
Stateful KEM: Towards Optimal Robust Combiner
for Key Encapsulation Mechanism

Jia Xu
NUS-Singtel Cyber Security R&D Lab

Email: jiaxu2001@gmail.com

Yiwen Gao
NUS-Singtel Cyber Security R&D Lab

Email: gaoywin@gmail.com

Hoon Wei Lim
NUS-Singtel Cyber Security R&D Lab

Email: hoonwei.lim@trustwave.com

Hongbing Wang
NUS-Singtel Cyber Security R&D Lab

Email: wanghongbing501@outlook.com

Ee-Chien Chang
National University of Singapore
Email: changec@comp.nus.edu.sg

Abstract

A (1, n)-robust combiner combines n cryptography primitives to construct a new primitive of the same type, and
guarantees that if any of the ingredient primitive is secure, then the resulting primitive is secure. In recent two decades,
robust combiners for various crypto primitives (e.g. public key encryption, oblivious transfer) have been proposed.
Very recently, more works on robust combiners for post-quantum key encapsulation mechanism appear to achieve
multi-layer of defence, to counter the future threat from Shor’s algorithm running on powerful quantum computers.
However, typically such combination of n crypto primitives will sum up running times of all ingredient primitives and
thus introduce linear overhead in time complexity, which may be a big burden on server side, since the server has to
run key encapsulation mechanism (or key exchange protocol) with every online client.

We propose the very first robust combiner (of KEMs), with O(1) amortized complexity overhead, which not only
breaks the linear boundary, but also achieves optimal complexity. Our experiments also confirm that the performance
overhead of our robust combiner of n KEMs is constant (i.e. O(1)) rather than linear (i.e. O(n)). Our cost is that,
the resulting KEM has to maintain a secret dynamic state of fixed and linear size (i.e. O(n)) . We call such KEM as
Stateful Key Encapsulation Mechanism (SKEM). SKEM is suitable for two users (or devices), who will have frequent
secure communications (e.g. via VPN or SSH). We also formally define the security formulation for SKEM and prove
the security of our proposed SKEM scheme in standard model.

Index Terms

Key Exchange Protocol, Key Encapsulation Mechanism, Robust Combiner, Security and Performance, Parallel
Combination, Series Combination, Post-quantum Cryptography

1. Introduction

Robust combiner, which aims to construct a crypto scheme from multiple existing crypto schemes (called ingredient
schemes) of the same type, will combine the strength of all ingredient schemes: if any ingredient scheme is secure, the
resulting scheme will be secure. It will provide multi-layer of defence to further reduce the risk of compromise compared
to any single scheme. Recall that, the security of crypto primitives may fall into these categories: (1) Unconditional secure:
A typical example is the classical one-time pad, which is proved to be secure under information theory. Another example
is Quantum Key Distribution (QKD), where some QKD algorithm has been proved to be unconditional secure under
quantum information theory. However, One-time pad requires the encryption/decryption key is as long as the plaintext, and
QKD requires relatively expensive hardware and has a limited communication distance. (2) Provable conditional secure:
Typical examples are public key crypto schemes. The research community carefully defines a few number of mathematical
problems (e.g. large integer factorization, discrete log problem, shortest vector problem in lattice), and assumes they are hard
to solve by any polynomial time algorithm (precisely, any probabilistic polynomial time algorithm will have only negligible
probability to succeed). Every construction of public key crypto is expected to be proved under some of these hard problem
assumptions: If a polynomial time adversary algorithm can break this public key crypto scheme, then another polynomial
time algorithm can be constructed by revoking this adversary algorithm to solve some pre-defined hard problem, which is
contradicted with the assumption that such hard problem is infeasible to solve in polynomial time. It is important to point
out that, this set of assumed hard problems have to be reviewed and revised with the development of human’s understanding
of these problems. For example, large integer factorization problem is assumed to be infeasible, but it turns out that Shor’s

An early draft is avaiable in eprint https://eprint.iacr.org/2020/763.

1

https://eprint.iacr.org/2020/763

quantum algorithm can solve this problem with polynomial time where the order of polynomial is smaller than 4, under
Quantum Turing Machine mode. (3) Conditional secure by practice: Typical examples are symmetric cipher (e.g. AES) and
hash function (e.g. SHA256 and SHA3). Security of these schemes are confirmed by (1) partial security proof under ideal
cipher model or random oracle mode, and (2) the fact that no successful attacks are publicly known after a long time of
attack attempts from research community and industry.

Conditional secure solutions are widely applied in real world applications, due to their flexibility and low cost compared
to unconditional secure solutions. In this decade, many post-quantum cryptography algorithms are proposed, based on new
hard problem assumptions (e.g. Shortest vector problem and learning with error in lattice), to counter the threat of Shor’s
algorithm running on powerful quantum computers.

Although powerful quantum computer which can execute Shor’s algorithm to break 2000 bits RSA key is still under
development, quantum threat may be urgent for some scenarios: (1) Long term security: Say if you want to protect your
data (e.g. national security or trade secret) for long term (e.g. more than 15 years), and today you have to transfer such data
among different office branches in your organizations. Adversary can simply sniff and archive your encrypted IP packets,
and attempt to crack 1 it in the future (e.g. 10 years later) when powerful quantum computers will be available (e.g. via
quantum cloud computing service). (2) Post-quantum security by design: The lifecycle of a cyber security system, including
design, construction, in operation, and expiration, could be very long (say more than 15 years). It will be a wise idea to add
post-quantum security to the list of security goal from design phase, rather than patching the system ugly in the midway
when threat of attacks with powerful quantum computers really appear some years later.

However, at the time of writing, there is no well recognized standard for post-quantum cryptography. NIST is organizing
a competition of PQC. 17 PQC KEM schemes are shortlisted in the second round in 2019, and 4 shortlisted in the third
round together with 5 alternative recommended PQC KEM schemes. The final winner will be the standardized PQC KEM
scheme by 2024. It is crucially important to propose an early solution (e.g. robust combiner of PQC KEM) with multi-
layer defence, which is likely secure against quantum attacks and classical attacks, and likely to comply with the future
NIST standard. Such solution with multi-layer defence will be still useful after NIST standard of PQC comes out, since
standardized crypto algorithm may not necessarily guarantee security. The world already witnesses that standardized crypto
algorithms (e.g. DES, RC4, MD5, SHA1 have been broken, and RSA, DSA, DH, ECC will be broken by Shor’s quantum
algorithm) become vulnerable due to various reasons, and even worse some standardized crypto algorithm may be poisoned
with backdoor 2.

To reduce the risk of conditional secure solutions, especially for the young PQC algorithms, it is a natural idea to
combine multiple existing solutions of the same types but under different hard problem assumptions, to achieve multi-layer
of defence—that’s the motivation of the notion “robust combiner”. However, all of existing constructions of robust combiner
of n schemes, introduces linear (O(n)) performance overhead. More precisely, the time complexity (CPU time) of a robust
combiner of n schemes, is at least the sum of time complexity of all n schemes. As a result, security and performance
are conflicting with each other: large value of n might provide lower risk, but will be n times slower. This might explain
why several recent works in robust combiner for PQC only deal with the case that n = 2, to combine a PQC scheme with
a classical public key crypto scheme, where the young PQC scheme may have potential to defend against future quantum
attacks and the classical public key crypto scheme complies with existing crypto standard and has withstood long term
testing against classical attacks.

In this work, we propose a robust combiner from n KEMs, which is optimal and has only constant (O(1)) performance
overhead. The amortized time complexity of our robust combiner is close to the average time complexity of all n ingredient
KEM schemes. Although key exchange protocol may run infrequently between two users, the performance speedup by n
times is very important for servers (like VPN/SSH server), which will run key exchange protocols with a large number of
online users.

1.1. Contributions

Our main contributions in this work can be summarized as below.

1) We propose a notion called “Stateful Key Encapsulation Mechanism (SKEM)” and formally define its security
under IND-CPA and IND-CCA formulation, while all of existing key encapsulation mechanisms (KEMs) are
stateless or memoryless. SKEM is suitable for two users (precisely, two devices), who may have frequent secure
communications, e.g. typical usage of VPN and SSH.

2) We propose a robust combiner, which constructs a SKEM, from n given KEMs. Each given KEM is referred as
ingredient crypto primitive of this robust combiner. We claim our construction is the first robust combiner from

1. Precisely, the adversary may break the key exchange protocol using Shor’s algorithm to recover the session key, and then decrypt the sniffed IP
packets using this session key, since widely adopted key exchange protocols (e.g. RSA or variants of Diffie-Hellman protocol) are vulnerable to Shor’s
algorithm.

2. https://en.wikipedia.org/wiki/Dual EC DRBG

2

https://en.wikipedia.org/wiki/Dual_EC_DRBG

n ingredient crypto primitive with sublinear (in n) complexity. To the best of our knowledge, all of the existing
robust combiners of n crypto primitives have time complexity which is not less than the sum of all of n primitives.
Our proposed robust combiner of n KEM schemes has amortized time complexity close to the average of these n
KEM schemes, which is optimal in performance.

3) We construct practical and secure hybrid stateful key exchange protocols based on our proposed SKEM scheme,
together with refinement and optimization in many detailed aspects of key exchange protocols, which may have
been overlooked in previous works. Our solution is more suitable for two parties who will communicate with each
other frequently.

4) We implement our proposed solution and run experiments to evaluate the practical performance of our solutions
and confirm the speedup of n times.

1.2. Organization

The rest of this paper is organized in this way: The next Section 2 discusses the related works. Section 3 provides the
important definitions to characterize the security features of key encapsulation mechanism (KEM) or key exchange protocol
(KEP). Then we propose a construction of robust combiner of key encapsulation mechanism and prove it is CPA-secure
in Section 4. We also extend this construction to achieve CCA-security in Section 5. Next, we construct key exchange
protocols in Section 6 by adding more optimizations to the robust combiner of KEM proposed in previous section. We
also discuss how to integrate our solution with existing solutions (e.g. TLS, IKEv2). We provide our experiment data in
Section 8. At the end, Section 9 closes this paper.

2. Related Works

2.1. Robust Combiner

As early as 1980’s, Even and Goldreich [14] started the research work of combining multiple symmetric ciphers. [7],
[10], [21] studied how to combine multiple public key crypto schemes. Bindel et al. [2] combined multiple signature
schemes.

Recently, Giacon et al. [8] gave a generic parallel framework for robust combiner of key encapsulation mechanisms. [1],
[9], [12] extends the work on parallel combination of multiple KEM schemes. Here we give a refined and more complete
description of this parallel framework.

2.1.1. Parallel Framework of Robust Combiner for KEMs. Let Ψi, i ∈ [0, n−1] denote the i-th ingredient KEM scheme;
let Ψ denote the resulting robust combiner for KEM. The public/private keys of Ψ will be a collection of all public/private
keys generated by each ingredient KEM scheme Ψi. In the encapsulation algorithm of Ψ, we invoke encapsulation algorithm
from each ingredient KEM Ψi to generate (ci, si), and then aggregate all of si, ci together to compute the secret s ←
W (. . . , si, . . . , ci, . . .) for the combiner KEM Ψ. Optionally, we may also compute a message authentication code t ←
T (. . . , si, . . . , ci, . . .) in order to achieve security under chosen ciphertext attack (CCA). To design CPA-secure robust
combiner of KEM, we may simply ignore function T by treating it as T (· · ·) = ⊥. [8] calls such key derivation function
W as core function, while we add the tag function T into this generic framework.

