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Abstract

Non-malleable codes allow one to encode data in such a way that, after tampering, the
modified codeword is guaranteed to decode to either the original message, or a completely
unrelated one. Since the introduction of the notion by Dziembowski, Pietrzak, and Wichs
(ICS ’10 and J. ACM ’18), a large body of work has focused on realizing such coding schemes
secure against various classes of tampering functions. It is well known that there is no efficient
non-malleable code secure against all polynomial-size tampering functions. Nevertheless, non-
malleable codes in the plain model (i.e., no trusted setup) secure against bounded polynomial-size
tampering are not known and obtaining such a code has been a major open problem.

We present the first construction of a non-malleable code secure against all polynomial-size
tampering functions that have bounded polynomial-depth. This is an even larger class than all
bounded polynomial-size functions and, in particular, we capture all functions in non-uniform
NC (and much more). Our construction is in the plain model (i.e., no trusted setup) and relies
on several cryptographic assumptions such as keyless hash functions, time-lock puzzles, as well
as other standard assumptions. Additionally, our construction has several appealing properties:
the complexity of encoding is independent of the class of tampering functions and we obtain
sub-exponentially small error.
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1 Introduction

A non-malleable code is a fascinating concept that (informally) allows one to encode messages such
that it is impossible to modify the underlying message of a given codeword without decoding it
first. More precisely, the operation applied to the codeword is called the tampering function, and
the guarantee is that, with “high probability”, decoding a tampered codeword results in either the
original message or an unrelated one. We refer to the probability that the attacker succeeds in
coming up with a tampered codeword of a related messages as its distinguishing advantage, and we
typically require this advantage to be negligible (i.e., smaller than the inverse of any polynomial).
Note that in contrast to standard error-correcting (or detecting) codes, non-malleable codes can
achieve security against tampering functions that modify every part of a codeword.

Non-malleable codes have proven to be a fundamental concept, giving rise to many beauti-
ful connections and results, both in complexity theory (e.g., two-source extractors [Li12, Li13,
CGL15, CZ16] and additive combinatorics [ADL18, ADKO15]) as well as in cryptography (e.g., non-
malleable encryption and commitments [CMTV15, CDTV16, GPR16]).

In the paper that introduced non-malleable codes, Dziembowski, Pietrzak, and Wichs [DPW10,
DPW18], observed that it is impossible to construct a non-malleable code secure against arbitrary
tampering functions, since a tampering function which first decodes the codeword and then re-
encodes a related message breaks security. By the same principle, it is impossible to construct a code
with polynomial-time decoding which is secure against all polynomial-time tampering functions.1

Therefore, the class of tampering functions has to be limited in some way—either in terms of
computational power or in the way the functions can access the codeword. One natural limitation
is by restricting the available computational complexity resources (e.g., running time, space, etc).

Already in the original work of Dziembowski et al. [DPW18] (see also [CG16] for a followup), it
was shown that (with high probability) a random function is a non-malleable code secure against
all circuits of size (say) 2n/2, where n is the size of a codeword. However, the code is clearly
inefficient. Faust et al. [FMVW16] gave an efficient version of that result, but it is still not an
explicit construction: For any polynomial bound S, there is an efficiently samplable family of codes
such that (with high probability) a random member of the family is a non-malleable code secure
against all functions computable by a circuit of size S. Stated differently, the result can be seen
as an explicit construction (i.e., a single code) assuming an untamperable common reference string
(CRS) which is longer than the running time of the tampering function. In the random oracle model
(which can be thought of as an exponential size common random string), Faust et al. [FHMV17]
constructed non-malleable codes secure against space-bounded tampering. Ball et al. [BDKM16]
constructed a non-malleable code secure against bounded depth circuits with constant fan-in (which
includes NC0). Several works were able to get non-malleable codes secure against AC0 tampering
functions [CL17, BDKM18, BDG+18, BGW19] (actually even circuits of depth O(log n/ log log n)).

Arguably, the holy grail in this line of works is to construct an explicit non-malleable code
which is secure against all tampering functions from the class of bounded polynomial-size circuits.
Specifically, for a size bound S, we would like to get an efficient code which is non-malleable
for all tampering functions that can be described by an arbitrary circuit of size S. Ideally, only
decoding should require running-time greater than S and encoding should run in some a-priori

1Here is the attack: the tampering function can decode the codeword and if it contains some pre-defined message
(say all 0s), then it replaces it with garbage (which might not even correspond to a valid codeword), and otherwise
it does not change the input.
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fixed polynomial-time, independent of S.

Does there exist an explicit construction (in the plain model) of an efficient non-malleable code
which is secure against all bounded polynomial-size attackers?

Ball et al. [BDKM18] made an important step towards this goal by using computational as-
sumptions. Concretely, using public-key encryption and non-interactive zero-knowledge (NIZK),
they gave a generic way to construct non-malleable codes secure against tampering classes F using
sufficiently strong average-case hardness for F . This construction, however, still requires a CRS (for
the public key of the encryption scheme and the CRS of the NIZK) albeit it is short (polynomial
in the the security parameter and independent of the class F).

In a recent follow-up work, Ball et al. [BDK+19] managed to get rid of the CRS, but at the cost
of (a) using non-standard assumptions, and (b) limiting the class of attacks and the level of security.
In more detail, they showed a construction of an efficient non-malleable codes secure against all
(uniform) tampering functions computable in an a-priori fixed polynomial-time. But:

• Their construction relies (amongst other assumptions) on sub-exponentially sound P-
certificates2 which is a very strong and non-standard assumption. In particular, the only
known instantiation requires assuming soundness of a non-trivial argument system (Micali’s
CS proofs [Mic00]), which is true in the Random Oracle model.

• Their scheme is non-malleable only with respect to uniform polynomial-time tampering as
opposed to the standard model of polynomial-size tampering. In other words, the tamper-
ing attacker is restricted to being a uniform polynomial-time algorithm, in contrast to the
standard model of non-uniform polynomial-time attackers.

• Their scheme achieves only a-priori bounded inverse polynomial-distinguishing advantage, as
opposed to achieving “full” security (i.e., negligble distinguishing advantage).

• Finally, both their encoding procedure, as well as the decoding procedure, run longer than the
allowed tampering functions (i.e., the adversary can neither encode nor decode). In contrast,
as mentionned, in principle encoding could be “efficient” in the sense that it is independent
of the size/running-time of the tampering attacker.

To summarize, despite several beautiful steps towards resolving the above question, the answer
is still largely unknown. Known partial solutions either require a CRS or strong and non-standard
cryptographic assumptions that are only known to be instantiated in the Random Oracle model
(and even then only achieve a weaker form of non-malleability).

1.1 Our Results

We give the first full affirmative answer to the aforementioned question. Specifically, we construct
an efficient non-malleable code that is (computationally) secure against tampering functions com-
putable by any bounded polynomial-size circuit. Our construction is in the plain model and relies
on several generic and well-studied cryptographic building blocks: a time-lock puzzle [RSW96],
a non-interactive non-malleable commitment [KS17, LPS17, BL18, KK19], and a non-interactive

2These are “succinct” one-message arguments for languages in P, with proof length which is a fixed polynomial,
independent of the time it takes to decide the language [CLP13].
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SPS (super-polynomial-time simulatable) zero-knowledge protocol [BP04, BL18] (all in the plain
model). While we cannot use the aforementioned primitives in their most general form, we iden-
tify certain additional properties from them that will be needed in our construction; additionally,
we note that particular known constructions of them satisfy the additional desired properties; see
below and in Section 2 for more details.

Our construction actually captures an even larger class of tampering functions. Specifically,
we give a non-malleable code secure against all tampering functions that can be computed by
arbitrary (unbounded) polynomial-size circuit of bounded polynomial-depth. We emphasize that
while the circuit depth of the tampering function is bounded a priori by some fixed polynomial
in the security parameter, the size of the circuit is unbounded and can be any polynomial in the
security parameter.

Theorem 1.1 (Informal Meta Theorem). Assume the existence of a “special-purpose” time-lock
puzzle, one-message non-malleable commitment, and one-message SPS zero-knowledge protocol.
For any T ∈ poly(λ), there exists an explicit code where encoding takes time poly(λ), decoding
takes time poly(T , λ), and it is non-malleable against all tampering functions computable by a non-
uniform arbitrary polynomial-size (in λ) circuit of depth T .

Our result is the first to handle all bounded polynomial-size tampering functions (and in fact
much more). In particular, as a special case, we capture all tampering functions in non-uniform
NC (while previously there was no construction even for NC1). We emphasize that our scheme
is efficiently encodable, namely, encoding time depends only on the security parameter and not on
the (depth) complexity of the decoder. Furthermore, our construction readily extends to withstand
(sub-)exponential size tampering functions (of depth T ) without affecting the complexity of neither
encoding nor decoding. Lastly, we note that the distinguishing advantage of any tampering function
in our scheme can be made sub-exponentially small in λ at essentially no cost (since in any case
we need to rely on sub-exponential hardness of the underlying building blocks).

In comparison, as mentioned, prior to this work, even dealing with just bounded polynomial-
size tampering was not known. The only approach towards polynomial-size tampering [BDK+19]
captured only uniform polynomial-time tampering, but as mentioned above, even for this restricted
class of tampering, their result has additional drawbacks: (1) it relies on a strong non-standard
assumption (P-certificates) that we only know how to satisfy in the random oracle model, and (2)
it only gives inverse-polynomial distinguishing advantage (as opposed to negligible distinguishing
advantage).

We instantiate the time-lock puzzle using the construction of Rivest et al. [RSW96] and we show
how to further use results of Bitansky and Lin [BL18] and Lin et al. [LPS17] to instantiate the
required non-malleable commitment and zero-knowledge protocol. Thus, assuming the repeated
squaring assumption [RSW96] (i.e., there is no way to significantly speed-up repeated squarings
in a hidden-order group), a keyless multi-collision resistant hash function [BKP18] (i.e., a single
function for which any PPT attacker with `(λ) bits of non-uniform advice cannot find more than
`(λ)c collisions for a constant c ∈ N),3 as well as other standard assumptions, we obtain the following
theorem.

Theorem 1.2 (Informal). Assume a keyless multi-collision resistant hash function, the repeated
squaring assumption, an injective one-way function, and non-interactive witness-indistinguishable

3While keyless multi-collision resistance is a relatively new assumption, it is a natural and simple security property
for keyless cryptographic hash functions, which in particular is satisfied by a random function.
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proofs,4 all being sub-exponentially secure. Then, for any T ∈ poly(λ), there exists an explicit code
where encoding takes time poly(λ), decoding takes time poly(T , λ), and it is non-malleable against
all tampering functions computable by a non-uniform arbitrary polynomial-size (in λ) circuit of
depth T .

