
Symbolic and Computational Reasoning About
Cryptographic Modes of Operation

Catherine Meadows
Naval Research Laboratory

Center for High Assurance Computer Systems
Washington DC, USA 20375

catherine.meadows@nrl.navy.mil

Abstract—In this paper we develop symbolic and computa-
tional representations for a class of cryptographic modes of
operation, where the symbolic representations are modeled as
elements of a term algebra, and we apply them to the analysis of
the computational security of the modes. We derive two different
conditions on the symbolic representations, a simple one that
is sufficient for security, and a more complex one that is both
necessary and sufficient, and prove that these properties hold.
The problem of deciding computational security then is reduced
to the problem of solving certain disunification problems. We
also discuss how these results can be extended.

I. INTRODUCTION

The use of symbolic methods to analyze the security of
cryptographic algorithms and protocols has taken a number of
forms. When used at a high level of abstraction to model the
algorithms as black boxes, it can be used in the automated
analysis of complex security protocols. At the other extreme,
symbolic methods can be used to formalize and reason about
game transformation proofs used in cryptography, enabling
machine assisted proofs of cryptographic security. In this
paper we explore methods that inhabit a middle ground:
the development of symbolic criteria for security of classes
of cryptosystems, in which first a class of cryptosystems is
defined and represented symbolically, and then criteria on the
symbolic representations are developed that guarantee security
under the assumption that the cryptographic primitives used
are indistinguishable from random. This approach has been
proven useful in the automated synthesis of cryptosystems,
making it possible to rapidly generate a large number of
possible cryptoalgorithms, and then weed out those that fail the
criteria, often using an SMT solver. More recently, however,
there has also been an interest in applying the symbolic
approach to efficient verification algorithms as well, as is done,
for example, by McQuoid, Swope, and Rosulek in [13].

In this paper we apply this approach to a subclass of
cryptographic modes of operation, or more specifically, a
class of modes constructed using a combination of randomly
generated λ-bit bitstrings, a permutation f of λ-bit blocks to
λ-bit blocks that is indistinguishable from a random function,
and bitwise exclusive or. Each cryptosystem in this class takes
as input a sequence of λ-bit plaintext blocks and returns as
output a sequence of λ-bit ciphertext blocks. The schedule by
which plaintext blocks are submitted and ciphertext blocks are
returned is a parameter of the cryptosystem.

The security property that we are interested in proving is
IND$-CPA security, originally defined by Rogaway in [16].
Roughly speaking, a cryptosystem is IND$-CPA secure if
an adaptive chosen plaintext (CPA) adversary’s advantage in
distinguishing between a sequence of blocks returned by the
cryptosystem and a randomly generated sequence of blocks is
a negligible function of the security parameter λ.

Our main results are that we identify a simple, syntactically
checkable condition that guarantees IND$-CPA security, and
a somewhat more complex condition that is both necessary
and sufficient for it. We begin by describing a symbolic
representation of the bitstrings computed by the cryptosystem
as members of a term algebra. We then show how a symbolic
condition on encrypted blocks computed by the cryptosystem,
formulated as a disunification problem subject to a constraint
expressed in terms of the schedule for returning blocks, implies
IND$-CPA security. We then leverage off of this condition
to obtain a necessary and sufficient condition for IND$-
CPA security to hold, also expressed in terms of constrained
disunification problems.

The class of of cryptosystems we study is an extension of
that of Malozemoff et al. in [12], which also concentrates on
IND$-CPA security. The main differences between this work
and theirs is that in [12] it is required that the ciphertext is
not returned until all the plaintext has been received, while in
our case the schedule is a parameter of the cryptosystem (so
that in particular the blockwise adaptive attacker of Rogaway
[16] falls into this class, although we define it as a property
of the cryptosystem rather than of the adversary), and that we
prove necessary and sufficient conditions for security as well
as identifying classes of secure cryptosystems. The class of
cryptosystem we study is also similar to those handled by the
Linicrypt model proposed by Carmer and Rosulek in [6] and
further applied by McQuoid, Swope, and Rosulek in [13]; we
discuss this further in Section II.

As an illustration we describe cipher block chaining, which
is known be IND$-CPA secure under the condition that the
encryptor waits until it has received all the plaintext blocks
from the adversary before sending ciphertext, but violates
IND$-CPA-security if the encryptor sends each block of
ciphertext to the adversary immediately after receiving the
plaintext block necessary to compute it [9], [16]. This will
be used as a running example throughout much of the paper.

Example I.1. Let F be a block cipher, and let f = FK denote
evaluation of f using a key K. In cipher block chaining n
plaintext blocks x1 through xn are encrypted as follows:

1) C0 = r, where r is a randomly generated block known
as an initialization vector (IV), and;

2) Ci = f(xi ⊕ Ci−1) for i > 0.
In CBC, the cipher text blocks are not returned by the
encryptor until all the plaintext blocks are received. In that
case CBC can be shown to be IND$-CPA-secure. However,
it turns out to be insecure if the encryptor follows a different
schedule: e.g. if ciphertext blocks are returned as soon as it is
possible to compute them. Consider for example the following
attack, in which the adversary is able to create two identical
ciphertext blocks.

1) Adversary receives r1

2) Adversary sends x1 = 0
3) Adversary receives f(0⊕ r1) = f(r1)
4) Adversary sends x2 = r1 ⊕ f(0⊕ r1) = r1 ⊕ f(r1)
5) Adversary receives f(r1 ⊕ f(r1)⊕ f(r1)) = f(r1).

The adversary can thus cause two ciphertext blocks to be
equal with probability 1, allowing it distinguish between
the real ciphertext and a random sequence of blocks with
overwhelming probability.

The rest of this paper is organized as follows. In Section II
we give some background on symbolic verification of cryp-
tosystems and describe related work. In Section III we describe
the basic definitions and results in symbolic analysis that are
used in this work. In Section IV we describe the symbolic
and computational models used and how they are related. In
Section V we state and prove the sufficient condition for IND$-
CPA security, and in Section VII we state and prove the more
complex necessary and sufficient conditions. In Section VIII
we discuss some ways in which the work can be extended.
Finally, in Section IX we conclude the paper and discuss some
open problems.

II. BACKGROUND AND RELATED WORK

Probably the earliest work on using symbolic methods for
cryptographic proofs of security for protocols in the face of
adaptive adversarys is that of Backes, Pfitzmann, and Waidner
beginning in [2], in which the underlying encryption primitives
are defined in a cryptographic library, and the adversary is a
full Dolev-Yao adversary that interacts with principals over
a network it completely controls. In later work Micciancio
and Panjwani [15] prove a computational soundness and
completeness theorem for adaptive adversaries that applies to
any CPA encryption scheme. However these works used the
free equational theory, and so were not useful for algorithms
constructed using cryptographic primitives, since this generally
requires the modeling of non-trivial equational theories.

Later work has addressed computational soundness and
completeness of symbolic security in different equational
theories, but most of this has only led to results for weaker,
e.g. non-adaptive adversaries. One notable exception is
the work of Kremer and Mazaré [10], which addresses the

soundness of static equivalence, a symbolic concept used
to express indistinguishability properties, in the face of an
adaptive adversary. However, this does not allow arbitrary
input from the adversary; instead the adversary is restricted
to adaptively choosing from a set of protocol executions with
which it interacts passively. This is because the soundness
results require that the input to the protocol obey certain typing
restrictions, which an adversary will not necessarily follow.

There has also been a substantial body of work that focuses
explicitly on cryptographic modes of operation. Gagné et
al. [7] have developed a Hoare logic for proving semantic
security of block cipher modes of encryption, and a program
implementing the logic that can be used to automatically
prove their security. However, their work concentrates on
heuristically driven theorem proving techniques rather than
evaluating symbolic security conditions. We also note the
work of Bard [3], who considers circumstances under which
security for modes of encryption can be reduced to a collision-
freeness property. Although [3] does not address symbolic
security directly, our approach to deriving criteria for collision-
freeness owes much to it. The work of Malezomoff et al.
[12] and Hoang et al. [8] is probably the closest to that in
this paper. They prove adaptive chosen plaintext security for
cryptographic modes of operation based on deterministic block
ciphers [12] and authenticated modes of encryption using
block ciphers with tweaks [8] by defining a set of symbolic
conditions checked on automatically generated modes. These
conditions are proved sufficient for security; however no
guarantee is given that all secure modes satisfy them.