2.2. Integrate with Existing System

Bos et al. [4] proposed a post-quantum key exchange protocol based on Ring-LWE problem and integrated it with
TLS/SSL. Crockett, Paquin and Stebila [5] developed prototypes to integrate a subset of 10 post quantum KEMs submitted
to NIST PQC competition, with OpenSSL and OpenSSH. [5] indicated that they failed to integrate some candidate post-
quantum KEMs with OpenSSL/OpenSSH, since the size of keys or ciphertext is larger than the maximum size defined in
the corresponding RFC of TLS/SSL or SSH. Both works ([4], [5]) adopted a white-box approach for integration: They
carefully analyse the structure and information flow in the TLS/SSL protocol (e.g. ClientHello, ClientKeyExchange,
ServerKeyExchange messages), and have to hack or modify the implementation (e.g. OpenSSL): (1) Original TLS/SSL
protocol only allows to use a single scheme for one purpose (e.g. Key Exchange, or Encryption of payload, or Authentication),
and does not support hybrid model which executes two or more schemes for the same purpose in a single session; (2) Add
post-quantum KEMs to the “ciphersuite” of TLS/SSL; (3) Some implementation of TLS/SSL may introduce a limitation
on the length of certain fields for storage of keys or ciphertext, which is smaller than the protocol specification in RFC.
But some post-quantum KEMs may have key or ciphertext size within the scope specified in RFC, but larger than the max
size allowed in the implementation software of TLS/SSL. Similarly, a very recent work [15] by Sikeridis, Kampanakis and
Devetsikiotis, integrated post-quantum signature scheme with TLS 1.3 with a white-box approach.

3

Based on the existing works (e.g. [1], [4], [7], [8], [10], [14], [21]), Stebila, Fluhrer and Gueron [16], [17] proposed a
draft for support of hybrid key exchange in TLS 1.3. In addition, Tjhai et al. proposed a draft for Internet Key Exchange
Protocol Version 2 (IKEv2) [18] to support hybrid key exchange.

Typically, in almost all real world applications, public key exchange protocols may be stateless: The two parties Alice
and Bob do not maintain a long term dynamic secret internal status, beyond the possible long term static private key. TLS
Session Resumption 3 is an example of stateful key exchange protocol, but is not widely adopted yet. In this work, we are
interested in key exchange between two parties who want to communicate securely and frequently, and will propose stateful
hybrid key exchange protocol with good amortized complexity by combining existing key encapsulation mechanisms/public
key exchange protocols.

3. Formulations

In this section, we introduce the important definitions in this work.

3.1. Robust Combiner

Definition 1 (Robust Combiner [10] (Informal)). A (k, n)-Robust Combiner for a cryptographic primitive P is a construction
that takes as input n ingredient schemes for P and combines them into one scheme such that if at least k of the candidates
indeed implement P then the combiner also implements P .

3.2. Security Formulation of Key Exchange Protocol

In a security formulation, an adversary is characterized in two orthogonal dimensions:

1) Information

a) what information is given to the adversary, e.g. ciphertext only attack, known plaintext attack, side channel
leakage;

b) what information that the adversary can feed into the crypto system, e.g. (adaptively) chosen plaintext/ciphertext
attack, fault injection attack.

2) Computation power. The adversary may run a probabilistic polynomial time (PPT, for short) algorithm in classical
Turing machine equivalent computer (e.g. Intel CPU), or PPT quantum algorithm (e.g. Shor’s algorithm) in quantum
computer. Or the adversary may even have unlimited computation resource, in the case of unconditional security
(a.k.a. information theoretical secure).

The typical security formulations for Key Encapsulation Mechanism or Key Exchange Protocol include, computational
indistinguishability under chosen plaintext or ciphertext attack model (a.k.a. IND-CPA, IND-CCA), and forward/backward
secrecy. The formulation of IND-CPA and IND-CCA for KEM is well known and can be found in [8], [12]. Unger et
al. [19] summarized security features for secure message communications, including forward/backward secrecy, and stated
that, “the terms are controversial and vague in literature [6]”. In this work, we give a formal definition of forward secrecy
and backward secrecy for key exchange protocols.
Definition 2 (Forward Secrecy). Suppose we run a KEM scheme Ψ to generate (N + 1) session keys in sequence. Let

TRANSCRIPT denote the collection of all public messages exchanged during the generation of these (N + 1) session
keys. Let α(·) ∈ [0, 1] denote a real-valued function. We say the KEM scheme Ψ provides α(N)-forward-secrecy, if the
leakage of secret key (long term secret key and session key) at session (N + 1), together with TRANSCRIPT, can lead
to fully or partial leakage of at most (1−α(N)) ·N number of session keys before session N + 1. We say Ψ provides
perfect forward secrecy, if the corresponding α(N) = 1.

Definition 3 (Backward Secrecy). Suppose we run a KEM scheme Ψ to generate (N + 1) sessions keys in sequence. Let
TRANSCRIPT denote the collection of all public messages exchanged during the generation of these (N + 1) session
keys. Let β(·) ∈ [0, 1] denote a real-valued function. We say the KEM scheme Ψ provides β(N)-backward-secrecy, if the
leakage of secret key (long term secret key and session key) at some session i ∈ [1, N + 1], together with TRANSCRIPT,
can lead to derivation of full or partial knowledge of at most (1 − β(N)) ·N number of session keys after session i.
We say Ψ provides perfect backward secrecy, if the corresponding β(N) = 1.

3. https://tools.ietf.org/html/rfc5077

4

https://tools.ietf.org/html/rfc5077

Figure 1. Definition [12] of Game KEM-IND-CCAK
A(λ). Another game KEM-IND-CPAK

A(λ) can be obtained by removing the decryption oracle Odec(·)
from the below game.

Game KEM-IND-CCAK
A(λ)

1) (pk, sk)← K.Gen(1λ)
2) b ∈R {0, 1}
3) (c, sb)← K.Encaps(pk).
4) s1−b ∈R {0, 1}|sb|
5) b′ ← AOdec(pk, c, s0, s1)
6) Return b = b′

Oracle Odec(c)

7) If c is cb, return ⊥
8) s← K.Decaps(sk, c)
9) Return s

4. Stateful Key Encapsulation Mechanism

Key Encapsulation Mechanism is a public key cryptography primitive, closely related to public key encryption (PKE).
We can construct a key encapsulation mechanism by applying public key encryption on a (uniformly) random plaintext.
In the other direction, we can also construct a public key encryption by simply combining key encapsulation mechanism
and one-time pad cipher. Combination of the above two ideas is a generic way to construct CCA-secure PKE from CPA-
secure PKE. Key encapsulation mechanism is also widely used as key exchange protocol. NIST PQC competiton has two
categories: one for KEM/PKE; and the other for digital signature scheme.
Definition 4 (Key Encapsulation Mechanism). A KEM scheme consists of 3 algorithms (Gen,Encaps,Decaps), described

as below

• Gen(1λ)→ (pk, sk).
• Encaps(pk)→ (c, s).
• Decaps(sk, c)→ s.

Here c is called “ciphertext” or “encapsulation”, and s is called “shared secret”.

Definition 5 ([12]). A KEM K is IND-CCA secure if, for any probabilistic polynomial time adversary A, the following
advantage function is negligible in security parameter λ.

AdvKEM-IND-CCA
K,A (λ) =

∣∣Pr
[
KEM-IND-CCAK

A(λ)⇒ 1
]
− 0.5

∣∣ (1)

where game KEM-IND-CCAK
A is defined in Figure 1.

Definition 6 (Stateful Key Encapsulation Mechanism). A Stateful KEM scheme consists of 4 algorithms (Gen,Setup,
Encaps, Decaps), described as below

• Gen(1λ)→ (pk, sk): The key generation algorithm Gen takes the security parameter λ as input, and returns a pair
of public key pk and private key sk.

• Setup(pk; sk) → (estate0; dstate0): The setup algorithm Setup is an interactive algorithm between Alice and
Bob, where Alice has input pk and will obtain private output estate0, and Bob has private input sk and will obtain
private output dstate0. Here estate0 is the initial internal state for Alice who runs encapsulation algorithm, and
dstate0 is the initial internal state for Bob who runs the decapsulation algorithm.

• Encaps(pk; i, estatei−1)→ (Ci, Si; estatei): The encapsulation algorithm takes as input, the public key pk, the
next session id i, the current internal state estatei−1, and outputs a pair of ciphertext/encapsulation Ci and shared
secrete Si, and updates the internal state to estatei.

• Decaps(sk; i, Ci, dstatei−1)→ (Si; dstatei): The decapsulation algorithm takes as input, the private key sk, the
next session id i, ciphertext/encapsulation Ci, and current internal state dstatei−1, and outputs the shared secret
Si, and updates the internal state to dstatei.

The selective-session security formulation for stateful KEMs K = (Gen,Setup,Encaps,Decaps) is computational indis-
tinguishability against chosen ciphertext attacks (IND-CCA security), is defined as in Figure 3.

Note that, the need of an encapsulation oracle in the security formulation is one significant difference between the
proposed stateful key encapsulation mechanism and conventional stateless key encapsulation mechanism. In stateless key

5

Figure 2. Illustration of Constructions of Robust Combiner from 3 Ingredient KEMs. Typically, the key derivation function is much more efficient than
algorithm Gen,Encaps,Decaps in a KEM scheme.

(a) Robust combiner in existing works [8], [9], [12] adopts XOR function as
an implicit randomness extractor

(b) Our construction: This work modifies the parallel framework of robust
combiner

encapsulation mechanism, the adversary can always run encapsulation algorithm with public key by itself, so it has no
need to query an oracle for this matter. In a stateful key encapsulation mechanism, the adversary may not be able to run
encapsulation algorithm by itself, due to a secret state variable estatei−1, which is unknown to the adversary.
Definition 7. A stateful KEM K is Selective-Session secure under IND-CCA attack model if, for any probabilistic polynomial

time adversary A, the following advantage function is negligible in security parameter λ.

AdvSKEM-IND-CCA
K,A (λ) =

∣∣Pr
[
SKEM-IND-CCAK

A(λ)⇒ 1
]
− 0.5

∣∣ (2)

where the Game SKEM-IND-CCA is defined in Figure 3. Selective-Session security under IND-CPA can be defined in
a similar way.

We remark that, the adversary is required to commit in which session he/she wants to attack before the actual attack,
just like an adversary is required to commit the identity which he/she wants to attack ahead of the time of attack in the
Selective-ID security [3] formulation.

4.1. Our Construction

Given n number of ingredient KEM schemes Ψi, i = 0, 1, 2, . . . , n − 1. We will construct a stateful KEM scheme,
which is a (1, n)-robust combiner for KEMs. Without loss of generality, we assume: (1) each KEM scheme Ψi will output
equal size (say ` bits) shared secret key (i.e. s) in every invocation; (2) the two communication parties, say Alice and
Bob, have already authenticated 4 the identity of each other before running KEM schemes; (3) each party may maintain
a separate long term internal state variable of fixed size, per each party who he/she wishes to contact. We aim to achieve

4. We will discuss the authenticated key exchange protocol later in Section 6.3.

6

Figure 3. Definition of Game SKEM-IND-CCAK
A(λ) for Selective-Session Security of Stateful KEM. Another game SKEM-IND-CPAK

A(λ) can be
obtained by removing the decapsulation oracle Odec(·) from the below game.

Game SKEM-IND-CCAK
A(λ)

1) (pk, sk)← K.Gen(1λ)
2) (ι, astate)← A(pk)
3) (estate0, dstate0)← K.Setup(pk; sk)
4) Pass estate0 to encryption oracle Oenc and pass dstate0 to decryption oracle Odec
5) Initialize a state variable LKeys as an empty list
6) For i from 1 upto ι, (Ci, Si; estatei)← K.Encaps(pk; i, estatei−1), and set LKeys[i] = Si
7) Randomly choose b ∈R {0, 1}
8) Rename Sι as Sι,b. Reset LKeys[ι] = ⊥
9) Randomly choose Sι,1−b ∈R {0, 1}|Sι,b|

10) b′ ← AOenc,Odec(astate; pk, Cι, Sι,0, Sι,1)
11) Return b = b′

Oracle Oenc(i) where i 6= ι

12) When invoked on the very first time, let estate0 be the state of encapsulation generated by K.Setup.
13) Let ` be the number of items (i.e. keys) in state variable LKeys. If ` < i, starting from j = `+ 1 upto i, generate

j-th session key and append it to LKeys as below.

