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Abstract

We provide a new definitional framework capturing the multi-user security of encryption
schemes and pseudorandom functions in the face of adversaries that can adaptively compromise
users’ keys. We provide a sequence of results establishing the security of practical symmetric
encryption schemes under adaptive compromise in the random oracle or ideal cipher model.
The bulk of analysis complexity for adaptive compromise security is relegated to the analysis of
lower-level primitives such as pseudorandom functions.

We apply our framework to give proofs of security for the BurnBox system for privacy in the
face of border searches and the in-use searchable symmetric encryption scheme due to Cash et
al. In both cases, prior analyses had bugs that our framework helps avoid.
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1 Introduction

A classic question in cryptography has been dealing with adversaries that adaptively compro-
mise particular parties, thereby learning their secrets. Consider a setting where parties use keys
k1, . . . , kn to encrypt messages m1, . . . ,mn to derive ciphertexts Enc(k1,m1), . . . ,Enc(kn,mn). An
adversary obtains the ciphertexts and compromises a chosen subset of the parties to learn their
keys. What can we say about the security of the messages encrypted by the keys that remain secret?
Surprisingly, traditional approaches to formal security analysis, such as using encryption schemes
that provide semantic security [28], fail to suffice for proving these messages’ confidentiality. This
problem was first discussed in the context of secure multiparty computation [18], and it arises in a
variety of important cryptographic applications, as we explain below.

In this work, we introduce a new framework for formal analyses when security in the face of
adaptive compromise is desired. Our approach provides a modular route towards analysis using
idealized primitives (such as random oracles or ideal ciphers) for practical and in-use schemes. This
modularity helps us sidestep the pitfalls of prior ideal-model analyses that either invented new (less
satisfying) ideal primitives, omitted proofs, or gave detailed but incorrect proofs. We exercise our
framework across applications including searchable symmetric encryption (SSE), revocable cloud
storage, and asymmetric password-authenticated key exchange (aPAKE). In particular, we provide
full, correct proofs of security against adaptive adversaries for the Cash et al. [20] searchable sym-
metric encryption scheme that is used often in practice and the BurnBox system [50] for dealing
with compelled-access searches. We show that our new definitions imply the notion of equivocable
encryption introduced to prove security of the OPAQUE [38] asymmetric password-authenticated
key exchange protocol. More broadly, our framework can be applied to a wide variety of construc-
tions [2, 3, 14,21,25,29,33,40–44,51].

Current approaches to the “commitment problem”. Our motivating applications have
at their core an adaptive simulation-based model of security. Roughly speaking, they ask that
no computationally bound adversary can distinguish between two worlds. In the first world, the
adversary interacts with the scheme whose security is being measured. In the second world, the
“ideal” world, the adversary’s queries are instead handled by a simulator that must make do with
only limited information which represents allowable “leakage” about the queries the adversary
has made so far. The common unifying factor between varying applications we consider is that
the adversary can make queries resulting in being given a ciphertexts encrypting messages of its
choosing, then with future queries adaptively choose to expose the secret keys underlying some of
the ciphertexts. The leakage given to the simulator will not include the messages encrypted unless
a query has been made to expose the corresponding key.

Proving security in this model, however, does not work based on standard assumptions of the
underlying encryption scheme. The problem is that the simulator must commit to ciphertexts,
revealing them to the adversary, before knowing the messages associated to them. Hence the
commitment problem. Several prior approaches for proving positive security results exist.

One natural approach attempts to build special non-committing encryption schemes [18] that
can be proven (in the standard model) to allow opening some a priori fixed ciphertext to a message.
But these schemes are not practical, as they require key material at least as long as the underlying
message. Another unsatisfying approach considers only non-adaptive security in which an attacker
specifies all of its queries at the beginning of the game. This is one of the two approaches that were
simultaneously taken by Cash et al. [20]. Here the simulator is given the leakage for all of these
queries at once and generates a transcript of all of its response. This is unsatisfying because more
is lost when switching from adaptive to non-adaptive security than just avoiding the commitment
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PRF1 PRF2 PRF3 Mode1 Mode2 Mode3

App2App1 App3

Figure 1: Old state of affairs. Red dashed lines correspond to implications proved through pro-
gramming in an ideal model proof. A different programming proof is needed to prove an application
secure for each pair of PRF and symmetric encryption mode.

PRF1 PRF2 PRF3

SIM-AC-PRF Mode1 Mode2 Mode3

SIM-AC-CPA/CCA

App2App1 App3

Figure 2: New state of affairs. Red dashed lines correspond to implications proved through pro-
gramming in an ideal model proof. New definitions are in bold boxes. Programming proofs are
only needed to show each low level PRF construction meets SIM-AC-PRF.

problem. It is an easy exercise to construct encryption schemes which are secure when all queries
to it must be chosen ahead of time but are not secure even against key-recovery attacks when an
adversary may adaptively choose its queries.

The primary approach used to avoid this is to use idealized models, which we can again split
into two versions. The first is to use an idealized model of encryption. Examples of this include
indifferentiable authenticated encryption [4] (IAE) or the ideal encryption model (IEM) of Tyagi
et al [50]. Security analyses in these models might not say much when one uses real encryption
schemes, even when one is willing to use more established idealized models such as the ideal cipher
model (ICM) or the random oracle model (ROM). One hope would be to use approaches such as
indifferentiability [45] to modularly show that symmetric schemes sufficiently “behave like” ideal
encryption, but this approach is unlikely to work for most encryption schemes used in practice [4].

The final approach, which is by far the most common in searchable symmetric encryption
[2,3,14,20,21,25,29,33,40–44,51], is to fix a particular encryption scheme and prove security with
respect to it in the ICM or ROM. Typically encryption schemes are built as modes of operations of
an underlying pseudorandom function (PRF) and this function (or its constituent parts) is what is
modeled as an ideal function. The downside of this is represented in Fig. 1. On the top, we have
the applications one would like to prove secure, and on the bottom, we have the different modes
of operation and PRFs that one might use. Using this approach means that for each application,
we have to provide a separate ideal model proof for each different choice of a mode of operation
and a PRF (represented by dotted red arrows in Fig. 1). If there are A applications, P PRFs, and
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M modes of operation one might consider using, then this requires A · P ·M ideal model proofs in
total, an unsatisfying state of affairs.

Moreover, the required ideal analysis can be tedious1 and error-prone. This is presumably
why only a few of the papers we found actually attempt to provide the full details of the ROM
proof. We have identified bugs in all of the proofs that did provide the details. The lack of a
full, valid proof among the fifteen papers we considered indicates the need for a more modular
framework to capture this use of the random oracle. Our work provides such a framework, allowing
the random oracle details to be abstracted away as a proof that only needs to be provided once.
This framework provides definitions for use by other cryptographers that are simple to use, apply
to practical encryption schemes, and allow showing adaptive security in well-studied models.

Examples of the “commitment problem”. We proceed by discussing the example applications
where we will apply our framework.

Revocable cloud storage and the compelled access setting. We start with the recently introduced
compelled access setting (CAS) [50]. Here one wants encryption tools that provide privacy in the
face of an authority searching digital devices, e.g., government searches of mobile phones or laptops
at border crossings. To protect against compelled access searches, the BurnBox tool [50] uses what
they call revocable encryption. At its core, this has the system encrypt a user’s files m1, . . . ,mn

with independent keys k1, . . . , kn. Ciphertexts are stored on (adversarially visible) cloud storage.
Before a search occurs, the user instructs the application to delete the keys corresponding to files
that the user wishes to hide from the authority, thereby revoking their own access to them. The
other keys and file contents are disclosed to the authority.

The formal security definition introduced by Tyagi et al. captures confidentiality for revoked
files even in the face of adversarial choice of which files to revoke, meaning they want security in
the face of adaptive compromises. This very naturally results in the commitment problem because
the simulator can be forced to provide ciphertexts for files, but only later learn the contents of
these files at the time of key revelation. At which point, it is supposed to give keys which properly
decrypt these ciphertexts.

To address the commitment problem they introduced the IEM. This models symmetric encryp-
tion as perfect: every encryption query is associated to a freshly chosen random string as ciphertext,
and decryption is only allowed on previously returned ciphertexts. Analyses in the IEM can commit
to ciphertexts (when the adversary doesn’t know the key) and later open them to arbitrary mes-
sages. In their implementation, they used AES-GCM for encryption which cannot be thought of
as indifferentiable from the IEM. Hence their proof can ultimately only provide heuristic evidence
for the security of their implemenation.

Symmetric searchable encryption. Our second motivating setting is symmetric searchable encryp-
tion (SSE), which has similar issues as that discussed above for BurnBox, but with added complex-
ity. SSE handles the following problem: a client wants to offload storage of a database of documents
to an untrusted server while maintaining the ability to perform keyword searches on the database.
The keyword searches should not reveal the contents of the documents to the server. To enable
efficient solutions, we allow queries to leak some partial information about documents. Security
is formalized via a simulation-based definition [23], in which a simulator given only the allowed
leakage must trick an adversary into believing it is interacting with the actual SSE construction.
An adaptive adversary can submit keyword searches as a function of prior returned results. Proving
security here establishes that the scheme only leaks what is allowed and nothing more. While the
leakage itself has been shown to be damaging in various contexts [19, 34], our focus here is on the

1Even more-so because SSE protocols often also run into the commitment problem with a PRF and need to model
that using a random oracle as well.
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formal analyses showing that leakage-abuse attacks are the best possible ones.

A common approach for SSE can be summarized at a high level as follows. The client generates
a sequence of key pairs (k1, k

′
1), . . . , (kn, k

′
n) for keywords w ∈ {1, . . . , n} represented as integers for

simplicity. The first key kw in each pair is used to encrypt the identifiers of documents containing w.
The latter key k′w is used as a pseudorandom function (PRF) key to derive pseudorandom locations
to store the encryption of the document identifiers. When the client later wants to search for
documents containing w it sends the associated (kw, k

′
w) keys to the server. The server then

uses k′w to re-derive the pseudorandom locations of the ciphertexts and uses kw to decrypt them.

To prove adaptive security, the simulator for such a protocol runs into the commitment prob-
lem because it must commit to ciphertexts of the document identifiers before knowing what the
identifiers are. Perhaps less obviously, a simulator also runs into a commitment issues with the
PRF. To ensure security the simulated locations of ciphertexts must be random, but then when
responding to a search query the simulator is on the hook to find a key for the PRF that “explains”
the simulated locations. Papers on SSE typically address these issue by modeling the PRF as a
random oracle and fixing a specific construction of an encryption scheme based on a random oracle.
As noted earlier, this has resulted in a need for many tedious and error-prone proofs.

Asymmetric password-authenticated key exchange and equivocable encryption. In independent and
concurrent work, Jarecki et al. updated [39] (the ePrint version of [38]) to introduce the notion
of equivocable encryption and use it to prove security of their asymmetric password-authenticated
key exchange protocol OPAQUE. The definition of equivocable encryption is essentially a weakened
version of our confidentiality definition, considering only single-user security and allowing only a
single encryption query; whereas we consider multi-user security and arbitrarily many adaptively
chosen queries. Since their definition is implied by ours, our results will make rigorous their claim
that “common encryption modes are equivocable under some idealized assumption”.

A new approach. We introduce a new framework for analyzing security in adaptive compro-
mise scenarios. Our framework has a simple, but powerful recipe: augment traditional simulation-
based, property-based security definitions to empower adversaries with the ability to perform adap-
tive compromise of secret keys. For symmetric encryption, for example, we convert the standard
simulation-based, multi-user indistinguishability under chosen plaintext attack (mu-IND-CPA) [5]
to a game that includes the same adversarial powers, but adds an additional oracle for adaptively
compromising individual user secret keys. Critical to our approach is (1) the use of simulators,
which allows handling corruptions gracefully, and (2) incorporating handling of idealized models
(e.g., the ROM or ICM). The latter is requisite for analyzing practical constructions.

We offer new definitions for multi-user CPA and CCA security of symmetric encryption, called
SIM-AC-CPA (simulation-based security under adaptive corruption, chosen plaintext attack) and
SIM-AC-CCA (chosen ciphertext attack). By restricting the classes of allowed simulators we can ob-
tain stronger definitions (e.g., SIM-AC-$ which requires that ciphertexts look like random strings).

Symmetric encryption under adaptive compromise. We then begin exercising our framework by
first answering the question: Are practical, in-use symmetric encryption schemes secure in the face
of adaptive compromises? We give positive results here, in idealized models. Taking an encrypt-
then-MAC scheme such as AES in counter mode combined with HMAC [6] as an example, we
could directly show SIM-AC-CCA security while modeling AES as an ideal cipher and HMAC as
a random oracle (c.f., [24]). But this would lead to a rather complex proof, and we’d have to do
similarly complex proofs for other encryption schemes.

Instead, we provide simple, modular proofs by lifting the underlying assumptions made about
primitives (AES and HMAC) to hold in adaptive compromise scenarios. Specifically, we introduce
a new security notion for pseudorandom functions under adaptive compromise attacks (SIM-AC-
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PRF). This adapts the standard multi-user PRF notion to also give adversaries the ability to
adaptively compromise particular keys. Then we prove that AES and HMAC each achieve this
notion in the ICM and ROM, respectively. The benefit is that these proofs encapsulate the com-
plexity of ideal model programming proofs in the simpler context of SIM-AC-PRF (as opposed to
SIM-AC-CCA).

The workflow when using our framework is represented by Fig. 2. Here PRFs are individually
shown to achieve SIM-AC-PRF security in an ideal model. Then modes of operation are proven
secure under the assumption that they use a SIM-AC-PRF secure PRF. Then each application is
proven secure under the appropriate assumption of the encryption scheme used. This decreases the
total number of proofs required to A+ P +M , significantly fewer than the A · P ·M required pre-
viously. Moreover, the complicated ideal model programming analysis (represented by red dashed
arrows) is restricted to only appearing in the the simplest of these proofs (analyzing of PRFs); it
can then simply be “passed along” to the higher level proofs.

We can then show that for most CPA modes of operation (e.g., CBC mode or CTR mode),
one can prove SIM-AC-CPA security assuming the underlying block cipher is SIM-AC-PRF. The
core requirement is that the mode of operation enjoys a property that we call extraction security.
This is a technical condition capturing the key security properties needed to prove that a mode
of operation is SIM-AC-CPA assuming the underlying block cipher is SIM-AC-PRF. Moreover, we
show that most existing (standard) proofs of IND-CPA security show, implicitly, the extraction
security of the mode. Thus, we can easily establish adaptive compromise proofs given existing
(standard) ones.

The above addresses only confidentiality. Luckily, integrity is inherited essentially for free from
existing analysis. We generically show that SIM-AC-CPA security combined with the standard no-
tion of ciphertext integrity implies SIM-AC-CCA security. Thus, one can prove encrypt-then-MAC
is SIM-AC-CCA secure assuming the SIM-AC-CPA security of the encryption and the standard
unforgeability security of the MAC. This is an easy adaptation of the standard proof [10] of encrypt-
then-MAC.
Applying the framework to high-level protocols. Equipped with our new SIM-AC-CCA and SIM-AC-
PRF security notions, we can return to our motivating task: providing positive security analyses
of BurnBox and the Cash et al. SSE scheme.

We give a proof of BurnBox’s CAS security assuming the SIM-AC-CPA security of the under-
lying symmetric encryption scheme. Our proof is significantly simpler than the original analysis,
avoiding specifically the nuanced programming logic that led to the bug in the original analysis.
For the Cash et al. scheme we apply our SIM-AC-PRF definition and a key-private version of our
SIM-AC-CPA definition. Their adaptive security claim was accompanied only by a brief proof
sketch which fails to identify an important detail that need to be considered in the ROM analy-
sis (see Appendix F). Our proof handles this detail cleanly while being ultimately of comparable
complexity to their non-adaptive security proof.

Unfortunately, these settings and constructions are inherently complicated. So even with the
simplification provided by our analysis techniques there is not space to fit their analysis in the
body of our paper; it has instead been relegated to the appendices of this work. We choose this
organization because our main contribution is the definition abstraction which we believe will be
of use for future work, rather than the particular applications we chose to exhibit its use.
Treatment of symmetric encryption. In this work, we focus on randomized encryption, over more
modern nonce-based variants because this was the form of encryption used by the applications we
identified. In Appendix C, we extend our definitions to nonce-based encryption. The techniques we
introduce for analyzing randomized symmetric encryption schemes should extend to nonce-based
encryption schemes.
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Further related work. The literature on the general setting of adaptive compromise is vast.
A variety of different primitives have been considered with multiple different styles of definitions.
Terms used to refer to the general setting include adaptive corruption/compromise/security [18,36,
47], multi-key/instance security with corruptions [11, 37], non-committing encryption [16–18, 46],
and selective-opening attacks [8, 9, 13, 30–32]. We refer the reader to a systemization of knowledge
paper by Brunetta, Heum, and Stam [15] for a more in-depth summary of the literature and the
relationships therein. The focus of their work is public key encryption, but the definitions and
underlying ideas can be ported to the symmetric encryption setting.

In the symmetric setting, Panjwani [47] introduced an adaptive compromise definition written
in an indistinguishability style called generalized selective decryption (GSD) which allows encrypt-
ing one user’s keys with another’s. Variants of this definition which disallow encrypting of users’
keys are a natural analog of SIM-AC-CPA and are studied, for example, by Jager, Stam, Stanley-
Oakes, and Warinschi [37]. Heurer and Poettering [31] introduced a notion of “simulatable data
encapsulation mechanism” for symmetric encryption schemes that are constructed from a blockci-
pher in a blackbox manner and used it (together with other assumptions) to construct a public-key
encryption scheme achieving an “offline-simulation” style adaptive compromise definition termed
SIM-SO-CCA. Any simulatable data encapsulation mechanism will achieve SIM-AC-CPA security
against adversaries that make at most one encryption query per user; however, SIM-AC-CPA can-
not be used as a drop-in replacement in their positive result which requires particular structural
properties about how ciphertexts can be simulated.

Subsequent work. Jaeger [35], provides a strengthened version of SIM-AC definitions, termed
SIM*-AC. These definitions resolve some subtle shortcomings with SIM-AC definitions. These in-
clude that single-user security does not seem to imply multi-user security (mentioned in Section 4.1)
and that SIM-AC seems to require the use of separate ideal primitives for proofs that involve multi-
ple schemes (e.g., Theorem 5.2, Theorem D.1, and Theorem E.1). SIM*-AC definitions differ from
their SIM-AC counterparts in three crucial ways. They switch the order of quantification so that
the simulator is not allowed to depend on the adversary. They restrict the simulator to explic-
itly programming the ideal primitive via oracle access, instead of completely replace the primitive.
Finally, they allow the adversary the same access to the ability to program the ideal primitive.

2 Preliminaries

A list T of length n ∈ N specifies an ordered sequence of elements T [1], T [2], . . . , T [n]. The
operation T.add(x) appends x to this list by setting T [n+ 1]← x. This making T a list of length
n+1. We let |T | denote the length of T . The operation x← T.dq() sets x equal to the last element
of T and removes this element from T . In pseudocode lists are assumed to be initialized empty
(i.e. have length 0). An empty list or table is denoted by [·]. We sometimes use set notation with
a list, e.g. x ∈ T is true if x = T [i] for any 1 ≤ i ≤ |T |.

Let S and S′ be two sets with |S| ≤ |S′|. Then Inj(S, S′) is the set of all injections from S to
S′. We will sometimes abuse terminology and refer to functions with co-domain {S : S ⊆ {0, 1}∗ }
as sets. For n ∈ N we define [n] = {1, . . . , n}.

The notation y←$ A(x1, x2, · · · : σ) denotes the (randomized) execution of A with state σ.
Changes that A makes to its input variable σ are maintained after A’s execution. For given
x1, x2, . . . and σ we let [A(x1, x2, · · · : σ)] denote the set of possible outputs of A given these inputs.

We define security notions using pseudocode-based games. The pseudocode “Require bool” is
shorthand for “If not bool then return ⊥”. We will sometimes use infinite loops defining variable
xu for all u ∈ {0, 1}∗. Such code is executed lazily; the code is initially skipped, then later if a
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variable xu would be used, the necessary code to define it is first run. The pseudocode “∃x ∈ X s.t.
p(x)” for some predicate p evaluates to the boolean value

∨
x∈X p(x). If this is true, the variable x

is set equal to the lexicographically first x ∈ X for which p(x) is true.

We use an asymptotic formalism. The security parameter is denoted λ. Our work is generally
written in a way to allow concrete security bounds to be extracted easily. In security proofs we
typically explicitly state how we will bound the advantage of an adversary by the advantages of
reduction adversaries we build (and possibly other terms). Reduction adversaries and simulators
are explicitly given in code (from which concrete statements about their efficiency can be obtained
by observation).

Let f : N → N. We say f is negligible if for all polynomials p there exists a λp ∈ N such
that f(λ) ≤ 1/p(λ) for all λ ≥ λp. We say f is super-polynomial if 1/f is negligible. We say f is
super-logarithmic if 2f is super-polynomial.

Ideal primitives. We will make liberal use of ideal primitives such as random oracles or ideal
ciphers. An ideal primitive P specifies algorithms P.Init and P.Prim. The initialization algorithm
has syntax σP←$ P.Init(1λ). The stateful evaluation algorithm has syntax y←$ P.Prim(1λ, x : σP).
We sometimes us AP as shorthand for giving algorithm A oracle access to P.Prim(1λ, · : σP).
Adversaries are often given access to P via an oracle Prim.

Ideal primitives should be stateless. By this we mean that after σP is output by P.Init, it is
never modified by P.Prim (so we could have used the syntax y←$ P.Prim(1λ, x, σP)). However,
when written this way, ideal primitives are typically inefficient, e.g., for the random oracle model
σP would store a huge random table. Our security results will necessitate that P be efficiently
instantiated so we have adopted the stateful syntax to allow ideal primitives to be written in their
efficient “lazily sampled” form. Despite this notational convenience, we will assume that any ideal
primitive we reference is essentially stateless. By this, we mean that it could have been equivalently
written to be stateless (if inefficient).2

The standard model is captured by the primitive Psm for which Psm.Init(1
λ) and Psm.Prim(1λ, x :

σP) always returns the empty string ε.

We define a random oracle that takes arbitrary input and produce variable length outputs. It
is captured by the primitive Prom defined as follows.

Prom.Init(1
λ)

Return [·]
Prom.Prim(1λ, x : T )

(x, l)← x
If T [x, l] = ⊥ then T [x, l]←$ {0, 1}l
Return T [x, l]

The ideal-cipher model is parameterized by a block-length n : N → N and captured by Pn
icm

defined as follows.3

2Without this restrictions an ideal primitive could behave in undesirable, contrived ways (e.g., on some special
input outputting all prior inputs it has received).

3We will implicitly assume n(λ) can be computed in time polynomial in λ. We make similar implicit assumptions
for other functions that parameterize ideal primitives or constructions of cryptographic primitives.
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Pn
icm.Init(1

λ)

Return ([·], [·])
Pn
icm.Prim(1λ, x : (E,D))

(op,K, y)← x
If op = + then
If E[K, y] = ⊥ then

z←$ {0, 1}n(λ) \ { E[K, a] : a ∈ {0, 1}n(λ) }
E[K, y]← z ;D[K, z]← y

Return E[K, y]
Else
If D[K, y] = ⊥ then

z←$ {0, 1}n(λ) \ {D[K, a] : a ∈ {0, 1}n(λ) }
D[K, y]← z ; E[K, z]← y

Return D[K, y]

It stores tables E and D which it uses to lazily sample a random permutation for each K, with
E[K, ·] representing the forward evaluation and D[K, ·] its inverse. It parses its input as a tuple
(op,K, y) where op ∈ {+,−} specifies the direction of evaluation and K ∈ {0, 1}∗ and y ∈ {0, 1}n(λ)
specify the input.

Sometimes we construct a cryptographic primitive from multiple underlying cryptographic prim-
itives which expect different ideal primitives. To capture this it will be useful to have a notion of
combining ideal primitives. Let P′ and P′′ be ideal primitives. We define their cross product
P = P′ × P′′ as follows.

P.Init(1λ)

σ′
P←$ P′.Init(1λ)

σ′′
P←$ P′′.Init(1λ)

Return (σ′
P, σ

′′
P)

P.Prim(1λ, x : σP)

(σ′
P, σ

′′
P)← σP

(d, x)← x
If d = 1 then y←$ P′.Prim(1λ, x : σ′

P)
Else y←$ P′′.Prim(1λ, x : σ′′

P)
σP ← (σ′

P, σ
′′
P)

Return y

By our earlier convention AP′×P′′
is shorthand for giving algorithm A oracle access to P.Prim(1λ, · :

σP). In A’s code, BP′
denotes giving B oracle access to P.Prim(1λ, (1, ·) : σP) and BP′′

to denote
giving B oracle access to P.Prim(1λ, (2, ·) : σP).

2.1 Standard Cryptographic Definitions

We recall standard cryptographic syntax and security notions.

Symmetric encryption syntax. A symmetric encryption scheme SE specifies algorithms SE.Kg,
SE.Enc, and SE.Dec as well as sets SE.M, SE.Out, and SE.K representing the message, ciphertext,
and key space respectively. The key generation algorithm has syntax K←$ SE.Kg(1λ). The en-
cryption algorithm has syntax c←$ SE.EncP(1λ,K,m), where c ∈ SE.Out(λ, |m|) is required. The
deterministic decryption algorithm and has syntax m ← SE.DecP(1λ,K, c). Rejection of c is rep-
resented by returning m = ⊥. Informally, correctness requires that encryptions of messages in
SE.M(λ) decrypt properly. We assume the boolean (m ∈ SE.M(λ)) can be efficiently computed.

Integrity of ciphertexts. Integrity of ciphertext security is defined by the game Gint-ctxt
SE,Actxt

shown
in Fig. 3. In the game, the attacker interacts with one of two “worlds” (determined by the bit b)
via its oracles Enc, Prim, Exp, and Dec. The attacker’s goal is to determine which world it is
interacting with.
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Game Gint-ctxt
SE,P,Actxt

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

ctxt (1λ)

Return (b = b′)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Enc(u,m)

Require m ∈ SE.M(λ)

c←$ SE.EncP(1λ,Ku,m)

Cu.add(c)
Return c

Exp(u)

X.add(u)
Return Ku

Dec(u, c)

Require u ̸∈ X

Require c ̸∈ Cu

m1 ← SE.DecP(1λ,Ku, c)

m0 ← ⊥
Return mb

Figure 3: Game defining multi-user CTXT security of SE in the face of exposures.

The Prim oracle gives the attacker access to the ideal primitive P. The encryption oracle Enc
takes as input a user u and message m, then returns the encryption of that message using the key
of that user, Ku. Recall that by our convention each Ku is not sampled until needed. The exposure
oracle Exp takes in u and then returns Ku to the attacker. The decryption oracle Dec is the only
oracle whose behavior depends on the bit b. It takes as input a user u and ciphertext c. When
b = 1, it will return the decryption of c using Ku while when b = 0 it will always return ⊥. Thus,
the goal of the attacker it to forge a ciphertext which will decrypt to a non-⊥ value.

