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Abstract—Shor’s quantum algorithm, running in quantum
computers, can efficiently solve integer factorization problem
and discrete logarithm problem in polynomial time. This
poses an urgent and serious threat to long-term security with
recent accelerated evolution of quantum computing. However,
National Institute of Standards and Technology (NIST) plans
to release its standard of post-quantum cryptography between
2022 and 2024. It is crucially important to propose an early
solution, which is likely secure against quantum attacks and
classical attacks, and likely to comply with the future NIST
standard. A robust combiner combines a set of 2 or more
cryptography primitives into a new primitive of the same
type, and guarantees that if anyone of the ingredient primitive
is secure, then the resulting primitive is secure. This work
proposes the first construction of robust combiner for Key
Encapsulation Mechanism (KEM), with optimal amortized per-
formance. From our robust combiner of KEMs, we construct
efficient stateful hybrid Key Exchange Protocol (KEP), which
is more suitable for two parties who will communicate with
each other frequently.

Index Terms—Key Exchange Protocol, Key Encapsulation
Mechanism, Robust Combiner, Security and Performance,
Parallel Combination, Series Combination

1. Introduction

Quantum computers would bring critical threat to almost
all widely adopted cryptography algorithms:

• All of public key cryptography algorithms (e.g.
RSA, Diffie-Hellman, DSA and ECC) relying on
hardness of factorization problem or discrete log
problem, will be broken by Shor’s algorithm in
polynomial time with powerful quantum computers;

• all symmetric cryptography algorithms will have
their security level halved (e.g. AES128 provides
at most 64 bits security, thus insecure, and AES256
provides at most 128 bits security against attackers
with powerful quantum computers), due to Grover’s
algorithm.

In the face to quantum threats, the research community
recommends to:
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• phase out traditional public key cryptography algo-
rithms, and switch to post-quantum cryptography
(PQC), based on hardness of math problems in
lattice, or coding theory, etc, and quantum key dis-
tribution (QKD), based on quantum physics theory;

• phase out symmetric ciphers with short keys (e.g.
128 bits).

NIST competition of post quantum cryptography started in
2017, and plans to select the winner PQC algorithms and
publish the first draft standard of post quantum cryptography
tentatively between 2022 and 2024.

Since the powerful quantum computer which is capable
to execute Shor’s algorithm or Grover’s algorithm, is still
under active development, the generic threat from quantum
attacks seems to be in the future rather than on today. How-
ever, the quantum threat on long term security is immediate
and urgent: The attackers can sniff and archive ciphertext
of our today’s data in the motion, and crack them when
powerful quantum computer becomes available 1 in the
future (say 10 years later), then we will fail to achieve long
term (11+ years) security protection on our today’s data in
the motion. It is an urgent and important task to offer post
quantum security from today, even before NIST standard or
any other International or national standards of post quantum
cryptography come out.

It is difficult and risky to predict which candidate scheme
will win NIST competition of post quantum cryptography. A
wise strategy, is to combine all of these candidate schemes,
and make sure the combined scheme is secure if any one of
the candidate scheme is secure. Such black-box combination
is called “Robust Combiner”, Dodis [6] and Harnik et
al. [9] started to construct robust combiner for public key
encryption and oblivious transfer, respectively, 14 years ago.

Combining n crypto primitives together in a naive way,
will introduce n times overhead in complexity. In this work,
we will propose new constructions of robust combiner for
key encapsulation mechanism (or key exchange protocol),
aiming to optimize the (amortized) performance while pre-
serving security. We will evaluate the security property
of proposed schemes under various security formulation,
including (1)IND-CPA/CCA security formulation and (2)
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forward/backward security and (3) leakage resilient cryptog-
raphy. In contrast, the related works [7], [10] only evaluate
security under IND-CPA/CCA security formulation.

1.1. Contributions

Our main contributions in this work can be summarized
as below.

1) We propose a notion called “randomness blender
function”, as a special type of randomness extractor.
We construct the first randomness blender function
using generalized vandermonde matrix.

2) We propose two robust combiners for key en-
capsulation mechanisms (KEM), following parallel
framework, by combining multiple KEMs 2 to-
gether, in order to be more secure and comply with
future NIST standard of post quantum cryptogra-
phy. Our robust combiners are almost optimal in
amortized time complexity. Particularly, in existing
works [7], [8], [10], the robust combiners of n
number of ingredient KEM schemes, is about n
times slower than the average of these n KEM
schemes. In contrast, the amortized time complexity
of our robust combiners is about as efficient as
average of these n KEM schemes, indicating an
almost n times speedup.

• In our first construction of robust com-
biner, we follow the existing parallel frame-
work [7] using different key derivation func-
tion (a.k.a core function in [7]). We gener-
alize the key derivation function in existing
works [7], [8], [10] to randomness extractor.
Furthermore, we propose to use our ran-
domness blender function as a better key
derivation function, to achieve almost opti-
mal amortized time complexity. In addition,
we also propose to use the combination of
randomness extractor and secure pseudoran-
dom function as the key derivation function.

• In our second construction of robust com-
biner, we modify the parallel framework
of robust combiner of KEMs, so that we
could run a single ingredient KEM scheme
in turn, rather than all n ingredient KEM
schemes, in every session. Compared to the
first construction which generates 256·n bits
shared secret string at once by revoking all
of n ingredient KEM schemes, our second
construction generates 256 bits shared secret
string in every session by revoking a single
ingredient KEM scheme in turn, out of the
n KEM schemes.

3) We construct practical and secure hybrid stateful
key exchange protocols based on our proposed
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KEM schemes, together with refinement and opti-
mization in many detailed aspects of key exchange
protocols, which may have been overlooked in pre-
vious works: For example,

• Should one party (Alice or Bob) generate
all public/private key pairs for the n ingre-
dient KEMs, or each party generates pub-
lic/private key pairs for a different subset of
the n ingredient KEMs?

• How to deliver the public key and ciphertext
to the other party?

• How to achieve authentication, forward or
backward secrecy?

Our solution is more suitable for two parties who
will communicate with each other frequently.

4) We formally define forward/backward secrecy and
compression entropy, to capture security require-
ments on key exchange protocols from different
angles. We compare our solutions with existing key
exchange protocols from various angles of secu-
rity, including IND-CCA/CPA security, authentica-
tion, forward/backward secrecy, and compression
entropy.

5) We propose series framework for hybrid key ex-
change protocols, in addition to widely used paral-
lel framework. We also propose almost-blackbox 3

construction to integrate our proposed schemes with
existing solutions (e.g. TLS/SSL, IKEv2).

6) We implement our proposed solution and run exper-
iments to evaluate the practical performance of our
solutions and confirm the n times speedup, which
is mentioned previously in our second contribution.

We emphasize that, our study of randomness blender func-
tion and compression entropy, may be of independent inter-
ests.

1.2. Organization

The rest of this paper is organized in this way: The next
Section 2 discussed the related works. Section 3 provides
the important definitions to characterize the security features
of key encapsulation mechanism (KEM) or key exchange
protocol (KEP). Then we give the two generic constructions
of robust combiners of key encapsulation mechanism in
Section 4. Next, we construct key exchange protocols in Sec-
tion 5 by adding more optimizations to the robust combiners
of KEM proposed in previous section. We also discuss how
to integrate our solution with existing solutions (e.g. TLS,
IKEv2). We provide our experiment data in Section 7. At
the end, Section 8 closes this paper.

3. Our solution is a blackbox approach, except that we need read and
overwrite the session key of existing solutions, e.g. TLS or IKEv2.



2. Related Works

2.1. Robust Combiner

As early as 1980’s, Even and Goldreich [12] started
the research work of combining multiple symmetric ciphers.
[6], [9], [21] studied combining multiple public key crypto
schemes. Bindel et al. [2] combined multiple signature
scheme.

Recently, Giacon et al. [7] gave a generic parallel frame-
work for robust combiner of key encapsulation mechanisms.
[1], [8], [10] extends the work on parallel combination of
multiple KEM schemes. Here we give a refined and more
complete description of this parallel framework.