• (Cj , Sj ; estatej) ← K.Encaps(pk; j, estatej−1).
• LKeys[j]← Sj

14) Return LKeys[i].

Oracle Odec(i, Ci) where i 6= ι

15) When invoked on the very first time, let dstate0 be the state of decapsulation generated by K.Setup.
16) If Ci = Cι, return ⊥
17) Otherwise, (Si; dstatei)← K.Decaps(sk; i, Ci, dstatei−1)
18) Return Si

lowest amortized complexity for two frequently contacted parties. If two parties just run key exchange protocol for once,
then our time complexity could be as expensive as existing solutions [9], [12].

We denote this construction as Ψ[n] (or Ψ for short), which takes n number of KEM schemes Ψi’s, i ∈ [0, n − 1], as
building blocks. We define the algorithms (Gen,Setup,Encaps,Decaps) as below, and also illustrate this construction in
Figure 3(b) and Figure 4.

Ψ[n].Gen(1λ)

1) Randomly choose a prime number p with bit-length equal to (λ+ 1).
2) Randomly choose a number r ∈R Z∗p.
3) ∀i ∈ [0, n− 1], (pki, ski)← Ψi.Gen(1λ).
4) Let Pk← (p, r; {pki}i∈[0,n−1]).
5) Let Sk← {ski}i∈[0,n−1].
6) Output (Pk, Sk).

Ψ[n].Setup(Pk, Sk): This interactive algorithm runs between Alice with input Pk = (p, r, {pki}), and Bob with input
Sk = {ski} as below.

A1 For each i ∈ [1 − n, 0], Alice computes (ci, si) ← Ψj .Encaps(pkj) where j = (i mod n). Set estate0 =
(s1−n, . . . , s0), and send (c1−n, . . . , c0) to Bob.

B1 For each i ∈ [1 − n, 0], Bob computes si ← Ψj .Decaps(skj , ci), where j = (i mod n). Set dstate0 =
(s1−n, . . . , s0).

Ψ[n].Encaps(Pk; i, estatei−1)

1) (ci, si)← Ψ(i mod n).Encaps(pk(i mod n))
2) Parse estatei−1 as (si−n, . . . , si−1).
3) Let the new state be estatei = (si−n+1, . . . , si).

7

4) Compute the shared secret Si = h(G(estatei, r)), where h is a hash function and G is defined as below

G(x0, . . . , xn−1, r) =

n−1∑
i=0

xi · ri+1 (mod p) (3)

5) Let encapsulation Ci = ci. Return (Ci, Si; estatei).

Ψ[n].Decaps(sk; i, Ci, dstatei−1)

1) Compute si ← Ψ(i mod n).Decaps(sk(i mod n), ci) where ci := Ci.
2) Parse dstatei−1 as (si−n, . . . , si−1).
3) Let the new state be dstatei = (si−n+1, . . . , si).
4) Compute the shared secret Si = h(G(dstatei, r)) and return (Si; dstatei).

Figure 4. Illustration of proposed Stateful Key Encapsulation Mechanism Ψ, constituted from 3 existing KEM Ψ0,Ψ1 and Ψ2.

Setup

Ψ!, Ψ", Ψ# Ψ! Ψ" Ψ" Ψ# Ψ! Ψ" Ψ#Ψ# Ψ!

0 1 2 3 4 5 6 7 8

Session Key !! Session Key !" Session Key !# Session Key !$ Session Key !%

Session Key !& Session Key !' Session Key !(Session Key !)

4.1.1. Fast computation of function G. Apparently the computation of function G requires O(n) time. If we cache the
value of rn and previous computation result of function G, the next computation of G can be completed in O(1) time, as
illustrated in below formula.

G(x1, . . . , xn, r)

=

n−1∑
i=0

xi+1 · ri+1

=xn · rn + r−1 ·

(
n−1∑
i=0

xi · ri+1 − x0 · r

)
=xn · rn + r−1 · (G(x0, . . . , xn−1, r)− x0 · r) (4)

Note that the above computation is over a finite filed (GF (p) with prime order p). In our prototype implementation, we
will choose Mersenne prime in the form of p = 2q − 1 with both p and q being prime numbers, to achieve faster modulo
operation with modulus p.

4.2. Security

Assumption 1 (Assume keyed hash function is a secure pseudorandom function). Let λ be the security parameter, and
c ≥ 1 be some constant. Let h(·) ∈ {0, 1}` be a hash function (e.g. SHA3), with ` ≥ λ. Let prime number p ≥ 2cλ.
We define

PRFhk(x, y) = h(x · k + y) (5)

where the secret key k ∈R GF (p) is randomly chosen from its domain GF (p), x, y ∈ GF (p), x 6= 0, and x · k + y
is computed over GF (p). We assume PRFhk(x, y) with distinct input5 x is a cryptographically secure pseudorandom
function w.r.t. security parameter λ against conventional and quantum adversary. Note: Here y can be treated as a
function of x such that y = w(x) where this function w(·) is implicitly defined by providing many input-output tuples
(x, y) of function w(·) during the evaluation of this PRF.

5. For each distinct value of x, only one input tuple (x, y) is allowed to be evaluated by function PRFhk(x, y).

8

TABLE 1. COMPARISON OF CONSTRUCTION OF KEM COMBINERS IN EXISTING WORKS.

Scheme core function W tag function T Security
[8]

⊕
i si ⊥ CPA, SM

h(
⊕
i si, c0, . . . , cn−1) ⊥ CCA, ROM

h(. . . si . . . ci . . .) ⊥ CCA, ROM
h(πsn−1 (. . . πs0 (0)), c0‖ . . . ‖cn−1) ⊥ CCA, ROM or ICM⊕

i PRF(si, c0, . . . cn−1) ⊥ CCA, SM
[1], [9], [12] k0 where (k0, k1)←

⊕
i si MACk1 (. . . ci . . .) CCA, SM

[1] PRF(dualPRF(s0, s1), c0, c1) ⊥ CCA, SM
[4], [5] KDF(s0‖s1) ⊥ No claims

[5] KDF(s0 ⊕ s1) ⊥ No claims
Our constructions Ψ, Ψ̂ Randomness Extractor + PRF, MAC of ciphertext Selective-Session CPA, CCA

Note: [1] only combines two ingredient KEM schemes. dualPRF(s0, s1) is random if either s0 or s1 is random. ROM: Random Oracle Model; SM:
Standard Model; ICM: Ideal Cipher Mode; PRF: Pseudorandom Function; KDF: Key Derivation Function
In our construction, function G can be treated as randomness extractor and the (keyed version) hash function h is treated as pseudorandom function.

NIST Special Publication 800-185 [11] proposed a variant of SHA3 function—KECCAK Message Authentication
Code (KMAC 6) algorithm, as both keyed hash function and pseudorandom function. The major difference between our
construction of PRFhk and KMAC is that, we use linear computation over a finite group and KMAC uses string concatenation,
to pre-process the input of underlying hash function.

Assumption 1 requires the underlying hash function h(·) satisfies some property, which sits somewhere between random
oracle and secure hash function (i.e. collision resistant and one-wayness). The reasons are given in the below 2 propositions.
Proposition 1. If h(·) is a random oracle, then PRFhk(x, y) is a PRF. (The proof is in Appendix A)

Proposition 2. There exists some hash function h′(·) which is both collision resistant and one-way, such that PRFh
′

k (x, y)
with distinct input x is not a PRF.

Proof: Let h(·) ∈ {0, 1}` be a one-way collision resistant hash function. We define a new function h′(x) = 0`‖h(x) ∈
{0, 1}2`. It is easy to show that, function h′(·) is also collision resistant and one-way. But we can easily distinguish the
output of h′ from uniform random variable over {0, 1}2`, since the first ` bits of output of h′ are always zeros.

However, we notice that hash function h′ with 2` bits digest size is just as secure as a hash function h with shorter
(` bits) digest size. Thus h′ does not achieve tight security and will not be considered as a good design. In this work, we
assume function PRFh w.r.t. a particular hash construction (e.g. h is SHA3) is a pseudorandom function.
Theorem 1. If Assumption 1 holds, and some KEM Ψv is secure, where v ∈ [0, n − 1], then our construction Ψ[n] is

CPA-secure. Precisely, for any v ∈ [0, n − 1], for any probabilistic polynomial time (PPT) adversary A against Ψ[n],
there exist some PPT adversary Bv against Ψv, and some PPT adversary C against the PRF, such that

AdvSKEM-IND-CPA
Ψ[n],A (λ) ≤ 2 ·AdvKEM-IND-CPA

Ψv,Bv (λ) + AdvPRF,C(λ) (6)

Note that the IND-CPA security of KEM Ψv is defined as in Figure 1 (on page 5), and IND-CPA security of Stateful
KEM Ψ[n] is defined as in Figure 3 (on page 7). (The proof is in Appendix B.)

Corollary 2. Theorem 1 also holds, if we replace the Assumpiton 1 with the assumption that function h(·) is a random
oracle.

5. Extend to CCA Security

In this Section, we will extend CPA-secure SKEM Ψ[n] to CCA-secure SKEM Ψ̂[n]. The Gen and Setup algorithms of
Ψ̂[n] will be identical to those in Ψ[n].

Ψ̂[n].Encaps(Pk; i, estatei−1)

1) (Ci, Si, estatei)← Ψ[n].Encaps(Pk; i, estatei−1)
2) Parse Si as ki,0‖ki,1, where ki,0 ∈ {0, 1}λ.
3) Compute authentication tag

ti = MACki,0(i, Ci). (7)

6. In Section 4.3 of [11], it says, “KMAC concatenates a padded version of the key K with the input X and an encoding of the requested output length
L. The result is then passed to cSHAKE, along with the requested output length L...”

9

4) Let C′i = (Ci, ti) and Ki = ki,1 and return (C′i, Ki; estatei).

Ψ̂[n].Decaps(Sk; i, C ′i, dstatei−1)

1) Parse C ′i as (Ci, ti).
2) (Si, dstatei)← Ψ[n].Decaps(Sk; i, Ci, dstatei−1).
3) Parse Si as ki,0‖ki,1, where ki,0 ∈ {0, 1}λ.
4) If ti 6= MACki,0(i, Ci), return7 ⊥ and revert back to state dstatei−1; otherwise return (K = ki,1; dstatei).

Theorem 3. If Ψ[n] is CPA-secure, and the message authentication code MAC is unforgeable, then our construction Ψ̂[n] is
CCA-secure. Precisely, we have

AdvSKEM-IND-CCA
Ψ̂[n]

(λ) ≤ `AdvUnforgeable
MAC (λ) + (`+ 1)AdvSKEM-IND-CPA

Ψ[n]
(λ) (8)

where ` denotes the number of ciphertext queries (i.e. decapsulation queries). Note that IND-CCA security of Stateful
KEM is defined as in Figure 3. (The proof is in Appendix C.)

We compare our proposed robust combiner of KEMs with related works in Table 1.

6. Public Key Exchange Protocol

Public key exchange protocol aims to establish a shared secret key between two parties (Alice and Bob) by exchanging
some messages over an insecure public communication channel. It can be implemented by applying key encapsulation
mechanism in a straightforward manner with one round of communication (as in Table 2).

TABLE 2. PUBLIC KEY EXCHANGE BETWEEN ALICE AND BOB USING KEY ENCAPSULATION MECHANISM

Setup: Alice generates a pair of keys (pk, sk)← Gen(1λ), and distributes public key pk to Bob reliably (say via a PKI system).
B1: Bob computes (c, s)← Encaps(pk) and sends the ciphertext c to Alice (typically via an insecure public communication channel).
A1: Alice recovers the shared secret s← Decaps(sk, c).