To prevent trivial attacker, we disallow querying a ciphertext to Dec(u, ·) if it came from
Enc(u, ·) or if u was already exposed. This is captured by the “Require” statements in Dec using
lists Cu and X (which store the ciphertexts returned by Enc(u, ·) and the users that have been
exposed, respectively).

We define the advantage function Advint-ctxtSE,P,Actxt
(λ) = 2Pr[Gint-ctxt

SE,P,Actxt
(λ)]− 1. We say SE is INT-

CTXT secure with P if for all PPT Actxt, the advantage Advint-ctxtSE,P,Actxt
(·) is negligible. INT-CTXT

security is typically defined to only consider a single user and no exposures. Using a hybrid argument
one can show that our definition of INT-CTXT security is implied by the more standard definition.

Function family. A family of functions F specifies algorithms F.Kg and F.Ev together with sets
F.Inp and F.Out. The key generation algorithm has syntax K←$ F.KgP(1λ). The evaluation algo-
rithm is deterministic and has the syntax y ← F.Ev(1λ,K, x). It is required that for all λ ∈ N and
K ∈ [F.Kg(1λ)] that F.Ev(1λ,K, x) ∈ F.Out(λ) whenever x ∈ F.Inp(λ). It is assumed that random
elements of F.Out(λ) can be efficiently sampled.

Game Gow
F,P,A(λ)

K←$ F.Kg(1λ) ; σP←$ P.Init(1λ)
x←$ F.Inp(λ) ; y ← F.EvP(λ,K, x)

x′←$APrim(1λ,K, y)

Return (F.EvP(1λ,K, x′) = y)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Figure 4: Game defining one-wayness of F.

One-wayness. The one-wayness of a family of functions F is given by the game Gow shown in
Fig. 4. The adversary is given a key K to F and the image y of a random point x in the domain.
Its goal is to find a point with the same image. We define the advantage function AdvowF,P,A(λ) =
Pr[Gow

F,P,A(λ)] and say F is OW secure with P if AdvowF,P,A(·) is negligible for all PPT A.
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Security definitions. In the body of this paper we sometimes informally reference other security
notions for symmetric encryption schemes (IND-CPA, IND-CCA, IND-KP, IND-$) and function
families (PRF, UF-CMA). These definitions are recalled in Appendix A.

3 New Security Definitions for Symmetric Primitives

In this section we provide our definitions for the security of symmetric cryptographic primitives
(namely randomized encryption and pseudorandom functions) against attackers able to adaptively
compromise users’ keys.

3.1 Randomized Symmetric Encryption

We describe our security definitions for randomized symmetric encryption. We refer to them as
SIM-AC-CPA and SIM-AC-CCA security. The definition of SIM-AC-CPA (resp. SIM-AC-CCA)
security is a generalization of IND-CPA (IND-CCA) security to a multi-user setting in which some
users’ keys may be compromised by an attacker.

Consider game Gsim-ac-cpa shown in Fig. 5. It is parameterized by a symmetric encryption
scheme SE, simulator S, ideal primitive P, and attacker Acpa. The attacker interacts with one of
two “worlds” via its oracles Enc, Exp, and Prim. The attacker’s goal is to determine which world
it is interacting with.

In the real world (b = 1) the encryption oracle Enc takes (u,m) as input and returns an
encryption of m using u’s key Ku. Oracle Prim returns the output of the ideal primitive on input
x. Oracle Exp returns u’s key Ku to the attacker.

In the ideal world (b = 0), the return values of each of these oracles are instead chosen by a
simulator S. In Prim it is given the input provided to the oracle. In Enc it is given the name of
the current user u and some leakage ℓ about the message m. If u has not yet been exposed (u ̸∈ X)
this leakage is just the length of the message. Otherwise the leakage is the message itself. The
inputs and outputs of this oracle for a user u are stored in the lists Mu and Cu so they can be
leaked to the simulator when Exp(u) is called.

We define Advsim-ac-cpaSE,S,P,Acpa
(λ) = 2Pr[Gsim-ac-cpa

SE,S,P,Acpa
(λ)]− 1. We say SE is SIM-AC-CPA secure with

P if for all PPT Acpa there exists a PPT S such that Advsim-ac-cpaSE,S,P,Acpa
(·) is negligible. Intuitively,

this definition captures that ciphertexts reveal nothing about the messages encrypted other than
their length unless the encryption key is known to the attacker. In Appendix B, we show that
SIM-AC-CPA security is impossible in the standard model. The proof is a simple application of
the ideas of Nielsen [46].

SIM-AC-CCA security extends SIM-AC-CPA security by giving Acca access to a decryption
oracle which takes as input (u, c). In the real world, it returns the decryption of c using Ku. In the
ideal world, the simulator simulates this. To prevent trivial attacks, the attacker is disallowed from
querying (u, c) if c was returned from an earlier query Enc(u,m). We define Advsim-ac-ccaSE,S,P,Acca

(λ) =

2Pr[Gsim-ac-cca
SE,S,P,Acca

(λ)]− 1. We say SE is SIM-AC-CCA secure with P if for all PPT Acca there exists

a PPT S such that Advsim-ac-ccaSE,S,P,Acca
(·) is negligible.

Simplifications. It will be useful to keep in mind simplifications we can make to restrict the
behavior of the adversary or simulator without loss of generally. They are applicable to all SIM-
AC-style definitions we provide in this paper.

• If an oracle is deterministic in the real world, then we can assume that the adversary never
repeats a query to this oracle or that the simulator always provides the same output to
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Game Gsim-ac-cpa
SE,S,P,Acpa

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Exp,Prim

cpa (1λ)

Return (b = b′)

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Enc(u,m)

Require m ∈ SE.M(λ)

If u ̸∈ X then ℓ← |m| else ℓ← m

c1←$ SE.EncP(1λ,Ku,m)

c0←$ S.Enc(1λ,u, ℓ : σ)
Mu.add(m) ; Cu.add(cb)
Return cb

Exp(u)

K1 ← Ku

K0←$ S.Exp(1λ,u,Mu, Cu : σ)

X.add(u)
Return Kb

Game Gsim-ac-cca
SE,S,P,Acca

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b = b′)

Dec(u, c)

Require c ̸∈ Cu

m1 ← SE.DecP(1λ,Ku, c)

m0←$ S.Dec(1λ,u, c : σ)
Return m

Figure 5: Games defining SIM-AC-CPA and SIM-AC-CCA security of SE.

repeated queries.

• We can assume the adversary never makes a query to a user it has already exposed or that
for such queries the simulator just runs the code of the real world (replacing calls to P with
calls to S.Prim).

• We can assume the adversary always queries with u ∈ [uλ] for some polynomial u(·) or that
the simulator is agnostic to the particular strings used to reference users.

• We can assume that adversaries never make queries that fail “Require” statements. (All
requirements of oracles we provide will be efficiently computable given the transcripts of
queries the adversary has made.)

Proving these are slightly more subtle to establish than analogous simplifications would be in
non-simulation-based games because of the order that algorithms are quantified in our security
definitions. They all follow the same pattern though, so we sketch the second of these.

Suppose SE is SIM-AC-CPA secure for all adversaries that never make a call Enc(u,m) after
having made a call Exp(u), then we claim SE is SIM-AC-CPA secure. Let A be an arbitrary
adversary. Then we build a wrapper adversary A′ that simply forwards all of A’s queries except for
encryption queries made for a user that has already been exposed. In these cases B responds with
the output of SE.EncPrim(·)(1λ,Ku,m) (or ⊥ if m ̸∈ SE.M(λ)), where Ku is the key last returned
from Exp(u). Let S′ be a simulator for A′. Then we construct S for A which responds exactly as
S′ would except in response to encryption queries made for a user that has already been exposed.
In these cases S′ responds with the output of SE.EncS

′.Prim(1λ,·:σ)(1λ,Ku,m), where Ku is the key
it last returned for Exp(u). It is clear that Advsim-ac-cpaSE,S,P,A (λ) = Advsim-ac-cpaSE,S′,P,A′(λ) because the view of
A is identical in the corresponding games.

Stronger security notions. It is common in the study of symmetric encryption primitives to
study stronger security definitions than IND-CPA security. Most schemes instead aim directly for
their output to be indistinguishable from random bits (IND-$). This implies IND-CPA security
and additional nice properties such as forms of key-privacy.

We can capture such notions by placing restrictions on the behavior of the simulator. Let S be
a simulator (for which we think of S.Enc as being undefined) which additionally defines algorithms
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Game Gsim-ac-prf
F,S,P,Aprf

(λ)

For u ∈ {0, 1}∗ do

Ku←$ F.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEv,Exp,Prim

prf (1λ)

Return b = b′

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Exp(u)

K1 ← Ku

K0←$ S.Exp(1λ,u, Tu : σ)

X.add(u)
Return Kb

Ev(u, x)

y1 ← F.EvP(1λ,Ku, x)

If u ̸∈ X then

If Tu[x] = ⊥ then y0←$ F.Out(λ)
Else y0 ← Tu[x]

Else

y0 ← S.Ev(1λ,u, x : σ)

Tu[x]← y0
Return yb

Figure 6: Game defining multi-user PRF security of F in the face of exposures.

S.Enc1 and S.Enc2 as well as set S.Out. Then we define simulators Sk[S] and S$[S] to be identical
to S except for the following encryption simulation algorithms.

Sk[S].Enc(1
λ,u, ℓ : σ)

If ℓ ∈ N then c←$ S.Enc1(1
λ, ℓ : σ)

Else c←$ S.Enc2(1
λ, u, ℓ : σ)

Return c

S$[S].Enc(1
λ,u, ℓ : σ)

If ℓ ∈ N then c←$ S.Out(λ, ℓ)
Else c←$ S.Enc2(1

λ,u, ℓ : σ)
Return c

Checking ℓ ∈ N acts as a convenient way of verifying if the user being queried has been exposed
yet. Because S.Enc1(1

λ, ℓ : σ) is not given u in Sk, the output of Sk is distributed identically for
any unexposed users. The class of key-anonymous simulators Sk is the set of all Sk[S] for some
S. Similarly, S$ always outputs a random bitstring as the ciphertext for any unexposed user. The
class of random-ciphertext simulators S$ is the set of all S$[S] for some S. Note that S$ ⊂ Sk.

We say SE is SIM-AC-KP secure with P if for all PPT Acpa there exists a PPT S ∈ Sk such

that Advsim-ac-cpaSE,S,P,Acpa
(·) is negligible. We say that SE is SIM-AC-$ secure with P if for all PPT Acpa

there exists a PPT S ∈ S$ such that Advsim-ac-cpaSE,S,P,Acpa
(·) is negligible. It is straightforward to see

that SIM-AC-$ security implies SIM-AC-KP security which in turn implies SIM-AC-CPA security.
Standard counter-examples will show that these implications do not hold in the other direction.

It is sometimes useful to define security in an all-in-one style, introduced by Rogaway and
Shrimpton [49], which simultaneously requires IND-$ security and INT-CTXT security. In our
framework we can define S⊥ as the class of IND-CCA simulators which always return ⊥ for de-
cryption queries to unexposed users. Then we say SE is SIM-AC-AE secure with P if for all PPT
Acca there exists a PPT S ∈ S$ ∩ S⊥ such that Advsim-ac-ccaSE,S,P,Acca

(·) is negligible.

Nonce-based Encryption. In Appendix C, we provide the analogous SIM-AC-style definitions
for nonce-based encryption.

3.2 Pseudorandom Functions

Typically a symmetric encryption scheme will use a PRF as one of their basic building blocks.
For modularity, it will be useful to provide a simulation-based security definition for PRFs in the
face of active compromises. In Section 6, we show our PRF definition can be applied to construct
a SIM-AC secure symmetric encryption scheme. Additionally, in Appendix D, we show that our
definition is of independent use by using it to prove the adaptive security of a searchable symmetric
encryption scheme introduced by Cash et al. [20].
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The game Gsim-ac-prf
F,S,P,Aprf

is shown in Fig. 6. In the real world, Ev gives adversary Aprf the real

output of F. In the ideal world, Ev’s output is chosen at random (and stored in the table Tu),
unless u has already been exposed in which case simulator S chooses the output. The table Tu

is given to S when an exposure of u happens so it can output a key consistent with prior Ev
queries; we assume it is easy to iterate over all (x, Tu[x]) pairs for which Tu[x] is not ⊥. We define

Advsim-ac-prfF,S,P,Aprf
(λ) = 2Pr[Gsim-ac-prf

F,S,P,Aprf
(λ)] − 1. We say F is SIM-AC-PRF secure with P if for all PPT

Aprf there exists a PPT S such that Advsim-ac-prfF,S,P,Aprf
(·) is negligible.

4 Applications

The value of our definitions stems from their usability in proving the security of protocols con-
structed from symmetric encryption and pseudorandom functions. In this section, we discuss the
application our definitions to simplify and modularize existing security results of Cash et al. [20]
and Tyagi et al. [50], and how they imply the notion of equivocable encryption introduced by
Jarecki et al. [38].

4.1 Asymmetric Password-Authenticated Key Exchange: OPAQUE

Password-authenticated key exchange (PAKE) protocols allow a client and a server with a shared
password to establish a shared key resistant to offline guessing attacks. Asymmetric PAKE (aPAKE)
further considers security in the case of server compromise, meaning that the server must store some
secure representation of the password, rather than the password itself.

OPAQUE [38] is an aPAKE protocol currently being considered for standardization by the
IETF. At a high level, OPAQUE is constructed from an oblivious pseudorandom function (OPRF)
and an authenticated key exchange protocol (AKE). User key material for the AKE protocol is
stored encrypted under an password-derived key from an OPRF. Key exchange proceeds in two
steps: (1) the user rederives the encryption key by running the OPRF protocol with the server on
their password, then (2) retrieves and decrypts the AKE keys from the server-held ciphertext and
proceeds with the AKE protocol. The “commitment problem” arises when an adversary comprises
the server state and then later compromises a user password.

Equivocable encryption and ideal model subtleties. To prove security of their scheme,
Jarecki, Krawczyk, and Xu (JKX) propose a definition they call equivocable encryption (EQV)
in [39], the ePrint version of [38]. If one ignores the ideal primitive P, the game Geqv-bad shown
on the right side of Fig. 7 casts their definition into our notation. The attacker picks a message
m then is given a key Kb and ciphertext cb which either were generated honestly (b = 1) or by a
stateful simulator which only knew the length of m when it created the ciphertext (b = 0). Despite
informally claiming security for schemes in the random oracle or ideal cipher model, JKX do not
state how an ideal model would be incorporated into the definition. The game Geqv-bad incorporates
the ideal primitive in the “natural” way and was originally defined in earlier versions of this paper.
In those versions, it was called Geqv. We will say an encryption scheme SE is EQV-BAD secure
with P if for any PPT adversary A = (A1,A2), there exists a PPT S, such that the advantage

function Adveqv-badSE,S,P,A(λ) = 2Pr[Geqv-bad
SE,S,P,A(λ)]− 1 is negligible.

As our name for this game hints, this definition is bad! The issue is quite subtle and only
appears in ideal models. In the standard model, the definition is fine.4 However, in an ideal model
the definition does not necessarily even imply m is hidden by encryptions.

4Note that the definition can be achieved in the standard model for schemes where |K| ≥ |m| holds.
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Consider the scheme defined by SE.EncProm(1λ,K,m) = Prom((K, |m|))⊕m. As JKX noted, this
could be proven secure (as long as |K| is super-logarithmic) by having S.Enc output a random
ciphertext c, S.Exp output a random key K, and S.Prim honestly simulate a random oracle except
it programs Prom((K, |m|)) = c⊕m to hold after S.Exp is run. Now augment the scheme to define

SE′.Enc
Prom(1λ,K,m) = (K,Prom((K, |m|))⊕m). This gives a useless “encryption” scheme as the

key is included in the ciphertext; however, it is EQV-BAD secure. The same simulator works,
except S.Exp will let K be the key from the ciphertext rather than sampling a new random key.

In the standard model, such a scheme that reveals non-trivial information about the encrypted
message could not be secure. There we could consider A2 running a sub-algorithm D on input
cb. This sub-algorithm should not be able to guess b, so cannot distinguish between its view when
b = 1 (where its input is correlated with m) and when b = 0 (where its input is independent of m).
In an ideal model, the view of D when b = 0 can depend on m via the behavior of S in Prim. The
issue is that both K and c are created together, so A is never given c before S is given m.

Games Geqv
SE,S,P,A(λ)

σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
(m,σA)←$APrim

1 (1λ)

K1←$ SE.Kg(1λ)
c1←$ SE.EncP(1λ,K1,m)

c0←$ S.Enc(1λ, |m| : σ)
σA←$APrim

1.5 (1λ, cb, σA)

K0←$ S.Exp(1λ,m : σ)

b′←$APrim
2 (1λ, cb,Kb, σA)

Return (b = b′)

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Games Geqv-bad
SE,S,P,A(λ)

σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
(m,σA)←$APrim

1 (1λ)

K1←$ SE.Kg(1λ)
c1←$ SE.EncP(1λ,K1,m)

c0←$ S.Enc(1λ, |m| : σ)
K0←$ S.Exp(1λ,m : σ)

b′←$APrim
2 (1λ, cb,Kb, σA)

Return (b = b′)

Figure 7: Games defining EQV security of SE (Left) and a flawed version of EQV security (Right).

We fix this in the game Geqv defined on the left side of Fig. 7. It extends the prior game
to include an additional phase of the attacker which is run on input the ciphertext before the
simulator has been given the message. An encryption scheme SE is equivocable or EQV secure if
for any PPT adversary A = (A1,A1.5,A2), there exists a PPT S, such that the advantage function
AdveqvSE,S,P,A(λ) = 2Pr[Geqv

SE,S,P,A(λ)]− 1 is negligible.

Comparison to SIM-AC-CPA. Note that EQV is a weaker version of SIM-AC-CPA in that
it allows for only one user and only one encryption query. Showing SIM-AC-CPA implies EQV
can be done with a simple wrapper reduction in which the output of A1 from EQV is forwarded
to the encryption oracle of SIM-AC-CPA. Since EQV allows for only one encryption query, we
can further show that EQV does not imply SIM-AC-CPA. Consider a scheme that uses a key
K = (K1,K2) and constructs ciphertexts as (K1,EncK2(m)) unless m = K1, in which case it is
formed as (K2,EncK2(m)). Such a scheme could be secure with respect to EQV but will not be
secure in a game that allows multiple encryption queries. Interestingly, showing that our multi-
user SIM-AC-CPA notion is implied by its single-user version through a hybrid argument is not
straightforward due to managing inconsistencies in simulator state between hybrid steps. We have
not been able to prove this result and leave it open for future work.5 Thus, even if EQV was
extended to allow multiple encryption queries, it still may not be widely applicable to situations

5This was solved partially in follow-up work by Jaeger [35], who showed that the hybrid argument does work with
their strengthened SIM*-AC definitions.

15



that require multiple users.
Ultimately, our work fills in the claim of JKX that “common encryption modes are equivocable

under some idealized assumption”.

Implications of the issue. Given that issue with EQV-BAD, it is natural to question what
implications this has for the results of JKX [39]. In particular, Theorem 2 of that work assumes
an encryption scheme is equivocable as part of proving security of an aPAKE protocol. If the
encryption scheme is known to be secure in the standard model, then our observations do not
change anything. For schemes that are only equivocable in an ideal model (e.g. any commonly
used encryption scheme), the proof of Theorem 2 must necessarily break when assuming EQV-BAD
security because the protocol is definitely insecure if SE′ is used. At a technical level, the reduction
to EQV-BAD security will fail because the reduction algorithm is not able to properly simulate
the time in between when the ciphertext c is given to the aPAKE attacker and when the key K
is given to it. We expect that our new notion of EQV security (and hence SIM-AC-CPA security)
should resolve this issue, but cannot claim to have carefully vetted the proof of this.

Technically, there is a further orthogonal issue. We defined EQV with the quantification “for
all A, there exists S” following JKX. This is also the quantification we use for SIM-AC definition.
This causes a bug in the theorem of JKX as it is claiming to show universal composability (UC)
security wherein the environment (which can be thought of a part of the adversary for our pur-
poses) is quantified after the simulator. The UC simulator they define is constructed from the
equivocability simulator. For this to work, one needs to use a “there exists S, for all A” quantifica-
tion for EQV. We note that the follow-up work of Jaeger [35] gave SIM*-AC definitions with this
stronger quantification and described how to port our results regarding SIM-AC to apply to that
quantification as well.

4.2 Searchable Symmetric Encryption

In Appendix D, we show that our symmetric encryption and PRF security definitions are useful
for proving the security of searchable searchable symmetric encryption (SSE) schemes. An SSE
scheme allows a client with a database of documents to store them in encrypted form on a server
while still being able to perform keyword searches on these documents.

As a concrete example, we consider Cash et al. [20] which proved non-adaptive security of an
SSE scheme when using a PRF and an IND-$ secure encryption scheme and claimed adaptive
security when the PRF is replaced with a random oracle and the encryption scheme is replaced
with a specific random-oracle-based scheme. We will prove their adaptive result, this time assuming
the family of functions is SIM-AC-PRF secure and the encryption scheme is SIM-AC-KP secure.
This makes the result more modular because one is no longer restricted to use their specific choices
of a PRF and encryption scheme constructed from a random oracle. As a concrete benefit of this,
their choice of encryption scheme does not provide INT-CTXT security. To replace the scheme
with one that does would require a separate proof while our proof allows the user to choice their
favorite INT-CTXT secure scheme without requiring any additional proofs (assuming that scheme
is SIM-AC-CPA secure).

Our proof is roughly as complex as their non-adaptive proof; it consists of three similar reduc-
tions to the security of the underlying primitives. Without our definitions, a full adaptive proof
would have been a technically detailed (though “standard” and not conceptually difficult) proof
because it would have to deal with programming the random oracle. Perhaps because of this, the
authors of [20] only provided a sketch of the result, arguing that it follows from the same ideas as
their non-adaptive proof plus programming the random oracle to maintain consistency. They claim,
“[t]he only defects in the simulation occur when an adversary manages to query the random oracle
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with a key before it is revealed”. This is technically insufficient; a defect also occurs if the same
key is sampled multiple times by the simulator (analogously to parts of our proofs for Theorem 5.3
and Theorem 5.4). In our SSE proof, we need not address these details because programming the
ideal primitive is handled by the assumed simulation security of the underlying primitives.

A large number of other works on SSE have used analogous techniques of constructing a PRF
and/or encryption scheme from a random oracle to achieve adaptive security [2, 3, 14, 20, 21, 25,
29, 33, 40–44, 51]. As we discuss in Appendix F, these papers all similarly elided the details of the
random oracle programming proof and/or made mistakes in writing these details. The mistakes are
individually small and not difficult to fix, but their prevalence indicates the value our definitions
can provide to modularize and simplify the proofs in these works. We chose to analyze the Cash et
al. scheme to highlight the application of our definitions because it was the simplest construction
requiring both SIM-AC-PRF and SIM-AC-KP secure and because their thorough non-adaptive
proof served as a useful starting point from which to build our proof.

4.3 Self-Revocable Encrypted Cloud Storage: BurnBox

In Appendix E.1, we consider the BurnBox construction of a self-revocable cloud storage scheme
proposed by Tyagi et al. [50]. Its goal is to help provide privacy in the face of an authority searching
digital devices, e.g., searches of mobile phones or laptops at border crossings. In their proposed
scheme a user stores encrypted version of their files on cloud storage. At any point in time they
are able to temporarily revoke their own access to these files. Thereby an authority searching their
device is unable to learn the content of these files despite their possession of all the secrets stored
on the user’s device.

Proving security of their scheme in their security model necessitates solving the “commitment
problem.” A simulator is forced to simulate the attacker’s view by providing ciphertexts for files
that it does not know the contents of, then later produce a plausible looking key which decrypts
the files properly when told the contents. To resolve this issue in their security they modeled
the symmetric encryption scheme in the ideal encryption model (which they introduced for this
purpose). We are able to recover their result assuming the SIM-AC-CPA security of the encryption
scheme. This provides rigorous justification for the use of practically-used encryption schemes which
cannot necessarily be thought of as well modeled by the ideal encryption model (e.g. AES-GCM
which they used in their prototype implementation). Moreover, the proof we obtain is simpler than
the original proof of Tyagi et al. because we do not have to reason about the programming of the
ideal encryption model. The original proof has a bug in this programming which we discuss in
Appendix F.

5 Symmetric Encryption Security Results

In this section, we show that important existing results about the security of symmetric encryption
schemes “carry over” to our new definitions. These results (together with our results in the next
section) form the foundation of our claim that encryption schemes used in practice can be considered
to achieve SIM-AC-AE security when their underlying components are properly idealized. First, we
show that SIM-AC-CPA and INT-CTXT security imply SIM-AC-CCA security. Then we show that
the classic Encrypt-then-MAC scheme achieves SIM-AC-CCA security. Each of these results are,
conceptually, a straightforward extension of their standard proof. Finally, we show that random
oracles and ideal ciphers are SIM-AC-PRF secure and ideal encryption [50] is SIM-AC-AE secure.

CPA and CTXT imply CCA. The following theorem captures that SIM-AC-CPA and INT-
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CTXT security imply SIM-AC-CCA security. Bellare and Namprempre [10] showed the analogous
result for IND-CPA and IND-CCA security.

Theorem 5.1 If SE is SIM-AC-CPA and INT-CTXT secure with P, then SE is SIM-AC-CCA
secure with P.

Proof (Sketch): Here we sketch the main ideas of the proof. The full details are provided in
Appendix G.1.

The SIM-AC-CCA simulator we provide is parameterized by a SIM-AC-CPA simulator Scpa. As
state it stores σ of Scpa and keeps each Ku that is has returned to exposure queries. For Prim, Enc,
and Exp queries it simply runs Scpa. For Dec queries it does one of two things. If u has already
been exposed it uses the key it previously returned to run the actual decryption algorithm (with
oracle access to Scpa’s emulation of P) and returns the result. Otherwise it assumes the adversary
has failed at producing a forgery and simply returns ⊥. (Note this means we have SIM-AC-AE
security if SE is SIM-AC-$ secure.)

The SIM-AC-CPA security of SE ensures that the adversary cannot differentiate between the real
and ideal world queries to Prim, Enc, and Exp. The INT-CTXT security of SE does the same for
the Dec queries.

Encrypt-then-MAC. Let SE be an encryption scheme. Let F be a family of functions for which
F.Inp(λ) = {0, 1}∗. Then the Encrypt-then-MAC encryption scheme using SE and F is denoted
EtM[SE,F]. Its message space is defined as EtM[SE,F].M(λ) = SE.M(λ). If SE expects access
to ideal primitive P1 and F expects access to ideal primitive P2 then EtM[SE,F] expects access
to P1 × P2. The key-generation algorithm EtM[SE,F].Kg returns K = (KSE,KF) where KSE was
sampled with SE.Kg(1λ) and KF was sampled with F.Kg(1λ). Algorithms EtM[SE,F].Enc, and
EtM[SE,F].Dec are defined as follows.