Another approach to which ours is closely related is Carmer
and Rosulek’s Linicrypt model [6], a symbolic model that is
used to reason about algorithms that involve hash functions
or block ciphers along with additive group operations. The
security of an algorithm is analyzed by the use of vector spaces
over finite fields describing the structure of the cryptosystems.
This has potential applications to a number of types of
algorithms, including cryptographic modes of operation , one-
time lightweight signature schemes, garbled circuits and hash
functions. In particular, applications of Linicrypt to garbled
circuits have been addressed by Carmer and Rosulek [6] and
applications to hash functions by McQuoid et al. [13].

III. SYMBOLIC PRELIMINARIES

A signature is a finite set of function symbols Σ of different
arities. We write TΣ(X) for the set of all terms constructed
using function symbols from Σ and variables from a countable
infinite set X . TΣ(X) is referred to as a term algebra. If T is a
subset of TΣ(X), we write Sub(T) for the set of subterms of
elements of T. Thus, if T is {f(g(x),a),h(f(a,b))}, Sub(T)
is {f(g(x),a),g(x),a,x,h(f(a,b), f(a,b),b}.

We write Var(t) (respectively Sym(t)) for the set of
variables (respectively function symbols) present in a term t.

A Σ-equation is a pair t = t′. A set E of Σ-equations
induces a congruence relation =E on terms t, t′ ∈ TΣ(X),
so that t =E t′ if and only if t can be made equal
to t′ via applications of equations from E. An equational

theory is a pair (Σ, E), where Σ is an order-sorted sig-
nature and E a set of Σ-equations. We will refer to a
term algebra TΣ(X) together with an equational theory
(Σ, E) as (TΣ(X), E). As an example, suppose that Σ =
{e−1/2, e/2,k/0,a/0}, and E = {e−1(x, e(x,y)) = y}.
Then e(k, e−1(k, e(k,a))) =E e(k,a), by setting x = k and
y = a in the equation e−1(x, e(x,y)) = y.

A substitution σ is a mapping from X to TΣ(X) that is the
identity on all but a finite subset of X known as the domain
of σ. Substitutions are homomorphically extended to TΣ(X).
Application of σ to a term t is denoted by σt.

Remark on Notation III.1. We use the common convention
that, when σ is the identity on x, we leave the σ off. Thus,
instead of writing σx = h(σy, σz), σy = y, σz = z, we write
σx = h(y, z).

The composition of two substitutions is σθX = σ(θX)
for X ⊂ V ariables. A substitution σ is an E-unifier of
a system of equations S = {. . . , si =? ti. . . .} if σsi =E σti

for every si =? tj ∈ S. The notation =? denotes that
s =? t is an equation to be solved. As an example, con-
sider the equation S = {w =? e−1(k, z)} in the algebra
(TΣ(X), {e−1(x, e(x,y)) = y}) described in the previous
paragraph. Then the substitutions σ1 : w 7→ e−1(k, z) and
σ2 : z 7→ e(k,w) are both unifiers of S modulo E.

We will be interested in the algebra consisting of a number
of free symbols that obey no equational theory, plus an
exclusive-or operator ⊕ and a null operator 0. The ⊕ operator
is associative and commutative and satisfies X⊕ 0 = 0 and
X⊕X = 0. Equality of two terms modulo this theory is
equivalent to equality under the theory (R⊕] AC) where
AC is the associative and commutative rules for ⊕, and
R⊕ is a set of rewrite rules, {X⊕ 0→ X, X⊕X→ 0}
oriented from left to right. A rewrite rule `→ r is applied
to a term t by finding a subterm s of t such that s = σ`
modulo AC for some substitution σ, and replacing s in t with
σ`. Thus 0⊕ a⊕ b can be reduced to a⊕ b by noting that
0⊕ a⊕ b = (0⊕ a)⊕ b = σ`⊕ b modulo AC, where ` is
the left-hand side of X⊕ 0→ X, and σX = a. In addition,
every term t reduces after a finite number of steps to a
normal form ↓R⊕,ACt to which no further rewrite rules can be
applied, and this normal form is unique up to AC-equivalence.
We refer to the theory (R⊕]AC) as the ⊕ theory for brevity.

For example, let be a free unary symbol, and consider
the term f(f(a⊕ b⊕ a)⊕ f(b)). By associativity and
commutativity, a⊕ b⊕ a =⊕ a⊕ a⊕ b. Applying
the rule X⊕X→ 0 to a⊕ a via sigmaX = a
gives us a⊕ a⊕ b =⊕ 0⊕ b. By commutativity,
0⊕ b =⊕ b⊕ 0. Thus , applying the rule X⊕ 0→ X,
via σX = b gives us b⊕ 0 =⊕ b. Thus, we have
f(f(a⊕ b⊕ a)⊕ f(b⊕ b⊕ b)) =⊕ f(f(b)⊕ f(b)).
Applying the rewrite rule X⊕X→ 0 via σX = f(b),
we obtain f(f(b)⊕ f(b)) =⊕ f(0). At this point no more
rewrite rules apply, and the expression is in normal form.

IV. SYMBOLIC AND COMPUTATIONAL MODELS

In this section we give a brief description of how we
model symbolic terms and computational functions. This is
based on the abstract and concrete models of cryptosystems
introduced by Baudet et al. [4], with the main difference
that in some cases we allow variables in the symbolic model
to be replaced in the computational model by probabilistic
Turing machines, instead of restricting ourselves to concrete
computational representations of symbolic terms.

Remark on Notation IV.1. Note that we write symbolic terms
in boldface, and computational functions in italic in order to
make it easier to distinguish between them.

Since IND$-CPA security is defined in terms of messages
that are all encrypted with the same key, we can represent the
block cipher function FK(), where K is the key used by the
encryptor, simply as f(). In addition IND$-CPA security
requires the assumption that the output of the block cipher
be indistinguishable from random by the adversary. Thus, in
the remainder of this paper, since we will not have a need to
actually invert f , we will assume that the encryption function
f is actually random.

Let f be a random function from {0, 1}λ to {0, 1}λ; that is,
one in which for each x ∈ {0, 1}λ, f(x) is chosen uniformly at
random from {0, 1}λ. Let Σ be a set of symbols {f ,⊕,0} and
let ⊕ be the exclusive-or theory, as described in Section III. We
consider the cryptographic term algebra T(Σ,⊕)(X) where X
is a countable set of variables. There are two types of variables
in X : bound variables standing for a string chosen uniformly
at random from {0, 1}λ, that are quantified by ν, and free
variables with no quantifiers. Generally, quantifiers are speci-
fied at the beginning of an expression. So if νr1 . . . νrn.T is
an expression (for example a list of terms), the appearance of
the quantified variable νri before T means that ri stands for
the same randomly chosen string wherever it appears in T.
We may omit the quantifiers when referring to νr1 . . . νrn.T
when confusion can be avoided. We refer to T(Σ,⊕)(X) as
the MOO⊕ algebra (for Mode Of Operation), and terms from
T(Σ,⊕)(X) as MOO⊕ terms.

Except for the fact that the number of bound variables is
infinite, they are treated as constants in the term algebra. In
particular, no substitutions can be made to a bound variable.
Thus, we consider a term ground if it contains only function
symbols and bound variables.

We say that a term t is g-rooted if it is of the form
g(s1, . . . , sk) where s1, . . . , sk are terms and g is a function
symbol. We say that a term is random if it is either f -rooted
or a bound variable.

Let λ be a security parameter. Each sequence of n terms
T ⊂ T(Σ,⊕)(X) containing no free variables determines a prob-
ability distribution T over {0, 1}λ·n. called the computational
realization T of T. (Note that, as is described in Remark IV.1,
the computational realization T of T is written in italics to
distinguish it from the symbolic T, which is written in bold.)
This is defined as follows: To compute the output of a bound

variable r, we choose a λ-length bitstring uniformly at random.
If r occurs more than once in T, it is replaced with the same
random λ-length bitstring wherever it occurs. We also replace
0 by a bitstring of λ zeroes, ⊕ by bitwise exclusive-or on
λ-length bitstrings, and f by a random function.

We can use this recipe for computing a sequence of n λ-
length bitstrings we will call the output of T or 8T8λ. When
we can do so without confusion, we will drop the λ. Note
that, if T contains any bound variables, then T can have more
than one possible output, based which on which bitstrings are
chosen for the outputs of the bound variables, and each output
will be produced with a certain probability.