Alternatively, key exchange protocol can also be implemented using different methods and with one or more rounds of
communication, for example, Quantum Key Distribution protocol, based on quantum physical theory. Compared with key
encapsulation mechanism, public key exchange protocol may have more security requirements beyond IND-CPA or IND-
CCA security: Mutual authentication between the two parties and forward secrecy. According to Wikipedia 8, “TLS 1.3 leaves
ephemeral Diffie–Hellman as the only key exchange mechanism to provide forward secrecy” [13] and “OpenSSL supports
forward secrecy using elliptic curve Diffie–Hellman since version 1.0, with a computational overhead of approximately 15%
for the initial handshake 9”.

Typically, there will be two different settings of Key Exchange Protocols, which may have different requirements in
performance:

• Server-Client mode: In this setting, the goal is to maximize the number of concurrent secure connection to the
server. Thus, in a key exchange protocol between a server and a client, we may attempt to distribute more workload
to client side and reduce the burden on server side. Examples include https, SSH, and sftp.

• Peer to Peer mode: In this setting, we may attempt to distribute almost equal workload to the two peers. For example,
point to point encryption gateways between two data centres or two branch offices of the same organization.

The construction of key exchange protocol from key encapsulation mechanism in Table 2 looks very simple and
straightforward. For hybrid key exchange protocol, we will explore details in Table 2 and attempt to refine and optimize
them, in order to achieve better performance and/or security.

7. In this failure case, the received copy of ciphertext Ci or/and authentication tag ti is corrupt. The correct copy of (Ci, ti) could be re-sent upon
request.

8. https://en.wikipedia.org/wiki/Forward secrecy#Protocols
9. https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html

10

https://en.wikipedia.org/wiki/Forward_secrecy#Protocols
https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html

6.1. Who Generates the Private Keys?

Typically and possibly implicitly, in exiting KEM combiners [1], [8], [12], one party (e.g. Alice) will generate all private
keys sk ← {ski}i, and the other party (e.g. Bob) has access to the public keys pk ← {pki}i. To generate a new shared key
between Alice and Bob, in the first step, Bob will compute (c, s)← Encaps(pk) and passes c to Alice; in the second step,
Alice will recover the same shared secret value s← Decaps(sk, c). This naive solution has some drawbacks:

• from security point of view, Alice didn’t authenticate the identity of Bob;
• from performance point of view, Alice’s computation of Decaps has to start after Bob completes his computation

of Encaps, since the input c of Decaps is the output of Encaps.

Our solution is to distribute the responsibility and workload of key generation to both parties. Particularly, we choose a
subset S ⊂ [0, n− 1] of indices, and denote its complement set as S̄← [0, n− 1] \ S. For each i ∈ S, Alice generates the
private key si ← Ψ̂i.Gen(1λ); for each i ∈ S̄, Bob generates the private key si ← Ψ̂i.Gen(1λ). To generate a shared key,
Alice and Bob can compute in parallel as below

• in the first step, Bob and Alice independently computes (ci, si)← Ψ̂i.Encaps(pki) for i ∈ S and i ∈ S̄ respectively;
• in the second step, Alice and Bob independently computes si ← Ψ̂i.Decaps(ski, ci) for i ∈ S and i ∈ S̄ respectively.

The next question is how to find a proper set S? From security point of view, both set {Ψi : i ∈ S} and the complement
set {Ψi : i ∈ S̄} should contain KEM schemes Ψi based on various hard problems in lattice, coding theory, multi-variable
polynomial, etc. From performance point of view, the choice of set S should roughly equally distribute the computation
workload to Alice and Bob, in the peer to peer setting; or more workload to the client, in the server-client setting.

6.2. How to Deliver the Public Keys and Ciphertext?

In typical application of public key cryptography, the public key is simply made available to everyone, as the name
“public key” suggests. So is the ciphertext.

However, to allow KEM or KEP to work, it is not necessary to let any third party, beyond Alice and Bob, know
about Alice’s and Bob’s public keys. Therefore, we intend to exchange public keys between Alice and Bob using a secure
channel, established using another secure public key exchange protocol, to achieve two layer of defence (See Table 3). This
combination method can be treated as a generic series KEP combiner framework compared to the parallel KEM combiner
framework [8], [12].

TABLE 3. SERIES COMBINATION OF TWO KEY EXCHANGE PROTOCOLS Ψ0 AND Ψ1

A1, B1: Alice and Bob interactively run key exchange protocol Ψ0 to establish a secure and authenticated channel protected with session key k0.
A2, B2: Within the secure and authenticated channel with session key k0, Alice and Bob interactively run key exchange protocol Ψ1 to establish another

secure channel with session key k1. Then Alice and Bob will communicate securely over this secure channel with session key k1.

• Both public key and ciphertext of Ψ1 will be delivered over the secure channel protected with session key k0.

We emphasize that, such series KEP combiner framwork can also apply to two instances of the same KEM (i.e. Ψ0 = Ψ1

in Table 3. For an example, we may apply our construction of Ψ̂[n] in this way: We establish a session key S0 during setup
phase, and run the 1st session of key exchange protocol within the secure channel protected by session key S0. Furthermore,
in any subsequent session i+ 1, we run the key exchange protocol within the secure channel protected by previous session
key Si.

In the series combination of key exchange protocol showed in Table 3, the ingredient KEP scheme Ψ0 and Ψ1 can be
any key exchange protocol:

1) Key Exchange Protocol derived from Key Encapsulation Mechanism, or
2) Quantum Key Distribution (QKD), or
3) other ad-hoc KEP (e.g. Ψ0 could use the pre-shared key).

In case that QKD and One Time Pad are applied to establish the first secure channel with session key k0, which is
(quantum) informationally secure, an adversary could not recover (even partial information, except length, of) the public
keys or ciphertext for the second KEP scheme Ψ1, from sniffed IP packets, even with unlimited computation power, not
mention the corresponding private keys. By combining the QKD and Post Quantum Crypto Key Exchange protocol in series
combination framework (as in Table 3), such that QKD is applied only for once to securely deliver the public key and first
ciphertext of the PQC KEP scheme, and the PQC KEP scheme runs again and again to generate sessions keys for different
sessions, we could achieve good balance between security and cost: The customer could enjoy quantum informational
security by leasing the QKD hardware for a short time with much lower cost, rather than purchasing them.

11

6.3. How to Construct Authenticated Key Exchange Protocol?

It is well known that, the diffie-hellman key exchange protocol, is not authenticated and thus suffering from man-in-the-
middle attack. If two parties communicate very frequently, starting from the second session, we could deliver all messages
of the key exchange protocol using the secure and authenticated channel established in the previous session. For the first
session, the authentication of each party can be done with help of public key infrastructure (PKI).

6.4. How to Derive a Session Key?

Let ki denote the session key for the i-th session. Let yi+1 denote the output of KEM scheme for the (i+ 1)-th session.
We will derive the session key ki+1 as below

ki+1 ← h(k0, . . . , ki, yi+1). (9)

The advantage of the above method is that, the current session key is dependent on all previous session keys, which
are in turn dependent on all messages exchanged between Alice and Bob.

The naive method to compute the above Equation (9), requires Alice and Bob to keep record all of previous session
keys as an internal state, which will have linear storage complexity for internal secret status, and injure the forward secrecy.

Our solution is to maintain only a constant size of aggregation value of all previous history session keys, from which
we can derive the new session key as defined in the above equation (9). The key idea is stated in the below claim.
Claim 1. Let h ∈ {SHA256, SHA512, SHA3}. There exist 3 efficient functions f0, f1, f2 with constant output size, such that,

for any bit string x and y,

h(x) = f1(f0(x)) (10)
f0(x‖y) = f2(f0(x), y) (11)

The above claim is related to but not identical to the length extension attack on SHA2. It is a natural consequence of
any efficient hash function which requires only constant memory and consume all input bits in one pass from left to right.

6.5. How to Choose Ingredient KEM?

Typically, there may be two reasons to combine multiple KEM schemes.

6.5.1. Construct a potentially more Secure KEM Scheme. Since the hard problems behind post quantum cryptography
are quite young, compared to factorization of large integer and discrete log problem, it is a good idea to combine post
quantum KEM schemes based on various quantum resistant hard problem assumptions in lattice, coding theory, etc. One may
choose not only candidate schemes from ongoing NIST competition, but also solid works (e.g. [4], [20]) in post quantum
KEM, which are not submitted to NIST competition (e.g. proposed after the submission deadline of NIST competition).

6.5.2. Comply with the Future Standard. NIST standard may come out tentatively between 2022 to 2024. At the time of
writing, the NIST competition of post quantum cryptography is in the third round with 4 shortlisted candidate KEMs and 5
alternative recommended KEMs. We can combine all of these KEM schemes together with some classical KEM (e.g. RSA,
DH) to comply with both current and future standards. Note that, looking back the history of NIST competition of AES
and SHA3, the winner candidate scheme is not allowed to make significant changes between its final standardized version
and its submitted version, since necessary significant change is a hint of immature design.

6.6. How to Achieve Forward/Backward Secrecy

Just like ephemeral diffie-hellman key exchange protocol provides prefect forward secrecy, our KEM scheme can also
achieve forward/backward secrecy by frequently refresh the public/private key pairs for KEM scheme, especially for our
second construction Ψ: In every session, run an ingredient KEM scheme and refresh its public/private key pair. So a fast
key generation method is desirable for this purpose.

12

TABLE 4. COMPARISON OF SECURITY FEATURES OF VARIOUS KEY EXCHANGE PROTOCOLS AGAINST CLASSICAL OR QUANTUM ATTACKS

Classical adversary Quantum adversary

Scheme IN
D-C

CA/C
PA

Fo
rw

ar
d

se
cr

ec
y

Bac
kw

ar
d

se
cr

ec
y

Aut
he

nt
ica

tio
n

Com
pl

y
with

St
an

da
rd

IN
D-C

CA/C
PA

Fo
rw

ar
d

se
cr

ec
y

Bac
kw

ar
d

se
cr

ec
y

Aut
he

nt
ica

tio
n

Com
pl

y
with

St
an

da
rd

eDH Yes Yes Yes No Yes No No No No No
RSA Yes No No Yes Yes No No No No No
Hybrid
ephemeral
KEP(eDH +
1 PQC KEP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Probably no

Our
ephemeral
Hybrid KEP
(eDH + 17
PQC KEP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Probably yes

eDH: ephemeral Diffie-Hellman

TABLE 5. COMPARISON OF PERFORMANCE OF VARIOUS KEY EXCHANGE PROTOCOLS

Scheme (NIST Security Level 1) Latency (ms) Computation time (ms) on Server side Computation time (ms) on client side
ephemeral Diffie-Hellman (eDH) 19.24 19.24 19.24

RSA-KEM 175.46 175.46 0.84
Hybrid KEP(eDH + 1 fastest ephemeral PQC KEP (SABER)) 19.40 19.38 19.40
Hybrid KEP(eDH + 1 slowest ephemeral PQC KEP (SIKE)) 441.74 441.74 370.62

Our Hybrid KEP Ψ′ (eDH + 17 ephemeral PQC KEP) 30.43 (amortized) 26.81 (amortized) 30.43 (amortized)

6.7. Variant Version of Our Proposed Scheme

It is easy to see that, similar to RSA scheme, Our construction of SKEM Ψ in Section 4.1 cannot achieve forward or
backward secrecy. To achieve forward/backward secrecy, we have to keep refreshing our public/private key pairs, just like
Diffie-Hellman key exchange protocol. Let Ψ′ denote the variant version of our construction Ψ, such that, all refinement
and optimization ideas in this Section 6 applies and one party refreshes the public/private key pair for ingredient scheme
Ψi (mod n) at the beginning of session i and sends the new public key to the other party via the existing secure and
authenticated channel. We compare our proposed scheme Ψ′ with existing key exchange protocols from security aspect in
Table 4 and from performance aspect in Table 5. Note that the workload of 17 candidate PQC KEMs are distributed to
client and server as in Table 6.