EtM[SE,F].EncP1×P2(1λ,K,m)

(KSE,KF)← K

cSE←$ SE.EncP1(1λ,KSE,m)

τ ← F.EvP2(1λ,KF, cSE)
Return (cSE, τ)

EtM[SE,F].DecP1×P2(1λ,K, (cSE, τ))

(KSE,KF)← K

If τ ̸= F.EvP2(1λ,KF, cSE) then return ⊥
m← SE.DecP1(1λ,KSE, cSE)
Return m

The following theorem establishes that the generic composition result of Bellare and Namprem-
pre [10] holds with our simulation-based definitions of security. We sketch its straightforward proof
in Appendix G.2.

Theorem 5.2 Let SE be an encryption scheme. Let F be a family of functions for which F.Inp(λ) =
{0, 1}∗. If SE is SIM-AC-CPA secure with P1 and F is UF-CMA secure with P2, then EtM[SE,F]
is SIM-AC-CCA secure with P1 × P2.

Random oracles are good PRFs. We show that a SIM-AC-PRF secure family of functions
can be constructed simply in the random oracle model. Consider R defined as follows. It is
parameterized by a key-length function R.kl : N → N and output length function R.ol : N → N. It
has input set R.Inp(λ) = {0, 1}∗ and output set R.Out(λ) = {0, 1}R.ol(λ).

R.Kg(1λ)

K←$ {0, 1}R.kl(λ)
Return K

R.EvP(1λ,K, x)

y ← P((K ∥x,R.ol(λ)))
Return y
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Theorem 5.3 R is SIM-AC-PRF secure with Prom if R.kl is super-logarithmic.

Concretely, in our proof we provide a simulator Sprf for which we show that,

Advsim-ac-prfR,Sprf ,Prom,Aprf
(λ) ≤

u2λ + pλuλ

2R.kl(λ)

where uλ is an upper bound on the number of users that Aprf queries to and pλ is an upper bound
on the number of Prim queries that Aprf makes.

This theorem captures the random oracle programming implicit in the adaptive security claims
of the numerous SSE papers we have identified that used a random oracle like a PRF to achieve
adaptive security [2,3,14,20,21,25,29,33,40–44,51]. Of these works, most chose to elide the details
of establishing that the adversary cannot detect the random oracle programming, likely considering
them simple and/or standard. Despite this, we have identified bugs in all of the proofs that did
provide more details. We discuss these bugs in more detail in Appendix F.

To be clear, we do not claim that any of the SSE schemes studied in these works are insecure.
The prevalence of this issue speaks to the difficulty of properly accounting for the details in an ideal
model programming proof. Our SIM-AC-PRF notion provides a convenient intermediate definition
via which these higher-level protocols could have been proved secure without having to deal with
the tedious details of a random oracle programming proof.

Proof (Sketch): Here we sketch the main ideas of the proof. The full details are provided in
Appendix H.1. The SIM-AC-PRF simulator works are follows. For Prim queries it just emulates
Prom using a table T . For Ev queries, it just runs R.Ev honestly with the key it previously returned
for the given user. For Exp queries (on an unexposed user) it picks a random key for this user and
sets T to be consistent with values in the table Tu it is given. This simulation is only detectable
by an attacker that makes a query to the random oracle with some key that is later chosen by the
simulator in response to an exposure or if the simulator happened to chose the same key for two
different users.6 These events happen with negligible probability.

Ideal ciphers are good PRFs. One of the most commonly used PRFs is AES so it would be
useful to think of it as being SIM-AC-PRF secure; however, due to its invertible nature we cannot
realistically model it as a random oracle and refer to the above theorem. Instead, AES is often
modeled as an ideal cipher. Let B.kl : N → N be given and consider B defined as follows. It has
input set B.Inp(λ) = {0, 1}n(λ) and output set B.Out(λ) = {0, 1}n(λ).

B.Kg(1λ)

K←$ {0, 1}B.kl(λ)
Return K

B.EvP(1λ,K, x)

y ← P((+,K, x))
Return y

The following establishes that an ideal cipher is SIM-AC-PRF secure.

Theorem 5.4 B is SIM-AC-PRF secure with Pn
icm if B.kl, n are super-logarithmic.

Concretely, in our proof we provide a simulator Sprf for which we show that,

Advsim-ac-prfB,Sprf ,P
n
icm,Aprf

(λ) ≤
u2λ + pλuλ

2B.kl(λ)
+

q2λ
2n(λ)+1

6The latter of these points is the subtle issue that does not have appear to have been identified in any of the SSE
papers that were (implicitly) using a random oracle as a SIM-AC-PRF.
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where uλ is an upper bound on the number of users that Aprf queries to, pλ is an upper bound
on the number of Prim queries that Aprf makes, and qλ is an upper bound on the number of Ev
queries that Aprf makes.

The proof of this theorem follows the same general pattern as the proof that a random oracle is
SIM-AC-PRF secure (Theorem 5.3). It only needs to extend the ideas of this prior result slightly to
apply a birthday bound so that we can treat the values of Pn

icm as being sampled with replacement.
It works best to process this step last so we do not have to consider the order in which queries are
made. The proof is given in Appendix H.2.

Ideal encryption model. In Appendix I, we recall the ideal encryption model used in the analysis
of Tyagi et al. [50] and show that it gives a SIM-AC-AE secure encryption scheme. While doing
so, we identify and show how to fix a bug in their proof which used this model.

6 Security of Modes of Operation

In the previous section, we showed that existing analysis of the integrity of a symmetric encryption
scheme carries over to our simulation setting to lift SIM-AC-CPA security to SIM-AC-CCA security.
It would be convenient to be able to similarly prove that existing IND-CPA security of an encryption
scheme suffices to imply SIM-AC-CPA security. Unfortunately, we cannot possibly hope for this to
be the case. We know that IND-CPA security can be achieved in the standard model (assuming
one-way functions exist), but SIM-AC-CPA security necessarily requires the use of ideal models.

For any typical encryption scheme we could figure out the appropriate way to idealize its
underlying components and then write a programming proof to establish security. This would
likely be detail intensive and prone to mistakes. We can improve on this by noting that typical
symmetric encryption schemes are built as modes of operation using an underlying PRF. We can
aim to prove security more modularly by assuming the SIM-AC-PRF security of the underlying
family of functions. This alleviates the detail-intensiveness of the proof because the ideal model
programming has already been handled in the assumption of SIM-AC-PRF security; it can simply
be “passed” along to the new analysis.

In this section, we will show that we can do even better than that. We will restrict attention
to modes of operation which are IND-$ secure when built from a PRF and satisfy a special ex-
tractability property we define in Section 6.1 (which standard examples of models of operation do).
Then, in Section 6.2, we establish a generic proof framework to elevate an existing IND-$ security
proof to a SIM-AC-$ security proof, by showing that existing proofs of IND-$ security security tend
to (implicitly) prove that the scheme satisfies our extractability property. Finally, in Section 6.3
we discuss how the techniques of this section can be extended to other constructions not captured
by our formalism, but also note the existence of a (contrived) mode of operation which is IND-$
secure with any secure PRF, but is never SIM-AC-$ secure.

6.1 Modes of Operation and Extractability

We first need to have a formalism capturing what a mode of operation is. Our formalism does not
capture all possible modes of operation, but does seem to capture most constructions that are of
practical interest and would not be hard to modify to capture other constructions.

A mode of operation SE specifies efficient algorithms SE.Kg, SE.Enc, and SE.Dec as well as sets
SE.M, SE.Out, SE.FInp, and SE.FOut. For any family of functions F with F.Inp = SE.FInp and
F.Out = SE.FOut, it defines a symmetric encryption scheme SE[F] as follows.
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SE[F].Kg(1λ)

KF←$ F.Kg(1λ)
KSE←$ SE.Kg(1λ)
Return (KSE,KF)

SE[F].EncP(1λ,K,m)

(KSE,KF)← K

c←$ SE.Enc
FP
KF (1λ,KSE,m)

Return c

SE[F].DecP(1λ,K, c)

(KSE,KF)← K

m← SE.Dec
FP
KF (1λ,KSE, c)

Return m

The superscript FPKF
is shorthand for oracle access to F.EvP(1λ,KF, ·). It is required that SE[F].M =

SE.M. Moreover, for a given λ ∈ N the encryption of a message m ∈ SE.M(λ) must always be in
SE.Out(λ, |m|).

Suppose we want to prove that SE is SIM-AC-$ whenever F is SIM-AC-PRF. The natural way
to do so is to build our simulator S from the encryption scheme from the given simulator SF for
F. In Prim we can simply have S.Prim run SF.Prim. In Enc the ciphertext is chosen at random
if the user has not been exposed, otherwise we can simply run SE.Enc but use SF.Ev in place of
FKF

. This just leaves Exp, here we are given a list of ciphertexts for the user and need to output
a key to “explain” them. A natural approach is to randomly pick our own KSE and use SF.Exp
to chose KF. Doing so requires giving SF a list of input and outputs to the family of function.
Intuitively, it seems we want to be able to “extract” a list of input-outputs pairs for F that explain
our ciphertexts.

Extractability. A mode of operation is extractable if it additionally specifies an efficient ex-
traction algorithm SE.Ext satisfying a correctness and uniformity property we now define. The
extraction algorithm SE.Ext has syntax (y⃗, r)←$ SE.Ext(1λ,KSE, c,m). The goal of this algorithm
is to “extract” a sequence of responses y⃗ by F and a string of randomness r that explains how
message m could be encrypted to ciphertext c when using key KSE. We formally define correctness
by the following game. It is assumed that SE.Ext provides outputs of the appropriate lengths to
make this code well-defined. Extraction correctness of SE requires that Pr[Gcorr

SE,m(1λ)] = 1 for all
λ ∈ N and m ∈ SE.M(λ).

Game Gcorr
SE,m(1λ)

KSE←$ SE.Kg(1λ)
c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE, c,m)
i← 0

c′ ← SE.EncRf(1λ,KSE,m; r)
Return c = c′

Rf(x)

i← i+ 1
Return y⃗[i]

Distribution 1
c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE, c,m)
Return (y⃗, r)

Distribution 2
For i = 1, . . . , q(λ, |m|) do
y⃗[i]←$ SE.Out(λ)

r←$ {0, 1}l(λ,|m|)

Return (y⃗, r)

We will also require a uniformity property of SE.Ext. Specifically we require that its output be
uniformly random whenever c is. Formally, there must exist q, l : N × N → N such that the two
distributions on the right above are equivalent for all λ ∈ N, m ∈ SE.M(λ), and KSE ∈ [SE.Kg(1λ)].7

Extraction security. A core step in our proof will require an additional property of SE which we
will now define. Roughly, the desired property is that if SE.Ext is repeatedly used to explain ran-
domly chosen ciphertexts an adversary cannot notice if it causes inconsistent values to be returned
to SE.Enc.

7Computational relaxations of our uniformity and correctness property would suffice for our results, but seem to
be unnecessary for any “natural” modes of operation.
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Game Gind-ac-ext
SE,A (λ)

For u ∈ {0, 1}∗ do

KSE,u←$ SE.Kg(1λ)
b←$ {0, 1}
b′←$AEnc,Exp(1λ)

Return (b = b′)

Exp(u)

X.add(u)
Return (KSE,u, Tu)

Enc(u,m)

Require m ∈ SE.M(λ)

Require u ̸∈ X

c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE,u, c,m)

i← 0

c← SE.EncRf(u,·)(1λ,KSE,u,m; r)

Return c

Rf(u, x) //private

i← i+ 1

If Tu[x] ̸= ⊥ then

If b = 1 then

y⃗[i]← Tu[x]

Tu[x]← y⃗[i]

Return Tu[x]

Figure 8: Game defining IND-AC-EXT security of SE. Note that the adversary is not given oracle
access to the “private” oracle Rf.

Formally, consider the game Gind-ac-ext shown in Fig. 8. In it, a key is chosen for each user and
then the adversary is given access to an encryption oracle. In this oracle a random ciphertext is
sampled. Then SE.Ext is run to provide vector y⃗ and coins r which explain this ciphertext with
respect to the queried message. Finally, SE.Enc is run with coins r and access to an oracle Rf
whose behavior depends on the chosen y⃗. The ciphertext it outputs is returned to the adversary.

When b = 0, this oracle simply returns the entries of y⃗, one at a time. The value returned for
an input x is stored as Tu[x]. The behavior when b = 1 is similar except that if an input x to Rf is
ever repeated for a user u, then the value stored in Tu[x] is used instead of the corresponding entry
of y⃗. The attacker’s goal is to distinguish between these two cases.

The adversary may choose to expose any user u, learning KSE,u and Tu. After doing so it is no
longer able to make Enc queries to that user (as captured by the second “Require” statement in
Enc). Note that by the uniformity of SE.Ext we could instead think of y⃗ and r as simply being
picked at random without SE.Ext being run, but we believe the current framing is conceptually
more clear.

We define Advind-ac-extSE,A (λ) = 2Pr[Gind-ac-ext
SE,A ] − 1 and say that SE is IND-AC-EXT secure if

Advind-ac-extSE,A (·) is negligible for all PPT A. This notion will be used for an important step of the
coming security proof. Of the properties required from an extraction algorithm it is typically the
most difficult to verify.

Example Modes. As a simple example, we can consider counter-mode encryption. For it, we
let CTR.ol,CTR.il : N → N be fixed and the latter be super-logarithmic. Then CTR is defined as
follows. Its key generation algorithm, CTR.Kg, always returns ε. Its sets are defined by

CTR.M(λ) = ({0, 1}CTR.ol(λ))∗, CTR.Out(λ, l) = {0, 1}l+CTR.il(λ)

CTR.FInp(λ) = {0, 1}CTR.il(λ), CTR.FOut(λ) = {0, 1}CTR.ol(λ).

Algorithms CTR.Enc, CTR.Dec, and CTR.Ext are defined below where + is addition modulo 2CTR.il(λ)

with elements of {0, 1}CTR.il(λ) interpreted as integers.

CTR.EncO(1λ,KSE,m)

c0←$ {0, 1}CTR.il(λ)
For i = 1, . . . , |m|CTR.ol(λ)
ci ← mi⊕O(c0 + i)

Return c

CTR.DecO(1λ,KSE, c)

c0 ∥ c′ ← c
For i = 1, . . . , |c′|CTR.ol(λ)
mi ← ci⊕O(c0 + i)

Return m

CTR.Ext(1λ,K, c,m)

r ← c0
For i = 1, . . . , |m|F.ol(λ)
y⃗[i]← mi⊕ci

Return (y⃗, r)
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It is clear that CTR.Ext is correct and that its outputs are distributed uniformly when c is
picked at random. The IND-AC-EXT security of CTR follows from the probabilistic analysis done
in existing proofs of security for CTR, such as the proof of Bellare, Desai, Jokipii, and Rogaway [7].
The standard analysis simply bounds the probability that any of the values r1 +1, . . . , r1 + l1, r2 +
1, . . . , r2 + l2, . . . , rq + 1, . . . , rq + lq collide when the ri’s are picked uniformly and the li’s are
adaptively chosen (before the corresponding ri is chosen).

8

Other IND-AC-EXT secure modes of operation include cipher-block chaining (CBC), cipher
feedback (CFB), and output feedback (OFB).

6.2 Extractability Implies SIM-AC-$ Security

Finally, we can state the main result of this section, that IND-AC-EXT security of an extractable
mode of operation implies SIM-AC-$ security.

Theorem 6.1 Let SE be an extractable mode of operation which is IND-AC-EXT secure. Then
SE[F] is SIM-AC-$ secure with P whenever F is SIM-AC-PRF secure with P and satisfies F.Inp =
SE.FInp and F.Out = SE.FOut.

The full proof is given in Appendix J. It considers a sequence of games which transition from the
real world of Gsim-ac-cpa to the ideal world (using a simulator we specify). In the first transition we
use the security of F to replace SE’s oracle access to it with oracle access to a lazily-sampled random
function (or simulation by a given simulator Sprf if the corresponding user has been exposed). Next
we modify the game so that (for unexposed users) ciphertexts are chosen at random and then
explained by SE.Ext. Then SE.Enc is run with the chosen random coins and oracle access to this
explanation (except for whenever a repeat query is made) to produce a modified ciphertext which
is returned. The uniformity of SE.Ext ensures this game is identical to the prior game. Then we
apply the IND-AC-EXT security of SE so that the oracle given to SE.Enc is not kept consistent on
repeated queries. The correctness of SE.Ext gives that the output of SE.Enc is equal to the c that
was sampled at random. We provide simulator S$ that simulates this game perfectly. It runs Sprf
whenever the game would. On an exposure it generate the table Tu for Sprf by running SE.Ext on
ciphertexts to obtain explanatory outputs of the PRF.

Concretely, in the proof we construct adversaries Aprf and Aext along with simulator Scpa for
which we show

Advsim-ac-cpaSE[F],S$[Scpa],P,Acpa
(λ) ≤ Advsim-ac-prfF,Sprf ,P,Aprf

(λ) + Advind-ac-extSE,Aext
(λ).

In Appendix K, we show that a variant of IND-AC-EXT security without exposures (which
we call IND-EXT) necessarily holds if SE[F] is single-user IND-$ secure for all single-user PRF
secure F’s. Moreover, we identify that the typical way that IND-EXT security is shown in security
proofs for SE is by proving a slightly stronger property which will suffice to imply IND-AC-EXT
security. Thereby, one can obtain a SIM-AC-$ security proof from a IND-$ security proof by using
the information theoretic core of the existing proof.

6.3 Extensions and a Counter-example Construction

Simple extensions. For encryption schemes not covered by our formalism, it will often be easy
to extend the underlying ideas to cover the scheme. Suppose SE uses two distinct function families

8This corresponds exactly to a bound on the BAD-EXT security (defined in Appendix K) of CTR.
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as PRFs, one could extend our mode of operation syntax to cover this by giving two separate
PRF oracles to the encryption and decryption oracles. Then security would follow if there is an
extraction algorithm satisfies analogous properties which explains outputs for both of the oracles.
The proof would just require an additional step in which the second SIM-AC-PRF is replaced with
simulation, as in our transition between games G0 and G1.

One can analogously prove the SIM-AC-$ security of the Encrypt-then-PRF construction, where
instead of a second SIM-AC-PRF function family we have a SIM-AC-$ encryption scheme. From
random ciphertexts it is straightforward to extract the required output of the function family and
encryption scheme.

We can also extend the analysis to cover GCM when its nonces chosen uniformly at random. It is
not captured by our current syntax because the encryption algorithm always applies the PRF to the
all-zero string to derive a sub-key for a hash function. It is straightforward to extend our extraction
ideas to allow consistency on this PRF query while maintaining our general proof technique.

Non-extractable counterexample. We showed our general security result for extractable modes
of operations and described how to extend it for some simple variants. One might optimistically
hope that SIM-AC-$ security would hold for any IND-$ secure mode of operation (when a SIM-
AC-PRF secure function family is used). Unfortunately, we can show that this is not the case.
We can provide an example mode of operation which is IND-$ secure when using a PRF, but not
SIM-AC-CPA secure for any choice of function family. It will be clear that this mode of operation
is not extractable, as required by our earlier theorem.

Fix n : N → N. Let G be a function family that is OW secure with Psm and for which
G.Kg(1λ) always returns ε and G.Ev(1λ, ε, ·) is always a permutation on {0, 1}n(λ). Such a G us
a one-way permutation on n-bits. From G we construct our counterexample CX. It has sets
CX.Out(λ, l) = {0, 1}l+n(λ) and CX.M(λ) = CX.FInp(λ) = CX.FOut(λ) = {0, 1}n(λ). Key generation
is given by CX.Kg = G.Kg. Encryption and decryption are given as follows.

CX.EncO(1λ,KSE,m)

c0←$ {0, 1}n(λ)
y ← G.Evε(1λ, ε, O(c0))
c1 ← y⊕m
Return c

CX.DecO(1λ,KSE, c)

c0 ∥ c1 ← c
y ← G.Evε(1λ, ε, O(c0))
m← y⊕c1
Return m

Above, the superscript ε is used as shorthand for the oracle that always returns ε. Note that
this is exactly the behavior of G’s expected ideal primitive Psm. This counterexample uses the
ideas originally introduced by Fischlin et al. [27] to construct non-programmable random oracles
by exploiting a one-way permutation. The construction is not extractable because doing so would
require being able to invert the one-way permutation. The following theorem formally establishes
that this is a counterexample.

Theorem 6.2 Fix n : N → N. Let G be a one-way permutation on n-bits. Let F be a family of
functions with F.Out(λ) = F.Inp(λ) = {0, 1}n(λ) and P be an ideal primitive. Then CX[F] is IND-$
secure with P if F is PRF secure with P. However, CX[F] is not SIM-AC-CPA secure with P.

Proof (Sketch): That CX[F] is IND-$ secure when F is PRF secure follows from, e.g., the standard
security proof for CTR plus the observation that a permutation applied to a PRF is still a PRF.
For the negative result, let S be any simulator and consider the following SIM-AC-CPA adversary
Acpa and OW adversary A.
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AEnc,Exp,Prim
cpa (1λ)

m←$ {0, 1}n(λ)
c0 ∥ c1 ← Enc(1,m)
y ← c1⊕m
(KSE,KF)← Exp(1)

x← F.EvPrim(1λ,KF, c0)
If G.Evε(1λ, ε, x) = y then return 1
Return 0

APrim(1λ,K, y)

σ ← S.Init(1λ)
c0 ∥ c1←$ S.Enc(1λ, 1, n(λ) : σ)
m← c1⊕y
M.add(m) ; C.add(c0 ∥ c1)
(KSE,KF)←$ S.Exp(1λ, 1,M,C : σ)

x← F.EvS.Prim(1λ,·:σ)(1λ,KF, c0)
Return x

Adversary Acpa queries for the encryption of a random message. Then it exposes the corresponding
users and uses the given key to calculate the input-output pair this claims for G. If indeed, this is
a valid pair it returns 1, otherwise it returns 0. When b = 1, note that Acpa will always return 1.
Intuitively, when b = 0, adversary Acpa should almost never return 1 because from the perspective
of the simulator S it looks like y was chosen at random, so finding a pre-image for it requires
breaking the security of G.

This intuition is captured by the adversary A. It simulates the view S would see when run for A,
except instead of picking m at random it waits until after running S.Enc and sets m← c1⊕y where
y is the G image it was given as input. Note that y is a uniformly random string because G is a
permutation and S is only given the length of the message at this point. Thus, this re-ordering
of the calculation of m does not change the view of S. By asking S for the appropriate key and
running F.Ev, the adversary obtains a potential pre-image for y.

Simple calculations give Advsim-ac-cpaSE,S,P,Acpa
(λ) = 1−AdvowG,P,A(λ). The latter advantage is negligible from

the security of G, so the former is non-negligible.

Extensions to PRFs. It is often useful to construct a PRF H with large input domains from a
PRF F with smaller input domains. The smaller PRF F is often thought of as being reasonably
modeled by a random oracle or ideal cipher. If the larger construction H is an indifferentiable
construction of a random oracle [22, 45], then we can apply Theorem 5.3 to obtain the SIM-AC-
PRF security of H.

In the case that H is not indifferentiable, one can often use techniques similar to the above to
lift a PRF security proof for H to a SIM-AC-PRF security proof for H whenever F is SIM-AC-PRF
secure. Implicit in the existing security proof there will often be a way of “explaining” a random
output of H with random outputs by F. On exposure queries, the simulator for H would extract
these explanations and feed them to the existing simulator for F to obtain the key to output. For
primitive queries, it would just run the F simulator and for evaluation queries after exposure it
would just run H using the F simulator in place of F.9
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A Standard Definitions

In this section we recall standard security definitions for encryption schemes and families of func-
tions. We give multi-user definitions for each of our definitions, the more commonly used single-user
version are captured by restricting attention to adversaries that only make queries for a single user.
Standard hybrid arguments show that multi-user security is implied by single-user security.

Symmetric encryption. The (multi-user) IND-CPA and IND-CCA security of a symmetric
encryption scheme are defined via the games shown in Fig. 9. In it the adversary is given access to
a left-or-right oracle Lr that returned the encryption of one of two equilength messages depending
on a secret bit b. The goal of the adversary is to determine that secret bit. We define the advantage
functions Advind-cpaSE,P,Acpa

(λ) = 2Pr[Gind-cpa
SE,P,Acpa

(λ)]− 1 and Advind-ccaSE,P,Acca
(λ) = 2Pr[Gind-cca

SE,P,Acca
(λ)]− 1. We

say SE is IND-CPA secure with P if Advind-cpaSE,P,Acpa
(·) is negligible for all PPT Acpa. We say SE is

IND-CCA secure with P if Advind-ccaSE,P,Acca
(·) is negligible for all PPT Acca.

Game Gind-cpa
SE,P,Acpa

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$ALr,Prim

cpa (1λ)

Return (b = b′)

Game Gind-cca
SE,P,Acpa

(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$ALr,Dec,Prim

cca (1λ)

Return (b = b′)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Dec(u, c)

Require c ̸∈ Cu

m1 ← SE.DecP(1λ,Ku, c)

m0 ← ⊥
Return mb

Lr(u,m0,m1)

Require m0,m1 ∈ SE.M(λ)

Require |m0| = |m1|
c←$ SE.EncP(1λ,Ku,mb)

Cu.add(c)
Return c

Figure 9: Games defining multi-user IND-CPA and IND-CCA security of SE.

The (multi-user) IND-KP security of SE is defined by the game Gind-kp shown in Fig. 10. In
it the adversary A is given access to a left-or-right oracle Lr oracle that returns the encryption
of one of two equilength messages depending on the bit b. When b = 1 each user has a key K1

u

which is used for every encryption while when b = 0 each encryption uses a freshly chosen K0
u.

This game simultaneously captures key and message privacy. We define the advantage function
Advind-kpSE,P,A(λ) = 2Pr[Gind-kp

SE,P,A(λ)] − 1. We say SE is IND-KP secure with P if for all PPT A, the
advantage Advind-kpSE,P,A(·) is negligible. Definitions of key-privacy were first given by Fischlin [26] and
Abadi and Rogaway [1]. The definition we’ve given is equivalent to that of Abadi and Rogaway
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Game Gind-kp
SE,P,A(λ)

For u ∈ {0, 1}∗ do

K1
u ←$ SE.Kg(1λ)

σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$ALr,Prim(1λ)

Return (b = b′)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Lr(u,m0,m1)

Require m0,m1 ∈ SE.M(λ)

Require |m0| = |m1|
K0

u ←$ SE.Kg(1λ)
c←$ SE.EncP(1λ,Kb

u,mb)

Return c

Game Gind-$
SE,P,A(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$ARor,Prim(1λ)

Return (b = b′)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Ror(u,m)

Require m ∈ SE.M(λ)

If b = 1 then c←$ SE.EncP(1λ,Ku,m)

Else c←$ SE.Out(λ, |m|)
Return c

Figure 10: Games defining multi-user IND-KP and IND-$ security of SE.

and equivalent to that of Fischlin together with IND-CPA security (up to polynomial multiplicative
factors in both cases from hybrid arguments).