We refer to Section 1.2 for more details about the above assumptions.

Non-malleable time-lock puzzle. Our non-malleable code construction is secure for all bounded
polynomial-depth tampering functions and additionally it is efficiently encodable, meaning that
encoding time is fixed as a function of the security parameter, but is otherwise independent of
the time it takes to decode. We observe that the combination of these two properties actually
implies a time-lock puzzle which is additionally non-malleable.5 In other words, under the same
assumptions as in Theorems 1.1 and 1.2, we get a non-malleable time-lock puzzle. We emphasize
that the non-malleable time-lock puzzle that we obtain here is in the plain model, i.e., does not
require any trusted setup.

In a followup work [EFKP20], the notion of non-malleable time-lock puzzles is formally de-
fined and further studied, giving additional constructions and various applications. In particular,
in [EFKP20] we give a more efficient construction than the one given in this work, which is proven
secure in the (auxiliary-input) random oracle model. Additionally, in [EFKP20] we further con-
struct time-lock puzzles which are concurrently non-malleability and show that they are useful in
several desirable cryptographic protocols.

1.2 Related Work

Since the work of Dziembowski, Pietrzak, and Wichs [DPW10, DPW18] which introduced non-
malleable codes, there has been a quite a significant amount of works on this subject in various
different directions (for example, [AAG+16, KLT16, ADL18, ADKO15, CGL15, DLSZ15, CGM+16,
CL17, Li17, Li18] to mention only a few in addition to the ones we mentioned earlier). Notably,
various different classes of tampering functions were considered. The original work of [DPW10]
presented a construction of non-malleable codes against bit-wise tampering functions. Also, Liu
and Lysyanskaya [LL12] were the first to consider the class of split state tampering functions, where
left and right halves of a codeword may be tampered arbitrarily, but independently. There has been
a very long line of works on getting optimal constructions against such tampering functions (see
the references above).

Next, we give more information about the building blocks used in our constructions and mention
relevant related work.

Time-lock puzzles. These are puzzles that can be solved by “brute-force” in time T , but cannot
be solved significantly faster even using parallel processors. This concept was proposed by Rivest,
Shamir, and Wagner [RSW96] (following May’s work [May92] on timed-release cryptography), and
they have been used quite extensively studied since. The most popular instantiation relies on the

4Non-interactive witness-indistinguishable proofs are known to exist based on various assumptions: trapdoor
permutations and a particular derandomization-type assumption [BOV07], cryptographic bilinear maps [GOS06], or
indistinguishability obfuscation and one-way permutations [BP15].

5Recall that time-lock puzzles are a cryptographic mechanism for sending messages “to the future”, by allowing
a sender to quickly generate a puzzle with an underlying message that remains hidden until a receiver spends a
moderately large amount of time solving it. Non-malleability guarantees that not only the puzzle hides the underlying
message, but actually it is hard to “maul” it into a puzzle with a different “related” message.
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repeated squaring assumption that postulates that T repeated squarings mod N , where N = pq is
a product of two secret primes, require “roughly” T parallel time/depth. Bitansky et al. [BGJ+16]
gave a construction of a time-lock puzzle from (strong) assumptions related to program obfuscation.

Our construction requires a “weak” notion of (sub-exponential) security that guarantees that
the puzzle cannot be solved by sub-exponential size attackers that have depth T

ε
. Therefore,

using the instantiation that relies on repeated squarings, we only need to assume that there are
no huge improvements in the parallel complexity of repeated squaring algorithms even for very
large attackers. It is worth mentioning that there are known algorithms for factoring that run in
sub-exponential time. The best known algorithm has running time roughly 2n

1/3
, where n is the

input size (see [Dix81, Sho06]). In contrast, our assumption stipulates that there is no algorithm
with running time 2n

ε
for any ε > 0 (for concreteness, think about ε = 0.001). This is similar to

the assumption being made in any construction that relies on sub-exponential factoring or discrete
log.X

Non-malleable commitments. Non-malleable commitments, introduced by Dolev, Dwork and
Naor [DDN91], guarantee hiding (the committed value is kept secret from the receiver), binding
(“opening” can yield only a single value determined in the commit phase), and non-malleability
(guaranteeing that it is hard to “maul” a commitment to a given value into a commitment to
a related value). Non-malleable commitments are extremely well studied with huge body of
works trying to pin down the exact round complexity and minimal assumptions needed to ob-
tain them [Bar02, PR05b, PR05a, LPV08, PPV08, LP09, PW10, Wee10, Goy11, LP11, GLOV12,
GPR16, COSV16, COSV17, Khu17, LPS17, KS17, KK19].

We need a non-interactive (i.e., one-message) non-malleable commitment, of which relatively few
constructions are known. Pandey et al. [PPV08] formulated a concrete property of a random oracle
and showed that it suffices for non-interactive non-malleable commitments. This is a non-standard
and non-falsifiable (Naor [Nao03]) assumption. Lin et al. [LPS17] showed a construction that satis-
fies non-malleability against uniform attackers assuming a keyless collision resistant hash function,
time-lock puzzles, non-interactive commitments, and NIWI proofs, all with sub-exponential hard-
ness. Bitansky and Lin [BL18] were able to get non-malleability against all attackers (i.e., even
non-uniform ones) by either replacing the keyless collision resistant hash function with a keyless
multi-collision resistant hash function,6 or using a new assumption regarding sub-exponentially
secure one-way functions admitting some strong form of hardness amplification. Most recently,
Kalai and Khurana [KK19] gave a construction of a non-interactive non-malleable commitment
from sub-exponential hardness of factoring or discrete log, and sub-exponential quantum hardness
of Learning With Errors (LWE) or Learning Parity with Noise (LPN).

We will use the construction of Bitansky and Lin [BL18] and Lin et al. [LPS17] both of which
rely on time-lock puzzles. Various properties of their non-malleable commitments will be crucial
for our construction.

One-message SPS zero-knowledge. This is a one-message proof system for every language
in NP in the plain model and without any setup assumptions that satisfies a relaxed notion
of zero-knowledge referred to a super-polynomial-time simulation (SPS) zero-knowledge [Pas03].
This concept was introduced by Barak and Pass [BP04] who also gave a construction assuming a
keyless collision resistance hash function,7 non-interactive commitments, and NIWI proofs, all with

6Actually, Bitansky and Lin [BL18] formulate an assumption about incompressible functions which is implied by
keyless multi-collision resistant hash functions.

7Actually, Barak and Pass [BP04] formulate an assumption regarding the existence of a language in P which is
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sub-exponential hardness. Their construction however satisfies soundness only against uniform
attackers. Bitansky and Lin [BL18] showed how to overcome this limitation using keyless multi-
collision resistant hash functions,8 at the cost of obtaining a weaker soundness (allowing any attacker
to output some bounded number of convincing proofs for false statements).

Non-malleable codes vs. commitments. (Non-interactive) non-malleable commitments and
codes seem very similar. The only difference is that in the latter decoding should be efficient, while
in the former it should be hard. There has been some evidence that the objects are not only syn-
tactically related. For instance, non-malleable codes were used to construct non-malleable commit-
ments [GPR16, CGM+16]. In the reverse direction, some works used ideas from the (vast) literature
on non-malleable commitments to get new non-malleable codes [CGL16, OPVV18, BDK+19]. Our
work continues the latter line of works and shows yet again that the notions are intimately related.

Lower bounds for non-malleability. We mentioned that there cannot be a non-malleable code
secure against a class of tampering functions that includes the decoding procedures. In a very recent
work, Ball et al. [BDKM20] gave various new lower bounds. The most related lower bound to this
work is the one regarding (in)existence of non-malleable codes for NC1 (⊆ NC) in the standard
model (a class that our construction captures). Their result introduces a notion of black-box
reductions tailored for the setting of non-malleable codes and rules out such reductions for certain
classes of tampering functions F . Importantly, their impossibility results hold for constructions
that rely only on the minimal assumption that there exists a distributional problem that is hard
for the tampering class F , but easy for P. Our result bypasses the impossibility since we—in
addition to an assumption of the above type (i.e. time-lock puzzles)—rely on standard cryptographic
assumptions such as keyless multi-collision resistant hash functions, injective one-way functions, and
non-interactive witness-indistinguishable proofs.

The magic of the repeated squaring assumption. In the past several years the repeated squar-
ing assumption has played an important role in many works. In addition to the work about non-
malleable commitments [LPS17] that we have already mentioned and the current work, this assump-
tion was also used in several constructions of verifiable delay functions [Pie19, Wes19, EFKP19].
These functions are, roughly speaking, a publicly verifiable version of time-lock puzzles. The reason
why this assumption has been so successful is that it brings a new dimension of hardness to the
table, i.e., parallel-time, which is different from the type of hardness that standard cryptographic
assumptions give.

(Multi-)collisions resistance. Collision resistant hash functions are (a family of) compressing
functions where no efficient attacker can find a colliding pair in a random function from the family.
The existence of such a family is a standard cryptographic assumption which is implied by many of
the most classical assumptions such as factoring, discrete log, and more. A keyless collision resistant
hash function is a single function where the above is hard for (bounded) uniformity attackers. Such
functions exist in the random oracle model and may be heuristically instantiated using common
constructions of cryptographic hash functions, such as SHA-3, where collisions are simply not
known.

Multi-collision resistance [KNY19, BDRV18, BKP18, KNY18] is a relaxation of collision re-
sistance where the goal of the attacker is to find a collection of many inputs (rather than just

hard to sample in slightly super-polynomial-time but easy to sample in a slightly larger super-polynomial-time. The
existence of a keyless collision resistance hash function with sub-exponential hardness implies such a language.

8See Footnote 6.
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two) to a random function in the family that collide. The keyless version, introduced by [BKP18],
is again a single function but now the security guarantee can be formulated so that it holds for
all efficient attackers, even non-uniform ones. Concretely, the security guarantee is that while an
attacker of size s can find about s inputs that collide, it cannot find many more, say s5 (i.e., multi-
collisions cannot be compressed). Again, such functions exist in the random oracle model and may
be heuristically instantiated using common constructions of cryptographic hash functions, such as
SHA-3.

2 Technical Overview

At a very high level, as in several previous related works (e.g., [BDKM18, BDK+19]), we follow
the Naor-Yung [NY90] paradigm that achieves CCA security of encryption by concatenating two
instances of a CPA secure public key encryption scheme, followed by a (non-interactive) zero-
knowledge proof of the equality of encrypted values. The novelty in this work stems from the way
we instantiate and prove soundness of this approach in the context of non-malleable codes.