TABLE 6. THE DEPLOYMENT MODE OF THE 17 KEMS IN Ψ′

Deployment Mode KEMs
Encaps on client side
Decaps on server side KYBER, NewHope

Encaps on server side
Decaps on client side The other KEMs

6.7.1. Security Analysis.
Theorem 4. Assume at least 1 out of n ingredient KEM schemes is secure against both classical and quantum attacks. The

variant version Ψ′ of SKEM achieves α(N)-forward secrecy and β(N)-backward secrecy with

α(N) = 1; (12)
β(N) ≥ 1− (n− 1)/N. (13)

against polynomial time classical or quantum adversary.

The above theorem can be derived from our definitions of Forward Secrecy (Definition 2) and Backward Secrecy
(Definition 3) in a straightforward way, and we save the proof.

13

7. Integrate with Existing Systems

How to integrate post-quantum cryptography (e.g. key exchange protocol) with existing widely deployed protocols, like
TLS/SSL, IPsec, and SSH, is an interesting and important problem. It may have large impact on how quickly post-quantum
cryptography can be adopted widely in real world applications, and benefit most users.

Recall that, in Section 2, we reviewed that existing works [4], [5], [16], [18] adopt a white-box strategy to integrate post
quantum KEMs with existing system like TLS/SSL and IKEv2 for IPsec. In this work, we suggest two simpler and almost
blackbox approaches to integrate any new Key Exchange Protocol (e.g. our proposed SKEM/KEP) with existing protocols,
like TLS/SSL, SSH, and IPsec:

• One is following parallel combiner framework and
• the other is following series combiner framework.

Fist of all, we implement our proposed key exchange protocol independently from existing protocols (e.g. TLS/SSL,
IPsec): We decide the actual step by step interactions between two parties, and we choose how to represent our data (e.g.
crypto key, ciphertext, parameters) and send them over Internet. Furthermore, the implementation of our proposed key
exchange protocol is not necessary to update adaptively with every new version of implementations of existing protocols.

7.1. Series Combination

The procedure of series combination of existing security protocol (e.g. TLS/SSL, SSH, IPsec) and our key exchange
protocol is described as below and illustrated in Figure 6(a).

1) Alice and Bob run the key exchange part of existing protocol (denoted as “Π.kep” in Figure 6(a)) as usual to
establish a secure channel with session key k0 (denoted as “Π.sec channel(k0)” in Figure 6(a)). In case that
the existing protocol adopts RSA or Diffie-Hellman as key exchange protocol, this secure channel will not be
quantum-resistant.

2) Within this secure channel protected with session key k0, Alice and Bob run our implementation of new key
exchange protocols (denoted as “KEP2” in Figure 6(a)) to establish another shared key k1.

3) As a result, Alice and Bob establish another secure channel with session key k2 derived 10 from both k0 and k1.
4) Alice and Bob deliver the payload over secure channel protected with session key k2.

7.2. Parallel Combination

The procedure of parallel combination of existing security protocol (e.g. TLS/SSL, SSH, IPsec) and our key exchange
protocol is described as below and illustrated in Figure 6(b).

1) Alice and Bob run the key exchange part of existing protocol (denoted as “Π.kep” in Figure 6(b)) as usual to
establish a secure channel with session key k0 (denoted as “Π.sec channel(k0)” in Figure 6(b)).

2) Alice and Bob run our implementation of new key exchange protocols (denoted as “KEP2” in Figure 6(b))
independently and concurrently to establish another shared key k1.

3) As a result, Alice and Bob establish another secure channel with session key k2 derived 11 from both k0 and k1.
4) Alice and Bob deliver the payload over secure channel protected with session key k2.

We remark that, in both series and parallel combinations, Step 1 and Step 4 are identical with the original protocols
(TLS/SSL, SSH, IPsec, etc). We introduce extra Step 2 and 3 in-between. These two combinations actually share the same
Step 3, and with only difference in Step 2. In fact, our series combination and parallel combination described as above,
treat the implementation of existing security protocol (denoted as Π in Figure 5) as a blackbox, except that we will read
and overwrite the session key of existing security protocol.

8. Experimental Evaluations

In this section, we give performance evaluations for four specific implementations of our SKEM. In the implementations,
we combine one traditional KEM, namely RSA, and several post-quantum KEMs that are from the second 12 or third 13

round of NIST competition of post-quantum cryptography, using a key derivation function (i.e. KDF) — the composite
function h(G(· · ·)) used to construct scheme Ψ[n].

10. We will combine the two keys k0 and k1 using some key derivation function.
11. We will combine the two keys k0 and k1 using some key derivation function.
12. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
13. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

14

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

Figure 5. Illustration of almost-blackbox combination of existing security protocol (e.g. TLS, VPN, SSH, denoted as Π) and our key exchange protocol
(denoted as “KEP2”). In the below pictures, a pair of dashed arrows between Alice and Bob indicates one or more rounds of communications. “KDF”
stands for “key derivation function”.

(a) Series Combination: Π.kep and KEP2 run in sequential order and KEP2
runs in the secure channel established by security protocol Π

(b) Parallel Combination: Π.kep and KEP2 run independently and concur-
rently

TABLE 7. THE CONSTRUCTIONS OF ENCAPS AND DECAPS FOR RSA-KEM.

Encaps: 〈ct, ss〉 = Encaps(pk) Decaps: ss = Decaps(ct,sk)
1 : rr ← RNG(0n)
2 : ct← RSA_encrypt(rr, pk) 1 : rr ← RSA_decrypt(ct, sk)
3 : ss← SHA256(rr) 2 : ss← SHA256(rr)

The details of the RSA-KEM for comparison are shown in Table 7. Each post-quantum KEM has several implementations
of different parameter selections or versions. In our experiments, we evaluate four specific implementations listed in Table
8. The names of the implementations follow the format PQCHxRy, where x ∈ {1, 5} denotes security level, and y ∈ {2, 3}
denotes version of PQC KEM (i.e. round 2 or round 3 candidate in NIST PQC competition). The specific building blocks
of the implementations are listed in Table 12, 13, 14 and 15, respectively.

8.1. Experimental Set-ups

The experiments are performed on an Intel CPU. The CPU is equipped with 6 cores, but our evaluations only use
one CPU core. The source code of the PQC KEMs are from NIST PQC Competition submissions, and the RSA-KEM is

TABLE 8. NAMING OF THE SPECIFIC IMPLEMENTATIONS FOR PERFORMANCE EVALUATIONS.

NIST PQC Version Implementation Security Level

Round 2 PQCH1R2 NIST Level 1
PQCH5R2 NIST Level 5

Round 3 (including alternative recommendation) PQCH1R3 NIST Level 1
PQCH5R3 NIST Level 5

15

TABLE 9. EXPERIMENTAL SET-UPS.

CPU Intel Core i7-8550U @ 1.80 GHz
Memory Capacity 16 GB
Operating System Linux 5.8.0 x86 64

Compiler clang 10.0.0
Optimization Level -O3

TABLE 10. THROUGHPUT OF RSA3072-SHA256, PQCH1R2 AND PQCH1R3.

RSA3072-SHA256 PQCH1R2 PQCH1R3
Encaps 2,505,675 bps 187,707 bps 74,090 bps
Decaps 110,432 bps 197,009 bps 55,120 bps

implemented with RSA-OAEP and SHA-256 in OpenSSL v3.0.0. More details about the set-ups are listed in Table 9.

8.2. Experimental Results

8.2.1. Our SKEM vs. Existing Stateless KEM combiner. Unlike stateless KEMs, the stateful KEM keeps an internal
state and updates it at the end of each round. In each session/round after setup, only one ingredient KEM is executed to
update the state before the KDF outputs a shared secret key. Table 16, 17, 18, 19 show the performance of every round
of our SKEM. The existing construction [8] of robust combiner of KEMs behaves in the same way as the setup phase of
our SKEM: Run each ingredient KEM separately in sequence, and then apply a KDF to aggregate the output of ingredient
KEMs. So we will use the running time of setup phase of our SKE to represent the performance of existing works. For our
implementations with y = 2 (resp. y = 3), the overall throughput of Round 0 to 17 (resp. 10) is approximately 340∼409
(resp. 100∼107) times the throughput in setup phase.

8.2.2. Post-Quantum vs. Conventional. It is necessary to compare the throughput of our SKEM with conventional KEMs,
say RSA-KEM. As shown in Table 10 and Table 11, for Decaps the SKEM bears higher throughput than the RSA-KEM,
while for Encaps the SKEM is worse than the RSA-KEM. It is not strange, because some of the ingredient KEMs, such
as SIKE, Classic McEliece and ROUND5, are much more time-consuming than others. For example, SIKE takes more
than 80% latency in PQCH1R2. If these extremely time-consuming ingredient KEMs were removed from our SKEM, the
throughput would be improved significantly.

9. Conclusion

In this work, we gave the security formulation of stateful key encapsulation mechanism. We then construct a stateful
KEM from n (stateless) KEMs, with optimal (i.e. O(1)) amortized performance overhead. Adding more refinement and
optimization ideas, we proposed practical hybrid stateful key exchange protocols. We also gave suggestions how to integrate
with existing solutions like TLS/SSL, IKEv2. We also implement our schemes and run various experiments, and record the
experiment data.

Our proposed stateful KEM is interesting in both theory and industry, since it breaks the linear performance boundary
for robust combiner, and achieves n times speedup in CPU time for hybrid PQC key exchanges on server side.

References

[1] N. Bindel, J. Brendel, M. Fischlin, B. Goncalves, and D. Stebila, “Hybrid key encapsulation mechanisms and authenticated key exchange,” in
International Conference on Post-Quantum Cryptography, 2019, https://eprint.iacr.org/2018/903.

[2] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to a quantum-resistant public key infrastructure,” in Post-Quantum Cryptography
— PQCrypto ’17, 2017, pp. 384–405.

[3] D. Boneh and X. Boyen, “Efficient selective-id secure identity based encryption without random oracles,” Cryptology ePrint Archive, Report 2004/172,
2004, https://eprint.iacr.org/2004/172.

TABLE 11. THROUGHPUT OF RSA15360-SHA256, PQCH5R2 AND PQCH5R3 .

RSA15360-SHA256 PQCH5R2 PQCH5R3
Encaps 254,441 bps 48,312 bps 18,095 bps
Decaps 1,383 bps 46,794 bps 12,331 bps

16

https://eprint.iacr.org/2018/903
https://eprint.iacr.org/2004/172

TABLE 12. BUILDING BLOCKS OF PQCH1R2.

NIST PQC Round 2 Submissions Variants/Parameters Shared Key Size (Bits) NIST Category
RSA-KEM RSA3072-SHA256 256 Level 1
BIKE 14 BIKE1-128-CPA 256 Level 1
Classic McEliece 15 mceliece348864 256 Level 1
CRYSTALS-KYBER Kyber512 256 Level 1
FrodoKEM FrodoKEM-640 128 Level 1
HQC HQC-128-1 512 Level 1
LAC LAC-128 256 Level 1
LEDAcrypt LEDAcrypt-128-1 256 Level 1
NewHope NewHope512-CPA 256 Level 1
NTRU ntruhps2048509 256 Level 1
NTRU Prime ntrulpr653 256 Level 2
NTS-KEM NTS-KEM(12,64) 256 Level 1
ROLLO ROLLO-I-128 512 Level 1
Round5 R5N1 1KEM 0d 128 Level 1
RQC RQC-I 512 Level 1
SABER LightSaber-KEM 256 Level 1
SIKE SIKEp434 128 Level 1
Three Bears BabyBear 256 Level 2

TABLE 13. BUILDING BLOCKS OF PQCH5R2.

