead of to the whole game H,. The latter may not
exhibit this symmetry.

“In a standard hybrid argument, we would have >, p; = 9 — r}_, instead of a weighted sum.
g—

221 h¢ > pe and consider min?z_zl p; - Hence there is a negl such that |p;| < negl

“'One can similarly define p;| = hyt1—
for all /. We do not need this.
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We argue by contradiction. Suppose maxg;f p; > 1/poly infinitely often. Then, as noted, we
can approximate p, up to any polynomial precision, and in particular we can sample a “good” i*
which satisfies p;+ > p.. > 2p°|y( ) with overwhelming probability. B Thus, this yields a distinguisher
for Oy and Oy, which is efficient for any choice of polynomial cutoff bound t,,,x and has advantage
> 2p{)|y negl infinitely often. (Namely, first approximate i* and then run [R} 9", The choice of i*
is “good” with overwhelming probability, so we get an advantage of at least W() negl infinitely
often.) This finally proves that

Vimax = poly Jv =negl V0 =2,...,q—1: hy < Lhy + (v

In particular, for almost all , hy < gh; + q*v. Since H; is CEPT, for any poly there is a tyax such that
h1 < 1/poly. Let 6 = 1/poly for some poly. Pick tyax such that by < %. Then hy < §/2+ ¢?v < 6
for almost all . This proves the first part of Claim k.13, From Eqs. (£.9) and (#.3) we also find

1 1
|h[ — Tg| S mh[ and |hg — 'I"l}_l| S mh[

This completes the proof of Claim §.13. Claim now follows from Lemma below. More con-
cretely, it follows that H; & Hy—1, which implies S ~ 4—1 (since we augmented the output of Hy by
Sy), and, by Corollary B.10, Hy—1 is CEPT (since Hy is CEPT). This finishes the proof of Claim k9.

O]

The following lemma uses notation similar to the above, but does not follow the indexing. This
simplifies the presentation, as we can go from 0 to ¢ instead of 1 to ¢ — 1.

Lemma 4.13 (Approximable hybrid lemma). Let O, Oy be oracles, let Ho, . .., H, be hybrid games (for
polynomial q) and let R be an algorithm. We call R a hybrid reduction for H, if it is of the following
form:

* R is an oracle algorithm which in the beginning chooses a random integeri* € {0,...,q — 1}.
 Denoting by R; the algérithm with fixed choice i* = i, we have Rggb = H;;p, where we mean
equivalence as systems.

We say R is a time-approximable hybrid reduction, if for any choice § = poly(;

(1) There exist “truncated” a priori PPT hybrids [Hy] fori =0, ..., q, which may return timeout.

(2) Hy and [Hy] are equal until timeout and P([Hy] = timeout) < 4.

(3) There exists a “truncated” a priori PPT reduction algorithm [R] with A([Hg], [R}fz%) < 0 and
A([Heg1], [R}fl) < 6 (for almost all k).

If R is a time-approximable hybrid reduction for H, then ROO =H, ~ Hy = R(91 More precisely,
for every a priori PPT distinguisher D and for every 6 =

pon there exists an adversary A such that

Advﬁigin’Q <gq- Adv(d)“@l 7 +(2q + 2)4 (for almost all k).
One can replace item |(3) with

(4) For any § = pollyg there exists a “truncated” a priori PPT reduction algorithm [R), such that

A(RY°, [R]S°) < & forallt.

In this case, we get Advd’“ 2 <q- Advggt,@lﬂ +(4q + 4)d (for almost all k).

2We can use the same approximation of distributions as for CEPT, see also Appendix [C.4.
“We assume that Hy is a closed system. But this actually unnecessary, if we allow distinguishing environments.
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Note that Claim establishes items [1), [2)] and [4) in the respective setting. Hence, Lemma
is applicable.

One can easily generalize Lemma beyond runtime truncation. Truncation and timeout (“time-
approximation”) is just the special case of approximation we are most interested in.

Proof. We can assume w.l.o.g. that Hy outputs a bit, since we can integrate a distinguisher (which is
w.l.o.g. a priori PPT) into H. Thus, the distinguisher advantage is now simply A(Hp, H,). Consider
some 0 = - 01|y5 and let [H/] and [R], as in the statement. By the triangle inequality and item [2), we
get

A(Ho, Hy) < A([Hol, [Hy]) + 20.

Moreover, we have for almost all ¥

q—1
< Y [P([H] = 1) = P([R];" = 1)]
=0
q—1
+ ) IP([R]Y" = 1) = P([Hega] = 1))
=0

+ 1) P(RI =1) — P(R];" = 1)

<qd+qd+q- Adeg;t,@l,ﬂ(H)

where the inequality follows from item [3) and the “hybrid reduction” adversary A which runs d «
[R]9" and if d # timeout outputs d, else 1. Taken together, we find for almost all «

A(Ho, Hy) < ¢ Advgy o, a(k) + (2q +2)6.

Since Oy ~ Oy, Advggizt?@h 7(k) is negligible. Now, let ¢ = 1/poly some prescribed polynomial bound.
Since g is polynomial and § is chosen after ¢, one can choose 6 ~! > (4¢q + 4)e~!, which is still polyno-
mial and ensures that (2¢ 4 2)d < %E. Hence, A(Ho,H,) = %E + q - negl < € (for almost all ). Thus,
A(Hop, H,) is smaller than any polynomial €. Consequently, A (Hg, H,) is negligible, and the first part
of the claim follows.

For the second part, note that from items [2) and [4) we find
A([He1a)s [R") < A([Hegsl, He) + A(Hepp, BY) + A(RY", [R]).

By assumption A (Hyyp, Rg)”) = 0. Thus, if A([H¢],H¢) < d/2 and A(Rng, [R}g)b) < /2 for all £ and
b € {0,1}, then A([Hg], [R]?”) < ¢ and hence item [3) is satisfied. The claim now follows by using
' = 6/2 as choice of § for [H/] and [R], in items [2) and [4]. O

5. Application to zero-knowledge arguments

Our flavour of zero-knowledge follows Goldreich’s treatment of uniform complexity [Gol93], combined
with Feige’s designated adversaries [Fei9(]. We only define efficient proof systems for NP-languages.
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Definition 5.1 (Interactive arguments). Let R be an NP-relation with corresponding language L. An
argument (system) for L consists of two interactive algorithms (#, {’) such that:

Efficiency: There is a polynomial poly so that for all (k, z, w) the runtime timegp_ ¢ ((P(x, w), V(x)))
is bounded by poly(k, |z|).
Completeness: Vk, (z,w) € R: outy (P (z,w),V(z)) = 1.

Definition b.1 essentially assumes “classic” PPT algorithms, but it will be evident that our techniques
do not require this. We do not define soundness, but note that computational soundness is easily han-
dled via truncation to a PPT adversary. The terms proof and argument systems are often used inter-
changeably (and we also do this). Strictly speaking, proof systems require unconditional soundness
and allow unbounded provers. All our exemplary proof systems [GMW86; GK96; Lin13; Ros04; KP01;
PTV14] have efficient provers, hence are also argument systems.

5.1. Zero-knowledge

Definition 5.2. Let 7,8 € {PPT,CPPT ,EPT ,CEPT }. Let (P,V) be an argument system. A
universal simulator Sim takes as input (code(V*), x, aux) and simulates ¢*’s output. Let (9, V*, D)
be an adversary. We define the real and ideal executions as

Real . () = (state, outy« (P (x, w), V*(, aux)))

and  ldealy g0 code(v+)) (K) = (state, Sim(code(V"), z, aux))

where (z,w, aux, state) <— J and (z,w) € R, else Real and ldeal return a failure symbol, say L. We
omit the input code(V*) to Sim, if it is clear from the context. The advantage of (J,*, D) is

AdVEp- (1) = [P(D(Real - (1)) = 1) — P(D(Idealy 5, () = 1)]-

A (designated) adversary (¢, V", D) is T -time if timeg g1« 15 (D(Realy (+)) € T.
The argument is (uniform) (auxiliary input) zero-knowledge against 7 -time adversaries w.r.t. §-
time Sim, if for any 7 -time adversary (9, V*, D):

o timegysimip (D (Idealy g;,,)) € S. The runtime of Sim includes whatever time is spent to emu-
late V*. In a (generalized) sense, Sim is weakly (7, &)-efficient relative to %, see Definition E.12.
. Advf}fv*@ (k) is negligible

Some more remarks are in order.

Remark 5.3. In the uniform complexity setting, existential and universal simulation are equivalent. The
adversary Vi, which executes aux as its code, is universal, see Appendix [E.4.4.

Remark 5.4 (Reductions to PPT). One may expect that, by a standard reduction to PPT, w.lo.g. J and
@ are a priori PPT. This is true when verifying the output quality of Sim. However, it is false when
verifying the efficiency of Sim. The cause are expected poly-size inputs. See also Example E.2d.

Remark 5.5 (Efficiency of the simulation). Definition 5.4 only ensures that Sim is weakly efficient rel-
ative to #, i.e. we have no tightness bounds. Relative efficiency with tightness bounds is an uncondi-
tional property, and hence not possible if zero-knowledge holds only computationally.

In the definition, using times;m (D (Idealy g;,,)) € & instead of timeg sim15 (D (Idealy g;,,)) € S is
equivalent, since J is not influenced, and @ is w.Lo.g. a priori PPT.

Definition .9 can be extended to proof systems with unbounded provers, but technical artefacts can

arise, see Remark [E.21.
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Remark 5.6 (“Environmental” distinguishing: Why J outputs state). In Definition 5.3, we allow J to
output state, effectively making (J,D) into a stateful distinguishing “environment”. Viewing Sim
and P as oracles, this corresponds to oracle indistinguishability. Without this, the security does not
obviously help when used as a subprotocol, since a protocol is effectively a (stateful) distinguishing
environment. Definition b.9 is discussed in-depth in Appendix [E.4.1. Here, we only note that in the
non-uniform classical PPT setting, it coincides with the standard definition.

Remark 5.7. We seldom mention non-uniform zero-knowledge formulations in the rest of this work.
Our definitions, constructions and proofs make timed bb-rw use of the adversary, and therefore apply
in the non-uniform setting without change.

5.2. Application to graph 3-colouring

To exemplify the setting, the technical challenges, and our techniques, we use the constant-round zero-
knowledge proof of Goldreich and Kahan [GK96] as a worked example. We only prove zero-knowledge,
as completeness and soundness are unconditional. Formal definitions of commitment schemes are in
Appendix B.1. We assume left-or-right (LR) oracles in the hiding experiment for commitment schemes.
Intuitively, we assume a built-in hybrid argument. (Security against CEPT adversaries follows from
security against PPT adversaries by a simple truncation argument.)

5.2.1. The protocol

We recall G3Cgk from Section @ It requires two different commitments schemes; Com® is perfectly
hiding, Com® is perfectly binding. See [GK96] for the exact requirements. We assume non-interactive
commitments for simplicity.

(P0) & sends ckpjge Gen(H)(li). (ckping Gen(B)(/{) is deterministic.)

(V0) ¢ randomly picks challenge edges e; + E fori =1,...,N = k- card(E), commits to them as
¢ = Com® (cknide, €;), and sends all cf.

(P1) % picks randomized colourings v; for alli = 1,..., N and commits to all node colours for all
graphs in (sets of) commitments {{c% }iev bi=1,.. N using Com®) . @ sends all c;/jj to 1.

(V1) ¢ opens the commitments c{ to e; for all ¢.

(P2) @ aborts if any opening is invalid (e; ¢ E). Otherwise, for all iterations ¢ = 1,...,n, # opens
(U
1,0

(V2) ¢ aborts iff any opening is invalid, any edge not correctly coloured, or if ckpiqe is bad.

the commitments ¢, _, c;pb for the colours of the nodes of edge ¢; = (a, b) in repetition 1.

Checking ckpige only at the end of the weakens the requirements on VfyCK. In [GK9€], it receives
the setup randomness as additional input. But this is irrelevant for zero-knowledge.

5.2.2. Proof of zero-knowledge
Our goal is to show the following lemma.

Lemma 5.8. Suppose Com™ and Com™® are a priori PPT algorithms. Then protocol G3Cgk in Sec-
tion is zero-knowledge against CEPT adversaries with a bb-rw CEPT simulator. Let (9,V*) be a
CEPT adversary and suppose T' := timegp._ = (Realg ¢+ ) is (t,€)-time. Then Sim handles (4,V*) in virtu-
ally expected time (t', 2e + €'). Here &’ stems from an advantage against the hiding property ofCom(B),
hence &' negligible. If the time to compute a commitment depends only on the message length, then t’ is
roughly 2t.

Our proof differs from that in [GK96] on two accounts: First, we do not use the runtime normaliza-
tion procedure in [GK96]. This is because a negligible deviation from EPT is absorbed into the CEPT
virtuality, namely &’. Second, we handle designated CEPT adversaries. In particular, the runtime
classes of simulator and adversary coincide. We first prove the result for perfect EPT adversaries.
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Lemma 5.9. The claims in Lemma @ hold if T' € EPT , i.e.e = 0.

Proof sketch. We proceed in game hops. The initial game being Realy ¢+ and the final game being
Idealy g;,,- We consider (timed) bb-rw simulation.

Game G is the real protocol. The output is the verifier’s output and state (from J). From now on,
we ignore the state output, since no game hop affects it.

Game Gy: If the verifier opens the commitments in correctly, the game repeatedly rewinds it
to using fresh prover randomness, until it obtains a second run where {/* unveils the commit-
ments correctly (in [V1)). The output is ¥*’s output at the end of this second successful run. If the
verifier failed in the first run, the protocol proceeds as usual. The outputs of G; and Gy are identi-
cally distributed. It can be shown that this modification preserves (perfect) EPT of the overall game,
i.e. Gy is perfect EPT. More precisely, the (virtually) expected time is about 2¢ (plus emulation over-
head). To see this, use that each iteration executes #’s code with fresh randomness (whereas the bb-rw
©* has fixed randomness), and therefore, then number of rewinds is geometrically distributed. Since
1+p> 2 i-p(l —p)~t = 2is the expected number of iterations, assuming probability p that V*
opens the commitment in step [V0), we see that the (average) number of iterations is 2, hence runtime
doubles at most.

Game Go: We assume that both (valid) openings of /*’s commitments in open to the same value.
Otherwise, Gy outputs ambig, indicating equivocation of the commitment. This modification hardly
affects the runtime, so it is still bounded roughly by 2¢. The probability for ambig is negligible, since
one can (trivially) reduce to an adversary against the binding property of Com®). That is, there is an
adversary B such that |P(D(out(Gz))) — P(D(out(Gy)))| = Adv?2i<B) (B).

In Game Gg, the initial commitments (in [P1)) to 3-colourings are replaced with commitments to 0.
These commitments are never opened. Thus, we can reduce distinguishing Games 2 and 3 to breaking
the hiding property of Com'® modelled as left-or-right indistinguishability. More precisely, the reduc-
tion constructs real resp. all-zero colourings, and uses the LR-challenge commitment oracle ©, which
receives two messages (mg, m1) and commits to m;. Use mg to commit to the real colouring (left),
whereas m; is the all-zero colouring (right). The modification of Ga to “oracle committing” yields an
EPT Game Gy (instantiated with ©p). The modification of Gg to Gg (with ©y) is CEPT. This follows
immediately from the standard reduction, because Games Go/ and Gy differ only in their oracle, and
the case of © is EPT. More precisely, the standard reduction applied to ©y and O yields an adversary
@B such that [P(D(out(Gz2))) — P(D(out(Gy)))| > %Adv}éi:;(m (B) infinitely often, assuming B has
non-negligible advantage.

Consequently, Game Gy is efficient with (oracle) runtime 7% & T/, and the output distributions of
Games Gy and Gy are indistinguishable. Finally, note that Game Gz and Gg/ only differ by (not) using
oracle calls. Incorporating these oracles does not affect CEPT (as ©; is an a priori PPT oracle). Thus,
Gs is efficient (i.e. CEPT) as well. Assuming the time to compute a commitment depends only on the
message length, a precise analysis shows, that the (virtually) expected time is affected negligibly (up
to machine model artefacts).

In Game Gy, the commitments in the reiterations of are replaced by commitments to a pseudo-
colouring, that is, at the challenge edge, two random different colours are picked, and all other colours
are set to 0. If ¥/* equivocates, the game outputs ambig. The argument for efficiency and indistin-
guishability of outputs is analogous to the step from Game G to Game Gg. It reduces all replacements
to the hiding property in a single step. This is possible since our definition of hiding is left-or-right
oracle indistinguishability with an arbitrary number of challenge commitments. As before, a precise
analysis shows that the (virtually) expected time is affected negligibly.

Allin all, if Gg runs in (virtually) expected time ¢, then G4 runs in expected time = 2¢, ignoring the
overhead introduced by bb-rw emulation, etc. Moreover, the output is indistinguishable, i.e. overall
IP(D(out(Gy))) — P(D(out(Gp)))| < negl.

The simulator is defined as in G4: It makes a first test-run with an all-zeroes colouring. If the verifier
does not open its challenge, Sim aborts (like the real prover). Otherwise, it rewinds ¢/* (and uses
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pseudo-colourings) until ¥* opens the challenge commitment again, and outputs the verifier’s final
output of this run (or ambig). (To prevent non-halting executions, we may abort after, e.g., 22" steps.
But this is not necessary for our results.) O

We point out some important parts: First, in Game G, rewinding and its preservation of EPT is
unconditional. That is, rewinding is separated from the computational steps happening after it. Second,
since the simulator’s time per iteration is roughly that of the prover, the total simulation time is CEPT
(and roughly virtually expected 2t). Third, with size-guarded security (Appendix [E.4.3), we could have
argued efficiency much simpler and coarser. It would suffice if the runtime per rewind is polynomial
in the input size (not counting V).

There is only one obstacle to extend our result to CEPT adversaries. It is not obvious, whether the in-
troduction of rewinding in G; preserves CEPT. Fortunately, this is quite simple to see: The probability
that a certain commitment is sent in increases, since the verifier is rewound and many commit-
ments may be tried. However, the probability only increases by a factor of 2. Thus, “bad” queries are
only twice as likely as before.

More concretely, using Lemma B.17, we obtain a ¢’ and ©’ which output timeout in case of “bad”
queries. By the above claim, the probability for timeout at most doubles. Thus, the virtuality of G; is
at most twice that of Gy, (and the virtually expected runtime is roughly doubled as well). Hence, G is
CEPT. We show this in more detail in the following proof.

Proof sketch of Lemma @ Gy to Gy: Fix the first message ckpige of & to bbrw(¢*) and the randomness
of ¥* (which is fixed since we consider a bb-rw oracle). Let p,(c) be the probability, that in protocol

step Gy sends ¢ = {{ng}jev}izl,...,N to bbrw(1*) at least once. (For Gy, also at most once. But
rewinding in G; increases the chances.) Let ; denote the i-th query sent in step (or L if none was
sent), let the random variable I denote the total number of queries. Then

pile) = P(3j<i:qj=cAI<j) < ZIP’(Iziszc)

=1
= S BUI2)P(i=c|I>i) < S P <) pole) = E(D)-po(o).
=1 =1

In the penultimate equality, we use that, for any fixed i, 7; is a fresh random commitment (or never
sampled, if I < 7). As argued before, E(/) = 2, hence p1(c) < 2po(c). Thus, the probability p; (c) for
G to issue query c is at most twice that of Gg. Evidently, the derivation still holds for a variable first
message, i.e. the full (logical) query query = (ckpide, ¢). Next, we conclude from this, that the virtuality
at most doubles.

By an application of Lemma B.12, we can assume a perfect EPT ¢/’ derived from ¢*, i.e. time(Go)
is EPT. We can then use 1’ the transition of from Game G to G;. Recall that /* and ¥’ are equal until
timeout by construction.

Denote by G, the modification of Gy which uses { instead of /%, and let G, immediately output
timeout if ¥/ does. Then timeyr (Gy) is EPT by construction, and essentially equals the virtual expected
time of timey-(Gp). The statistical difference A(Go, G{)) is exactly the probability that ¢ outputs
timeout. Let G) be defined analogously to Gj,.

Let timeout(query) be 1 if query causes a timeout and 0 otherwise. Then

Pg; (timeout) = Z timeout(query) - p1(query)
query
<2 Z timeout(query) - po(query) = 2 - Pg; (timeout).
query

Since the probability for timeout bounds the virtuality if we use V* instead of ¥/, this shows that G;
is CEPT, with virtuality 2¢. If Gy always halts, the outputs of G; and Gy are identically distributed. In
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general, the statistical difference is (at most) 2 - P(Gy = nohalt); this follows as for virtuality, which
must encompass the probability of non-halting executions. Conditioned on halting executions, the
distributions Gg and G are identical. The transition to Gy now relies on the standard reduction, all
other steps of Lemma b.9 apply literally. O]

We abstract the above proof strategy in Section [, to cover a large class of proof systems.

Remark 5.10. The simulator in [[GK96] is also a CEPT simulator. For a proof, proceed as in Lemma p.9.
The advantage of [[GK96] is, that the simulator handles adversaries which are a priori PPT, as well as
EPT w.r.t. any reset attack [Gol10], without introducing any “virtuality”, i.e. the simulation is EPT. On
the other hand, it increases virtuality by a larger factor.

5.3. Sequential composition of zero-knowledge

The formulation of sequential security is not merely sequential repetition, but considers adaptive choices
of inputs. With this, our notion and proof is very close to modular sequential composition for SFE.

5.3.1. Security definition

To model adaptive inputs, we replace the input generator 9 by an “environment” &. This “environ-
ment” & provides all inputs for the protocol, but does not participate in the protocol execution itself,
it only learns the participants final outputs. This definition of sequential composition allows adaptive
sequential executions.

Informally, our definition of sequential zero-knowledge can be summarized as follows: Instead

of indistinguishability of (#,V*) and Sim({*), we assume indistinguishability of rep((?,*)) and
rep(Sim(¥*)), i.e. indistinguishability under repeated trials (Definition .15).
Definition 5.11 (Sequential zero-knowledge). Let 7,8 € {PPT,CPPT ,EPT ,CEPT }. Let (P, V)
be an argument system. A universal simulator Sim takes as input (z, code(V*), aux) and simulates
*’s output. Let (&, V*, D) be an adversarial environment § and an adversarial verifier ¥/*and a dis-
tinguisher @. The environment is given access one of two oracles Ogp, Os;,,,, which take as input
(z,w, aux) and

« Og(z,w, aux) returns outy- (P(x,w), V*(aux)). (Op = rep({P(+),)))
+ Ogim(z, w, aux) returns Sim(x, code(V*), aux). (Osim = rep(Sim(+)))

We assume that both oracles reject (say with L) if (z,w) ¢ R. We consider two executions, a real and
an ideal one, defined by:
Realg (« (k) == outg (&, rep(Ogp))

and Idealy g, (k) = outg (&, rep(Osim))
We define Realg ()« (%) to be the execution of (&, V") with Og, and Idealg g;., (%) the execution with
Os;im. The distinguishing advantage of (&, V*, D) is
AdVE . (k) = [P(D(Realg o (k) = 1) — P(D(Idealg g, (k) = 1)]-

A (designated) adversary (&, V*, D) is 7 -time if timeg 4 v+ 1.0 (D (Realg (+)) € T.
The argument system is (uniform) sequential zero-knowledge against 7 -time adversaries w.r.t. §-
time Sim, if for any 7 -time adversary (&, V/*):

o timegysimya (D (Idealg g;,)) € S, that is, rep(Osim(code(.7))) is Weakly (T, &)-efficient relative
to rep(Op g+ ).
. Advélfwm(/f) is negligible
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We also say that protocols with sequential zero-knowledge simulators compose sequentially. We
dropped the input generator 9, since its complexity class is the same as that of the environment &, For
clarity, we did not “include” @ in &, although the resulting definition would be equivalent.

A few remarks are in order. One could fix the universal adversary {/,,;y (wWhich executes a given
program) as V* in Definition .11. For compatibility with Definition b.4, we allow any ¢/*.

Remark 5.12. Sequential zero-knowledge where & is restricted to a single query is equivalent to auxil-
iary input zero-knowledge. This is easily seen since Definition . allows J to pass state to @.

Caution 5.13. Taken literally, Definition is unsuitable for expected time. Inefficiencies similar to
the setting of bb-rw oracles arise. However, as with rewinding strategies, we use the usual convenient
notation. We leave implicit, that an efficient implementation which is logically equivalent is easily
derived.M In Definition b.11, passing the state of ¥* via aux runs into these problems. For simplicity,
assume aux is shared memory between € and V*.

5.3.2. Sequential composition lemma

We are now ready to state and prove the sequential composition lemma for zero-knowledge.

Lemma 5.14 (Sequential composition lemma). Let (P, V) be an argument system. Suppose Sim is a
simulator for auxiliary input zero-knowledge (which handles CEPT adversaries in CEPT). Then (#, V) is
sequential zero-knowledge (with the same simulator Sim which also handles CEPT adversaries against
sequential zero-knowledge in CEPT).

The proof is an almost trivial consequence of the hybrid lemma.

Proof. Let (8,V*,D) be a CEPT adversary. Let Op(x,w, aux) and Og;y,(z, w, aux) be as in Defini-
tion b.11). By definition,

Realg o« (k) = outs (8,rep(Op))  and  ldealy gir, (1) = oute (&, rep(Osim))

Define a distinguisher A for rep(Ogy) and rep(Os;y, ) as D (outg(&, rep(©)) ). Now, we are in the usual
setting of oracle (in)distinguishability. Since Sim is an auxiliary input zero-knowledge simulator for

(#,1), we have that Og;y, is weakly efficient relative to Oy and that Oy ~ Og;n. Thus, the hybrid
lemma for CEPT, Lemma .7, is applicable. Hence rep(©Qg) is weakly relative efficient to rep(Os;m)

and rep(Op) ~ rep(Osim ). This concludes the proof. O]

6. Benign simulation

In this section, we define benign simulation. This abstracts the proof strategy for G3Cgx in Section p.2.
Namely, we define rewinding strategies to abstract the rewinding step, and we define “simple assump-
tion” to abstract the left-right hiding and binding property of the commitment. Put together, we define
benign simulators as simulators which have a proof of security analogous to the one of G3Cgk.