2.1.1. Parallel Framework of Robust Combiner for
KEMs. Let Φi’s, i ∈ [0, n − 1] denote the n ingredient
KEM scheme; let Φ denote the resulting robust combiner
for KEM. The public/private keys of Φ will be a collection
of all public/private keys generated by each ingredient KEM
scheme Φi. In the encapsulation algorithm of Φ, we invoke
encapsulation algorithm from each ingredient KEM Φi to
generate (ci, si), and then aggregate all of si, ci together
to compute the secret s ← W (. . . , si, . . . , ci, . . .) for the
combiner KEM Φ. Optionally, we may also compute a
message authentication code t ← T (. . . , si, . . . , ci, . . .) in
order to achieve security under chosen ciphertext attack
(CCA). To design CPA-secure robust combiner of KEM, we
may simply ignore function T by treating it as T (· · · ) = ⊥.
[7] calls such key derivation function W as core function,
while we add the tag function T into this generic framework.

2.2. Integrate with Existing System

Bos et al. [3] proposed a post-quantum key exchange
protocols based on Ring-LWE problem and integrated it
with TLS/SSL. Crockett, Paquin and Stebila [4] devel-
oped prototypes to integrate a subset of 10 post quantum
key exchange protocols submitted to NIST Post-Quantum
Cryptography Standardization competition, with OpenSSL
and OpenSSH. [4] indicated that they failed to integrate
some candidate post-quantum key exchange protocol with
OpenSSL/OpenSSH, since the size of keys or ciphertext is
larger than the maximum size defined in the corresponding
RFC of TLS/SSL or SSH. Both works ( [3], [4]) adopted
a white-box approach for integration: They carefully anal-
yse the structure and information flow in the TLS/SSL
protocol (e.g. ClientHello, ClientKeyExchange,
ServerKeyExchange messages), and have to hack or
modify the implementation (e.g. OpenSSL): (1) Original
TLS/SSL protocol only allows to use a single scheme for
one purpose (e.g. Key Exchange, or Encryption of pay-
load, or Authentication), and does not support hybrid model
which executes two or more schemes for the same purpose
in a single session; (2) Add post-quantum key exchange
protocols to the “ciphersuite” of TLS/SSL; (3) Some im-
plementation of TLS/SSL may introduce a limitation on the
length of certain fields for storage of keys or ciphertext,

which is smaller than the protocol specification in RFC.
But some post-quantum key exchange protocol may have
key or ciphertext size within the scope specified in RFC,
but larger than the max size allowed in the implementation
software of TLS/SSL. Similarly, a very recent work [14]
by Sikeridis, Kampanakis and Devetsikiotis, integrated post-
quantum signature scheme with TLS 1.3 with a white-box
approach.

Based on existing works (e.g. [1], [3], [6], [7], [9], [12],
[21]), Stebila and Fluhrer and Gueron [15], [16] proposed
a draft for support of hybrid key exchange in TLS 1.3.
In addition, Tjhai et al. proposed a draft for Internet Key
Exchange Protocol Version 2 (IKEv2) [17].

3. Formulation

In this section, we introduce the important definitions in
this work.

3.1. Robust Combiner

Definition 1 (Robust Combiner [9] (Informal)). A (k, n)-
Robust Combiner for a cryptographic primitive P is a
construction that takes as input n ingredient schemes for
P and combines them into one scheme such that if at
least k of the candidates indeed implement P then the
combiner also implements P .

3.2. Security Formulation of Key Exchange Proto-
col

In a security formulation, an adversary is characterized
in two orthogonal dimensions:

1) Information

a) what information is given to the adversary,
e.g. ciphertext only attack, known plaintext
attack, side channel leakage;

b) what information that the adversary can
feed into the crypto system, e.g. (adap-
tively) chosen plaintext/ciphertext attack,
fault injection attack.

2) Computation power. E.g. Probabilistic polynomial
algorithm running in classical Turing machine
equivalent computer, or PPT algorithm running in
quantum computer.

The typical security formulations for Key Encapsulation
Mechanism or Key Exchange Protocol include, computa-
tional indistinguishability under chosen plaintext or cipher-
text attack model (a.k.a. IND-CPA, IND-CCA), and for-
ward/backward secrecy. The formulation of IND-CAP and
IND-CCA for KEM is well known and can be found in [7],
[10]. Unger et al. [18] summarized security features for se-
cure message communications, including forward/backward
secrecy, and stated that, “the terms are controversial and
vague in literature [5]”. In this work, we give a formal



definition of forward secrecy and backward secrecy for key
exchange protocols.
Definition 2 (Forward Secrecy). Suppose we run a KEM

scheme Φ to generate (N + 1) session keys in se-
quence. Let TRANSCRIPT denote the collection of all
public message exchanged during the generation of these
(N + 1) session keys. Let α(·) ∈ [0, 1] denote a real-
valued function. We say the KEM scheme Φ provides
α(N)-forward-secrecy, if the leakage of secret key (long
term secret key and session key) at session (N + 1),
together with TRANSCRIPT, can lead to fully or partial
leakage of at most (1 − α(N)) · N number of session
keys before session N + 1. We say Φ provides perfect
forward secrecy, if the corresponding α(N) = 1.

Definition 3 (Backward Secrecy). Suppose we run a KEM
scheme Φ to generate (N + 1) sessions keys in se-
quence. Let TRANSCRIPT denote the collection of all
public message exchanged during the generation of these
(N + 1) session keys. Let β(·) ∈ [0, 1] denote a real-
valued function. We say the KEM scheme Φ provides
β(N)-backward-secrecy, if the leakage of secret key
(long term secret key and session key) at some session
i ∈ [1, N + 1], together with TRANSCRIPT, can lead to
fully or partial leakage of at most (1−β(N))·N number
of session keys after session i. We say Φ provides perfect
backward secrecy, if the corresponding β(N) = 1.

3.3. Compression Entropy

Inspired by Yao’s Entropy, and Xu and Zhou [19], we
propose a notion of “Compression Entropy”, to capture the
security strength of leakage resilient cryptography against
side-channel attack or covert channel attack.
Definition 4 (Compression Entropy or Extended Yao’s

Entropy). Let function f : {0, 1}m0 × {0, 1}m1 →
{0, 1}n0 × {0, 1}n1 be f(x; a) = (y; b), where both x
and y are kept private and, all of a and b and description
of function f are public.

• Function f has at least k bits compression-entropy in
its output w.r.t. the distribution D over {0, 1}m0+m1 ,
denoted as ΥDε,t(fm0,n0

) ≥ k, if for any t-time
compression algorithm C and t-time decompression
algorithm D with C(· · · ) ∈ {0, 1}l

Pr
(x,a)∼D

[D(C(x; a), a, b) = y] ≤ 2l−k + ε (1)

Shortly, we may say f has at least k bits
compression-entropy (w.r.t. distribution D).

• Function f has at most l bits compression entropy, in
its output w.r.t. the distribution D over {0, 1}m0+m1 ,
denoted as ΥDε,t(f) ≤ l, if there exist some t-time
compression algorithm C and t-time decompression
algorithm D with C(· · · ) ∈ {0, 1}l,

Pr
(x,a)∼D

[D(C(x; a), a, b) = y] ≥ 1− ε (2)

Shortly, we may say f has at most l bits
compression-entropy (w.r.t. distribution D).

• Compression-entropy rate of function f w.r.t. distri-
bution D is defined as

υDε,t =
Υε,t
D (fm0,n0

)

n0
(3)

Proposition 1 (Monotonic in parameter ε). If ∆ > 0, then

ΥDε,t(f) ≤ ΥDε+∆,t(f). (4)

Proposition 2 (Relation with Yao’s Entropy (1)). Let iden-
tity function I(x;⊥) = (x;⊥). We have

Υ(I) = HYao(x) (5)

Proposition 3 (Relation with Yao’s Entropy (2)). For any
function f(x; a) = (y; b) as defined in Definition 4, vari-
able (x, a) follows the distribution D, and distribution of
y is determined by function f together with distribution
D, we have

HYao
ε,t (y) ≥ ΥDε,t(f) ≥ H∞(y). (6)

Note H∞(y) denotes the min-entropy of variable y.

Proposition 4 (Relation with Conditional Yao’s Entropy).
Let f(⊥; a) = (y;⊥) and variable a follows distribution
D. We have

HYao
ε,t (y|a) = ΥDε,t(f). (7)

Lemma 1 (Separation from Yao’s Entropy). For any pos-
itive integer c ≥ λ and any polynomial poly(c) ≥ c,
there exists some polynomial time computable function
f(x; a) = (y; b), such that

Υ(f) ≤ c; (8)
HYao(y) ≥ poly(λ) (9)

3.4. Randomness Blender Function

We define randomness blender function, which (infor-
mally) converts an input string with k bits entropy some-
where to an output string with k bits entropy everywhere.