Ingredient KEMs Variants/Parameters Shared Key Size (Bits) NIST Category
RSA-KEM RSA15360-SHA256 256 Level 5
BIKE BIKE1-256-CPA 256 Level 5
Classic McEliece mceliece6688128 256 Level 5
CRYSTALS-KYBER Kyber1024 256 Level 5
FrodoKEM FrodoKEM-1344 256 Level 5
HQC HQC-256-1 512 Level 5
LAC LAC-256 256 Level 5
LEDAcrypt LEDAcrypt-256-1 512 Level 5
NewHope NewHope1024-CPA 256 Level 5
NTRU ntruhps4096821 256 Level 5
NTRU Prime ntrulpr857 256 Level 4
NTS-KEM NTS-KEM(13,136) 256 Level 5
ROLLO ROLLO-I-256 512 Level 5
Round5 R5N1 5KEM 0d 256 Level 5
RQC RQC-III 512 Level 5
SABER FireSaber-KEM 256 Level 5
SIKE SIKEp751 256 Level 5
Three Bears PapaBear 256 Level 5

TABLE 14. BUILDING BLOCKS OF PQCH1R3.

Ingredient KEMs Variants/Parameters Shared Key Size (Bits) NIST Category
RSA RSA3072-SHA256 256 Level 1
BIKE BIKE1-128-CPA 256 Level 1
Classic McEliece mceliece348864 256 Level 1
CRYSTALS-KYBER Kyber512 256 Level 1
FrodoKEM FrodoKEM-640 128 Level 1
HQC HQC-128 512 Level 1
NTRU ntruhps2048509 256 Level 1
NTRU Prime ntrulpr653 256 Level 2
SABER LightSaber-KEM 256 Level 1
SIKE SIKEp434 128 Level 1

17

TABLE 15. BUILDING BLOCKS OF PQCH5R3.

Building Blocks Variants/Parameters Shared Key Size (Bits) NIST Category
RSA RSA15360-SHA256 256 Level 5
BIKE BIKE1-256-CPA 256 Level 5
Classic McEliece mceliece6688128 256 Level 5
CRYSTALS-KYBER Kyber1024 256 Level 5
FrodoKEM FrodoKEM-1344 256 Level 5
HQC HQC-256 512 Level 5
NTRU ntruhps4096821 256 Level 5
NTRU Prime ntrulpr857 256 Level 4
SABER FireSaber-KEM 256 Level 5
SIKE SIKEp751 256 Level 5

TABLE 16. PERFORMANCE OF PQCH1R2 ON OUR TESTBED.

#Round Running Components Encaps Decaps
Latency (ms) Throughput (bps) Latency (ms) Throughput (bps)

Setup All 18 KEMs + KDF 463.425 552 441.681 579
0,18,36... RSA-KEM + KDF 0.194 1,316,223 2.287 111,932
1,19,37... BIKE + KDF 0.188 1,358,306 0.757 338,064
2,20,38... FrodoKEM + KDF 3.279 78,060 3.274 78,181
3,21,39... NTRU + KDF 0.372 687,993 0.584 438,222
4,22,40... NTRU Prime + KDF 10.526 24,317 16.114 15,884
5,23,41... CRYSTALS-KYBER + KDF 0.143 1,784,159 0.125 2,039,542
6,24,42... SABER + KDF 0.139 1,842,965 0.100 2,568,531
7,25,43... NewHope + KDF 0.154 1,662,534 0.083 3,094,905
8,26,44... HQC + KDF 0.440 581,175 0.555 461,315
9,27,45... RQC + KDF 0.656 390,323 2.369 108,025
10,28,46... ROLLO + KDF 0.291 879,829 0.636 402,393
11,29,47... LAC + KDF 0.201 1,273,733 0.246 1,039,952
12,30,48... ROUND5 + KDF 129.794 1,972 1.580 162,000
13,31,49... LEDAcrypt + KDF 0.868 294,915 2.865 89,337
14,32,50... NTS-KEM + KDF 0.174 1,474,606 1.532 167,113
15,33,51... Three Bears + KDF 0.259 987,002 0.386 663,147
16,34,52... Classic McEliece + KDF 0.170 1,502,560 19.527 13,108
17,35,53... SIKE + KDF 330.780 773 402.991 635

0 to 17 Our SKEM: Mean of Latency (ms) 26 25
Our SKEM: Mean of Throughput (bps) 187,707 197,009

TABLE 17. PERFORMANCE OF PQCH5R2 ON OUR TESTBED.

#Round Running Components Encaps Decaps
Latency (ms) Throughput (bps) Latency (ms) Throughput (bps)

Setup All 18 KEMs + KDF 2,160.787 118 2,107.543 121
0,18,36... RSA-KEM + KDF 1.069 239,355 188.531 1,357
1,19,37... BIKE + KDF 0.313 817,790 4.820 53,108
2,20,38... FrodoKEM + KDF 15.053 17,003 14.597 17,534
3,21,39... NTRU + KDF 0.760 336,950 1.370 186,816
4,22,40... NTRU Prime + KDF 17.900 14,299 29.672 8,626
5,23,41... CRYSTALS-KYBER + KDF 0.236 1,086,580 0.237 1,080,892
6,24,42... SABER + KDF 0.191 1,338,998 0.176 1,456,172
7,25,43... NewHope + KDF 0.198 1,295,530 0.115 2,225,981
8,26,44... HQC + KDF 1.019 251,181 1.658 154,386
9,27,45... RQC + KDF 2.723 93,990 8.548 29,945
10,28,46... ROLLO + KDF 0.414 617,579 1.649 155,226
11,29,47... LAC + KDF 0.524 488,482 0.713 359,231
12,30,48... ROUND5 + KDF 586.951 436 4.277 59,849
13,31,49... LEDAcrypt + KDF 3.002 85,254 14.510 17,640
14,32,50... NTS-KEM + KDF 0.343 745,936 6.797 37,657
15,33,51... Three Bears + KDF 0.634 403,491 1.877 136,392
16,34,52... Classic McEliece + KDF 0.487 525,156 77.434 3,305
17,35,53... SIKE + KDF 1465.912 174 1808.771 141

0 to 17 Our SKEM: Mean of Latency (ms) 116 120
Our SKEM: Mean of Throughput (bps) 48,312 46,794

18

TABLE 18. PERFORMANCE OF PQCH1R3 ON OUR TESTBED.

#Round Running Components Encaps Decaps
Latency (ms) Throughput (bps) Latency (ms) Throughput (bps)

Setup All 10 KEMs + KDF 345.554 740 469.569 545
0,10,20... RSA-KEM + KDF 0.194 1,317,730 2.263 113,078
1,11,21... BIKE + KDF 0.111 2,315,795 15.349 16,673
2,12,22... FrodoKEM + KDF 3.264 78,406 3.236 79,079
3,13,23... NTRU + KDF 0.317 807,445 0.497 515,232
4,14,24... NTRU Prime + KDF 10.659 24,010 15.989 16,006
5,15,25... CRYSTALS-KYBER + KDF 0.111 2,310,371 0.076 3,356,545
6,16,26... SABER + KDF 0.075 3,421,490 0.064 4,022,549
7,17,27... HQC+ KDF 0.224 1,142,474 0.280 913,797
8,18,28... Classic McEliece + KDF 0.140 1,822,598 20.451 12,513
9,19,29... SIKE + KDF 330.344 774 406.086 630

0 to 9 Our SKEM: Mean of Latency (ms) 34 46
Our SKEM: Mean of Throughput (bps) 74,090 55,120

TABLE 19. PERFORMANCE OF PQCH5R3 ON OUR TESTBED.

#Round Running Components Encaps Decaps
Latency (ms) Throughput (bps) Latency (ms) Throughput (bps)

Setup All 10 KEMs + KDF 1,513.993 169 2,178.728 117
0,10,20... RSA-KEM + KDF 1.005 254,636 192.446 1,330
1,11,21... BIKE + KDF 0.221 1,159,250 68.930 3,713
2,12,22... FrodoKEM + KDF 18.632 13,738 17.732 14,436
3,13,23... NTRU + KDF 0.338 758,326 0.527 485,723
4,14,24... NTRU Prime + KDF 21.649 11,824 29.284 8,741
5,15,25... CRYSTALS-KYBER + KDF 0.176 1,455,437 0.165 1,553,403
6,16,26... SABER + KDF 0.114 2,239,619 0.115 2,228,553
7,17,27... HQC+ KDF 0.594 431,016 0.811 315,457
8,18,28... Classic McEliece + KDF 0.215 1,188,654 72.509 3,530
9,19,29... SIKE + KDF 1512.775 169 1900.031 134

0 to 9 Our SKEM: Mean of Latency (ms) 155 228
Our SKEM: Mean of Throughput (bps) 18,095 12,331

[4] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key exchange for the tls protocol from the ring learning with errors problem,”
in IEEE Security & Privacy, 2015, https://eprint.iacr.org/2014/599.

[5] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum and hybrid key exchange and authentication in tls and ssh,” Cryptology ePrint
Archive, Report 2019/858, 2019, https://eprint.iacr.org/2019/858.

[6] W. Diffie, P. C. V. Oorschot, and M. J. Wiener, “Authentication and authenticated key exchanges,” Designs, Codes and Cryptography, vol. 2, no. 2,
p. 107–125, 1992. [Online]. Available: https://doi.org/10.1007/BF00124891

[7] Y. Dodis and J. Katz, “Chosen-ciphertext security of multiple encryption,” in Proceedings of the Second International Conference on Theory of
Cryptography, ser. TCC’05, 2005, pp. 188–209.

[8] F. Giacon, F. Heuer, and B. Poettering, “Kem combiners,” in Public-Key Cryptography – PKC 2018, 2018, pp. 190–218.

[9] G. HANAOKA, T. MATSUDA, and J. C. N. SCHULDT, “A new combiner for key encapsulation mechanisms,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E102.A, no. 12, pp. 1668–1675, 2019.

[10] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen, “On robust combiners for oblivious transfer and other primitives,” in Proceedings of the
24th Annual International Conference on Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’05, 2005, pp. 96–113.

[11] R. A. P. John M. Kelsey, Shu-jen H. Chang, “Sha-3 derived functions: cshake, kmac, tuplehash and parallelhash.”

[12] T. Matsuda and J. Schuldt, “A new key encapsulation combiner,” in International Symposium on Information Theory and Its Applications (ISITA),
2018, pp. 698–702.

[13] E. Rescorla, “ The Transport Layer Security (TLS) Protocol Version 1.3 (Internet Engineering Task Force),” August 2018. [Online]. Available:
https://www.rfc-editor.org/rfc/pdfrfc/rfc8446.txt.pdf

[14] E. S. and G. O., “On the power of cascade ciphers,” in Advances in Cryptology — Crypto ’84, 1984, pp. 43–50. [Online]. Available:
https://doi.org/10.1007/978-1-4684-4730-9 4

[15] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Post-Quantum Authentication in TLS 1.3: A Performance Study,” in Network and Distributed
Systems Security (NDSS) Symposium, 2020. [Online]. Available: https://eprint.iacr.org/2020/071

[16] D. Stebila, S. Fluhrer, and S. Gueron, “Hybrid key exchange in TLS 1.3 (Work in Progress) ,” Jan 2020. [Online]. Available:
https://datatracker.ietf.org/doc/draft-stebila-tls-hybrid-design

[17] ——, “Design issues for hybrid key exchange in TLS 1.3 (Work in Progress) ,” July 2019. [Online]. Available: https://tools.ietf.org/id/
draft-stebila-tls-hybrid-design-01.html

19

https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2019/858
https://doi.org/10.1007/BF00124891
https://www.rfc-editor.org/rfc/pdfrfc/rfc8446.txt.pdf
https://doi.org/10.1007/978-1-4684-4730-9_4
https://eprint.iacr.org/2020/071
https://datatracker.ietf.org/doc/draft-stebila-tls-hybrid-design
https://tools.ietf.org/id/draft-stebila-tls-hybrid-design-01.html
https://tools.ietf.org/id/draft-stebila-tls-hybrid-design-01.html

Figure 6. Construct attack algorithm Bv on a KEM Ψv , using attack algorithm A on SKEM Ψ[n]

Bv(pk∗v , cv, sv,0, sv,1) where (cv, sv,β) is generated by Ψv.Encaps(pk
∗
v) and sv,1−β is a randomly chosen bit-string with

the same bit-length as sv,b. The security game G1 and G2 will be definded in Appendix B.2.