The (multi-user) IND-$ security of SE is defined by the game Gind-$ shown in Fig. 10. In it
the adversary A is given access to real-or-random oracle Ror which either returns encryptions of
messages of its choice of random strings of the appropriate length. The goal of the adversary is to
distinguish which is the case. We define the advantage functions Advind-$SE,P,A(λ) = 2Pr[Gind-$

SE,P,A(λ)]−1.
We say SE is IND-$ secure with P if for all PPT A, the advantage Advind-$SE,P,A(·) is negligible.

We say SE is IND-AE secure with P if it is IND-$ and INT-CTXT secure with P.

Pseudorandom function security. The (multi-user) security of a family of functions F as a

pseudorandom function is given by the game Gprf
F,P,Aprf

(λ) shown in Fig. 11. In it the adversary tries

to distinguish whether the oracle Ev is returning random values or outputs of F. For technical
reasons because our formulation of ideal primitives is stateful it is important that the code of F is
not run when b = 0.

Game Gprf
F,P,Aprf

(λ)

For u ∈ {0, 1}∗ do

Ku←$ F.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$AEv,Prim

prf (1λ)

Return b = b′

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Ev(u, x)

If b = 1 then y1 ← F.EvP(1λ,Ku, x)

If Tu[x] = ⊥ then y0←$ F.Out(λ)
Else y0 ← Tu[x]

Tu[x]← y0
Return yb

Figure 11: Game defining multi-user PRF security of F.

We define the advantage function AdvprfF,P,Aprf
(λ) = 2Pr[Gprf

F,P,Aprf
(λ)]−1. We say F is PRF secure

with ideal primitive P if for all PPT Aprf , the advantage AdvprfF,P,Aprf
(·) is negligible.

Unforgeability. The (multi-user) unforgeability security of a family of functions F is given by the
game Guf-cma shown in Fig. 12. In it the adversary is given access to an evaluation oracle, Ev, via
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Game Guf-cma
F,P,A (λ)

For u ∈ {0, 1}∗ do

Ku←$ F.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$AEv,Vrfy,Prim(1λ)

Return b = b′

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Ev(u, x)

y ← F.EvP(1λ,Ku, x)

Su ← Su ∪ {x}
Return y

Vrfy(u, x, y)

Require x ̸∈ Su

If b = 1 then return (F.EvP(x) = y)

Else return false

Figure 12: Game defining multi-user unforgeability of F.

which it can obtain F applied to inputs of its choice. Then it has a verification oracle, Vrfy, to
which it can specify attempted forgeries. A set Su is used to prevent it trivially winning by forging
with values it learned from Ev. When b = 1 it is told whether its forgery was successful, in the
ideal world it is always told that its forgery failed.

We define the advantage function Advuf-cma
F,P,A (λ) = 2Pr[Guf-cma

F,P,A (λ)] − 1. We say F is UF-CMA

secure with P if for all PPT A, the advantage Advuf-cma
F,P,A (·) is negligible.

B Standard Model Impossibility

In this section we show that our adaptive compromise simulation definitions are impossible to
achieve in the standard model. The techniques used are not novel; we are just applying the ideas
of Nielsen [46] to our definition. We will prove the result only for SIM-AC-CPA security. The
impossibility of our other definitions follows analogously.

Theorem B.1 Let SE be a perfectly correct symmetric encryption scheme. Then SE is not SIM-
AC-CPA secure with Psm.

Proof: Assume, without loss of generality, that for all λ ∈ N we have {0, 1} ⊆ SE.M(λ) and
[SE.Kg(λ)] ⊆ {0, 1}λ. Then consider the following attack.

AEnc,Ev,Prim(λ)

For i = 1, . . . , 2λ do mi←$ {0, 1} ; ci ← Enc(1,mi)
K ← Exp(1)

For i = 1, . . . , 2λ do m′
i ← SE.DecPsm(1λ,K, ci)

If |K| ≠ λ or ∃i s.t. mi ̸= m′
i then return 0

Return 1

We claim that for any choice of S, this adversary has advantage Advsim-ac-cpaSE,S,Psm,A(λ) ≥ 1− 2−λ. Note
that A will always return 1 when b = 1 from the correctness of SE. In the ideal world note that
S’s choice of each ci is independent of mi because the leakage it was given on each query was
ℓ = |mi| = 1. Each potential K ∈ {0, 1}λ that S could return decrypts the sequence of ci’s it
returned to a sequence of mK

i ’s. The probability that A outputs 1 in the ideal world is bounded
by the probability that the real mi sequence happens to be one of these potential mK

i sequences.
There are 22λ potential real sequences and 2λ potential mK

i sequences, giving the stated bound.
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C Security Definitions for Nonce-based Encryption

In this section we provide our security definitions of nonce-based encryption. Our definitions are
highly analogous to those for randomized encryption.

Nonce-based encryption syntax. A nonce-based symmetric encryption scheme NE speci-
fies algorithms NE.Kg, NE.Enc, and NE.Dec as well as the set NE.M. The key generation algo-
rithm has syntax K←$ NE.KgP(1λ). The encryption algorithm is deterministic and has syntax
c ← NE.EncP(1λ,K, n,m, a). The decryption algorithm is deterministic and has syntax m ←
NE.DecP(1λ,K, n, c, a). Rejection of a ciphertext is represented by returning m = ⊥.

Informally, correctness requires that encryptions of messages in NE.M(λ) decrypt properly when
the same nonce n and associated data a are used in encryption and decryption. We assume the
boolean (m ∈ NE.M(λ)) can be efficiently computed.

Security. SIM-AC-CPA security is captured by game Gsim-ac-cpa shown in Fig. 13. It differs from
the SIM-AC-CPA definition for randomized encryption (Fig. 5) only in that Enc additionally takes
as input a nonce n and associated data a. These are provided to the simulator. The adversary is
disallowed from repeating nonces across queries to single user u via the set Nu.

10

Game Gsim-ac-cpa
NE,S,P,Acpa

(λ)

For u ∈ {0, 1}∗ do

Ku←$ NE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Exp,Prim

cpa (1λ)

Return (b = b′)

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Enc(u, n,m, a)

Require m ∈ NE.M(λ) and n ̸∈ Nu

If u ̸∈ X then ℓ← |m| else ℓ← m

c1←$ NE.EncP(1λ,Ku, n,m, a)

c0←$ S.Enc(1λ,u, ℓ, n, a : σ)

Mu.add(m) ; Cu.add((n, cb, a))
Nu.add(n)
Return cb

Exp(u)

K1 ← Ku

K0←$ S.Exp(1λ,u,Mu, Cu : σ)

X.add(u)
Return Kb

Game Gsim-ac-cca
NE,S,P,Acca

(λ)

For u ∈ {0, 1}∗ do

Ku←$ NE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b = b′)

Dec(u, n, c, a)

Require (n, c, a) ̸∈ Cu

m1 ← NE.DecP(1λ,Ku, n, c, a)

m0←$ S.Dec(1λ,u, n, c, a : σ)

Return m

Figure 13: Games defining SIM-AC-CPA and SIM-AC-CCA security of NE.

We define Advsim-ac-cpaNE,S,P,Acpa
(λ) = 2Pr[Gsim-ac-cpa

NE,S,P,Acpa
(λ)]− 1. We say NE is SIM-AC-CPA secure with

P if for all PPT Acpa there exists a PPT S such that Advsim-ac-cpaNE,S,P,Acpa
(·) is negligible. Intuitively, this

definition captures that ciphertexts reveal nothing about the messages encrypted other than their
length unless the encryption key is known to the attacker. Note, however, that this definition does
not require anything be hidden about the nonce or associated data.

10Our definitions could be extended to capture notions of resilience against nonce-misuse.
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SIM-AC-CCA security is defined by game Gsim-ac-cca defined in Fig. 13. It adds a decryption or-
acle to Gsim-ac-cpa which returns real or simulated decryptions. Via Cu, the adversary is disallowed
from making queries to a user u which correspond to ciphertexts previously returned by an encryp-
tion query to u. We define Advsim-ac-ccaNE,S,P,Acca

(λ) = 2Pr[Gsim-ac-cca
NE,S,P,Acca

(λ)] − 1 and NE is SIM-AC-CCA

secure with P if for all PPT Acca there exists a PPT S such that Advsim-ac-ccaNE,S,P,Acca
(·) is negligible.

Stronger security notions. In analysis of nonce-based encryption schemes it is common to target
security beyond just CPA and CCA security. Following Rogaway et al. [48], indistinguishable from
random bits security is often used in place of CPA security. Following Rogaway and Shrimpton [49],
“all-in-one” security notions are often used in place of CCA security. These notions simultaneously
capture indistinguishable from random bits security and integrity of ciphertexts. As with random-
ized encryption, these notions can be captured by considering restricted classes of simulators.

Security conjecture. In Section 5 and Section 6, we saw techniques for extending the analysis of
most standard randomized symmetric encryption schemes to imply security according to our new
definitions (when underlying components are appropriately idealized). We believe that the same
ideas should be applicable for nonce-based encryption schemes.

D Searchable Symmetric Encryption Application

In this section we formally prove the security of a searchable symmetric encryption (SSE) scheme
originally proposed by Cash et al. [20]. We start by providing the syntax of what an SSE scheme is
and what security is expected of them. Then we proceed to a formal specification of their scheme
and our security proof assuming the SIM-AC-PRF security of a function family and the SIM-AC-KP
security of a symmetric encryption scheme.

Syntax. A searchable symmetric encryption scheme SSE specifies an algorithm SSE.Setup and
a protocol SSE.Srch. The setup algorithm has syntax (K,EDB)←$ SSE.SetupP(1λ,DB). Given a
database DB, it produces an encrypted database EDB to be stored by a server, and a key K to be
stored by the client. A database is, for some d ∈ N, a d-tuple (idi,Wi)

d
i=1. Here idi ∈ {0, 1}λ is an

identifier and W ⊆ {0, 1}∗ is a keyword-set. In general, the search protocol SSE.Srch may consist
of an arbitrary number of message exchanges between a client and a server. For our purposes we
only need to consider a two-message protocol consisting of algorithms SSE.CSrch and SSE.SSrch.
The client search algorithm has syntax τ ←$ SSE.CSrchP(1λ,K,w). The deterministic server search
algorithm has syntax V ← SSE.SSrchP(1λ,EDB, τ). Here the client is using its key to produce
a search token τ which is sent to the server which then uses it to produce a list V of identifiers
associated with that keyword.

For a database DB = (idi,Wi)
d
i=1 and keyword w we let DB(w) = { idi : w ∈ Wi } and

W (DB) =
⋃d

i=1Wi. Informally speaking, for a correct scheme when the client searches with w the
server should produce V = DB(w). For a formal definition of correctness we refer the reader to [20].

Security. Cash et al. [20] considered a simulation-based definition of security for an SSE scheme
(following Curtmola et al. [23]). Consider the game Gsse shown in Fig. 14. It is parameterized by
an SSE scheme SSE, simulator S, ideal primitive P, and adversary Asse. The goal of the adversary
is to determine whether it is in a real (b = 1) or ideal (b = 0) world. In the real world, the attacker
chooses (via Init) a database to be encrypted and then (via Srch) asks for search queries to be
made on the encrypted database. We think of the attacker as being an “honest-but-curious” server
so it is sees the encrypted database EDB and all search tokens τ that the client sends to the server.
The database chosen by the adversary is stored as DB∗. We check whether this has been initialized
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Game Gsse
SSE,S,P,Asse

(λ)

σP←$ P.Init(1λ)
σ←$ S.Init(1λ)
b←$ {0, 1}
b′←$AInit,Srch,Prim

sse (1λ)

Return (b = b′)

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σ)

Return yb

Setup(DB)
Require DB∗ = ⊥
DB∗ ← (idi,Wi)

d
i=1 ← DB

ℓ←
∑d

i=1 |Wi|
(K,EDB1)←$ SSE.SetupP(1λ,DB)
EDB0←$ S.Setup(1λ, ℓ : σ)
Return EDBb

Srch(w)

Require DB∗ ̸= ⊥
j ← j + 1

Qsrch ← Qsrch ∪ {(j, w)}
sp← { i : (i, w) ∈ Qsrch }
ℓ← (DB∗(w), sp)
τ1←$ SSE.CSrchP(1λ,K,w)

τ0←$ S.CSrch(1λ, ℓ : σ)
Return τb

Figure 14: Game defining security of searchable symmetric encryption scheme SSE.

yet to prevent the adversary from making search queries before initializing the database or from
initializing the database multiple times.

In the ideal world, these returned values are chosen by the simulator given only some leakage
about the queries made by the adversary. SSE security definitions are typically parameterized by a
leakage function which determines the value of ℓ based on all of the queries made by the adversary
so far. For concreteness we have hard-coded the leakage of the particular scheme we are considering.
On setup we leak the size of the database, i.e. the number of keyword/identifier matches in the
database. On a search query for keyword w we leak the correct search results DB∗(w) and the
search pattern sp which is the history of searches that have been made for this keyword.

We define AdvsseSSE,S,P,Asse
(λ) = 2Pr[Gsse

SSE,S,P,Asse
(λ)] − 1. We say SSE is secure with P if for all

PPT Asse there exists a PPT S such that AdvsseSSE,S,P,Asse
(·) is negligible.

Basic Scheme. We will analyze the scheme Πbas which was designed by Cash et al. [20]. This
scheme makes use of a PRF F and a symmetric encryption scheme SE. We require that F.Inp(λ) =
{0, 1}∗, that F.Out(λ) = {0, 1}F.ol(λ) for some F.ol : N → N, and that SE.Kg and F.Kg return
uniform elements from F.Out. If F expects access to ideal primitive P1 and SE expects access to
ideal primitive P2 then EtM[SE,F] expects access to P1 × P2. Pseudocode for Πbas is given below.

Πbas.Setup
P1×P2(1λ,DB)

K←$ F.Kg
For w ∈W (DB) do

K1 ← F.EvP1(1λ,K, 1 ∥w)
K2 ← F.EvP1(1λ,K, 2 ∥w)
i← 0
For id ∈ DB(w)

l← F.EvP1(1λ,K1, i)

c←$ SE.EncP2(1λ,K2, id)
L.add((l, c))
i← i+ 1

EDB← Dict(L)
Return (K,EDB)

Πbas.CSrch
P1×P2(1λ,K,w)

K1 ← F.EvP1(1λ,K, 1 ∥w)
K2 ← F.EvP1(1λ,K, 2 ∥w)
Return (K1,K2)

Πbas.SSrch
P1×P2(1λ,EDB, τ)

i← 0
V ← ∅
(K1,K2)← τ
Loop

l← F.EvP1(1λ,K1, i)
c← EDB[l]
If c = ⊥ then exit loop

id ← SE.DecP2(1λ,K2, c)
V ← V ∪ {id}
i← i+ 1

Return V

The scheme additionally makes use of a (static) dictionary. This consists of an algorithm Dict
which has syntax T ←$ Dict(L). It takes as input a list L where each L[i] is a tuple (li, ci) and
outputs a table T . Correctness requires that if T [l] = ⊥ then l ̸= li for all i and if T [l] ̸= ⊥ then
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there exists some i such that l = li and T [l] = li. We say Dict is history independent if the output
of Dict(L) does not depend on the order of entries in L.

To construct the initial database, Πbas.Setup first samples a key for F that will be used to derive
per-keyword keys for F and SE. Then for each keyword w in W (DB) it loops through each identifier
id in DB(w) while iterating a counter i. It applies F to each i (with the per-keyword key K1) to
obtain a label l and uses SE to encrypt id (with the per-keyword key K2) to obtain a ciphertext c.
These (l, c) pairs are added to a list L which is then used to create the dictionary EDB.

To search for a keyword w, the client uses its key to rederive the per-keyword keys and send
them to the server. The server can then rederive the labels and use them to index into EDB to
obtain the corresponding ciphertexts. Decrypting them give the search results.

Theorem D.1 If F is PRF secure with P1, F is SIM-AC-PRF secure with P1, SE is SIM-AC-KP
secure with P2, and Dict is history independent then Πbas is secure with P1 × P2.

The assumption that F is PRF secure is technically superfluous because it can be shown to be
implied by the SIM-AC-PRF security of F.

Proof: Let Asse be an adversary against the security of Πbas. We will construct adversary Bprf
against the PRF security of F, Aprf against the SIM-AC-PRF security of F, and adversary Acpa

against the SIM-AC-CPA security of SE. Then, given PPT simulator Sprf and PPT simulator
Scpa ∈ Sk, we construct an SSE simulator Ssse such that the following holds.

AdvsseΠbas,Ssse,P1×P2,Asse
(λ) ≤ AdvprfF,P1,Bprf

(λ) + Advsim-ac-prfF,Sprf ,P1,Aprf
(λ) + Advsim-ac-cpaSE,Scpa,P2,Acpa

(λ).

The new algorithms we introduce are PPT, so the theorem holds by letting Sprf and Scpa be the
simulators which makes the respective advantage functions negligible.

The proof considers games G0 through G5. These games gradually transform the view of the
adversary from being generated by Πbas (in G0) to being generated in a way that can be emulated
perfectly by a simulator (in G5). The inequality above follows from simple calculations based on
the following claims which we will justify.

1. AdvsseΠbas,Ssse,P1×P2,Asse
(λ) = Pr[G0(λ)]− Pr[G5(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] = AdvprfF,P1,Bprf
(λ)

3. Pr[G1(λ)]− Pr[G2(λ)] = 0

4. Pr[G2(λ)]− Pr[G3(λ)] = Advsim-ac-prfF,Sprf ,P1,Aprf
(λ)

5. Pr[G3(λ)]− Pr[G4(λ)] = 0

6. Pr[G4(λ)]− Pr[G5(λ)] = Advsim-ac-cpaSE,Scpa,P2,Acpa
(λ)

Claim 2. We start with the second claim. The games G0 and G1 are shown in Fig. 15. Highlighted
code is only included in G0. Boxed code is only included in game G1. Game G0 is identical to
Gsse when b = 1. It was obtained by plugging in the code of Πbas and P1 × P2 and making some
simplification. The most important changes was remembering the per-keyword keys K1,w and K2,w

instead of recomputing them in Srch. In the case that a w not in the database is queried its key
is still computed in Srch.

These games differ only in the computation of keys K1,w and K2,w in Setup. In G0, these are the
output of F while in G1 they are chosen uniformly at random. Consequently, distinguishing between
these two games corresponds quite naturally to breaking the PRF security of F. The adversary
Bprf establishing this is shown in Fig. 16. It runs Asse as a subroutine, as if it were in these two
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Games G0(λ),G1(λ)

σ′
P←$ P1.Init(1

λ)

σ′′
P←$ P2.Init(1

λ)

b′←$AInit,Srch,Prim
sse (1λ)

Return (b′ = 1)

Prim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(x : σ′
P)

Else

y←$ P2.Prim(x : σ′′
P)

Return y

Srch(w)

Require DB∗ ̸= ⊥
If w ̸∈W (DB) and K1,w = ⊥ then

K1,w ← F.EvP1(1λ,K, 1 ∥w)
K2,w ← F.EvP1(1λ,K, 2 ∥w)
K1,w←$ F.Out(λ)

K2,w←$ F.Out(λ)
Return (K1,w,K2,w)

Setup(DB)
Require DB∗ = ⊥
DB∗ ← DB
K←$ F.Kg
For w ∈W (DB) do
K1,w ← F.EvP1(1λ,K, 1 ∥w)
K2,w ← F.EvP1(1λ,K, 2 ∥w)
K1,w←$ F.Out(λ)

K2,w←$ F.Out(λ)
i← 0

For id ∈ DB(w)
lw[i]← F.EvP1(1λ,K1,w, i)

c←$ SE.EncP2(1λ,K2,w, id)

L.add((lw[i], c))
i← i+ 1

EDB← Dict(L)
Return EDB

Figure 15: Games G0 and G1 used in proof of Theorem D.1. Highlighted code is only included in
G0. Boxed code is only included in game G1.

Adversary BEv,Primprf (1λ)

σ′′
P←$ P2.Init(1

λ)

b′←$AInitSim,SrchSim,PrimSim
sse (1λ)

Return b′

PrimSim(x)

(d, x)← x

If d = 1 then y ← Prim(x)

Else y←$ P2.Prim(x : σ′′
P)

Return y

SrchSim(w)

Require DB∗ ̸= ⊥
If w ̸∈W (DB) and K1,w = ⊥ then

K1,w ← Ev(0, 1 ∥w)
K2,w ← Ev(0, 2 ∥w)

Return (K1,w,K2,w)

SetupSim(DB)
Require DB∗ = ⊥
DB∗ ← DB
For w ∈W (DB) do
K1,w ← Ev(0, 1 ∥w)
K2,w ← Ev(0, 2 ∥w)
i← 0

For id ∈ DB(w)
lw[i]← F.EvP1(1λ,K1,w, i)

c←$ SE.EncP2(1λ,K2,w, id)

L.add((lw[i], c))
i← i+ 1

EDB← Dict(L)
Return EDB

Figure 16: Adversary Bprf used in proof of Theorem D.1. Highlighting indicates the “interesting”
lines of code.

games except it calls its own Prim oracle whenever P1 would be run and the computation of keys
K1,w and K2,w is done via the oracle Ev which is either executing F (as in G0) or picking them at
random (as in G1). For these Ev queries it arbitrarily uses u = 0. The view of Asse thus perfectly
matches its view in G0 when b = 1 in Gprf and perfectly matches its view in G1 when b = 0. Hence,
standard probability analysis gives claim 2.

Claim 3. For the third claim, consider game G2 shown in Fig. 17. It contains the highlighted code
while game G3 contains the boxed code. It is an exact copy of G1, except for small modification
to Setup which does no affect its behavior. The line sampling K (which is not used anywhere) in
Setup has been removed. Additionally, code has been added to compute the size of the database
ℓ and create an injection from the keywords in the database to [ℓ]. This injection is unused in G2.
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Games G2(λ),G3(λ)

σ′
P←$ P1.Init(1

λ)

σ′←$ Sprf .Init(1
λ)

σ′′
P←$ P2.Init(1

λ)

b′←$AInit,Srch,Prim
sse (1λ)

Return (b′ = 1)

Prim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(x : σ′
P)

y←$ Sprf .Prim(x : σ′)

Else

y←$ P2.Prim(x : σ′′
P)

Return y

Srch(w)

Require DB∗ ̸= ⊥
If w ̸∈W (DB) and K1,w = ⊥ then

K1,w←$ F.Out(λ)
K2,w←$ F.Out(λ)

If w ∈W (DB) and K1,w = ⊥ then

K1,w←$ Sprf .Exp(1
λ, f(w), lw : σ′)

Return (K1,w,K2,w)

Setup(DB)
Require DB∗ = ⊥
DB∗ ← (idi,Wi)

d
i=1 ← DB

ℓ←
∑d

i=1 |Wi|
f ←$ Inj(W (DB), [ℓ])
For w ∈W (DB) do

K1,w←$ F.Out(λ)
K2,w←$ F.Out(λ)
i← 0

For id ∈ DB(w)
lw[i]← F.EvP1(1λ,K1,w, i)

lw[i]←$ F.Out(λ)

c←$ SE.EncP2(1λ,K2,w, id)

L.add((lw[i], c))
i← i+ 1

EDB← Dict(L)
Return EDB

Figure 17: Games G2 and G3 used in proof of Theorem D.1. Highlighted code is only included in
G2. Boxed code is only included in game G3.

Adversary AEv,Exp,Prim
prf (1λ)

σ′′
P←$ P2.Init(1

λ)

b′←$AInitSim,SrchSim,PrimSim
sse (1λ)

Return b′

PrimSim(x)

(d, x)← x

If d = 1 then y ← Prim(x)

Else y←$ P2.Prim(x : σ′′
P)

Return y

SrchSim(w)

Require DB∗ ̸= ⊥
If w ̸∈W (DB) and K1,w = ⊥ then

K1,w←$ F.Out(λ)
K2,w←$ F.Out(λ)

If w ∈W (DB) and K1,w = ⊥ then

K1,w ← Exp(f(w))

Return (K1,w,K2,w)

SetupSim(DB)
Require DB∗ = ⊥
DB∗ ← (idi,Wi)

d
i=1 ← DB

ℓ←
∑d

i=1 |Wi|
f ←$ Inj(W (DB), [ℓ])
For w ∈W (DB) do
K2,w←$ F.Out(λ)
i← 0

For id ∈ DB(w)
lw[i]← Ev(w, i)

c←$ SE.EncP2(1λ,K2,w, id)

L.add((lw[i], c))
i← i+ 1

EDB← Dict(L)
Return EDB

Figure 18: Adversary Aprf used in proof of Theorem D.1. Highlighting indicates the “interesting”
lines of code.

The claim follows trivially from this observation.

Claim 4. Now consider game G3 shown in the same figure. It differs from G2 in that the use of F
is being replaced with simulation. The keys K1,w are chosen in Srch by Sprf instead of randomly
in Setup. Here, the simulator is given f(w) as the name of the “user” for which it is producing a
key.11 The ideal primitive P1 has been replace with simulation. Most importantly, the output of F
in Setup is instead being sampled uniformly at random.

Distinguishing these differences reduces to breaking the SIM-AC-PRF security of F. The adversary

11We use f(w) instead of w because our eventual simulator must emulate this name without knowing w.
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Games G4(λ),G5(λ)

σ′←$ Sprf .Init(1
λ)

σ′′
P←$ P2.Init(1

λ)

σ′′←$ Scpa.Init(1
λ)

b′←$AInit,Srch,Prim
sse (1λ)

Return (b′ = 1)

Prim(x)

(d, x)← x

If d = 1 then

y←$ Sprf .Prim(x : σ′)

Else

y←$ P2.Prim(x : σ′′
P)

y←$ Scpa.Prim(1λ, x : σ′′)

Return y

Srch(w)

Require DB∗ ̸= ⊥
If w ̸∈W (DB) and K1,w = ⊥ then

K1,w←$ F.Out(λ)
K2,w←$ F.Out(λ)

If w ∈W (DB) and K1,w = ⊥ then

K1,w←$ Sprf .Exp(1
λ, f(w), lw : σ′)

K2,w←$ Scpa.Exp(1
λ, f(w),Mw, Cw : σ′′)

Return (K1,w,K2,w)

Setup(DB)
Require DB∗ = ⊥
DB∗ ← (idi,Wi)

d
i=1 ← DB

ℓ←
∑d

i=1 |Wi|
f ←$ Inj(W (DB), [ℓ])
For w ∈W (DB) do
K2,w←$ F.Out(λ)
i← 0

For id ∈ DB(w)
lw[i]←$ F.Out(λ)
c←$ SE.EncP2(1λ,K2,w, id)

c←$ Scpa.Enc1(1
λ, |id| : σ′′)

Mw.add(id) ; Cw.add(c)
L.add((lw[i], c))
i← i+ 1

EDB← Dict(L)
Return EDB

Figure 19: Games G4 and G5 used in proof of Theorem D.1. Highlighted code is only included in
G4. Boxed code is only included in game G5.