Concretely, the three main components in our construction are: a time-lock puzzle, a non-
malleable commitment, and a one-message SPS zero-knowledge proof of consistency. As we will
see later, these building blocks need to be instantiated in a very careful way to guarantee security.
The construction NMCode = (NMCode.E,NMCode.D) for a message space {0, 1}λ and depth bound
T is informally described in Algorithm 1.

NMCode.E(m):

1. Let Z be a time-lock puzzle with hardness
T and underlying message m.

2. Let c be a non-malleable commitment
to m.

3. Let π be a zero-knowledge proof of consis-
tency between Z and c.

4. Output Ẑ := (Z, c, π).

NMCode.D(Z, c, π):

1. Verify the proof π.

2. If verifies, solve the puzzle Z and output
the underlying message. Otherwise, out-
put 0.

Algorithm 1: Our non-malleable code (Informal).

Let us provide some intuition and state some simple observations. Recall that a time-lock
puzzle can be solved by “brute-force” in depth T , but cannot be solved in depth � T . However,
time-lock puzzles may be malleable (in fact, the construction based on repeated squaring [RSW96]
is easily malleable). Non-malleable commitments are, by definition, non-malleable but as opposed
to time-lock puzzles, cannot be “brute-force” opened in polynomial time. Intuitively, adding the
zero-knowledge proof of consistency in the above construction ties the hands of the attacker and
achieves the desired properties of each of the primitives. The scheme inherits non-malleability
from the non-malleable commitment while preserving the ability of solving the time-lock puzzle
in polynomial time, which allows extraction of the underlying message and thereby decoding in
polynomial time.

For efficiency, time-lock puzzles have a built-in trapdoor that allows one to generate puzzles very
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fast (while solving them requires considerable sequential effort). Thus, the running time of step 3
(generation of the zero-knowledge proof) takes fixed polynomial time (in the security parameter),
independent of the depth bound T . This is why NMCode.E has a fixed running time, polynomial in
the security parameter, independent of T . Negligible soundness of our construction, at a high level,
is inherited from the security of the underlying primitives. Lastly, as we will explain shortly, we use
the non-interactive non-malleable commitments of Lin et al. [LPS17] and Bitansky and Lin [BL18]
both of which are based on time-lock puzzles (and keyless collision resistant hash functions or
keyless multi-collision resistant hash functions, respectively) and so this will work nicely with our
usage of the time-lock puzzle in our construction.

While the intuition described above is rather solid, proving that the above construction satisfies
non-malleability turns out to be challenging. We explain the high-level approach next.

2.1 Overview of the Proof

We will first explain the high-level approach when considering only uniform tampering functions
and later explain how to handle non-uniform ones.

Since we only handle uniform tampering functions (for now), it will suffice to rely (in addition
to time-lock puzzles) on a non-malleable commitment for bounded uniformity tampering functions
and a one-message SPS zero-knowledge proof which satisfies soundness for bounded uniformity
attackers. For the commitment scheme we will use the one of Lin, Pass, and Soni [LPS17] and for
the zero-knowledge we will use the one of Barak and Pass [BP04]. We remark again that while the
scheme of Lin et al. [LPS17] is also based on a time-lock puzzle, it will be convenient to use it not
only in terms of assumptions, but to actually use specific properties of the scheme that will help
us carry out the proof.

The proof is by a hybrid argument where we start with the standard non-malleability game
with a message m0 and in the last hybrid we will play the non-malleability game with a message
m1. Recall that the non-malleability game (a.k.a. Man-In-Middle game) consists of two stages. In
the first stage, the adversary gets a codeword and it tries to maul it into a code with a related
message. Then, roughly, the distribution of the underlying message in that tampered codeword
should be simulatable without knowing the message itself.

In a high level, here are the sequence of hybrids that we consider. We describe the changes
incrementally, namely, each hybrid starts with the scheme from the previous hybrid and makes a
modification.

• Hybrid 0: The original scheme.

• Hybrid 1: Instead of using the zero-knowledge prover, we use the simulator.

• Hybrid 2: Instead of committing to m, we commit to 0.

• Hybrid 3: Instead of decoding by solving the time-lock puzzle, we decode by extracting from
the commitment.

• Hybrid 4: Instead of using m as the underlying message in the time-lock puzzle, use 0.

Showing that hybrids 0, 1, and 2 are indistinguishable is simple. Hybrids 0 and 1 are indistin-
guishable due to the zero-knowledge property, and hybrids 1 and 2 are indistinguishable due to the
hiding of the commitment scheme. (We use a non-uniform simulator so that with an appropriate
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trapdoor we can generate simulated proofs in PPT.) The most challenging part is showing that
hybrids 2 and 3 and hybrids 3 and 4 are indistinguishable.

Hybrids 2 and 3. The modification in this transition is from decoding via brute-force opening
the time-lock puzzle, to decoding via extraction from the non-malleable commitment. To prove
indistinguishability, we show that the distribution of the underlying value in the right commitment
does not change throughout the hybrids when considering both methods of decoding.

A careful inspection of the schemes in each hybrid reveals that in order for the proof to go
through, we need to satisfy two conditions simultaneously:

1. The extractor of the commitment scheme (whose size is SExt) cannot break zero-knowledge
(which holds for all attackers of size at most SZK). That is,

SExt � SZK.

2. The simulator of the zero-knowledge scheme (whose size is SSim) cannot break non-malleability
of the commitment (which holds for all attackers of size at most SNMCom). That is,

SSim � SNMCom.

It also holds that SNMCom � SExt since the commitment extractor can definitely break non-
malleability (by extracting and re-committing to a related value). Therefore, the only way to
satisfy the above two inequalities is if SSim � SZK, namely, a one-message zero-knowledge scheme
where the simulator runs faster than the distinguisher!9 Unfortunately, no such scheme is known
as in all known schemes the simulator needs to “break” the underlying cryptographic primitives
and so it has to have more resources than the distinguishers.

Our idea to make this go through is to introduce another axis of hardness which will allow us to
satisfy both “inequalities” simultaneously—the axes of total size and non-uniformity. We will set
the complexities of the above procedures as follows, where λ denotes the security parameter and
where 0 < c1 < c2 < c3 < 1:

• SExt (extraction from the non-malleable commitment): in quasi-polynomial size.

• SZK (zero-knowledge security): for all sub-exponential size attackers.

• SSim (ZK simulator complexity): in fixed polynomial size and “short” (bounded polynomial
size) non-uniform advice.

• SNMCom (non-malleability): for all quasi-polynomial size attackers that have some bounded
polynomial non-uniformity.

With this careful choice of parameters, it is evident that the commitment extractor cannot break
zero-knowledge and also the zero-knowledge simulator cannot break non-malleability. It is also not
too hard to instantiate the primitives with the above properties. The zero-knowledge scheme of
Barak and Pass [BP04] readily satisfies the above properties if it is sub-exponentially hard. To get
the required non-malleable commitment, rely on the scheme of Lin et al. [LPS17].

9This kind of zero-knowledge simulation is known as strong super-polynomial simulation. Recently, Khurana and
Sahai [KS17] managed to obtain it in two rounds, but we need a non-interactive scheme.
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Hybrids 3 and 4. In this hybrid, we change the time-lock puzzle’s underlying value and we want
to use its hiding property. While seemingly being a relatively simple hybrid, it turns out that some
complications arise. Specifically, to reduce to the underlying security of the time-lock puzzle, we
need to come up with a bounded time attacker while there are two procedures that we need to
run which seem to be of arbitrary depth. Specifically, in the reduction we need to simulate the
whole experiment and use the distinguisher to break the security of the time-lock puzzle. The two
procedures that seem to require arbitrary large depth are:

• The distinguisher itself, denoted D from now on.

• The extraction procedure of the non-malleable commitment (which we should execute as part
of decoding).

We have no control over the depth (or size) of the distinguisher D, except that it is of arbitrary
polynomial size and depth. However, we do know that its input, the message underlying the
tampered code, is of bounded length. So, we modify the distinguisher and write it as a truth
table which has hardcoded all of D’s outputs on every possible input. Call this distinguisher D̃.
Observe that D̃ (1) has the same input-output functionality as that of D (and so it serves as a
good distinguisher), and (2) while D̃’s size is now exponential in the security parameter, its depth
is some fixed polynomial in the security parameter!

For the extraction procedure, we intuitively make a similar modification. We rely on the fact
that the extractor can be readily implemented in low depth by finding the underlying message in
brute-force and in parallel. Note that for this to go through, the size of the extraction procedure
has to smaller than the hardness of the time-lock puzzle (and this can be achieved by making the
time-lock puzzle sufficiently long and using sub-exponential security). So, after switching to this
alternate extraction method, we can simulate the whole experiment in fixed polynomial depth and
reduce to the security game of the underlying time-lock puzzle.

The non-uniform case. Extending to handle non-uniform tampering functions is challenging
in the fully non-interactive setting and in the plain model. While it is relatively straight-forward
to replace the non-malleable commitment scheme of Lin et al. [LPS17] (which is uniformly non-
malleable) with the one of Bitansky and Lin [BL18], the challenge stems from finding an appropriate
non-uniform analogue for the uniformly sound one-message zero-knowledge scheme of Barak and
Pass [BP04]. Indeed, in the plain model and allowing only one message there is no non-uniformly
sound zero-knowledge scheme (as accepting proofs for false statements just exist).

The closest candidate is the one of Bitansky and Lin [BL18] who constructed a non-uniformly
weakly sound one-message zero-knowledge scheme. This notion captures all non-uniform attackers
but the soundness guarantee is weak: every attacker can output some number of accepting proofs
for false statements but not too many of those. Unfortunately, if we use this scheme directly
in our construction instead of the current zero-knowledge scheme, the above proof outline fails.
Specifically, when we switch to alternate decoding (which extracts from the commitment rather
than breaks the time-lock puzzle), if the adversary uses such a maliciously crafted proof (which
verifies), it can easily distinguish the two hybrids (as their outputs will be different). Another
thing that makes the situation even harder is that the bad set of proofs is not global but actually
attacker-dependent so we cannot just “black-list” some set of proofs in the decoding procedure.

To this end, we observe that in the security reduction, the attacker is fixed and so the set of
“bad” proofs is non-uniformly known. Therefore, we can modify the alternate decoding procedure

10



to check whether the tampered proof is one of some (polynomial size) non-uniformly hardcoded set
of bad proofs—the ones that the given attacker can find. If it is one of these bad proofs, we output
a fixed message, the one underlying the time-lock puzzle that corresponds to the false statement.
In this way, we are guaranteed that even when switch to alternate decoding, for those maliciously
crafted proofs, the attacker will not see any difference between the two hybrids.

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For a distribution D we denote by
x← D an element chosen fromD uniformly at random. For an integer n ∈ N we denote by [n] the set
{1, . . . , n}. We denote by Un the uniform distribution over n-bit strings. A function negl : N→ R+

is negligible if for every constant c > 0, there exists an integer Nc such that negl(n) < n−c for all
n > Nc.