6.1. Rewinding strategies

Rewinding strategies encapsulate the rewinding schedule of a simulator. Unlike simulators, their prop-
erties are unconditional.

*“The problem is that passing around state is extremely wasteful, and involves copying the state to and from message
interfaces. Generally speaking, almost anything, which does not go over a “real” network, should not be passed by
copying. This can be solved in any number of ways. E.g. allow shared memory/tapes between machines, or introduce an
additional interactive machine which represents that shared tape, and pass around (interface) access to memory/machine,
and so on. It should be evident that it is easy but tedious to formalize this.
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Reminder (Black-box queries). By abuse of notation, we typically write A® instead of APP™(O) if it is
understood that A has bb-rw access to ©. Our presentation treats bbrw(©) as a NextMsg oracle, but
it is understood that a logical query (my, ..., my) is implemented efficiently by a short handle to the
state of bb-rw(©) after processing (myq, ..., my_1), and the message my in that state.

6.1.1. Definitions

Our definition of rewinding strategies is specialized for zero-knowledge, but it generalizes to other
settings easily.
Definition 6.1. A rewinding strategy RWS for a proof system (%, {/) is an oracle algorithm with timed
bb-rw access to the (malicious deterministic) verifier ¥/*. The output of RWS is a state of bbrw(©) (or
an abort message), which we denote by the (logical) query leading to it.
A rewinding strategy RWS has runtime tightness poly, if the following holds: Let be (9, ¥/*) any ad-
versary (modelled as a timeful oracle). Let T := timeg g ({7, ¥*)¢), andlet S := timegws_ o= (RWS"" @@ (2 1))
with input distribution 9. Then E(S) < poly - E(T) for all (¢, ¢*).8
Equivalently, for deterministic timeful J, i.e. any sequence (x,;, w,;, aux,) € R and any deterministic
timeful {*, the analogous claim holds.

The notion of runtime tightness of RWS is strong and unconditional. Up to minor technical details,
it is equivalent to the notion of “normal machine” implicit in [Gol10, Definition 6]. The equivalence of
using probabilistic and deterministic adversaries follows easily: Certainly, probabilistic covers deter-
ministic. For the converse, one uses the tightness bound poly and linearity of expectation.

Remark 6.2 (Preservation of EPT). It is clear that a rewinding strategy RWS with polynomial runtime
tightness preserves EPT, i.e. in the setting of Definition b.1, if timegp o« ((®,V*)g) € EPT, then
timerws 4o (RWSU*(:v,aux)> € 8PT.

Before we tackle preservation of CEPT, we introduce more parameters of rewinding strategies.

Definition 6.3 (Properties of rewinding strategies.). Let (2, 1) be a proof system and RWS a rewinding
strategy. Let L'Q be the set of all possible (logical) queries. Suppose 1* is some (malicious) determin-
istic verifier (as a timeful oracle). Let k, (x,w), aux be inputs. Let query € LQ be a (logical) query
to bbrw(*). Let pr,.,;(query) be the probability that, in a real interaction (P (z,w), V*(x, aux)), the
prover queries query, that is

Preear(query) = P(query € aseqy ((P(z, w), V*(x, aux)))).
Let pr,s(query) be the probability, that RWS"” (z, w) queries query, that is
Prrws(query) = P(query € asedrws(RWS' 4% (2, w))).
We say a rewinding strategy RWS has probability tightness poly, (k) if
Priws (query) < poly, (k) - priea (query)

for all queries query € LQ. (In other words: Dyat (Pryys/Prreal) < POlY,)
The output skew of RWS for an execution with (¢, 1*) (where (z,w, aux) < 9J(k)) is similarly
defined by the ratio Dy,:(Y /X)) of the output distributions, Y of RWS and X of & running with /*

on input sampled by J [ We say RWS has output skew 0 = J(k), if for every (deterministic) (4, V*)

“We define that oo < oo.

“By abuse of notation, we write gseq, ({(?(z,w), V*(z, aux))) for the sequence of logical queries to NextMsg,,., ie.
bbrw(¥*). Formally, qseq,(...) is the sequence of message sent by P, (and & does not treat ¥* as bbrw(¥*)). So
actually, we consider the sequence of prefixes of gseq(. . .), which correspond to the logical queries to bbrw(¢’*) which
result in the same execution as (#, 1).

“"More correctly, X and Y are the distributions of the state of the timed bb-rw /*.
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which halts (with probability 1), the output skew for (9, V") is at most 1 + (k). We say RWS has
perfect output (distribution) if for all (¢, ¢*) which always halt with probability 1 the output of RWS
is distributed identically (that is, § = 0) to the real execution.

We note that the properties in Definition b.3 are unconditional. Also, non-halting executions can
affect the output distribution, as they will be encountered by RWS with higher probability than in
the real execution, increasing the probability that RWS “outputs” nohalt. In any situation where
statistical properties are good enough, one can assume that all algorithms halt (e.g. by truncation or
modifying the machine model).

Finally, we define our notion of normality. The definition is similar to Goldreich’s definition of
normality in [GollO].@

Definition 6.4 (Normal RWS). A rewinding strategy RWS is normal if it has polynomial runtime tight-
ness, polynomial probability tightness, and perfect output distribution.

Perfect output distribution is vital for later use of RWS (as a part of security proofs). Negligible
output skew would suffice, but natural rewinding strategies seem to satisfy perfect output skew, so we
require that for simplicity.

6.1.2. Basic results

Now, we state our main result for normal rewinding strategies.

Lemma 6.5 (Normal rewinding strategies preserve CEPT). Let RWS be a normal rewinding strategy for
(P, V). Let (9,V*) be a CEPT adversary for zero-knowledge, that is timeg g o«((P,V*)g) € CEPT .
Then timeg rws o= (RWSY @) (1 1)) € CE&PT, where (x, w, aux, state) < I (k).

More precisely, suppose poly,ime is a runtime tightness and poly,;. a probability tightness of RWS
(against EPT adversaries). If timegp o« ((P,V*)g) is virtually (t, €)-time, then timegws.o- (RWS'") is
virtually (polyime - t, POlYyirt - €)-time. In other words, RWS is efficient relative to (P, -) with runtime
tightness (pOIYtime> po'Yvirt)'

The proof exploits that “bad queries”, which result in overly long runs of (%, {*) ¢ happen at most
polynomially more often with RWS, due to normality. Since bad queries happen with probability &,
the claim follows. A detailed proof follows.

Proof. By Lemma B.14, we know that there is a modification ¢/ of V* such that timeg: ({2, V') g) is
EPT, where ¢ is a timeful oracle which aborts bad executions with timeout. By normality, also
timegr (RWSU/) is EPT. We call a (logical) query query = (my, ..., my) to ¢/ which returns timeout
a timeout query. The probability that such a timeout query happens in a real execution with & is at
most € (by construction).

The only case where RWS encounters a difference between (¢, 1*) and (9,1") is if RWS asks a
timeout query, i.e. if ¢/’ returns timeout. By normality of RWS, the probability of asking a timeout
query is only polynomially higher than the probability that % asks a timeout query. The latter is at most
¢, hence the former is bounded by poly,; - €. Thus, the runtime timegws ¢+ (RWSU*) is CEPT with
virtually expected time (polyyimet, POlyyir+€). The claim for the total runtime follows analogously. [

We note that runtime tightness already implies probability tightness (see Remark [E.30). However,
the implied bounds are far from optimal. Following lemma is a simple way to get a tight(er) bound on
probability tightness.

*Goldreich remarks [Gol1d, Footnote 24] that his notion of normality of a simulator is probably satisfied if the runtime
analysis is unconditional. We separate the analysis into rewinding strategies and indistinguishability transitions, since
our notion of runtime and efficiency of simulators is not unconditional. Disregarding this, the notions essentially coincide.
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Lemma 6.6. Let RWS be a rewinding strategy for (P,V), and let (9,V*) be a timeful adversary. Let
Q; C gsedrws(RWSY") be the list of queries of length i from RWS to bbrw(V*); that is Q; consists of
queries (my, ..., m;). Let Q; = card(Q;). Note that Q; and Q; are random variables. Let Q = 2 Q;
be the total number of queries. Suppose that for all adversaries, E(Q;) < M; for some M,;.

Let pr,s(query) resp. pr...(query) be the probability that RWS resp. # queries query, as in Defini-
tion[6.3. Write Q;[j] for the j-th query in Q;. Suppose that for alli and all logical queries query of length i

Vj e No:  P(query= Q;[j] | Qi > j) < prrea(query),

where the probability is over the randomness of RWS and . Then

Prrws(query) < M - pr,(query).
In particular, the probability tightness of RWS is bounded by M = max; M.

The basic idea behind Lemma .d is that for any (i — 1)-length history m/ = (myq,...,m;_1), the
probability that the prover queries m; (conditioned on m/) is identical to the probability that RWS
queries m; “conditioned on m’”. The “conditioning RWS on m/” part needs a suitable definition. In
special cases, e.g. “tree-based” rewinding strategies, this can be done hands on. Lemma p.§ gives a
general formalization of this idea (without needing to condition on some m/).

It is often (almost) trivial to verify the conditions of Lemma f.6. Moreover, we are not aware of (nat-
ural) rewinding strategies which do not satisfy normality, even outside the context of zero-knowledge.

Proof of Lemma 6.4. The proof is almost trivial. Consider the setting and notation of Lemma f.6. Let
query be a logical query of length i. We have

P(3j: query = Q;[j Z]P’ (query = Q;[j ZIP’ (query = Q;[j] | Qi = 7)P(Q; > j),
7=0 7=0

by a union bound, and we have

Z]P) query Qi [ ] | Qi = .]) Ql > j Z prreal query (Ql > j) < prreal(query) E(Ql)
=0

by assumption (and by E(Q;) = > 72 P(Q; > 7). O

The criterion in Lemma .6 is “global” and not “local”, making it somewhat inconvenient. Instead of
applying Lemma .4, it is often simple(r) to derive more precise bounds and directly prove normality.

Remark 6.7 (Partial RWS). A typical proof strategy for normality is to view RWS as a composition
of (partial) strategies. For example, many rewinding strategies are “tree-based” and each layer corre-
sponds to a (partial) rewinding strategy, which calls lower layers as substrategies. This approach lends
itself to a simple and precise analysis of runtime tightness, probability tightness and “query tightness”.
For example, if calls to substrategies not skewed, probability tightness behaves multiplicatively. Check-
ing normality like this relies on “local” properties, which by composition yield the “global” properties.

Remark 6.8. Halevi and Micali [HM98] define “valid distributions” [of transcripts] for extraction in the
context of proofs of knowledge. Their definition requires that a polynomial number of total execu-
tions are made (with the extractor in the role of the verifier), and each execution has a transcript (i.e.
queries) which is distributed like for an honest verifier. Separate runs may be stochastically depen-
dent. Lemma f.q deals with partial transcripts, expected polynomially many executions, and probabil-
ity tightness (not runtime), but is otherwise similar to [HM98].
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6.1.3. Examples of normal rewinding strategies

We give some examples for rewinding strategies which are normal. Most claims follows easily from
their original efficiency analysis.

Example 6.9 (The classic cut-and-choose protocols). The classic protocols for graph 3-colouring, graph
hamiltonicity, as well as graph-(non)-isomorphpism [GMW86; Blu86] use normal rewinding strategies.

Example 6.10 (Constant round zero-knowledge). Our motivating example [GK96], the simplification
of Rosen [Ros04], and the proof of knowledge of Lindell [Lin13] have normal rewinding strategies.

Example 6.11 (Concurrent zero-knowledge). The concurrent zero-knowledge proof systems of Kilian
and Petrank [KP01] and its variation [PTV14] also rely on normal rewinding strategies. Indeed, their
strategy is strictly PPT (in oracle-excluded time).

Example 6.12 (Blum coin-toss). The simulator for the coin-toss protocol [Blu81; Lin17] also gives rise
to normal rewinding strategies. It is strictly PPT (in oracle-excluded time).

6.2. Simple assumptions and repeated trials

To obtain nice results, we want nice “base assumptions” to reduce security to. We call these “simple
assumptions”. For simplicity, we do not allow (shared) setups, such as a common random string, and
are very restrictive w.r.t. the runtime of such oracles.

Definition 6.13 (PPTpa). A timeful oracle © is a priori PPT per activation (PPTpa), if there is a
polynomial poly such that every invocation of © has runtime bounded by poly (k).

The property we need from a priori PPTpa is that, if a distinguisher yields an inefficient system,
then the oracle is never to blame, i.e. even excluding its runtime, the system is inefficient. There are
less strict efficiency notions which satisfy this as well.

Definition 6.14 (Simple assumption). Let Cy and C; be two oracles, induced by algorithms which are a
priori PPT per activation. The assumption that Cy and C; are indistinguishable (w.r.t. PPT adversaries)
called a simple assumption. We also say Cy and C; form a simple assumption.

Example 6.15. Many assumptions are simple, for example one-way functions, trap-door one-way per-
mutations, pseudorandom functions, hiding and binding properties of commitments, IND-CPA and
IND-CCA security of public key encryption, and so on. Counterexamples are 1-more assumptions, e.g.
the one-more RSA assumption. Knowledge assumptions are also not simple. Note that assumptions
which can be reduced to simple assumptions need not be simple, e.g. soundness of (non-extractable)
proof systems.

By definition, simple assumptions are essentially falsifiable assumptions [Nao03] as defined by Gen-
try and Wichs [GW10]. However, the (invisible) intent of simple assumptions is that they have a simple
notion of repeated trials, and behave well in this setting. Since our primary setting is the plain model,
simple assumptions are natural, but we stress that our techniques work for a much broader class of
game-based assumptions, including non-falsifiable assumptions.E

Simple assumptions are secure under repeated trials against PPT (or CEPT) adversaries.

Lemma 6.16 (Hybrid lemma for simple assumptions). Let Cy and C; be two oracles forming a simple
assumption, and let ¢ = q(k) where ¢ = oo is allowed. Suppose D is a CEPT distinguisher for q-repeated

trials, with Advgsiep (Co)urep, (e1)| = € = 1/poly infinitely often. Suppose times (D"Pa(€0)) is bounded
’ q ’ g\

by (to,vo). Let M (r) > min(q(k), 4~ to) be an (efficiently computable) polynomial upper bound. Then
there is an a priori PPT distinguisher A with advantage at least ﬁ(% — 1) infinitely often.

“Typical 1-more assumptions have a meaningful notion of security under repeated trials as well, but Definition R.14 is
too coarse to capture this, as it postulates independent instances. For example, given two 1-more-dlog oracles for a
deterministic group generator, it is easy to win in one of the 1-more dlog instances; but by correlating the repeated
oracles, one can also embed a 1-more-dlog challenge.
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This immediately yields:

Corollary 6.17. Let Cy and Cy form a simple assumption, in particular, Cy ~ Cy. Then rep(Co) and
rep(C1) form a simple assumption, in particular, rep(Co) ~ rep(Cq).

Proof of Lemma [6.14. First apply Corollary j.4 to get an a priori PPT distinguisher A’. Note that we
treat distinguishing under repeated trials as distinguishing Of = rep(Cp) and O] = rep(Cy). Thus, we
end up with advantage ¢ — 1 and runtime bound roughly 4e~'to, where (tg, 99) is virtually expected

time of @ as in Lemma {.1. In particular, A’ can make at most M (k) queries.
Now, we rely on the efficient implementation of Cp, C; to implement the hybrid distinguisher. The
claim follows from the (standard a priori) PPT) hybrid lemma. O

6.3. Benign simulators

Our definition of a benign simulator abstracts the proof strategy for G3Cgk. Before we give the defini-
tion, we demonstrate the idea.

Example 6.18 (Structure of the security reduction for G3Cgk). Consider the protocol G3Cgk in Sec-
tion and the security proof in Section p.2.3. Let (7, V*, @) be an adversary. Since the simulator
cannot depend on J and @, they are of no importance in the following. Indeed, they should be viewed
as one entity, the “distinguisher”, whereas ¢* is the actual “attacker”. Below, we omit the inputs
Z, W, auX. L

Let Ag = Ag(V*) denote the algorithm outy- (%, V). Let Ag = Ag(V*) denote the algorithm which
introduces all rewindings, as in Section , Gi. Moreover, Ay makes any commitment computations
into explicit calls to subroutines. (Let us call this boxing, and the act of “forgetting” subroutine calls
unboxing.) B

We note the following: For any %, Ag = A; (i.e. they are perfectly indistinguishable), and if Ay is
efficient, then so is Ag. More concretely: For every ¢, D, if the completed system for Ag is CEPT (i.e.
with inputs sampled by J and with % applied to the output of Ay), so is the completed system for Ay.

Similarly, let A; := Sim(V*) and let A; = A; (V") be the simulator with boxed calls to Com. Clearly,
for any V*, A} = Ay, and if :&1 is efficient (i.e. CEPT), so is A;.

Consider the two indistinguishable oracles O, ©1, which represent the (repeated) binding and hid-
ing experiments in the security proof, squeezed into one oracle. It is straightforward to define an
(oracle) algorithm R = R(¥/*), which encapsulates the reduction given in the games following G; in
Section , such that for R, it holds that Ag = R®0 and R = A;. Moreover, R is efficient if Ag
is. Furthermore, since ©y and ©; are indistinguishable, if R is CEPT, so is RY!. (This step relies on
CEPT and fails for EPT.)

Consequently, Sim(¢*) is CEPT whenever (®, {*) is CEPT, and Sim(*) and (#, {*) are compu-
tationally indistinguishable. Pictorially, the security proof worked as follows:

= = c = % =
Ao =3 A =5 RD & R =LA, =LA,
€ & € €

where A — B denotes that A and B are perfectly indistinguishable and that if B is efficient (given

e
), so is A. More precisely, we have

(@,) =5 RWS(-) =5 RP(-) = RY*(-) = Sim(-) —> Sim(-),
where we made explicit, that this construction is functional in the adversary (the missing argument

denoted “-”). We also note that the intermediate steps (Ao, A, resp. RWS, gl\r;) can be omitted.

As a first step, we have define what a “reduction” is. Simple “reductions” are just connections of
two interactive algorithms (which depend on A) by an indistinguishability assumption. The name
“reduction” is debatable, and the definition very restrictive, but sufficient for our purposes.
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Definition 6.19 (Simple reductions). A simple reduction under an (implicit) simple assumption (Cp, C1)
is an oracle algorithm R which expects expects access to an oracle Cp, and code(A) as input. Given ©
and code(A ), R% () implements (an interactive) algorithm.

Our definition of benign simulation requires a security proof as sketched in Example .18, and is
basically an abstract formalization of that proof strategy. For completeness, we give a more traditional
approach in Appendix [, which relies on indistinguishability of queries similar to [KL08]. We view
both approaches as complementary: Our definition of benign simulation is easily applicable to typical
protocols (and all of our examples), whereas the query-indistinguishability condition is something
one can arguably expect from almost any simulator, which broadens the class of simulators which
handle CEPT adversaries in CEPT. In any case, a bb-rw simulation with a normal rewinding strategy
is assumed.

Definition 6.20 (Benign simulation). Let (%, 1) be an argument system. Let Sim be a (timed) bb-rw
simulator with associated rewinding strategy RWS and associated simple reduction R under sim-
ple assumption (Cg, C1). Moreover, the reduction R (%) has the interface of RWS, i.e. it expects
(code(V*), z, w, aux). Suppose that, for any adversary ¢*:

(1) RWS is a normal rewinding strategy.

(2) RWS"" = R%(0*) and R (V*) is efficient relative to RWS"" with polynomial runtime tight-
ness.

(3) R (V*) = Sim(V*) and Sim(V*) is efficient relative to R (¢*) with polynomial runtime tight-
ness.

(4) Cp and C; form a simple assumption, and are indistinguishable, i.e. Cy & Cy.

Then Sim is benign (under the assumption Cy ~ C1).

6.3.1. Iterated benign reductions

Our definition of benign allows only one “reduction step” using C % C. Many security proofs can be
squeezed into this setting. However, a simple relaxation is useful.

Definition 6.21 (Iterated benign). In the setting of Definition .20, we call Sim iterated benign, if there
is a constant k and a sequence of “intermediate simulators” Simg, ..., Simg, which expect as input
(code(A), z, w, aux) so that

(1) Simg = (2, ) and Simy, = Sim (where Simj, ignores w).
(2) Sim; and Sim,; are related by a benign reduction (as in Definition .20, with oracles C; 4, i =
1,...,kb=0,1).

We stress that iterated benign only allows a constant number of “hops”. The reason is that runtime
may double for each hop, so superconstantly many “hops” could make the runtime explode. Thus, hy-
brid arguments must be put into the (simple) assumptions. Also note that RWS can be absorbed into R,
and the relative efficiency requirement. While we the (possible) use of RWS explicit in Definition p.2d,
we left it implicit in Definition .21

6.3.2. Examples of (iterated) benign simulators

All of our examples can be easily expressed via (iterated) benign simulators. We stress that hybrid

arguments must be incorporated into the (simple) assumptions C; o ~ Ci1.

Example 6.22. The classic, the constant round, and the concurrent zero-knowledge protocol exam-
ples [GMW86; Blu86; GK96; Ros04; Lin13; KP01; PTV14] from Section have benign simulation.
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6.3.3. Zero-knowledge and benign simulation

We only give results for benign simulation. Extending these to iterated benign is straightforward and
left to the reader.

Lemma 6.23. Suppose (P, 1)) is an argument system. Let Sim be a benign simulator. Then Sim is a zero-
knowledge simulator which handles CEPT adversaries (in CEPT).

Proof. Suppose (9,V*,D) is an adversary which is CEPT in the real protocol. For brevity, whenever
we call an (interactive) algorithm CEPT in the following, we mean that (if necessary) the inputs are
generated by J (and @ is applied to the output).

Suppose for simplicity that it halts with probability 1. Then the output of a normal rewinding strat-
egy RWS is distributed like the real protocol output.E By normality, RWS is CEPT. By relative effi-
ciency, R (%) is CEPT. Also, by assumption, the “reduction” R (¢*) behaves (as a system) exactly
like RWS. By indistinguishability of Cy and €1, the standard reduction shows that R“* (¢*) is CEPT
and the output of R“1(V*) is (computationally) indistinguishable from R (¢*) (and hence the real
protocol). By relative efficiency of Sim, Sim(¢*) is CEPT (with environment ¢, ®). Since R* (1))
is behaves (as a system) exactly as Sim({*), the output of Sim(¥*) and (%, V*) is indistinguishable.
Thus Sim handles CEPT adversaries in CEPT. O]

By Lemma .23, all of our examples in Example are not only secure against a priori PPT adver-
saries, but have CEPT simulation against designated CEPT adversaries.

Remark 6.24 (More precise runtime bounds). We saw for G3Cgg, that the runtime of the simulator Sim
and the rewinding strategy RWS are very closely related. For this, we used “boxing” and “unboxing”
(and that commitment computations only depend on message lengths). Such a close relation of run-
time is typical, since in most security proofs only rewinding and bookkeeping introduces (significant)
changes in the runtime. Hence, our extendability results are relatively crude feasibility results, assuring
that zero-knowledge extends to CEPT adversaries.

6.4. Sequential zero-knowledge from benign simulation

To prove sequential that sequential zero-knowledge follows from auxiliary input zero-knowledge, we
had to rely on the hybrid argument, which hides a lot of complexity. For benign simulation, it is easy
to prove that it composes sequentially. Conceptually this follows from:

« Using that rewinding strategies “compose sequentially”.

« Using that relative efficiency with runtime tightness “composes sequentially”.

« Using that simple assumptions “compose sequentially”, which is a very fancy way to say that we
rely on “repeated trials”.

« Hence, benign “composes sequentially”.

Remark 6.25 (Lifting normality and relative efficiency). For brevity’s sake, we do not explicitly lift
rewinding strategies and relative efficiency to the sequential composition setting, i.e. we do not explic-
itly define what “composes sequentially” means in that setting. It is straightforward to define by using
an (environmental) adversary and replacing access to the objects Oy, O; of interest (e.g. RWS and
(&, ) for normality) by repeated access, i.e. rep(Qp), rep(©7). We note that the tightness parameters
are unaffected (since the notions were already “perfect”).

Lemma 6.26 (Sequential zero-knowledge from benign simulation). Let (,{)) be an argument system.
Suppose Sim is a benign simulator (for auxiliary input zero-knowledge). Then (P, V) is sequential zero-
knowledge.

Tf (#, V*)g halts with probability 1 — v, then the output (including nohalt) has statistical distance at most poly,;,, - v.
Since v is bounded by the virtuality of (?, V)¢ anyway, the rest of the proof works without change.
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Proof sketch. Let (&,1*) be the adversary trying to distinguish Oy and Og;,,. Let RWS be the normal
rewinding strategy of Sim. Let R be reduction and Cy, C; be the simple assumption.

Step 1 (Sequential composition of RWS): Let poly,;,,. and poly,, be the runtime and probability
tightness of RWS. Let ©Op = rep((®,V*)) and let Ogws = rep(RWS'"). Suppose for simplicity
that (&, V") always halts. Then we know that for any input, the state of /* after RWS is identically
distributed to the state after interaction with & (by normality). Hence, replacing Oy with Ogrws only
affects the runtime. Now, we lift Lemma .5 to the sequential setting.

Define Trys ; resp. Tip ; as the time spent in the i-th invocation of Orys resp. Ogp. Note that

E(timerwso+((€, Orws))) = Z E(Trws,:)

< polygime - > E(Ty.4)

(2

= POlyime - E(timegp ({8, Op)))

where normality is applied for each i.

Suppose (&',1") are timeout-modifications according to Lemma B.1J. By probability tightness,
the probability that the i-th iteration of RWS runs into a timeout event is at most poly,;.-fold the
probability for & to run into a timeout event. Consequently, the virtuality is increased by at most a
factor of poly,;;.