Adversary AEnc,Exp,Prim
cpa (1λ)

σ′←$ Sprf .Init(1
λ)

σ′′
P←$ P2.Init(1

λ)

σ′′←$ Scpa.Init(1
λ)

b′←$AInit,Srch,Prim
sse (1λ)

Return b′

PrimSim(x)

(d, x)← x

If d = 1 then

y←$ Sprf .Prim(x : σ′)

Else

y ← Prim(x)

Return y

SrchSim(w)

Require DB∗ ̸= ⊥
If w ̸∈W (DB) and K1,w = ⊥ then

K1,w←$ F.Out(λ)
K2,w←$ F.Out(λ)

If w ∈W (DB) and K1,w = ⊥ then

K1,w←$ Sprf .Exp(1
λ, f(w), lw : σ′)

K2,w ← Exp(f(w))

Return (K1,w,K2,w)

SetupSim(DB)
Require DB∗ = ⊥
DB∗ ← (idi,Wi)

d
i=1 ← DB

ℓ←
∑d

i=1 |Wi|
f ←$ Inj(W (DB), [ℓ])
For w ∈W (DB) do
i← 0

For id ∈ DB(w)
lw[i]←$ F.Out(λ)
c← Enc(w, id)

L.add((lw[i], c))
i← i+ 1

EDB← Dict(L)
Return EDB

Figure 20: Adversary Acpa used in proof of Theorem D.1. Highlighting indicates the “interesting”
lines of code.

Aprf establishing this is shown in Fig. 18. It runs Asse as in the games, replacing the code which
differs between the games with calls to its own oracles. These replacements are indicated by
highlighting. Note that the “Require” statements in SrchSim and SetupSim enforce that no
Exp(w, i) queries are made after a Exp(w) query has already been made. Consequently, when
b = 0 in Gsim-ac-prf the output of Ev is always chosen uniformly at random. Consequently, the view
of Asse will perfectly match its view in G2 when b = 1 and perfectly match its view in G3 when
b = 0. Hence, standard probability analysis gives claim 4.

Claim 5. For the fifth claim, consider game G4 shown in Fig. 19. It contains the highlighted code
while game G5 contains the boxed code. It is an exact copy of G4 so the claim follows trivially.
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Claim 6. Now consider game G5 shown in the same figure. It differs from G4 in that the use of SE
is being replaced with simulation. The keys K2,w are chosen in Srch by Scpa instead of randomly
in Setup. The ideal primitive P2 has been replace with simulation. Most importantly, the output
of SE in Setup is instead being emulated by Scpa.Enc1.

Distinguishing these differences reduces to breaking the SIM-AC-KP security of SSE. The adversary
establishing this is shown in Fig. 20. It runs Asse as in these games, replacing the code which differs
between the games with calls to its own oracles. These replacements are indicated by highlighting.
The “Require” statements in SrchSim and SetupSim enforce that no Exp(w, id) queries are made
after a Exp(w) query has already been made. Consequently, when b = 0 in Gsim-ac-cpa the output
of Scpa in Enc is always chosen by Scpa.Enc1 instead of Scpa.Enc2. Consequently, the view of Asse

perfectly matches its view in G4 when b = 1 and perfectly matches its view in G5 when b = 0.
Standard probability analysis gives claim 6.

Claim 1. The justify claim 1 we need to argue that the view of Asse in G0 perfectly matches its
view in Gsse when b = 1 and that its view in G5 perfectly matches its view in Gsse when b = 0 (when
using a simulator we will define). The claim then follows from standard conditional probability
calculations. The former argument was already made in our discussion of claim 2. For the latter,
consider the following simulator Ssse.

Ssse.Init(1
λ)

σ′←$ Sprf .Init(1
λ)

σ′′←$ Scpa.Init(1
λ)

Return (σ′, σ′′, ∅,⊥,⊥)
Ssse.Prim(1λ, x : (σ′, σ′′, U, L,K(·)))

(d, x)← x
If d = 1 then y←$ Sprf .Prim(x : σ′)
Else y←$ Scpa.Prim(1λ, x : σ′′)
Return y

Ssse.Setup(1
λ, ℓ : (σ′, σ′′, U, L,K(·)))

U ← [ℓ]
For i = 1, . . . , ℓ do
l←$ F.Out(λ)
c←$ Scpa.Enc1(1

λ, λ : σ′′)
L.add((l, c))

EDB← Dict(L)
Return EDB

Ssse.CSrch(1
λ, ℓ : (σ′, σ′′, U, L,K(·)))

(S, sp)← ℓ
j ← min sp
If |sp| = 1 then
If S = ∅ then
K1,j ←$ F.Out(λ)
K2,j ←$ F.Out(λ)

Else
For id ∈ S do
(l, c)← L.dq()
l.add(l) ;M.add(id) ; C.add(c)

u←$ U ; U ← U \ {u}
K1,j ←$ Sprf .Exp(1

λ, u, l : σ′)
K2,j ←$ Scpa.Exp(1

λ,u,M,C : σ′′)
Return (K1,j ,K2,j)

This simulator runs copies of Sprf and Scpa. In addition to their states (σ′ and σ′′), it stores set
U , list L, and table K. Primitive queries are simulated by running the appropriate Sprf or Scpa
algorithm.

Now consider the behavior of Setup in G5. For each (w, id)-pair in the database, a label-ciphertext
pair is added to the list L. This pair was created by picking the label at random and picking the
ciphertext according to Scpa.Enc1. Because each id has the same length, λ, these label-ciphertext
pairs are independent of the (w, id)-pair for which they were created. Consequently, SSE is able
to simulate EDB properly by generating the appropriate number of label-ciphertext pairs. (Recall
that the number of such pairs is the leakage it is given as input.)
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The crux of the simulation lies in the simulation of the keys returned by Srch. In game G5 these
are picked at random if w ̸∈W (DB) and otherwise are chosen by Sprf and Scpa given the appropriate
lists lw, Mw, and Cw along with the name, f(w), for the “user” associated with that keyword. If a
search query is repeated, the same keys are the prior query are returned.

We can consider the simulation of Ssse is similar cases. It is given as leakage the results of this query
DB(w) which is calls S and the search patter for this keyword sp. If |sp| ≠ 1, then this keyword has
been searched for before and the simulator will return the same keys it did last time. The value
min sp will be invariant across all searches for a keyword (and not repeat for different keywords)
so it is used to index into the table K(·) which Ssse uses to store all keys that it has previously
returned.

Now suppose it is the first time a keyword has been queries (i.e. |sp| = 1). If S = ∅, then this
keyword is not in the database so the simulator can simply pick the keys to return at random.
If S ̸= ∅, then the keyword is in the database. Properly simulating this boils down to properly
simulating lw, Mw, Cw, and f(w) which can then be used to run Sprf and Scpa. To simulate the
tables, Ssse exploits the fact the history independence of Dict. This means that EDB (and hence
the view of Asse) is independent of the order that values are stored in L. So Ssse can simply remove
the last |S| entries of L and, pretending they were the entries corresponding to the keyword being
searched, use them to compute the tables for Sprf and Scpa. Since f in G5 is a random injection,
Ssse emulates f(w) by sampling u from the appropriate set without replacement.

The above justifies the claim that the view of Asse in G5 perfectly matches its view in Gsse when
b = 0. This completes our justification of claim 1 and hence completes the proof.

E Self-revocable Encrypted Cloud Storage Application

In this section, we look at compelled access security for encrypted cloud storage. This setting
considers the security of documents stored on the cloud, even in the event that keys are compromised
on the client device, as in a compelled access search, e.g., at a border crossing. We first recall the
compelled access security definitions and construction called Burnbox proposed by Tyagi et al. [50].
Then we show that our adaptive security definitions for symmetric encryption can replace the ideal
encryption model used in the original proof.

Before we proceed, let us recall standard public key encryption definitions.

Public Key Encryption Syntax. A public key encryption scheme PKE specifies algorithms
PKE.Kg, PKE.Enc, and PKE.Dec as well as the set PKE.M representing the message space. The
key generation algorithm has syntax (ek, dk)←$ PKE.Kg(1λ) producing a public encryption key ek
and a secret decryption key dk. The encryption algorithm has syntax c←$ PKE.EncP(1λ, ek,m).
The decryption algorithm is deterministic and has syntax m← PKE.DecP(1λ,dk, c).

Informally, correctness requires that encryptions of messages in PKE.M(λ) decrypt properly.
We assume the boolean (m ∈ PKE.M(λ)) can be efficiently computed.

Public Key Encryption Security. The IND-CPA security of a public key encryption scheme is
defined via the game shown in Fig. 21. In this game, the adversary is tasked with determining the
decryption of challenge ciphertexts output from Lr to one of two distinct self-chosen plaintexts.
We define the advantage function Advind-cpaPKE,P,A(λ) = 2Pr[Gind-cpa

PKE,P,A(λ)]−1. We say PKE is IND-CPA

secure with P if for all PPT A, the advantage Advind-cpaPKE,P,A(·) is negligible.

40



Game Gind-cpa
PKE,P,A(λ)

(ek,dk)←$ PKE.Kg(1λ)
σP←$ P.Init(1λ)
b←$ {0, 1}
b′←$ALr,Prim(1λ, ek)

Return (b = b′)

Lr(m0,m1)

Require m0,m1 ∈ PKE.M(λ)

Require |m0| = |m1|
cb←$ PKE.EncP(1λ, ek,mb)

Cu.add(cb)
Return cb

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Figure 21: Game defining IND-CPA security of public key encryption scheme PKE.

E.1 Proof of Compelled Access Security for BurnBox

Syntax. A revocable cloud storage scheme RCS specifies algorithms RCS.Init, RCS.Add, RCS.Access,
RCS.Delete, RCS.Revoke, RCS.Restore. The algorithms interface with a remote server through a
key-value abstraction making Put(K,V ) and Get(K) requests. Both Put and Get are available as
oracles to all RCS algorithms, though we omit their explicit mention from notation for simplicity.
The initialization algorithm has syntax (σ, k)←$ RCS.Init(1λ) which takes in a security parameter
and outputs a state variable (implicitly used by all remaining algorithms) and a restoration key. The
file add algorithm has syntax RCS.Add(lbl,m) and takes in file contents m along with a label string
lbl of length RCS.lbll(λ) to be used to handle the file. RCS.Access, RCS.Delete, and RCS.Revoke each
take in the file label and, respectively, return the file contents, delete access to a file permanently,
and revoke access to a file temporarily. Lastly, RCS.Restore can be called with the restoration key
created during initialization to restore access to files that were temporarily revoked via RCS.Revoke.

Security. Tyagi et al. [50] consider a simulation-based definition of RCS in which the adversary’s
view consists of the transcript of put/get operations made to the key-value store. The original
presentation the security game, called compelled access security (CA), is parameterized by an RCS
scheme, an ideal primitive P, a simulator S, a leakage regime, and an adversary; it differs slightly
from ours (Gca-poh in Figure 22). In both presentations, the task of the adversary is to determine
whether they are in the real (b = 1) or the ideal (b = 0) world.

In the real world, the adversary interacts with oracles to add, access, delete, revoke, and re-
store files, each of these oracles executes the appropriate algorithm of the RCS scheme. The RCS
algorithms are implicitly wrapped to replace their return value with the transcript of key-value
operations made during execution of the algorithm, denoted with special tokens: (P, (K,V )) for a
Put and (G,K) for a Get. Additionally, a one-time use compromise oracle is provided to return the
client state variable, representing compelled access to the client device.

In the ideal world, these returned values are chosen by the simulator given only some leakage
about the adversary’s queries as determined by the leakage regime. We will only be working with
one leakage regime: the pseudonymous operation history leakage regime used by the Burnbox
construction. To simplify our presentation, Gca-poh includes the pseudocode for compelled access
security for pseudonymous operation history leakage (CA-POH). Intuitively, this corresponds to
leaking to the simulator that a file has been added or accessed by referring to a pseudonym identifier,
and leaking the file contents associated with pseudonyms of active files during a compromise (see [50]
for more details). The bookkeeping in the pseudocode takes the form of two tables, A for tracking
active files and R for tracking revoked files that are not active, but not permanently deleted.

We define the advantage Advca-pohRCS,S,P,Aca
(λ) = 2Pr[Gca-poh

RCS,S,P,Aca
(λ)]− 1 and say an RCS scheme is

secure with P if for all PPT Aca there exists a PPT S such that Advca-pohRCS,S,P,Aca
(·) is negligible.

Burnbox Scheme. We will consider the scheme BB[SE,PKE] given in [50] which is parameterized
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Game Gca-poh
RCS,S,P,Aca

(λ)

i← 0

(σ, k)←$ RCS.Init(1λ)
σP←$ P.Init(1λ)
σS←$ S.Init(1λ)
b←$ {0, 1}
b′←$AO

ca(1
λ)

Return b = b′

Prim(x)

y1←$ P.Prim(1λ, x : σP)

y0←$ S.Prim(1λ, x : σS)

Return yb

Add(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

τ1←$ RCS.Add(1λ, lbl,m : σ)

τ0←$ S.Add(1λ, i, |m| : σS)

Return τb

Access(lbl)

Require A[lbl] ̸= ⊥
(i,m)← A[lbl]

τ1←$ RCS.Access(1λ, lbl : σ)
τ0←$ S.Access(1λ, i : σS)

Return τb

Compromise

σ1 ← σ

σ0←$ S.Compromise(1λ, A : σS)

Return σb

Delete(lbl)

Require A[lbl] ̸= ⊥
A[lbl]← ⊥
RCS.Delete(1λ, lbl : σ)

Revoke(lbl)

Require A[lbl] ̸= ⊥
R[lbl]← A[lbl]

A[lbl]← ⊥
RCS.Revoke(1λ, lbl : σ)

Restore

For lbl ∈ R do

A[lbl]← R[lbl]

R[lbl]← ⊥
RCS.Restore(1λ, k : σ)

Figure 22: Game defining compelled access security for revocable cloud storage schemes under
the pseudonymous operation history leakage regime [50]. The adversary has access to oracles
O = {Prim,Add,Access,Delete,Revoke,Restore,Compromise}.

by a symmetric encryption scheme SE and a public key encryption scheme PKE. For each added file,
a random encryption key and random identifier string is sampled. The file is encrypted using SE
and stored on the key-value store under the identifier string. A lookup table between file labels to
identifier strings and encryption keys is maintained in client state to allow file accesses. To remove
access to a file, the corresponding row of the lookup is deleted. However, to support temporary
revocation of a file, the file label, identifier string, and encryption key for all files are encrypted
under a restoration public key using PKE and stored in a backup table. Restoring access to a file is
done by decrypting the rows in the backup table with the restoration secret key and re-adding the
relevant information to the lookup table of active files. This means to permanently delete a file,
in addition to deleting the row from the lookup table, the relevant row in the backup table is also
deleted. The pseudocode for BB[SE,PKE] is given in Figure 23. In this code we have written Add
and Access to output the transcripts from their key-value operations and we have omitted any code
that does not effect these transcripts. (See [50] for a more complete description of the scheme.)

Theorem E.1 If SE is SIM-AC-CPA secure with P1, PKE is IND-CPA secure with P2, and BB.idl
is super-logarithmic then BB[SE,PKE] is CA-POH secure with respect to P1 × P2.

Proof: Let Aca be an adversary against the CA-POH security of BB[SE,PKE]. We will construct
adversary Acpa against the SIM-AC-CPA security of SE and Bcpa against the IND-CPA security of
PKE. Then given any SIM-AC-CPA simulator Scpa, we construct a CA-POH simulator Sca (shown
in Figure 24) such that the following holds:

Advca-pohBB[SE,PKE],Sca,P1×P2,Aca
(λ) ≤ a2λ/2

BB.idl(λ))+1 + Advsim-ac-cpaSE,Scpa,P1,Acpa
(λ) + Advind-cpaPKE,P2,Bcpa

(λ) .

Here aλ is the number of oracle queries that Aca makes to Add. Our adversary and simulator
constructions are PPT, so the theorem holds by letting Scpa be the simulator which makes the
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BB[SE,PKE].Init(1λ)

(ek,dk)←$ PKE.Kg(1λ)
σ ← ([·], [·], ek)
Return (σ, dk)

BB[SE,PKE].AddP1×P2(1λ, lbl,m : (T,B, ek))

id←$ {0, 1}BB.idl(λ)
K←$ SE.Kg(1λ)
T [lbl]← (id,K)

B[id]←$ PKE.EncP2(ek, (1, lbl,K))

c←$ SE.EncP1(K,m)

Return (P, (id, c))

BB[SE,PKE].AccessP1×P2(1λ, lbl : (T,B, ek))

(id,K)← T [lbl]

Return (G, id)

BB[SE,PKE].DeleteP1×P2(1λ, lbl : (T,B, ek))

(id,K)← T [lbl]

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

T [lbl]← ⊥

BB[SE,PKE].RevokeP1×P2(1λ, lbl : (T,B, ek))

T [lbl]← ⊥

BB[SE,PKE].RestoreP1×P2(1λ,dk : (T,B, ek))

For id ∈ B do

(bR, lbl,K)← PKE.DecP2(dk, B[id])

If bR ̸= 0 then T [lbl]← (id,K)

Figure 23: Burnbox construction of a revocable cloud storage scheme given in [50]. The presentation
is modified here to return the key-value operation transcript as relevant for the security proof.

Sca.Init(1
λ)

(ek,dk)←$ PKE.Kg(1λ)
σP←$ P2.Init(1

λ)

σS←$ Scpa.Init(1
λ)

I ← {0, 1}BB.idl(λ)
Return ([·], [·], ek, σS, σP)

Sca.Add(1
λ, i,mlen : (TS, BS, ek, σS, σP))

id←$ I ; I ← I \ {id}
c←$ Scpa.Enc(1

λ, i,mlen : σS)

TS[i]← (id, c)

BS[id]←$ PKE.EncP2.Prim(1λ,·:σP)(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

Return (P, (id, c))

Sca.Access(1
λ, i : (TS, BS, ek, σS, σP))

(id, c)← TS[i] ; Return (G, id)

Sca.Prim(1λ, x : (TS, BS, ek, σS, σP))

(d, x)← x

If d = 1 then y←$ Scpa.Prim(1λ, x : σS)

Else y←$ P2.Prim(1λ, x : σP)

Return y

Sca.Compromise(1λ, A : (TS, BS, ek, σS, σP))

T ← [·]
For lbl ∈ A do

(i,m)← A[lbl]

(id, c)← TS[i]

K←$ Scpa.Exp(1
λ, i, [m], [c] : σS)

T [lbl]← (id,K)

Return (T,BS[·], ek)

Figure 24: Simulator Sca used in proof of Theorem E.1.

advantage function for SE negligible. Roughly, Sca simulates the key-value transcript by using
Scpa.Enc to simulate the encrypted files. Later during compromise, when the file contents of active
files are leaked, Sca uses Scpa.Exp to populate the client state with keys consistent with the previously
chosen ciphertexts. Lastly, Sca stores dummy encryptions of zero strings in the backup table.

We bound the advantage of Aca by bounding the advantage of each of a series of game hops.
We define the first game G−1 to be identical to the real world, and the last game G6 is identical
to the ideal world (except it returns true when b = 1). Hence Advca-pohBB[SE,PKE],Sca,P1×P2,Aca

(λ) =

Pr[G−1]− Pr[G6] by standard conditional probability computation.

The first set of games to consider is G0 and G1 shown in Figure 25. Game G0 is identical to the
real world with the code of BB[SE,PKE] except that a set I is used in Add so that id is sampled
without replacement. Thus Pr[G−1(λ)] − Pr[G0(λ)] ≤

(
aλ
2

)
/2BB.idl(λ)). Game G1 dispenses with

PKE.Dec, instead introducing a table R′ to store the restoration plaintext information of revoked
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Games G0, G1

i← 0

(ek,dk)←$ PKE.Kg(1λ)
σP←$ P.Init(1λ)
I ← {0, 1}BB.idl(λ)
b′←$AO

ca(1
λ)

Return b′ = 1

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Add(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

id←$ I ; I ← I \ {id}
K←$ SE.Kg(1λ)
T [lbl]← (id,K)

B[id]←$ PKE.EncP2(ek, (1, lbl,K))

c←$ SE.EncP1(K,m)

Return (P, (id, c))

Access(lbl)

Require A[lbl] ̸= ⊥
(i,m)← A[lbl]

(id,K)← T [lbl]

Return (G, id)

Compromise

Return (T,B, ek)

Delete(lbl)

Require A[lbl] ̸= ⊥
A[lbl]← ⊥
(id,K)← T [lbl]

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

T [lbl]← ⊥
Revoke(lbl)

Require A[lbl] ̸= ⊥
R[lbl]← A[lbl] ; R′[lbl]← T [lbl]

A[lbl]← ⊥ ; T [lbl]← ⊥
Restore

For lbl ∈ R do

A[lbl]← R[lbl] ; T [lbl]← R′[lbl]

R[lbl]← ⊥ ; R′[lbl]← ⊥
For id ∈ B do

(bR, lbl,K)← PKE.DecP2(dk, B[id])

If bR ̸= 0 then T [lbl]← (id,K)

Figure 25: Games G0 and G1 used in the proof of Theorem E.1. Highlighted code is only included
in G0 and boxed code is only included in G1.

Games G1, G2 , G3

i← 0

(ek,dk)←$ PKE.Kg(1λ)
σP←$ P.Init(1λ)
I ← {0, 1}BB.idl(λ)
b′←$AO

ca(1
λ)

Return b′ = 1

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Access(lbl)

Require A[lbl] ̸= ⊥
(i,m)← A[lbl]

(id,K)← T [lbl]

Return (G, id)

Add(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

id←$ I ; I ← I \ {id}
K←$ SE.Kg(1λ)
T [lbl]← (id,K)

B[id]←$ PKE.EncP2(ek, (1, lbl,K))

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

c←$ SE.EncP1(K,m)

Return (P, (id, c))

Delete(lbl)

Require A[lbl] ̸= ⊥
A[lbl]← ⊥
(id,K)← T [lbl]

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

T [lbl]← ⊥

Revoke(lbl)

Require A[lbl] ̸= ⊥
R[lbl]← A[lbl]

R′[lbl]← T [lbl]

A[lbl]← ⊥
T [lbl]← ⊥
Restore

For lbl ∈ R do

A[lbl]← R[lbl]

T [lbl]← R′[lbl]

R[lbl]← ⊥
R′[lbl]← ⊥

Compromise

Return (T,B, ek)

Figure 26: Games used for proof of Theorem E.1. Highlighted code is included in G1, boxed code
is included in G2, green highlighted code is included in G3. Other code is common to all games.

files. This does not change the functionality of the game as only legitimate ciphertexts generated
in Add are ever decrypted and we assume a correct PKE scheme. Thus, Pr[G0(λ)] = Pr[G1(λ)].

The second set of game hops from G1 to G3 shown in Figure 26 deals with the use of PKE.Enc.
Game G2 replaces the call of PKE.Enc in Add to encrypt a dummy plaintext of all-zeros instead
of the restoration plaintext to populate the backup table. Game G3 removes the rewriting of the
backup table in Delete so the only one call of PKE.Enc occurs per file.
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Adversary BLr,Primcpa (1λ)

i← 0

σ′
P←$ P1.Init(1

λ)

I ← {0, 1}BB.idl(λ)
b′←$AAddSim,DeleteSim,PrimSim,O

ca (1λ)

Return b′

AddSim(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

id←$ I ; I ← I \ {id}
K←$ SE.Kg(1λ)
T [lbl]← (id,K)

m1 ← (1, lbl,K)

m0 ← 0BB.lbll(λ)+SE.kl(λ)+1

B[id]← Lr(m0,m1)

c←$ SE.EncP1(K,m)

Return (P, (id, c))

PrimSim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(1λ, x : σ′
P)

Else y←$ Prim(x)

Return y

DeleteSim(lbl)

Require A[lbl] ̸= ⊥
A[lbl]← ⊥
(id,K)← T [lbl]

m← 0BB.lbll(λ)+SE.kl(λ)+1

B[id]← Lr(m,m)

T [lbl]← ⊥

Figure 27: Adversary Bcpa for proof of Theorem E.1. When Bcpa runs Aca, oracle O represents
access to oracles {Access,Revoke,Restore,Compromise} defined as by G1 in Fig. 26.

We apply the security of PKE to bound the advantage of the first hop from G1 to G2. More
precisely, the IND-CPA adversary Bcpa given in Figure 27 simulates Aca’s environment as from
G1 except it replaces calls to PKE.Enc with a query to its left-or-right Lr oracle. In Add it
sets m1 to the label and key of the restoration plaintext as in G1 and m2 as the dummy all-
zero string as in G2. In Delete, both messages are set to the dummy all-zero string. Thus,
the advantage of Bcpa is exactly the same as the advantage in distinguishing between G1 and G2:

Pr[G1(λ)]− Pr[G2(λ)] = Advind-cpaPKE,P2,Bcpa
(λ) .

Now in game G2, a public key encryption of a dummy all-zero string is written to the backup table
in both Add and Delete. Game G3 removes the update to the backup table in Delete. The
only way for the adversary to observe the contents of the backup table is through Compromise.
Since Compromise can only be called once, not replacing a row with a fresh encryption of the
same all-zero string does not change the adversary’s view; they still only see an encryption of an
all-zero string. This gives, Pr[G2(λ)] = Pr[G3(λ)].

The next set of games hops from G3 to G5 (shown in Figure 28) switches from updating the
state table T on every oracle call to lazily constructing the state table only when needed dur-
ing Compromise. Game G4 introduces TS to store the information needed to populate T in
Compromise and respond to Access queries. Game G5 removes updates of T from Add, Access,
Delete, Revoke, and Restore, and adds creation of T in Compromise. The files that should
be present in the state table T on compromise are the currently active files in the system, which are
tracked by A. One can observe in Figure 28, the removed updates to T were redundant alongside
updates to A. Then in Compromise, G5 populates a row in T with the contents from TS if a
corresponding row exists in A. The change from ongoing to lazy evaluation of T does not change
the view of the adversary, so Pr[G3(λ)] = Pr[G4(λ)] = Pr[G5(λ)].

The last set of game hops from G5 to G6 (shown in Fig. 29) move from sampling keys and encrypting
file contents in Add to simulating the encrypted files using Scpa.Enc. When the file contents of
active files are learned in Compromise, Scpa.Exp is used to retrieve a consistent key to populate
the state table T .