Model of computation. We consider uniform and non-uniform algorithms and we distinguish
between their size and parallel time. The amount of non-uniformity is usually denoted by κ, the
parallel time by T , and the size by S. We think of those algorithms as (possibly probabilistic)
Turing machines with multiple heads that can operate in parallel. A non-uniform algorithm A is
described by a family of of algorithms {Aλ}λ∈N, one per security parameter λ. Each Aλ corresponds
to an algorithm that has input size n(λ) for some function n : N → N. We say that A is T -time,
denoted Time [A] = T (λ), if for every λ ∈ N, the parallel running time of Aλ is at most T (λ). We
say that A is S-size, denoted Size [A] = S(λ), if for every λ ∈ N, the total work that the algorithm
Aλ does is at most S(λ). Lastly, the mount of non-uniformity κ is chosen such that κ(λ) is an
upper bound on the size of advice used per λ.

Indistinguishability. We recall the standard definition of computational indistinguishability.

Definition 3.1 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two
ensembles of random variables. Let S = S(·), and κ = κ(·) be functions. We say that X and Y are
(S, κ)-indistinguishable if for all probabilistic S-size A = {Aλ}λ∈N with non-uniformity κ, there is
a negligible function negl(·) such that for all λ ∈ N

|Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1]| ≤ negl(λ).

We will use the notation X ≈S Y for (S, S)-indistinguishability and X ≈ Y for (S, S)-indistingui-
shability for all polynomial functions S.

3.1 Non-Malleable Commitments

A tag-based non-interactive commitment scheme NMCom = (NMCom.C,NMCom.O) has the fol-
lowing syntax:

1. For all m, tag ∈ {0, 1}∗, (c, r) ← NMCom.C(1λ,m, tag) is the commitment/opening pair for
the message m with tag tag.

2. NMCom.O(c,m, r, tag) → {0, 1}, where 1 indicates that r is a valid opening of c to m under
tag tag and 0 is returned otherwise

A commitments scheme must satisfy the following properties:

11



– Correctness: For every λ ∈ N and m, tag ∈ {0, 1}∗,

Pr[NMCom.O(c,m, r, tag) = 1 ; c, r ← NMCom.C(1λ,m, tag)] = 1,

where the probability is taken over the randomness of NMCom.C.

– (Perfect) binding: For any string c, strings m,m′ ∈ {0, 1}∗ of the same length, strings
tag, tag′ ∈ {0, 1}∗ of the same length, and opening strings r, r′,

if NMCom.O(c,m, r, tag) = NMCom.O(c,m′, r′, tag′) = 1, then m = m′.

– S-hiding: For all polynomials n = n(λ) and n′ = n′(λ), all tag ∈ {0, 1}n′ and m,m′ ∈ {0, 1}n,
it holds that

{NMCom.C(1λ,m, tag)}λ∈N ≈S {NMCom.C(1λ,m′, tag)}λ∈N.

A non-tag-based commitment scheme is the same as above but the tag is fixed to tag = ⊥. In
such cases, we omit the last input to NMCom.C and NMCom.O.

Definition 3.2 (Underlying committed value, val). Define val : {0, 1}∗ → {0, 1}∗ to be the function
that gets as input a commitment and outputs the underlying committed value. That is, val(c) = m
if there exists r ∈ {0, 1}∗ such that NMCom.O(c,m, r) = 1, and ⊥ otherwise.

Definition 3.3 ((Over-)extractability). We say a commitment scheme is S-extractable if there
exists a (uniform) S-size procedure NMCom.E and a negligible function negl(·), such that for all
c ∈ {0, 1}∗ it holds that Pr[NMCom.E(c) 6= val(c)] ≤ negl(|c|). The scheme is S-over -extractable if
the above holds only for strings c ∈ {0, 1}∗ for which val(c) 6= ⊥.

Man In The Middle Execution (MIM). Let NMCom = (NMCom.C,NMCom.O) be a tag-based
commitment scheme, and A an arbitrary adversary. For security parameter λ ∈ N, consider the
following interactions by A(1λ):

• Left interaction: A(1λ) interacts with the sender and receives commitment to a message m
of length λ using identity tag as c← NMCom.C(1λ,m, tag).

• Right interaction: A(1λ) interacts with the receiver and tries to commit to related message
m̃ using identity ˜tag of its choice. Specifically, for the commitment c̃ sent to the receiver, let
m̃ = val(c̃). Furthermore, if ˜tag = tag, then we set m̃ = ⊥.

Let MIMANMCom(λ,m) denote the random variable that describes m̃ that A commits to in the
right interaction along with its output in the MIM execution MIMANMCom(λ,m) as described above.

Definition 3.4 ((S, κ)-non-malleability [LPS17]). A tag-based commitment scheme NMCom =
(NMCom.C,NMCom.O) is said to be S-non-malleable if for all S-size algorithms A = {Aλ}λ∈N with
non-uniform advice of size κ, it holds that

{MIMANMCom(λ,m0)}λ∈N,m0∈{0,1}m ≈ {MIMANMCom(λ,m1)}λ∈N,m1∈{0,1}m .
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3.2 One-Message SPS Zero-Knowledge Proofs

We recall the definitions of a one-message SPS zero-knowledge (1ZK) systems, following Barak and
Pass [BP04]. In a high-level, this is a non-interactive protocol (just one message from the prover
to the verifier) which provides soundness for the verifier and zero-knowledge for the prover. We
emphasize that we want a protocol in the plain model, namely, without any setup assumptions
(such as a trusted common reference string).

More precisely, a one-message SPS zero-knowledge argument system (P, V ) for an NP relation
R(x,w) with associated language L consists of two polynomial-time algorithms:

• π ← P (x,w, 1λ): Given an instance x, witness w, and security parameter 1λ, P produces a
proof π.

• b ← V (x, π): Given a proof π for instance x, V outputs a bit b, where b = 1 indicates
acceptance.

We require the following standard three properties from such a zero-knowledge system.

– Completeness: For every λ ∈ N and every (x,w) ∈ R,

Pr
P

[V (x, π) = 1 : π ← P (x,w, 1λ)] = 1

– (SP , κ)-soundness: For all SP -size adversaries A = {Aλ}λ∈N with non-uniform advice of
size κ, there exists a negligible function negl(·) such that for any λ ∈ N,

Pr
(x,π)←Aλ

[
x /∈ L

V (x, π, 1λ) = 1

]
≤ negl(λ).

– SD-zero-knowledge: There exists an algorithm Sim = {Simλ}λ∈N, such that for every (x,w) ∈
R,

{π ← P (x,w, 1λ)}λ∈N ≈SD {π ← Simλ(x)}λ∈N.

The simulator Sim sequentially executes two algorithms: First, (1) Simpre(1λ) which runs in
sub-exponential time (but fixed polynomial depth) and outputs a trapdoor td. Second, (2)
Simpost(td, x) which runs in uniform polynomial time and outputs a simulated proof.

Non-uniform setting. In order to capture non-uniform attackers, Bitansky and Lin [BL18]
introduced a relaxation of the soundness requirement and showed that one can obtain it for all non-
uniform attackers. Their notion of soundness is called weak soundness. It allows each adversary to
find some (small, bounded) number of accepting proofs for false statements, somewhat proportional
to the size of its own description (and not much more than that). This relaxation by itself will
not suffice for us since the simulator of [BL18] runs in super-polynomial time and depends on the
statement being proven (a fact that will prevent our proof from going through). We would like to
get more efficient, though non-uniform, simulation.

To this end, we consider languages where the statements x = (x1, x2) are composed of two parts.
The set of “bad” proofs in the weak soundness notion will consist of “bad” x1’s and arbitrary
(unbounded number of) x2. The gain is that we will guarantee the existence of a non-uniform
polynomial size simulator per x1. Bitansky and Lin [BL18] considered the same relaxation of
soundness and improved simulation and called it ϕ-tuned soundness and simulation speedup. (In
their notation ϕ is a projection function but we directly separate out the statement into x1 and x2.)
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– (SP ,K)-weak-soundness: For any SP -time probabilistic adversary A = {Aλ}λ∈N, there exists
a negligible function negl(·) and a collection of sets Z = {Zλ}λ∈N, where |Zλ| = K(|Aλ|),
such that for any λ ∈ N,

Pr
Aλ

[
x /∈ L(R) ∧ x1 /∈ Zλ
V (x, π, 1λ) = 1

: (x = (x1, x2), π)← Aλ
]
≤ negl(λ).

– SD-tuned zero-knowledge: For every x1 we have an algorithm Sim = {Simλ}λ∈N, such that
for every x2 for which (x = (x1, x2), w) ∈ R,

{π ← P (x,w, 1λ)}λ∈N ≈SD {π ← Simλ(x)}λ∈N.

The simulator Sim sequentially executes two algorithms: First, (1) Simpre(1λ, x1) which runs
in sub-exponential time (but fixed polynomial depth) and outputs a trapdoor td. Second, (2)
Simpost(td, x) which runs in uniform polynomial time and outputs a simulated proof.

3.3 Time-Lock Puzzles

A time-lock puzzle [RSW96] is a a puzzle that can be generated given a solution, but given just
the puzzle, it is moderately-hard to find the solution. A time-lock puzzle is initialized with some
difficult parameter t and its security holds against a class of algorithms which we parametrize by
their respective size and parallel time. The following definition follows Bitansky et al. [BGJ+16].

Definition 3.5 (Time-lock puzzles). A time-lock puzzle (TL) is a tuple TL = (TL.Gen,TL.Sol)
with the following syntax

• Z ← TL.Gen(1λ, t, s): A probabilistic algorithm that takes as input a security parameter, a
difficulty parameter t and a solution s ∈ {0, 1}λ, where λ is a security parameter, and outputs
a puzzle Z.

• s ← TL.Sol(Z): A deterministic algorithm that takes as input a puzzle Z and outputs a
solution s.

We require the following three properties:

- Completeness: For every security parameter λ, difficulty parameter t, solution s ∈ {0, 1}λ,

and puzzle Z in the support of TL.Gen(1λ, t, s), TL.Sol(Z) outputs s.

- Efficiency:

– Z ← TL.Gen(1λ, t, s) runs in time poly(log t, λ).