Definition 5 (Randomness Blender). Let (a0, · · · , an−1) ∈
{0, 1}ρ·n be a sequence of n independent ran-
dom variables ai ∈ {0, 1}ρ and (b0, · · · , bn−1) =
f(a0, · · · , an−1; r) with each bi ∈ {0, 1}ρ

′
(ρ′ ≥ ρ).

We say function f is (ε, δ)-Randomness Blender w.r.t.
block size ρ, if the following conditions hold

• for any ` ∈ [1, n], if there are ` distinct ai’s with
joint Shannon entropy equal to ` · ρ bits, then with
probability at least (1− ε), any subset of ` distinct
bj’s will have joint Shannon entropy ≥ (1− δ)`ρ.



Lemma 2. Let polynomial P~a(x) =
∑n−1

i=0 aix
i+1 over a

finite field GF (p) with prime order p. We define function
F as

F(~a; r) = (P~a(r),P~a(r + 1), · · · ,P~a(r + n− 1))
(10)

F is a (ε, δ)-Randomness Blender, where ε is negligible,
and δ = 0.

The above lemma can be proved from results in [13].

4. Key Encapsulation Mechanisms

Key Encapsulation Mechanism is a public key cryptog-
raphy primitive, closely related to public key encryption. We
can construct a key encapsulation mechanism by applying
public key encryption on a (uniformly) random plaintext.
In the other direction, we can also construct a public key
encryption by simply combining key encapsulation mech-
anism and one-time pad cipher. Combination of the above
two ideas is a generic way to construct CCA-secure PKE
from CPA-secure PKE. Key encapsulation mechanism is
also widely used as key exchange protocol. In Jan 2019,
17 proposals of KEM/PKE schemes are selected to enter
the second round of NIST competition of post quantum
cryptography.
Definition 6 (Key Encapsulation Mechanism). A KEM

scheme consists of 3 algorithms (Gen,Encaps,Decaps),
described as below

• Gen(1λ)→ (pk, sk).
• Encaps(pk)→ (c, s).
• Decaps(sk, c)→ s.

Given n number of ingredient KEM schemes Φi, i =
0, 1, 2, . . . , n−1. We will propose two generic constructions,
denoted as Φ and Ψ, of stateful KEM schemes, following the
parallel framework with core 4 function (or key derivation
function ) F and G respectively, where functions F and
G will be constructed and studied later in this paper. In
fact, our proposed KEM schemes are robust combiners for
KEM. Without loss of generality, we assume: (1) each KEM
scheme Φi will output ` bits shared secret key (i.e. s) in
every invocation; (2) the two communication parties, say
Alice and Bob, have already authenticated the identity of
each other before running KEM schemes; (3) each party
may maintain separate long term status for different fre-
quently contacted parties. We aim to achieve good atomized
complexity for two frequently contacted parties.

4.1. The First Generic Construction Φ with Key
Derivation Function F

We denote this construction as Φ[F, n,m], which takes
a function F :

(
{0, 1}`0

)n × {0, 1}`0 → (
{0, 1}`1

)m
, and

n number of KEM schemes Φi’s, i ∈ [0, n− 1], as building

4. Recall that the concept of parallel framework of robust combiner and
core function are briefed in Section 2.

Figure 1. Illustration of Constructions of Robust Combiner from 3 Ingre-
dient KEMs. Typically, the key derivation function is much more efficient
than algorithm Gen,Encaps,Decaps in a KEM scheme.

(a) Robust combiner in existing works [7], [8], [10] adopts XOR function as
an implicit randomness extractor

(b) Our first construction: This work proposes randomness blender function
as key derivation function in robust combiner for KEMs

(c) Our second construction:This work modifies the parallel framework of
robust combiner

blocks, and generate and cache m number of bit-strings in
{0, 1}`1 at once. We remark that, in the below construction,
optionally, a message authentication code will be generated
for every ciphertext, in order to achieve security under
chosen ciphertext attack (CCA) model.



We define the three algorithms (Gen,Encaps,Decaps) as
below. We also illustrate this construction in Figure 2(b).
Φ.Gen(1λ)

• ∀i ∈ [0, n− 1], (pki, ski)← Φi.Gen(1λ).
• Let pk ← (. . . , pki, . . . )i∈[0,n−1].
• Let sk ← (. . . , ski, . . .)i∈[0,n−1].
• Output (pk, sk).

Φ.Encaps(pk; r)

• ∀i ∈ [0, n− 1], (ci, si)← Φi.Encaps(pki).
• Compute r̄ ← h0(r, c0, . . . , cn−1).
• Compute (x0, . . . , xm−1)← F (s0, . . . , sn−1, r̄).
• Compute5 σ ← MACs0,...,sn−1

(r, c0, . . . , cn−1).
• Compute s← ( h1(x0), . . . , h1(xm−1) ).
• Compute c← (σ, r, c0, . . . , cn−1).
• Output (s, c).

Φ.Decaps(sk, c)

• (σ, r, c0, . . . , cn−1)← c.
• ∀i ∈ [0, n− 1], si ← Φi.Decaps(ski, ci).
• Compute r̄ ← h0(r, c0, . . . , cn−1).
• Compute (x0, . . . , xm−1)← F (s0, . . . , sn−1, r̄).
• If σ is a valid MAC for message (r, c0, . . . , cn−1)

w.r.t. key (s0, . . . , sn−1), compute and output
s← (h1(x0), . . . , h1(xm−1)). Otherwise, output ⊥.

4.2. The Second Generic Construction Ψ with Key
Derivation Function G

We denote this construction as Ψ[G,n], which takes
a function G :

(
{0, 1}`0

)n × {0, 1}`0 → {0, 1}`1 and n
number of KEM schemes Φi’s, i ∈ [0, n − 1], as building
blocks.

We define the three algorithms (Gen,Encaps,Decaps) as
below. We also illustrate this construction in Figure 2(c).
Ψ.Gen(1λ)

• ∀i ∈ [0, n− 1], (pki, ski)← Φi.Gen(1λ).
• Let pk ← (. . . , pki, . . . )i∈[0,n−1].
• Let sk ← (. . . , ski, . . .)i∈[0,n−1].
• Output (pk, sk).

Ψ.Encaps(pk; r)

• This algorithm maintains two state variables:

– COUNT, an integer initialized to 0 when this
algorithm is invoked for the first time, and

– CACHE, a list of exactly n elements from
{0, 1}`1 .

• If COUNT is zero, initialize the state variable CACHE
as below:

– ∀i ∈ [0, n− 1], (ci, si)← Φi.Encaps(pki).
– Initialize CACHE = (s0, . . . , sn−1).
– Compute s = h1(G(CACHE, r)).

5. Optional step.

– Increment COUNT by 1 and output
c = (0, r, c0, . . . , cn−1) and s.

• If COUNT ≥ 1:

– Let i = COUNT (mod n), and compute
(c′i, s

′
i)← Φi.Encaps(pki).

– Update the item si in CACHE: si ← s′i.
– Compute s = h1(G(CACHE; r)).
– Output c = (COUNT, c′i, r) and s. Increment

COUNT by 1.

Ψ.Decaps(sk, c)

• This algorithm maintains a state variable CACHE
which is a list of exactly n elements from {0, 1}`1 .

• If c = (0, r, c0, . . . , cn−1):

– ∀i ∈ [0, n− 1], si ← Φi.Decaps(ski, ci).
– Initialize the state variable CACHE ←

(. . . si . . .)i∈[0,n−1].
– Compute s = h1(G(CACHE, r)) and output

s.

• If c is (COUNT, c′i, r):

– Let i = COUNT (mod n) and compute s′i =
Φi.Decaps(ski, c

′
i).

– Update the item si in CACHE: si ← s′i.
– Compute and output s = h1(G(CACHE, r)).

4.3. Instantiation of Function F and G

We recommend SHA256, SHA512, or SHA3 function
to take the role of hash function h0, h1 in the above con-
structions.

4.3.1. Randomness Extractor and Pseudorandom Func-
tion. We observe that, the collection of all secretes si gen-
erated by ingredient KEM Φi, follows block-fixing distribu-
tion, in the view of a computationally bounded adversary:
If KEM scheme Φi is secure against the adversary, the
secret value si will be random; otherwise, the value si
is considered as a constant in the view of the adversary.
Existing works [7], [8], [10] proposed to apply exclusive-or
(XOR) operator to aggregate all secret values si’s. In fact,
XOR function is an extremely efficient randomness extractor
for block-fixing distribution. Thus, these existing works (e.g.
[7], [8], [10]) can be considered as a special case of our first
construction Φ[Ext, n, 1], where Ext denotes a randomness
extractor.