We apply the SIM-AC-CPA security of SE to bound the advantage of distinguishing between G5

and G6. More precisely, adversary Acpa given in Fig. 30 simulates Aca’s environment as from G5
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Games G3, G4 , G5

i← 0

(ek,dk)←$ PKE.Kg(1λ)
σP←$ P.Init(1λ)
I ← {0, 1}BB.idl(λ)
b′←$AO

ca(1
λ)

Return b′ = 1

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Access(lbl)

Require A[lbl] ̸= ⊥
(i,m)← A[lbl]

(id,K)← T [lbl]

(id, c,K)← TS[i]

Return (G, id)

Add(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

id←$ I ; I ← I \ {id}
K←$ SE.Kg(1λ)
T [lbl]← (id,K)

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

c←$ SE.EncP1(K,m)

TS[i]← (id, c,K)

Return (P, (id, c))

Compromise

For lbl ∈ A do

(i,m)← A[lbl]

(id, c,K)← TS[i]

T [lbl]← (id,K)

Return (T,B, ek)

Delete(lbl)

Require A[lbl] ̸= ⊥
A[lbl]← ⊥
T [lbl]← ⊥
Revoke(lbl)

Require A[lbl] ̸= ⊥
R[lbl]← A[lbl]

R′[lbl]← T [lbl]

A[lbl]← ⊥
T [lbl]← ⊥
Restore

For lbl ∈ R do

A[lbl]← R[lbl]

T [lbl]← R′[lbl]

R[lbl]← ⊥
R′[lbl]← ⊥

Figure 28: Games used for proof of Theorem E.1. Highlighted code is included in G3, boxed code
is included in G4, green highlighted code is included in G5. Other code is common to all games.

Games G5, G6

i← 0

(ek,dk)←$ PKE.Kg(1λ)
σP←$ P.Init(1λ)
σ′′
P←$ P2.Init(1

λ)

σS←$ Scpa.Init(1
λ)

I ← {0, 1}BB.idl(λ)
b′←$AO

ca(1
λ)

Return b′ = 1

Prim(x)

(σ′
P, σ

′′
P)← σP

(d, x)← x

If d = 1 then

y←$ P1.Prim(1λ, x : σ′
P)

y←$ Scpa.Prim(1λ, x : σS)

Else y←$ P2.Prim(1λ, x : σ′′
P)

Return y

Add(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

id←$ I ; I ← I \ {id}
K←$ SE.Kg(1λ)
c←$ SE.EncP1(K,m)

c←$ Scpa.Enc(1
λ, i, |m| : σS)

TS[i]← (id, c, K)

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

Return (P, (id, c))

Compromise

For lbl ∈ A do

(i,m)← A[lbl]

(id, c, K)← TS[i]

K←$ Scpa.Exp(1
λ, i, [m], [c] : σS)

T [lbl]← (id,K)

Return (T,B, ek)

Access(lbl)

Require A[lbl] ̸= ⊥
(i,m)← A[lbl]

(id, c, K)← TS[i]

Return (G, id)

Delete(lbl)

Require A[lbl] ̸= ⊥
A[lbl]← ⊥
Revoke(lbl)

Require A[lbl] ̸= ⊥
R[lbl]← A[lbl]

A[lbl]← ⊥
Restore

For lbl ∈ R do

A[lbl]← R[lbl]

R[lbl]← ⊥

Figure 29: Games introducing Scpa used in the proof of Theorem E.1. Highlighted code is only
included in G5 and boxed codes is only included in G6.

except it replaces calls to SE.Kg and SE.Enc in Add with queries to its Enc oracle on index i,
and replaces the symmetric key lookup from TS in Compromise with a query to Exp on index
i of the active file. The message set and ciphertext set passed into Exp consist of the single
ciphertext created during Add and the corresponding message leaked during compromise; only
one message is ever passed to Enc for any given i. Thus, the SIM-AC-CPA advantage of Acpa in
distinguishing between SE and Scpa is exactly the same advantage as distinguishing between G5
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Adversary AEnc,Exp,Prim
cpa (1λ)

i← 0

(ek,dk)←$ PKE.Kg(1λ)
σ′′
P←$ P2.Init(1

λ)

I ← {0, 1}BB.idl(λ)
b′←$AAddSim,DeleteSim,PrimSim,O

ca (1λ)

Return b′

PrimSim(x)

(d, x)← x

If d = 1 then

y←$ Prim(x)

Else y←$ P2.Prim(1λ, x : σ′′
P)

Return y

AddSim(lbl,m)

Require (A[lbl] = ⊥) ∧ (R[lbl] = ⊥)
i← i+ 1

A[lbl]← (i,m)

id←$ I ; I ← I \ {id}
c← Enc(i,m)

TS[i]← (id, c)

B[id]←$ PKE.EncP2(ek, 0BB.lbll(λ)+SE.kl(λ)+1)

Return (P, (id, c))

CompromiseSim

T ← [·]
For lbl ∈ A do

(i,m)← A[lbl]

(id, c)← TS[i]

K ← Exp(i)

T [lbl]← (id,K)

Return (T,B, ek)

Figure 30: Adversary Acpa used in the proof of Theorem E.1. When running adversary Aca the
oracle O denotes access to oracles {Access,Revoke,Restore,Compromise} as defined G6.

and G6: Pr[G5(λ)]− Pr[G6(λ)] = Advsim-ac-cpaSE,Scpa,P1,Acpa
(λ) .

The originally stated advantage inequality follows from standard probability calculation.

F Bugs In Prior Proofs

We have identified fifteen papers where our definitional framework can be applied [2, 3, 14, 20, 21,
25, 29, 33, 40–44,50, 51] to modularize the ideal model analysis required to prove adaptive security.
The majority of these examples omitted a full analysis of the ideal model programming (likely
considering it standard and conceptually straightforward, yet detail intensive). We have identified
bugs stemming from subtle details in all of the examples that attempted to provide the full details
of the ideal model analysis [14, 43, 50, 51] and in some which only sketched the details [20, 42]. We
emphasize that once identified, these proof bugs are straightforward to fix (if tedious to do so in
thorough detail). This difficulty in writing a thorough analysis of the ideal model programming
shows the benefit of our definitional framework which allows this analysis to be done once for basic
primitives and then “passed along” to more complicated protocols. We emphasize that the bugs we
identified have no bearing on the achieved security of the protocols; they indicate only that their
current proofs are technically not valid.

A core component of the sorts of random oracle proofs we are interested in (proofs for other
ideal models are similar) can be thought of as splitting the random oracle into the real random
oracle and a separate random oracle for each “user”. Here a user might be a literal human user
of a system or more abstractly any sort of entity that is associated with its own key used to seed
the random oracle. Bounding an adversary’s attack success then boils down to enumerating the
possibly ways that the adversary can cause inconsistencies in the separated random oracles that
would not be possible when a single random oracle is being shared. The proof writer specifies these
“bad” events and then bounds the probability that each of them occur.

The errors we have found tend to be of the form of failing to identify all of these “bad” events
and consequently arguing consistency of tables which are not kept consistent. We will now walk
through the specific examples we have identified.

The proof of Theorem 1 in [43] considers a sequence of games G0 through G3 (not all of which

47



are give explicitly). In each transition from one game to the next they are replacing honestly
generated output of a random oracle with (somewhat underspecified) programming. These games
are claimed to be equivalent, which cannot be the case since an adversary which happens to make
a particular random oracle query before it is programmed could detect the programming.

The proofs of Theorem 1 in [14] and Theorem 1 in [51] are highly similar. The latter of these
considers a sequence of games G1,0 through G1,4. The core random oracle steps in the analysis are
the transitions from G1,1 to G1,2 and from G1,2 to G1,3. For these steps they cite [14] as having
shown how to bound the difference between these games by the advantage of a one-way adversary.
The proof in [14] does provide such a claim to transition from their G1 to G2 and from G2 to G3.

Let us focus on the first of these, for which they first introduce an intermediate G̃2 which they claim
to be equivalent to G1. This claim is false. In G1, a random oracle is being honestly executed. In
G̃2 the random oracle is distributed between table H1 and a table UT[w, ·] for each keyword w. The
entry UT[w, c] corresponds to the table entry H1(Kw, STc). The particular meaning of the variables
Kw and STc is not important beyond noting that they can repeat across different choices of w.
Game G̃2 has code for maintaining consistency between H1 and each individual UT[w, ·], but not for
maintaining consistency among UT[w, ·] for differing w. Hence the claimed of equivalence is false.

Analogous issues can be found in [42] and [20]. Neither of these provide a thorough game-
based argument bounding the adversary’s probability of detecting inconsistency in their view.
Instead each briefly describes how the adversary could notice inconsistencies in the random oracle
programming and why these events are unlikely. However both only identify the possibility of an
adversary detecting a simulation if it makes a random oracle query using a key which is unknown to
it. For example, the latter [20] says, “The only defects in the simulation occur when an adversary
manages to query the random oracle with a key before it is revealed, which can be shown to
happen with negligible in λ probability.” in the proof sketch for their Theorem 7. In the proof of
their Theorem 4.1, the former [42] says “On the other hand, it is possible that the adversary A
has already made random oracles queries H2 or H3 with inputs (ukey(w), ucnt(w)) and got responses
out2 = H2(ukey

(w), ucnt(w)) or out3 = H3(ukey
(w), ucnt(w)). In this case, if out2 ̸= label(2) or

out3 ̸= mask, the simulation fails.” Both are failing to notice the possibility of inconsistencies
without the adversary making random oracle queries that would be caused by there happening to
be collisions in the keys that are sampled.

The bug in a proof of Tyagi, et al. [50] stems from a unique attribute of the ideal encryption
model. The output of its decryption procedure can depend on the order that encryption calls were
made if the the ciphertexts generated happen to collide. In particular, the issue arises in the proof
of their Theorem 1 when transitioning between games G5 and G6. In game G5, the IEM is being
executed honestly. In game G6, the IEM decryption table is stored as two separate tables D′ and
D. Whenever an inconsistency is found D′ is used to overwrite D, which misses the possibility
that D may have been set later than D′ and thus should not be overwritten. We overcome this
technical hurdle in our own IEM proof (Appendix I.1) by introducing an auxiliary table Q which
tracks when IEM queries were made. We believe this auxiliary table idea may be useful for any
future proofs written in the IEM.

G Omitted Proofs for Classic Results

G.1 Proof of Theorem 5.1 (SIM-CPA + INT-CTXT ⇒ SIM-CCA)

We start with a proof of Theorem 5.1 from Section 5. This proof establishes that SIM-AC-CPA
security and INT-CTXT security imply SIM-AC-CCA security.
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Proof (of Theorem 5.1): Let Acca be a PPT adversary against the SIM-AC-CCA security of SE.
Then we construct adversaries Actxt and Acpa against the INT-CTXT and SIM-AC-CPA security of
SE. Then, given a PPT SIM-AC-CPA simulator Scpa, we will construct a SIM-AC-CCA simulator
Scca such that the following holds,

Advsim-ac-ccaSE,Scca,P,Acca
(λ) ≤ Advint-ctxtSE,P,Actxt

(λ) + Advsim-ac-cpaSE,Scpa,P,Acpa
(λ).

It will be clear from examination of the code that the new algorithms we introduce are also
PPT. Thus the theorem follows by letting Scpa be the simulator guaranteed to exist for which

Advsim-ac-cpaSE,Scpa,P,Acpa
is negligible.

The proof considers the games G0, G1, G2, and G3. The inequality above follows from simple
calculations based on the following claims which we will justify.

1. Advsim-ac-ccaSE,Scca,P,Acca
(λ) = Pr[G0(λ)]− Pr[G3(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] = Advint-ctxtSE,P,Actxt
(λ)

3. Pr[G1(λ)]− Pr[G2(λ)] = 0

4. Pr[G2(λ)]− Pr[G3(λ)] = Advsim-ac-cpaSE,Scpa,P,Acpa
(λ)

Claim 2. We start with the second claim. The game G0 and G1 are shown in Fig. 31. Highlighted
code is only included in G0. Boxed code is only included in game G1. Game G0 is identical to
Gsim-ac-cca when b = 1 and he two games differ only in Dec when the user has not been exposed
(i.e. u ̸∈ X). Then G0 returns the actual decryption of the ciphertext c and G1 returns ⊥.

Games G0(λ),G1(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b′ = 1)

Prim(x)

y←$ P.Prim(1λ, x : σP)

Return y

Enc(u,m)

Require m ∈ SE.M(λ)

c←$ SE.EncP(1λ,Ku,m)

Cu.add(c)
Return c

Exp(u)

K ← Ku

X.add(u)
Return K

Dec(u, c)

Require c ̸∈ Cu

If u ∈ X do

m← SE.DecP(1λ,Ku, c)

Else

m← SE.DecP(1λ,Ku, c)

m← ⊥
Return m

Figure 31: Games G0 and G1 used in proof of Theorem 5.1. Highlighted code is only included in
G0. Boxed code is only included in game G1.

Thus, distinguishing between these two games very naturally reduces to breaking the INT-CTXT
security of SE. The adversary Actxt establishing this is shown in Fig. 32. It essentially just gives
Acca access to its own oracles and then returns whatever bit Acca does. Adversary Acca expects
its decryption oracle to return the correct decryption whenever u ∈ X, while the oracle in Gint-ctxt

would return ⊥ in this case (due to its “Require” statement). So Actxt keeps track of Cu, Ku, and
X when Enc and Exp queries are made so that it can properly simulate this case. It uses its own
Dec oracle to simulate when u ̸∈ X. Thus it properly simulates either G0 or G1 depending on the
bit underlying Gint-ctxt. From standard conditional probability analysis we then get claim 2.

Claim 3. For the third claim, consider game G2 shown in Fig. 33. It includes the highlighted
code, but does not include the boxed code. It was obtained by making some minor modifications
to G1 which do not change its behavior. So we immediately get claim 3.
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Adversary AEnc,Dec,Exp,Prim
ctxt (1λ)

b′←$AEncSim,DecSim,ExpSim,Prim
cca (1λ)

Return b′

EncSim(u,m)

c← Enc(u,m)

Cu.add(c)
Return c

ExpSim(u)

Ku ← Exp(u)

X.add(u)
Return Ku

DecSim(u, c)

Require c ̸∈ Cu

If u ∈ X do

m← SE.DecPrim(1λ,Ku,m)

Else

m← Dec(u, c)

Return m

Figure 32: Adversary Actxt used in proof of Theorem 5.1.

Games G2(λ),G3(λ)

For u ∈ {0, 1}∗ do

Ku←$ SE.Kg(1λ)
σP←$ P.Init(1λ)
σ←$ Scpa.Init(1

λ)

b′←$AEnc,Dec,Exp,Prim
cca (1λ)

Return (b′ = 1)

Prim(x)

y←$ P.Prim(1λ, x : σP)

y←$ Scpa.Prim(1λ, x : σ)

Return y

Enc(u,m)

Require m ∈ SE.M(λ)

If u ̸∈ X then ℓ← |m| else ℓ← m

c←$ SE.EncP(1λ,Ku,m)

c←$ Scpa.Enc(1
λ,u, ℓ : σ)

Mu.add(m) ; Cu.add(c)
Return c

Exp(u)

K ← Ku

K←$ Scpa.Exp(1
λ,u,Mu, Cu : σ)

X.add(u)
Return K

Dec(u, c)

Require c ̸∈ Cu

If u ∈ X do m← SE.DecPrim(1λ,Ku, c)

Else m← ⊥
Return m

Figure 33: Games G2 and G3 used in proof of Theorem 5.1. Highlighted code is only included in
G2. Boxed code is only included in game G3.

Claim 4. For the fourth claim, consider game G3 – also shown in Fig. 33. It includes the boxed
code, but not the highlighted code. Is uses the simulator Scpa and differs from G2 in that this
simulator is used to choose the output of Prim, Enc, and Exp. They share the same Dec.

Thus, distinguishing between these two games reduces to the IND-CPA security of SE. The adver-
sary Acpa used for this is shown in Fig. 34. It runs adversary Acca, simulating encryption, exposure,
and ideal primitive queries by forwarding them on to its corresponding oracles. While doing so it
stores the variables Cu, Ku, and X. Using these it simply runs the code of Dec locally and returns
the result to Acca. Thus is properly simulates either G2 or G3 depending on the bit underlying
Gsim-ac-cpa. From standard conditional probability analysis we then get claim 4.

Claim 1. Finally we proceed to justifying the first claim. Consider the simulator Scca defined in
Fig. 35. For simulating encryption, exposure, and ideal primitive queries it just runs Scpa. While
doing so it remembers each Ku it returned to exposures. It uses this to mirror the code of Dec
in game G3. The oracle access to Prim given to SE.Dec has been replaced with oracle access to
Scpa.Prim and the check u ∈ X has been replaced with checking if Ku ̸= ⊥ holds.

We can then verify that the view of Acca in G3 is identical to its view in the ideal world of
Gsim-ac-cca

SE,Scca,P,Acca
. We previously noted that game G0 is identical to the real world of Gsim-ac-cca

SE,Scca,P,Acca
.

These observations give us the following equalities.

Pr[Gsim-ac-cca
SE,Scca,P,Acca

(λ)|b = 1] = Pr[G0(λ)]

Pr[Gsim-ac-cca
SE,Scca,P,Acca

(λ)|b = 0] = 1− Pr[G3(λ)]

The first claim then follows from standard probability calculations.

50



Adversary AEnc,Exp,Prim
cpa (1λ)

b′←$AEncSim,DecSim,ExpSim,Prim
cca (1λ)

Return b′

EncSim(u,m)

c← Enc(u,m)

Cu.add(c)
Return c

ExpSim(u)

Ku ← Exp(u)

X.add(u)
Return Ku

DecSim(u, c)

Require c ̸∈ Cu

If u ∈ X do

m← SE.DecPrim(1λ,Ku, c)

Else m← ⊥
Return m

Figure 34: Adversary Acpa used in proof of Theorem 5.1.

Scca.Init(1
λ)

σ←$ Scpa.Init(1
λ)

Return (σ, [·])
Scca.Prim(1λ, x : (σ,K∗))

y←$ Scpa.Prim(1λ, x : σ)

Return y

Scca.Enc(1
λ,u, ℓ : (σ,K∗))

c←$ Scpa.Enc(1
λ,u, ℓ : σ)

Return c

Scca.Exp(1
λ,u,Mu, Cu : (σ,K∗))

Ku←$ Scpa.Exp(1
λ,u,Mu, Cu : σ)

Return Ku

Scca.Dec(1
λ,u, c : (σ,K∗))

If Ku ̸= ⊥ do

m← SE.DecScpa.Prim(1λ,·:σ)(1λ,Ku, c)

Else m← ⊥
Return m

Figure 35: Simulator Scca used in proof of Theorem 5.1.

G.2 Proof Sketch for Theorem 5.2 (Encrypt-then-MAC is SIM-AC-CCA)

Proof (Sketch): We provide a sketch of the proof. First, from Bellare and Namprempre [10,
Theorem 4.4] we have that EtM[SE,F] is INT-CTXT secure. Hence, by Theorem 5.1, we need only
show that EtM[SE,F] is SIM-AC-CPA secure. Let SSE be a SIM-AC-CPA simulator for SE. Then
we would construct a simulator Scpa as follows. Note that Scpa is PPT if SSE and P2 are PPT.

Scpa.Init(1
λ)

σ←$ SSE.Init(1
λ)

σP←$ P2.Init(1
λ)

Return (σ,⊥, σP)
Scpa.Prim(1λ, x : (σ, L(·), σP))

(d, x)← x
If d = 1 then
y←$ SSE.Prim(1λ, x : σ)

Else
y←$ P2.Prim(1λ, x : σP)

Return y

Scpa.Enc(1
λ,u, ℓ : (σ, L(·), σP))

If Lu = ⊥ then
Lu←$ F.Kg(1λ)

cSE←$ SSE.Enc(1
λ, u, ℓ : σ)

τ ← F.EvP2(1λ, Lu, cSE)
Return (cSE, τ)

Scpa.Exp(1
λ,u,Mu, Cu : (σ, L(·), σP))

If Lu = ⊥ then Lu←$ F.Kg(1λ)
For i = 1, . . . , |Cu| do
(cSE, τ)← Cu[i] ; C

′
u.add(cSE)

KSE←$ Scpa.Exp(1
λ,u,Mu, C

′
u : σ)

Return (KSE, Lu)

Given a PPT adversary Acpa against the SIM-AC-CPA security of EtM[SE,F] it is straightforward
to construct a PPT adversary A against the SIM-AC-CPA security of SE such that

Advsim-ac-cpaEtM[SE,F],Scpa,P1×P2,Acpa
(λ) = Advsim-ac-cpaSE,SSE,P1,A(λ).

From this the claim follows by letting SSE be a simulator (guaranteed to exist by the SIM-AC-CPA
security of SE) which makes the latter term negligible.

H Random Oracles and Ideal Ciphers are SIM-AC-PRF Secure

In this section we prove our claims that random oracles and ideal ciphers make good SIM-AC-PRFs.
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H.1 Proof of Theorem 5.3 (ROM is SIM-AC-PRF)

Proof: Let Aprf be any efficient adversary. We will claim Advsim-ac-prfR,Sprf ,Prom,Aprf
is negligible where

simulator Sprf is defined as follows.

Sprf .Init(1
λ)

Return ([·], [·])
Sprf .Prim(1λ, x : (T,K∗))

(x, l)← x
If T [x, l] = ⊥ then
T [x, l]←$ {0, 1}l

Return T [x, l]

Sprf .Ev(1
λ, u, x : (T,K∗))

x← (Ku ∥x,R.ol(λ))
y←$ Sprf .Prim(1λ, x : (T,K∗))
Return y

Sprf .Exp(1
λ,u, Tu : (T,K∗))

If Ku = ⊥ then
Ku←$ R.Kg(λ)
For x ∈ Tu do
T [Ku ∥x,R.ol(λ)]← Tu[x]

Return Ku

It stores a table T to simulate the random oracle and a list of the keys K∗ it has sampled for users
so far. The ideal primitive algorithm Sprf .Prim exactly acts as a random oracle. The evaluation
algorithm Sprf .Ev simply calls Sprf .Prim in the same way that R.Ev calls its ideal primitive. The
most interesting algorithm is Sprf .Exp which, if Ku has not yet been generated, picks it uniformly
at random. Then it programs the random oracle table to be consistent with this having been the
key used by that user. It remembers the key it chose and will use it during future evaluations or
exposures of that user.

An attacker will only be able to detect the simulation if the retroactive programming would cause
an inconsistency in the random oracle. In particular we will show that,

Advsim-ac-prfR,Sprf ,Prom,Aprf
(λ) ≤

u2λ + pλuλ

2R.kl(λ)

where uλ is an upper bound on the number of users that Aprf queries to and pλ is an upper bound
on the number of Prim queries that Aprf makes. This bound is negligible because uλ and pλ are
polynomially bounded and R.kl(λ) is super-logarithmic. Because our simulator is agnostic to the
labels chosen for users we can assume without loss of generality that it always queries with u ∈ [uλ].

In the proof we consider a sequence of games G0 through G3 which transform the real world of
Gsim-ac-prf

R,Sprf ,Prom,Aprf
into the ideal world. The inequality above follows from straightforward calculations

based on the following claims which we will justify.

1. Advsim-ac-prfR,Sprf ,Prom,Aprf
= Pr[G0(λ)]− Pr[G3(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] ≤
(
uλ
2

)
/2R.kl(λ)

3. Pr[G1(λ)]− Pr[G2(λ)] ≤
(
uλ
2

)
/2R.kl(λ)

4. Pr[G2(λ)]− Pr[G3(λ)] ≤ pλuλ/2
R.kl(λ)

Claim 2. We start by comparing G0 (which we define to be identical to Gsim-ac-prf with b hardcoded
to 1) to the game G1 (which is shown in Fig. 36 along with G2 and G3). Game G1 includes both
the highlighted code and the boxed code. We will argue that their behavior differs only in that
game G1 samples users’ keys without replacement.12 Claim 1 is then obtained as a bound on the
statistical distance between these two ways of sampling keys.

12The corresponding code in G1 is ill-defined if uλ > 2R.kl. We can ignore this issue since this value is super-
polynomial and we only care about PPT attackers.
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Games G1 , G2, G3

K ← {0, 1}R.kl
For u ∈ [uλ] do

Ku←$K ; K ← K \ {Ku}
b′←$AEv,Exp,Prim

prf (1λ)

Return b′ = 1

Prim(x)

(x, l)← x

If l = R.ol(λ) and T [x, l] = ⊥ then

K ∥x′ ← x

If ∃u ∈ [uλ] \X s.t. K = Ku then

bad← true
T [x, l]← Tu[x

′]

If T [x, l] = ⊥ then

T [x, l]←$ {0, 1}l
Return T [x, l]

Ev(u, x)

If u ̸∈ X then

If T [Ku ∥x,R.ol(λ)] ̸= ⊥ and Tu[x] = ⊥ then

bad← true
Tu[x]← T [Ku ∥x,R.ol(λ)]

If Tu[x] = ⊥ then y←$ F.Out(λ)
Else y ← Tu[x]

Else

y ← Prim((Ku ∥x,R.ol(λ)))
Tu[x]← y

Return y

Exp(u)

If u ̸∈ X then

For x ∈ Tu do

T [Ku ∥x,R.ol(λ)]← Tu[x]

X.add(u)
Return Kb

Figure 36: Games used in the proof of Theorem 5.3. Boxed code is only included in game G1.
Higlighted code is not included in game G3.

In game G1 the values of the random oracle are distributed across the random oracle table T
and the per-user tables Tu. If the user is unexposed in Ev, then rather than calling Prim with
the appropriate input the output is instead chosen locally using Tu (and picked at random, then
remembered if Tu[x] = ⊥). If the user is unexposed, Prim is simply called with the appropriate
input. The value stored as Tu[x] corresponds to the random oracle entry T [Ku ∥x,R.ol(λ)]. The
first is set by a Ev(u, x) query while the second is set by a query Prim(Ku ∥x,R.ol(λ)).

As described so far there would be inconsistency in the game if the adversary was able to make
such queries. To resolve this, code has been added in various places to maintain consistency of
the tables. Note that since the Ku are sampled without replacement we do not need to worry
about maintaining consistency between Tu for differing users. The consistency maintenance occurs
in three place. The first time a user is exposed T [Ku ∥x,R.ol(λ)] is set equal to Tu[x] for all non-⊥
entries of Tu. When Ev(u, x) is called for an unexposed user, Tu[x] will be set to T [Ku ∥x,R.ol(λ)]
(if the latter is already defined and the latter is not). Similarly, if Prim(Ku ∥x,R.ol(λ)) is called
while u is unexposed then T [Ku ∥x,R.ol(λ)] will be set to Tu[x].