We now consider the case where T contains free variables.
Free variables play a special role: they are place holders for
inputs to a term. In our case they will always stand for
inputs from the adversary. In particular, the free variables
x1, . . .x` appearing in T stand for inputs supplied to the
computational realization T of T by tm1, . . . , tm` where
each tmi represents a probabilistic Turing machine. Note that
we do not require that the tmi themselves be computational
realizations of elements of T(Σ,⊕)(X); they can be arbitrary
probabilistic Turing machines. We call a map θ that maps
a finite set of variables of T(Σ,⊕)(X) to probabilistic Turing
machines and is the identity on all other variables a compu-
tational substitution. If θ is a computational substitution, and
T is a finite subset of T(Σ,⊕)(X), we define θT to be the
substitution obtained by replacing each variable x used by the
computational functions in T with θx. The composition of two
computational substitutions is defined in the natural way.

If a θ is a substitution so that θt contains no free variables,
we define 8θt8 to be the output obtained from t by using the
output 8θx8 wherever a free variable x appears.

V. MOO⊕ CRYPTOSYSTEMS AND SYMBOLIC HISTORIES

We make the assumption that the cryptosystems we are
studying are generated by a program of bounded size whose
running time is bounded by a polynomial function of the
size of its input (that is, the number of plaintext blocks it is
encrypting), and that the number of calls that the adversary can
make to the encryptor is bounded by a polynomial function of
the security parameter, where a call is either an initiation of a
new session or the submission of a plaintext block. Thus, we
may assume that the adversary is computationally unbounded.

A cryptographic mode of operation may be thought of as a
probabilistic mapping from a sequence of plaintext blocks to
a sequence of ciphertext blocks, together with a schedule for
delivering the ciphertext blocks (e.g., as soon as possible, or
not until all plaintext blocks have been received). Modes are
generally defined recursively. But for the purpose of proving
results about symbolic analysis, it will be more convenient for
us to think of a mode in terms of its possible histories, even
if this is not the most compact way of representing it.

A symbolic MOO⊕ history (symbolic history for short)
describes the messages exchanged during a process in which
an adversary interacts with the oracle to encrypt a message,
where the encrypted message is a sequence of MOO⊕ terms.

Histories are analogous to the frames defined by Abadi and
Fournet in [1]; that is, they represent a record of a protocol
execution.1 Histories are presented in terms of sequences of
events in which computations and messages sent and received
are represented by elements of T(Σ,⊕)(X). A symbolic history
may contain free variables, that stand for possible data that
could be sent or computed by the principals, and variables
bound by the quantifier ν, that stand for uniformly randomly
generated bitstrings. In the rest of this section we describe in
more detail how symbolic histories are created and used.

A. Using Symbolic Histories to Specify Encryption of a Se-
quence of Plaintext Blocks

The encryption of a message consisting of a sequence of
plaintext blocks can be thought of as a protocol described
symbolically as a sequences of exchanges between an adver-
sary and an encryptor. In each step the adversary submits
one or zero plaintext blocks to the encryptor, where each
plaintext block is represented by a unique free variable. The
adversary also gives instructions on what functions are to be
computed on its input, with the restriction that these functions
must be consistent with the definition of the cryptosystem.
The encryptor then computes the output of a (possibly empty)
set of computational realizations of MOO⊕ terms, using the
plaintext blocks previously sent by the adversary to replace any
free variables appearing in the terms. We can thus represent
the communication between the adversary and the encryptor
at the symbolic level by a symbolic history of the form

νR[I1,O1, . . . , Ik,Ok]

where each Ij is either the empty sequence or a unique free
variable, each Oj is a (possibly empty) sequence of MOO⊕
terms whose only free variables are elements of {Ij|1 ≤ i ≤ j}
, and R is the set of bound variables appearing in the history.

The adversary may encrypt multiple messages and even
interleave such encryptions. These activities can also be rep-
resented by symbolic histories.

To give an example of a symbolic history, we consider
the case, using cipher block chaining, in which an adversary
interacts with an encryptor that allows it to encrypt two
messages in parallel, timing its response so that that the
adversary receives the two IVs first, and the two first blocks of
ciphertext right after sending the two first blocks of plaintext:

νr1.νr2[∅, ∅, r1, r2,x1,x2, f(r1 ⊕ x1), f(r2 ⊕ x2)]

VI. MOO⊕ GAMES AND A SIMPLE CRITERION FOR
SECURITY

In this section we describe games involving an adversary
and an encryptor that together construct a symbolic history
and its output. These games will be used both to define and
prove security properties of MOO⊕ cryptosystems.

1We could indeed define histories as frames, but because in this work we
don’t have any need of the main feature of frames (that they are substitutions)
we choose a simpler option.

In the following, we use a slight abuse of language that helps
us to avoid awkwardness when talking about substitutions
used in a game. Normally, the functions computed by an
adversary are not represented explicitly in a cryptographic
game. Rather, the adversary is the function. However, we need
to represent a substitution σ to a variable computed by an
adversary explicitly as a map from a variable x to σx. We will
use the convention that any such function σ is the function that
the adversary is programmed to compute. In other words, it is
not choosing an arbitrary function.

A. Definition of the Games Used in the Proof

We begin by describing the IND$-CPA game between the
adversary and the real and random encryptors as follows.

The game proceeds in a series of steps. In each step the
adversary sends the encryptor instructions for what it wants
computed along with a (possibly empty) sequence of plaintext
blocks. Irrespective of whether it is real or random, the
encryptor checks that the request is valid according to the
definition of the cryptosystem. If it is not, the game is aborted.
If the request is valid, the real encryptor returns the encrypted
blocks specified by the cryptosystem, at the specified times.
The random encryptor returns the same number of blocks
at the same times as the real encryptor, but the blocks are
independently and uniformly randomly chosen. At any time
the adversary may halt the game and guesses whether it is
interacting with the real or random encryptor, outputting 1 if
it guesses the real encryptor, and 0 if it guesses the random
one. We say that Af (1λ) = 1 if the adversary outputs 1
when interacting with the real encryptor, and A$(1λ) = 1
if the adversary outputs 1 when interacting with the random
encryptor.

Definition VI.1. Let C be a MOO⊕ cryptosystem. We say that
C is IND$-CPA secure if the following is a negligible function
of the security parameter λ for all probabilistic polynomial-
time programs A:

|Pr(Af (1λ) = 1)− Pr(A$(1λ) = 1)|

If we attempt to prove IND$-CPA security directly,
however, we run into complications. For example, con-
sider the case in which the encryptor sends the strings
8f(f(a))8, 8f(f(b))8, and 8f(b)8 to the adversary, who ob-
serves that 8f(f(a))8 6= 8f(f(b))8. This leaks a little bit
of information about 8f(a)8, namely that it is not equal to
8f(b)8. Thus, if the the adversary later needs to solve the
equation x = 8f(a)8, the probability of its guessing correctly
is not 1/2λ but at least 1/(2λ − 1). In order to get an actual
upper bound, it appears that we would need to at least get an
estimate of the number of leakages of this kind.

Instead of doing that, we construct a simpler game in
which proving IND$-CPA security is easier, and prove that
the original IND$-CPA game is indistinguishable from the
simpler game, using an “identical-until-bad” argument. The
only difference between the two games is the way in which f
is computed. In the original game, which we will call Gstr,

f is a random function from bitstrings to bitstrings. In the
second game, which we will call Gsymb, f is a function from
symbolic terms to bitstrings.

Before we can work with these two games, we need to
give more information about how the encryptors in Gstr and
Gsymb work. In the following, we say “the encryptor” when
both encryptors behave the same way. Otherwise we identify
the encryptor as a Gstr or a Gsymb encryptor.

The encryptor maintains a symbolic history H describing its
interaction so far with the adversary, as well as two databases
that describe the output 8σH8. The first database, DBI , stores
the plaintext blocks sent by the adversary and the second,
DBO, stores results of the random functions computed by
the encryptors.
DBO contains two types of tuples. The first are of the form

[instr,F, outstr] where F is a set of symbolic f -rooted terms.
Thus, if f(s) is an element of F, instr denotes 8σs8, the
input of f , and outstr denotes the string returned by f(instr).
The second are of the form [ri, 8ri8], where ri is a bound
variable and 8ri8 is a bitstring chosen uniformly at random.
The database DBI consists of tuples of the form [x, 8σx8],
where x is a free variable, and 8σx8 is the output of σx,
where σ is the substitution computed by the adversary. We
also assume that at the beginning, H, DBO and DBI are
all empty. They are extended by the encryptor as the protocol
evolves.