In our second construction, one possible choice of func-
tion G(CACHE, r) could be a randomness extractor function
Ext with input random variable CACHE and random seed r.

G0(. . . , si, . . . , r) = Ext(. . . , si, . . . ; r) (11)

We will denote the second construction instantiated with the
above function G0 as Ψ[Ext, n].



One possible choice for function F in our first construc-
tion could be a combination of randomness extractor and
cryptographically secure pseudorandom function Prf.

F0(. . . , si, . . . , r) = (. . . ,Prfu(i), . . .)i∈[0,m−1] (12)

where u← G0(. . . si . . . , r).
We will denote the second construction instantiated with

the above function F0 as Φ[Ext + Prf, n,m].

4.3.2. Randomness Blender Function. An alternative
choice of F and G could be randomness blender function,
defined in this paper.

F1(. . . , si, . . . , r) = Blender(. . . , si, . . . , r) (13)
G1(. . . , si, . . . , r) = Blender(. . . , si, . . . , r)[0] (14)

where notation V [0] denotes the first element in the vector
V .

We construct G1 and F1 as below.

G1(. . . , si, . . . , r) =

n−1∑
i=0

si · ri+1 (15)

F1(. . . , si, . . . , r) = (. . . G1(. . . , si, . . . , r + j) . . .)j∈[0,t−1]

= (. . . , si, . . .)×Mr (16)

where the above computation is over a finite filed (e.g.
GF (p) with prime order p) and Mr is a Generalized
Vandermonde Matrix. Note that, F1 is just the randomness
blender function defined in Lemma 2.

In our prototype implementation, we will choose
Mersenne prime in the form of p = 2q − 1 with both p and
q being prime numbers, to achieve faster modulo operation
with modulus p.

4.4. Security

Theorem 3. Assume h0 is a cryptographically secure
hash function and h1 be an identity function. Then
Φ[Ext, n, 1] is a (1, n)-Robust Combiner for KEM w.r.t.
IND-CPA/CCA security formulation, where the function
F in scheme Φ is instantiated with a randomness extrac-
tor Ext.

Theorem 4. Assume h0 is a cryptographically secure
hash function and h1 is a random oracle. Then
Φ[Blender, n, n] is a (1, n)-Robust Combiner for KEM
w.r.t. IND-CPA/CCA security formulation, where the
function F in scheme Φ is instantiated with a random-
ness blender function Blender .

Theorem 5. Assume h0 is a cryptographically secure hash
function and h1 is a random oracle. Then Φ[Ext +
Prf, n, n] is a (1, n)-Robust Combiner for KEM w.r.t.
IND-CPA/CCA security formulation, where the function
F in scheme Φ is instantiated with a combination of
randomness extractor Ext and a secure pseudorandom
function Prf.

Theorem 6. Assume h0 is a cryptographically secure
hash function and h1 is a random oracle. Then
Ψ[Blender[0], n] is a (1, n)-Robust Combiner for KEM
w.r.t. IND-CPA/CCA security formulation, where the
function G in scheme Ψ is instantiated with the first
element Blender[0] in the output vector of function
Blender.

Theorem 7. Let f(sk; c) = (Φ[Blender, n, n].Decaps(sk, c),
⊥). The compression entropy Υε,t(f) ≥ m × log(1/ε)
if m number of ingredient KEM schemes are (t, ε)-
secure (i.e. any probabilistic t-time adversary can have
advantage at most ε to break the targeted scheme).

Theorem 8. Let f(sk; c) = (Φ[Ext +
Prf, n, n].Decaps(sk, c), ⊥). The compression entropy
Υε,t(f) ≤ `1 if m number of ingredient KEM schemes
are (t, ε)-secure (i.e. any probabilistic t-time adversary
can have advantage at most ε to break the targeted
scheme).

The above two theorems shows that our randomness blender
function is much better than the combination of randomness
extractor and pseudorandom function, when constructing
robust combiner of KEM by following our first construction
framework.

We compare our proposed robust combiner of KEMs
with related works in Table 1.

5. Public Key Exchange Protocol

Public key exchange protocol aims to establish a shared
secret key between two parties (Alice and Bob) by exchang-
ing some messages over an insecure public communication
channel. It can be implemented by applying key encapsula-
tion mechanism in a straightforward manner with one round
of communication (as in Table 2).

Alternatively, key exchange protocol can also be imple-
mented using different methods and with one or more rounds
of communication, for example, Quantum Key Distribution
protocol, based on quantum physical theory. Compared with
key encapsulation mechanism, public key exchange protocol
may have more security requirements beyond IND-CPA
or IND-CCA security: Mutual authentication between the
two parties and forward secrecy. According to Wikipedia 6,
“TLS 1.3 leaves ephemeral Diffie–Hellman as the only key
exchange mechanism to provide forward secrecy” [11] and
“OpenSSL supports forward secrecy using elliptic curve
Diffie–Hellman since version 1.0, with a computational
overhead of approximately 15% for the initial handshake 7”.

Typically, in almost all real world applications, public
key exchange protocols may be stateless: The two parties
Alice and Bob do not maintain a long term dynamic secret
internal status, beyond the possible long term static private
key. TLS Session Resumption 8 is an example of stateful

6. https://en.wikipedia.org/wiki/Forward secrecy#Protocols
7. https://security.googleblog.com/2011/11/

protecting-data-for-long-term-with.html
8. https://tools.ietf.org/html/rfc5077

https://en.wikipedia.org/wiki/Forward_secrecy#Protocols
https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html
https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html
https://tools.ietf.org/html/rfc5077


TABLE 1. COMPARISON OF CONSTRUCTION OF KEM COMBINERS IN EXISTING WORKS.

Scheme core function W tag function T Security
[7]

⊕
i si ⊥ CPA, SM

h(
⊕
i si, c0, . . . , cn−1) ⊥ CCA, ROM

h(. . . si . . . ci . . .) ⊥ CCA, ROM
h(πsn−1 (. . . πs0 (0)), c0‖ . . . ‖cn−1) ⊥ CCA, ROM or ICM⊕

i Prf(si, c0, . . . cn−1) ⊥ CCA, SM
[1], [8], [10] k0 where (k0, k1)←

⊕
i si MACk1 (. . . ci . . .) CCA, SM

[1] Prf(dualPrf(s0, s1), c0, c1) ⊥ CCA, SM
[3], [4] Kdf(s0‖s1) ⊥ No claims

[4] Kdf(s0 ⊕ s1) ⊥ No claims
Our constructions Φ,Ψ Randomness Extractor + Prf, or Randomness Blender function MAC of all ciphertexts CCA, ROM

Note: [1] only combines two ingredient KEM schemes. dualPrf(s0, s1) is random if either s0 or s1 is random. ROM: Random Oracle Model; SM:
Standard Model; ICM: Ideal Cipher Mode; Prf: Pseudorandom Function; Kdf: Key Derivation Function

TABLE 2. PUBLIC KEY EXCHANGE BETWEEN ALICE AND BOB USING
KEY ENCAPSULATION MECHANISM

Setup: Alice generates a pair of keys (pk, sk) ← KeyGen(1λ), and
distributes public key pk to Bob (via a PKI system).

B1: Bob computes (c, s) ← Encaps(pk) and sends the ciphertext
c to Alice (typically via an insecure public communication
channel).

A1: Alice recovers the secret s← Decaps(sk, c).

key exchange protocol, but is not widely adopted yet. In this
work, we are interested in key exchange between two parties
who want to communicate securely and frequently, and will
propose stateful hybrid key exchange protocol with good at-
omized complexity by combining existing key encapsulation
mechanisms/public key exchange protocols. Our proposals
may have one or more rounds of communication.

Typically, there will be two different settings of Key
Exchange Protocols, which may have different requirements
in performance:

• Server-Client mode: In this setting, the goal is to
maximize the number of concurrent secure connec-
tion to the server. Thus, in a key exchange protocol
between a server and a client, we may attempt to
distribute more workload to client side and reduce
the burden on server side. Examples include https,
SSH, and sftp.

• Peer to Peer mode: In this setting, we may attempt
to distribute almost equal workload to the two peers.
For example, point to point encryption gateways
between two data centres or two branch offices of
the same organization.

The construction of key exchange protocol from key
encapsulation mechanism in Table 2 looks very simple and
straightforward. For hybrid key exchange protocol, we will
explore details in Table 2 and attempt to refine and optimize
them, in order to achieve better performance and/or security.