1) Let b0 = 0, if A wins in G1, otherwise let b0 = 1.
2) Let b1 = 1 if A wins in G2, otherwise let b1 = 0.
3) If b0 = b1 then output β′ = b0; otherwise choose a random bit β′ ∈R {0, 1} and output β′.

Remark: Both b0 and b1 attempt to guess the value of secret bit β, based on the result of Game G1,G2, respectively.

[18] C. Tjhai, M. Tomlinson, G. Bartlett, S. Fluhrer, D. V. Geest, O. Garcia-Morchon, and V. Smyslov, “Framework to Integrate Post-
quantum Key Exchanges into Internet Key Exchange Protocol Version 2 (IKEv2) (Work in Progress) ,” July 2019. [Online]. Available:
https://tools.ietf.org/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04

[19] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith, “Sok: Secure messaging,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 232–249.

[20] Z. Yang, Y. Chen, and S. Luo, “Two-message key exchange with strong security from ideal lattices,” Cryptology ePrint Archive, Report 2018/361,
2018, https://eprint.iacr.org/2018/361.

[21] R. Zhang, G. Hanaoka, J. Shikata, and H. Imai, “On the security of multiple encryption or cca-security+cca-security=cca-security?” in Public Key
Cryptography — PKC ’04, 2004, pp. 360–374. [Online]. Available: https://doi.org/10.1007/978-3-540-24632-9 26

Appendix A.
Proof of Proposition 1

Proof: Let x, x′, y, y′ ∈ GF (p). We have

x · k + y = x′ · k + y′ (mod p) (14)
⇔ (x− x′) · k = y′ − y (mod p). (15)
⇔ y = y′ and x = x′. (16)

As a result, for any two distinct pairs (x, y) 6= (x′, y′), x · k + y 6= x′ · k + y′ (mod p) and thus the two outputs
h(x · k + y) and h(x′ · k + y′) of random oracle h(·) will be independently random.

Appendix B.
Proof of Theorem 1

We assume the ingredient KEM Ψv is secure under KEM-IND-CPA formulation, and all other KEM Ψi, i ∈ [0, n−1]\{v}
might be insecure.

B.1. Entities in our proof: Attack algorithms A and B, Simulator algorithm Sim

Firstly, let A denote the attacking algorithm on SKEM Ψ[n]. Based on A, we intend to construct another attacking
algorithm, denoted as Bv, against KEM Ψv, as in Figure 6. The public key of KEM Ψv is pkv, and the challenging message
in the Game KEM-IND-CPAΨv

Bv (λ) between Bv and Ψv is (cv, sv,0, sv,1). Let β ∈ {0, 1} be the secret bit to be guessed
in this security game KEM-IND-CPAΨv

Bv (λ), and tuple (cv, sv,β) is generated by Ψv.Encaps(pkv) and sv,1−β is randomly
chosen such that it has the same bit-length as sv,β .

Recall that, in the Selected-Session Security formulation, the adversary A is required to commit in the beginning that
in which session (denoted ι-th session) it will launch the attack. In the integer interval [−n, ι], we will find the largest
session number v̂ such that v̂ = v mod n. We also construct a simulator Sim as subroutine in Figure 7, which simulates the
behavior of Ψ[n] in every session identically, excepted that the v̂-th session is manipulated by embedding the challenging
message (cv, sv,0) or (cv, sv,1). We remark that, since the adversary attacks in ι-th session, and our proof should manipulate
in v̂-th session with v̂ ≤ ι, we have to ask the adversary to commit the value of ι in advance.
Claim 2. In the simulator SimA(pkv, c

∗
v, s
∗
v) defined in Figure 7, if the input (c∗v, s

∗
v) = (cv, sv,β) of Sim is generated by

Ψv.Encaps(pkv), then

• the public key generated by Sim.Gen(1λ) and the public key generated by Ψ[n].Gen(1λ) are identically distributed;
• the output of Sim.Encaps(Pk, i, estatei−1) and output of Ψ[n].Encaps(Pk, i, estatei−1) are identically distributed.

20

https://tools.ietf.org/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04
https://eprint.iacr.org/2018/361
https://doi.org/10.1007/978-3-540-24632-9_26

Figure 7. The construction of simulator Sim, which attempts to simulate the security game for KEM Ψ[n] using public key pkv and challenge messages
(c∗v , s

∗
v) of KEM Ψv .

SimA(pkv, c
∗
v, s
∗
v) where v ∈ [0, n− 1]

1) Gen(1λ) Choose p and r in the same way as in Ψ[n].Gen(1λ). For i ∈ [0, n − 1] \ {v}, compute (pki, ski) ←
Ψi.Gen(1λ). Let pk = (r, {pki}i∈[0,n−1]); and sk−v = (sk0, . . . , skv−1,⊥, skv+1, . . . , skn−1). Note that this
simulator does not know the secret key skv corresponding to public key pkv w.r.t. KEM Ψv .

2) Setup(pk, sk−v)

• For i ∈ [1− n, 0], (ci, si)← Ψi mod n.Encaps(pki mod n).
• Let estate0 = dstate0 = (. . . , si, . . .)i∈[1−n,0].

3) Encaps(pk; i, estatei−1)

a) When this algorithm is invoked for the very first time,

• receive (ι, astate) from A(pk);
• initialise the list of key pairs KeyPL← ∅. Here KeyPL is a counterpart of LKeys in Figure 3.

b) Define v̂ as the largest integer in [1− n, ι] such that v̂ ≡ v (mod n). Precisely,

v̂ =

{
ι− (ι mod n) + v; (if v ≤ (ι mod n))
ι− (ι mod n) + v − n (otherwise)

(17)

c) If i = v̂, we set (ci, si) = (c∗v, s
∗
v), to embed the challenge message.

d) If i 6= v̂, (ci, si)← Ψi (mod n).Encaps(pki (mod n)).
e) Parse estatei−1 as (si−n, si−n+1, . . . , si−2, si−1).
f) Set estatei = dstatei = (si−n+1, si−n+2, . . . , si−1, si).
g) Si = h(G(estatei, r)).
h) Let Ci = ci and KeyPL[i] = (Ci, Si).
i) return KeyPL[i].

4) Decaps(sk, C; i, dstatei): If KeyPL[i] is empty, return ⊥. Otherwise, let (Ci, Si) = KeyPL[i]. If C = Ci, then
return Si. Otherwise, return ⊥.

Figure 8. The construction of simulator SimAPRF, which attempts to simulate SimA(pkv , cv , sv,1−β). Here PRFk(a, b) = h(a ·k+ b) is a pseudorandom
function.

SimAPRFk (pkv, c
∗
v) where v ∈ [0, n− 1] and k = sv,1−β

1) Gen(1λ) The same as Step 1) in Figure 7.
2) Setup(pk, sk−v) The same as Step 2) in Figure 7.
3) Encaps(pk; i, estatei−1)

a) The same as Step 3)a in Figure 7.
b) Compute v̂ from ι in the same way as in Step 3)b in Figure 7.
c) If i 6∈ [v̂ − n+ 1, v̂ + n− 1]

i) The same as Step 3)d-3)k.

d) If i ∈ [v̂ − n+ 1, v̂ + n− 1]

i) (ci, si)← Ψi (mod n).Encaps(pki (mod n))
ii) Parse estatei−1 as (si−n, si−n+1, . . . , si−2, si−1).

iii) Set estatei = dstatei = (si−n+1, si−n+2, . . . , si−1, si).
iv) G(estatei, r) =

∑n
l=1 sl+i−n ·r

l = rv̂+n−isv̂+
∑
l∈[1,n]\{v̂+n−i} sl+i−n ·r

l Note that the value of
sv̂ , which is set to value of sv,1−β , is unknown, and all other sj’s are known. Let Ai = rv̂+n−i 6= 0
and Bi =

∑
l∈[1,n]\{v̂+n−i} sl+i−n · r

l.
v) If i 6= v̂, issue a query (Aj , Bj) to OPRFsv,1−β to obtain y = PRFsv,1−β (Aj , Bj).

vi) If i = v̂, send (Av̂, Bv̂) to OPRFsv,1−β to get challenge message y where y = PRFsv,1−β (Aj , Bj)
with probability 0.5 or is randomly chosen with probability 0.5.

vii) Let Si = y, and compute the rest in the same way as above (precisely Step c)vi-viii).

e) return KeyPL[i].

4) Decaps(sk, C; i, dstatei): The same as Step 4) in Figure 7.

21

Claim 3. In the simulator SimA(pkv, c
∗
v, s
∗
v) defined in Figure 7, if the input s∗v = sv,1−β is a uniformly randomly chosen

bit-string with the same length as sv,β , for any j ∈ [v̂, v̂ + n − 1], the j-th shared secret key Sj is computationally
indistinguishable from uniform random bit-string of the same length. Precisely, Sj = h(A · sv̂ + B) ≡c U for some
integers A 6= 0 and B.

Proof: The internal state estatej used to compute Sj is a n-dimensional vector (sj−n+1, sj−n+2, . . . , sj−1, sj).
From j ∈ [v̂, v̂ + n− 1], we derive that j − n+ 1 ≤ v̂ ≤ j and thus sv̂ is a component in the vector estatej . We have

Sj = h(G(estatej , r)) (18)
= h(G(sj−n+1, . . . , sv̂, . . . , sj , r)) (19)

= h(

j∑
i=j−n+1

si · ri−j+n) (20)

= h(A · sv̂ +B), (21)

where sv̂ = sv,1−β is a component of vector esatej , and A = rv̂−j+n 6= 0 and B are computed from other dimensions
in vector estatej except sv̂. Since sv,1−β is uniformly randomly chosen as in Step 4 in Figure 1 and the function G is a
randomness extractor for block-fixing distribution, Sj ≡c U .

B.2. Security Games G0,G1,G2,G3,G4,v

Secondly, we define some security games as below.

G0: Adversary A plays the security game SKEM-IND-CPA(λ) with KEM Ψ[n]. By definition, Pr [G0 ⇒ 1] =

0.5 + AdvSKEM-IND-CPA
Ψ[n],A .

G1: Adversary A plays the security game SKEM-IND-CPA(λ) with simulator SimA(pkv, cv, sv,0). The difference
between G0 and G1 is KEM Ψ[n] is replaced by simulator SimA(pkv, cv, sv,0).

G2: Adversary A plays the security game SKEM-IND-CPA(λ) with simulator SimA(pkv, cv, sv,1). The difference
between G1 and G2 is that the third input of simulator Sim: sv,0 in G1 is replaced by sv,1 in G2, where
(cv, sv,β) is generated by Ψv and sv,1−β is randomly chosen.

G3: Adversary A plays the security game SKEM-IND-CPA(λ) with simulator SimAPRF(sv,1−β ,·)(pkv, cv), which is
defined in Figure 8. The difference between G2 and G3 is that the second player in the security game is changed
from SimA(pkv, cv, sv,1−β) to SimAPRF(sv,1−β ,·)(pkv, cv).

G4,v: Adversary Bv plays the security game KEM-IND-CPA(λ) with KEM scheme Ψv, where v ∈ [0, n − 1] and
algorithm Bv is defined in Figure 6. By definition, Pr [G4,v ⇒ 1] = 0.5 + AdvKEM-IND-CPA

Ψv,Bv .

B.3. Relations among Security Games

Claim 4.