We now describe the computations made by the encryptors.
Suppose that an encryptor, whether real or random, receives
an input 8σI8 from the adversary, and it is required to return
8σO8. It performs the following steps for each variable or f -
rooted term t = f(s) ∈ Sub(O) , that has not been computed
already, computing each bitstring 8σs8 such that s is a proper
subterm of t before computing 8σt8.

1) If I = x, where x is a free variable, it stores [x, 8σx8]
in DBI . If I is empty, it skips this step.

2) For any bound variable r ∈ Sub(O) such that there is no
tuple [r, str] in DBO, it choses a λ-length bitstring str′

uniformly at random and stores it as [r, str′] in DBO.
3) For each f(t) ∈ Sub(O) such that there is not already a

tuple [a,W, b] in DBO with f(t) ∈W, the encryptor
computes instr using the outputs stored in DBI and
DBO. That is, if

t = (

m∑
i=0

⊕αixi)⊕ (

n∑
j=1

⊕βiri)⊕ (

q∑
j=1

⊕γif(si))

then for each αi 6= 0 (respectively, βi 6= 0, γi 6= 0
the encryptor finds [xi, 8σxi8] ∈ DBI (respectively,
[ri, 8ri8] ∈ DBO, [instr,W, outstr] ∈ DBO such that
f(si) ∈W), and computes the exclusive-or sum of the
final bitstrings of each tuple found.

4) We now reach the place where Gstr and Gsymb differ.
a) If there is already a tuple [instr,F, outstr] ∈

DBO, the Gstr encryptor replaces it with
[instr,F ∪ {f(t)}, outstr]. Otherwise, it picks a

random λ-length bitstring outstr′ and stores
[instr, {f(t)}, outstr′] in DBO.

b) The Gsymb encryptor always picks a
random λ-length bitstring outstr and stores
[instr, {f(t)}, outstr] in DBO.

5) The encryptor uses the output values stored in DBI and
DBO to construct 8σO8, and returns it to the adversary.

Example VI.1. We can model the attack described in Example
I.1 using the Gstr encryptor as follows.

1) The adversary sends the encryptor a request for the
initialization vector r1. The encryptor sets H equal to
r1. The encryptor computes a random bitstring outstr0

and stores [{r1}, outstr0] in DBO, and sends outstr0

to the adversary.
2) The adversary computes 8σx18 = 0λ and sends it to the

encryptor, along with {x1}.{f(x1 ⊕ r1)} The encryptor
sets H = r1.x1.f(x1 ⊕ r1). It then stores [x1, 0

λ] in
DBI . It then chooses a random bitstring outstr1 and
sets

8σ1f(x1 ⊕ r1)8 = 8f(0⊕ r1)8 = f(outstr0) = outstr1

and stores [outstr0, {f(x1 ⊕ r1)}, outstr1] in DBO.
Finally, it returns 8f(r1)8 = outstr1 to the adversary.

3) The adversary computes 8σx28 = 8r1 8 ⊕ 8 f(r1)8 =
outstr0 ⊕ outstr1 and sends it to the encryptor, along
with the sequence x2.f(x2 ⊕ f(x1 ⊕ r1)). H is updated
by the encryptor as before. The encryptor computes
8σ(x2 ⊕ f(x1 ⊕ r1))8 = 8r1 8⊕ 8 f(r1) 8⊕ 8 f(r1)8 =
outstr0 ⊕ outstr1 ⊕ outstr1 ⊕ outstr0. It
finds the tuple [outstr0, {f(x1 ⊕ r1)}, outstr1]
in DBO, which it replaces with
[outstr0, {f(x1 ⊕ r1), f(x2 ⊕ f(x1 ⊕ r1))}, outstr1].
It then sends outstr1 to the adversary.

We note that such an attack is not possible when the Gsymb
encryptor is used. In that case the strings returned by the
encryptor will be independently randomly generated, since the
symbolic terms r1, f(x1 ⊕ r1) and f(x2 ⊕ f(x1 ⊕ r1) are all
different.Indeed, as we shall see, in most cases the output of
the Gsymb encryptor is random, and the cases that are not can
be identified by checking whether or not the sum of certain
symbolic terms sent in a history sum to zero.

We note that the Gstr encryptor, when computing the output
of a term f(t), chooses a new output string uniformly at
random if and only if 8σt8 is a new bitstring input for f , while
the Gsymb encryptor chooses a new output string uniformly
at random if and only f(t) is a new symbolic term. Thus the
function f used by the Gstr encryptor is a random function
from bitstrings to bitstrings, while the f used by the fsymb
is a function from symbolic terms to bitstrings. Moreover,
their behavior only differs in the case that 8σs8 = 8σt8 but
s 6= t. We can thus write “identical-until-bad” programs for
fstr and fsymb, shown in pseudocode in Algorithm 1, where
the underlined code after bad is set to 1 is executed by the
Gstr encryptor.

Algorithm 1 Algorithm for Gstr and Gsymb computation of
f

1: if t = f(s) and there is no [a,U, b] ∈ DBO such that
f(s) ∈ U then

2: W← ∅
3: Construct instr = 8σs8 from DBO and DBI
4: outstr ←$ {0, 1}λ
5: if ∃F, outstr1 s.t. [instr,F, outstr1] ∈ DBO then
6: bad ← 1
7: outstr ← outstr1
8: W← F
9: DBO ← (DBO \ {[instr,F, outstr1]})

10: end if
11: DBO ← DBO ∪ {[instr,W ∪ {f(s)}, outstr]}
12: end if

Thus, by the fundamental lemma of game-playing [5],
the probability of the adversary’s being able to distinguish
between the use of the fstr and fsymb functions in constructing
H is bounded by the probability that bad is set to 1 in
either of them. This only happens when 8σu8 = 8σv8, where
f(u), f(v) are subterms of terms returned by the encryptor,
so we will concentrate on estimating the probability of this
occurring when the fsymb function is used.

B. Symbolic Criterion and Proof of its Sufficiency of IND$-
CPA Security

We first give some definitions that will allow us to define
the symbolic condition. We begin by defining a canonical form
for elements of Sub(H).

Definition VI.2. Let H be a symbolic history, and suppose
that v is the exclusive-or of non-⊕-rooted elements of Sub(H)
We say that v is in H-canonical form if

v = (
∑̀
i=0

⊕αixi)⊕ (

k∑
i=0

⊕βigi)

where:
1) Both

∑`
i=0⊕αixi and

∑k
i=0⊕βigi are in ⊕ normal

form.
2) Each gj is either a bound variable or f -rooted term from

Sub(H).
3) Each xi is the ith free variable chosen by the adversary.
4) Each αi (respectively βi) is either 0 or 1, and if at least

one αi = 1 then α` = 1. In that case we call x` the
leading free variable of v.

If the H-canonical form of v has a leading free variable x`,
we call

σx` = (

`−1∑
i=0

⊕αixi)⊕ (

k∑
i=0

⊕βigi)

the H-ordered substitution derived from v. (Recall from
Remark III.1 that, that this notation means that σ is the identity
on x1 through x`−1.)

We often denote the H-canonical form of a term as X⊕G,
where X is either zero or the sum of free variables, and G is
either zero or the sum of bound variables and f -rooted terms.
If a term is known to have a leading free variable x`, we may
also write its H-canonical form as x` ⊕X⊕G.

Now, we define a relation between free variables and ⊕
sums of elements of RH that will tell us what kind of
substitutions an adversary can make to the free variables in
H.

Definition VI.3. Let H be a symbolic history
νR[I1.O1.Ik.Ok]. We define <H between sums G
of bound variables and f -rooted terms appearing in H, and
the free variables x appearing in H as follows. First, let ` be
the integer such that I` = {x}. We say G <H x if and only
if either G = 0, or G =

∑m
i=1⊕Gi such that for each Gi,

either Gi ∈ Oj for some j < `, or there is an Xi such that
Gi ⊕Xi ∈ Oj for some j < `;

In other words, G <H x if and only the adversary is able
to compute 8σG8 from information it has received from the
encryptor before computing and sending 8σx8. We say that
X⊕G <H x if G <H x, and X is the ⊕ sum of free
variables sent by the adversary in H before x.