5.1. Who Generates the Private Keys?

Typically and possibly implicitly, in exiting KEM com-
biners [1], [7], [10], one party (e.g. Alice) will generate all

private keys sk ← {ski}i, and the other party (e.g. Bob)
has access to the public keys pk ← {pki}i. To generate a
new shared key between Alice and Bob, in the first step,
Bob will compute (c, s) ← Encaps(pk) and passes c to
Alice; in the second step, Alice will recover the same value
s← Dec(sk, c). This naive solution has some drawbacks:

• from security point of view, Alice didn’t authenticate
the identity of Bob;

• from performance point of view, Alice’s computa-
tion of Decaps has to start after Bob completes his
computation of Encaps, since the input c of Decaps
is the output of Encaps.

Our solution is to distribute the responsibility and work-
load of key generation to both parties. Particularly, we define
a subset S ⊂ [0, n−1] of indices, and denote its complement
set as S̄ ← [0, n − 1] \ S. For each i ∈ S, Alice generates
the private key si ← Φi.KeyGen(1λ); for each i ∈ S̄, Bob
generates the private key si ← Φi.KeyGen(1λ). To generate
a shared key, Alice and Bob can compute in parallel as
below

• in the first step, Bob and Alice independently com-
putes (ci, si)← Φi.Encaps(pki) for i ∈ S and i ∈ S̄
respectively;

• in the second step, Alice and Bob independently
computes si ← Φi.Decaps(ski, ci) for i ∈ S and
i ∈ S̄ respectively.

The next question is how to find a proper set S? From
security point of view, both set {Φi : i ∈ S} and the
complement set {Φi : i ∈ S̄} should contain KEM schemes
Φi based on various hard problems in lattice, coding theory,
multi-variable polynomial, etc. From performance point of
view, the choice of set S should roughly equally distribute
the computation workload to Alice and Bob, in the peer to
peer setting; or more workload to the client, in the server-
client setting.

5.2. How to Deliver the Public Keys and Cipher-
text?

In typical application of public key cryptography, the
public key is simply made available to everyone, as the name



“public key” suggests. So is the ciphertext.
However, to allow KEM or KEP to work, it is not

necessary to let any third party, beyond Alice and Bob, know
about Alice’s and Bob’s public keys. Therefore, we intend
to exchange public keys between Alice and Bob using a
secure channel, established using another secure public key
exchange protocol, to achieve two layer of defence (See
Table 3). This combination method can be treated as a
generic series KEP combiner framework compared to the
parallel KEM combiner framework [7], [10].

TABLE 3. SERIES COMBINATION OF TWO KEY EXCHANGE
PROTOCOLS Φ0 AND Φ1

A1, B1: Alice and Bob interactively run key exchange protocol Φ0 to
establish a secure and authenticated channel with session key
k0.

A2, B2: Within the secure and authenticated channel with session key
k0, Alice and Bob interactively run key exchange protocol Φ1 to
establish another secure channel with session key k1. Then Alice
and Bob will communicate securely over this secure channel with
session key k1.

• Both public key and ciphertext of Φ1 will be delivered
over the secure channel with session key k0.

In the series combination of key exchange protocol
showed in Table 3, the ingredient KEP scheme Φ0 and Φ1

can be any key exchange protocol:

1) Key Exchange Protocol derived from Key Encap-
sulation Mechanism, or

2) Quantum Key Distribution (QKD), or
3) other ad-hoc KEP.

In case that QKD and One Time Pad are applied to
establish the first secure channel with session key k0, which
is (quantum) informationally secure, adversary could not get
the public keys or ciphertext for the second KEP scheme Φ1,
from sniffed information, even with unlimited computation
power, not mention the corresponding private keys. By com-
bining the QKD and Post Quantum Crypto Key Exchange
protocol in series combination framework (as in Table 3),
such that QKD is applied only for once to securely deliver
the public key and first ciphertext of the PQC KEP scheme,
and the PQC KEP scheme runs again and again to generate
sessions keys for different sessions, we could achieve good
balance between security and cost: The customer could
enjoy quantum informational security by leasing the QKD
hardware for a short time with much lower cost, rather than
purchasing them.

5.3. How to Construct Authenticated Key Ex-
change Protocol?

It is well known that, the diffie-hellman key exchange
protocol, is not authenticated and thus suffering from man-
in-the-middle attack. If two parties communicate very fre-
quently, starting from the second session, we could deliver
all messages of the key exchange protocol using the secure

and authenticated channel established in the previous ses-
sion. For the first session, the authentication of each party
can be done with help of public key infrastructure (PKI).

5.4. How to Derive a Session Key?

Let ki denote the session key for the i-th session. Let
yi+1 denote the output of KEM scheme for the (i + 1)-th
session. We will derive the session key ki+1 as below

ki+1 ← h(k0, . . . , ki, yi+1). (17)

The advantage of the above method is that, the current
session key is dependent on all previous session keys, which
are in turn dependent on all messages exchanged between
Alice and Bob.

The naive method to compute the above Equation (17),
requires Alice and Bob to keep record all of previous session
keys as an internal state, which will have linear storage
complexity for internal secret status, and injure the forward
secrecy.

Our solution is to maintain only a constant size of
aggregation value of all previous history session keys, from
which we can derive the new session key as defined in the
above equation (17). The key idea is stated in the below
claim.

Claim 1. Let h ∈ {SHA256, SHA512, SHA3}. There exist 3
efficient functions f0, f1, f2 with constant output size,
such that, for any bit string x and y,

h(x) = f1(f0(x)) (18)
f0(x‖y) = f2(f0(x), y) (19)

The above claim is related to but not identical to the
length extension attack on SHA2. It is a natural consequence
of any efficient hash function which requires only constant
memory and consume all input bits in one pass from left to
right.

5.5. How to Choose Ingredient KEM or KEP
Schemes?

Typically, there may be two reasons to combine multiple
KEM/KEP schemes.

5.5.1. Construct a potentially more Secure KEM/KEP
Scheme. Since the hard problems behind post quantum
cryptography are quite young, compared to factorization of
large integer and discrete log problem, it is a good idea
to combine post quantum KEM schemes based on vari-
ous quantum resistant hard problem assumptions in lattice,
coding theory, etc. One may choose not only candidate
schemes from ongoing NIST competition, but also solid
works (e.g. [3], [20]) in post quantum KEM/KEP, which
are not submitted to NIST competition (e.g. proposed after
the deadline of NIST competition).



5.5.2. Comply with the Future Standard. NIST standard
may come out tentatively between 2022 to 2024. At the
time of writing, the NIST competition of post quantum
cryptography is in the second round with 17 short listed
candidate KEM/KEP proposals. We can combine all of these
KEM schemes together with some classical KEM (e.g. RSA,
DH) to comply with both current and future standards. Note
that, looking back the history of NIST competition of AES
and SHA3, the winner candidate scheme is not allowed
to make significant changes between its final standardized
version and its submitted version, since necessary significant
change is a hint of immature design.

5.6. How to Achieve Forward/Backward Secrecy

Just like ephemeral diffie-hellman key exchange protocol
provides prefect forward secrecy, our KEM scheme can also
achieve forward/backward secrecy by frequently refresh the
public/private key pairs for KEM scheme, especially for our
second construction Ψ: In every session, run an ingredient
KEM scheme and refresh its public/private key pair. So a
fast key generation method is desirable for this purpose. The
perform can be found from Table 18 and Table 20.

5.7. Variant Version of Our Proposed Scheme

It is easy to see that, similar to RSA scheme, our first
construction Φ in Section 4.1 and second construction Ψ in
Section 4.2 cannot achieve forward or backward secrecy. To
achieve forward/backward secrecy, we have to keep refresh-
ing our public/private key pairs, just like Diffie-Hellman
key exchange protocol. Let Ψ′ denote the variant version
of our second construction Ψ, such that, all refinement and
optimization ideas in this Section 5 applies and one party
refreshes the public/private key pair for ingredient scheme
Φi (mod n) at the beginning of each session i and sends the
new public key to the other party via the existing secure and
authenticated channel. We compare our proposed scheme Ψ′

with existing key exchange protocols from security aspect in
Table 4 and from performance aspect in Table 5. Note that
the workload of 17 candidate PQC KEMs are distributed to
client and server as in Table 6.