All in all, we have shown that Ogryys is a “sequential rewinding strategy” with runtime tightness
poly.ime> probability tightness poly,;,;, and perfect output distribution;® and we lifted Lemma b.5.

Step 2 (Relative efficiency composes sequentially): Let Ope, = rep(R% (V%)) for b € {0, 1}, and let
Osim = rep(Sim(V*)). Suppose Sim is efficient relative to R with runtime tightness (poly,;me, POlYyirt)-
Then the oracle Og;y, is efficient relative to Oge, with runtime tightness poly. Namely, for any (&, V/*),

E(timesim ¢+ ((€, Osim))) = Z E(Tsim,i)

< po'Ytime Z IE:(T’R("l ,i)

7

= p0|ytime ’ IE(timeRel (<87 ©f/)>))

where Tsjy, ; resp. Tpe, denotes the time for the i-th invocation of the respective oracle. This again
follows by comparing i-th invocations, and using that output distributions are identical by assumption.
And as for RWS, we can lift the runtime guarantees to the sequential setting, including virtualities. That
is, if the virtually expected time is (¢, ) with Oge,, then it is (polyime - t, Polyyir - €) with Og;p,. The
same holds for Orws and Ogc,.

Step 3 (Indistinguishability of Opc, and Ogc,): It is obvious that indistinguishability of Ogc, and
Oge, reduces to indistinguishability of Cy and C; under repeated trials. (Each invocation of Ogc, (resp.
Oge, ) is another trial.) By Corollary b.17, simple assumptions are indistinguishable under repeated
trials. (It is vital that R is CEPT. That follows from Steps 1 and 2.)

Step 4 (Benign composes sequentially): From Steps 1 to 3, it follows immediately that benign “com-
poses sequentially”. More concretely, it follows that (&, ¢/*) cannot distinguish Oy and Og;,, and in
particular, an execution with Og;,,, is again CEPT. ]

*!If the probability for non-halting executions is not 0, the easiest way is to argue by truncating after say 2* steps and using
statistical closeness to (8, ™). But a closer inspection shows that any poly,;. is fine since co < oo. For poly,,, a closer
inspection shows that it does not change either. This is unsurprising since virtuality must at least remove non-halting
executions anyway.
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7. Sketched application to SFE

We very briefly recall security definitions for SFE, but assume basic familiarity with the topic. Again, we
adopt a uniform complexity setting with universal simulation. As with zero-knowledge, we therefore
need an “environmental” adversary.

7.1. Definitions

Let n be a constant in x and consider n interacting parties. In the setting of SFE, n parties wish to jointly
compute a (probabilistic) functionality f: ({0,1}*)™ — ({0, 1}*)" implemented by the algorithm f. We
demand that f is a priori PPT in x. The parties input z1, . .., z,, and, at the end of the protocol, output
Y1, .-, Yn. A protocol 7 consists of algorithms (71, ..., m,), such that each party i executes m(mi).@
We assume the parties have secure channels for communication, i.e. an eavesdropping adversary only
learns message lengths and communications proceeds in rounds.

We call a party corrupted, if it is controlled by the adversary. We restrict to static corruption, that
is, for execution of a protocol 7 the subset I C {1,...,n} of the corrupted parties is fixed from the
start (and does not (adaptively) grow).

To shorten our exposition, we start with the hybrid model, and treat the real model as a special case.
In the f-hybrid model, we assume (repeated) access to an ideal functionality f. A protocol 7 may use
f, and we sometimes write 7/ to emphasize this. Let 7/ be a protocol implementing a functionality
g in the f-hybrid model. Let A be an adversary corrupting the set I C {1,...,n} of parties Let
Z= (x1,...,2pn), 7 = (r1,...,mn, 71, r") denote the inputs and randomness of the parties. Here 7’
denotes the randomness used in ideal functionalities. By aux we denote the auxiliary input of A. The
adversary’s input will be {z;};cs, aux and I. The computation of 7 proceeds in rounds. The parties
can also query an instance of the functionality f. In the end, all parties return outputs y;, and the
adversary outputs y z; we write ¥ = (y1,. .., Yn, Y1) for all outputs.

We denote by Hybridiﬁﬂ(n, Z, aux, I;7) the output ¢ of the execution of the protocol 7/ where
adversary A controls the parties in I and the inputs to all parties is Z (and randomness 7). Since the
parties have access to f, we call this the f-hybrid model.

In the real model, Real, 7 (k,Z, aux, I; 7'), denotes the output of a real execution. This is defined as
in the hybrid model, except that there is no hybrid functionality (i.e. f is the null-functionality).

We denote by Ideal, sim (%, {=i}icr, code(A), aux, I; 7) the output & = (y1,. .., Yn, Ysim) of an ex-
ecution in the ideal model with functionality g and ideal adversary Sim, called (universal) simulator.
Here, the honest parties hand their inputs to g and output what they receive from g; inputs for cor-
rupted parties may be provided by Sim. The simulator is given {z; }icr, aux, I, and code(A) as input.
(As usual, we often omit code(.A ) when it is clear from the context; it is only required for universal
simulationE)

We extend the definition of Hybrid, Real and ldeal to adaptive sequential composition, where an
“environment” § provides inputs to executions of Hybrid, Real or Ideal (which choose fresh random-
ness). We denote this by Hybridfr 4(k,E), or Real;_7(k, &), or Idealy sim(r, &). After each execution,
& learns all outputs, and can (adélptively) choose inputs for further executions. More formally, § is
given access to either O, 7 or O s, which take as inputs (Z, code, aux, I') and output 3 (which in-
cludes y.7), i.e. O 7(Z, aux,I) = Real; 7(Z, aux,I) and O gim(Z, aux, I) = ldealy sim 1 (%, aux, I).
(We omitted code, since it is always code(A ).) Note that & can adaptively choose the set I of corrupted
parties as well.

Definition 7.1. Let 7 be a protocol for g in the f-hybrid model. We say an adversary (&, 4) is 7 -time
(e.g. CEPT), if time(Hybridfr 4 (k,€)) is T -time, where (¥, aux, state) < J. (We stress that the time to
compute f is included here.)

2Typically the ; are a priori PPT, but as with zero-knowledge, we do not rely on this to specify and prove security.
In our setting, universal and existential simulation coincide, just like for zero-knowledge.
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The protocol 7 is said to sequentially ¢-securely compute g against 7 -time adversaries, if there exists
a (universal) ideal adversary Sim, for any 7 -time adversary (&, A ), where & only corrupts subset of
size at most ¢, we have

+ Real! (. 8) ~ Ideal gim(k, 8);
« time(ldealy sim(k, €)) is T -time (e.g. CEPT);

Auxiliary input {-security is defined by restricting & to one query only; in this case, we usually
write J instead of &.

Lemma 7.2. Auxiliary input t-security and sequential t-security are equivalent.
Proof sketch. This is a straightforward application of the hybrid lemma. O

Note that there is no hybrid functionality f in the ideal world. The simulator must provide the
hybrid functionalities. In particular, it is essential that f itself is efficient. Also note that we require
that Sim is universal in both /4 and I. This does not strengthen the security in our setting, but simplifies
discussions.B4 Some more remarks are in order.

Remark 7.3. We note that neither our results nor our definitions require black-box simulation. This is
unlike [KL08]. However, the overhead of non-black-box simulation seems to preclude its use — at least
the technique of [Bar01].

Remark 7.4. The notion of benign simulation can be extended to simulators for SFE.

Remark 7.5 (Zero-knowledge as an ideal functionality). The ideal zero-knowledge functionality takes
as input (x, w) and outputs x to the verifier if (w, z) € R, else L. The protocol G3Cgk is not (proven)
t-secure as an ideal zero-knowledge functionality, because it does not seem to be a proof of knowledge,
i.e. the witness cannot be extracted. Lindell [Lin13] describes a 5-move protocol, which is a zero-
knowledge proof of knowledge, hence realizes the ideal zero-knowledge functionality. Its simulator
handles CEPT adversaries in CEPT. (The simulation is benign.)

Remark 7.6 (Proofs of knowledge). Communication efficient (zero-knowledge) proofs of knowledge
often a superlinear overhead for extraction in the witness size. This can break compatibility with
CEPT completely, for example if extraction has a quadratic overhead in the witness size, then fat-tailed
input distributions lead to inefficient extraction. Again, the problem is expected size input, and can be
mitigated to some extent by size-guarding.

7.2. Modular sequential composition

In the following, we denote substituting an (ideal) subprotocol f by a (real) subprotocol p in 7/ as 7°.
Similarly we write 7/1fm resp. 7P1Pm for substituting in multiple protocols. We need to assume
that 7 proceeds in rounds, makin%only one subprotocol call per round. Moreover, all (honest) parties
always call the same subprotocol.

We can now state our adaption of [KL08, Theorem 12]. Unlike [KL08, Theorem 12], we assume the
protocols are secure against CEPT adversaries (in our sense).

Theorem 7.7. Let fi, ..., fm and g be ideal n-party functionalities. Let ™ be an n-party protocol that
t-securely computes g against CEPT adversaries in the (f1, . .., fm)-hybrid model. Suppose that ™ makes
no more than one call to an ideal functionality in each round, that is, the functionalities f; are used strictly
sequentially. Let p1, ..., pm ben-party protocols so that p; t-securely compute f; against CEPT adversaries
(in the real model). Then mP1>-Pm t-securely computes g against CEPT adversaries (in the real model).

*We require constant n, so separate simulators (for the constantly many I C {1,...,n}) can be merged into one. Due to
the a posteriori efficiency setting, existential simulators are universal anyway, as for zero-knowledge.
%See [Can00] for details the restrictions imposed on 7.
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The proof of Theorem [.7 is straightforward — it is essentially as in [Can00]. That is:

(1) We construct from (9, A ) the obvious adversary (&,, 4,) against sequential ¢-security of p. By
assumption, we can replace A, with Sim, (and p with f). The execution remains efficient and
the output is indistinguishable, i.e.

Real, 7, (k, &) ~ Ideal! . (k,E,)

Thus, 7° was effectively replaced by 7/.

(2) Now, we construct an adversary (J, A,) against t-security of 7 in the f-hybrid model. By
assumption, we can replace A, with Sim (and 7 with g). Again, the execution remains efficient
and the output is indistinguishable, i.e.

Hybrid! - (k,9) & Idealggim, (1, 9)
This concludes the proof.

Note that we can avoid the requirement of [KLO08], that the simulator for p is efficient in any inter-
action. Weak relative efficiency of simulation is sufficient. The hybrid lemma takes care of the all the
hairy details.Bd

Now, we sketch the proof in more detail. For brevity’s sake, we will not repeat that ¢-security
against CEPT adversaries is considered in every statement of “X securely computes Y. We note that,
by assumption on 71 fm the real protocol 7?1 +#m does not interleave executions. That is, only one
instance of a subprotocol p; is executed at a time.

Proof sketch. First, we simplify the situation by considering only one hybrid functionality f and pro-
tocol p. Since m is a constant, it will be evident that the proof easily extends, e.g. by going through m
hybrid models.

Before we continue, we clarify and revert an important notational difference: We used the notation
rep(©) for repeated access to independent instance of ©. In SFE/MPC, it is common that 7” resp. 79
denotes that 7 has repeated access to independent instances of p resp. g.

As noted before Definition [1.1, we view security as oracle indistinguishability. As with zero-knowl-

edge, the hybrid lemma shows that rep(©, _z,) is weakly efficient relative to rep(Oy sim,) and rep(O,, 7,,) ~
rep(Oy sim, ). That is, the analogue of sequential ¢-security (for a single protocol p) holds.

We argue in games. Game Gy is the real execution 77, that is Real, 7 (k, J).

In Game G, we prepare to replace all instances p by f. For this, we interpret the calling “environ-
ment” of p as &,. That is, §, executes 7 using access to rep(©, _7z,). The adversary A is now split and
executed partially by €, and A,. Here §, simulates the everything (the game, honest parties and .4)
outside the subprotocol calls to p, whereas A, emulates A (only) the subprotocol calls (and receives
the state of A via aux). Here, it is essential that the calls are sequential. The changes from Gg to G; are
conceptual. Everything is efficient if (and only if) it was efficient before and the output is identically
distributed.

In Game Gg, we replace O, 7, by Oy sim ,. As noted before, the hybrid lemma implies that

rep(Qp,ﬂp) c rep(((')f,Simp)
~ &,

G1 =Real, 7,(&,) = &) = ldealf sim,(6,) = G2

and both executions are efficient. Thus, we have substituted p by f in 7. Now, we are effectively in the
f-hybrid model.

Game G3 undoes the changes of Gy, i.e. we revert to & = J and 7, but now, we have 7reP(f) instead
of 7'¢P(P) We call the resulting “network” adversary 7. This change is conceptual and does not affect
output or efficiency.

*Tt is unsurprising that the proof of the modular sequential composition theorem in [KLO8], is more complex, since it
effectively is the hybrid argument.
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In Game Gy, we replace 77P\/) (resp. A,) by g (resp. Sim,). Since 7 t-securely computes g in the
f-hybrid model, we find

Gs = Hybrid! ; (9) = & & & 5™ = ldeal sim, (6x) = G

and Gy is efficient if G4 is. Thus Ideal, sim . (&) CEPT.
The construction of the simulator Sim for 7” follows from the above. That is, Sim runs Sim, for 4,
in subprotocol calls to p and Sim for 7.

O]

8. Conclusion and open problems

At the example of zero-knowledge and a sketched application to SFE, we demonstrated that the notion
of computationally expected polynomial time is a useful and viable alternative to EPT. We also gave
a “philosophical” motivation why EPT should be enlarged to CEPT, namely distinguishing-closedness.
However, we leave open many minor and major questions and directions.

Beyond negligible advantage. The most important question may well be the (in)compatibility of
CPPT/CEPT and superpolynomial hardness assumptions. Concretely, consider a one-way function where
we assume that no PPT adversary can invert with probability better than O(2~%/ 2). W.r.t. CPPT/CEPT,
such assumptions cannot exist, since with probability O(2~%/4), a CPPT/CEPT adversary may brute-
force a preimage.

It is a critical question, whether this is a fundamental problem, or just another technical artefact. If
CPPT/CEPT is incompatible with subexponential hardness assumptions, then protocols which rely on
such are very likely incompatible with CPPT

Quantifiability, tightness, constructivity. For a more quantifiable notion of security, we need to
better tackle the question of tightness of reductions, simulations, etc. The interpretation and treatment
of the virtuality error for a good notion of tightness is non-trivial. Moreover, constructivity of security
reductions is an interesting and important question, as we used the existence of (in general not com-
putable) polynomial bounds in many places. In Appendices and [E.3.4, we explore these questions
very briefly.

Efficiency artefacts. In several situations, expected polynomial size inputs and messages resulted
in rather strong requirements and fickle behaviour. Size-guards (Appendix [E.4.3) are a mitigation. A
more natural alternative is to investigate the efficiency class of expected time strict space (EPT/SPS)
machines.

More abstract questions. Our “general” treatment of runtime provides the central results only for
algebra-tailed runtime classes. Indeed, we even lack a definition of well-behaved runtime classes, for
which we can expect such results to hold. Such a definition and extensions, as well as incorporating dif-
ferent advantage classes, are open. This may also lead to insights regarding superpolynomial hardness
and CEPT, or vice versa.

Acknowledgements. I am grateful to Alexander Koch and Jérn Miller-Quade for feedback on an
entirely different approach on EPT, and to Dennis Hotheinz for essentially breaking said approach. I
also extend my gratitude to the reviewers of CRYPTO’20/21, and to Akin Unal and Marcel Tiepelt,
whose suggestions helped to improve the overall presentation. Special thanks go to the reviewers of
TCC’20 and Dakshita Khurana for great feedback, which eventually resulted in the addition of the
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A. Machine models

We do not want to go into much detail about the machine model, and will essentially assume that it
is admissible. Admissibility carries certain explicit semi-formal requirements. As our machine model,
we have some RAM-like model in mind. Indeed, “concrete efficiency” is relatively important when
dealing with expected time. Recall that there are (runtime) distributions 7" over Ny with E(T") < oo
but E(T?) = co. Thus, we require that certain operations can be carried out efficiently (e.g. with loga-
rithmic overhead). Importantly, we require efficient arithmetic and the abilitiy to use standard efficient
construction, such as arrays or more sophisticated data structures, which allow efficient computation
in a RAM model (or multi-tape Turing machine). We also require efficient emulation of (efficient) pro-
grams, oracles, or interactive systems in the sense that “emulating” an execution does not affect the
runtime too much. Moreover, emulation allows to truncate, suspend, resume, rewind, or similarly
affect executions based on efficiently computable events (such as the number of steps emulated, or
messages received).

Remark A.1 (Non-Halting). Non-halting computations are an irksome technical artefact. To deal with
them explicitly, we define the symbol nohalt as the “output” of such a computation, and assume that
any system which receives nohalt also outputs nohalt, if not specified otherwise. Alternatively, one
can follow [Gol10] and assume all algorithms halt after a finite number n(x) of steps. This introduces
(arbitrarily) small deviations for “perfectness”, e.g. it is again impossible to sample from Ber(1/3).

A.l. Systems, oracles, algorithms

Before considering machine models and specific properties, we sketch the high level abstractions. We
view algorithms and oracles as systems, which offer (communication) interfaces. Interfaces allow to
receive and/or send messages. For example, the input (resp. output) interface typically receives (resp.
sends) exactly one message, the input (resp. output). To model “laziness”, one may view the interface
less strictly, and allow the input (resp. output) interface to read symbol for symbol. Thus, a calling
algorithm need not provide the full input (resp. output) at once. This is relevant in our setting, where
input (resp. output) lengths are not a priori bounded.

We do not formalize the means of interfacing precisely, but argue in a hand-wavy manner. (In our
case, with many competing definitions of machine and communication models, we believe it is better
to be explicitly imprecise, than importing a lot of unnecessary details.)

We work with three related notions: Systems, oracles, and algorithms. A deterministic system is
defined by its interfaces and “input-output behaviour” only, i.e. it is a “mathematical object”. A (prob-
abilistic) system is a random variable S, such that any realization of S is a deterministic system.E A
system has no notion of “runtime”, or “random tape”. By connecting interfaces, systems may interact.
This forms a new system. Any system has an implicit input, the security parameter. A system is closed
if the only input is its security parameter, and it offers only an output interface.

An algorithm is given by code (perhaps non-uniformly) and bound to a machine model. The code
and machine model describe its behaviour as a system, and impart it with a notion of runtime and
“random tape”. (Randomness need not be modelled by a random tape.)

By oracle or party, we denote systems or algorithms to which only interface access is used. For
example, black-box rewinding access (bb-rw) to an adversary means access to an oracle (with an un-
derlying algorithm in this case). If not indicated otherwise, an oracle © is an algorithm (to which only
interface access is provided).

In our setting, a convenient abstraction are timed oracles, which allow execution for an a priori
bounded time, and which report the elapsed time to the caller when answering a query (or report

’Our definition of system is ad-hoc. A compatible, precise notion was recently (concurrently) introduced in [LM20]. We
allow two probabilistic to behave identically, whereas in [LM2(] equivalence classes are considered (and what we call
system is called “probabilistic discrete system”). We prefer to work with concrete representatives, as having a concrete
probability space at hand significantly simplifies definitions and reasoning, though it is not strictly necessary.
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timeout, if it did not complete in time). See Appendix [A.3 for a more precise specification. Timed bb-
rw simulators can make use of this to truncate overlong executions, and this corresponds to extended
black-box access in [KL08].

Another useful abstraction, mostly for convenience in the setting of a posteriori efficiency, are time-
ful oracles (or timeful systems). Timeful oracles are systems, which provide a purported elapsed runtime
to the machine model. Importantly, timeful oracles are not bound by complexity notions or machine
models, except satisfying consistency restrictions, e.g. their purported runtime must be long enough
to have written the answer to the interface. Hardness assumptions, such as timelock puzzles are void
against timeful oracles. Thus, they are a means to formalize unconditional runtime guarantees for al-
gorithms with oracle-access, e.g. bb-rw simulators, but also serve as a convenient abstraction, e.g. for
Lemma B.12. A timeful oracle also yields a timed oracle in the obvious way.

A.2. Abstract machine model operations and interaction

From an abstract point of view, we want a machine model with following properties:@

Efficient arithmetic which does not thwart our results.

Efficient data structures such as arrays (i.e. random access), or something morally equivalent.

Abstract subroutines such as oracle calls, or a message sending function.

Abstract access to subroutine results. This is non-trivial, in particular if subroutines need not be
efficient. Thus, even for a RAM-model, accessing the result of an oracle needs some tape-like
access method.Bd

Interactive machines which communicate and are activated in some sensible way.

Efficient emulation ensures that one can efficiently execute code and emulate many interacting al-
gorithms with little overhead.

A notion of runtime which is local, i.e. one can separate between time spent within some machine,
subroutine, or oracles, and account accordingly.

Let us formalize our wishes a bit. Concerning arithmetic and data structures, we want typical algo-
rithms to be efficient. In particular, distinguishing distributions by sampling often enough and com-
puting the empirical distribution should be “efficient” in the sample size n, see Appendix [C.4. For data
structures, we may have to deal with excessively large inputs, thus, we may need suitable encodings,
e.g. a tuple should allow access to any of its components efficiently, even with tape-like access. For ex-
ample, representing (x, y) by concatenation only works if  is guaranteed to be short, but is inefficient
if x is very long. Interleaving always works for tuples of constant dimension.

Now, we formalize the locality of runtime. Let A91:-ON be an oracle machine (with access to N
oracles). We require that

timea+0,+0,+4... (A9ON) = timep (A91ON)  timeg, (A9 V) + timeg, (A9 ON) 4
(A1)
though “morally equivalent” relaxation suffice for most results. (Note that our algorithm takes no input.
In case of randomized algorithms, the runtimes for A, Oy, ...Op are not stochastically independent.)
Finally, a sensible machine model guarantees efficient emulation. Namely, if timea 0, +©0y+... (A@1 e ON )
is efficient so is the runtime of the algorithm B which emulates the execution of all oracles. In other
words, converting an (interacting) system of machines into a single machine B by emulating all parties
(or oracles) preserve efficiency. Furthermore, emulation should efficiently allow to gather (and act upon)

% Another requirement, which is natural enough that we did not prominently require it, is that to send message of length n,
some time is required. We assume n steps for length n as a lower bound.

**The problem here is: If the result of an oracle is huge, any access may exhaust the alloted runtime. This is nonsense
(and completely breaks our results). For that reason, some (trivial, efficient) encoding for such unbounded objects are
necessary, e.g. bitwise tape-like. Concretely, our runtime oracles might output gigantic runtimes, which a runtime dis-
tinguisher need not completely read to discern them from polynomial time.
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execution statistics, most importantly the elapsed runtime of the emulated code, and the possibility to
truncate an oracle emulation after a number of steps. Emulation should behave just like one expects
from a virtual machine, in particular, be possible step-for-step.

Note that preservation of efficiency depends on the machine model and the notion of efficiency
itself. For example, if emulation has a logarithmic overhead, then linear time is not preserved under
emulation, but quasi-linear time may be. Emulation overhead which is linear (or better sublinear) in the
number of emulated steps is a very convenient property of a machine model. We write emuovhd,; (k)
for the time steps required to emulate k steps (of a N machine/oracle system in some implicit machine
model). Usually, the security parameter x and number of oracles IV are suppressed.

The communication model. We will assume an communication model where messages of arbi-
trary size can be sent, and parties have incoming messages queues. These do not count towards their
space, and they do not pay runtime for receiving a message, only for reading it. Tape-like access to
messages seems most natural, so we assume that. For technical reasons, one may wish provide the
possibility of dropping (i.e. skipping) a (partially read) message. This allows a party to ignore large
messages, keeping its runtime in check. Another possibility is to use fixed size messages (packages),
and make the transfer of longer messages an “explicit” protocol. With this approach, our simplified
view of “inputs as messages” is broken. This surfaces a technical detail, namely that reading from
tapes and interacting with an interface which provides the same information is essentially the same,
but technically different. By suitably restricting adversaries and algorithms, or introducing “unidirec-
tional channels” (e.g. dummy transmitter parties) for passing inputs (after termination), this can be
reconciled.

There are also different strategies for dealing with messages from super-constantly many parties, e.g.
one tape-like message queue for all, one message queue per party, etc. Since our focus is (essentially)
a two-party setting, we leave technical details, problems, solutions and their relations to the reader.

Non-uniformity. For non-uniform machines, we propose an advice interface just like the random-
ness interface.®d That is, the advice string has infinite length. This seems to be the most natural
choice from a machine-model perspective. Complexity classes can then restrict access further, e.g. to
expected or strict polynomial size advice. Note that non-uniformity comes with its own more or less
subtle anomalies, see e.g. [KM13].

A.3. Timed black-box emulation with rewinding access

We define (timed) black-box emulation similar to [KL08], which differs from standard black-box emu-
lation essentially by making the “runtime/instruction counter” part of the visible black-box interface
and by allowing runtime truncation.

Definition A.2 (Timed black-box emulation with rewinding access (bb-rw)). A black-box emulation
oracle © gives oracle access to a “virtual machine” running some (once and for all) specified pro-
gram/code. The code may involve multiple (abstracted) parties. Unless otherwise specified, © behaves
deterministical{d/ in the sense that the randomness of the emulated programs is sampled and fixed prior
to interaction.®® We do not let the caller choose the randomness.

The black-box interface depends on the specific type.

+ Fully black-box emulators take an input message m and return their program’s answer a.

The advice interface should follow the same restrictions as the “random tape’ (see Remark [A.g), in particular it should not
provide memory to not conflate advice complexity with space complexity.

"When such an oracle is implemented, the “random tape” (or the respective notion in the machine model) is sampled (and
fixed) lazily, just like a random oracle.
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« Timed black-box emulators take a pair (m, t), where ¢ is a maximum time bound, and return a
pair (a, s), where s is the number of steps emulated. If s would exceed the alloted time ¢, the
emulation is aborted and timeout is returned. A time bound of ¢ = oo is allowed. (Execution
may be resumed after timeout.)