Formally, we claim that for an execution of the game by an adversary, all x, and u it holds that
each query of the form Ev(u, x) or Prim(Ku ∥x,R.ol(λ)) returned the same value, which was chosen
uniformly at random. We will argue in cases depending on which type of query was made first that
T [Ku ∥x,R.ol(λ)] and Tu[x] will each only ever store at most one non-⊥ value, which was chosen
uniformly. The above property then follows by observing that the oracles only ever return values
from these tables and never do so when the tables are storing ⊥.

Suppose such a Prim query was made first. At that time T [Ku ∥x,R.ol(λ)] will first be set equal
to Tu[x] (which is ⊥) and then set again to equal be a uniformly random value, which we will call
z. We claim the following invariants will hold for the rest of the execution: T [Ku ∥x,R.ol(λ)] = z
and Tu[x] ∈ {z,⊥}. This invariant cannot be changed by Prim because it will only modify entries
of T that equal ⊥. This invariant cannot be changed by Exp because it will only set entries of T
to equal non-⊥ entries of Tu. This invariant cannot be changed by Ev when u ∈ X because Tu is
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set to equal the output of Prim. This invariant cannot be changed by Ev when u ̸∈ X because if
Tu[x] ̸= ⊥ then it will not be modified and if Tu[x] = ⊥ then it will be set to equal T [Ku ∥x,R.ol(λ)].

Suppose such a Ev query was made first. If u ∈ X then this and all future such queries will be
forwarded to Prim from which the desired statement holds. Otherwise (since T [Ku ∥x,R.ol(λ)] =
⊥), Tu[x] will be set to a value which was just sampled uniformly at random. Call this value
z. We claim the following invariants will hold for the rest of the execution: Tu[x] = z and
T [Ku ∥x,R.ol(λ)] ∈ {z,⊥}. This invariant cannot be changed by Exp because it sets entries of
T equal to the corresponding entries of Tu. This invariant cannot be changed by Prim when
u ∈ X because T [Ku ∥x,R.ol(λ)] ∈ {y,⊥} will have been set to z in Exp and Prim will not
change non-⊥ entries of T . This invariant cannot be changed by Prim when u ̸∈ X because if
T [Ku ∥x,R.ol(λ)] = ⊥ then the highlighted code will set it equal to z and otherwise it will be
unmodified. This invariant cannot be changed by Ev because if u ∈ X then Tu[x] will be set to
the output of Prim (which will be z)and if u ̸∈ X then it can only be set to z.

This concludes our justification that G1 differs from G0 only in the sampling of the users’ keys.

Claim 3. Now consider G2 which differs from the G1 only in that the boxed code has been removed.
In other words, the keys of users are again being sampled with replacement. The given bound again
follows from the statistical distance between the two ways the keys are being sampled.

Claim 4. Now consider G3 which differs from the G2 only in that the highlighted code (which is
executed only after bad is set) has been removed, so by the fundamental lemma of game playing [12],

Pr[G2(λ)]− Pr[G3(λ)] ≤ Pr[G3(λ) sets bad].

The flag can only be set if the adversary makes a query to Prim of the form (K ∥x′,R.ol(λ)) where
K equals the key of an unexposed users. Note that other than setting bad, which doesn’t affect the
view of the adversary, a user’s key Ku is only used after that user has already been exposed (and
hence bad can no longer be set based on it). Before then, the adversaries view is independent of
Ku. The claim then follows as a simple union bound over the probability that any particular Prim
query is the first query using a user’s key in the specified way.

Claim 1. We can conclude by justifying the first claim. By definition G0 is identical to the real
world of Gsim-ac-prf

R,Sprf ,Prom,Aprf
. Hence, we need only note that the view of Aprf in G3 is identical to its

view in the ideal world of Gsim-ac-prf
R,Sprf ,Prom,Aprf

. This can be verified by comparing the code of Sprf to the

corresponding oracles in G3. Standard conditional probability calculations give the claim.

H.2 Proof of Theorem 5.4 (ICM is SIM-AC-PRF)

Proof: Let Aprf be any efficient adversary. We will claim Advsim-ac-prfB,Sprf ,Picm,Aprf
is negligible where

simulator Sprf is defined as shown below. It stores a tables E and D to simulate the ideal cipher
and a list of the keys K∗ it has sampled for users so far. The ideal primitive algorithm Sprf .Prim
simply runs Pn

icm.Prim. The evaluation algorithm Sprf .Ev simply calls Sprf .Prim in the same way
that B.Ev calls its ideal primitive. The most interesting algorithm is Sprf .Exp which, if Ku has not
yet been generated, picks it uniformly at random. Then it programs the ideal cipher tables to be
consistent with this having been the used by that user. It remembers the key it chose and will use
it during future evaluations or exposures of that user.
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Sprf .Init(1
λ)

Return ([·], [·], [·])
Sprf .Prim(1λ, x : (E,D,K∗))

y←$ Pn
icm.Prim(1λ, x : (E,D,K∗))

Return y

Sprf .Ev(1
λ,u, x : (E,D,K∗))

x← (+,Ku, x)
y←$ Sprf .Prim(1λ, x : (E,D,K∗))
Return y

Sprf .Exp(1
λ,u, Tu : (E,D,K∗))

If Ku = ⊥ then
Ku←$ B.Kg(1λ)
For x ∈ Tu do
E[Ku, x]← Tu[x]
D[Ku, Tu[x]]← x

X.add(u)
Return Ku

We will prove the following bound on the advantage trying to distinguish this simulation from the
real execution of B.

Advsim-ac-prfB,Sprf ,P
n
icm,Aprf

(λ) ≤
u2λ + pλuλ

2B.kl(λ)
+

q2λ
2n(λ)+1

where uλ is an upper bound on the number of users that Aprf queries to, pλ is an upper bound
on the number of Prim queries that Aprf makes, and qλ is an upper bound on the number of Ev
queries that Aprf makes. This bound is negligible because uλ, pλ, and qλ are polynomially bounded
and B.kl(λ) and n(λ) are super-logarithmic.

In the proof we consider a sequence of games G0 through G5 which transform the real world of
Gsim-ac-prf

B,Sprf ,P
n
icm,Aprf

into the ideal world. The inequality above follows from straightforward calculations

based on the following claims which we will justify.

1. Advsim-ac-prfB,Sprf ,P
n
icm,Aprf

= Pr[G0(λ)]− Pr[G5(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] ≤
(
uλ
2

)
/2B.kl(λ)

3. Pr[G1(λ)]− Pr[G2(λ)] ≤
(
uλ
2

)
/2B.kl(λ)

4. Pr[G2(λ)]− Pr[G3(λ)] ≤ pλuλ/2
B.kl(λ)

5. Pr[G3(λ)]− Pr[G4(λ)] = 0

6. Pr[G4(λ)]− Pr[G5(λ)] ≤
(
qλ
2

)
/2n(λ)

Because our simulator is agnostic to the labels chosen for users we can assume without loss of
generality that it always queries with u ∈ [uλ].

Claim 2. We start by comparing G0 (which we define to be identical to Gsim-ac-prf with b hard-
coded to 1) to the game G1 (which is shown in Fig. 37 along with G2 and G3). Game G1 includes
both the highlighted code and the boxed code. We will argue that their behavior differs only in
that game G1 samples users’ keys without replacement.13 Claim 1 is then obtained as a bound on
the statistical distance between these two ways of sampling keys.

In these games we have introduced some pseudocode shorthands. The variables U , EK , DK , and Eu
are all defined to be the specified sets. Additionally we introduce the algorithm Prog. Calling it
via (E,D) ← Prog(E,D,E′) makes E and D consistent with all non-⊥ entries of E′. Otherwise
E and D are unmodified.

In game G1 the values of the ideal cipher are distributed across the ideal cipher tables E and D
and the per-user tables Eu and Du. If the user is unexposed in Ev, then rather calling Prim with
the appropriate input the output is instead chosen locally using Eu and Du (and picked at random,
then remembered if Eu[x] = ⊥). If the user is exposed, Prim is simply called with the appropriate

13The corresponding code in G1 is ill-defined if uλ > 2B.kl. We can ignore this issue since the latter value is
super-polynomial and we only care about PPT attackers.
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Games G1 , G2, G3

K ← {0, 1}B.kl
For u ∈ [uλ] do

Ku←$K ; K ← K \ {Ku}
b′←$AEv,Exp,Prim

prf (1λ)

Return b = b′

Definitions:

U = {0, 1}n(λ)
EK = { E[K, a] ̸= ⊥ : a ∈ U }
DK = {D[K, a] ̸= ⊥ : a ∈ U }
Eu = { Eu[a] ̸= ⊥ : a ∈ U }
Prog(E,D,E′)

For x ∈ E′ do

y ← E′[x]

E[x]← y ;D[y]← x

Return (E,D)

Ev(u, x)

If u ̸∈ X then

If EKu
̸= ∅ then

bad← true
(Eu, Du)← Prog(Eu, Du, E[Ku, ·])

If Eu[x] = ⊥ then

z←$ {0, 1}n(λ) \ Eu ; Eu[x]← z ;Du[z]← x

y ← Eu[x]

Else

y ← Prim((+,Ku, x))

Return y

Exp(u)

If u ̸∈ X then

(E[Ku, ·], D[Ku, ·])← Prog(E[Ku, ·], D[Ku, ·], Eu)

X.add(u)
Return Ku

Prim(x)

(op,K, y)← x

If ∃u ∈ [uλ] \X s.t. K = Ku then

bad← true
(E[K, ·], D[K, ·])← Prog(E[K, ·], D[K, ·], Eu)

If op = + then

If E[K, y] = ⊥ then

z←$ {0, 1}n(λ) \ EK ; E[K, y]← z ;D[K, z]← y

Return E[K, y]

Else

If D[K, y] = ⊥ then

z←$ {0, 1}n(λ) \ DK ;D[K, y]← z ; E[K, z]← y

Return D[K, y]

Figure 37: Games used in the proof of Theorem 5.4. Boxed code is only included in game G1.
Highlighted code is not included in game G3. The games use some additional pseudocode definitions
and the algorithm Prog for compactness.

input. The value stored as Eu[x] corresponds to the ideal cipher entry D[Ku, x]. The first is set by
a Ev(u, x) query while the second is set by a query Prim((+,Ku, x)) or a query Prim((−,Ku, y))
in which x happens to be sampled to be inserted into D[Ku, y].

As described so far there would be inconsistency in the game if the adversary was able to make
such queries. To resolve this, code has been added in various places to maintain consistency of the
tables. Note that since the Ku are sampled without replacement we do not need to worry about
maintaining consistency between Eu for differing users. The consistency maintenance occurs in
three place. The first time a user is exposed E[Ku, ·] and D[Ku, ·] are set consistent with all non-⊥
entries of Eu[·]. Henceforth Eu will be unused. When Ev(u, x) is called for an unexposed user, Eu[x]
will be set consistent with non-⊥ entries of E[Ku, ·] if there are any such non-⊥ entries. Similarly,
if Prim((·,Ku, ·)) is called while u is unexposed then E[Ku, ·] and D[Ku, ·] are set consistent with
the non-⊥ entries of Eu.

The claim then follows because before one of the tables is used it is always set consistent with the
corresponding entries of the other table.
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Games G4, G5

For u ∈ [uλ] do

Ku←$ {0, 1}B.kl
b′←$AEv,Exp,Prim

prf (1λ)

Return b = b′

Prim(x)

(op,K, y)← x

If op = + then

If E[K, y] = ⊥ then

z←$ {0, 1}n(λ) \ EK
E[K, y]← z ;D[K, z]← y

Return E[K, y]

Else

If D[K, y] = ⊥ then

z←$ {0, 1}n(λ) \ DK

D[K, y]← z ; E[K, z]← y

Return D[K, y]

Ev(u, x)

If u ̸∈ X then

If Eu[x] = ⊥ then

z←$ {0, 1}n(λ) \ Eu
z←$ {0, 1}n(λ)
Eu[x]← z ;Du[z]← x

y ← Eu[x]

Else

y ← Prim((+,Ku, x))

Return y

Exp(u)

If u ̸∈ X then

For x ∈ Eu do

y ← Eu[x]

E[Ku, x]← y ;D[Ku, y]← x

X.add(u)
Return Ku

Definitions:

U = {0, 1}n(λ)
EK = {E[K, a] : a ∈ U }
DK = {D[K, a] : a ∈ U }
Eu = { Eu[a] : a ∈ U }

Figure 38: Games used in the proof of Theorem 5.4. Highlighted code is only included in game G5.

Claim 3. Now consider G2 which differs from the G1 only in that the boxed code has been removed.
In other words, the keys of users are again being sampled with replacement. The given bound again
follows from the statistical distance between the two ways the keys are being sampled.

Claim 4. Now consider G3 which differs from the G2 only in that the highlighted code has
been removed. This code is executed only after bad is set, so by the fundamental lemma of game
playing [12],

Pr[G2(λ)]− Pr[G3(λ)] ≤ Pr[G3(λ) sets bad].

The flag can only be set if the adversary makes a query to Prim of the form (·,K, ·) where K equals
the key of an unexposed users. Note that other than setting bad, which doesn’t affect the view of
the adversary, a user’s key Ku is only used after that user has already been exposed (and hence
bad can no longer be set based on it). Before then, the adversaries view is independent of Ku. The
claim then follows as a simple union bound over the probability that any particular Prim query is
the first query using a user’s key in the specified way.

Claim 5. Now consider game G4 defined in Fig. 38 (along with G5). It does not include the
highlighted code. It was obtained by simplifying the code of G3. The initial sampling of keys with
replacement was simplified. Code dealing with the setting of bad was dead code in G3 so could be
removed. These are the only differences, so the claim follows.

Claim 6. Note that G5 differs from G4 only in how that the values of z are sampled with
replacement instead of without. The claim follows from a bound on the statistical distance between
these two ways of sampling z.

Claim 1. We conclude by justifying the first claim. By definition G0 is identical to the real world
of Gsim-ac-prf

B,Sprf ,P
n
icm,Aprf

. Hence, we need only note that the view of Aprf in G5 is identical to its view in the

ideal world of Gsim-ac-prf
R,Sprf ,Prom,Aprf

. Note that the table Uu in G5 acts exactly like Tu in Gsim-ac-prf . Thus

the correctness of simulation can be verified by comparing the code of Sprf to the corresponding
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oracles in G5. The claim then follows from standard conditional probability calculations.

I Ideal Encryption is SIM-AC-AE Secure

In this section we recall the ideal encryption model (IEM) used in the analysis of Tyagi et al. [50]
and show that it gives a SIM-AC-AE secure encryption scheme. While doing so, we identify and
show how to fix a bug in their proof which used the ideal encryption model.

Ideal encryption model. The IEM is parameterized by a ciphertext length function clen :
N× N→ N and captured by Pclen

iem defined by the following algorithms.

Pclen
iem .Init(1λ)

Return [·]
Pclen
iem .Prim(1λ, x : D)

(op,K, y)← x
If op = E then

c←$ {0, 1}clen(λ,|y|)
D[K, c]← y
Return c

Return D[K, y]

Its state consists of a table D. Queries to the primitive consist of tuples (op,K, y) where y is
interpreted as a message if op = E and a ciphertext if op = D (we assume x is parsed such that one
of these cases always holds). Encryption (op = E) picks a random ciphertext of length clen(λ, |y|)
and using D to remember its decryption choice. Decryption (op = D) simply returns D[K, y].

Technically, Pclen
iem is not essentially stateless because its response to a decryption query can

change over time as more encryption queries are made. Assuming clen is sufficiently expanding,
this is not a big issue; we could construct an essentially stateless ideal primitive which is statistically
indistinguishable from Pclen

iem to any algorithm making as most polynomially many queries.

Secure IEM encryption scheme. We can easily construct a SIM-AC-CCA secure encryption
scheme in the ideal encryption model by simply querying the ideal object for all functions. This
gives the symmetric encryption scheme IEM, defined as follows. It is (implicitly) parameterized by
a key-length function IEM.kl : N→ N.

IEM.Kg(1λ)

K←$ {0, 1}IEM.kl(λ)

Return K

IEM.EncP(1λ,K,m)

c← P((E,K,m))
Return c

IEM.DecP(1λ,K, c)

Return P((D,K, c))

Theorem I.1 Let IEM.kl : N → N and clen : N × N → N be fixed. If IEM.kl is super-logarithmic,
then IEM is SIM-AC-AE secure with Pclen

iem .

This theorem captures in isolation the IEM programming that was part of the analysis of the
main proof of Tyagi et al. [50]. We have identified a bug in their proof, but do not claim that
their scheme is insecure. (Indeed, Theorem I.1 combined with Theorem E.1 re-establishes the
security of their scheme in the IEM.) Proofs in the IEM are even heavily detail intensive because
one has to carefully account for the possibility of a ciphertext being sampled more than once,
overwriting an entry in the table D. As we show in Appendix E, our new security definition is a
convenient intermediate notion via which the higher-level construction of Tyagi et al. can be proven
secure without having to deal with the tedious details of an IEM proof. Moreover, it allows us to
concretely show that encryption schemes used in practice (which cannot necessarily be thought of
as well modeled by the IEM) can be used to instantiate their protocol.
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Proof (Sketch): Here we sketch the main ideas of the proof. The full details are provided in
Appendix I.1. In many ways the proof is analogous to the ROM proof of Theorem 5.3, with some
subtle extra details that need to be accounted for because of the unique behavior of the IEM. In
particular, the current values stored in the table D depend on the order that queries were made
(in the case that there are repetitions in the c produced). A correct proof must account for this
possibility.14 We do so by introducing an auxiliary table Q which tracks when queries occurred. The
SIM-AC-CCA simulator we provide works as follows. Before exposures have occurred, encryption
queries are responded to with random strings of the appropriate length and decryption queries are
responded to with ⊥. (Thus the simulator is in S$ ∩ S⊥.) On an exposure, the simulator returns
a random key and then programs the decryption table of its Piem simulation as if the previous
encryption responses for that user had been produced by ideal encryptions using that key. Then
all future queries for that user are responded to honestly. We show that this simulation is only
detectable by an attacker if it makes an ideal encryption query with some K that is later chosen by
the simulator in response to an exposure or if the simulator chooses the same K for two different
users. These events happen with negligible probability.

I.1 Proof of Theorem I.1 (IEM is SIM-AC-AE)

Proof: One could prove this result by separately proving that IEM is SIM-AC-$ and INT-CTXT
secure then referring to Theorem 5.2. However, there is sufficient overlap between those separate
proofs that we instead choose to prove the SIM-AC-AE security of IEM directly.

Let Acca be any efficient adversary. We claim that Advsim-ac-cca
IEM,S,Pclen

iem ,Acca
(·) is negligible when the simu-

lator S is defined as shown below.

It stores a table D to simulate the ideal encryption model and a list of keys K∗ it has sampled
for users so far. The ideal primitive algorithm Scca.Prim exactly acts as the ideal encryption
model. When a user is unexposed the encryption simulator Scca.Enc returns a random string of
the appropriate length and decryption simulator Scca.Dec returns ⊥, as require for AE security. If
the user is already exposed, instead they both call Scca.Prim in the manner that IEM would call
its primitive oracle. The most interesting algorithm is Scca.Exp which, if this is the first time u
is being exposed, picks Ku uniformly at random. Then it programs the ideal decryption table to
correctly decrypt previous encryptions from that user. The key sampled is then remembered for
future encryptions, decryptions, or exposures of that user.

Scca.Init(1
λ)

Return ([·], [·])
Scca.Prim(1λ, x : (D,K∗))

(op,K, y)← x
If op = E then
c←$ {0, 1}clen(λ,|y|)
D[K, c]← y
Return c

Return D[K, y]

Scca.Enc(1
λ,u, ℓ : (D,K∗))

If Ku = ⊥ then
c←$ {0, 1}clen(λ,ℓ)

Else
c←$ Scca.Prim(1λ, (E,Ku, ℓ) : (D,K∗))

Return c

Scca.Dec(1
λ,u, c : (D,K∗))

If Ku = ⊥ then
Return ⊥

Else
m←$ Scca.Prim(1λ, (D,Ku, c) : (D,K∗))

Return m

Scca.Exp(1
λ,u,Mu, Cu : (D,K∗))

If Ku = ⊥ then
Ku←$ IEM.Kg(λ)
For (m, c) ∈ (Mu, Cu) do
Du[c]← m

For c ∈ Du do
D[Ku, c]← Du[c]

Return Ku

14The bug we identified in the proof of Tyagi et al. [50] stems from not properly accounting for this.
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Games G1(λ) ,G2(λ),G3(λ)

K ← {0, 1}R.kl(λ)
For u ∈ [uλ] do

Ku←$K ; K ← K \ {Ku}
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b′ = 1)

Prim(x)

(op,K, y)← x

If op = E then

c←$ {0, 1}clen(λ,|y|)
D[K, c]← y ;Q[K, c]← t

t← t+ 1

Return c

If ∃u ∈ [uλ] \X s.t. K = Ku

bad← true
If Q[K, y] < Qu[y] then

D[K, y]← Du[y]

Return D[K, y]

Enc(u,m)

Require m ∈ SE.M(λ)

If u ̸∈ X then

c←$ {0, 1}clen(λ,|m|)

Du[c]← m ;Qu[c]← t

t← t+ 1

Else

c← Prim((E,Ku,m))

Mu.add(m) ; Cu.add(c)
Return c

Exp(u)

If u ̸∈ X then

For c ∈ Du do

If D[Ku, c] ̸= ⊥ then

bad← true
If Qu[c] < Q[Ku, c] then

Du[c]← D[Ku, c]

D[Ku, c]← Du[c]

X.add(u)
Return Ku

Dec(u, c)

If u ̸∈ X then

If D[Ku, c] ̸= ⊥ then

bad← true
If Qu[c] < Q[Ku, c] then

Du[c]← D[Ku, c]

m← Du[c]

Else

m← Prim((D,Ku, c))

Require c ̸∈ Cu

Return m

Figure 39: Games used for proof of Theorem I.1. Boxed code is only included in game G1. High-
lighted code is not included in game G3.

An attacker will only be able to detect the simulation if the retroactive programming would cause
an inconsistency in the table D. In particular we will show that,

Advsim-ac-ccaIEM,Scca,Piem,Acca
(λ) ≤

u2λ + pλuλ

2IEM.kl(λ)

where uλ is an upper bound on the number of users that Acca queries to and pλ is an upper bound
on the number of Prim queries that Acca makes. This bound is negligible because uλ and pλ are
polynomially bounded and IEM.kl(λ) is super-logarithmic.

In the proof we consider a sequence of games G0 through G3 which transform the real world of
Gsim-ac-cca to the ideal world. The inequality above follows from straightforward calculations based
on the following claims which we will justify.

1. Advsim-ac-ccaIEM,Scca,Piem,Acca
(λ) = Pr[G0(λ)]− Pr[G3(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] ≤
(
uλ
2

)
/2IEM.kl(λ)

3. Pr[G1(λ)]− Pr[G2(λ)] ≤
(
uλ
2

)
/2IEM.kl(λ)

4. Pr[G2(λ)]− Pr[G3(λ)] ≤ pλuλ/2
IEM.kl(λ)

The general flow of this proof follows that of the proof for Theorem 5.3. We temporarily switch to
the keys of users being sampled without replacement so that we do not have to account for them
causing inconsistencies in D. Then we argue that inconsistencies between a user and Prim can
only occur it the adversary makes a Prim queries using a Ku that is at that point independent of
the view of the attacker.

A unique property of the ideal encryption model is that it is possible for the same ciphertext c
to be sampled more than once for a given key K, causing the value of D[K, c] to be overwritten.
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Hence the current output of the primitive depends on the order in which prior queries were made.
When rewriting games we need to make sure to account for this. The bug in the proof of Tyagi
et al. [50] stems from missing this subtlety. To address this, we introduce the technique of using
an auxiliary table Q which tracks when queries were made so that collisions in D can be resolved
correctly.

In the coming games we adopt the convention that for x ∈ N the expression x < ⊥ evaluates to
false and the expression ⊥ < x evaluates to true (equivalently, ⊥ can be thought of as having the
value −1 for these comparisons). Because our simulator is agnostic to the labels chosen for users we
will assume without loss of generality that the adversary Acca always queries with u ∈ [uλ]. This
allows us to easily sample all of the required Ku values at the beginning of the games.

Claim 2. We start by comparing game G0 (which we define to be identical to Gsim-ac-cca with b
hardcoded to 1) to the game G1 (which is shown in Fig. 39 along with games G2 and G3). Game
G1 includes both the highlighted and boxed code. We will argue that their behavior differs only in
that game G1 samples users’ keys without replacement.15 Claim 1 is then obtained as a bound on
the statistical distance between these two ways of sampling keys.

In game G1 the values stored by ideal encryption model are distributed across the table D and
the per-user tables Du. If the user is unexposed in Enc then rather than calling Prim with the
appropriate input, the output is chosen at random locally and stored in Du. The value stored in
Du[c] corresponds to the entry D[Ku, c]. The former is set when c is sampled in a Enc(u, ·) query
while the latter is set when c is sampled in a Prim((E,Ku, ·)) query. To remember when this
assignment occured we track a variable t which is incremented whenever an entry would be stored
in D. At that time we store t in Qu[c] or Q[K, c] as appropriate.

There would be potential inconsistency in the game if the two tables were used independently. To
resolve this, code has been added in various places to maintain consistency of the tables. Note that
since the Ku are sampled without replacement in G1 we do not need to worry about maintaining
consistency between Du for differing users. The consistency maintenance occurs in three places. In
each of these places we compare the appropriate entries of Q and Qu to verify if anything needs
to be done. When Dec(u, c) is called for an unexposed user, Du[c] will be set to D[Ku, c] (if the
latter was defined more recently than the latter). Similarly, if Prim((D,Ku, c)) is called while u
is unexposed then D[Ku, c] will be set to Du[c] (if the latter was defined more recently than the
latter). Finally, the first time a user u is exposed D[Ku, c] will be set to Du[c] where appropriate.
Henceforth Du will be unused because all queries will be forwarded through Prim.

Formally, we claim that for any execution of the game by an adversary, all c, and all u it holds that
each query of the form Dec(u, c) or Prim((D,Ku, c)) the string m returned was the most recent
input to a Enc(u, ·) or Prim((E,Ku, ·)) query that returned c (or m = ⊥ if no such queries exist).

Let mEnc denote the most recent input to a Enc(u, ·) query that returned c and mPrim denote
the most recent input to a Prim((E,Ku, ·)) query that returned c. Let m∗ be whichever of
mEnc or mPrim was defined most recently (i.e. the one that should be returned by Dec(u, c)
or Prim((D,Ku, c)) queries). We claim the following invariants always hold after the execution of
an oracle query. If m∗ = mEnc = mDec, then Du[c] = D[Ku, c] = m∗. If m∗ = mEnc ̸= mPrim,
then Du[c] = m∗ and Qu[c] > Q[Ku, c]. If m∗ = mPrim ̸= mEnc, then D[Ku, c] = m∗ and
Q[Ku, c] > Qu[c].