5.7.1. Security Analysis.

Theorem 9. Assume at least 1 out of n ingredient KEM
schemes is secure against both classical and quantum at-
tacks. The variant version Ψ′ of our second construction
achieves α(N)-forward secrecy and β(N)-backward se-
crecy with

α(N) = 1; (20)
β(N) ≥ 1− (n− 1)/N. (21)

against polynomial time classical or quantum adversary.

6. Integrate with Existing Systems

How to integrate post-quantum cryptography (e.g. key
exchange protocol) with existing widely deployed protocols,
like TLS/SSL, IPsec, and SSH, is an interesting and im-
portant problem. It may have large impact on how quickly
post-quantum cryptography can be adopted widely in real
world applications, and benefit most users.

Recall that, in Section 2, we reviewed that existing
works [3], [4], [15], [17] adopt a white-box strategy to
integrate post quantum key exchange protocols with existing
system like TLS/SSL and IKEv2 for IPsec. In this work,
we suggest two simpler and almost blackbox approaches to
integrate any new Key Exchange Protocol (e.g. our proposed
hybrid key exchange protocol) with existing protocols, like
TLS/SSL, SSH, and IPsec:

• One is following parallel combiner framework and
• the other is following series combiner framework.

Fist of all, we implement our proposed key ex-
change protocol independently from existing protocols (e.g.
TLS/SSL, IPsec): We decide the actual step by step interac-
tions between two parties, and we choose how to represent
our data (e.g crypto key, ciphertext, parameters) and send
them over Internet. Furthermore, the implementation of our
proposed key exchange protocol is not necessary to change
adaptively with every new version of implementations of
existing protocols.

6.1. Series Combination

The procedure of series combination of existing security
protocol (e.g. TLS/SSL, SSH, IPsec) and our key exchange
protocol is described as below and illustrated in Figure 3(a).

1) Alice and Bob run the key exchange part of existing
protocol (denoted as “Π.kep” in Figure 3(a)) as
usual to establish a secure channel with session
key k0 (denoted as “Π.sec channel(k0)” in Fig-
ure 3(a)). In case that the existing protocol adopts
RSA or Diffie-Hellman as key exchange protocol,
this secure channel will not be quantum-resistant.

2) Within this secure channel with session key k0,
Alice and Bob run our implementation of new
key exchange protocols (denoted as “KEP2” in
Figure 3(a)) to establish another shared key k1.

3) As a result, Alice and Bob establish another secure
channel with session key k2 derived 9 from both k0

and k1.
4) Alice and Bob deliver the payload over secure

channel with session key k2.

6.2. Parallel Combination

The procedure of parallel combination of existing se-
curity protocol (e.g. TLS/SSL, SSH, IPsec) and our key

9. We will combine the two keys k0 and k1 using some robust combiner.



TABLE 4. COMPARISON OF SECURITY FEATURES OF VARIOUS KEY EXCHANGE PROTOCOLS AGAINST CLASSICAL OR QUANTUM ATTACKS
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eDH Yes Yes Yes No Yes No No No No No
RSA Yes No No Yes Yes No No No No No
Hybrid
ephemeral
KEP(eDH +
1 PQC KEP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Probably no

Our
ephemeral
Hybrid KEP
(eDH + 17
PQC KEP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Probably yes

eDH: ephemeral Diffie-Hellman

TABLE 5. COMPARISON OF PERFORMANCE OF VARIOUS KEY EXCHANGE PROTOCOLS

Scheme (NIST Security Level 1) Latency (ms) Computation time (ms) on Server side Computation time (ms) on client side
ephemeral Diffie-Hellman (eDH) 19.24 19.24 19.24

RSA-KEM 175.46 175.46 0.84
Hybrid KEP(eDH + 1 fastest ephemeral PQC KEP (SABER)) 19.40 19.38 19.40
Hybrid KEP(eDH + 1 slowest ephemeral PQC KEP (SIKE) ) 441.74 441.74 370.62

Our Hybrid KEP Ψ′ (eDH + 17 ephemeral PQC KEP) 30.43 (amortized) 26.81 (amortized) 30.43 (amortized)

TABLE 6. THE DEPLOYMENT MODE OF THE 17 KEMS IN Ψ′

Deployment Mode KEMs
Encaps on client side
Decaps on server side KYBER, NewHope

Encaps on server side
Decaps on client side The other KEMs

exchange protocol is described as below and illustrated in
Figure 3(b).

1) Alice and Bob run the key exchange part of existing
protocol (denoted as “Π.kep” in Figure 3(b)) as
usual to establish a secure channel with session
key k0 (denoted as “Π.sec channel(k0)” in Fig-
ure 3(b)).

2) Alice and Bob run our implementation of new
key exchange protocols (denoted as “KEP2” in
Figure 3(a)) independently and concurrently to es-
tablish another shared key k1.

3) As a result, Alice and Bob establish another secure
channel with session key k2 derived 10 from both
k0 and k1.

4) Alice and Bob deliver the payload over secure
channel with session key k2.

We remark that, in both series and parallel combinations,
Phase 1 and Phase 4 are identical with the original protocols
(TLS/SSL, SSH, IPsec, etc). We introduce extra Phase 2
and 3 in-between. These two combinations actually share

10. We will combine the two keys k0 and k1 using some robust
combiner.

the same Phase 3, and with only difference in Phase 2.
In fact, our series combination and parallel combination
described as above, treat the implementation of existing
security protocol (denoted as Π in Figure 2) as a blackbox,
except that we will read and overwrite the session key of
existing security protocol.

7. Experimental Evaluations

In this section, we evaluate performance of the pro-
posed hybrid KEMs/KEPs and compare them with related
work [7], [10]. Our hybrid KEM/KEP could combine one
traditional KEM, say RSA KEM, and several candidate post-
quantum KEM from second round of NIST competition of
post-quantum cryptography.

In our prototype of hybrid KEM/KEP, we choose all of
17 candidate KEM proposals in the second round of NIST
competition of post-quantum cryptography 11 and a RSA
KEM as building blocks. The details of the RSA KEM is
shown in Table 7.

TABLE 7. RSA KEM CONSTRUCTION.

Key Encap: 〈ct, ss〉 = Encap(pk) Key Decap: ss = Decap(ct,sk)
1 : rr ← RNG
2 : ct← RSA_encrypt(rr, pk) 1 : rr ← RSA_decrypt(ct, sk)
3 : ss← SHA256(rr) 2 : ss← SHA256(rr)

Each candidate KEM from NIST competition of PQC
has several variants with different choices of parameters, as

11. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


Figure 2. Illustration of almost-blackbox combination of existing security
protocol (e.g TLS, VPN, SSH, denoted as Π) and our key exchange pro-
tocol (denoted as “KEP2”). In the below pictures, a pair of dashed arrows
between Alice and Bob indicates one or more rounds of communications.
“KDF” stands for “key derivation function”.

(a) Series Combination: Π.kep and KEP2 run in sequential order and KEP2
runs in the secure channel established by security protocol Π

(b) Parallel Combination: Π.kep and KEP2 run independently and concur-
rently

a result, our KEM combiner has many variants in practice.
In our experiments, we evaluate only two of these variants
named PQCH1 and PQCH5, which represent combinations
of building blocks with the lowest security strength (i.e.
NIST Level 1) and the highest security strength (i.e. NIST
Level 5), respectively. The detailed configuration of the two
KEMs combiners are shown in Table 8 and Table 9.

In our prototype, the key derivation function (KDF)
of our schemes, denoted as “M257pX”, is the ran-
domness blender function over finite field GF (p) with
Mersenne prime p = 2257 − 1, as defined in
Lemma 2 Along with the two KDFs—SHA256 and
M257pX, we have four KEM combiners in total,
namely PQCH1-SHA256-KEM, PQCH1-M257pX-KEM,
PQCH5-SHA256-KEM, and PQCH5-M257pX-KEM, where
PQCH1-SHA256-KEM and PQCH5-SHA256-KEM are
treated as the representative schemes in related work [7],
[10]. In addition, we also evaluate their performance in two
modes, namely Φ and Ψ, as described in Section 4. So our
experiments are performed essentially on 8 targets shown in
Table 10.

We remark that, the related works [7], [10] may adopt

XOR function as KDF as showed in Table 1. However, the
lengths of outputs of 17 candidate PQC KEM/KEP in second
round of NIST competition, are not identical, thus simple
XOR of all 17 output bit-string of these candidate PQC
KEM/KEP may not lead to a secure resulting KEM/KEP.
So we replace XOR

⊕
i xi with hash h(x0‖x1‖ . . .) in our

implementation of reference hybrid scheme. This treatment
is reasonable for comparison of performance between our
proposals and existing works, since for efficient KDF (like
XOR, hash function, or our extractor or randomness blender
function), the running time of KDF only takes an extremely
small portion (e.g. smaller than 0.01%) of running time of
the whole Decaps or Encaps algorithm, as confirmed in
Table 11.