« Black-box emulation with rewinding access (bb-rw) allows the state of the emulated program
to be stored and loaded. While, a state is identified by its partial transcript of (previous) queries,
other means of identification, such as handles, are used to ensure efficiency. Loading, storing,
and deleting program states is done by special types of messages.

Note that we distinguished black-box oracles with rewinding access from “normal” oracles. The
reason is that the “next-message” approach usually used to implement black-box access is not efficient
enough with expected time.

Example A.3 (Runtime squaring for NextMsg). Consider following interaction (A(n), B): First A sends
n to B. Then A pings B n times, each times B returns a secret, which A uses in the next ping. Obviously,
this interaction runs in time O(n). Consider a distributions N of inputs n on N with the property that
E(N) < oo but E(N?) = co. Then emulation with next-message-function NextMsg is not efficient.
The reason is that NextMsg always (re)computes from scratch, which needs about ) " ;i ~ %n2 steps.

Fortunately, most problems like this arise from repeated computations (or repeated copying) being
expensive, and are solved by making recomputing (or copying) superfluous. Computations can be
cached, as done in bb-rw implementations. Copying can be reduced by sharing memory access, or
passing around access to a machine or interface which implements such a shared memory access.

Remark A.4 (Cached UID NextMsg access). Caching (all) visited states and using short unique identi-
fiers (UID) for visited states (instead of resending the history of messages leading to a state), yields a
NextMsg-like function which is a suitable bb-rw oracle implementation (in all situations we have tried).
Cached state and short UIDs prevent the quadratic computational overhead, but require expected poly-
nomial space. Judiciously caching only important states is typically possible, so that usually strict
polynomial space solutions exist.

Keeping track of identifiers and the rewinding tree can be done with efficient data structures. (Poly-
logarithmic overhead is admissible by Corollary [A.§))

Remark A.5. For admissible models, emulation of algorithms allows (efficient) runtime cutoffs. Cloning
a machine’s state, and resuming from a given state should also be (efficiently) possible. (Or we may
add it as an new assumption.)

Remark A.6 (Space overhead). We have only considered time overhead of emulation. This is justified,
as it bounds the space/memory overhead. However, memory overhead is an interesting quantity on its
own. For example, one might argue that expected poly-time (EPT), but strict poly-space (SPS), is a “more
natural” class of feasible computation than expected poly-time and expected poly-space.

While SPS seems to prevent many technical artefacts, it unveils certain others. Depending on the
implementation of the randomness interface (e.g. input, read-only tape, coin-toss, ...) emulation and
bb-rw oracle implementations may not be SPS, because space and randomness complexity are mixed.
If read-only access to an (infinite) random tape is given, then emulating two such tapes by “splitting”
one works well. If randomness is a coin-toss interface, which upon invocation returns a fresh random
bit, then emulation still works. However, to implement a bb-rw oracle bbrw(©), which gives access
to © with fixed randomness, requires to remember all used randomness. This can require expected
polynomial space.

How this can be resolved elegantly is an interesting question. One could rely on derandomization,
e.g. with an (a priori PPT) pseudorandom function, to simulate a long enough random string with small

92Note that all of the code and interfaces which are in our control, e.g. the interface of the black-box are assumed to be nice
and well-typed.
$0f course, the actual complexity class of interest allows EPT-SPS violation with negligible probability.
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space. Alternatively, one could try to work with probabilistic bb-rw oracles, which, when rewound to
a state use fresh randomness for new queries, i.e. the same query may yield different answers. Our
problem with deterministic versus probabilistic access seems related to [BG11]].

Similar to randomness, non-uniform (infinite) advice may need to be saved by a bb-rw implementa-
tion, leading to space overhead. Again, it depends on the concrete modelling.

A.4. (Probably) Admissible machine models

To the best of our knowledge, RAM models, and also multi-tape Turing machines, are admissible if one
works with polynomial time or larger runtime classes.Fd Following trivial lemma is useful to see that
efficient emulation is not hard to achieve, even for expected time.

Lemma A.7. Let f: Ny — Ny be any (monotone) strictly increasing function with (monotone) increasing
left-inverse g, i.e. go f = id (but not necessarily f og = id). Suppose T is a runtime and smaller than f, i.e.
P(T. > f(k)) =0 (for all k). Let h be another monotone function. Then E(h(g(Ty))Tx) < h(x)E(T}).

Proof. Use h(g(Tx)) < h(g(f(r))) < h(r). H

Corollary A.8. Let poly be any monotone polynomial, and E(T};) < t(k) for a polynomial bound t, and
T < 2%. Then E(poly(log(T,))Ty) is polynomially bounded (namely by < poly(k)t(k)).

Proof. Use Lemma [A.] with f(k) = 2%, g(k) = log, (k). and h = poly, O

Note that T); < 2" is easily achieved via a runtime cutoff after 2~ steps.@ This induces a statisti-
cally negligible change in the output of any expected polynomial time algorithm.@ Thus, we see that
polylogarithmic multiplicative overhead in emulation is not a problem for expected polynomial time
computations. By taking a smaller superpolynomial bound, e.g. f(x) = Kk1°8(%) e get we a bit more
freedom in the emulation overhead.

Remark A.9 (Interaction of Corollary [A.§ and virtuality). CEPT and CPPT ignore negligible events,
because they can be hidden in the virtuality. So, Corollary [A.§ may always be applied after conditioning
on the event {7, < 2"}, i.e. after using the “virtuality slack”. Consequently, polylog overhead is not a
problem for CEPT.

We end our discussion of machine models by taking a closer look two exemplary machine models.

Example A.10 (Single-tape Turing machines are not admissible). Consider single-tape Turing machine
as the model of computation. It is easy to construct an interactive algorithm for computing whether
a string is a palindrome which runs in linear time (in the length of the input string). However, it is
well-known that single-tape Turing machines need quadratic time to recognize this language. Thus,
the emulation overhead is (at least) quadratic. Hence, it is single-tape Turing machines are not an
admissible model of computation.

Example A.11 (RAM models). Various RAM models seem appropriate for our cause. A model of com-
putation in which the RAM’s word size grows with the “problem size” seems particularly well-suited
for cryptography; indeed security parameter « is a natural measure for the “problem size”.

B. Supplementary definitions

This section contains supplementary definitions which are commonplace (in many variations).

%*We have not carried out formal proofs.
65Technically, we have to do an earlier cutoff, since emulation and cutoff also consume runtime. But this is a minor issue.
%Unfortunately, such a truncation can affect perfect properties, such as perfect correctness, leading to technical artefacts.
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B.1. Commitment schemes

A commitment scheme allows a committer to commit to some value. The receiver does not learn that
value until it is unveiled (the commitment is opened). Moreover, the commitment can be opened to at
most one value, ensuring that the committer cannot change the value.

Formally, a commitment scheme is a two-phase protocol. For simplicity, we assume non-interactive

commitments. Moreover, our commitment schemes consist of a priori PPT algorithms and have mes-
sage space 111,, = {0, 1}".

Definition B.1. A (non-interactive) commitment scheme Com (with setup) with message space 171,, =
{0, 1}" consists of following a priori PPT algorithms.

« Gen(k;r) returns a commitment key ck.

« VfyCK(ck) verifies well-formedness of ck and accepts or rejects.

« Com(ck, m;r) returns a pair (¢, d) of commitment and decommitment for message m and ran-
domness 7.

« VfyOpen(ck, ¢, m, d) accepts or rejects an opening of a commitment ¢ to message m and decom-
mitment d.

A commitment scheme must be perfectly correct, that is Vck + Gen(k): VfyCK(ck) = acc and
Vek < Gen(k), m € N, (¢,d) < Com(ck): VfyOpen(ck, ¢, m,d) = acc.

In the following, let 7 € {PPT ,EPT ,CPPT ,CEPT }. (The results and definition can be adapted
to any suitable, e.g. algebra-tailed runtime class.)

Definition B.2 (Binding). Let Com be a (non-interactive) commitment scheme and let A be an adversary
in following game Bindcom, 7.

« Run ck < Gen(k). The adversary returns (¢, mg, dgy, my, d;) < A(k, ck).
« Return win iff VfyOpen(ck, ¢, my, dp) = acc for b = 0,1 and my # my.

Let Advléig,‘ih (k) = P(Bindcom, 7 (x) = win). Then Com is computationally (resp. statistically, resp.
perfectly) binding for 7 -time (resp. -time-query, resp. unbounded) adversaries, if for any such adver-

sary A we have Adv}éiggnﬂ(/ﬁ;) < negl (resp. “< negl”, resp. “= 0”).

By J -time adversary, we mean the total time of game is 7 -time. Since the commitment scheme’s
algorithms are a priori PPT time, efficiency of the game boils down to efficiency of A.

Definition B.3 (Multi-Hiding LR-version). Let Com be a (non-interactive) commitment scheme and let
A be an adversary in following game Hidecom 7.

« Run (ck, state) +— A (k).

. If VfyCK(ck) = rej, return lose. Else run b’ + A% (state, ck), where Oy(mg, my) checks if
mp, my € 1,; and® returns ¢;, = Com(ck, my). Note that the adversary may repeatedly query
Op.

« Return win if b = V' else lose

Let Advléic‘,j% (k) =]2P(Bindcom, 7 (k) = win) — 1|. Then Com is computationally (resp. statistically,
resp. perfectly) hiding for any 7 -time (resp. -time-query, resp. unbounded) adversary, if for any such
A we have Adv%‘gr%,,ﬂ(&) < negl (resp. “< negl”, resp. “= 0”).

Finally, we note that CEPT adversaries are “no better” than a priori PPT adversaries.

Lemma B.4. Suppose Com is computationally (resp. statistically, resp. perfectly) hiding (resp. binding)
against a priori PPT adversaries. Then it also is against CEPT adversaries.

The message length is always & in this case.
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Proof sketch. Use that Com consists of a priori PPT algorithms and a standard truncation to a priori
PPT to obtain an adversary A’ with advantage at least half the advantage of A infinitely often. [

Remark B.5. The graph 3-colouring protocol G3Cgk of Goldreich and Kahan [GK96] relies on a weaker
“a posteriori hiding” property for the statistically hiding commitment scheme. Here, VfyCK may de-
pend on secrets, e.g. the randomness of Gen, allowing more candidates schemes. The verification
secrets are only revealed after the binding property is not needed anymore.

Concretely, in [GK96], the verifier commits to challenges, which must be statistically hidden during
the protocol. However, it suffices that the verifier is ensured of this statistical hiding property at the
end of the protocol. Thus, the change to VfyCK is possible there.

C. x Technical lemmata

In this section, we gather some lemmata for various purposes. Appendix [C.4 contain some simple
facts on statistical distance. In Appendix [C.3, some cryptographic results concerning distinguishing
and general hybrid arguments are given. And Appendix [C.4 contains naive closeness tests.

C.1. Tail bounds

Tail bounds for distributions are the core tool for (runtime) cutoffs. For example, they allow to estimate
how much the adversarial advantage suffers if we truncate.

Definition C.1 (Tail bounds). Let X be some distribution on R>(. We call a (right-)continuous decreas-
ing function tail: R>g — R> a tail bound of X if Vo € R>g: P(X > n) < tail(n).

Moreover, we write tail": R>g — Rso U {oo} for tail’ () = inf{n | tail(n) < a}, which satisfies
tail (tail’ (a)) < a. More generally, we call an upper bound bnd of some sequence (z,,),, a tail bound,
i.e. z, < bnd(n) for all n.

Tail bounds generalize to distributions over R>o U {co, timeout}, etc.

The optimal tail bound is tail(n) = 1 — CDFx(n), where CDFx is the cumulative distribution
function of X. We use tail’(a) to conveniently denote the minimal n,, with tail(n4) < a, which exists
due to continuity of tail.

For strict runtimes, e.g. strict polynomial time, the time bound is an admissible tail bound. More
generally, we recall following lemma:

Lemma C.2 (Markov bound). Let X be a distribution on Ry and suppose E(X) < t. Then tail(n) = 1t

T n

is an admissible tail bound and tail'(a) = 1t. For | X||, = (E(X?))Y/? < t withp > 1, we have

T«

tail(n) = (£)?, and hencetail(n) < L ifn > t.

n

For simple corollaries concerning runtime truncation and bounds, see Appendix C.3.

C.2. Simple facts

In this section, we state some simple facts. Most are used with, or about, random variables, conditional
variables, and the behaviour of statistical distance.

C.2.1. Statistical distance

Following lemma is useful to bound statistical distances of products of densities.

Lemma C.3. Letp;,q; € [0,1] fori =1,...,n. Then

n n n
‘Hpi I a| <D Ipi —ail.
=1 =1 =1
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In particular, A(X x Y, X' xY') < A(X,Y) + A(X',Y) for random variables X, Y, X', Y (not
necessarily independent).
More precisely, let p(; ... ) = Hle pi, and let q(p,, .y = [[i-}, qi, and let §; == |p; — q;| then

n n
‘sz‘ - H qi
i=1 i=1

Assuming the products are finite, this continues to hold for n = co.

< ZP(1,...,¢—1)5z'CI(i+1,...)-
=1

Proof. This follows from a straightforward induction (using |p;|, |¢;| < 1) to simplify. The claim re-

garding statistical distance follows by an application of the inequality under the integral. O

Next, we note how conditional distributions and statistical distance are connected.

Remark C.4. Let X be random variable and let Y independently distributed like X conditioned on
some event of probability €. Then A(X,Y) = e.

(This follows easily since Y has the density P(§) ~'1¢ as density w.r.t. X, where g hence 2 A(X,Y) =
11— P(&) L] = P(€) + P(&) = 2¢)

Following is a simple result of CDFs.

Corollary C.5. Let X andY be two random variables over Ny U {oo} and let N € Ny. Suppose X (resp.
Y ) are truncated to X <N (resp. Y=N) (i.e. they output timeout if they exceed N ). Then

A(X,Y)—P(X > N) < AKXV Y=N) < A(X,Y).

Proof. We show A(X,Y) — A(XSN YSN) > P(X > N). The left-hand side is > r, [px (k) —
py (k)| —[>_re,, px (k) — py (k)|. This can be interpreted as ¢;-norms and the claim follows by general
inequalities, see Lemma @ O

Lemma C.6. Let x,y be be two elements in a normed vector space and suppose ||y|| < €. Then
Mz =yl ==l = [yl < 2[lyll < 2¢
The inequality is tight (y = —x).
Proof. We consider two cases. Suppose ||z|| < ||y||. Then we find
=yl = [llzll = lylll = lz = yll = llzll + [yl <llz =y =2l + vl = 2[ly[l-
For the case ||y|| < ||z|| we find by symmetry (of |a — b|) that
ly =zl = [llyll = ll=[[] < 2[lyll < 2e.
This finishes the proof. O

C.2.2. Domination (with slack)

We give some simple properties of domination (with slack).

Lemma C.7 (Properties of domination). Let R' = R U {oo, timeout}. Let X, Y : Q — R’ be random

d
variables and suppose X <p Y for L > 1. Then:

d
(1) For any monotonely increasing continuous function f: R" — R/, we have f(X) <, f(Y).
d
(2) In particular, for X, Y : Q — R/, we have XSt <, Y=t
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d
(3) Foranyv € [0,1], we have X < Y". Moreover, even conditioned on —timeout, the respective

d
XY satisfy X' <, Y’
4) < L||Y|lp forp € [1, oc].

d
(5) Fori = 1 ynlet X;,Y;: Q — R with X; <L Y; and A; > 1 with ) ;" | \; = 1. Then
Yo X <M SN Y In particular, Y X <L ny ;Y.

Proof. Let f be as claimed. Let g be defined as g (y) = inf f 71 ({z | y < z}) and let g_ be defined as
g+(y) =sup f71({z | 2 < y})) Then g_(f(z)) < = < g+ (f(z)) by definition, and g+ are monotone.
Since f is right-continuous, f(z) <y <= z < g4 (y). Consequently, for all c € R’

B(f(X) > ¢) = 1 - B(f(X) < ¢) = 1 = P(X < g, (c)) = P(X > g4(c)).

Now, we find for all c € R’

B(f(X) > ¢) = B(X > g.(c) < LE(Y > g, (c)) = LB(f(Y) > o),

which proves the first claim. The second follows immediately by setting f appropriately. The last claim,
directly follows in simple cases (namely if quantile-truncation coincides with truncation at some c). In
general, we use that

L-1

P(X >¢) S LP(Y >¢) <= P(Y <¢) <~ P(X >0)

and the definition of quantile cutoff
P(X" <¢) =max{1,P(X < ¢)}.

Conditioning on —timeout simply means using max{1, 1= P(X < c)} as the new CDF. In both cases,
the claim easily follows.

For the norm inequality, let F' = CDFx(-), G = CDFy(-) and note that 1 — F' < L(1 — G)
by assumption. Also recall that | X|; = E(X) = [;*1 — F(x)dx for any distribution X > 0. We
= [1- F(z'/?)dz. Finally

assume p < 00, and leave p =
S 1= P(atr)de < [ L1~ GV = LY [}
For item , note that ), X; > t implies that there exists some i such that X; > \;t. Thus

ZX > t) <ZIP’X > A\it) <ZLIP’Y>)\t <LZIP’ MY > 1)

and the claim follows. O

C.3. Useful lemmata

In this section, we give some simple lemmata, which are useful tools for moving back and forth between
strict and expected time. The results given in this section are not asymptotic, and given for simple
objects. Nevertheless, it is straightforward to show that all constructions can be directly applied in the
asymptotic setting.

C.3.1. Runtime truncations

We give generic variants of runtime truncation lemmata.

Corollary C.8. Suppose A is some algorithm. Suppose A(x) takes an expected number of t,; steps on input
x. Then the output distribution of A(x)=", has statistical distance at most % from A(z).
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Corollary [C.§ bounds the quality loss when converting expected to strict time algorithms. For ex-
ample, if A is a distinguisher with advantage ¢, and ¢,, < ¢ for all inputs, then truncating runtime after
2¢~ 't steps yields a distinguisher with advantage %E. If t = poly and € > 1/poly, then this transforms
an expected polynomial time distinguisher into a strict polynomial time distinguisher.

Corollary C.9 (Non-asymptotic generic “standard reduction”). Suppose D® is a distinguisher with ad-
vantage ¢ for timed oracles Oy, O1. Let Ty = timeg 1o (D?), and let N = taiI}O(%). Then there is an
A with runtime S, = timeg  o(A) forb = 0,1 bounded roughly by N (plus overhead for computing
N and emulating D), and A distinguishes Oy and Oy with advantage .

More precisely, A truncates the total time of D + © to at most N steps, hence the runtime distribution
of A is close to that of D + ©. Moreover, there are two possible candidates for A : One outputs the output
of @D, and a random guess in case of timeout. The other outputs 1 in case of timeout and 0 else. At least
one of these algorithms has advantage 5.

We note again, that only the runtime with ©g and its tail bound are of importance for the runtime
cutoff. Also, one can trade-off runtime for advantage, e.g. by truncating at N = taili}o(%). This
cutoff argument and its variations play the role of the standard reduction to PPT (Corollary k.3) in
the general setting. We point out, that runtime is not the only (complexity) measure of interest which
can be used in Corollary [C.9. Besides elapsed runtime of @ + ©, the elapsed runtime of only @,
consumed memory, number of queries, query length, etc., are possible measures to which Corollary [C.9
generalizes straightforwardly.

Proof sketch. Distinguisher A emulates @ and truncates @’s and ©’s combined steps to /N. That is,
A keeps track of the steps ty and to and relies on © being a timed oracle to allow it a time bound
of N — to — tp» when invoked. Note that A emulates an priori number bounded number of N steps.
Truncating D after N steps w.r.t. oracle-included steps ensures that the output of D0 has statistical
distance at most §.

Suppose the output of A ! has statistical distance § of D1, If § > 24—5. then necessarily, the
probability that T = timeg,o(D!) exceeds N steps is larger than %. Thus, this runtime statistic
can be used as a distinguishing property, with advantage at least § infinitely often. (Concretely, A
returns 1 if IV steps are exceeded and 0 otherwise.)

Now suppose the probability that 7} = timeg 1 o(D“') exceeds N steps is less than 24—5. Let A

guesses randomly in case of timeout. Then possible loss in advantage is bounded by § + %TE = %.
This leaves an advantage of § and the claim follows. O

Importantly, the construction of the two distinguisher candidates is uniform, and translates to the
asymptotic setting. One of them has infinitely often advantage at least .

C.3.2. Hybrid lemmata

Hybrid arguments and therefore the hybrid lemma are omnipresent in cryptography. Unfortunately,
the standard hybrid lemma for strict polynomial time does not hold without change.

Example C.10 (Expected polynomial rounds). The need to deal with a priori infinitely many hybrids
arises naturally from expected polynomial interaction: We have Y ,-; 27" = 1, so repeating some
protocol (step) with probability % implies an expected constant number of repetitions. But replacing
each call by a simulation requires an infinite number of hybrid steps. Evidently, after replacing the
first k protocols by simulations, the remainder can be replaced in a single step, because more than x
repetitions are necessary only with probability 27*.

We state in general the truncation approach from Example [C.1(.
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Corollary C.11 (Hybrid lemma). Let ©°, O, ... O be oracles. Let Zo, Z1 be two more oracles, and
let Z be an algorithm as follows: Z takes as input an integer i € N. Moreover, Z(i, Zy,) is implements an
oracle which behaves exactly like Q"1

Let D be a distinguisher for O° and O with advantage ¢, that is

P(@°° =1)-P(@°" =1)| > ¢
and suppose that we have a (tail) bound bnd with
IP(@° =1) - P(@° =1)| < bnd(4).

Then for every « < ¢ there is a distinguisher D' which distinguishes Zo and Z, with advantageE‘l

e = ];aa where N, == bnd'(«).
More concretely, D' picks a random i <— {0, No, — 1}, runs D on Z(i, Zp) and returns D ’s guess bit as
its own. Thus, the runtime distribution of D' is closely related to that of D and Z.

Proof of Corollary|C.1]. We reduce the proof to the standard hybrid lemma. Note that it suffices to
apply the standard hybrid lemma (with a finite number of steps) to Q. ..., ©Ne_ Because, by the very
definition N, we know that [P(D°" = 1) — P(®°"® = 1)| > £ — o = ¢’. Now, the standard hybrid
lemma yields our distinguisher and advantage. O

Our statement of the hybrid lemma differs from the standard one in minor points.@ It allows an a
priori infinite number of hybrids. And it postulates a bound bnd on the closeness of the ¢-th and final
hybrid. Typically bnd bounds the statistical distance of the i-th and final hybrid and is derived as a tail
bound, e.g. Markov bound (Lemma [C.4) on runtime or number of oracle queries.

While one may hope for an “expected number of hybrids” loss, this is impossible in general, since
an adversary could focus its advantage on the “tail hybrids”. Any black-box-like reduction is unlikely
to achieve better bounds.

Example C.12 (Optimality of the (truncated) hybrid argument). Consider following (non-adaptive) dis-
tinguishing game: The adversary sends a number n to the challenger. The challenger prepares n truly
random 7; or n pseudo-random r; = PRG(s;), and the adversary must distinguish. Consider an ad-
versary with distribution NV of n, so that E(N) < 3. The hope, that the hybrid argument may only
lose a factor of 3 in advantage, is false. One the one hand, it may be that all the advantage of an adver-
sary is in the tail of the distribution. Without a (non-obvious) way to reach the (distribution of) state,
there is no other way than to run the adversary long enough. This affects any black-box reductions.
A pathological adversary may furthermore distribute its advantage evenly over the hybrids as well,
e.g. by first picking the number ¢ of queries, and then breaking the i-th embedding with probability é.
Consequently, improving on the hybrid lemma seems close to impossible. Better reductions have to
make use of more information.

As is well known and for completeness demonstrated in Example [C.13, the tails of distributions are
a limiting factor for (hybrid) reductions. Nevertheless, Corollary is useful and generally good
enough, though it may have poor tightness properties.

%We note that N, = oo is possible, in which case &’ = 0.

% Sometimes, the hybrid lemma is stated in a weaker form, merely ensuring the existence of an index 4 where distinguishing
hybrids ¢ and ¢ + 1 has advantage > ¢/m. This does not naively extended to the asymptotic setting. Assuming that for
alli, O & @1 (asymptotically) does not imply ©° ~ O (asymptotically). Trivial counterexamples exist. Hence, the
reduction to a (single) fixed indistinguishability assumption is essential for asymptotic usage of Corollary [C.11.
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C.4. Testing closeness of distributions

Given two distributions, we need a way to efliciently test how close they are. Again, we give a non-
asymptotic lemma. But we note that in the cryptographic setting, we will tell apart (families of) distri-
butions which are statistically far (in the asymptotic sense).

Problem C.13 (Closeness promise problem). Let X, Y be distributions (typically on {1,...,n}). The

d
closeness promise problem (with parameter ¢ > 0) is the following: Decide whether X = Y or
A(X,Y) > e. A tester A is an algorithm which, given sample (oracle) access to X and Y outputs a
verdict (i.e. a bit) whether X = Y or not. The error of a tester is (at most) 6, if

IP’(CDX’XI = same) >1—4 and IP’(CDX’Y = different) >1—§

We speak of testing instead of distinguishing since it is a slightly stronger notion. A distinguisher

d
may guess randomly if X = Y, but always decide X # Y correctly, but a tester may not. In particular,
a tester with error ¢ has distinguishing advantage 1 — 24.

Lemma C.14. Let X, Y be distributions with support contained in on {1, ..., m} and consider the close-
ness promise problem. Let €, € (0, 1]. Then there is an algorithm A which solves the closeness promise
problem with error 6 and requires

N = [6me21log(26™1)]

samples (of both X andY ). Moreover, A is makes a linear number of arithmetic operations (in N ).
The result generalizes to any X, Y with support contained in S, where card(S) = m, since only
comparison operations for elements are needed.

We note that better closeness testing algorithms are known, namely in [Cha+14] an optimal closeness
tester is given. That tester has linear runtime in the number of samples N as well.