– s← TL.Sol(Z) can be computed in time t ·poly(λ) for Z in the support of TL.Gen(1λ, t, ·)

- (S, ε)-hardness: There exists a polynomial t(·), such that for every t(·) ≥ t(·), and every S-size
tε-time adversary A = {Aλ}λ∈N, there exists a negligible function negl(·) such that for every
λ ∈ N and every pair s0, s1 ∈ {0, 1}λ, it holds that

Pr

[
b← {0, 1}, Z ← TL.Gen(1λ, t, sb)

b′ ← Aλ(Z)
: b′ = b

]
≤ 1

2
+ negl(λ).
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4 Definition of Non-Malleable Codes

In this section we give our definition of non-malleable codes. Our definition follows closely the
definition of [BDKM18]. One difference though is that, rather than defining non-malleability for an
abstract class of tampering functions, we define non-malleability directly for the class of tampering
functions that we consider in this work .

Let Σ and Σ′ be sets of strings. A coding scheme consists of two algorithms NMCode =
(NMCode.E,NMCode.D) such that NMCode.E : Σ → Σ′ and NMCode.D : Σ′ → Σ. In words,
NMCode.E (“encoding”) maps messages to codewords and NMCode.D (“decoding”) maps code-
words to messages. The algorithm NMCode.E can be randomized and NMCode.D is assumed to be
deterministic. For correctness, we require that for every message m ∈ Σ, it holds that

Pr
NMCode.E

[NMCode.D(NMCode.E(m)) = m] = 1.

NMCode.E may also accept as an explicit input a security parameter in unary (in which case the
syntax is NMCode.E(1λ,m)).

Non-malleability. Intuitively, this notion requires that given a codeword, as long as one cannot
decode it, it is hard to generate a codeword with a different related underlying message. A function
that takes a codeword and tries to generate a codeword for a related message out of it is called a
tampering function. As mentioned, we have to limit the possible tampering functions in some way.
Otherwise, a tampering function could decode a codeword and re-encode a related message.

Definition 4.1 (Tampering experiment). For an algorithm A = {Aλ}λ∈N, a security parameter
λ ∈ N, and a string s ∈ {0, 1}λ, define the tampering experiment:

TamperNMCode
A,s (λ) =

{
Z ← NMCode.E(1λ, s); Z̃ = Aλ(Z); s̃ = NMCode.D(Z̃)

Output: s̃

}
,

where the randomness of the above experiment comes from the randomness of NMCode.E.

Definition 4.2 ((S, T, κ)-non-malleability). We say that a code NMCode is (S, T, κ)-non-malleable
if for every S-size T -time algorithm A = {Aλ}λ∈N with κ bits of non-uniformity, there exists a
(uniform) probabilistic polynomial-time simulator Sim such that

{TamperNMCode
A,s (λ)}λ ≈ {IdealSim,s(λ)}λ,

where

IdealSim,s(λ) =

{
s̃ ∪ {same} ← SimAλ(1λ)

Output: s if output of Sim is same and otherwise s̃

}
.

Medium non-malleability. We next define a different notion of non-malleability, referred to as
medium non-malleability, which implies the one above (Definition 4.2) but is slightly easier to work
with. The difference between the definitions is that the medium non-malleability experiment allows
to output same∗ only when some predicate g evaluated on an original codeword and a tampered
one is satisfied. On the other hand, plain non-malleability (as defined above) does not impose
restrictions on when the experiment is allowed to output same∗.

15



Definition 4.3 ((S, T, κ)-medium non-malleability). We say that a code NMCode is (S, T, κ)-
medium non-malleable if there exists a function g such that for every s0, s1 ∈ {0, 1}λ and every
S-size T -time algorithm A = {Aλ}λ∈N with κ bits of non-uniformity, it holds that

{MedTamperNMCode
A,s0 (λ)}λ∈N ≈ {MedTamperNMCode

A,s1 (λ)}λ∈N,

where the tampering experiment (whose randomness comes from the randomness of NMCode.E) is
defined as follows:

MedTamperNMCode
A,s (λ) =

{
Z ← NMCode.E(1λ, s); Z̃ = Aλ(Z); s̃ = NMCode.D(Z̃)

Output: same∗ if g(Z, Z̃) = 1, and s̃ otherwise

}
,

and where g(·, ·) is a predicate such that for every A as above, λ ∈ N, and s ∈ {0, 1}λ,

Pr
Z←NMCode.D(1λ,s)

[g(Z,Aλ(Z)) = 1 ∧ NMCode.D(Aλ(Z)) 6= s] ≤ negl(λ).

5 The Building Blocks

5.1 Time-Lock Puzzle

Theorem 5.1. Assuming the sub-exponential hardness of the repeated squaring assumption, there
exists a time-lock puzzle which is (STL, ε)-hard for a fixed ε ∈ (0, 1) and where STL = 23λ.

We need a time-lock puzzle which, when instantiated with difficulty parameter t, is hard for
machines that have parallel time at most tε for some fixed ε ∈ (0, 1), even if their total size is 23λ.
We instantiate this primitive by relying on the repeated squaring assumption with sub-exponential
hardness. The latter says that for some ε, ε′ ∈ (0, 1) and any large enough t the following holds:

any 2λ
ε′

-size tε-time algorithm cannot distinguish (g,N, t, g2
t

mod N) from (g,N, t, g′) for uniform
g, g′ ∈ Z∗p·q, where p and q are two random λ-bit primes. Note that it is common to assume the
above assumption even for ((1− ε) · t)-time algorithms—our assumption is much weaker.

To generate a puzzle Z with difficulty t and a message m, one does the following (we assume
here for simplicity that m is short enough but it is easy to extend this): Sample an RSA modulus
N = pq to be a product of two random poly(λ)-bit primes (with some large enough polynomial;
see below), and computes Z = (g,N, t,m + g2

t
mod N), where g is a randomly chosen element in

Z∗N . Note that using p and q it is possible to compute g2
t

mod N in fixed polynomial time in λ
(and in log t which is absorbed by the poly(λ) term) by first computing a = 2t mod φ(N) (where
φ(N) = (p− 1)(q − 1)) and then computing Z = ga mod N .

Assuming the sub-exponential hardness of the repeated squaring assumption, we want a time-
lock puzzle whose guarantee is that the underlying value is completely hidden as long as the attacker
has size less than 23λ size and tε time. To achieve this, the bit-length of p and q needs to be large
enough. That is, we need to instantiate our primes with say λ̃ = (3λ)1/ε bits which would give
security for attackers of size 23λ and tε time.

5.2 Non-Malleable Commitment

Theorem 5.2. Assume that there is a keyless multi-collision resistant hash function, the re-
peated squaring assumption, NIWI proof for all NP, and injective one-way functions, all with sub-
exponential hardness. Then, there exists a non-interactive commitment which is SNMCom-hiding,
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SNMCom
Ext -extractable via NMCom.Ext, and (SNMCom

NM , κNMCom
NM )-non-malleable for all polynomial func-

tions κNMCom
NM (λ), and where SNMCom(λ) = SNMCom

NM (λ) = 2log
2 λ and SNMCom

Ext (λ) = 2log
3 λ.

Theorem 5.3. Assume that there is a keyless collision resistant hash function, the repeated squaring
assumption, NIWI proof for all NP, and injective one-way functions, all with sub-exponential hard-
ness. Then, there exists a non-interactive commitment which is SNMCom-hiding, SNMCom

Ext -extractable

via NMCom.Ext, and (SNMCom
NM , κNMCom

NM )-non-malleable, where SNMCom(λ) = SNMCom
NM (λ) = 2log

2 λ,

SNMCom
Ext (λ) = 2log

3 λ, and κNMCom
NM (λ) is a fixed polynomial.

The difference between the two theorems are that in the former we obtain non-malleability
for non-uniform attackers but using a keyless multi-collision resistant hash, while in the latter we
obtain non-malleability only for attackers with bounded non-uniformity of fixed polynomial size but
we are using a keyless (plain) collision resistant hash.

We need a one-message non-malleable tag-based commitment scheme (Definition 3.1) which
is hiding for all (non-uniform) polynomial-size distinguishers and, extractable in quasi-polynomial
size, and non-malleable for (smaller) quasi-polynomial size tempering functions. We briefly explain
how these commitments are obtained.

The bounded uniformity scheme. To get the scheme satisfying the properties listed in Theo-
rem 5.3 we use the scheme of Lin et al. [LPS17]. Let us review their scheme and explain why and
how it satisfies the above properties. In a high-level, they use two types of commitment scheme,
each with a different “axis” of hardness. From sub-exponentially secure injective one-way func-
tions, they obtain a sub-exponentially secure commitment scheme Coms. By instantiating Coms

with different security parameters, one can obtain a family of γ commitment schemes {Coms
i}i∈[γ]

such that Coms
i+1 is harder than Coms

i for all 1 ≤ i ≤ γ − 1 in the axis of size. Namely, using size
which is sufficient to extract from Coms

i it is still hard to break Coms
i+1. The extraction procedure

is essentially a brute force algorithm that “tries all option”.
A similar trick is performed using time-lock puzzles. They are used to obtain a family of γ

commitment schemes {Comt
i}i∈[γ] such that Comt

i+1 is harder than Comt
i for all 1 ≤ i ≤ γ − 1 in

the axis of (parallel) time. Namely, in time which is sufficient to extract from Comt
i it is still hard

to break Comt
i+1. The extraction procedure is highly sequential and requires very small total size.

In particular, in size which is sufficient to extract from any Comt it is still hard to break any Coms.
To construct a non-malleable commitment scheme NMCom, their key idea is to combine a Coms

and Comt scheme with opposite strength. That is,

NMCom(1λ,m, tag) = Coms
tag(1λ, s)‖Comt

γ−tag(1λ, s⊕m) , where s← {0, 1}|m|.

The hiding and non-malleability proofs are the same as in [LPS17]. Hiding is immediate from
hiding of the two underlying commitments Non-malleability holds by considering two cases. First,
if the left tag i is smaller than the right tag j, the Comt

j commitment on the right remains hiding

for attackers of size and time enough for extracting from both Comt
i and Coms

j . Therefore the right
committed value remains hidden, while the right is extracted. Otherwise, if the left tag i is larger
than the right commitment j, then the Coms

i commitment on the left remains hiding for attackers
of size and time enough for extracting from both Coms

j and Comt
γ−j . Thus, the left committed

value remains hidden, while the right is extracted.
Of course, the above construction is not the final construction of [LPS17] as it supports only a

small number of tags (while our goal is to support an exponential number of tags). To get around
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this they present a tag-amplification technique that is based on a tree-like structure and the way
they avoid blow-up in the commitment size is by using a (keyless) collision resistant hash function
(which causes the final construction to be non-malleable only with respect to bounded-uniformity
attackers). We refer to [LPS17] for the precise details.

The non-uniform scheme. To get the scheme satisfying the properties listed in Theorem 5.2 we
use the scheme of Bitansky and Lin [BL18] (which in turns is based on the scheme of [LPS17]).
Here, they present a new tag-amplification technique, inspired by a interactive tag-amplification
technique of Khurana and Sahai [KS17], where they make it non-interactive using their one-message
zero-knowledge protocol (which is based on keyless multi-collision resistant hash functions).