7.1. Experimental Set-ups

Our experiments are performed on an Intel CPU. The
CPU is equipped with 6 cores, but our experiments are
performed only in a single CPU core.

The source code of the 17 candidate KEMs are from
NIST PQC Round 2 Submission, and the RSA KEM is
implemented with RSA-OAEP and SHA-256 in OpenSSL
v3.0.0. More details about the set-ups are listed in Table 12.

7.2. Experimental Results

7.2.1. PQCHx-SHA256-KEM vs. PQCHx-M257pX-
KEM. We evaluate the throughput (i.e. key generate
rate) of the proposed hybrid KEM with SHA256 and
M257pX as its KDF, respectively. As showed in Table
15, PQCH1-M257pX-KEM gains speed-up of 18.56x
and 18.54x respectively in Encaps and Decaps when
compared with PQCH1-SHA256-KEM. At the same time,
PQCH5-M257pX-KEM also gains much higher throughput
than PQCH5-SHA256-KEM does, as shown in Table 16.

7.2.2. PQCHx-M257pX-KEM vs. RSAx-SHA256-KEM.
We also compare the throughput of our hybrid KEMs with
traditional KEMs, say RSA KEM as described in Table 7. As
shown in Table 13 and Table 14, RSA KEMs with 3072 bits
key gain much higher throughput than our hybrid KEMs. We
remark that, some of the 17 candidate KEMS, like SIKE,
Classic McEliece and Round5, are very time-consuming.
For example, SIKE consumes more than 80% CPU cycles
in PQCH1-M257pX-KEM. If it is not included in the hybrid
KEMs, the throughput will be improved significantly.

7.2.3. PQCHx-xxx-KEM-Ψ. Unlike in mode Φ, the hybrid
KEMs in mode Ψ are stateful. It keeps a dynamic state. In
each round, except the first one, only one candidate KEM
runs to update the state, before a KDF outputs a shared key.
Table 17, 18, 19 and 20 show the performance of every
round in this mode.

8. Conclusion

In this work, we gave the security formulation of key
encapsulation mechanism or key exchange protocol, in-



TABLE 8. BUILDING BLOCK SELECTIONS OF PQCH1-XXX-KEM.

NIST PQC Round 2 Submissions Variants/Parameters Shared Key Size (Bits) NIST Category
RSA KEM RSA3072-SHA256 256 Level 1
BIKE 12 BIKE1-128-CPA 256 Level 1
Classic McEliece 13 mceliece348864 256 Level 1
CRYSTALS-KYBER Kyber512 256 Level 1
FrodoKEM FrodoKEM-640 128 Level 1
HQC HQC-128-1 512 Level 1
LAC LAC-128 256 Level 1
LEDAcrypt LEDAcrypt-128-1 256 Level 1
NewHope NewHope512-CPA 256 Level 1
NTRU ntruhps2048509 256 Level 1
NTRU Prime ntrulpr653 256 Level 2
NTS-KEM NTS-KEM(12,64) 256 Level 1
ROLLO ROLLO-I-128 512 Level 1
Round5 R5N1 1KEM 0d 128 Level 1
RQC RQC-I 512 Level 1
SABER LightSaber-KEM 256 Level 1
SIKE SIKEp434 128 Level 1
Three Bears BabyBear 256 Level 2

Hybrid KEM PQCH1 4,992 = 19.5 × 256

TABLE 9. BUILDING BLOCK SELECTIONS OF PQCH5-XXX-KEM.

NIST PQC Round 2 Submission Variants/Parameters Shared Key Size (Bits) NIST Category
RSA KEM RSA15360-SHA256 256 Level 5
BIKE BIKE1-256-CPA 256 Level 5
Classic McEliece mceliece6688128 256 Level 5
CRYSTALS-KYBER Kyber1024 256 Level 5
FrodoKEM FrodoKEM-1344 256 Level 5
HQC HQC-256-1 512 Level 5
LAC LAC-256 256 Level 5
LEDAcrypt LEDAcrypt-256-1 512 Level 5
NewHope NewHope1024-CPA 256 Level 5
NTRU ntruhps4096821 256 Level 5
NTRU Prime ntrulpr857 256 Level 4
NTS-KEM NTS-KEM(13,136) 256 Level 5
ROLLO ROLLO-I-256 512 Level 5
Round5 R5N1 5KEM 0d 256 Level 5
RQC RQC-III 512 Level 5
SABER FireSaber-KEM 256 Level 5
SIKE SIKEp751 256 Level 5
Three Bears PapaBear 256 Level 5

Hybrid KEM PQCH5 5,632 = 22 × 256

TABLE 10. NAMING OF OUR SCHEMES.

Mode KDF Security Level Proposed Hybrid KEM’s Name

Φ
SHA256 NIST Level 1 PQCH1-SHA256-KEM

NIST Level 5 PQCH5-SHA256-KEM

M257pX NIST Level 1 PQCH1-M257pX-KEM
NIST Level 5 PQCH5-M257pX-KEM

Ψ
SHA256 NIST Level 1 PQCH1-SHA256-KEM-Ψ

NIST Level 5 PQCH5-SHA256-KEM-Ψ

M257pX NIST Level 1 PQCH1-M257pX-KEM-Ψ
NIST Level 5 PQCH5-M257pX-KEM-Ψ

cluding IND-CCA/CPA security, forward/backward security,
authentication, leakage resilient. We then proposed generic
constructions of robust combiners of KEM. Adding more
refinement and optimization in many aspects of details in
KEM, we proposed practical hybrid stateful key exchange
protocols. We also gave suggestions how to integrate with

existing solutions like TLS/SSL, IKEv2. We also implement
our schemes and run various experiments, and record the
experiment data.

Our hybrid KEM/KEP is optimal in performance, due
to our first construction of randomness blender function.
We also proposed the notion of compression entropy to
measure the security strength of leakage resilient cryptog-
raphy against side channel attack or covert channel attack.
Our study of randomness blender function and compression
entropy may have independent interest.
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TABLE 13. THROUGHPUT AND LATENCY OF RSA3072-SHA256-KEM AND PQCH1-M257PX-KEM.

KEM Encapsulation (ms) Decapsulation (ms) Key Generation (ms) Throughput (bps)
RSA3072-SHA256-KEM 0.14 3.63 265.32 67,905
PQCH1-M257pX-KEM 527.47 467.40 964.72 4,631

TABLE 14. THROUGHPUT AND LATENCY OF RSA15360-SHA256-KEM AND PQCH5-M257PX-KEM.

KEM Encapsulation (ms) Decapsulation (ms) Key Generation (ms) Throughput (bps)
RSA15360-SHA256-KEM 0.97 178.14 61,843.89 1,429

PQCH5-M257pX-KEM 2,336.01 2,219.06 48,850.40 1,012

TABLE 15. THROUGHPUT (KEY GENERATION RATE) OF
PQCH1-SHA256-KEM AND PQCH1-M257PX-KEM.

PQCH1-SHA256-KEM PQCH1-M257pX-KEM Speed-up ratio
Encap 463.56 bps 9,066.24 bps 18.56x
Decap 508.82 bps 9,944.45 bps 18.54x

TABLE 16. THROUGHPUT (KEY GENERATION RATE) OF
PQCH5-SHA256-KEM AND PQCH5-M257PX-KEM.

PQCH5-SHA256-KEM PQCH5-M257pX-KEM Speed-up ratio
Encap 105.43 bps 2,321.14 bps 21.02x
Decap 106.76 bps 2,347.56 bps 20.99x



TABLE 17. PERFORMANCE OF PQCH1-SHA256-KEM-Ψ ON OUR TESTBED.