Proof of Lemma [C.14. Our tester simply uses the Kolmogorov—Smirnov test. That is, compute the em-

pirical CDF F'x and Fy (with NV samples each) and test whether ||Fx — Fy ||~ < €. By applying a
d

Chernoff bound argument in case X # Y, and using the sharp Dvoretzky-Kiefer-Wolfowitz inequal-

d
ity by Massart in case X = Y, we arrive at the claimed result. (Our constants are chosen so that
we obtain (£/3,0/2) approximations of the true CDF’s. By a standard argument using the triangle
inequality, one obtains our claims.) O

As with the hybrid lemma, we have to deal with distributions with infinite support. Using tail
bounds, we stretch Lemma to this case.

Corollary C.15. Let X, Y be distributions on Ny and consider the closeness promise problem. Lete,d €
(0, 1] and let tailx (-) be a tail bound for X. Suppose &’ = ¢ — o, where o« > 0, let m' = tailg((a). Then
there is an algorithm A which solves the closeness promise problem with error § and requires

N’ = [6(m’ +1)e"?log(20™1)]
samples (of both X andY'). Moreover, A is only requires a linear number of arithmetic operations (in N').

We note that Ng U {oo} (and the like) are also domains for which Corollary holds. It should
also be evident, that this generalizes, as long as we can approximate X and Y suitably precise over a
suitably small domain. Hence tail bounds are just a special case, and replacing X, Y by suitable close
X', Y’ works as well.
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Proof. The algorithm simply maps the distributions X, Y to new distributions by mapping any sample
s to max{s, m}.@ This changes the statistical distance by at most taily (m), see Corollary [C.5. Now,

apply Lemma [C.14. O

Following remark, while a triviality, points out one core tool of this work.

Important Remark C.16 (Statistical and computational indistinguishability coincide for “small” sup-
port). From Lemma and Corollary [C.15, we already observe the following: Asymptotically, any
pair of (families of) distributions X, Y, where one, say X, has (essentially) polynomial sized sup-
port {0, ..., poly(k)} are computationally triple-oracle indistinguishable under repeated sampling in
polynomial time, if and only if, they are statistically triple-oracle indistinguishable under repeated
sampling.

Remark C.17. Merely considering the domain, independently of X is a very rough point of view. After
all, X could be concentrated on a tiny subset of {0, . . ., n}. In particular, relying on supp(X) C Ny and
using a total ordering and tail bounds, is not at all necessary. We consider a more sensitive closeness
testing lemma a useful tool for more precise analysis. But the coarse (non-optimal) results stated here
are good enough for our purposes.

D. x General runtime definitions

This section is (only) for the inclined reader. It contains our “general” treatment of runtime classes,
that is, our framework and the many definitions necessary to talk about runtime classes and their
properties. Unfortunately, we fall short of going beyond algebra-tailed runtime classes, hence by and
large, nothing of essence is covered that is not already visible for polynomial time, PPT, EPT and CEPT.

D.1. Preliminaries: Bound algebras

Most of our arguments work for runtime classes related to bound algebras, for example, the algebra of
polynomials.

Definition D.1 (Bound algebras). A bound algebra @3 is a subset of RE%, i.e. a subset of sequences in
R>0, which satisfies:

« (B is the subset of non-negative sequences of a subalgebra of RN0. In particular, it is closed under
multiplication and it contains the constant 0 and constant 1 sequences.@

« B is closed under domination, i.e. (zy), € B, then so is any (y,), with y, < x,; (for all k).

« B is “asymptotically monotone”: If (z,.),. € B, then so is (yx ), With y, = max}_; z;.

A subset G C B is generates B if for any (x,) € B thereis a (y.) € ¢ with (z,) < (yx). The set
Negly of B-negligible functions, is defined as Negly = {f | limsup,_, | f(x)bnd(x)| = 0}.
When we work with bounds we often implicitly assume they are monotone.

Example D.2. Suitable function algebras, e.g. polynomials, or polylogarithmic functions, or f(k) =
nPoWIog(%) etc., induce a bound algebra. Importantly, there typically are monotone generating subsets
(of countable size), e.g. {(ck) | ¢ € Ny}, which generate 3.

"Note that this mapping does not need to “read” all of s (given e.g. tape-access starting from the least significant bit). In
particular, in suitable machine models, we do not run into problems where some values s are gigantic and could not be
read without compromising efficiency.

"'The associated subalgebra of @ is unique.
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D.2. Runtime distributions

Our definitions of (polynomial) runtime are such that an algorithm’s (or protocol’s) runtime is bounded
in the security parameter  alone. The input space of an algorithm is (a family) X..2 Often, our
algorithms have no (explicit) input, but receive implicit input via oracles, e.g. when distinguishing
distributions given sampling access. In any case, we focus on “a posteriori” runtime, i.e. consider
runtime timea (A(x)) where x < I for some input distribution (that is A(X) is a system without
inputs).

Caution D.3. Recall that we generally suppress mentioning dependencies on the security parameter,
i.e. we typically write A(z) instead of A(k, x) if k. The security parameter is (implicit) “input” to every
algorithm. In fact, usually, A is given no inputs (but «). Similarly, runtime obviously depends on the
machine model even though we do not mention this.

Definition D.4 (Runtime distribution). A (input-free) runtime (distribution) 7’ is a family (7};),; of distri-
butions 7}, € Dists(Ng U {oc}) parameterized by r; more precisely, itisamap T': Ny — Dists(Ny U {oo})
from security parameter to probability distributions over Ny U {oco}. A runtime 7" is induced by an
algorithm A if T); = timea (A(k)). We typically suppress x and simply write 7' = timea (A).

We allow the symbol timeout in a runtime distribution 7" (formally changing to Dists(NoU{time out})).E
Remark D.5. Runtime (distributions) with input, or input-dependent runtimes are functions mapping
input x € X, to a runtime distribution, that is T);: X, — Dists(Ny U {oo}) for all x. It is induced
by A if T,.(z) = time(A(k, z)). The definition of input-dependent runtime (as a random variable) is
similar.

For now, we only consider the input-free setting, i.e. X’ = {x}. Input is implicitly made available
via oracle access.

Caution D.6. In this and future sections, we conflate runtimes (random variables) runtime distributions.
The reason is, that we almost always care only about the runtime distribution, except in cases where
we “split” up the runtime of an algorithm into a sum of stochastically dependent runtimes (e.g. of A

and O).

D.3. Runtime classes

To talk about “efficient” computation, we need to say which runtime distributions we consider “effi-
cient”. The set of all “efficient” runtimes then forms the respective runtime class. Exemplary runtime
classes are PPT and EPT . We refine Definition .4 here, to only include sets of runtimes which have
some basic properties.

Definition D.7. A runtime class 7 is a set of input-free runtime distributions so that:

Constants: The constant 0 and constant 1 runtime are in 7.

Closed under domination: thatis,if 7 € T and S < T then S € 7.1
Closed under addition, ie.J +3J C J,where T + S is viewed as a sum of distributions.

An (oracle) algorithm A runs in 7 -time if time(A) € 7.

Closure under domination says that no “inefficient” algorithm (i.e. runtime outside 7°) can be made
efficient by doing more steps. Additive closure roughly ensures that independent execution of any
constant number of efficient algorithms is efficient. The definition of runtime class is most likely in-
complete. We just give enough properties so that our results hold. Sensible runtime classes should
offer more guarantees, but we have not identified the “right” properties, see Appendix [E.9 for more.

7?Recall a well-known problem: The input space may not be (efficiently) recognizable. Thus, an algorithm may be fed with
malformed input (or oracles/interaction). In general, this voids any runtime guarantees. Thus, for protocols, we want
strong runtime guarantees, which are not restricted do well-formed input.

*We could also allow oo there, but generally timeouts stop overlong executions.

"*More precisely, S < T iff for all K we have S, < T, i.e. Tx dominates S, in distribution.
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Example D.8. We give some exemplary polynomial runtime classes.

Strict polynomial time: The runtime class PJ contains (by definition) all runtimes 7" for which
there exists a polynomial poly such that T" < poly.

Expected polynomial time: The runtime class &7 contains (by definition) all runtimes 7" for which
there exists a polynomial poly such that E(7) < poly, i.e. E(T,) < poly(r) for all .

Polynomial || - ||,-time: By polynomially bounding ||T°||, (for ¢ € [1, oo]), we generalize both strict
(¢ = 00) and expected time (¢ = 1). For example ¢ = 2 implies polynomially bounded variation
(and expectation).

Quasi-linear time: If we require T,; < & - polylog(x) we obtain quasi-linear runtime. This class only
satisfies weak composition properties, and is not covered by our results.

Now, we generalize polynomial time bounds to algebra bounds. For that, we need following defini-
tion.

Definition D.9. We say that a runtime class 7 is weakly compatible with a bound algebra @, if for any
bndy € B, there is a bnd; € B so that bnd; can be computed in 7 -time. More concretely, bnd; (k) can
be computed in time 7, for T' € 7.

We call 7 (strongly) compatible with @ if additionally strict B-time (see Definition below) is
contained in 7.

Compatibility ensures that 5 and B behave well in reduction arguments. (Strong) Compatibility
is simpler to work with than weak compatibility, since for example PPJ is weakly compatible with
B = 29(%) but does evidently not contain all strict B algorithms.

Definition D.10 (Bound algebras and runtime classes). Instead of polynomials, some (suitable) algebra
B may be used for time bounds, e.g. nPoY0e(n) " see Definition D.1. By definition, we always require
that the defined runtime class 7 is compatible with the bound algebra 3.

Algebra-bounded || - ||,-time: We write RTC,(®3) for the runtime class containing all runtimes T’
with || T ||; < bnd(x) for some bnd € B.
Algebra-tailed time: We generalize algebra-bounded time as follows: A runtime class J is B-tailed,
for a bound algebra B, if: For every T' € 7, for every bnd;,; € B, there is a bndp € B, such that
P(T, > bndr(k)) < m for all k.
We also refer to algebra-bounded times via strict (or expected) B-time.
By Lemma @, any algebra-bounded runtime class is also algebra-tailed. Namely pick bndy =

t - bndyy > tailf( bncljt -), where t = [|T'||. Also, Levin’s relexation of EPT is polynomially-tailed.

We will focus on algebra-tailed runtime classes and runtime classes we derived from them. Dealing
with more general runtime classes is an interesting open problem, see Appendix E.J.
Lastly, we define “abstract” runtime cutoffs.

Definition D.11 (Runtime truncation). Let 7" be a runtime. We define the runtime cutoff or runtime
truncation T<" of T after NV steps as the distribution (or random variable) given by T\( - >N)o>timeout’
i.e. by mapping any k£ > N to timeout (and the identity mapping otherwise). Runtime truncation is
assumed to be an efficient oracle-transformation in any suitable machine model.E8

Remark D.12. We stress that an efficient implementation of runtime cutoffs is vital for any results
making use of them. We also note that this means that the truncation bounds themselves must be
efficiently computable. This is ensured by the compatibility requirement in Definition D.10.

Recall that asymptotics, should be part of B, so we use for all « (and not for almost all).
7This means that applying runtime cutoff to a runtime oracle is efficient. For example, given tape access to bit-encoded
oracle results, we can read the minimal number of bits necessary to recognize ¢ > N and then return timeout.
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D.4. J-time triple-oracle indistinguishability

There are several notions of indistinguishability of distributions X¢, X7 w.r.t. to I -time algorithms.
We choose indistinguishability under repeated sampling with additional sampling access to X and X;.
The decision to give oracle sampling access the distributions Xy and X7, as well as the challenge

distribution Z 4 X} mirrors the fact that an algorithm can be (independently) executed many times,
and should still remain efficient.” In particular, if Xo = time(Ap) is the runtime distribution of an
efficient algorithm, and X; = time(A;) is inefficient, then X is not efficiently samplable by emulating
A;. To simplify, we assume sampling access to both X and X;. Recall that we assume access to binary
encodings of runtime.

Another simplification is that we require constant distinguishing advantage. By standard amplifica-
tion techniques, this is equivalent to non-B-negligible success for algebra-tailed runtime classes.

Definition D.13 (Triple-oracle distinguishing). Let ©Og and ©; be sampling oracles for distributions X,

X (i.e. oracles which return a fresh sample distributed as X when queried). Consider the distinguish-

ing experiment Expiq}diéto Oy

Experiment Expé’fif)to o, (K)
b+ {0,1}
Instantiate an independent ©* := ©,

b/ <—ﬂ©07@17@*(/€)

R
return b’ = b

The distinguishing advantage of an algorithm @ is defined as

di . di
AdVES o, (k) =2P(Expr e o, (k) = 1)

=IP(@ 1 (1) = 1) = POV () = 1),

where OF = Oy, but independent. (The second equality only holds if 70 always returns a bit.) The
randomness is taken over the algorithms and oracles randomness.

A distinguisher @ is 7 -time, if timeg, (Expi{l&’@ DeT B We call ©y and Oy (7 -time) computa-

C
tionally (triple-oracle) indistinguishable, written Oy g Oy, if for all T -time distinguishers D,
Adv%?gt(/ﬁ) € o(1).

that is, any distinguisher has asymptotically vanishing advantage. Put differently, a computational dis-
tinguisher must have constant advantage ¢ > 0 (for infinitely many ). We define J -query statistical
indistinguishability as 7 -time indistinguishability, where we only count a query to an oracle as a step
(costing unit time).

We use Definition only for (runtime) distributions, and not general oracle-indistinguishability.

Remark D.14 (Why no general advantage classes?). For algebra-tailed runtime classes, using non-con-
stant advantage, namely non-B-negligible advantage, also works (due to amplification). We could
define general “advantage classes”, such as subexponentially negligible, polynomially negligible, or

77 Our notion behaves nicely in almost any aspect, and agrees with standard notions if X and X; are efficiently samplable
(by a standard hybrid argument). We can amplify distinguishing advantage (as usual) and are guaranteed that statistically
indistinguishable distributions are statistically close. Neither of this holds for the usual notions of one-sample or k-sample
distinguishing, see for example [Mey94; GM98; GS98].

8 A unary encoding would work as well, since we always reduce (a a priori strict time) distinguishers which use a strictly
truncated version of the time. This truncated time can be read efficiently in both unary an binary.

Equivalently, timeg (D919 € T forb = 0, 1.
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1— % One reason not to do this is our focus on indistinguishability of runtimes, not in general distri-
butions. We crucially rely on tail bounds and triple-oracle indistinguishability, which leads to (maybe
unnecessary) limitation. In the “low advantage regime”, e.g. subexponential advantage, it seems that
the arguments based tail bounds do not carry over. In the “high advantage regime”, e.g. advantage
of at most 1 — 1/poly, the use of triple-oracle (in particular repeated samples) makes possible results
uninteresting and useless (due to amplification to 1 — exp(k)).

Alternative proof techniques, which do not rely on (repeated) sample access and tail bounds as their
central tool are required. It is likely, that the approach(es) in Appendices and could be
extended. This is out of scope for this work.

Since it is a useful point of view, we slightly generalize distinguishing. Namely, instead of directly
outputting a verdict, one may output some processed information, which is fed into another distin-
guisher (perhaps repeatedly).

Remark D.15 (Generalized distinguisher). Let us call a distinguisher, which outputs not only 0 or 1, but
different or additional information, a generalized distinguisher. Clearly, if two distributions are (compu-
tationally) indistinguishable, then the output of any generalized distinguisher is also (computationally)
indistinguishable.

The upshot of this deliberation is that any efficiently computable statistic of an execution of a distin-
guisher @ must be indistinguishable. Otherwise, there is a distinguisher @’ which emulates ? and uses
that statistic to attack indistinguishability. In particular, runtime is such a statistic, and the number of
oracle queries is another.

Now, we apply the notion of 7 -time triple-oracle indistinguishability to runtimes.

Definition D.16. Suppose J is a (input-free) runtime class. Let 1" resp. S be (arbitrary) runtimes and
suppose O resp. ©; sample T resp. S. We call T and S (computationally) 7 -time (triple-oracle) in-
distinguishable if the respective distributions are (computationally) 7 -time triple-oracle indistinguish-

C
able. We also write 7' N5 S. The definition of statistically T -query (triple-oracle) indistinguishable
S
runtimes is analogous, written 7" Ny S.

In the following, we always mean triple-oracle indistinguishable, if not otherwise specified. We come
back to standard indistinguishability only in Appendix D.7

D.5. Closed runtime classes

Now, we come to a central definition, which applies the principle that 7 -time indistinguishable objects
should be considered “identical” for all cryptographic intents and purposes to J -time itself.

Definition D.17 (7 -closed). Suppose T and & are runtime classes. We call & computationally (resp.

[

statistically) 7 -closed if following holds: For all runtimes S, if there is a runtime SecT and S Xg S
S ~

(resp. S Ng S),then S € §.

We call a runtime class  computationally (resp. statistically) closed, if it is T -closed.

Example [.5 demonstrates that neither 2®J nor &P is a closed runtime class. Before we define
the closure of a runtime class, we give some helpful definitions.

Definition D.18 (Generating set). Let U be a set of runtimes. We say U generates 7 if U C J and for
any runtime class 7’ containing U, we have 7 C 7. Equivalently, ' € 7 <= 35 € U: T < S.
Equivalently, J is the minimal runtime class containing U.

This shows that indistinguishability w.r.t. any generating subset { C J or w.r.t. J coincides. For
example, for PPT, the set {poly(r) = nk" | n € N} is generating, since every runtime is dominated
by a runtime in this set.

Tt is easy to see that an arbitrary intersection of runtime classes is again a runtime class. Hence, the generated runtime
class of U is the intersection of all runtime classes containing U, in particular, it exists and is unique.
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Remark D.19. We can translate generating sets to the setting of bound algebras. Indeed, in Defini-
tion [D.10, we require a generating set of efficiently computable bounds.

The perhaps most important relation between sets of runtimes is the following.

Definition D.20 (D-dense). A subset of runtimes U C 7 is called computationally (resp. statistically)
distinguishing-dense (short d-dense) in runtime class J if for any pair of distributions X, ¥ (over
Np U {oc}) we have
c/s c/s
XRsY = X RyY
w.r.t. triple-oracle indistinguishability. In other words, if 7 can distinguish two distributions, so can
U. A weakening of d-dense is runtime d-dense, where X must be in 7.

We note that d-density of U C J is much different from being generating. For example, PPJ C
EPT is d-dense, since any (successful) expected polynomial time distinguisher can be transformed into
a (still successful) strict polynomial time distinguisher, see Corollary [C.§.

Lemma D.21. Let & C & be runtime classes. Suppose that § is computationally T -closed and that
T is computationally (runtime) d-dense in 8. Then § is computationally closed. The same holds in the
statistical case.

~ ~ C ~ C
Proof. Let T' € & and let T' be some runtime. Suppose T" ¥ T Then T' Rz T, since J is runtime
d-densein &S andT € §. ThenT' € &, since & is computationally T -closed. The statistical case follows
analogously. O

We now give a (constructive) definition of the closure of a runtime class.

Definition D.22 (Closure). Let 7 and & be a runtime classes. We define the computational &-closure
Cls$(T) of T as

C
Cls$(T) == {S: Ng — Dists(Ng U {o0}) | 3T € T: S Ng T}.

The statistical S-closure Cls3(7) is defined analogously. The closure 7 of I is Clscy/s(ff ) (whether
computational or statistical will be clear from the context).

An abstract notion of closure (e.g. minimal closed runtime class containing J°) and its equivalence
with Definition would be a good justification for our definition. However, we do not even know
whether we have a proper definition of runtime classes which could support such a result, see Ap-

pendix E.9.
Lemma D.23 (Closures are closed). The closure T of a runtime class T is closed. (This holds in the
computational and the statistical case.)

J— C
Proof. Consider a runtime 7" € J and some arbitrary runtime S and suppose that 7" Xz S. To show

— — — C —
that 7 is closed, we need S € 7. Since § C 7, we have T' Ny S. By definition of 7, there is some
~ ~ C ~ C (& — —
T € T such that T g T. Now, we have T' Xg T Ny S. This implies S € I by definition of T Bl
This proves the claim. The statistical case follows analogously. O
We would like a stronger result. We state this in following conjecture, which has little support for
general runtime classes.

Conjecture D.24 (Closures are small). For any “benign” runtime class 7, 7 is runtime d-dense in 7.

#1Triple-oracle indistinguishability is transitive for any constant number of hops.
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We expect that runtime classes where Conjecture fails behave rather strangely. While we do
not know what “benign” runtime classes are or how to prove Conjecture in general, it is simple
for algebra-tailed runtime classes.

Lemma D.25. Let B be a bound algebra and T be B-tailed. Then, strict B-time is d-dense in 7. (This
holds in the computational and statistical case.)

Proof sketch. Suppose @ is a T -time distinguisher of distributions X and Y with advantage > ¢ (for

infinitely many ~ and constant €). Let 7' = time(®). We know that T’ é7 T for some T € 7. Thus,
for any 7 -computable bound bnd, we have |P(T},. < bnd(x)) — P(T,. < bnd(x))| < o(1). Otherwise
T and T would be T -time distinguishable.

Since J is B-tailed, there exist an (efficiently computable) bound bnd(x) > taiITTN(%E). Conse-
quently, D<Pnd is strict B-time, hence 7 -time, and retains a distinguishing advantage of %6 —o(1)
(infinitely often), which is at least %5 infinitely often. O

We note an interesting step in the argument: The connection to ©’s runtime 7" is indirect, since we
rely on 7" instead. We only needed suitable bounds for truncation. Indeed, runtime truncation seems
to be the central (and only) tool at our disposal, and someway or another, it is what our proofs rely on.

Remark D.26 (Efficiency of truncations). Note that timeg, (D <P") < time, (D) (up to emulation over-
head), that is, the truncation is “as efficient as” @, and only loses advantage/output quality.

RemarkD.27 (Non-negligible advantage). Lemma immediately extends to advantage ¢ = 1/bnd (k)
(for infinitely many «). Just replace o(1) by neglj, and note that tail,}n (am) € B for any constant
a > 0 and bnd € B. This direct “conversion” to the usual setting of non-negligible advantage typically

works for our results concerning algebra-tailed runtime classes.

Following lemma is useful to check if some runtime class & is the closure of 7.

Lemma D.28 (Closures are minimal). Let 7 C & C T be runtime classes. Suppose that S is T -closed
and J is d-dense in §. Then § = T . (This holds in the computational and statistical case.)

Proof. Similar to Lemmas and D.23. (Any element in T also lies ) O

Let us consider a simple concrete example.

Example D.29 (CPPT). We denote the closure of PPT as PPT or CPPT and call it computationally
probabilistic polynomial time (CPPT). In Appendix D.6, we find that statistical and computational
closure coincide, hence “CPPT = SPPT”. By definition, CPPT is

CPPT = {T | Ipoly, negl: P(T,, > poly(r)) < negl(x)}.

In other words, CPPT relaxes PPT by allowing a negligible amount of superpolynomial executions.
Now, we check that CPPT = PPT . Clearly, CPPT contains PPT . It is easy to see that, PPT
is d-dense in CPPT and CPPT is PPT -closed. Since also CPPT C PPT, we find equality from

Lemma and Lemma D.28.

D.6. Equivalence of runtime-indistinguishability for algebra-tailed runtime classes

In this section, we establish that for an algebra-tailed runtime class 7, statistical and computational
J -time indistinguishability coincide of runtime distributions. We give two such lemmata. The first one
is simple and illustrates underlying reasons using strict algebra-bounded runtime classes. The second
one extends this to algebra-tailed runtime classes. Both lemmata seem inherently limited to runtime
classes containing a large enough “strict” subclass.
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Lemma D.30. Let B be a bound algebra and I = RTCoo(B) be the corresponding strict runtime class.

LetT € T and let S be some runtime. Then T' RXg S implies T Ng S. More generally, if X and Y
are distributions supported on a set S with cardinality card(S) in B, then statistical and computational
indistinguishability coincide. The (efficient) distinguisher is as in Lemma with parameters so that it
runs in strict B-time.

Let X be a distribution or a random variable. For convenience, we write X {k} for the k-fold product
distribution of stochastically independent products. That is, (z1,...,z;) + X is distributed as
x; + X for k independent samples z;.

Proof. Note that computational distinguishability implies statistical distinguishability. To prove the
converse, we invoke Lemma [C.14. Let bndy € @ bound the support size of the distributions X, y B
S

The key point is: If X %5 Y, then the statistical distance is lower-bounded by 1/bndg, for some
efficiently computable bndg,; € B. Otherwise A (X {brd} y{bnd}y < hnd. A(X,Y) € o(1) for all bnd,
and hence X {bnd} y{bnd} are statistically close, for any (statistical) distinguisher. A contradiction to
triple-oracle distinguishability.

We invoke Lemma with n = bndg, ¢ = m, and § small enough, say § = 1/8. We ob-
tain a distinguisher @ with runtime roughly 24bndg(r)bnds:(%)? plus the overhead for evaluating
bndo(k), bndsat (k). Thus, D is efficient. O

As we have seen, the equivalence between statistical and computational indistinguishability of run-
times follows because the support of a runtime distribution is “small”, compared to the allotted runtime
for distinguishers. This, of course, is by definition of runtime resp. “small”.

Now, we generalize Lemma just like we generalized Lemma to Corollary C.15.

Corollary D.31. Let B be a bound algebra and let T be a B-tailed runtime class. Let X, Y be distributions
over Ng U {oo} and suppose that X is B-tailed, i.e. we have a tail bound tailx such that

vbnd € B: tailly (bnd( )
r K

S &
Then X RNg Y implies X Rg Y. In particular, any runtime distribution X = T € J is B-tailed by
assumption. The (efficient) distinguisher is as in Corollary with parameters so that it runs in strict
B-time. In particular, RTCo(B) is d-dense is in RTCy(B).

Proof. Step 1: We recall Corollary in our situation: Suppose A(Xy,Y,) > (), and let § > 0,
and a € [0, €. Then there is a distinguisher with advantage at least 1 — 20, which requires

N = [6Na(e — )2 log(2671)]

samples, where N, = tailk(a) and has runtime quasi-linear in N (in admissible machine models).