5.3 One-Message Zero-Knowledge

Theorem 5.4. Assume the existence of a one-way permutation, a NIWI proof systems for all NP,
a keyless multi-collision resistant hash function, all sub-exponentially secure. Then, there exists
a one-message SPS zero-knowledge argument system satisfying (SP ,K)-weak-soundness and SD-
tuned zero-knowledge for all polynomials SP (λ), and where K ∈ poly(λ) is a fixed polynomials, and
SD(λ) = 2λ

η
for some constant η ∈ (0, 1).

Theorem 5.5. Assume the existence of a one-way permutation, a NIWI proof systems for all
NP, a collision resistant hash function secure against uniform polynomial-time algorithms, all sub-
exponentially secure. Then, there exists a one-message SPS zero-knowledge argument system satis-
fying (SP , κ)-soundness and SD-zero-knowledge for all polynomial SP (λ), and where κ(λ) = 0 and
SD(λ) = 2λ

η
for some constant η ∈ (0, 1).

The difference between the two theorems are that in the former we obtain weak-soundness for
non-uniform attackers but using a keyless multi-collision resistant hash, while in the latter we obtain
(plain) soundness only for uniform attackers but we are using a keyless (plain) collision resistant
hash.

Barak and Pass [BP04] showed that a one-message zero-knowledge system exists assuming a
collection of sub-exponentially hard primitives: a one-way permutation, a NIWI for all NP, and a
keyless collision resistant hash function. Intuitively, their construction follows the Feige-Lapidot-
Shamir paradigm [FLS90] where the protocol consists of a commitment to 0 and a WI argument for
the statement that either the prover knows a witness for the given instance, or it used a commitment
to a special (hard to guess) value. The special value which is hard to guess is, intuitively, a collision
in an appropriately chosen hash function and this is why soundness only applies to uniform malicious
provers. The simulator can either find such a collision by running in sub-exponential size or be PPT
and have such a collision hardcoded as non-uniform advice. Their construction gives Theorem 5.5.

Bitansky and Lin [BL18] constructed a one-message zero-knowledge argument system by replac-
ing the uniform hash function used by Barak and Pass with a keyless multi collision resistant hash
function [BKP18]. Intuitively, their trapdoor is a collision that depends on (part of) the statement
being proven. Their construction gives Theorem 5.4.

6 The Non-Malleable Code

In this section, we present a construction of a non-malleable code that satisfies non-malleability
against all (non-uniform) polynomial size attackers that have bounded polynomial depth. In other
words, the only way to maul a codeword is by having high depth.
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Our construction relies on several building blocks on which we elaborate next.

1. A time-lock puzzle TL = (TL.Gen,TL.Sol) as in Definition 3.5 and Theorem 5.1. This con-
struction, for all large enough difficulty parameters t, allows to generate puzzles which are
hard for any (non-uniform) machine whose parallel time/depth is at most tε, even it has
size 23λ.

2. A one-message SPS zero-knowledge argument system ZK = (ZK.P,ZK.V) as in Definition 3.2
and Theorem 5.4. This construction is weakly sound w.r.t. all (non-uniform) polynomial-size
attackers and satisfies zero-knowledge w.r.t. sub-exponential size adversaries.

3. A one-message non-malleable tag-based commitment scheme NMCom = (NMCom.C,NMCom.O)
as in Definition 3.1 and Theorem 5.2. This scheme is non-malleable for quasi-polynomial
size tampering functions (2log

2 λ say) and extractable in slightly higher quasi-polynomial size

(2log
3 λ say).

4. Sig = (Sig.G,Sig.S,Sig.V). A one-time signature scheme, unforgeable for polynomial-size
attackers.

We show that assuming the existence of the above primitives, there is a code which is non-
malleable for all polynomial-size attackers that run in bounded polynomial depth. We denote the
latter T . Our main result is summarized in the following theorem.

Theorem 6.1. Assume a time-lock puzzle TL, a one-message SPS zero knowledge system ZK, a
one-message non-malleable commitment scheme NMCom, and a one-time signature scheme Sig, as
above. Then, there exist constants α, β, γ ∈ N such that for any large enough polynomial T , there
is a code NMCode = (NMCode.E,NMCode.D) (described below in Algorithms 2, 3, and 4) with the
following properties:

1. The input of NMCode.E is a message from {0, 1}λ and it outputs a codeword in {0, 1}λα.

2. The running time of NMCode.E is λβ and the running time of NMCode.D is (T · λ)γ.

3. It is (S, T )-non-malleable for all polynomials S(λ).

The construction. Fix T , the upper bound on the depth of the tampering function. The high
level idea of the construction is to combine the hardness for parallel machines that comes from
a time-lock puzzle together with non-malleability that comes from a non-malleable commitment.
Specifically, the way we combine them is so that an encoding of a message m consists of a time-
lock puzzle for m, a non-malleable commitment for m, and a zero-knowledge proof that ties them
together by asserting that they have the same underlying message. The construction is described
formally in Algorithms 2, 3, and 4

Sub-exponential security. The theorem extends to show that the resulting non-malleable code
cannot be mauled in depth better than T even if the total size of the solver is (sub-)exponential
in λ. For that, we need to make all of our underlying building blocks sub-exponentially secure (in
particular, they have to remain secure in the presence of an exponential size adversary). We focus
on the polynomial regime for simplicity.
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Algorithm NMCode.E(1λ,m) for m ∈ {0, 1}λ:

1. (vk, sk)← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε
,m; rTL) with uniformly random rTL.

3. (c, rNMCom)← NMCom.C(1λ,m, tag = vk).

4. Compute a ZK proof π ← ZK.P(·, ·, 1λ) for the relation Ru from Algorithm 4 using (Z, c, vk)
as the instance and (rTL, rNMCom,m) as the witness.

5. σ ← Sig.S(sk, (Z, c, π)).

6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 2: The encoding procedure NMCode.E.

Algorithm NMCode.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If both accept, output TL.Sol(Z). Otherwise, output 0λ.

Algorithm 3: The decoding procedure NMCode.D.

Organization. The proof of Theorem 6.1 consists of two parts: (1) efficiency analysis showing
that the encoding and decoding procedures can be implemented with the required complexities and
(2) showing that the code is non-malleable. Part (1) is proven in Section 6.1 and Part (2) is proven
in Section 6.2.

6.1 Efficiency Analysis

Fix a security parameter λ ∈ N and a message m ∈ {0, 1}λ. The encoding (i.e., the output of
NMCode.E(1λ,m) consists of a verification key of a signature scheme, a time-lock puzzle, a non-
malleable commitment scheme, a zero-knowledge proof, and a signature. All of these are of fixed
polynomial size in λ.

The procedure NMCode.E, on input (1λ, s), runs in time poly(log T , λ). Indeed, steps 1,3,
and 5 are independent of T and take poly(λ) time. Step 2, by definition of time-lock puzzles,
takes time poly(log T , λ). Finally, step 4 takes time poly(log T , λ) due to the running time of the
verification procedure of the underlying language. The procedure NMCode.D can be computed in

time T
2/ε · poly(λ). Indeed, verifying the proof and the signature both take fixed polynomial time

poly(λ) and the last step takes time T
2/ε · poly(λ), by definition.
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Relation Ru ((Z, c, vk), (rTL, rNMCom,m)):

• Instance: a puzzle generated by TL.Gen(1λ, T
2/ε
,m), a commitment c, and a verification

key vk.

• Witness: a string rTL ∈ {0, 1}∗, a string rNMCom ∈ {0, 1}∗, and a string m ∈ {0, 1}λ.

• Statement: TL.Gen(1λ, T
2/ε
,m; rTL) = Z and NMCom.O(c,m, rNMCom, tag = vk) = 1.

Algorithm 4: The Relation Ru.

6.2 Proof of Non-Malleability

In what follows, we prove that the coding scheme from Algorithms 2 and 3 is medium-non-malleable
for all polynomial-size S and bounded polynomial-time T tampering functions. Let g(Z,Z ′) be the
procedure defined in Algorithm 5.

g(Z,Z ′):

1. Parse Z as (vk, Z, c, π, σ) and Z ′ as (vk′, Z ′, c′, π′, σ′).

2. If vk = vk′ and σ′ verifies (that is, Sig.V(vk′, (Z, c′, π′), σ′)=1), output 1. Otherwise output 0.

Running time: The procedure g has fixed polynomial size in its input size.

Algorithm 5: The procedure g.

Claim 6.2. For every non-uniform polynomial-size tampering function A = {Aλ}λ∈N, every diffi-
culty parameter t, and every m ∈ {0, 1}λ, it holds that

Pr
Ẑ←NMCode.E(1λ,m)

[
g(Ẑ,Aλ(Ẑ)) = 1 ∧ NMCode.D(Aλ(Ẑ)) 6= m

]
≤ negl(λ).

Proof. Let Ẑ = (vk, Z, c, π, σ) and Aλ(Ẑ) = Ẑ ′ = (vk′, Z ′, c′, π′, σ′). If g(Ẑ, Ẑ ′) = 1, then vk = vk′

and Sig.V(vk′, Z ′, c′, π′), σ′)=1. Also, recall that Z is a puzzle with underlying message m. Thus,
if NMCode.D(Ẑ ′) 6= m, it means that (Z, c, π) 6= (Z ′, c′, π′). Thus, Aλ can be used to create (in
polynomial time) a valid signature σ′ w.r.t. verification key vk for a new statement which is a
contradiction to the security of the one-time signature.

We next show that w.r.t. the above g (Algorithm 5), for any polynomial-size algorithm A =
{Aλ}λ∈N such that Time [A] ≤ T and any m0,m1 ∈ {0, 1}λ, it holds that

{MedTamperNMCode
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode
A,m1

(λ)}λ∈N,

where

MedTamperNMCode
A,m (λ) =

{
Ẑ ← NMCode.E(1λ,m); m̃ = NMCode.D(Aλ(Ẑ))

Output: same∗ if g(Z,Aλ(Z)) = 1, and m̃ otherwise

}
.
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We do so by defining a sequence of hybrid experiments where we slowly change how NMCode.E
and NMCode.D work and showing that every two consecutive hybrids are indistinguishable. For
consistency of notation with what follows, we denote the non-malleable code from Algorithms 2
and 3 used in the original scheme by NMCode0 = (NMCode0.E,NMCode0.D), where NMCode0.E ≡
NMCode.E and NMCode0.D ≡ NMCode.D. The first experiment that we define corresponds to the
experiment {MedTamperNMCode0

A,m0
(λ)}λ∈‘N and the last one corresponds to an experiment where we

encode m1. From that point, one can “reverse” the sequence of experiment to reach the experiment
{MedTamperNMCode0

A,m1
(λ)}λ∈N. We omit this part to avoid repetition.