#Round Running Components Keypair Gen (CPU cycles) Encap (CPU cycles) Decap (CPU cycles)
0 All 18 KEMs + SHA256 2,390,137,940 1,591,766,461 1,404,702,143

1,19,37... RSA3072-KEM + SHA256 641,517,718 694,329 11,241,2287
2,20,38... BIKE1-128-CPA + SHA256 181,564 498,855 2,386,032
3,21,39... FrodoKEM-640 + SHA256 1,505,725 9,581,588 9,517,207
4,22,40... ntruhps2048509 + SHA256 5,168,458 797,193 1,440,639
5,23,41... ntrulpr653 + SHA256 15,337,196 28,633,984 42,647,700
6,24,42... Kyber512 + SHA256 96,863 427,357 534,831
7,25,43... LightSaber + SHA256 66,707 382,024 387,941
8,26,44... NewHope512-CPA + SHA256 81,375 415,210 330,863
9,27,45... HQC-128-1 + SHA256 284,381 962,155 1,473,931
10,28,46... RQC-I + SHA256 577,339 1,332,349 5,456,514
11,29,47... ROLLO-I-128 + SHA256 1,229,599 646,389 1,601,661
12,30,48... LAC-128 + SHA256 271,663 776,838 1,053,696
13,31,49... R5N1 1KEM 0d + SHA256 488,055,171 495,873,684 6,192,681
14,32,50... LEDAcrypt-128-1 + SHA256 31,425,954 2,024,190 8,836,204
15,33,51... NTS-KEM(12,64) + SHA256 144,639,183 577,656 4,774,845
16,34,52... BabyBear + SHA256 504,226 1,017,000 1,761,595
17,35,53... mceliece348864 + SHA256 332,683,415 474,676 44,251,048
18,36,54... SIKEp434 + SHA256 743,551,151 1,046,866,793 1,261,130,331

1 - 18 Mean 133,732,093 88,443,459 78,056,608

TABLE 18. PERFORMANCE OF PQCH1-M257PX-KEM-Ψ ON OUR TESTBED.

#Round Running Components Keypair Gen (CPU cycles) Encap (CPU cycles) Decap (CPU cycles)
0 All 18 KEMs + M257pX 2,382,522,623 1,584,404,820 1,407,962,720

1,19,37... RSA3072-KEM + M257pX 950,336,794 412,970 10,908,323
2,20,38... BIKE1-128-CPA + M257pX 182,663 220,986 2,219,171
3,21,39... FrodoKEM-640 + M257pX 1,504,188 8,959,004 9,249,746
4,22,40... ntruhps2048509 + M257pX 5,273,087 498,212 1,159,798
5,23,41... ntrulpr653 + M257pX 15,274,764 28,363,474 42,233,018
6,24,42... Kyber512 + M257pX 97,340 145,367 164,839
7,25,43... LightSaber + M257pX 67,977 100,359 104,331
8,26,44... NewHope512-CPA + M257pX 83,394 133,520 47,022
9,27,45... HQC-128-1 + M257pX 280,206 676,206 1,189,589
10,28,46... RQC-I + M257pX 573,778 1,046,960 5,078,244
11,29,47... ROLLO-I-128 + M257pX 1,225,143 367,861 1,319,040
12,30,48... LAC-128 + M257pX 272,181 493,641 770,998
13,31,49... R5N1 1KEM 0d + M257pX 487,529,032 494,836,153 5,921,7461
14,32,50... LEDAcrypt-128-1 + M257pX 31,239,090 1,747,088 8,391,436
15,33,51... NTS-KEM(12,64) + M257pX 146,269,843 300,845 4,502,248
16,34,52... BabyBear + M257pX 503,478 735,022 1,478,099
17,35,53... mceliece348864 + M257pX 337,022,509 195,131 44,602,601
18,36,54... SIKEp434 + M257pX 740,952,652 1,043,300,145 1,267,288,893

1 - 18 Mean 151,038,228 87,918,496 78,146,063



TABLE 19. PERFORMANCE OF PQCH5-SHA256-KEM-Ψ ON OUR TESTBED.

#Round Running Components Encaps (CPU cycles) Encaps (bps) Decaps (CPU cycles) Decaps (bps)
0 All 18 KEMs + SHA256 6,968,514,597 110.22 6,645,548,254 115.58

1,19,37... RSA15360-KEM + SHA256 3,301,550 232,655.56 535,529,020 1,434.32
2,20,38... BIKE1-256-CPA + SHA256 1,140,260 673,639.34 14,342,802 53,554.66
3,21,39... FrodoKEM-1344 + SHA256 32,656,377 23,521.40 32,693,296 23,494.84
4,22,40... ntruhps4096821 + SHA256 2,119,103 362,476.00 3,388,926 226,657.05
5,23,41... ntrulpr857 + SHA256 50,027,474 15,354.04 74,623,333 10,293.34
6,24,42... Kyber1024 + SHA256 929,246 826,609.95 830,982 924,356.96
7,25,43... FireSaber + SHA256 728,748 1,054,032.38 724,096 1,060,804.08
8,26,44... NewHope1024-CPA + SHA256 724,502 1,060,209.62 543,171 1,414,147.65
9,27,45... HQC-256-1 + SHA256 3,239,258 237,129.61 4,241,794 181,084.70
10,28,46... RQC-III + SHA256 4,570,153 168,074.02 19,990,419 38,424.60
11,29,47... ROLLO-I-256 + SHA256 1,347,022 570,238.64 4,505,466 170,487.13
12,30,48... LAC-256 + SHA256 2,290,661 335,328.53 3,384,723 226,938.51
13,31,49... R5N1 5KEM 0d + SHA256 2,277,450,037 337.27 16,532,252 46,462.15
14,32,50... LEDAcrypt-256-1 + SHA256 8,195,665 93,723.20 37,049,544 20,732.34
15,33,51... NTS-KEM(13,136) + SHA256 1,406,714 546,041.33 19,796,587 38,800.82
16,34,52... PapaBear + SHA256 2,805,759 273,766.91 5,257,472 146,101.39
17,35,53... mceliece6688128 + SHA256 1,054,506 728,420.69 199,379,413 3,852.57
18,36,54... SIKEp751 + SHA256 4,598,385,145 167.04 5,691,061,690 134.97

#Round Statistics Encaps Decaps
1 - 18 Mean of Latency 129 ms 123 ms
1 - 18 Overall Throughput 1,977.33 bps 2,074.80 bps

TABLE 20. PERFORMANCE OF PQCH5-M257PX-KEM-Ψ ON OUR TESTBED.

#Round Running Components Encaps (CPU cycles) Encaps (bps) Decaps (CPU cycles) Decaps (bps)
0 All 18 KEMs + M257pX 7,005,677,859 2,412.02 6,687,728,812 2,526.69

1,19,37... RSA15360-KEM + M257pX 2,948,609 5,730,790.56 535,479,696 31,556.49
2,20,38... BIKE1-256-CPA + M257pX 880,399 19,193,411.88 14,200,375 1,189,958.76
3,21,39... FrodoKEM-1344 + M257pX 32,403,328 521,485.34 32,124,572 526,010.45
4,22,40... ntruhps4096821 + M257pX 1,848,040 9,143,666.06 3,094,942 5,459,831.11
5,23,41... ntrulpr857 + M257pX 49,411,919 341,979.44 74,170,298 227,825.16
6,24,42... Kyber1024 + M257pX 553,790 30,513,119.83 564,958 29,909,941.32
7,25,43... FireSaber + M257pX 462,318 36,550,297.91 462,665 36,522,885.09
8,26,44... NewHope1024-CPA + M257pX 459,328 36,788,222.43 277,653 60,859,636.42
9,27,45... HQC-256-1 + M257pX 2,845,994 5,937,419.62 4,070,303 4,151,499.44
10,28,46... RQC-III + M257pX 4,295,625 3,933,737.37 19,975,630 845,923.78
11,29,47... ROLLO-I-256 + M257pX 1,025,666 16,475,012.95 4,411,242 3,830,635.59
12,30,48... LAC-256 + M257pX 2,131,010 7,929,507.90 3,013,607 5,607,187.87
13,31,49... R5N1 5KEM 0d + M257pX 2,277,571,176 7,419.24 16,169,260 1,045,060.85
14,32,50... LEDAcrypt-256-1 + M257pX 7,938,871 2,128,496.68 36,600,341 461,685.87
15,33,51... NTS-KEM(13,136) + M257pX 1,145,431 14,752,403.79 19,117,274 883,905.34
16,34,52... PapaBear + M257pX 2,541,585 6,648,552.23 5,090,449 3,319,522.62
17,35,53... mceliece6688128 + M257pX 787,325 21,462,370.21 199,393,210 84,746.41
18,36,54... SIKEp751 + M257pX 4,619,492,024 3,657.94 5,712,771,328 2,957.90

#Round Statistics Encaps Decaps
1 - 18 Mean of Latency 129 ms 123 ms
1 - 18 Overall Throughput 43,397.44 bps 45,526.42 bps
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