Step 2: Arguing that the statistical distance A(X,Y") is lower-bounded by 1/bnd infinitely often,
is not as trivial as in Lemma [D.30. Indeed, we rely on the general hybrid lemma (Corollary [C.11) and
hence on tail bounds. Suppose the statistical distinguisher has advantage > ¢ (infinitely often for
constant ¢). By a standard hybrid argument, Corollary [C.11], we find a distinguisher which accesses
the challenge oracle only once, and has advantage at least

c—p

N where Ng = tainiD (B) forany p € [0,c|.
5 stat

Consequently, A(X,Y) > C];Bﬁ for any choice of 3. (Note that € and Ng vary in &.)

#2To be precise, it is lower-bounded only for infinitely many .
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C

Step 3: Putting Steps 1 and 2 together by (arbitrarily) choosing 3 = ¢/2 we find ¢ = 5 NG and
a =¢/2 we find

N = (6Na(%5)_2 log(26~1)] = [24N, N2 log(26~1)].

Our constructed distinguisher © needs N samples and has advantage at least 1 — 2¢ for infinitely
many k. Now, N, = taiIE{(a) € B by assumption that X is B-tailed. Also, N3 = taiI}D (B) € B
for any constant 3, since Wy, is statistical T -time, hence the number of oracle-queries is B-tailed.
Consequently, N, N, 52 € B, and we find that N € B for any suitable (e.g. constant) advantage 1 — 24.
We obtain a strict B-time distinguisher as promised. O

As in Remark [D.27, one can directly generalize to non-negligible advantage.

Corollary D.32. The result of Corollary extends to the closure 7 of any (suitable) B-time class 7 .
Moreover, it extends to any runtime class in which T is d-dense.

D.7. From oracles to emulation and standard indistinguishability

In this section, we abstract properties of runtimes induced by algorithms in what we call continuously
samplable. For such runtimes, we show the equivalence of standard indistinguishability and triple-
oracle indistinguishability, which was as introduced for specially runtimes.

Up until now, we treated runtimes as distributions which are samplable via oracle access. This
helped keep our options limited and the presentation clean. For applications, we deal with induced
runtimes of algorithms, and we pay a non-constant price for sampling them. To sample the runtime of
an algorithm, we emulate it. Fortunately, such induced runtimes have a very useful intrinsic property:
They are continuously samplable in following sense. To know whether a concrete realization of T'
is larger than k, we have to emulate at most k steps. If emulation is efficient, and T is efficient, we
can therefore sample efficiently. Similarly, if our runtime cutoff bnd is early enough to make 77<b"d
efficient, then our sampling of T<P" is efficient. We abstract the central property in the following
definition.

Definition D.33 (Continuously samplable). A runtime 7" is continuously samplable with overhead
function sampovhd (k) = sampovhd, (k), which quantifies the time for sampling 7" up to time k €
No U {o0}; that is: T<F can be sampled in sampovhd (k) steps for all k. More concretely, there is a sub-
routine Sample (k, k) with output distributed as 7<* and runtime (strictly) bounded by sampovhd (k).

We will not specify the overhead sampovhd (k) and assume it to be “small enough” (e.g. O(kpolylog(k))).E
In particular, for runtimes induced by algorithms, sample and emulation overhead essentially coincide if
one samples by emulation. Hence emulation overhead must be small enough to work with the runtime
class in question.

Notice that continuous samplability is not tied to any runtime classes per se. In particular, it does
not imply efficient samplability without further assumptions.

Example D.34. Any runtime which is induced by an algorithm is continuously samplable. Including
runtimes of inefficient algorithms.

Now, we show that for two continuously samplable runtimes T', S, where T' € T (i.e. T is efficient),
oracle-J -time (in)distinguishable and oracle-included T -time (in)distinguishable coincide. This, finally,
lets us relate the triple-oracle indistinguishability and standard indistinguishability (under repeated
sampling).

8For PPT, sampovhd (poly, (k)) < poly,(x) would be good enough. For EPT, emulation requirements are stricter, since
runtime may explode under squaring. Interestingly, we reduce only to, and only require, strict algebra-bounded times.
Thus, the results in this section do not run into problems with expectation.
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Lemma D.35. Suppose that B is a bound algebra and T is B-tailed. Suppose that T € J. Let S be
any runtime. Furthermore, suppose that @0 is a T -time (triple-oracle) distinguisher with advantage > c
(infinitely often).

Then there is a distinguisher A with advantage > § (infinitely often) and (a priori) strict oracle-included
®B-time. More concretely, time 7 (AY09107) < timeg (D9909") up to overhead for emulation and
computing the strict bound bnd (k).

Suppose A is a distinguisher with runtime strictly bounded by bnd and oracle queries strictly bounded
by bndquery Suppose T' and S are continuously samplable. Then there is an A" which emulates Oy and O,
up to bndyyne € B “steps’, i.e. emulating T=bndirunc - G=<bndirunc By construction, A is strict B-time with
runtime bound roughly bnd + 16bndquery - bndirunc (up to overheads) and advantage at least W

query
(infinitely often).
It is vital that 7" € 7, and hence efficiently continuously samplable.

Proof. This first part of the claim is proven analogously to the “standard reduction to PPT”, Corol-
lary [C.9. More concretely: Suppose ©* = ©p and consider . Since ¢ € B, there exists for some
efficiently computable bnd € B because J is B-tailed. The truncation A of @ has output with statisti-
cal distance at most %c (infinitely often). For ©* = ©1, we either obtain a statistical distance of %c, ora
distinguishing of ©p and ©; which uses the runtime statistic P(S > bnd) > %c of @ as distinguishing
statistic, just as in Corollary [C.9. In any case, we obtain 4 as claimed.

The second part of the claim follows by definition of continuously samplable and efficiency of 7.
Namely, let bndiyyne so that P(7° > bndiyne) < Wfiqu’ where bnd and bndguery are strict bounds
for runtime and number of queries of A. Since J is B-tailed and T € 7, an efficiently computable
bndiune € B exists. Suppose that P(S > bndyyne) < m. Otherwise, using this distinguishing
statistic yields A’ with advantage m Now let A’ run A with the each oracle call to Oy, emulating
up to bndune “steps” via continuous sampling. The probability that an oracle call returns timeout is

bounded by bnd - = ¢. Inthat case, A’ returns a random guess. Thus, A’ has advantage § [

___¢c 4
8bndquery ~ 8

Lemma reduces triple-oracle distinguishing to distinguishing w.r.t. repeated samples. It has no
requirements on the advantage c of the distinguisher @ and preserves the number of challenge queries
in A and A’. Thus, we can first use a hybrid argument in the triple-oracle setting, reducing to a single
challenge query. Then apply Lemma [D.35. This finally yields the equivalence we wanted.

Corollary D.36 (Equivalence of triple-oracle and standard indistinguishability). Let B be a bound al-
gebra and T be B-tailed. Let’T € T and let S be an arbitrary runtime. Then T and S are triple-oracle
distinguishable with non-B-negligible advantage, if and only if T' and S are standard distinguishable
with non-B-negligible advantage. (There is B-factor of loss involved in the reduction.)

Finally, we stress that Corollary is a very loose reduction.

E. x Technical asides

E.1. Section E
E.1.1. General comments

Remark E.1 (Unary or binary encodings of runtime). The use of unary encodings in cryptography is
more of a compatibility “hack” than a necessity. On the on hand, it is often a convenient “hack”. On
the other hand, one has to keep in mind this implicit restriction, and for statistical indistinguishability
a distinction between binary or unary data is superfluous.
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If runtimes were enocded in unary, rather than binary, this would implicity restrict access to a prefix
(i-e. a cutoff) which can be efficiently computed. This does not affect our results at all, since our distin-
guishers and proofs rely on exactly that. Nevertheless, we use binary encoded runtimes and explicit
runtime restrictions.

Remark E.2 (Non-uniformity and efficiency). Non-uniform (in)security can affect whether an algorithm
is considered efficient or not: Suppose there exists an unkeyed collision-resistant hash function. An
algorithm’s runtime might explode when given colliding inputs. Thus, in the uniform setting, the prob-
ability for runtime explosion is negligible, but with non-uniform advice, collisions are trivial. Hence
efficiency and security depend on (non-)uniformity. On the other hand, since our results and proofs
make only timed black-box use of (adversarial) algorithms, they work in both computational models
(with suitable adaptions).

Remark E.3 (A priori CPPT). For PPT (and CPPT), the distinction of a priori PPT and (a posteriori) PPT
is often insignificant. For example, any CPPT algorithm A with virtual runtime bound poly can be
truncated to poly steps, giving a (statistically) indistinguishable a priori PPT algorithm A’. Thus, we
can usually assume a priori PPT for PPT adversaries.

E.1.2. Non-uniform security

Our proposed notion of non-uniform security is still probabilistic. More concretely, we propose in
Appendix [A| to give a probabilistic machine tape-like access to an infinite non-uniform advice string.
Usually, non-uniform adversaries are modelled as a priori polynomial time deterministic algorithms
with advice, or equivalently, polynomial size circuit families. For indistinguishability notions, allowing
probabilistic algorithms is typically irrelevant: By standard reductions, a priori PPT adversaries suffice,
and so does a priori polynomially bounded advice. By coin-fixing, i.e. fixing the optimal advice and
optimal adversarial randomness, one achieves a deterministic a priori non-uniform polynomial time
adversary with advantage which is lower-bounded by that of the original (probabilistic) adversary.

Example E.4. For oracle-distinguishing, we saw in Corollary .4, that CEPT distinguishers are no better
than a priori PPT distinguishers. For an a priori PPT distinguisher @, it is easy to see that fixing optimal
coins yields a deterministic distinguisher @’ with advantage lower-bounded by the advantage of 1.

Unfortunately, technical details regarding preservation of efficiency still enforce the use of input dis-
tributions. More concretely, by runtime squaring, there are simulators which are efficient for any input
distribution with strictly polynomial input size, but become inefficient for distributions with expected
polynomial input size. see Example E.2d. Thus, an equivalence with the standard setting of non-uni-
form security is only guaranteed if security with size-guarding is considered, see Appendix E.4.3. While
size-guarded security is a natural notion, imposing it when it is not needed is wasteful.

E.1.3. Oracle indistinguishability and games

We recall a (folklore) conversion between game-based notions and oracle-indistinguishability. Many
cryptographic assumption can be cast as (efficient or inefficient) games, in which an adversary interacts
with a challenger C (specifying the experiment or game), and at the end of the interaction, the challenger
outputs a verdict win/lose (or 1/0). A hardness assumption is an upper bound for P(oute (A, C) =
win), e.g. negl for one-wayness or % + negl for IND-CPA, where negl depends on A.

It is generically possible to recast such games as oracle-indistinguishability assumptions: Let ©,
for b = 0,1 be defined as follows. The oracle acts as the game, until the verdict is output. If the
verdict is win, then O sends b to the adversary. If the verdict is lose, then © sends L instead. A
straightforward calculation shows

P(oute (A, C) =win) = P(D9 = 1) — P(®P =1)
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where @ is derived from A by emulating A until the verdict, and then outputting b (if A won) or
guessing randomly (if L was received). Conversely, given &), one defines A by acting like @ (until
the experiment ends). Since information-theoretically, ) obtains learns about b only when it wins the
game, A s success probability is at least that of . Applying the reverse conversion yields an @’ with
advantage equal the probability that A wins. In other words, both formalizations are equivalent (in
any setting that allows the conversion, which encompasses any sensible setting).

The reverse transformation transforms oracle-indistinguishability into a “bit-guessing” experiment.
Since the success probability in the experiment is compared to %, the advantage is defined by twice the
success probability (so as to coincide with the distinguishing advantage).

E.2. Section
E.2.1. More on CEPT

Remark E.5 (Non-uniform advice). Observe that the proofs in this section used efficient approxima-
tion of (suitably close truncated) distributions as their central tool. This can be effectively trivialized
by assuming non-uniform advice, which allows exponentially precise approximations of the truncated
distributions, or even simpler, encoding the optimal distinguishing decision for each of the possible
samples. Thus, non-uniform advice can replace sampling access, and triple-oracle and standard indis-
tinguishability of runtime coincide (if at least one runtime is efficient).

Remark E.6 (Generalizations). The results in this section relied effectively on tail bounds and very

natural properties of runtime classes (e.g., if ' € T and S % T,then S € 7), and . They extend to any
setting, where existence of suitable tail bounds is guaranteed. In Appendix [0, we discuss this more
formally, and define algebra-tailed runtime classes, to which the results extend in a suitable manner.

We also note that, as already seen in Corollary B.1d, it is not necessary that runtime are induced
by algorithms, just that they can be approximated up to any polynomial precision in polynomial time.
This can be viewed as the central requirement in other proofs and results as well, but it is tedious to
formulate and seems only useful in special occasions, e.g., Lemma }.13.

E.2.2. More on timeout oracles
We continue the discussion of Section B.3 with a specific application to sequential composition.

Lemma E.7 (Sequential timeout oracles). Let A be an interactive algorithm and ©1, Oy be a (probablistic)
timeful oracles. Suppose © is the sequential composition of ©1 and ©Os. That is, © first runs ©O;. At some
point, ©O1 terminates with input y for O, which is passed to Oy as initial input. Now, © continues to run
Os(y). The results of Lemma hold for ©, where Qo = Qo, X Qo,.

Moreover the probability € for timeout decomposes as follows: Let event Egimeout,1 be the event for
timeout while running ©O,. Let event Egineout,2(Y, t1) be the event for timeout while running Oy where
©1 took t1 steps to outputy. Let Y and 'l be the random variables for the output and number of steps of
O1. Lete; = IP)(gtimeout,l) and let 52(.% tl) = IP)(81:imeou1:,2(y, tl) | (K Tl) = (yv t)) Then

£ = ]P)(gtimeout)
— IP)(gtimeout,l) + Z IP>("g>)1:imeou1:,2(y7 tl) A (Y, Tl) = (y, tl))
(y;t1)
=&+ Z e2(y, t1) P((Y, T1) = (y,t1))
(y)tl)

Lemma [E.7 follows essentially from Lemma and the fact that the runtimes of ©; and Oy sum to
that of ©. For the decomposition, one argues as in the proof of Lemma B.12, and uses that knowledge
of (y,t1) is good enough for the truncation construction, i.e. ©) only needs to know the elapsed time
in O] to “continue” the truncation by incorporating the steps of ©]. The proof is left to the reader.
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Remark E.8. In the setting of Lemma [E.7, it is also possible to “separate” ©; and ©s instead of treating
them as one entity. That is, one can modify them separately, without telling ©s the runtime ¢; spent in
©1. (Implicit access to ¢ is the only additional knowledge used in Lemma [E.7.) Concretely, assuming
total virtuality €, one can apply Lemma for an e-quantile cutoff to T} = timeg, (A“1:“2) to obtain

!, and then to T = timeg, (A®1'92) to obtain ©b. (For this, note that the virtualities of 7} and T}
are certainly bounded by ¢.) Together, (O, ©O}) have overall timeout probability of (at most) 2¢ and
the expected runtime is ¢t + O(1). Unfortunately, the timeout probability of this construction is larger
than . Except, if y fixes ¢1, ie. if there is a function f such that f(y) = ¢, then O] and ©) are
“separated” by construction (also in Lemma [E.7).

E.3. Section E]
E.3.1. Precision-tightness tradeoff

Most of our results, are very precise in handling the runtime of algorithms, approximating them, and
often show that the distribution of the runtime only changes negligibly. For example, we proceeded
like this in Lemmas B.6, B.§, .1 and .7 and Corollaries B.9 and B.10. However, this precision is often
unnecessary. Yet, for the sake of simplicity and self-containedness, we always reduced to polynomial
support by truncation, and we used a very naive closeness test (see Remark E.9 below).

Observe that approximation becomes more expensive (and less tight), the larger the support of the
distribution is. To improve the state of affairs, one can “coarsen” the time-steps in consideration. Con-
cretely, let f(x) = 2M1°82(*)] that is, f(x) rounds x to the next power of 2 (and 0 ~— 0). Let X by some
positive-valued random variable X (e.g. a runtime). Then we have:

« E(X) <E(f(X)) <2-E(X),since z < f(z) < 2z.
+ card(supp(f(X))) < log,(card(supp(X)))

In particular, consider an EPT or CEPT runtime 7', and assume that 7,; < 2. Then card(supp(f(7T))) <
x, whereas card(supp(T<P°")) = poly(x), for any polynomial poly. Thus, the coarser f(T') is, the more
efficient approximation (and closeness testing) becomes. However, precision is lost in the time-domain.
Generally, this is irrelevant, since efficiency is not affected at all by this uncertainty.

Remark E.9 (Closeness testing). Our analysis was not geared towards optimal tightness and precision to
begin with. And, for simplicity, we actually never made explicit, that we often merely require closeness
tests for distributions (see Appendix [C.4 for a reminder). We used a naive approximation of distribu-
tions as our closeness test, but there are much better alternatives. However, even for the (optimal)
closeness tester of [Cha+14], its precision depends on the size of the support. Hence, using [Cha+14]
further improves in tightness, is overall is still very loose.

E.3.2. Constructive reductions

While we prove all of our results in a uniform complexity setting, hence avoid non-uniformity, almost
none of our proofs are constructive. In fact, almost all reductions depend on polyomial bounds, which
exist but are not computable in general. We will use following rough notion of constructive reductions.

Remark E.10 (Constructive reduction). A reduction is constructive, if there is a (universal) efficient
algorithm, which is given the code of an adversary, and produces (the code of) an adversary against
some underlying assumption.

For simple results, such as the standard truncation argument, one can give constructive proofs in
restricted cases. We sketch how these can be obtained.

Remark E.11. A weakening of the standard reduction (Lemma [.1 and Corollary }.9) can be proven
constructively. We sketch how to transform the distinguisher @ into a distinguisher A (where @, ©,
O are as the standard reduction). For the constructive {0, we have to merge the two distinguishers A
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(which uses timeout) and A3 (which uses the output of ). One problem is, that the use of “unsigned”
advantage (i.e. absolute values instead of the (signed) differences) does not work well constructively,
since we cannot “know” the signs. Thus, we use standard sign-correction techniques. Consider some
distinguisher @B. To sign-correct, the reduction runs 8% and B!, emulating Oy and Oy, to get output
(and runtime statistics). Using this, one corrects the output of B9, so that IP’(@(Q” =b) > % for
b = 0, 1. This gives us a first restriction: We require that emulating B is efficient for Oy and ©O;. In
particular, ©g and ©; will have to be efficient in some sense.

Consider some efficiently samplable runtime distribution S (to be chosen later). Our distinguisher
A works as follows:

+ Pick s < S.

. Set B = D=5,

« Emulate B to obtain runtimes #, and outputs out;, for b = 0, 1. (We assume out € {0,1}.)
« Emulate 89" and obtain (¢*, out*) and output a guess as follows:

— Ift, = timeout # t1_p: If t* = timeout return b, else return 1 — b.
- Iftg,t; # timeout and outy # out;: Return out* @ (outy ® out; @ 1).
— Else: Return 0.

By construction, A is a merge of a distinguisher based on timeout probabilites and a distinguisher
based on the output of 2. Both are sign-corrected, so the advantages actually add up (and don’t cancel
out). To guarantee non-negligible advantage, when % has non-negligible advantage, we must ensure
that the truncation B of @ at s gives B enough runtime with polynomial probability. For this, one can
use any distribution S which is EPT and has fat tails, e.g. the distribution obtained from normalizing
>o¢  n~3. However, for A to be efficient overall, we additionally require the time spent to emulate
Op and Oy does not make A inefficient (for the Varéing s <= 5). One possibility is to restrict to a
priori PPT ©, Oy, but less strict choices are possible.2® All in all, this yields a weaker, less tight, more

restricted, but constructive, form of the standard reduction.

E.3.3. Relative efficiency for mappings of systems

The definition of weak relative efficiently (Definition §.5) does not strictly capture our actual applica-
tion. Indeed, a simulator takes as input an adversary, i.e. a system/oracle (or an algorithm/code), and
acts as (or outputs) a new system. Hence, (the existence of) a simulator is actually a mapping from ad-
missible adversaries to simulators. This is quite obvious for universal (resp. bb-rw) simulation, where
the code (resp. bb-rw access) are clear “inputs”. Since the simulator is independent of the input genera-
tion or the distinguisher, i.e. of the “distinguishing environment”, it is also evident that Sim(code(V*))
has an input and output interface. The input is (x, w, aux), the output is the output of *. While Sim
discards w, it is necessary so that Sim(¢*) and (#, V*) offer the same interface to the environment.
We sketch a general definition of the above.

Definition E.12. A mapping of systems (or algorithms) to systems (or algorithms) is a function F: Cy —
D j with maps system (or algorithms) with interface I to systems (or algorithms) with interface .J.

With this, we can define when a mapping G is weakly efficient relative to a mapping F. This gener-
alizes Definition [£.9, which can be recovered from the constant mappings F = A, G = B.

Definition E.13. Let F,G: Ct — D be mappings. We say G is weakly (7, §)-efficient relative to F
w.r.t. (implicit) runtime classes 7, §, if for all distinguishing environments &,

VA €Cr: timegpa)((6,F(A)) €T — timegyoia)((6,G(A))) € S

8 As seen with the runtime squaring problem and expected polynomial size inputs, relatively stringent requirements on o,
O (or size-guarding, c.f. Appendix [E.4.5) seem necessary in general.
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Unfortunately, Definition is not strong enough to be used in reductions, which is why we re-
served the specification “weakly” for Definitions [£.5 and (More precisely, we cannot prove or re-
fute that it is (not) strong enough.) Therefore, we rely on following strengthening, where, the runtime

classes 7 and § are from {PPT ,EPT ,CPPT ,CEPT }, and they decide whether strict or expected

time is measured.

Definition E.14. Let F, G, etc. be as in Definition [E.13. We say that G is (7, S)-efficient relative to
F with runtime tightness (poly me, POlyyirt), if: For all timeful environments & and all 4 € Cy, if
timep(7)((6,F(A))) is virtually strict/expected (to,e)-time, then timeg7)((&, G(A))) is virtually
strict/expected (¢, €1)-time, with ¢ (k) < polyyime (k)to(k) with €1(k) < poly(r)eo(k) (for all k).

We stress that Definition is unconditional w.r.t. the environment, i.e. uses timeful environments,
and that the tightness bounds depend only on k. Mixing strict and expected time (i.e. ||-||oc and ||-||1)
in Definition is possible and useful. For example when strict PPT protocols and adversaries are
handled by EPT simulators.

(Weak) Relative efficiency is transitive in the obvious sense. Lastly, we mention that there are obvi-
ous variations of relative efficiency, e.g. relative efficiency w.r.t. environments in a class & of admissible
environments with restriction beyond runtime.

E.4. Section E

In this section, we discuss some technical asides. It should be skipped on a first reading.

E.4.1. Definitional choices

Remark E.15 (The adversary’s view). We did not use the view of the adversary to define zero-knowledge
for a reason. The usual definition of a view consists of input, randomness, and received messages. This
conflates different complexities, e.g. randomness and space, and thus prevents strict polynomial space
simulation, which may be of interest. For example, the simulator for G3Cgx uses expected polynomial
randomness and space, even if /* requires only strict polynomial space (since bbrw({/*) chooses and
fixes (i.e. remembers) the random coins) A slightly “improved” simulation requires only strict polyno-
mial space. For more discussion on interaction of (bb-rw) emulation with strict versus expected space
and randomness complexity, see Remark [A.4.

Remark E.16. By a standard reduction to PPT (Corollary }.d), we can assume that @ is a priori PPT in
Definition p.4. A formulation of zero-knowledge via indistinguishable ensembles,

{(z, aux, out, state) | (x, w, aux, state) < J(k); out < outp« (P (w), V*(aux)) ()}
~ {(x, aux, out, state) | (x, w, aux, state) < J(k); out < Sim(code(V™*), z, aux) },,

is then equivalent to Definition 5.2,

Remark E.17. There are other formulations of zero-knowledge, which can be obtained by swapping
the order of the quantifiers. To recover the “usual notions” (that is universal quantification over the
inputs), ¢ should be instantiated by a non-uniform machine which regurgitates its advice.

(Timed) Black-box simulator: Timed bb-rw access to {/*. Most common form of simulation.
Universal simulator: 3SimV{/*VJV®. Typical form of non-black-box simulation, e.g. in [Bar01].
Existential simulator: V{*3SimVJV®. Typical definition of zero-knowledge, e.g. in [Gol01].

We see in Appendix below that existential simulation and universal simulation are equivalent for
auxiliary input zero-knowledge for a posteriori time.

There are also less common, weaker notions, such as distributional simulation (roughly “V{*VJ3SimVD”),
weak simulation (roughly “V{*V®D3SimVJ”), weak distributional simulation (roughly “V{*V©DVJ3Sim”),

®This generalizes to other norms besides || - ||1 and || - ||oo as measures of efficiency.
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see [Dwo+03; CLP15]. Likewise, there are stronger notions, such as precise zero-knowledge [MP06;
DG12] where simulation and real execution must have similar runtime per execution. We have not
pursued an adaption to CEPT for these notions.

Remark E.18 (Non-uniform zero-knowledge). When considering non-uniformity, there are different
options. In any case,  and @ (equivalently &) should be non-uniform. Now, {/* can be uniform or
non-uniform. For Sim, there are two similar options. One is to insists on uniform simulation, in the
sense that the advice Sim is given the same as the advice of ¥*. The other is to allow an existential
non-uniform Sim, whose advice may arbitrarily depend on V/* and advcy+. Goldreich [Gol01] calls the
latter a “fully non-uniform” formulation of zero-knowledge, and argues that the former is preferable.
These choices do not affect our results based on black-box simulation. However, the existence of a
universal ¥,;, is unclear, if * has access to non-uniform advice.