Now, we are able to define safe and unsafe:

Definition VI.4. Let H be a symbolic history, and let f(u1)
and f(u2) be two different f -rooted elements of Sub(H).We
say that (f(u1), f(u2)) is unsafe with respect to H if the
H-canonical from of u1 ⊕ u2 is x` ⊕X⊕G, where either
G = 0 or G <H x`, and that is is safe otherwise.

We say that a symbolic history H is unsafe if there are
two terms f(u1) and f(u2) in H such that (f(u1), f(u2)) is
unsafe with respect to H, and that it is safe otherwise. We
say that a MOO⊕ cryptosystem is unsafe if it is possible to
construct an unsafe symbolic history for it, and that it is safe
otherwise.

In addition we say that a substitution σx` = X ⊕ G
is computable if G <H x` and X +

∑ell−1
i=1 αixi and non-

computable otherwise, and that the equation u1 =⊕ v1 is
solvable if (f(u1), f(u2)) is unsafe.

Example VI.2. Consider blockwise CBC as shown in Exam-
ple I.1. Consider the symbolic history

H = νr[∅.r.x1.f(x1 ⊕ r).x2.f(x2 ⊕ f(x1 ⊕ r))]

The H-canonical form of the sum of the arguments of
the two f -rooted terms in H is x1 ⊕ x2 ⊕ r⊕ f(x1 ⊕ r)
with x2 the leading free variable. We have x2 >H r and
x2 >H f(x1 ⊕ r), and so H is unsafe.

Before we give the main theorem of this section, we
state and prove the following straightforward consequence of
unsafeness.

Proposition VI.1. Let H be an unsafe symbolic history, and
let (f(u1), f(u2)) be an unsafe pair with respect to H. There
is an adversary that can compute σ such that 8σu18 = 8σu28
with probability 1, in both Gstr and Gsymb.

Proof. Let X⊕G be the H-ordered canonical form of u1 ⊕
u2. If G = 0 then the adversary can solve 8σu18 = 8σu28
by setting 8σx8 = 0 for all x ∈ X. Otherwise, suppose
G 6= 0. Then we can write the H-ordered canonical form
as x` ⊕X⊕G where x is the leading free variable. By
definition of unsafeness, x` >H G and so the adversary is
able to learn 8σG8 from the information it has received from
the encryptor before it computes 8σx`8. Thus, we can let
σx` = σG and σx′ = 0 for all summands x’ of X, to obtain
8σx` ⊕X ⊕G8 = 0 with probability 1.

We now lay the groundwork for an indistinguishability
result for safe cryptosystems. The following lemma allows us
to put a bound on the probability of bad occuring in either
Gstr or Gsymb.

Lemma VI.1. Suppose that a MOO⊕ cryptosystem C is safe.
The probability, for a given symbolic history H, that bad is
set to 1 for security parameter λ in either Gstr or Gsymb
is bounded by qH(qH − 1)2−λ−1, where qH is the number
of function calls to fstr (respectively to fsymb) made by the
encryptor while executing H.

Proof. We compute the bound for Gstr or Gsymb; it will be
the same for Gstr. The probability that bad is set to one is
the probability that there are two terms f(u1) and f(u2) such
that 8σu1 ⊕ u28 = 0. We break the proof down into two cases,
depending on the H-canonical form of v.

1) The H-canonical form of u1 ⊕ u2 is G where G 6= 0
2) The H-canonical form of u1 ⊕ u2 is x` ⊕X⊕G,

where G 6= 0 and G 6≤H x`

To compute the probability of a collision in the first case, we
use the fact that, by the construction of the Gsymb encryptor,
8σG8 is the exclusive-or of independently uniformly randomly
generated strings, and thus is itself independently uniformly
randomly generated. Thus, the probability that 8G8 = 0 is
2−λ. For the second case, we use in addition the fact that the
adversary has not received the output of σG or any function of
the output by the time it computes σx`. Thus, the probability
that 8σx`8 = 8σ(X ⊕G)8 is again 2−λ. Summing over all the
possible pairs of f -rooted terms, we get a bound of qH(qH −
1)2−λ−1.

We are now almost in a position to prove a result about
IND$-CPA security. But first we need the following definition,
which allows us to rule out trivially insecure systems.

Definition VI.5. We say that a symbolic history
H is degenerate if there there is a subsequence
D = X1 ⊕G1.Xk ⊕Gk of the sequence of terms
returned by the encryptor in H such that

∑k
i=1⊕Gi =⊕ 0.

We note that even obviously insecure modes can be
nondegenerate. Consider for example Electronic Codebook
(ECB) mode, in which every symbolic history is of the
form [x1.f(x1).x2.f(x2).xk.f(xk)]. Degeneracy in this
case would require that some sum

∑`
i=1⊕f(xji) = ⊕0,

where a 6= b implies that ja 6= jb. On the other hand,

any mode that can produce a symbolic history of the
form νr1.r2[r1.x1.x1 ⊕ r1 ⊕ r2.r2.x2.x2 ⊕ r2] is degener-
ate, r2 ⊕ r2 = ⊕0.

Remark on Notation VI.1. In the following, we will need
to represent the output of both the Gstr and the Gsymb
encryptors. Let X⊕G be a term in H-canonical form for
some symbolic history H, and let σ be a substitution computed
by the adversary. As we recall, the output of the Gstr encryptor
is represented as 8σX ⊕ σG8. However, in the case of Gsymb,
the function f is applied to symbolic terms, not strings. Thus
we represent the output of the Gstr encryptor as 8σX ⊕G8

Lemma VI.2. 1) Whether or not the Gstr or Gsymb is
used, no degenerate cryptosystem is IND$-CPA secure.

2) If a cryptosystem is nondegenerate, then for any sym-
bolic history H, and any substitution σ, the ciphertext
returned by the Gsymb encryptor is a random string.
That is, the Gsymb encryptor is also a random encryptor.

Proof. We first note that, for both encryptors, the 8.8 operator
is homomorphic over ⊕. To prove 1), let H be a symbolic
history with subsequence D = X1 ⊕G1.Xk ⊕Gk such
that

∑k
i=1⊕Gi =⊕ 0. Then, for any substitution σ computed

by the adversary, we have from this fact and the homomorphic
property of the 8.8 operator, that

8(

k∑
i=1

⊕σXi)⊕
k∑
i=1

⊕Gi8 = 8
k∑
i=1

⊕σXi8

when the Gsymb encryptor is used and

8(

k∑
i=1

⊕σXi)⊕
k∑
i=1

⊕σGi8 = 8
k∑
i=1

⊕σXi8

when the Gstr encryptor is used. Since all the σXi are
computed before the adversary receives the final ciphertext
block from the encryptor, this means that the adversary is able
to predict the value of the sum of the ciphertext blocks with
probability 1, before it has seen all the summands.

To prove 2) suppose that the terms returned by the en-
cryptor in H are X1 ⊕G1.Xk ⊕Gk, and that no subse-
quence G1.⊕Gk sums to zero. Then 8G18, . . . , 8Gk8
are independently uniformly generated random strings, and
thus, by the homomorphic property of 8.8, 8σX1 ⊕G1 8
. 8 σXk ⊕Gk8 is a uniformly generated random string
as well.

We now show that any safe, non-degenerate MOO⊕ cryp-
tosystem is IND$-CPA secure. First, we show that, for any
non-degenerate cryptosystem, the output of the fsymb encryp-
tor is a random string of bits. That is, in this case, the Gsymb
encryptor also serves as a random encryptor.

Lemma VI.3. Let H be a non-degenerate symbolic history for
a MOO⊕ program C. Then, for any substitution σ, the output
of the Gsymb encryptor in 8σH8 is a uniformly distributed
string. In particular, if C is a nondegenerate cryptosystem,
every output of the Gsymb encryptor is a uniformly distributed

string. In other words, the adversary has zero advantage in
distinguishing between the Gsymb encryptor and the random
encryptor.

Proof. Let the terms returned by the encryptor
in H be {X1 ⊕ G1; · · · ; Xk ⊕Gk}. Let σ be
a substitution computed by the adversary, and let
{8σX1 ⊕ σG18, · · · , 8σXk ⊕ σGk8} be the output of
the encryptor in Game Gsymb. By the hypothesis there is no
⊕ equation satisfied by the terms Gi, so the blocks 8σGi8 are
independently uniformly randomly distributed. Moreover, also
by the hypothesis, the adversary has no advance knowledge
of Gi by the time it needs to compute σ on the leading
variable of Xi ⊕ Gi. Thus the bitstirngs 8σXi ⊕ σGi8 are
independently uniformly distributed as well, and so the
sequence of bitstrings is a uniformly distributed random
string.