Pr [G0 ⇒ 1] = Pr [G1+β ⇒ 1] (22)

Proof: Recall that in the security game SKEM-IND-CPA(λ) defined in Figure 3, the adversary A will receive the
below messages from the other party, which is KEM Ψ[n] in G0 or simulator Sim(pkv, cv, sv,β) in G1+β :

• In Step 2 of Figure 3, A receives public key pk of the KEM scheme.
• In Step 10 of Figure 3, A receives challenge message (Cι, Sι,0, Sι,1).
• In Step 14 of Figure 3, A receives the response to encapsulation query i.

As stated in Figure 6, (cv, sv,β) is generated by Ψv.Encaps(pkv). Hence, we can apply Claim 2. Consequently, it is easy to
verify that, the messages that A receives from Ψ[n] in game G0, is identically distributed from the messages that A receives
from Sim(pkv, cv, sv,β) in game G1+β . Therefore, the adversary A will have the same probability to win, and Claim 4
holds.
Claim 5.

Pr [G2−β ⇒ 1] = Pr [G3 ⇒ 1] . (23)

Proof: The function Gen and Setup in Figure 7 and Figure 8 are identical. Comparing the function Encaps in Figure 7
and Figure 8,

22

1) If i 6∈ [v̂ − n+ 1, v̂ + n− 1], the two implementations of Encaps are trivially identical;
2) If i ∈ [v̂− n+ 1, v̂+ n− 1], we check the procedure step by step carefully, it is easy to see that the value Sj will

be assigned to the same value, where the only difference is that they are using two different methods to compute
the same target value G(estatej , r).

Figure 9. Construct attack algorithm C on PRF, using attack algorithm A on SKEM Ψ[n]

COPRFk () with oracle access to PRF with secret key k

1) (pkv, skv)← Ψv.Gen(1λ).
2) (c∗v, s

∗
v)← Ψv.Encaps(pkv).

3) Rename s∗v as sv,β and rename the unknown secret key k as sv,1−β . Here the bit-lengths of sv,β and sv,1−β are
equal.

4) Invoke adversary A and SimAPRFk (pkv, c
∗
v) to play game G3. Recall that SimAPRFk (pkv, c

∗
v) will make two types

of queries to oracle OPRFk : (1) Send evaluation query (Ai, Bi) to the oracle and received y = PRFk(Ai, Bi) as
response; (2) Send challenging query (Ai, Bi) to the oracle and get a challenge message y form the oracle, such
that y = PRFk(Ai, Bi) is generated from PRF with probability 0.5, and is independently randomly chosen with
the same bit-length with probability 0.5.

5) If A wins in game G3, then output 1, which means “the received challenging message is PseudoRandom”;
otherwise output 0, which means “the received challenging message is TrueRandom”.

Claim 6. Let C be the attacking algorithm on PRF defined in Figure 9.

0.5−AdvPRF,C ≤ Pr [G3 ⇒ 1] ≤ 0.5 + AdvPRF,C (24)

Proof: Let TR denote the event that the challenging message of PRF is true random; let PR denote the event that the
challenging message of PRF is pseudo-random. Let Pr [C outputs 1|PR] = 0.5+εPR and let Pr [C outputs 0|TR] = 0.5+εTR
where εPR, εTR ≥ 0 are some real numbers.

Then

0.5 + AdvPRF,C = Pr [C breaks PRF]

= Pr [C outputs 1 ∧ PR] + Pr [C outputs 0 ∧ TR]

= Pr [C outputs 1|PR]× Pr [PR] + Pr [C outputs 0|TR]× Pr [TR]

= (0.5 + εPR)× 0.5 + (0.5 + εTR)× 0.5

=0.5 + 0.5(εPR + εTR) (25)

According to the construction of attacking algorithm C on PRF in Figure 9, we have

Pr [G3 ⇒ 1]

= Pr [A wins G3] = Pr [C outputs 1]

= Pr [C outputs 1 ∧ PR] + Pr [C outputs 1 ∧ TR]

= Pr [C outputs 1|PR]× Pr [PR] + Pr [C outputs 1|TR]× Pr [TR]

= (0.5 + εPR)× 0.5 + (1− (0.5 + εTR))× 0.5

=0.5 + 0.5(εPR − εTR) (26)

Since −εPR − εTR ≤ εPR − εTR ≤ εPR + εTR, we have

0.5−AdvPRF,C ≤ Pr [G3 ⇒ 1] ≤ 0.5 + AdvPRF,C (27)

Claim 7.

2 · Pr [G4,v ⇒ 1] = Pr [G1 ⇒ 1] + Pr [G2 ⇒ 1] . (28)

Proof of Claim 7: From the construction of Bv in Figure 6, we have Pr [G4,v ⇒ 1] = Pr[β′ = β]; Pr [G1 ⇒ 1] =
Pr[b0 = β] = 0.5 + ε0 for some real number ε0; Pr [G2 ⇒ 1] = Pr[b1 = β] = 0.5 + ε1 for some real number ε1. .

Therefore, Pr[b0 6= β] = 1− Pr[b0 = β] = 0.5− ε0 and Pr[b1 6= β] = 1− Pr[b1 = β] = 0.5− ε1.

23

Since β, b0, b1 ∈ {0, 1}, we have

Pr[b0 6= b1] = Pr[b0 = β ∧ b1 6= β] + Pr[b0 6= β ∧ b1 = β] (29)
= Pr[b0 = β]× Pr[b1 6= β] + Pr[b0 6= β]× Pr[b1 = β] (30)
=(0.5 + ε0)× (0.5− ε1) + (0.5− ε0)× (0.5 + ε1) (31)
=0.5− 2ε0 · ε1 (32)

Pr[β′ = β] (33)
= Pr[β′ = β ∧ b0 = b1] + Pr[β′ = β ∧ b0 6= b1] (34)
= Pr[b0 = β ∧ b1 = β] + 0.5× Pr[b0 6= b1] (35)
= Pr[b0 = β]× Pr[b1 = β] + 0.5× Pr[b0 6= b1] (36)
=(0.5 + ε0)× (0.5 + ε1) + 0.5× (0.5− 2ε0 · ε1) (37)
=(0.25 + 0.5ε0 + 0.5ε1 + ε0 · ε1) + (0.25− ε0 · ε1) (38)
=0.5 + 0.5ε0 + 0.5ε1 (39)

As a result,

Pr [G4,v ⇒ 1] = Pr[β′ = β]

= 0.5 + 0.5ε0 + 0.5ε1 = 0.5 + 0.5 · (Pr [G1 ⇒ 1]− 0.5)+

0.5 · (Pr [G2 ⇒ 1]− 0.5)

= 0.5 · Pr [G1 ⇒ 1] + 0.5 · Pr [G2 ⇒ 1] . (40)

B.4. Conclusion of Proof of Theorem 1

With all of above claims, we will complete the proof the Theorem 1.
For any bit value β ∈ {0, 1}, the set {1 + β, 2− β} will be identical to the set {1, 2}. Therefore,

Pr [G1+β ⇒ 1] + Pr [G2−β ⇒ 1] = Pr [G1 ⇒ 1] + Pr [G2 ⇒ 1] (41)

Considering Claim 4, Claim 5 and Claim 7, we have

2 · Pr [G4,v ⇒ 1] (42)
= Pr [G1 ⇒ 1] + Pr [G2 ⇒ 1] (43)
= Pr [G1+β ⇒ 1] + Pr [G2−β ⇒ 1] (44)
= Pr [G0 ⇒ 1] + Pr [G3 ⇒ 1] (45)

Recall that Pr [G0 ⇒ 1] = 0.5 + AdvSKEM-IND-CPA
Ψ[n],A and Pr [G4,v ⇒ 1] = 0.5 + AdvKEM-IND-CPA

Ψv,Bv . As a result,

0.5 + AdvSKEM-IND-CPA
Ψ[n],A = Pr [G0 ⇒ 1] (46)

=2 · Pr [G4,v ⇒ 1]− Pr [G3 ⇒ 1] (47)

≤2 · (0.5 + AdvKEM-IND-CPA
Ψv,Bv)− (0.5−AdvPRF,C) (48)

=0.5 + 2AdvKEM-IND-CPA
Ψv,Bv + AdvPRF,C (49)

The proof of Theorem 1 completes.

Appendix C.
Proof of Theorem 3

We say a chosen ciphertext query (i.e. decapsulation query) is “non-trivial”, if the MAC-tag in this ciphertext (or
decapsulation) query is successful forged by an adversary. Otherwise, we call this chosen ciphertext query as “trivial”.
Claim 8. If the conclusion of Theorem 1 holds, then Ψ̂[n] is SKEM-IND-CCA-secure with any polynomial number of trivial

chosen ciphertext queries and with zero non-trivial chosen ciphertext query.

24

Note in a trivial chosen ciphertext (or decapsulation) query where the response is not ⊥, the adversary either submits a
ciphertext which is obtained from some previous encapsulation query, or creates a new ciphertext with a MAC-key that it
knows.
Lemma 5. If the conclusion of Theorem 1 holds, then Ψ̂[n] is SKEM-IND-CCA-secure with ` number of chosen ciphertext

(or decapsulation) query. Precisely,

AdvSKEM-IND-CCA
Ψ̂[n]

(λ) ≤ `AdvUnforgeable
MAC (λ) + (`+ 1)AdvSKEM-IND-CPA

Ψ[n]
(λ) (50)

Proof: Let (εi + 0.5) be the probability that the adversary A′ can win the SKEM-IND-CCA security game with i
number of decapsulation queries. So

ε0 = AdvSKEM-IND-CPA
Ψ[n],A′ (51)

Let wi be the probability that the i-th query is the very first “non-trivial” query among all of first i number of decapsulation
queries.

Recall that the MAC-key kMAC is a substring of shared secret of SKEM Ψ[n], and is computationally indistinguishable
from uniform randomness. Precisely,

kMAC ≈ε0 U. (52)

Therefore, regarding the very first non-trivial decapsulation query with the fist forged MAC, we have

∀i, wi ≤ AdvUnforgeable
MAC + ε0. (53)

ε` + 0.5 = Pr [A′ wins with ` d-queries] (54)
≤ Pr [A′ wins with 0 non-trivial d-queries ∨ ∃`nt non-trivial d-queries with 1 ≤ `nt ≤ `] (55)
≤ Pr [A′ wins with 0 non-trivial d-queries] + Pr [∃`nt non-trivial d-queries with 1 ≤ `nt ≤ `] (56)

≤ (ε0 + 0.5) +
∑̀
j=1

wj (57)

≤ (ε0 + 0.5) + `×
(
AdvUnforgeable

MAC + ε0

)
(58)

As a result,

ε` ≤ `AdvUnforgeable
MAC + (`+ 1)ε0 (59)

25

	Introduction
	Contributions
	Organization

	Related Works
	Robust Combiner
	Parallel Framework of Robust Combiner for KEMs

	Integrate with Existing System

	Formulations
	Robust Combiner
	Security Formulation of Key Exchange Protocol

	Stateful Key Encapsulation Mechanism
	Our Construction
	Fast computation of function G

	Security

	Extend to CCA Security
	Public Key Exchange Protocol
	Who Generates the Private Keys?
	How to Deliver the Public Keys and Ciphertext?
	How to Construct Authenticated Key Exchange Protocol?
	How to Derive a Session Key?
	How to Choose Ingredient KEM?
	Construct a potentially more Secure KEM Scheme
	Comply with the Future Standard

	How to Achieve Forward/Backward Secrecy
	Variant Version of Our Proposed Scheme
	Security Analysis

	Integrate with Existing Systems
	Series Combination
	Parallel Combination

	Experimental Evaluations
	Experimental Set-ups
	Experimental Results
	Our SKEM vs. Existing Stateless KEM combiner
	Post-Quantum vs. Conventional

	Conclusion
	References
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Theorem 1
	Entities in our proof: Attack algorithms A and B, Simulator algorithm Sim
	Security Games G0, G1, G2, G3, G4,v
	Relations among Security Games
	Conclusion of Proof of Theorem 1

	Appendix C: Proof of Theorem 3