Remark E.19 (Effects of “(non-)environmental” distinguishing). Let us consider the effect of “non-
environmental” environments (9, A, D), i.e. quantification over J which output no state (i.e state = L
always). In this case case, Sim has the same information that is available to @, whereas in Definition .2
J can pass information to @ directly.

Since a bb-rw simulator has no access to aux, aux can be used to pass “direct” messages to @, thus
both notions coincide in this case. It seems plausible, that simulators which do not “reverse-engineer”
* and aux and are “non-environmentally” secure are also “environmentally” secure, i.e. we know of
no counterexamples even for non-black-box simulators. Intuitively, & and @ may share a “key” (e.g.
as non-uniform advice or hardwired), and use a one-time pad to “encrypt” messages which are passed
from & to . It is easy to see that, if Sim is not secure, then there is a (sequence of) “keys”, such
that the advantage of a suitable non-environmental (&', D) is at least that of & (infinitely often), if
the “key” is long enough to one-time pad “encrypt” the state of & passed between input generation
and distinguishing. (Summing the advantage over hardwired or non-uniform key % for (&}, Dj,) over
all possible poly(k)-bit keys, weighted by 27P°¥(%) is exactly the advantage of &. The claim follows.)
Thus, in a uniform model, constant size messages can be passed to @ without affecting security, and
in a non-uniform model, polynomial size messages can be passed.

Remark E.20 (“Environmental” distinguishing and non-uniformity). The additional output state of J in
Definition 5.4 essentially makes (¥, D) into a stateful distinguishing “environment”. This is a visible
difference from the direct translation of non-uniform zero-knowledge and [Gol93]

In a non-uniform CEPT setting, Definition 5.4 does coincide with the standard definition, if ¢ and @
have non-uniform advice. To see this, observe that we can assume that successful ¢ and 0 are a priori
PPT, and by coin-fixing (i.e. fixing the optimal coins for J and @ in the advice), they are deterministic.
Now, state can simply be included in the non-uniform advice of @ as well. Hence, in this non-uniform
PPT setting, the notions are equivalent.

More generally, if a successful  only chooses (z, aux) of strictly polynomially bounded size, then
there is an optimal choice and adaptions of the coin-fixing argument work. By Example [E.26, we
know that for covering simulation efficiency, we cannot restrict to such strictly polynomially bounded
(x,w, aux, state). Perhaps, this can be salvaged this somewhat. However, we find such “non-uniformity
hacks” very unsatisfactory (even if they work). They result in “less robust” definitions (which is the
reason we had to adapt the definitions in the first place).

Remark E.21 (Simulation tightness and inefficient provers). In Definition b.4, we compare the run-
time of a simulator with the runtime of ¥* and #. We do so, because efficiency (and tightness) of
a simulation should be related to efficiency of the real execution.B Alternatively, we could compare
timep« 1 p(...) and timeg;, (. . .). This is equivalent, if the completed system with J, D was efficient.

¥ This entails some technical artefacts, e.g. a prover may be badly behaved for invalid inputs, e.g. not halting. The complexity
class for “good protocols” should be robust and prevent such behaviour.

¥However, timeg+14(...) and timesim(. . .) are more suitable for analyzing the tightness of simulation, which we did not
define (since we do not have a perfectly convincing definition).

79



By viewing & as timeful and setting its runtime to the length of messages sent by it (which is the
minimal consistent choice for time), Definition .9 extends to inefficient provers. However, technical
artefacts occur, e.g. if a simulation must run in quadratic time, then inputs which are expected polyno-
mial size, can cause runtime explosions, and therefore the proof system is not zero-knowledge. If such
problems occur, they can usually be circumvented by resorted to size-guarded security, which ensures
that inputs are strictly polynomially bounded.E8

Remark E.22 (Precomputation and different complexity classes). Non-uniform advice is often moti-
vated as a means to strengthen attacks and allow arbitrary (even uncomputable) “precomputation”.
However, the practical meaning of non-uniformity is questionable [KM13]. Fortunately, precomputa-
tion neatly fits into our model by using different complexity classes for input generators (and possibly
distinguishers or environments). This can be applied to our definitions of (sequential) zero-knowledge,
but was omitted for the sake simplicity.

E.4.2. Motivating sequential zero-knowledge

Often, e.g. in [Gol93], only sequential repetition is considered for zero-knowledge. That is, the same
pair (z,w) € R is used in multiple rounds of the interactive argument. The (stateful) adversary ¢*
engages in these multiple rounds until it produces some output. To obtain zero-knowledge for such
a sequential repetition, the core property is the auxiliary input. Construct from ¢* a new ' which
simply executes the code of ¥* on aux. (More precisely, aux encodes either a state of {/* or, in the first
invocation of 1/, it is the actual auxiliary input for *.) Thus, each protocol now runs with the same
adversary ¥/, but different auxiliary inputs. Applying auxiliary input zero-knowledge and a hybrid
argument, one sees that each interaction can be simulated.

In our setting, the universal adversary V),;, could be used directly (due to a posteriori time). Speci-
fying and proving security of sequential repetition for varying statements is also possible along these
lines. However, for adaptive choices of varying statements, it’s not clear how to allow it with a “single”
adversary V*. If V* provides (x, w) then simulation becomes meaningless. Thus, we introduce an “en-
vironment”, which models the use of the protocol. The environment & can make repeated calls to the
protocol and choose the inputs (for both parties) and an adversary ¢/*. Then & obtains the output of
{* (since & has no output). Finally, § produces some output. The “environment” does not participate
in the computation. It is essentially a distinguisher for sequential real or ideal protocol executions.

Remark E.23. The weaker notion of sequential repetition, as sketched above, follows from auxiliary
input zero-knowledge, even if the “environmental” J is not allowed not output state, e.g. if always
state = L. This is in line with [Gol93], and uses that everything the adversary “knows” the simulator
“knows”. However, for two (or more) adaptive statements, the “environment” has “knowledge” which
the simulator has not. In the classical definition (with classical PPT), the power of non-uniformity still
allows to prove sequential composition. The non-uniform advice of J and @ effectively establishes the
“shared state” between J and D.

E.4.3. Size-guards and size-guarded security

In our definition of zero-knowledge, due to fat tailed input distributions, a simulator is allowed almost
no runtime overhead in |z| compared with @, i.e. if a prover is linear-time in |z| the simulator must
also be. In [KL08; Gol10], the simplification x = |x| is used, which alleviates this issue somewhat.
We mirror that by explicitly size-guarding a protocol. This means that prover (and verifier) reject
inputs which exceed the length of a (polynomial) size-guard gd(k). Size-guards “decouple” efficiency
of simulator and prover w.r.t. |z, simplify efficiency arguments, but slightly weaken security.

Definition E.24 (Size-guarded zero-knowledge). We define (uniform) zero-knowledge w.r.t. (input)
size-guarded security as follows: For any (monotone) polynomial bound gd (called size-guard), the

8 An alternative “fix” is to prevent too efficient verifiers, e.g. using timelock puzzles.
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derived protocol, where prover and verifier abort with gderr on inputs (z, w) if |z| > gd(k), is zero-
knowledge (in the above sense).

The definition of non-uniform (size-guarded) zero-knowledge is analogous to the above, but J (k)
has access to an advice via an additional input interface.

Definition E.25. We define (non-)uniform sequential zero-knowledge w.r.t. (input) size-guarded se-
curity (see Definition E.24) as follows: For any polynomial size-guard gd, the derived protocol, where
prover and verifier abort with gderr on inputs (x, w) where || > gd(k), is sequential zero-knowledge
(in the above sense).

The use of (input) size-guarded security is meant to address certain situations, which we may want
to consider secure, but cannot due to runtime artefacts.

Example E.26. Namely, suppose the simulator has quadratic runtime in the instance size |x|, whereas
the prover’s runtime is linear. Then, a problematic fat-tailed input distribution renders simulation
inefficient. Consequently, without size-guarding, simulation must be “tight” in |z|. One technical
artefact, partially mitigated by size-guards, is that very efficient provers make simulation harder. That
is, by making a prover slower, e.g. adding a quadratic overhead, simulation becomes easier.

These problems may be of practical relevance: Given succinct argument systems, extraction comes
with an overhead which is often superlinear. Such argument systems can be incompatible with CEPT
under adversarial input distributions.

There are other means than size-guarding for solving the above problem. For example, one may
quantify only over admissible adversaries. Indeed, adversaries which only send strictly polynomial
size inputs are equivalent to size-guarded security.

See Appendix for more on size-guards.

E.4.4. The universal adversary V| ,;,

The universal adversary V), is basically a virtual machine emulating some adversary, i.e. the input
to Vuniv is of the form (code, state, aux), and Vy;y continues execution of the code code in state state.
The universal adversary $};, contains the core hardness of simulation. An existential simulator is a
simulator which may depend arbitrarily /*. The universal adversary shows that this arbitrary “exis-
tential” dependency on ¥* does not weaken the notion of zero-knowledge. Thus, in Definition 5.7, we
do not give up any power.

Lemma E.27 (Equivalence of existential and universal simulation). Let ({,{)) be an interactive argu-
ment system. If this argument system is zero-knowledge against I -time designated adversaries w.r.t. to
&8 -time existential simulation, then it is zero-knowledge w.r.t. the universal simulator Sim defined as fol-
lows.

Let Vyniv be the universal adversary and Simyniy be the existential simulator for V. Here, Sim is
defined by Sim(code(V*), z, aux) emulating Simypiy(code(Vyniv), x, (code(V*), state, aux)), where state
is the initial state of V™.

Proof. First we define J¢«, which samples (x, w, aux) <— 9, and returns (z, w, (code(V*)), state, aux),
where state is the initial state of {/*. Recall that for (¢, {*), the simulator Sim(code({*), x, aux) runs
Simyniv(code(Viniv ), =, (code(V*), state, aux)), which corresponds to (Jo«, Vyniv). Moreover the real
executions Realg ¢+, and Realg,, ¢, are identical. Thus

Uumv

4

d c
Idealy gi,(p+) = ldealy , gim,,, ~ Realg Realg ¢

’ Uuniv

O]

The upshot of the proof is, that an existential simulator cannot truly leverage its arbitrary depen-
dency on ©*. All the hardness of /* might be in the auxiliary input, which Sim cannot depend upon.
Lemma extends to the non-uniform setting and to size-guarding.
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Caution E.28. We crucially relied on our a posteriori runtime notion. For other notions of runtime,
Lemma may not hold! For example, if we assume a priori PPT algorithms, then {);,;, cannot
emulate every adversary V¥, since {/;,;y must not exceed poly steps, for some fixed poly, whereas ¢*
may run (much) longer, say poly+1 steps. (There is a family {7, with runtime bounds poly,, (k) = n«x",
so a morally equivalent result does hold.)

E.4.5. Size-guards

We recall the need for size-guards, discuss two approaches to generalizing size-guarding, and mention
complexity classes for which size-guarding is superfluous, Then, we identify some problems with size-
guards, which may complicate their use. For we generality, consider a generic real-ideal setting, and
use zero-knowledge as an example. It is easy to see that both proposed notions of size-guarding are
efficient transformations (in any sensible machine model).E

A case for size-guards. Recall that adversarial input distributions, which exploit expected polyno-
mial size via fat-tailed distributions, may yield simulators which are not CEPT, because the have a, say
quadratic, dependency on input length, whereas the real protocol (e.g. the prover) has a linear depen-
dency, see Example E.2d. Bounding input length, or even message length, which honest parties accept
hardly affects the usefulness of a protocol. Indeed, these bounds are fixed a posteriori, i.e. after the full
system is built from its parts. We have no good example for a setting, where there is no suitable poly-
nomial bound one the input (or message) length of honest parties. So we expect that such a posteriori
restrictions do not affect real applications.

Size-guarding inputs. The most natural approach to size-guarding is arguably to size-guard inputs
to ideal functionalities, i.e. messages sent to the interface of real protocol or their ideal equivalent.
Size-guarding a functionality yields a new functionality, which aborts upon receiving inputs which
exceed the length allowed by the size-guard. (Adversarial parties should be allowed to ignore size-
guard restrictions. Also, other parties should be notified of such an abort.) As explained above, we
know no good example where a functionality cannot be replaced in such a way.

This simplistic sketch of size-guarding may be ill-defined, and lead to problems, as in pointed out in
a later paragraph.

Size-guarding communication. Instead of size-guarding only inputs, one may want to size-guard
all communication of honest parties. This may also be viewed as size-guarding all interfaces and the
communication channel. (We should not impose size-guards on adversarial communication, as there is
no justification for limiting their communication.) This kind of size-guarding is formally stronger, but
we expect that for most (all?) interesting protocols, it is equivalent with size-guarding inputs. However,
size-guarding communication affects everything, not just functionalities. Thus, we find the more local
notion of size-guarding inputs preferable, and less likely to lead to unpleasant surprises.

Strict polynomial space. An algorithm A has a priori strict (probabilistic) polynomial space (SPS)
(in analogy to PPT) if there exists a polynomial poly(x) which bounds maximal used space/memory.
We count outgoing (but not incoming) message queues as part of an algorithms space/memory. With
this, any size-guard larger than poly does not affect the behaviour of A at all. Thus, for a priori SPS
adversaries, size-guarded security and normal security are equivalent.

For “classical” SPS, the space of A may depend on the input size, i.e. poly(k, |z|). All protocols
of interest satisfy SPS. We find (classical, a posteriori and a priori) EPT SPS algorithms an appealing

¥The effect of size-guarding on runtime is minor. If a lazy size-guard implementation is used, instead of eagerly checking
the size, then up to emulation overhead, the runtime doubles at most. (Eager implementations may blow up runtime if
the time for writing the message is not accounted for, e.g. because of huge messages from (inefficient) oracles.)
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complexity class. Of course, the “negligible slack” of CEPT and CPPT is motivated for and applies to
this setting as well. Unfortunately, deterministic bb-rw oracles for EPT adversaries are not compatible
with SPS, hence our simulators are not PPT either. This can likely be fixed, see Remark [A.6.

Composability and definitional issues. One major drawback of size-guarded security, is that it
changes the ideal functionality. This may break properties, such as correctness, of protocols using such
subprotocols. As mentioned before, size-guards should be chosen after a system is composed, so that
such problems do not occur. Since a protocol may call a subprotocol with squared input length, for
composition, one needs to keep track of size-guards, and be aware that they may not be identical for
all protocols. That is, a protocol which is built from subprotocols imposes different size-guards on the
subprotocols than the size-guard which was imposed on itself.

Another problem of size-guards is, that it may be convenient or relevant to have different or more
fine-grained size-guards for different interfaces. E.g. for zero-knowledge, we left the witness un-
guarded. A more flexible approach than merely limiting the input length may be useful in a larger
setting.

An alternative to size-guards. The problems noted above seem to disappear if instead of size-guard-
ing inputs and changing protocol behaviour, one restricts to “admissible adversaries”, as mentioned in
Example E.26. The drawback is that now, one needs to specify admissibility variations for all notions,
e.g. rewinding strategies, relative efficiency, and so on. We also caution that, similar problems as for
size-guards may appear, just hidden deeper in security proofs.

E.5. Section B

A simulator Sim is benign under size-guarding, if it is benign (Definition p.20) whenever a polynomial
size-guard is imposed on the protocol. Analogous claims for Lemmas and hold w.r.t. size-
guarded zero-knowledge.

E.5.1. Connection between runtime and probability tightness

Following example illustrates, that normality is not automatic.

Example E.29 (Bad RWS). Consider a proof system with a (useless) preamble, where the prover sends a
random string s <— {0, 1}*, the verifier acknowledges it, and the actual protocol begins. A rewinding
strategy RWS could send 0" as its first query, and then rewind. Against classical PPT adversaries, this
is no problem at all. However, this essentially notifies the adversary of being in a simulation. Indeed,
the probability tightness of RWS is 2”. Similarly, a rewinding strategy RWS, which “prefers” to output
lexicographically smaller transcripts, typically has (very) noticeable output skew.

For EPT adversaries, runtime tightness implies probability tightness asymptotically.

Remark E.30 (Necessity of probability tightness). Let RWS be a rewinding strategy for (#,V)). Let
* be a deterministic malicious verifier. Suppose there is a (sequence of) logical queries query =

query(k) such that pr,(query) > %gl - Prreal (query) infinitely often. By modifying ¢* to run an extra
1

prreal(query) «

runtime increases by 1. But RWS incurs a superpolynomial runtime growth, as it cannot see the “trap”.

Thus, runtime tightness implies probability tightness.

The “attack idea” on RWS in Remark may also be viewed as an indication that almost(?) all
rewinding strategies in the literature are normal. More generally, even an a priori PPT adversary
can exploit a large probability tightness and give “bad” answers in such cases. So, even for a priori
PPT adversaries which cannot cause runtime explosion, there is no incentive to have large probability
tightness, because it is unclear how that could be usefully exploited.

steps if queried with query, we obtain a new deterministic verifier ¥/** whose expected
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Remark E.31 (Probability tightness does not imply runtime tightness due to stupid reasons). Let RWS
be some normal rewinding strategy. Construct RWS' from RWS by running for 2% steps and then
emulate RWS. Clearly, RWS’ and RWS are equivalent systems, but runtime tightness of RWS’ is
exponential.

Nevertheless, for typical classes of well-behaved protocols and rewinding strategies, runtime tight-
ness, “query tightness”, and probability tightness are closely related.

E.6. x Absolute notions of relative efficiency

In Section }t.4, we work with “relative notions of (relative) efficiency”, that is, we compare the perfor-
mance of two algorithms. A scrapped approach used “absolute notions of relative efficiency”, which
have no comparison point. Absolute relative efficiency ensures, that whenever the communication
partner of A is efficient, so is A. In other words, it allow us to “blame” a party for running too long.
While this is easier to describe than relative efficiency, the need to be absolute makes the notion brittle,
as we see at the end of this section.

We use the name absolute relative efficiency mostly due to a lack of a better name.

Definition E.32 (Weak absolute relative efficiency). Let 7 be a runtime class and A be an algorithm.
Then A is weakly absolutely relatively efficient (ar-eff) (w.r.t. 7) if: For any timeful oracle ©, timeg ((A, O)) €
T implies timea 1o ((A, O)) € 7.

Definition E.33 (Absolute relative efficiency). Let A be an algorithm and © an oracle. Then A is abso-
lutely relatively efficient (ar-eff) w.r.t. || - ||, with rel-eff ratio poly,,, () if: For any timeful oracle O,
we have [timen (A, O)) |4 < polyy.,(x) - [[imeo((A, O))]|,.

If q is not specified, we mean g = o0, i.e. ar-eff w.r.t. to strict time. To ¢ = 1, we say ar-eff w.r.t.
expectation.

Importantly, the notion of (weak) absolute relative efficiency is unconditional and amortized since ©
is timeful and can abort at any time. In particular, if an algorithm is PPT (resp. EPT) per activation, it is
(weakly) ar-eff.

As a rule of thumb, the non-adversarial parties (e.g. challengers) should be ar-eff, so that runtime
problems can be traced back to the adversary. With this, one can exploit runtime explosions to break
hardness assumptions.

Remark E.34 (Relation to EPT in any interaction). At fist glance, ar-eff (w.r.t. expectation) seems to
be closely related to EPT in any interaction (EPTiai) [KL08; Gol10]. However, EPTiai has a different
flavour. It is a property imposed on the (ideal) adversary, so that a simulator’s runtime does not ex-
plode. Katz and Lindell state in[KL08, Sec. 4.2] that they could not show that the simulator obtained
by modular sequential composition again satisfies EPTiai. This “prevents” further composition of this
type. Conversely, ar-eff is a property imposed “honest parties”, e.g. challenger in a security game.

Example E.35 (G3C is not ar-eff). The prover, verifier and simulator for G3Cgk (Section [.9) are ar-
eff under size-guarding, but not unguarded, assuming |(V, E)| ~ card(V') + card(E). The problem
is that the % makes « - card(E) - card(V) commitments, whereas the verifier only makes card(E)
commitments. The factor card(V) is not bounded by poly(k), thus, there is no poly,,, which depends
only on k and the prover is not ar-eff.

This problem is mitigated by size-guards. For a variation of G3Cgk with graph hamiltonicity, this
problem would not occur as  parallel repetitions suffice, independent of G. (Modulo technical com-
plications.)

*This can be seen as a technical artefact from not counting the commitments sent by the prover towards the runtime of the
verifier. An honest verifier would read the commitments, hence requiring roughly the same amount of “computation”
as the prover. A dishonest or timeful verifier is not bound by that. If we would count incoming messages towards the
runtime of the oracle, stupid problems like “message length doubling attacks” could appear. By sending a message m, A
gets poly,,, (k) - |m| more time from ©. If © discards messages which are too long, then O can remain efficient, whereas
A increases its runtime exponentially. Arguably, we do not want to view such an A as efficient in any sense.
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Allin all, Example demonstrates how brittle unguarded ar-eff is. We see that not even the prover
of G3Cqk satisfies ar-eff without size-guards. This is the core reason to replace ar-eff with the arguably
more complex notion of “efficiency relative to” another algorithm.

E.7. x The necessity of |||

One may hope that there is a notion more stringent than expected time, which still allows rewinding-
based arguments of 3-move proofs of knowledge (based on special soundness), or 5-move zero-knowl-
edge such as [GK96], with black-box proofs of security. For example, one might hope for ||-||2 instead
of ||-||1, i-e. expected polynomial time and variation. Unfortunately, it is unlikely that a satisfying so-
lution exists, at least along this line of arguments, unless one allows a larger (constant) number of
rounds.

Concretely, consider the setting of 3-move proofs of knowledge. There, one can assume an adver-
sary which plays honestly, but aborts with probability 1 — p € [0, 1]. Suppose the 3-move proof of
knowledge is special sound and has large challenge space, so that it the soundness error is negligible.
Consider the typical extractor for special soundness: If the adversarial prover convinces the verifier,
it rewinds and uses honestly sampled challenges until the adversary produces a second convincing
answer. With overwhelming probability, the first and second challenge are distinct, and by special
soundness a witness can be computed.

It is evident that the number of rewinds for this extractor follows a geometric distribution. Indeed,
with probability p, the first challenge is answered convincingly, in which case the extractor needs
R ~ Geo(p) rewinds to obtains a second convincing answer. Then the expectation of R is

1_
||Rr\1=<1—p>-o+p7ps1.

If we consider || R||2, then we find the

1—p
p2

> .

1

IRI3 > p -

? P

Thus, if p negligible, the || R||2 is superpolynomial. A first attempt is to exploit virtuality: If p is

negligible, then in fact, R? is virtually expected polynomial. Conversely, if p is bounded below by
1

oly? then R? is expected polynomial. However, things fall apart if p = p(x) is not negligible, yet not

bounded below by any polynomial. For this, define p(k) as follows: p(k) = k2" where f(k) =1
forall 2 k, f(k) =2forall2 |k A4t K, f(k) =3forall4d | kK A 81t K, and so on. (Let f(0) = 0.)
That is,

(f(5)e = (0,1,2,1,3,1,2,1,4,1,2,...)

Thus, p contains infinitely many terms of x~2* for any ¢ € N. It is easy to see that p is not negligible.
However, for any polynomial poly, we have p < ﬁ infinitely often, i.e. p is not polynomially bounded

away from 0. Thus, | R||2 > poly infinitely often. In other words, there is no polynomial which bounds
|| R||2. Allowing negligible virtuality does not help either. Thus, this choice of p results in an adversary
which cannot be extracted in virtually expected polynomial ||-||2-time.

Repetitions can be used to “bring down exponents”, and hence, for any ¢ € N, there should exist a
(constant) number C' of repetitions (and modified extractors) such that ||R||, < poly, namely C' = q.
This may be interpreted as an intermediate result between proofs of knowledge with EPT extraction
(i.e. ¢ = 1), and “strong proofs of knowledge” with PPT extraction (i.e. ¢ = 00). We also refer to [Pas06]
where this is discussed in the context of precise zero knowledge proofs (of knowledge).

E.8. x Measurability

In this section, we discuss questions of measurability, which we ignored elsewhere. Since all of our
constructions are simple and make no use of the axiom of choice, there is little reason to doubt that all
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are measurable. Admittedly, we have not formally verified this for every construction, and merely spot-
checked some. We do note that some properties, e.g. “uniqueness” of events, were used in simplified
explanations. They are not used in actual constructions.

Stochastic processes and timeful systems. The evolution of a computation or interaction for
closed systems should be viewed as a stochastic process. The random variables of interest are the
exchanged messages, and the purported elapsed time, 21 namely the sequence of random variables
(Zo, Z1, . . .) describing the progress of the computation. Concretely, Z; consists of (my, to, . . ., m;, t;),
which is transcript up to the i-th message exchange, plus the elapsed runtime ¢; for computing m;.
One may augment this with other (purported) values, such as memory usage, etc. Obviously, we also
require proj;  ;(Z;) = Zj foralli < j in No. (And this implies 0(Z;) C 0(Z;1) for the o-algebras.)

The image of Z; lies is in a countable space, which we equip with the discrete o-algebra. The sample
space of process Z (i,w) = Z;(w) is given the induced o-algebra, but is not countable anymore. (Recall
that the o-algebra on N is constructed from the finite steps N¥, k& € N.)

We have ignored inputs and non-closed systems, but these are easily defined as functions, which take
a sequence of input messages and return output messages. (Technically, these may be partial functions,
since some input sequences may correspond to impossible executions. E.g. inputs for a system which
halted.) Letting two such systems A, B interact by connecting interfaces yields a new system, defined
in the obvious way. The resulting system (A, B) has an associated random process (which lives in the
product space of the random processes associated with A, B.)

An alternative description. One may alternatively describe the random process of individual sys-
tems via “conditional transition probabilities”, roughly, p;() = P(Z; = ¥ | Zi—1 = proj; _;_1(¥))
This approach always specifies independent processes. Dependency is (only) introduced by interaction.
While this would probably be sufficient, “extending” the probability space (as we did to achieve exact
v-quantile cutoffs) is not immediately possible. One can introduce some “irrelevant action”, e.g. a zero-
th message, which has the desired distribution. We find this to be just as inconvenient as working with
underlying probability spaces explicitly. Moreover, for systems induced by algorithms and machine
models, the underlying probability space is usually explicit anyway.