Theorem VI.1. Any safe, non-degenerate MOO⊕ cryptosys-
tem is IND$-CPA secure. In particular, the adversary’s advan-
tage in distinguishing the between the real and the random
encryptor is bounded by q(q − 1)2−λ−1, where q is the
maximum number of calls to f made by the encryptor.

Proof. The bound follows from the fact that by Lemma VI.1
the advantage of the adversary in distinguishing between
the Gstr encryptor and the Gsymb encryptor is bounded
by q(q − 1)2−λ−1 and by Lemma VI.3 its advantage in
distinguishing between the Gsymb encryptor and the random
encryptor is 0. IND$-CPA security then follows from the fact
that the maximum number of calls made by the encryptor to
f is bounded by a polynomial function of λ.

We illustrate these results with an example.

Example VI.3. Consider messagewise CBC encryption, in
which ciphertext is not sent to the adversary until all the
plaintext blocks have been received. Let H be a symbolic
history. Since all the terms in any symbolic history of CBC
are different, CBC is nondegenerate. We now let f(u1)
and f(u2) be two different f -rooted terms appearing in H.
Without loss of generality we may assume that f(u1) is sent
to the adversary before f(u2). Then by the definition of CBC
encryption we have ui = xi ⊕ gi, where gi is either ri or
f(vi). Since gi is not sent to the adversary until after it
sends xi, we have no variable summand of the H-canonical
expression x1 ⊕ x2 ⊕ g1 ⊕ g2 such that xi >H g1 ⊕ g2. It
follows that H is safe. Thus CBC encryption is messagewise
IND$-CPA-secure.

VII. NECESSARY AND SUFFICIENT CONDITIONS FOR
IND$-CPA SECURITY

In the previous section we showed that safety is a sufficient
condition for IND$-CPA security of a MOO⊕ cryptosystem.
However, it is it is not necessary. In this section we show
how safety can be used both to define a symbolic condition
on sequences of unsafe pairs that is necessary and sufficient
for IND$-CPA, and to prove its necessity and sufficiency.

First, we show that it may be possible for unsafe pairs
to exist in a cryptosystem and for the output to still be
indistinguishable from random.

Example VII.1. Let C be a MOO⊕ cryptosystem that
encrypts four-block long messages x1,x2,x3,x4, according
to the symbolic history HC below:

HC =r3.x1.x2.f(x1 ⊕ r1)⊕ f(x2 ⊕ r2).r1.x3.x4.

f(x3 ⊕ r3)⊕ f(x4 ⊕ r4)r2.r4

HC contains an unsafe pair (f(x1 ⊕ r1), f(x3 ⊕ r3)) with
a computable unifier σx3 = x1 ⊕ r1 ⊕ r3, giving us

σHC =⊕r3.x1.x2.f(x1 ⊕ r1)⊕ f(x2 ⊕ r2).r1.x4

f(x1 ⊕ r1)⊕ f(x4 ⊕ r4).r2.r4

(leaving out σx3, which is now redundant). We note that the
encryptor’s output in σHC is indistinguishable from random,
because it is nondegenerate and because every pair of f -rooted
terms is safe. Indeed, every encrypted block is ”protected” by
an f -rooted term that does not belong to an unsafe pair, even
after other unsafe pairs are unified. Suppose moreover that
multiple copies of σHC with fresh variables are interleaved
to obtain a symbolic history H′. Consider any pair of terms
(y ⊕ a) and (z⊕ b) and assume, without loss of generality,
that (z⊕ b) is sent either in the same term as (y ⊕ a) or in
a later one. Then b will not be sent to the adversary until
after it has sent both y and z to the encryptor. Thus the pair
{(y ⊕ a), (z⊕ b)} is safe.

On the other hand, it is also possible for an unsafe symbolic
history to fail to be IND$-CPA secure, even though unification
of a single unsafe pair does not result in a degenerate history.
That it is, we might require first an unsafe pair, then a
substitution unifying the members of the unsafe pair that
produces another unsafe pair, and so on.

Example VII.2.

H =x1.r1.r2.x2.f(f(x1 ⊕ r1)⊕ f(x2 ⊕ r2)).

r3.x3.f(x3 ⊕ r3)

Note that {f(f(x1 ⊕ r1)⊕ f(x2 ⊕ r2)), f(x3 ⊕ r3)} is a
safe pair. However, {f(x1 ⊕ r1), f(x2 ⊕ r2)} is an unsafe
pair, with H-unifier σx2 = x1 ⊕ r1 ⊕ r2. Making the sub-
stitution, and removing the now redundant variable x2 sent
by the adversary, we have the sequence:

σH =⊕x1.r1.r2.f(fx1 ⊕ r1)⊕ f(0).r3.x3.f(x3 ⊕ r3)

where {f(f(σx1 ⊕ r1)⊕ f(σx2 ⊕ r2)), f(σx3)⊕ r3)} =
{f(0), f(x3 ⊕ r3)} is an unsafe pair in σH, with σH-unifier
πx3 = r3. The resulting symbolic history is degenerate:

πσH =⊕x1.r1.r2.f(0).r3.x3.f(0)

In the rest of this section, we describe a symbolic condition
on sequences of unsafe pairs that is necessary and sufficient

for IND$-CPA, and we prove its necessity and sufficiency. We
first get some necessary definitions out of the way.

Definition VII.1. Let H be a symbolic history, and let π
be a symbolic substitution on the variables of H. We define
Γ(H,π) to be the sequence of terms constructed from πH in
the following way:

1) If x is sent by the adversary in H such that π is not
the identity on x, remove πx from the list of plaintext
blocks sent by the adversary.

2) Reduce all terms in πH to ⊕ normal form.

We define unsafe(π,H) to be the set of pairs {f(u), f(v)}
such that f(u) and f(v) are elements of Sub(H),
{πf(u), πf(v)} is unsafe with respect to Γ(H,π), and
πu 6=⊕ πv.

We are now ready to define the idea of a solvable sequence,
which is a key tool used in the proof of the main theorem of
this paper.

Definition VII.2. Let C be a MOO⊕ cryptosystem, and let H
be a symbolic history associated with C. Let L be a sequence
of pairs {f(u), f(v)} such that f(u) and f(v) are elements
of Sub(H). We say that L is a solvable H-sequence and that
the substitution π is its solution if L is either empty, in which
case π is the identity, or it is constructed the following way:

Suppose that (L is a solvable H-sequence. If
unsafeπ,H 6= ∅, pick an element {f(u), f(v)} from it, and
let x` ⊕X⊕G be the Γ(H,π)-canonical form of {πu⊕ πv}.
By the definition of unsafe we have x` >Γ(H,π)

G. Let
τx` = X⊕G. Then (L.{f(u), f(v)}) is also a solvable
H-sequence, with solution τπ.

We say that (L) with solution π is a maximal solvable
H-sequence if unsafeπ,H = ∅.

We note that by construction any solvable sequence L
has one and only one solution, which we can thus de-
note as πL. We also note however, that some solvable
sequences can give the same solution. Consider the sym-
bolic sequence r.x1.f(x1 ⊕ r).x2.f(x2 ⊕ r).f(x1 ⊕ x2). We
note that both L1 = {f(x1 ⊕ r), f(x2 ⊕ r)} and L2 =
{f(x1 ⊕ r), f(x1 ⊕ x2)} are solvable sequences, and they
both have they same solution, πLx2 = x1.

Definition VII.3. Let H be a symbolic sequence. We define
solve(H) to be the set of substitutions π such that π = πL for
some solvable H sequence L.

In the following example, we show that the first equation
in a solvable H sequence is not necessarily the one with the
earliest leading variable.

Example VII.3. Consider a symbolic history
H = [r0.f(0).x0.x1.f(x0 ⊕ f(x1 ⊕ r0))]. Let L be the
sequence {[{x1 ⊕ r0,0}.{x0 ⊕ f(x1 ⊕ r0),0}]. Then
{f(0), f(x1 ⊕ r0)} is unsafe, and if we let πx1 = r0, then

[r0.f(0).x0.x1.f(x0 ⊕ f(πx1 ⊕ r0)] = (1)
[r0.f(0).x0.x1.f(x0 ⊕ f(x0 ⊕ r0))]

which gives an unsafe pair {f(0), f(x0 ⊕ f(0))}with unifier
πx0 = f(0). An adversary would implement this by first
sending 8πx08 = 8f(0)8 to the encryptor, anticipating that
it will later send 8πx18 = 8r08.