Throughout the following sequence of hybrids, we treat A and m0,m1 as fixed.

Experiment H0(λ). This is the original experiment, where we encode m0 under NMCode0 (see
Algorithms 2 and 3) and execute the experiment {MedTamperNMCode0

A,m0
(λ)}λ∈N.

Experiment H1(λ). This experiment is the same as Experiment H0(λ) except that we use the
simulator of the ZK proof to generate π. Recall that the instance is x = (x1 = Z, x2 = (c, σ)). This
gives rise to the scheme NMCode1 = (NMCode1.E,NMCode0.D), where NMCode1.E is describer in
Algorithm 6. Using this scheme we execute the experiment {MedTamperNMCode1

A,m0
(λ)}λ∈N. By the

zero-knowledge property of ZK, this hybrid is indistinguishable from H0(λ).

Algorithm NMCode1.E(m) for m ∈ {0, 1}λ:

1. (vk, sk)← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε
,m).

3. (c, r)← NMCom.C(1λ,m, tag = vk).

4. Use the (uniform sub-exponential size) simulator Sim to simulate a proof π for the relation Ru

using (Z, c, vk) as the instance.

5. σ ← Sig.S(sk, (Z, c, π)).

6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 6: The encoding procedure NMCode1.E used in H1(λ).

Claim 6.3. It holds that

{MedTamperNMCode0
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode1
A,m0

(λ)}λ∈N.

Proof. Let Ẑ0 ← NMCode0.E(1λ,m0) and Ẑ1 ← NMCode1.E(1λ,m0). Next, since A, g, and
sampling Ẑ0 and Ẑ1 except the proof can all be done in polynomial size, the zero-knowledge
property of ZK (see Section 3.2) guarantees that∣∣∣Pr[g(Ẑ0,Aλ(Ẑ0)) = 1]− Pr[g(Ẑ1,Aλ(Ẑ1)) = 1]

∣∣∣ ≤ negl(λ). (1)

Second, conditioning on the event that g(Ẑ0,Aλ(Ẑ0)) = 0 together with the fact that NMCode0.D
is polynomial size, by the zero-knowledge property,

{NMCode0.D(Aλ(Ẑ0))}λ∈N ≈ {NMCode1.D(Aλ(Ẑ1))}λ∈N. (2)
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Combining Equations (1) and (2), the claim follows.

Experiment H2(λ). This experiment is the same as Experiment H1(λ) except that instead of
committing to m0 with a non-malleable commitment, we commit to 0λ. This gives rise to the
scheme NMCode2 = (NMCode2.E,NMCode0.D) which is described in Algorithm 7. Using this
scheme we execute the experiment {MedTamperNMCode2

A,m0
(λ)}λ∈N. By the hiding property of NMCom,

this hybrid is indistinguishable from H1(λ).

Algorithm NMCode2.E(m) for m ∈ {0, 1}λ:

1. (vk, sk)← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε
,m).

3. (c, r)← NMCom.C(1λ, 0λ, tag = vk).

4. Use the (uniform sub-exponential size) simulator Sim to simulate a proof π for the relation Ru

using (Z, c, vk) as the instance.

5. σ ← Sig.S(sk, (Z, c, π)).

6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 7: The encoding procedure NMCode2.E used in H2(λ).

Claim 6.4. It holds that

{MedTamperNMCode1
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode2
A,m0

(λ)}λ∈N.

Proof. Assume that there is a distinguisher between the two distributions that succeeds with
noticeable probability. It must succeed with noticeable probability on some fixed Z in the support

of TL.Gen(1λ, T
2/ε
,m). Now, when Z is fixed, we can simulate the rest of Ẑ1 ← NMCode1.E(1λ,m0)

and Ẑ2 ← NMCode2.E(1λ,m0) in polynomial time using a non-uniform simulator Simpost that
will have the trapdoor corresponding to Z hardwired (the trapdoor is essentially the output of
Simpre(Z)). Furthermore, A and g are PPT and so the hiding property of the commitment scheme,

which holds for non-uniform distinguishers of size 2log
2 λ, guarantees that∣∣∣Pr[g(Ẑ1,Aλ(Ẑ1)) = 1]− Pr[g(Ẑ2,Aλ(Ẑ2)) = 1]

∣∣∣ ≤ negl(λ). (3)

Second, conditioning on the event that g(Z1,Aλ(Z1)) = 0 together with the fact that NMCode0.D
is efficient (i.e., polynomial size), again by the hiding property of the commitment scheme,

NMCode0.D(Aλ(Ẑ1)) ≈ NMCode0.D(Aλ(Ẑ2)). (4)

Combining Equations (3) and (4), the claim follows.
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Experiment H3(λ). This experiment is the same as Experiment H2(λ) except that we use an
alternate decoding procedure. The alternate decoding procedure does not solve the time-lock puzzle
in order to decode the secret m, but rather it “breaks” the commitment scheme and extracts m
from it using NMCom.Ext unless the (tampered) proof corresponds to a time-lock puzzle instance
coming from some fixed set of “bad” puzzles.

Recall that our instances for the ZK system have two parts x = (x1 = Z, x2 = (c, σ)). Therefore,
by weak-soundness of ZK, every algorithm can come up with some small bounded number (depend-
ing on its non-uniformity size) of Z’s that could be successfully verified yet they could come with
a commitment which is not consistent and therefore comprise a false statement. If we encounter
any of these puzzles, we will output a hard coded value instead of trying to extract the value from
the commitment. We define an adversary B which runs the tampering function A on an honestly
generated codeword (NMCode0.E, uniform polynomial-size procedure). We look at the set of “bad”
puzzles corresponding to B.

More precisely, the adversary B can find a set Z ′ (that depends on the B and the hybrid
experiment) of size at most K , KZK(|Bλ|+O(1)) ∈ poly(λ) of puzzles Z that might end up being
falsely verified. We denote by Z the augmented set of puzzles together with their underlying value.
Namely, Z is a set that consists of tuples of the form (Z, m̃), where m̃ is the message underlying Z.

This gives rise to the scheme NMCode3 = (NMCode2.E,NMCode1.D) which is described in
Algorithm 8. Using this scheme we execute the experiment {MedTamperNMCode3

A,m0
(λ)}λ∈N.

Algorithm NMCode1.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the ZK proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If either test from Steps 1 or 2 does not pass or c = ⊥, output 0λ and terminate.

4. If Z is a puzzle which is in Z, output the corresponding message m̃ and terminate.

5. Otherwise (both tests pass, c 6= ⊥, and Z /∈ Z ′), use the extractor NMCom.Ext(c) to get the
underlying value m̃. Output m̃ (if extraction fails, m̃ = ⊥).

Algorithm 8: The decoding procedures NMCode1.D used in H3(λ).

Claim 6.5. It holds that

{MedTamperNMCode2
A,m (λ)}λ∈N ≈ {MedTamperNMCode3

A,m (λ)}λ∈N.

Proof. By definition of the MedTamper experiment, letting Z3 ← NMCode3.E(1λ,m), it is enough
to show that

P3 , Pr[NMCode0.D(Aλ(Ẑ3)) 6= NMCode1.D(Aλ(Ẑ3)) ∧ g(Ẑ3,Aλ(Ẑ3)) = 0] ≤ negl(λ). (5)
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Define the following three quantities where Ẑ0 ← NMCode0.E(1λ,m), Ẑ1 ← NMCode1.E(1λ,m),
and Ẑ2 ← NMCode2.E(1λ,m):

P0 , Pr[NMCode0.D(Aλ(Ẑ0)) 6= NMCode1.D(Aλ(Ẑ0)) ∧ g(Ẑ0,Aλ(Ẑ0)) = 0],

P1 , Pr[NMCode0.D(Aλ(Ẑ1)) 6= NMCode1.D(Aλ(Ẑ1)) ∧ g(Ẑ1,Aλ(Ẑ1)) = 0],

P2 , Pr[NMCode0.D(Aλ(Ẑ2)) 6= NMCode1.D(Aλ(Ẑ2)) ∧ g(Ẑ2,Aλ(Ẑ2)) = 0].

Note that NMCode3.E ≡ NMCode2.E and so P2 = P3. Thus, to prove Equation (5), it is enough
to show that P2 ≤ negl(λ). For this, we would like to show that P0, |P0 − P1| and |P1 − P2| are all
bounded by a negligible function in λ.

Claim 6.6. P0 ≤ negl(λ).

Proof. If NMCode0.D(Ẑ0) 6= NMCode1.D(Ẑ0), then it must be that the ZK proof π (1) verifies yet
the statement being proven is false and yet (2) the corresponding puzzle Z /∈ Z ′. If this happens
with noticeable probability in λ, we can use it to break the weak -soundness of the ZK by outputting
an accepting proof for a false statement corresponding to a puzzle which is not in the set Z ′. To
do this, we need to run B which in turn just executes the tampering function Aλ on an honestly
generated codeword (NMCode0.E). This is a contradiction to weak-soundness for B.

Claim 6.7. |P0 − P1| ≤ negl(λ).

Proof. We argue that if the difference is noticeable, then we can break the zero-knowledge property
of ZK. Indeed, we can verify that the statement proven is true or false faster than the security
of zero-knowledge. Verifying that TL.Sol(Z) = m can be done in polynomial-time (using the
randomness used to generate Z). Extracting the committed value by running NMCom.E takes size

SNMCom
Ext (λ) = 2log

3 λ which is much smaller than the size required to break the zero-knowledge
property (the latter is SZK

D (λ) = 2λ
η
).

Claim 6.8. |P1 − P2| ≤ negl(λ).

Proof. Assume towards contradiction that |P1−P2| ≥ 1/p(λ) for a polynomial p(·). We show that
we can break the non-malleability of the commitment scheme. First, observe that in both terms
P1 and in P2, the underlying experiment samples a time-lock puzzle of the message m. Therefore,

there must be some fixed Z in the support of TL.Gen(1λ, T
2/ε
,m) for which the two quantities differ.

From now on, we fix this Z and also fix the corresponding trapdoor td to ZK (that can be generated
via Simpre(Z)). Next, we need to show an attacker-distinguisher pair (D,B) for the Man-In-the-

Middle execution such that B is an algorithm whose size is � 2log
2 λ and whose non-uniformity is

bounded by a fixed polynomial and D can distinguish (in polynomial-time) MIMANMCom(λ,m) from
MIMANMCom(λ, 0λ) for a fixed message m ∈ {0, 1}λ \ {0λ}. The algorithm B = (B0,B1) is going to
have Z and td hardwired and it is defined as follows.