15The corresponding code in G1 is ill-defined if uλ > 2R.kl. We can ignore this issue since this value is super-
polynomial and we only care about PPT attackers.
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By analyzing Prim and Dec we can see that this invariant suffices to imply the desired claim.
To prove that it is invariant we first note that it trivially holds at the beginning of execution and
then individually note that each oracle is incapable of changing it. We defer the details of this
(straightforward) analysis to the end of the proof. That will complete our argument that games G0

and G1 differ only in that game G1 samples users’ keys without replacement which gives claim 2.

Claim 3. Now consider G2 which differs from G1 only in that the boxed code has been removed.
In other words, the keys of users are again being sampled with replacement. The given bound again
follows from the statistical distance between the two ways that the keys are being sampled.

Claim 4. How consider game G3 which differs from G2 in that the highlighted code has been
removed. Note that this code is only executed after bad has been set, so by the fundamental lemma
of game playing [12],

Pr[G2(λ)]− Pr[G3(λ)] ≤ Pr[G3(λ) sets bad].

The flag can only be set if the adversary makes a query to Prim of the form (·,K, ·) where K equals
the key of an unexposed users. Note that other than setting bad (which doesn’t affect the view of
the adversary) a user’s key Ku is only used after that user has already been exposed (and hence
bad can no longer be set based on it). The claim then follows as a union bound over the probability
that any particular Prim query is the first query using a user’s key in the specified way.

Claim 1. By definition, G0 is identical to the real world of Gsim-ac-cca
IEM,Scca,Piem,Acca

. Hence, we only need

to note that the view of Acca in G3 is identical to its view in the ideal world of Gsim-ac-cca
IEM,Scca,Piem,Acca

.
This can be verified by comparing the code of Scca to the corresponding oracles in G3. The only
point of note is that Scca defers the computation of Du until it is given the corresponding Mu and
Cu. The claim follows from standard conditional probability calculations.

Invariant analysis. First we establish that our invariant suffices for the claim. Note that the
value returned by a Dec(u, c) or Prim((D,Ku, c)) will equal Du[c] if Qu[c] > Q[Ku, c] and otherwise
it will equal D[Ku, c]. From the invariant it follows this is always m∗.

At the beginning of execution m∗ = mEnc = mDec = Du[c] = D[Ku, c] = ⊥, so the invariant holds.
A Enc query updating m∗ will set Du[c] = m∗ and Qu[c] = t, satisfying the invariant. A Prim
query updating m∗ will set D[Ku, c] = m∗ and Q[Ku, c] = t, satisfying the invariant. Now consider
a decryption query to Exp, Dec, or Prim((D,K, y)). These queries cannot change m∗. They can
set an entry of one of the tables to equal the corresponding entry of the other table, but only if the
former table’s corresponding Q entry was larger. This does not change the invariant.

J Proof of Theorem 6.1 (IND-AC-EXT implies SIM-AC-$)

Proof: Let SE be an extractable mode of operation which is IND-AC-EXT secure, F be a family
of functions with F.Inp = SE.FInp and F.Out = SE.FOut, and P be an ideal primitive. Let Acpa be
an adversary against the SIM-AC-$ security of SE[F] and Sprf be a SIM-AC-PRF simulator. We
will construct adversaries Aprf and Aext along with simulator Scpa such that

Advsim-ac-cpaSE[F],S$[Scpa],P,Acpa
(λ) ≤ Advsim-ac-prfF,Sprf ,P,Aprf

(λ) + Advind-ac-extSE,Aext
(λ).

It will be clear from examination that our adversaries and simulator are efficient assuming that
Acpa and Sprf are. By assumption the advantage of Aext is negligible. Then, letting Sprf be the
simulator guaranteed to exist by the assumed security of F gives the desired result.
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Games G0,G1

For u ∈ {0, 1}∗ do

Ku←$ SE[F].Kg(1λ)
σP←$ P.Init(1λ)
σ←$ Sprf .Init(1

λ)

b′←$AEnc,Exp,Prim
cpa (1λ)

Return (b′ = 1)

Prim(x)

y←$ P.Prim(1λ, x : σP)

y←$ Sprf .Prim(1λ, x : σ)

Return y

Exp(u)

(KSE,KF)← Ku

KF←$ Sprf .Exp(1
λ,u, Tu : σ)

X.add(u)
Return (KSE,KF)

Enc(u,m)

Require m ∈ SE.M(λ)

(KSE,KF)← Ku

c←$ SE.EncF
P
KF (1λ,KSE,m)

c←$ SE.EncRf(u,·)(1λ,KSE,m)

Mu.add(m) ; Cu.add(c)
Return c

Rf(u, x)//Only called in G1

If u ̸∈ X then

If Tu[x] = ⊥ then Tu[x]←$ F.Out(λ)
Else

Tu[x]←$ Sprf .Ev(1
λ,u, x : σ)

Return Tu[x]

Figure 40: Games used in proof of Theorem 6.1. Note that Acpa is not given oracle access to Rf.
Highlighted code is only included in G0. Boxed code is only included in G1.

The proof proceed by considering the sequence of games G0 through G4 which gradually transforms
game Gind-cpa with b = 1 to Gind-ac-ext with b = 0 using the S$[Scpa]. The inequality above follows
from simple calculations based on the following claims which we will justify.

1. Advsim-ac-cpaSE[F],Scpa,P,Acpa
(λ) = Pr[G0(λ)]− Pr[G4(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] = Advsim-ac-prfF,Sprf ,P,Aprf
(λ)

3. Pr[G1(λ)]− Pr[G2(λ)] = 0

4. Pr[G2(λ)]− Pr[G3(λ)] = Advind-ac-extSE,Aext
(λ)

5. Pr[G3(λ)]− Pr[G4(λ)] = 0

Claim 2. We start with the second claim. The games G0 and G1 are defined in Fig. 40. Highlighted
code is only in G0 and boxed code is only in G1. Game G0 is exactly identical to Gind-ac-ext with
b = 1 and was obtained by hardcoding SE and removing code used only for b = 0. In G1, all
uses of F (including queries to its ideal primitive and exposure of its key) have been replaced with
simulation by Sprf . Note, in particular, the oracle Rf which replaces SE.Enc’s oracle access to F. It
acts exactly as Ev in Gprf with b = 0.

Detecting these changes corresponds to breaking the SIM-AC-PRF security of F. We capture this
via the adversary Aprf shown in Fig. 41. The adversary runs Acpa and then returns whatever
Acpa does. To simulate Exp and Enc queries it samples and remembers its own KSE for each
user queried. For Exp queries it queries its own exposure oracle to obtain the KF to return. To
simulate Enc queries it uses its own Ev oracle as the oracle that SE.Enc expects access to. It is
straightforward to see that when b = 1 (resp. b = 0) the view of Acpa run by Aprf exactly matches
its view in G0 (resp. G1). Standard conditional probability calculations then give the claim.

Claim 3. For the next claim, consider game G2 which is defined in Fig. 42 along with G3 and
G4. Highlighted code is only in G2 while boxed code is not in G4. Note that Acpa is not given
oracle access to Rf or Rs. Game G2 differs from G1 only in the behavior of oracle Enc. When
u ∈ X, both games run SE.Enc with oracle access to Sprf .Ev and store the values returned in Tu.
It is less clear that they are equivalent when u ̸∈ X. Game G1 runs SE.Enc with fresh random
coins and oracle access to a lazily sampled random function. Game G2 first samples a random
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Adversary AEv,Exp,Prim
prf (1λ)

b′←$AEncSim,ExpSim,Prim
cpa (1λ)

Return b′

ExpSim(u)

If KSE,u = ⊥ then

KSE,u←$ SE.Kg(1λ)
KF ← Exp(u)

X.add(u)
Return (KSE,u,KF)

EncSim(u,m)

Require m ∈ SE.M(λ)

If KSE,u = ⊥ then

KSE,u←$ SE.Kg(1λ)
c←$ SE.EncEv(u,·)(1λ,KSE,u,m)

Return c

Figure 41: SIM-AC-PRF adversary Aprf used in proof of Theorem 6.1.

Games G2 ,G3 ,G4

//Unchanged from G1

Prim(x)

//Unchanged from G1

Exp(u)

//Unchanged from G1

Rs(u, x)

Tu[x]←$ Sprf .Ev(1
λ,u, x : σ)

Return Tu[x]

Enc(u,m)

Require m ∈ SE.M(λ)

(KSE,KF)← Ku

If u ̸∈ X then

c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE, c,m)

i← 0

c′ ← SE.EncRf(u,·)(1λ,KSE,m; r)

c← c′

Else

c←$ SE.EncRs(u,·)(1λ,KSE,m)

Mu.add(m) ; Cu.add(c)
Return c

Rf(u, x)

i← i+ 1

If Tu[x] ̸= ⊥
bad← true
y⃗[i]← Tu[x]

Tu[x]← y⃗[i]

Return Tu[x]

Figure 42: Games used in proof of Theorem 6.1. Note that Acpa is not given oracle access to Rf
or Rs. Highlighted code is only included in G2. Boxed code is not included in G4.

ciphertext c and asks SE.Ext to explain it. Then SE.Enc is then run with the explanatory coins and
a lazily sampled random functions whose outputs (when not already fixed) are chosen via y⃗ instead
of freshly at random. To see that these are actually equivalent, recall the required uniformity of
SE.Ext. Since the c given to SE.Ext is used nowhere else we can apply this uniformity to treat y⃗
and r as fresh, uniformly chosen values which gives the desired equivalence.

Claim 4. For the next claim, consider how game G3 differs from game G2. In game G3, the
highlighted code in Rf maintaining consistency of the table Tu has been removed. This switch
mirrors the dependence of Gind-ac-ext on its secret bit. This is captured by the adversary Aext

shown in Fig. 43. It runs, Acpa as a subroutine using its own oracles to simulate those of Acpa.
Primitive queries are answered just by running Sprf . Before a user is exposed, encryption queries
are answered by Aext’s own encryption oracle. When a user is exposed for the first time Aext queries
its Exp oracle to learn KSE,u and Tu. Then it runs Sprf to determine the KF to return. After a
user is exposed, for encryption queries it runs SE.Enc with the KSE,u it learned and oracle access
to Sprf (via Rs, which updates Tu). When run by Aext the view of Acpa with b = 1 (resp. b = 0) is
identical to its view in G2 (resp. G3). The claim follows.

Claim 5. For the next claim consider how game G4 differs from G3. In the latter Enc returns
the output of SE.Enc for unexposed users while in the former it outputs the randomly sampled c.
There are equivalent from the extraction correctness of SE so the claim follows.

Claim 1. We have already argued that the view of Acpa in G0 is the same as its view in Gsim-ac-cpa

with b = 1. Hence we need only to construct a simulator such that the view of Acpa with b = 0 is
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Adversary AEnc,Exp
ext (1λ)

σ←$ Sprf .Init(1
λ)

b′←$AEncSim,ExpSim,PrimSim
cpa (1λ)

Return (b′ = 1)

ExpSim(u)

If KSE,u = ⊥ then

(KSE,u, Tu)← Exp(u)

KF←$ Sprf .Exp(1
λ,u, Tu : σ)

X.add(u)
Return (KSE,u,KF)

EncSim(u,m)

Require m ∈ SE.M(λ)

If u ̸∈ X then c← Enc(u,m)

Else c←$ SE.EncRs(u,·)(1λ,KSE,u,m)

Return c

Rs(u, x)

Tu[x]←$ Sprf .Ev(1
λ,u, x : σ)

Return Tu[x]

PrimSim(x)

y←$ Sprf .Prim(1λ, x : σ)

Return y

Figure 43: Adversary Aext used in proof of Theorem 6.1.

the same as its view in G4. Consider the following simulator Scpa, giving S$[Scpa] ∈ S$.

Scpa.Init(1
λ)

σ←$ Sprf .Init(1
λ)

T∗ ← [·] ;KSE,∗ ← ⊥
Return (σ, T∗,KSE,∗)

Scpa.Prim(1λ, x : (σ, T∗,K∗))

y←$ Sprf .Prim(1λ, x : σ)
Return y

Scpa.Enc2(1
λ, u, ℓ : (σ, T∗,K∗))

c←$ SE.EncRs(ℓ,·)(1λ,KSE,u,m)
Return c

Rs(u, x)

Tu[x]←$ Sprf .Ev(1
λ,u, x : σ)

Return Tu[x]

Rf(u, x)

i← i+ 1
Tu[x]← y⃗[i]
Return Tu[x]

Scpa.Exp(1
λ,u,Mu, Cu : (σ, T∗,KSE,∗))

If KSE,u = ⊥
KSE,u←$ SE.Kg(1λ)
For (m, c) ∈ (Mu, Cu) do
(y⃗, r)←$ SE.Ext(1λ,KSE,u, c,m)
i← 0

SE.EncRf(u,·)(1λ,KSE,u,m; r)
KF←$ Sprf .Exp(1

λ, u, Tu : σ)
Return (KSE,u,KF)

It stores state for Sprf along with a table Tu and key KSE,u for each user u. For primitive queries, it
just runs Sprf . For post-exposure encryptions, it runs SE.Enc with KSE,u and oracle access to Sprf
(via Rs, which updates Tu). For pre-exposure encryptions, a random ciphertext was chosen (since
S$[Scpa] ∈ S$). The first time that user is exposed, Scpa samples its own KSE,u. Using this and the
tables Mu and Cu it can run the code that would have been run in G4 to define the table Tu which
is given to Sprf to determine KF. For future exposures, KSE,u is already known and KF is obtained
by again running Sprf on the potentially updated Tu. From this explanation, we can see that the
view of Acpa in Gsim-ac-cpa with b = 0 is the same as its view in G4, completing the proof.

K Inferring Extraction Security from Existing Analysis

In this section we will show how IND-AC-EXT security is often implicit in existing IND-$ security
proofs. We start by introducing two variants of it. The first (IND-EXT) is a strictly weaker notion
which is necessarily implied by IND-$ security. The other (BAD-EXT) is often exactly what is
proven in IND-$ security proofs and suffices to imply IND-AC-EXT security.

Extraction security without compromises. Recall the game Gind-ac-ext defined in Section 6,
Fig. 8. If A never makes any queries to Exp and only ever queries Enc with one value of u we
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say that A is a single-user, non-compromising adversary. We say that SE is IND-EXT secure if
Advind-ac-extSE,A (·) is negligible for all PPT single-user, non-compromising A.
Extraction security via “bad” flag. Next, we define a security definition which is a slight
strengthening of IND-EXT security and is, in fact, implicit in a very natural way of proving IND-
EXT security. Consider game Gbad-ext shown in Fig. 44 which is parameterized by a mode of
operation SE. In this game, the adversary is given access to an encryption oracle that samples a
random ciphertext and then uses SE.Ext to explain it as in the b = 0 case of Gind-ac-ext. Should
there ever be a potential inconsistency in the explanation (i.e. Rf is ever queried twice on the same
input) then a flag bad is set. The adversary wins if this flag is ever set. We define Advbad-extSE,Abad

(λ) =

Pr[Gbad-ext
SE,Abad

(λ)] and say that SE is BAD-EXT secure if Advbad-extSE,Abad
(·) is negligible for all PPT Abad.

Game Gbad-ext
SE,Abad

(λ)

KSE←$ SE.Kg(1λ)
bad← false
Run AEnc

bad (1
λ)

Return bad

Enc(m)

Require m ∈ SE.M(λ)

c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE, c,m)

i← 0

c← SE.EncRf(·)(1λ,KSE,m; r)

Return c

Rf(x)

i← i+ 1

If T [x] ̸= ⊥ then

bad← true
T [x]← y⃗[i]

Return T [x]

Figure 44: Game defining BAD-EXT security of SE. Note that the adversary is not given oracle
access to Rf.

The value of BAD-EXT security is that it nice to analyze (in particular, is typically implicit
in existing IND-$ security proofs for SE). Note that when analyzing BAD-EXT security it may be
useful to think of y⃗ and r as having been picked uniformly at random using the uniformity of SE.Ext.
Moreover, BAD-EXT security suffices to imply full IND-AC-EXT security. This is captured by the
following theorem whose proof is deferred to the end of this section. The proof is a somewhat
straightforward combination of an identical-until-bad proof and an index-guessing proof.

Theorem K.1 Let SE be an extractable mode of operation. If it is BAD-EXT secure, then it is
IND-AC-EXT secure.

Inferring extraction security from existing proofs. Now we proceed to giving the intuition
for why BAD-EXT security is often implicitly included in existing IND-$ security proofs for SE.
Towards this we start by showing that such a security proof necessarily implies the IND-EXT
security of SE with the following lemma.

Lemma K.2 Let SE be an extractable mode of operation. If SE[F] is single-user IND-$ secure for
all single-user PRF secure F with F.Inp = F.FInp and F.Out = SE.FOut (and there exists at least
one such F), then SE is IND-EXT secure.

The assumption that such an F exists is technically not necessary because one can always be
constructed in an appropriately chosen ideal model. We make it explicit because our proof will
make used of the assumed existence of such an F.

Proof: Let SE be a mode of operation satisfying the properties of the lemma, F be a family of
functions with F.Inp = F.FInp and F.Out = SE.FOut, P be an ideal primitive, and A be an efficient
IND-EXT adversary. We will construct efficient single-user IND-$ adversary Acpa and single-user
PRF adversary Aprf such that the following holds.

Advind-ac-extSE,A (λ) ≤ Advind-$SE[F],P,Acpa
(λ) + AdvprfF,P,Aprf

(λ)
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Games G0(λ),G1(λ),G2(λ)

For u ∈ {0, 1}∗ do

KSE,u←$ SE.Kg(1λ)

KF,u←$ F.Kg(1λ)

σP←$ P.Init(1λ)
b′←$AEnc(1λ)

Return (b′ = 0)

Enc(u,m)

Require m ∈ SE.M(λ)

c←$ SE.Out(λ, |m|)

c←$ SE.Enc
FP
KF,u (1λ,KSE,u,m)

(y⃗, r)←$ SE.Ext(1λ,KSE,u, c,m)

i← 0

c← SE.EncRf(u,·)(1λ,KSE,u,m; r)

Return c

Rf(u, x)

i← i+ 1

Return y⃗[i]

Figure 45: Games used in proof of Lemma K.2. Highlighted code is only included in G0. Boxed
code is only included in G2. Note that Rf is only ever called in G0.

The theorem then follows when F and P are chosen so that F is PRF secure with P.

The proof proceed by considering the sequence of games G0 through G4 which gradually transforms
game Gind-ac-ext with b = 0 to Gind-ac-ext with b = 1. The inequality above follows from simple
calculations based on the following claims which we will justify.

1. Advind-ac-extSE,A (λ) = Pr[G0(λ)]− Pr[G4(λ)]

2. Pr[G0(λ)]− Pr[G1(λ)] = 0

3. Pr[G1(λ)]− Pr[G2(λ)] = Advind-$SE[F],P,Acpa
(λ)

4. Pr[G2(λ)]− Pr[G3(λ)] = 0

5. Pr[G3(λ)]− Pr[G4(λ)] = AdvprfF,P,Aprf
(λ)

Claim 2. We start with the second claim. The games G0 through G2 are defined in Fig. 45.
Highlighted code is only in G0 and boxed code is only in G2. Game G0 is exactly identical to
Gind-ac-ext with b = 0. We have omitted reference to the Exp oracle since it is never queried. For
each Enc query a random ciphertext c is sampled, then explained by SE.Ext, and then reproduced
by running SE.Enc with the values output by SE.Ext. In G2, the code reproducing c is omitted. By
the correctness of SE.Ext this makes no difference, giving the claim.

Claim 3. For the next claim, consider how G2 differs from G1. In it, the randomly chosen
ciphertext is overwritten by an honestly generated one. It will follow from the IND-$ security of
SE[F] that this change cannot be detected. Consider the IND-$ adversary Acpa which simply runs
A and forward on its Enc queries and final output. Note that when b = 0 the view of A perfectly
matches its view in G1 and when b = 1 the view of A perfectly matches its view in G2. Standard
conditional probability calculations then give the claim.

Claim 4. For the next claim consider G3 which, along with G4, is defined in Fig. 46. Game G3

is simply a rewritten version of G2 in which the oracle FPKF,u
has been rewritten to be part of the

oracle Rf. (Note that this Rf is unrelated to the similarly named oracle from Fig. 45 which could
never be called in G2.)

Claim 5. For the next claim, consider how G4 differs from G3. In the latter, the output of Rf
is chosen at random instead of being chosen by F. These random values are kept consistent across
queries by the table Tu. Unsurprisingly, distinguishing between these games reduces to breaking
the PRF security of F. Consider the following adversary.
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Games G3(λ) ,G4(λ)

For u ∈ {0, 1}∗ do

KSE,u←$ SE.Kg(1λ)

KF,u←$ F.Kg(1λ)

σP←$ P.Init(1λ)
b′←$AEnc(1λ)

Return (b′ = 0)

Enc(u,m)

Require m ∈ SE.M(λ)

c←$ SE.EncRf(1λ,KSE,u,m)

Return c

Rf(u, x)

If Tu[x] = ⊥ then

Tu[x]← F.EvP(1λ,KF,u, x)

Tu[x]←$ F.Out(λ)
Return Tu[x]

Figure 46: Games used in proof of Lemma K.2. Boxed code is only included in G3. Highlighted
code is only included in G4.

Adversary AEv,Prim
prf (λ)

For u ∈ {0, 1}∗ do
KSE,u←$ SE.Kg(1λ)

b′←$AEncSim(1λ)
Return b′⊕1

Enc(u,m)

Require m ∈ SE.M(λ)

c←$ SE.EncEv(1λ,KSE,u,m)
Return c

It runs Aprf as in both of these game, using its own Ev oracle to emulate Rf. When Aprf returns
a bit it flips the bit before returning it. When b = 1 (resp. b = 0) the view of A is identical to its
view in game G3 (resp. G4). This observation and standard calculations give the claim.

Claim 6. The final claim follows noting that the view of A in G0 is identical to its view in Gind-ac-ext

when b = 0 and the view of A in G4 is identical to its view in Gind-ac-ext when b = 1.

We have claimed that not only can IND-EXT be inferred from IND-$ security proofs, but often
BAD-EXT as well. Let games G′

0 through G′
4 be defined analogously to the similarly named games

in the proof above except that P.Init is run in all of them (instead of just G2 and G3) and the
adversary is given oracle access to P. Then IND-$ security corresponds to arguing that G′

1 and G′
2

are indistinguishable. A common proof strategy would analyze the games in the order G′
2, G

′
3, G

′
4,

G′
1.
16 The proof will argue that games G′

3 and G′
4 are indistinguishable due to the PRF security

of F and will directly analyze the difference between games G′
4 and G′

1. The other relevant pairs of
games are identical from the arguments we gave. The most common way of bounding the difference
between G′

4 and G′
1 is exactly the identical-until-bad argument needed to prove BAD-EXT security.

We conclude the section with the proof that BAD-EXT security implies IND-AC-EXT security.

Proof (of Theorem K.1): Let Aext be an efficient adversary against the IND-AC-EXT security
of SE. Assume, without loss of generality, that Aext always queries with u ∈ [uλ] where u(·) : N→ N
is a polynomial. We will construct an efficient adversary Abad against the BAD-EXT security of
SE such that the following holds, establishing the theorem.

Advind-ac-extSE,Aext
(λ) ≤ uλ · Advbad-extSE,Abad

(λ).

First, consider the games G0 and G1 in Fig. 47 for which we claim Advind-ac-extSE,Aext
(λ) = Pr[G0]−Pr[G1].

The boxed code is included only in G0. The games were obtained from Gind-ac-ext by: (1) removing
the sampling of b, (2) changing the final return statement, and (3) modifying Rf to add bag flags
and put the boxed code in a box instead of following a conditional dependent on b. Thus standard
conditional probability calculations give the claim.

16Existing proofs are, of course, likely to write the games differently and omit some of the identical games or add
extra games between G′

4 and G′
1 to aid their analysis.
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Games G0(λ) ,G1(λ)

For u ∈ {0, 1}∗ do

KSE,u←$ SE.Kg(1λ)
b′←$AEnc,Exp(1λ)

Return (b′ = 1)

Exp(u)

X.add(u)
Return (KSE,u, Tu)

Enc(u,m)

Require m ∈ SE.M(λ)

Require u ̸∈ X

c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE,u, c,m)

i← 0

c← SE.EncRf(u,·)(1λ,KSE,u,m; r)

Return c

Rf(u, x)

i← i+ 1

If Tu[x] ̸= ⊥ then

bad← true
badu ← true
y⃗[i]← Tu[x]

Tu[x]← y⃗[i]

Return Tu[x]

Figure 47: Game used in proof of Theorem K.1. Boxed code is only included in G0.

Adversary AEnc
bad (λ)

u∗←$ [uλ]

For u ∈ [uλ] \ {u∗} do
KSE,u←$ SE.Kg(1λ)

Run AEncSim,ExpSim(1λ)

Return

ExpSim(u)

X.add(u)
If u = u∗ then

abort()

Return (KSE,u, Tu)

EncSim(u,m)

Require m ∈ SE.M(λ)

Require u ̸∈ X

If u = u∗ then

c← Enc(m)

Else

c←$ SE.Out(λ, |m|)
(y⃗, r)←$ SE.Ext(1λ,KSE,u, c,m)

i← 0

c← SE.EncRf(u,·)(1λ,KSE,u,m; r)

Return c

Rf(u, x)

i← i+ 1

Tu[x]← y⃗[i]

Return Tu[x]

Figure 48: Adversary used in proof of Theorem K.1

Note that G0 and G1 are identical-until-bad, so the fundamental lemma of game playing [12] gives

Pr[G0(λ)]− Pr[G1(λ)] ≤ Pr[G1(λ) sets bad].

Now we can construct a BAD-EXT adversary which succeeds with at least 1/uλ the probability
that G1 sets bad, which gives the result. Note that the event that G1(λ) sets bad is the disjoint
union of the events for each u ∈ [uλ] that badu is set and is the first such flag to be set.

Our adversary Abad (shown in Fig. 48) attempts to guess the u∗ for which badu will first be set.
Then it runs Aext. It forwards all queries for that user to its own oracles and locally simulates the
queries for all other users. Should Exp ever be queried on u∗ it is no longer possible that badu∗

would be set (due to the second require statement in Enc) so Abad halts execution at this point
(represented by the pseudocode command abort(). Thus, whenever badu∗ would be set in G1 the
flag bad will be set in Gbad-ext.

For u ∈ [uλ] let badu denote the event that badu is the first such flag set in G1. Then we can
perform the following calculations.

Pr[G1(λ) sets bad] =
∑

u∈[uλ]

Pr[badu] ≤
∑

u∈[uλ]

Pr[Gbad-ext
SE,Abad

(λ) sets bad|u = u∗]

= uλ ·
∑

u∈[uλ]

(1/uλ) Pr[G
bad-ext
SE,Abad

(λ) sets bad|u = u∗]

= uλ · Advbad-extSE,Abad
(λ).

This complete the proof.
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