Lemma VII.1. If L is a solvable sequence, then πL is com-
putable. Moreover, for any free variable x` , πL is either the
identify on x` , or equal to X⊕G such that , X⊕G <H x`,
and πL is the identity on any variable appearing in X⊕G.

Proof. Suppose that xi is the first variable sent by the
adversary so that πL is not the identity on xi. Suppose
that πLxi = πLX⊕ πLG. Then, by the definition of πL,
there is a term Y ⊕Q, such thatY ⊕Q <H xi such that
LX⊕ πLG = πLY ⊕ πLQ. But by assumption piL is the
identity on Y ⊕Q, since they cannot contain any variables
sent after x`. So πLxi = Y ⊕ πLQ,

Suppose now that πL satisfies the conditions of
the lemma for x1 through xk. Then by construction,
πLxk+1 = πLX⊕ πLG wherexk+1 >H X⊕G. This means
in particular that X =

∑k
i=1⊕αixi. By hypothesis, πLxi also

satisfies properties stated in the lemma for 1 ≤ i ≤ k, and
thus πL is the identity on any variable in Xi and Gi. Thus,
we obtain πLxk+1 = X′ ⊕G′, where X′ ⊕G′ < Hxk+1,
and πL is the identity on any variable appearing in X′ ⊕G′.
We conclude by induction on k that πL satisfies the conditions
of the lemma.

Adversarial strategies, as we shall see, can be closely
related to solvable sequences and their solutions , because they
provide the only place in which the adversary has a choice as
to whether or not to unify two f -rooted terms. Given a solvable
sequence L, with solution πL the adversary can choose to
unify all pairs in that sequence, but not to unify any unsafe
pairs in πH that are not unified by πL. As it turns out, it is
possible to consider any adversary as a collection of simpler
adversaries who follow exactly this policy, each one for for a
different member of solve(H). The following definition and
lemma will allow us to do that.

Definition VII.4. Let H be a symbolic history with compu-
tational realization H . Put a total order < on the elements of
solve(H). If σ is a substitution to the free variables in H and
π ∈ solve(H) we define the substitution σπ as follows:

1) First compute 8σH8.
2) Output 8σH8 if and only if

a) 8σf(u)8 = 8σf(v)8 for all pairs {f(u), f(v)}
such that σf(u) = σf(v)};

b) 8σf(u)8 6= 8σf(v)8 if πf(u) 6= πf(v) but
{(σf(u), σf(v))} is an unsafe pair with respect to
πH, and;

c) There is no π′ ∈ solve(H) such that π′ < π and
a) and b) also hold for π′.

3) Otherwise output ⊥.

Lemma VII.2. Let H be a symbolic history, let σ be a
substitution to the variables of H, and let n be the number of
blocks sent in H. For any set C of bitstrings of length λ · n,
we have

Pr(8σH8 ∈ C) =∑
π∈solve(H)

(Pr(8σπ 6= ⊥) ∧ (8σπ 8H8 ∈ C)) =

∑
π∈solve(H)

Pr(8σπH8 6= ⊥)·

Pr((8σπH8 ∈ C) | (8σπH8 6= ⊥))

Moreover, for any π ∈ solve(H), we have 8σπH8 =
8σππH8 whenever 8sigmaπ8 6= ⊥.

Proof. The equalities follow straightforwardly from the ob-
servation that any output 8σH8 could have been output by a
substitution σπ for one and only one element π of solve(H).
The last statement follows from the fact that when 8σπ8 6= ⊥ it
satisfies all the equations induced by π, so nothing is changed
by solving these equations first and then applying σπ to the
remaining variables.

Theorem VII.1. Let C be a MOO⊕ cryptosystem, such
that for every symbolic history H, and every π ∈ solve(H),
Γ(H,π) is nondegenerate. Then the adversary’s advantage in
the IND$-CPA-game is negligible. In particular, it is bounded
by q(q − 1)2−λ−1, where q is the maximum number of calls
the encryptor may make to the f function.

Proof. Let H be a symbolic history, and let n be its length,
and let σ be the substitution computed the adversary. Let C be
the set of possible outputs of σH exhibiting a collision. If we
can show that PR((8σπH8 ∈ C) | (8σπH8 6= ⊥)) ≤ q(q −
1)2−λ−1 for any π ∈ solve(H), we than have, by Lemma
VII.2:

Pr(8σH8 ∈ C) ≤∑
π∈solve(H)

Pr(8σπH8 6= ⊥) · q(q − 1)2−λ−1 =

(
∑

π∈solve(H)

Pr(8σπH8 6= ⊥)) · q(q − 1)2−λ−1 =

1 · q(q − 1)2−λ−1 =

q(q − 1)2−λ−1

Thus, it is enough to show that, for any H, any π ∈
solve(H), and any substitution σ to the free variables of H ,
Pr((8σπH8 ∈ C) ≤ q(q − 1)2−λ−1whenever 8σπH8 6= ⊥.
We also note that, again by Lemma VII.2 we have 8σπ8 =
8σππ8 wherever σπ 6= ⊥, so it is enough to prove the bound
when we replace H with Γπ and work with the cryptosystem
C(H,π).

As before, we will compare the games Gstr and Gsymb.
Since by assumption Γ(H,πL) is nondegenerate, the output
of σ(H,πL)Γ(H,πL) is a randomly generated string by Lemma
VI.3. Thus, all we have to do to show that the bound holds is
to show that it also bounds the probability of bad occurring
in Gsymb when the substitution σ(H,πL) is used.

We note that by definition πLu = πLv when
(f(u), f(v)) ∈ L, and, if (f(u), f(v) ∈ unsafe(Γ(H,πL))
then 8σ(H,L,π)u8 6= 8σ(H,L,π)v8 with probability 1. Thus,
bad can happen if and only if 8σ(H,πL)u8 = 8σ | (H,πL)v8
where (f(u), f(v)) is safe with respect to Γ(H,πL). But in that
case the probability that 8σ(H,πL)u8 = 8σ(H,πL)v8 is 2−λ.
Thus the probability of bad occurring in the construction of
8σ(H,L,πL)H8 is bounded above by q(q − 1)2−λ−1 where q
is the maximal number of f -rooted terms computable by the
encryptor. It follows from Lemma VII.2 that the adversary’s
advantage in distinguishing Gstr from Gsymb is also bounded
by q(q − 1)2−λ−1. The conclusion that the adversary’s
advantage is negligible follows from the assumption that the
encryptor is polynomial time, so the maximal number of calls
to the f function must be bounded by a polynomial function
of λ.

The following corollary of Theorem VII.1 gives us an equiv-
alent formulation of the necessary and sufficient conditions for
IND$-CPA security that may be easier to apply.

Corollary VII.1. A MOO⊕ cryptosystem is IND$− CPA
secure if and only if it admits no symbolic history H and
computable substitution σ such that there is a subsequence
C1, . . . ,Ck of the ciphertext blocks returned by the encryptor
such that

∑k
i=1 σCi = 0.

Proof. We show that the above is equivalent to there being no
history H with substitution π ∈ solve(H) such that Γ(H,π) is
degenerate.

Suppose that there is a history H and substitution
π ∈ solve(H) such that Γ(H,π) is degenerate. Then there
is a subsequence X1 ⊕G1, . . .Xk ⊕Gk of the terms re-
turned by the encryptor in Γ(H,π) such that

∑k
i=1 πGi = 0,

where π is the identity on the variables appearing in
X1 ⊕G1, . . .Xk ⊕Gk. By Lemma VII.1 π is computable for
any x and is either the identity on x or is the form X⊕G,
where X⊕G <H x, and π is the identity on all variables
appearing in X and G. Let σ be the substitution such that
σx = 0 if π the identity on x, and σ is the identity otherwise.
Then, σX1 ⊕ σG1, . . . , σXk ⊕ σGk = ⊕σG1, . . . , σGk

which sums to zero because G1, . . . ,Gk sums to zero. Thus
σπ has the desired properties.