On input 1λ, algorithm B0 does:

1. Generate (vk, sk)← Sig.G(1λ).

2. Send tag = vk to the challenger as the desired tag and outputs sk to B1.
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On input (sk, vk, c), algorithm B1 has hardwired the time-lock puzzle Z and corresponding trapdoor
td of polynomial size for the ZK proof system, and it does:

1. Use the simulator Simpost along with a trapdoor td to simulate a proof π for the statement
(Z, c, vk), and sign σ ← Sig.S(sk, (Z, c, π)). Let Ẑ = (vk, Z, c, π, σ).

2. Compute Aλ(Ẑ) which we interpret as Ẑ ′ = (vk′, Z ′, c′, π′, σ′).

3. If either g(Ẑ, Ẑ ′) = 1, σ′ does not verify, π′ does not verify, or π′ ∈ Z ′, output ⊥. Otherwise,
output (c′, Z ′).

The distinguisher D receives either the message m′ underlying c′ or ⊥, as well as out = (c′, Z ′). The
distinguisher D outputs 0 if either its input c′ is ⊥ or if TL.Sol(Z ′) = m′. It outputs 1 otherwise.
It holds that

Pr
c←NMCom.C(m,tag=vk)

[D(m′, out) = 1] = P1(λ)

and

Pr
c←NMCom.C(0λ,tag=vk)

[D(m′, out) = 1] = P2(λ).

Thus, ∣∣∣∣ Pr
c←NMCom.C(m,tag=vk)

[D(m′, out) = 1]− Pr
c←NMCom.C(0λ,tag=vk)

[D(m′, out) = 1]

∣∣∣∣ ≥ 1

p(λ)

which is a contradiction to the non-malleability of NMCom. All of the steps of B can be implemented
in PPT (with polynomial size non-uniformity), while non-malleability of the commitment scheme
holds for all non-uniform PPT attackers. Lastly, D runs in (uniform) polynomial time directly by
definition.

Experiment H4(λ). This experiment is the same as Experiment H3(λ) except that we modify
the alternate decoding procedure to use another extractor NMCom.Ext′ instead of NMCom.Ext.
The new extractor is a depth/parallel-time efficient version of NMCom.Ext. That is, we break
the commitment scheme by brute-forcing all options for an opening in parallel. For concreteness,
this can be implemented in (say) 2λ size and fixed polynomial depth. Namely, we execute the
experiment {MedTamperNMCode4

A,m1
(λ)}λ∈N. This gives rise to the scheme NMCode4 = (NMCode2.E,

NMCode2.D) which is described in Algorithm 9. Using this scheme we execute the experiment
{MedTamperNMCode4

A,m0
(λ)}λ∈N.

Claim 6.9. It holds that {MedTamperNMCode3
A,m0

(λ)}λ∈N and {MedTamperNMCode4
A,m0

(λ)}λ∈N are identi-
cally distributed.

Proof. The difference between the two experiments is the way that decoding extracts the message
underlying the commitment scheme. Specifically, in the experiment that corresponds to NMCode3 it
works by running NMCom.Ext while in NMCode4 it works by running NMCom.Ext′. Both extraction
procedures output the same exact value on every input and so since the output of the experiment
contains only the output of this procedure, the two experiments are identically distributed.
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Algorithm NMCode2.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the ZK proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If either test from Steps 1 or 2 does not pass or c = ⊥, output 0λ and terminate.

4. If π is a proof which is in Z, output the corresponding message m̃ and terminate.

5. Otherwise (both tests pass, c 6= ⊥, and π /∈ Z ′), use the extractor NMCom.Ext′(c) to get the
underlying value m̃. Output m̃ (if extraction fails, m̃ = ⊥).

Algorithm 9: The decoding procedures NMCode2.D used in H4(λ).

Experiment H5(λ). This experiment is the same as Experiment H4(λ) except that we use m1

as the underlying message for TL.Gen (rather than m0), namely, we execute the experiment
{MedTamperNMCode4

A,m1
(λ)}λ∈N.

Claim 6.10. It holds that

{MedTamperNMCode4
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode4
A,m1

(λ)}λ∈N.

Proof. Let Z0 ← NMCode3.E(m0) and Z1 ← NMCode3.E(m1). We first argue that

|Pr[g(Z0,Aλ(Z0)) = 1]− Pr[g(Z1,Aλ(Z1)) = 1]| ≤ negl(λ).

This proof uses the fact that A has bounded depth. Towards contradiction, if the above difference is
noticeable, then we can use NMCode3.E, g, and A to create a polynomial size and depth T +poly(λ)
machine that gets as input a time-lock puzzle Z that corresponds to either m0 or to m1 (each with
probability 1/2), computes the appropriate non-malleable encoding Ẑ, and then decide whether
TL.Sol(Z) is m0 or m1 with noticeable probability. This is a contradiction to the assumption
on the underlying time-lock puzzle which stays that no machine with the above size and depth

(T
2/ε

)ε = T
2

(which is much larger than T + poly(λ) for large enough T ) can solve it. (Recall that
the whole experiment, including the ZK simulator and the extractor, can be implemented in fixed
polynomial depth.)

Next, we complete the proof by showing that

NMCode2.D(Aλ(Ẑ0)) ≈ NMCode2.D(Aλ(Ẑ1)).

Assume towards contradiction that there is a distinguisher D between the above two distributions
which are the message underlying the tampered codeword encoded using NMCode2.E. Let D̃ be a
distinguisher that has the same truth table as D but is implemented in (at most) 2λ size and ≤ λ
time. This can be done by a procedure that has hardwired the whole truth table and it uses the
input, which is of size λ, to access an entry. As before, we can fix D and this distinguisher to create
the non-malleable codeword, which we can then use by simulating NMCode2.E and NMCode2.D
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to simulate the codeword and its decoding, and then to decide what was the underlying message.
This requires an algorithm of (at most) fixed polynomial size and fixed polynomial time in λ,
except NMCom.Ext′ which is at most exponential size and fixed polynomial depth, and D̃ which
is of 2λ size and of λ depth. Thus, we obtain a procedure of size S = 2λ + 2λ + poly(λ) and time
T ∈ poly(λ) (for some fixed polynomial poly) that has noticeable correlation with TL.Sol(Z). The
latter, by assumption, cannot be done by a T -time procedure, even if its size is 23λ, which implies
our contradiction by choosing T large enough so that T < T .

7 The Case of Uniform Tampering

In Section 6 we gave a construction of a non-malleable code secure against all tampering functions
that can be described as non-uniform polynomial size algorithm with bounded polynomial depth. In
this section we focus on the natural class of tampering functions that consists of uniform polynomial
size algorithm with bounded polynomial parallel running time. This is the class that was considered
in the work of Ball et al. [BDK+19].

The construction is essentially the same as the one for non-uniform tampering functions and
the main differences are in how we instantiate the building blocks and how the security proof goes
through. Let us precisely list the building blocks with which we use the scheme from Section 6
(Algorithms 2, 3, and 4). We note that the time-lock puzzle and the signature scheme that we use
(Items 1 and 4 below) are the same as the one we used in Section 6.

1. A time-lock puzzle TL = (TL.Gen,TL.Sol) as in Definition 3.5 and Theorem 5.1. The con-
struction, for all large enough difficulty parameters t, allows to generate puzzles which are
hard for any (non-uniform) machine whose parallel time is at most tε, even it has size 23λ.

2. A one-message zero-knowledge argument system ZK = (ZK.P,ZK.V) as in Definition 3.2 and
Theorem 5.5). This construction is sound w.r.t. all polynomial-size attackers with polyno-
mially bounded non-uniformity, there is a (non-uniform) PPT simulator that satisfies zero-
knowledge w.r.t. sub-exponential size adversaries.

3. A one-message non-malleable tag-based commitment scheme NMCom = (NMCom.C,NMCom.O)
as in Definition 3.1 and Theorem 5.3. This scheme which is hiding for all (non-uniform)

polynomial-size distinguishers, extractable in quasi-polynomial (2log
2 λ), and non-malleable

for all quasi-polynomial (2log
3 λ) tampering functions that have bounded (larger than the

non-uniformity needed for the ZK simulator) polynomial size non-uniformity.

4. Sig = (Sig.G,Sig.S,Sig.V). A one-time signature scheme, unforgeable for polynomial-size
attackers.

Overview of the proof. The proof works by defining a sequence of hybrid experiments, where in
the first the Man-In-the-Middle game is played with a message m0 and in the last with a message
m1. The sequence of experiments is analogous to the one described in Section 6 except that we do
not need worry about “weak-soundness” of the ZK scheme and so some transitions follow due to
slightly different reasons.
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• H0(λ): This is the original experiment.

• H1(λ): This is the same experiment, except that we use the simulator to generate proofs.
ExperimentsH0(λ) andH1(λ) are indistinguishable due to the zero-knowledge property of ZK.

• H2(λ): This is the same experiment, except that we commit to 0 and not to m0. Experiments
H1(λ) and H2(λ) are indistinguishable due to the hiding property of NMCom (which holds
for all non-uniform PPT attackers).

• H3(λ): This is the same experiment, except that we switch to alternate decoding where,
rather than solving the time-lock puzzle, the commitment is being extracted via the extractor
NMCom.Ext. Indistinguishability of H2(λ) and H3(λ) is proven by defining the same three
quantities P0, P1, and P2 such that P2 corresponds to |Pr[H2(λ) = 1]− Pr[H3(λ) = 1]|.

– |P0| ≤ negl(λ): This follows by (polynomially bounded non-uniformity) soundness of ZK.
(Recall that soundness against uniform attacker suffices since our attacker is uniform.)

– |P1−P0| ≤ negl(λ): This follows by observing that by the choice of the hardness param-
eters of the scheme, one can extract from the commitment (in quasi-polynomial size)
without breaking zero-knowledge (which holds for sub-exponential attackers).

– |P2 − P1| ≤ negl(λ): This follows by observing that if this is false, then we can use the
experiment to break (polynomially bounded non-uniformity) non-malleability. Since the
ZK simulator (which is of fixed polynomial size and thus has bounded non-uniformity)
cannot break non-malleability (which holds for all polynomial size attackers that have
bounded but larger non-uniformity) this implies a contradiction.

• H4(λ): This is the same experiment, except that we modify the alternate decoding to use a
low depth/parallel-time extraction procedure NMCom.Ext′. Since the extraction procedures
have the same functionality, experiments H3(λ) and H4(λ) are identical.

• H5(λ): This is the same experiment, except that we use time-lock puzzle to encode the other
message m1. Experiments H5(λ) and H4(λ) are indistinguishable due to the security of the
time-lock puzzle (and using the fact that the attacker as well as the extractor have bounded
polynomial depth).
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