Algorithms and machine models. Unlike (timeful) systems, algorithms and machine models have
an “explicit randomness-providing interface”. Thus, the underlying probability space for such systems
is simple to describe, usually {0, 1} with “uniform” distribution (i.e. the “limit” of {0,1}*, k € N,
with uniform distribution). Standard definitions of machine models (via transition functions) then
evidently imply that any algorithm yields systems which are very well behaved, in particular every
typical function of interest is measurable (e.g. messages, runtime, memory trace, ...).

Measurability of our constructions. Most constructions merely relied on runtime statistics, and
can be defined on the process Z; by (a consistent family of) measurable functions (for each ¢). Indeed,
if the domain of Z; has the discrete o-algebra, any function is measurable. Since these statistics are
measurable by assumption, and our functions are measurable as well, we therefore find that our con-
structions are measurable. (More concretely, they are measurable for every 7, and hence the resulting
process is measurable.)

E.9. x Musings on runtime classes

Instead of dealing with runtime distributions only, a runtime class could deal with random variables.
For this, fix some (family of) universal probabilistic space(s) €2, and redefine runtime classes as follows:

°'In particular, a timeful system must have measurable purported runtime.
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Definition E.36. A runtime class 7 is a set of (families of) random variables 7': 2 — N U {oo} with
following property:@ If T and S have the same distribution, then either both or none lie in 7. In other
words, membership in 5 only depends on the distribution.

Only the distribution matters for membership. But operations, such as sums, of distributions and
random variables differ — random variables are closer to “practical” usage of runtime, e.g. simulation
with 3-fold overhead or sums of dependent runtimes.

Given such a “better” definition, we want to impose additional constraints on what should be con-
sidered a runtime class. We derive these from properties of bound algebras.

Example E.37. A “good” runtime class J should satisfy following properties:
Constants: The constant 0 and constant 1 runtime are in 7.
Closed under domination: For any T' € 7, all its dominated runtimes S are contained in J as well,

d d
e VSV € : 5§ <T = § € J. Recall that S < T is defined pointwise w.r.t. k, i.e.

VK: Sk % T, and recall that X <Y means Y dominates X (in distribution).

Closed under addition: For any 7,5 € 7, also T + S € J. Note that this is the sum of random
variables, not distributions.

Asymptotically monotone: LetT € 7 andlet Sy, := max{7i,...,Tx}. Then S € 7. This statement
is of nonsensical if ); # ;. Therefore, it is a statement about distributions.

Remark E.38. The closedness under domination says that no “inefficient” algorithm (i.e. runtime outside
) can be made efficient by doing more steps. Closedness under addition is a (weak) abstraction for
saying that (finite) sequential composition of 7 -time algorithms is again a J -time algorithm. It also
models that constant multiples of a runtime remain efficient. In particular, any constant runtime lies
in 7. Asymptotic monotonicity should ensure that increasing « only increases admitted runtimes, e.g.
efficiency of constant runtimes can be tested for k = 1.

Remark E.39 (Weak composition). We lack a generalization of “composability” of runtimes, which
mirrors “oracle composition” in a weak form. For bound algebras, this was multiplicative closedness.
There is the obvious candidate of letting 7" * S be the product of random variables. This is most likely
not what we need. Instead, considering a 7'-fold sum of independently drawn S’s is more plausible (but
non-commutative). Such a “weak composition” models “independent sampling access” for a runtime
distribution, which seems sufficient in our triple-oracle distinguishing setting.

Remark E.40. The item on “asymptotic monotonicity” is the most questionable one, and we are not
sure if it is the right point of view. Many alternative approaches exist. One advantage of our choice
is, that it is easy to see that arbitrary intersections of good runtime classes are again “good” runtime
classes. This is a first step for analysing whether the intersections of all closed “good” runtime classes
is again closed, and whether it is equal to our definition of closure.

A nice property of bound algebras, which we did not add to Example E.37, is the existence of a
countable “monotone generating sets”. We do not know whether or not this is a good addition. Unlike
sequences in Ny, sequences of distributions behave very differently. In particular, since domination of
distributions is not a total order.

*’Perhaps even further, a runtime class should be a function, mapping a probability space (2 to a runtime class 7 (2) with
suitable compatibility rules.

“We are not certain whether or not this property is absolutely necessary. However, the class of expected O(1/x) time is
both strange and behaves badly. For example, inverting the output (which takes a constant number of steps) cannot be
done. Arguably, such pathological behaviour is best avoided.

**Using (effectively) a distribution S here, but not in closedness under addition seems questionable. Allowing dependent S
instances may be possible, but combining it with dependent 7" leads to disaster (since abstract EPT explosion examples
can now be modelled). Perhaps, closedness under addition should be weakened, and is therefore not necessary at all
(because it is subsumed by “weak composition”)? At least for the abstract theory, this may be a valid choice. In fact, that
decision would allow to define runtime classes as sets of distributions again.
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Another interesting question is that of a canonical d-dense subclass in 7, or a lack thereof. A very
large canonical subclass is that of finite runtimes (i.e. where P(T); < N,;) = 1). But is there a general
analogon to d-density of RTC..(B) for B-tailed runtime classes? If T satisfies strong guarantees, we
have a plausible candidate.

Example E.41 (A candidate for RTC.(7)). In the proof of Corollary D.31], it was central to consider
taiITTN (). This leads us to our candidate definition of RTCy.(7) as a1 € 7. The runtime class T,

is generated by tail;ﬁ(a) for every constant & > 0 and every 7" € J. Moreover, assuming “weak
composability” then i, actually defines a bounds algebra. The proof of Corollary also requires
“weak composability” (in the sense of Remark E.39), and further properties such as “smallness” of
runtimes.

Interestingly, ;a1 equals strict RTCo, (B) for B-tailed runtime classes. The definition of Ji; also
gives rise to a bound algebra ®B;,;. This gives some hope that, perhaps, our restricted treatment of
algebra-tailed runtime classes was not too restrictive after all. Indeed, if we could show that J is
Byail-tailed, we’re done. This property is closely related to the “smallness” condition in Corollary .31,
and to “equivalence of statistical and computational indistinguishability”. Indeed, the relation of these
three properties appears to be of central importance. Characterizing the “equivalence of statistical and
computational indistinguishability” for general runtime classes would be a core tool for working with
them. For example, can quasi-linear time be distinguished from non-quasi-linear time in quasi-linear
time? Is “weak composability” really necessary, or is it just a convenient property?

To summarize, we gave some best guesses for candidate definitions and properties for “good” run-
time classes. But we lack suitable theoretical evidence towards the usefulness of their “good” nature.
Indeed, there are many open questions of abstract interest, for which we have no answers.

F. x Extendability from indistinguishable queries

Our definition of benign simulators relies on structure of the proof of security for (PPT) simulation, and,
although it covers many examples, is therefore somewhat limited. In this section, we give a different
approach to benign simulation. Intuitively, we require that an “eavesdropping” environment cannot
distinguish the bb-rw interaction of a rewinding strategy or a simulator with {/*. This corresponds to
the properties of query-indistinguishability and zero-knowledge.

The upside of this approach is its apparent greater generality. The downside is, that using query-in-
distinguishability is more technical, and requires a separate treatment of efficiency and indistinguisha-
bility. Perhaps a better, general approach exists — yet we know none.

F.1. Query-sequences indistinguishability

Our notion of “indistinguishable queries” for simulators is similar in spirit to [KLO0§].

Definition F.1 (Query-indistinguishability). Let A and B be oracle algorithms. The distinguishing ad-
gse

vantage Adv(g7?97@)7A7B (k) for queries including output of A, B by an adversary (9, O, D) is defined as
the distinguishing advantage Adv%ffxy( k) for the distributions

X = {(,y,r, A% (;7a), aseqo (AW (7)) | (2, 9) 4= I(5) }

Y = {(z,y,r, B (x; ), aseqo (B (x;78))) | (z,) + 9(k)}x

Here r denotes the accessed randomness of ©.2 (We make explicit the randomness r4 and rg only to
make it evident, that the output and query sequence refer to the same run.)

*Typical machine models offer an infinite pool of (independent) randomness, e.g. a random tape. Thus, we “restrict” to
accessed randomness.
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We say that A and B satisfy (7 -time) query-indistinguishability (Q-IND), if for all adversaries
(9,0, D) such that timeg, 0,7 (AY) € T and timeg 0.5 (B?) € T the advantage Advc(l;e,z)@),AjB(/f)
is negligible.

Size-guarded query-indistinguishability is defined by size-guarding A and B (as non-adversarial par-
ties), i.e. A and B reject inputs of length larger than their size-guard.

Definition F.1 requires jointly indistinguishable queries and outputs. This may not be strictly nec-
essary, but greatly simplifies sequential composition of Q-IND. All bb-rw zero-knowledge simulators
we are aware of satisfy this joint indistinguishability. Indeed, typically the last query induces the
(purported) view of the adversary.

We stress that the distinguisher @ learns the oracle randomness. This allows & to replay the execu-
tion of O, recover the complete transcript of the execution, and compute the runtime spent in ©.

Remark F.2. For CEPT and CPPT, it suffices in Definition F.1 to require that T = timeg o045 (AY) € 7.
If timeg 045 (BY) & 7, then this is a distinguishing statistic. Indeed, by a standard reduction to PPT,
any distinguisher (9, ©, D) with advantage at least ¢ = poly ! (infinitely often) can be truncated to
an a priori PPT distinguisher with advantage § (infinitely often). (Just interpret @’ = (9,0, D) as
interacting with oracles A or B, and apply Corollary k.2

Remark F.3 (“Universal” adversary, environments, sequential security). Using a universal machine for
© (and even ) gives a universal adversary similar to zero-knowledge. Moreover, one can rephrase
Definition [F.1 in terms of an “environment” & which encompasses J and @; & sends inputs (z, ), and
then gets access to randomness, output and query sequence. A sequential security version of Q-IND is
defined by this approach, following the definition of sequential zero-knowledge (i.e. & is given adaptive
repeated trials).

As in Remark [F.4, we may assume & is a priori PPT. Also, (one-guess) “environmental” security is
equivalent to Definition F.1}, because the state of & can be encoded as part of y.

F.2. Adapting the result of Katz—Lindell

As a warm-up, we adapt the result of Katz and Lindell [KL08]. For that, we rely on bb-rw simulators
which are EPT for any adversary (not counting the adversary’s steps). In other words, we rely on
simulators which are normal in the sense of Goldreich [Gol10]. That covers most simulators in the
literature, but not our naive simulator for G3Cgg. Moreover, the definition is not compatible with
expected polynomial input sizes, and thus restricted to size-guarded security.@ (For size-guards, see
Appendices E.4 and [E.4.3) After this motivation, we generalize the result to our setting,

Definition F.4 (Goldreich-normal [Gol1(0]). A bb-rw simulator is normal in the sense of Goldreich,
short Goldreich-normal, if for any (not necessarily computable) timeful {* and any input (x, w, aux)
(with (z,w) € R) there is a polynomial poly such that E(timeg;y, (Sim(z, V*(aux)))) < polys;, (|z|),

There is no requirement of x € £ in [Gol10, Definition 6]. Since zero-knowledge only quantifies
over such statements, we have adapted the definition to fit.

Lemma F.5 (Auxiliary input zero-knowledge). Let (P, 1)) be an argument system. Let Sim be a (timed)
bb-rw simulator with associated rewinding strategy RWS. Suppose that RWS is normal, Sim is Goldreich-
normal, RWS and Sim have indistinguishable queries, and Sim handles PPT adversaries in EPT.

Then Sim handles CEPT adversaries in CEPT under size-guarding, and (#, V) is size-guarded zero-
knowledge.

Proof sketch. By a standard reduction, the output quality of Sim can be tested by an a priori PPT ad-
versary. By assumption, such output is indistinguishable from the real protocol. Thus, we only need
to ensure efficiency of Sim under size-guarding.

*These problems do no surface in [KL0§; Gol1(d] since they define x = |z|.
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Due to size-guarding, we can assume that ¢ outputs = with |z| < polyy (k). Therefore, by assump-
tion, Sim is a priori EPT with bound polyg;,,, (polyy(k)), excluding the time spent in the bb-rw oracle ¢*.
Thus, it is sufficient to bound Sy« = timeg« (Sim(z, V*(aux))), where (x, w, aux) <— 9. By normality
of RWS and query-indistinguishability, recomputing the time spent in ¥* by emulation (using inputs,
queries and randomness) is possible in CEPT for any CEPT adversary. Consequently, by query-indis-
tinguishability, switching from RWS to Sim results in an indistinguishable distribution of ¢. Hence,
Sy« is CEPT and the claim follows. O

We also demonstrate that sequential composition, i.e. sequential zero-knowledge, holds for this type
of simulator.

Lemma F.6 (Sequential zero-knowledge). Let (P, 1) be a size-guarded zero-knowledge argument, with a
simulator satisfying the conditions in Lemma|F.3. Then (P, V) is sequential size-guarded zero-knowledge.

Proof sketch. Again, the main question is efficiency. Namely, if there is a distinguishing adversary for
zero-knowledge, then there is an a priori PPT adversary. This contradicts our assumptions, because
“classical” sequential composition against a priori PPT adversaries holds.

To prove efficiency, we prove, essentially, that query-indistinguishability composes sequentially. As
in Lemma @ this then implies that Og;,, is efficient because Oryys is.

Suppose the contrary, i.e. suppose query-indistinguishability does not hold for Sim. By Remarks [.J
and .3, we know that there is an a priori PPT distinguisher (&, *) breaking “sequential query-indis-
tinguishability”. We leave the definition of sequential Q-IND, sketched in Remark [F.3, to the reader.

Since Sim is Goldreich-normal, Og;,, = rep(Sim(-)) handles PPT adversaries in EPT. (This is “clas-
sical” sequential composition.) Sequential Q-IND of Sim and RWS for PPT distinguishers reduces, by
a hybrid argument, to standard Q-IND. The hybrid distinguisher is efficient, because Sim is Goldreich-
normal (and RWS normal). Consequently, Sim and RWS cannot be Q-IND. A contradiction. Hence,
sequential Q-IND holds for RWS and Sim. In particular, rep(Sim) satisfies all conditions in Lemma [.5
lifted to the sequential setting, and the proof lifts as well. O

This warm-up demonstrates two things: First, with size-guarding, many arguments get simplified
and reduce to standard a priori PPT arguments. Second, the main difficulty for relaxations will be
to demonstrate efficiency. By the nature of CEPT, efficiency and indistinguishability are somewhat
entangled. We use unconditional guarantees, similar to Goldreich-normal in the above, to partially
disentangle that.

Proving a “full-fledged” CEPT simulation, i.e. getting rid of size-guarding and weakening Goldre-
ich-normal is surprisingly cumbersome. We do so by introducing two properties. The first property,
runtime estimators, allows us to link together the runtime of RWS and Sim, assuming Q-IND holds. The
second property ensures efficiency if one truncates after polynomially many queries. This replaces Gol-
dreich-normal, and enables the hybrid argument which shows that Q-IND must hold under sequential
composition. Taken together, we find that the runtime of Sim cannot be too far from RWS, and thus
Sim is efficient whenever RWS is. This generalizes the proof of Lemma [F.4.

F.3. Runtime estimation

In the following, we give a definition of a “runtime estimator”, which allows to lower- and upper-bound
the expected runtime of an algorithm depending on oracle queries, or more precisely, on the informa-
tion available to a Q-IND adversary. The algorithms of interest are RWS and Sim. Typically, their
runtime is closely related, since both emulate the honest prover (with minor modifications). Conse-
quently, their runtime per activation is easy to lower- and upper-bound (if the prover’s runtime per
activation is).

Definition F.7 (Runtime estimation). Let 6: Ny x D x Qy — Np, be a probabilistic algorithm with
randomness space {29, and where D is the input space of a query distinguisher (as in Definition F.1)).
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Let A be an algorithm and © some oracle. Let z € D and recall that z = (x,y, r, out, gs), where x
(resp. ) is input to A (resp. ©), r is the oracle randomness, out is the output of A°¥")(z), and gs is
the sequence of queries. Define

. to(k, z) = E(timeg(0(k, z))), the expected runtime of  given z.

. ta(k,2) = E(timea(A%WT) (2)) | AW (2) = out A gseqq (AW (z)) = gs), the expected
runtime of A conditioned on z.

« taro(k, 2) like ta, but using timea;o(. . .).

We say that 6 is a runtime estimator if it satisfies efficiency, i.e. there exists some poly(x) such that for
all z € D and all k: tg(k, z) < poly(k) - tato(k, z). Moreover, 6 is a lower bound estimator if there
exists some poly such that E(6(k, z)) < poly(k) - ta(k, z) for all z € D and k € Ny. Analogously, 6
is a upper bound estimator if there exists some poly such that ta(x, z) < poly(k) - E(0(k, z)) for all
z € D and k € Nj.

Note that estimators are “unconditional” constructions; we quantify over all z € D.

Remark F.8 (Sketched application of runtime estimators). Consider a simulator Sim and its rewinding
strategy RWS. If T = timeRWS(RWSU*) is CEPT, then the (output of the) runtime estimate 6 is CEPT
if it lower-bounds 7. If § upper-bounds S = timeSim(RWSV*), then S is CEPT if (the output of) 0 is.
Since 6 only depends on the information available to a Q-IND adversary, assuming RWS and Sim are
Q-IND, the runtime bound provided by 6 only changes negligibly, hence if T" is CEPT, so is S. This
provides a central link between the runtime RWS and Sim.

Remark F.9 (Convenience of size-guards). Arguing via runtime estimates requires that the algorithms
runtime per activation behave somewhat regularly (which is fortunately typical). Most convenient are
“essentially constant-time” algorithms (where runtime only depends on query/message length). With
size-guards this is usually immediate, as every round has an a priori polynomial upper bound for the
(expected) number of steps taken, both in RWS and Sim (not counting the black-box ¢*). Hence 0 is
as simple as the total number of queries. Without size-guards, the behaviour is more fickle.

F.4. Efficiency from query-truncation

We already saw in Lemmas F.5 and [F.4 that Q-IND ensures that the time spent in * only changes
negligibly between RWS and Sim. However, we cannot reuse the arguments to show that Q-IND
composes sequentially. The problem lies within efficiency of the hybrid distinguisher. As seen in
Lemma F.d, once we obtain an a priori setting, this problem “disappears”. Hence this is our solution.
We define what it means to be “Goldreich-normal for any polynomial query cutoff” of the interaction.
Intuitively, it means that any “polynomial prefix” of the interaction is Goldreich-normal.

Definition F.10. Let A be an oracle-algorithm. Let B (x, q) be the oracle-algorithm which emulates
A®(z) until the g-th query of A to ©. After that, B returns timeout (otherwise B returns whatever
A returns). We say A is Goldreich-normal for any polynomial query cutoff (and input space Xy),
if for any polynomial poly, there is a polynomial poly;, such that for any oracle ©, and any inputs
(z,y) € X E(timeg(BOW (z, polyy(k)))) < poly, (||, ). In other words, B(, poly,) is Goldreich-
normal for any poly,. For zero-knowledge, the input space is R x {0, 1}*.

Example F.11. Our rewinding strategy and simulator of G3Cgk are Goldreich-normal for any polyno-
mial query cutoff. Indeed, they are even PPT for any polynomial query cutoff. As a matter of fact, we
cannot point out any (natural) bb-rw simulator which does not satisfy this property.

Remark F.12 (Goldreich-normal for any polynomial query cutoff does not imply efficiency). Similarly to
size-guarding, restricting to a polynomial number of queries makes simulations efficient which would
otherwise not be. For example, a simulator which is a a priori PPT per activation, but never halts, is
Goldreich-normal for any polynomial query cutoff.
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F.5. Query-benign simulators

Now, we bring together our definitions to define an alternative of benign, which we call query-benign.

Definition F.13 (Query-benign simulator). Let (%, 1)) be an argument system. Let Sim be a (timed)
bb-rw simulator with associated rewinding strategy RWS. Then Sim is query-benign if

(1) RWS is a normal and has a runtime estimator 6;
(2) for all a priori PPT adversaries (J, ¢*), RWS and Sim satisfy Q-IND;
(3) Sim is Goldreich-normal for any polynomial query cutoff.

Query-benign under size-guard gd is as usual (i.e. by query-benign w.r.t. the size-guarded prover).

Recall that Q-IND (i.e. condition item [2)) implies that RWS and Sim have indistinguishable outputs
by definition, i.e Q-IND implies zero-knowledge. In [2) we use a priori PPT adversaries, since the
security is equivalent to CEPT anyway.

Now, we put our definitions to use. Since our arguments are very close to Lemma .6, we directly
show sequential zero-knowledge.

Lemma F.14 (Query-benign implies sequential zero-knowledge). Suppose (P, () is an argument system.
Let Sim be a query-benign simulator. Then (P, 1)) is sequential zero-knowledge. In particular, Sim handles
CEPT adversaries in CEPT. The analogous claim holds under size-guarding.

Our proof is only a sketch and somewhat hand-wavy. in particular, we leave sequential security
definitions, like “sequential Q-IND” and “sequential runtime estimators”, and many straightforward
arguments to the reader.

Proof sketch. As usual, the proof consists of two parts. First, we prove that using Sim instead of & is
still CEPT. Then, by standard arguments, zero-knowledge follows. For simplicity, we argue assuming
the real execution halts with probability 1.

Step 1 (Replacing RWS): As in Lemma b.2d, using rep(RWS(-)) instead of rep ({2, -)) in the sequen-
tial zero-knowledge experiment is still CEPT and the output distribution is unchanged.

Step 2 (Goldreich-normal for any polynomial query cutoff composes sequentially): It is straight-
forward to verify that if an algorithm B is Goldreich-normal for any polynomial query cutoff, so is its
“repetition” rep(B). For this compare, the poly-query truncation of rep(B) with rep(By), where By is
the poly-query truncation of B. Since By is Goldreich-normal, so is rep(Bg). Consequently, rep(B) is
Goldreich-normal for any polynomial truncation.

Step 3 (Q-IND holds for rep(RWS) and rep(Sim)): Now, consider the “sequential Q-IND” exper-
iment, i.e. consider Q-IND of rep(RWS) and rep(Sim). More concretely, the distinguishing environ-
ment & that can repeatedly invoke RWS"” resp. Sim"", and obtains the output of an invocation, in-
cluding the query sequence and randomness of (that invocation of) ¢*, as noted in Remark [F.3. Note
that € can adaptively choose inputs to RWS resp. Sim and ¢*.

W.lo.g., we may assume that & is a priori PPT, say & makes at most polyg steps. Moreover, we may
assume that & linearly reads the outputs of each invocation. In particular, & cannot skip (parts) of the
outputs, and read only the final queries. Importantly, § only reads a strict polynomial prefix of the
full (sequential) query sequence.

If we replace Sim by a truncation Simg, which stops after polyg queries, we know that Simg is
EPT with expected runtime bounded by some polyg;,,, (due to Sim being Goldreich-normal for any
polynomial query truncation, see also Step 2).

*"In case of non-halting executions, argue as in Lemma [.23.

*This is a technical requirement. Depending on the machine model, & may have random access to the output. That would
make our later argument incomplete. To see that we can assume that § completely reads the outputs, just use the
output length as a distinguishing statistic. That is, if there is a PPT distinguisher & which skips parts of the output, then
the variation which reads all of the output is still CEPT for RWS. By standard truncation arguments, an a priori PPT
truncation of &’ retains non-negligible advantage. And &’ is a distinguisher of the kind we are interested in.
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By construction, from the perspective of &, rep(Simg) and rep(Sim) behave identically. Indeed,
since & only reads at most a prefix of length poly, of the (total) query sequence, & never encounters
the difference of Simg and Sim. For symmetry, let RWS( be defined analogously to Simg. (Formally,
we could use RWS, since there are no efficiency problems with RWS.)

Now, we can use that Simg is Goldreich-normal, to show via a hybrid argument as in Lemma F.q
that if & can distinguish RWSg and Simg for “sequential Q-IND”, there is a Q-IND distinguisher @ for
RWSy and Simg. And hence, there is a Q-IND distinguisher for RWS and Sim (since the constructed
hybrid distinguisher @ also sees no difference between Simg and Sim (resp. RWSg and RWS)). Thus,
“sequential Q-IND” holds.

Step 4 (Sim is CEPT if RWS is): Now we make use of the runtime estimator 6. More precisely, we
extend 6 to the sequential setting by applying the underlying 6 for each invocation separately, and
taking the sum of the estimates. It is easy to see that this preserves efficiency, lower-bounding and
upper-bounding.

Let (8,U*) be a CEPT adversary. Since timegws((&, rep(RWS""))) is CEPT, so is 8 (by lower-
bounding of RWS""). Since 6(zrws) is CEPT for zrws = qseq-(rep(RWS'")) and since zgws and
ZSim = qSeq« (rep(SimU* )) are indistinguishable w.r.t. & (by “sequential Q-IND”), also 6(zs;,,) is CEPT.
Since 6 upper-bounds the runtime of timesim ((&, rep(Sim""))), times;m ((&, rep(Sim'"))) is CEPT.

Finally, since the time spent in /* can be easily reconstructed from z (by emulating the execution),
timeg+ ({6, rep(RWS'"))) = timep- ((&, rep(Sim"™))) due to Q-IND.

All in all, replacing rep({%, -)) with rep(Sim(-)) preserves CEPT.

Step 5 (Output quality): Our definition of Q-IND included the outputs, so zero-knowledge follows.

O]

The proof sketch should be interpreted as follows: Step 3 shows that Q-IND for A and B composes se-
quentially if B is Goldreich-normal for any polynomial query cutoff. (It uses Step 2, although somewhat
indirectly.) Step 4 shows that runtime estimators compose sequentially. Taken together, query-benign
composes sequentially. Lastly, (sequential) query-benign implies (sequential) zero-knowledge.

We remark that to prove Q-IND, for all of our examples, one essentially proves benigness as well.
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