Conversely, suppose that there is a computable substi-
tution τ and a subsequence X1 ⊕G1, . . .Xk ⊕Gk such
that τX1 ⊕ τG1, . . . τXk ⊕ τGk sums to zero. Let W
be the sets of pairs (f(ui), f(vi)) unified by τ . Then
the pairs in W can be ordered in a solvable sequence
L, and τ = ρπL, where πLX1 ⊕ πLG1, . . . πLXk ⊕ πLGk

sum to zero. By Lemma VII.1, for any free variable x`

, piL is either the identity on x` , or piLx` = X⊕G
such that X⊕G <H x` and πL is the identity on any
variable appearing in X ⊕ G. Using this, we can write
the sequence as X′1 ⊕G′1 ⊕ πLG1, . . .X

′
k ⊕G′1 ⊕ πLGk

where X′i ⊕G′i = πLx, Xi ⊕G′i <H xi,` and πL is the
identity on all variables in Xi ⊕G′i. Moreover, since the
X′i ⊕G′i ⊕ πLGi sum to zero, we have that the X′i sum
to zero, and the G′i ⊕ πLGi sum to zero. Thus Γ(H,π) is
degenerate.

VIII. EXTENDING RESULTS TO MODES USING
ADDITIONAL FUNCTIONS

We have proven results for modes making use of a minimal
number of operations, but of course many modes use more
than that. Here we discuss some other operations and prop-
erties of modes, and how they might be handled using the
approach developed in this paper.

a) Hash Functions: These would be modeled as random
functions, although functions computable by the adversary as
well as the encryptor.

b) Increment by One: This is a function that is used,
for example in Counter Mode to provide variability of ci-
pher blocks. If s is a λ-bit bitstring, then the increment-by-
one function computes s + 1 modulo λ. This inc function
can generally be modeled as a free unary function symbol.
However, there are some pitfalls when other field or group
operations are used. For example, consider the case when
⊕ and inc are used in the same cryptosystem. Then, for a
randomly chosen string s, inc(s) = s⊕1 with probability 1/2,
leading to potential attacks. This can be avoided by putting
the appropriate constraints on the use of ⊕ and inc in the
same term, as is done by Malozemoff et al. in [12]. Since our
conditions on MOE⊕ unification when only ⊕ is used already
lead to constraints, we can potentially deal with these new
constraints the same way we do the original ones. However,
in the case that a constraint is violated it may be harder to tell
whether or not security is also violated.

c) Finite Field and Group Operations: If only one of
these operations is used, these should be fairly straightforward
to deal with (although avoiding the divide-by-zero problem
in the finite field case may be an issue). However, the same
issues crop up as in Increment by One and ⊕ if more than
one is used: two terms that are not equal in the term algebra
may have computational interpretations that are not equal with
non-negligible probability. Thus, similar constraints will be as
in the Increment by One case will need to be used.

d) Concatenation: Concatenation has generally been dif-
ficult to reason about symbolically. For one thing, there are
constraints on length that need to be met. The concatenation of
two λ-length blocks is not another λ-length block. Moreover,
concatenation is associative, a difficult property to reason
about when the strings concatenated can be any length; one
may end up with an infinite set of results. However, in modes
(and other cryptosystems), the number of possible lengths
of strings to be concatenated is fairly small, and it may be

possible to treat terms with lengths as a kind of type system.
This should make the problem more tractable.

e) Block Ciphers With Tweaks: Many block ciphers are
not deterministic; they have tweaks [11] that are used to
provide variability of ciphertext output, so that this is no longer
the responsibility of the mode. A tweak is generally known
to the adversary, however, and may even be predictable. The
main criterion is that no two tweaks be the same. This is
something we can model in our approach by introducing a
new quantifier µ, such that no two variables quantified by µ
may be the same, and two µ would be mapped to two different
non-random bitstrings.

f) Decryption : In this paper, we have ignored decryption
and concentrated on secrecy. However, it is necessary that any
encryption algorithm should have the property that plaintext
can be recovered from ciphertext by some algorithm that is
able to compute the inverse of the block cipher. Since the
probability of such an algorithm succeeding should be 1, this
may be something that can be addressed completely at the
symbolic level.

g) Authentication: Many cryptographic modes of oper-
ation provide authentication. Authentication provides security
against forgery, so that an adversary should not be able to
create a message that passes some kind of authentication test
with non-negligible probability. In [8], Hoang et al. provide
symbolic criteria for this property for a particular kind of
authentication method used by a sizable class of authenticated
cryptographic modes of operation. One question to ask here
is, what other authentication methods could be reasoned about
symbolically, and how?

IX. CONCLUSION AND OPEN PROBLEMS

We have identified a simple, syntactically checkable con-
dition that is sufficient to guarantee IND$-CPA security for
block cipher modes of operation. We have also identified a
more complex condition that is both necessary and sufficient.

This work opens up a number of direction of future research.
The first, of course, is to develop algorithms for checking
these criteria, and for generating cryptosystems that satisfy
these criteria. This work indeed has already begun. We have
been working with colleagues on not only the above problems
but on the complexity of the algorithmic problems that we
have encountered. There are also many ways in which these
results can be extended. One is to extend the range of our
work on modes of operation, as was discussed in the last
section. More generally, we can extend our research to similar
problems, perhaps starting with the ones covered by the
Linicrypt model [13], which provides a well-understood set
of primitives to work with, and expanding our aim by adding
additional primitives and security properties, as we discussed
in Section VIII As in this work, our aim will be to identify
and exploit problems that can be reduced to problems in
analysis of term algebras, in particular problems in unification
and disunification, that then can be addressed using symbolic
techniques.

X. ACKNOWLEDGEMENTS

This work was funded by ONR Code 31.

REFERENCES

[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and
secure communication. In Conference Record of POPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, January 17-19, 2001, pages 104–115, 2001.

[2] Michael Backes and Birgit Pfitzmann. A cryptographically sound
security proof of the needham-schroeder-lowe public-key protocol. In
FST TCS 2003: Foundations of Software Technology and Theoretical
Computer Science, 23rd Conference, Mumbai, India, December 15-17,
2003, Proceedings, pages 1–12, 2003.

[3] Gregory V. Bard. Blockwise-adaptive chosen-plaintext attack and
online modes of encryption. In Cryptography and Coding, 11th IMA
International Conference, Cirencester, UK, December 18-20, 2007,
Proceedings, pages 129–151, 2007.

[4] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally
sound implementations of equational theories against passive adver-
saries. In Automata, Languages and Programming, pages 652–663.
Springer, 2005.

[5] Mihir Bellare and Phillip Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Peters-
burg, Russia, May 28 - June 1, 2006, Proceedings, pages 409–426, 2006.

[6] Brent Carmer and Mike Rosulek. Linicrypt: A model for practical
cryptography. In Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III, pages 416–445, 2016.

[7] Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh
Safavi-Naini. Automated proofs of block cipher modes of operation.
J. Autom. Reasoning, 56(1):49–94, 2016.

[8] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. Auto-
mated analysis and synthesis of authenticated encryption schemes. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015, pages
84–95, 2015.

[9] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Blockwise-
adaptive attackers: Revisiting the (in)security of some provably secure
encryption models: Cbc, gem, IACBC.
In Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, pages 17–30, 2002.

[10] Steve Kremer and Laurent Mazaré. Adaptive soundness of static
equivalence. In Computer Security–ESORICS 2007, pages 610–625.
Springer, 2007.

[11] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable
block ciphers. J. Cryptology, 24(3):588–613, 2011.

[12] Alex J Malozemoff, Jonathan Katz, and Matthew D Green. Automated
analysis and synthesis of block-cipher modes of operation. In Computer
Security Foundations Symposium (CSF), 2014 IEEE 27th, pages 140–
152. IEEE, 2014.

[13] Ian McQuoid, Trevor Swope, and Mike Rosulek. Characterizing
collision and second-preimage resistance in linicrypt. In Theory of
Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part I, pages 451–470,
2019.

[14] Catherine A. Meadows. Symbolic security criteria for blockwise
adaptive secure modes of encryption. IACR Cryptology ePrint Archive,
2017:1152, 2017.

[15] Daniele Micciancio and Saurabh Panjwani. Adaptive security of sym-
bolic encryption. In Theory of Cryptography, pages 169–187. Springer,
2005.

[16] Phillip Rogaway. Nonce-based symmetric encryption. In Fast Software
Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers, pages 348–359, 2004.

