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Abstract—Reputation systems constitute one of the few work-
able mechanisms for distributed applications in which users
can be made accountable for their actions. By collecting user
experiences in reputation profiles, participants are encouraged
to interact more with well-behaving peers hence better online
behavior is motivated.

In this work, we develop a privacy-preserving reputation
scheme for collaborative systems such as P2P networks in which
peers can represent themselves with different pseudonyms when
interacting with others. All these pseudonyms, however, are
bound to the same reputation token, allowing honest peers to
maintain their good record, even when switching to a new
pseudonym, while at the same time preventing malicious peers
from making a fresh start.

Our system is truly decentralized. Using an append-only
distributed ledger such as Bitcoin’s blockchain, we show how
participants can make anonymous yet verifiable assertions about
their own reputation. In particular, reputation can be demon-
strated and updated effectively using efficient zkSNARK proofs.
The system maintains soundness, peer-pseudonym unlinkability
as well as unlinkability among pseudonyms of the same peer. We
formally prove these properties and we evaluate the efficiency of
the various operations envisioned in our scheme.

Index Terms—Reputation, Decentralization, Privacy, Peer-to-
peer networks, Blockchain, zkSNARKs

I. INTRODUCTION

Distributed systems typically consist of multiple, spatially
separated components that communicate with each other in
order to realize a given function or operation. While distributed
systems may be centralized, systems like Bitcoin, Tor or typi-
cal peer-to-peer (P2P) networks are completely decentralized,
hence the operation of the system does not depend on a single
trustworthy authority but is provided by the peers themselves
according to their capacity and resources [1].

The design of decentralized systems increases availability of
services as reliance on a single entity is removed. However,
decentralization may affect privacy since distributing resources
to multiple nodes may provide malicious peers with more
opportunities to peak at user data. Furthermore, relying on
peers to provide services to other nodes is prone to even more
adversarial behavior by those entities who may try to disrupt
the functionality or availability of the network through the
introduction of a large number of Sybil nodes [2].

Although there is no clear solution to such type of attacks,
reputation plays a pivotal role in establishing trustworthy rela-
tionships and incentivizing proper user behavior. In the context
of collaborative systems such as P2P networks, reputation
represents the collective opinions nodes have about their peers
and the resources provided. By aggregating this knowledge
using appropriate feedbacks, reputation-based systems help
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participants decide whom to trust and thus deter dishonest
participation and system failure. Digital reputation mecha-
nisms are thus a powerful tool to incentivize user behavior.
Indeed, well-behaving users improve their reputation scores,
encouraging more users to interact with them while users
will lower reputation scores get isolated and find it harder
to network with others.

Research in reputation systems has been motivated by a
plethora of environments and applications. Within the context
of P2P e-commerce systems such as eBay, research has shown
that reputation improves customer satisfaction and helps re-
duce transaction fraud [3]. It can also be used to filter content
in file-sharing applications and prevent free-riders in content
dissemination networks [4]. However, with no proper security
mechanisms, reputation systems can be vulnerable to a number
of attacks [5]; for example, bad-mouthing attacks can be
used to send negative feedback to an honest user or service
provider while ballot-stuffing attacks can be used to increase
the reputation of an ill-performing peer. More importantly, a
lot of reputation systems break down under the presence of
Sybil attackers who can elevate their status to that of a group
of peers by creating multiple fake identities.

Existing reputation systems often disclose the identity of
feedback providers, which might deter honest users from
submitting their ratings because of fear of retaliation if
their (negative) rating is exposed to others [6]. Indeed, by
collecting user feedback, or by simply interacting with a
malicious peer, reputation systems can be easily compromised
to reveal user profiles, the peers or services with whom the
user has interacted with as well as the frequency of these
interactions. While data anonymization techniques [7], [8] can
help hide the identities of raters, anonymization is prone to
de-anonymization attacks [6], [9]. The use of cryptographic
mechanisms can help reputation systems ensure the privacy of
peers [10]-[14], however these systems are either centralized
or rely on a trusted group of peers to ensure the privacy of
transactions. As a result, in a distributed environment like that
of P2P networks, it may be challenging to develop privacy-
preserving reputation systems that not only enable users to
query reputation profiles of other peers but also maintain
unlinkability and protect user identity when giving feedback.

These challenges raise the following questions: i) Can the
benefits of reputation be combined with the privacy afforded
by fully anonymous systems where no entity can link messages
and feedback back to a user? ii) Can reputation be main-
tained across different pseudonyms? This requirement is very
demanding as the goal of anonymity seems to contradict the
need to associate users with their historical activities. (iii) Can
the reputation system be managed in a decentralized manner
by a set of untrusted peers?
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Contributions: In this work, we answer these questions
in the affirmative. Our system is inspired by the work of
Androulaki et al. [15], where the reputation score is bound
to each peer as opposed to each pseudonym. This approach
is less prone to whitewashing attacks where peers with bad
reputation can start from scratch using a fresh pseudonym, thus
obtaining a neutral reputation irrespective of their past behav-
ior. However, the system in [15] maintains peer-pseudonym
unlinkability using reputation coins that are exchanged among
peers, hence it requires the existence of an online entity – a
“bank” – that maintains each user’s current reputation credit
and is actively involved in the transfer of reputation coins
during feedback.

In this paper we propose a new technique for constructing
anonymous reputation tokens that are maintained by the peers
themselves, thus eliminating the presence of such online entity.
We rely on the existence of an append-only ledger such
as Bitcoin’s blockchain to maintain these reputation tokens.
Hence all operations involving demonstration or updates of
reputation are managed in a distributed manner by the group
of untrusted peers and can be validated by any interested party.

In our system, each entity maintains its reputation even
while changing pseudonyms. By tying reputation to iden-
tity, peers can generate as many pseudonyms as they like
in order to preserve their privacy; thus someone can use
different pseudonyms in different contexts. This further helps
ensure forward anonymity since future compromises linking a
pseudonym to the entity will not reveal previous transactions
made by the entity using other pseudonyms, even if all past
behavior under all pseudonyms has been recorded. While re-
porting exact reputation scores could potentially link different
pseudonyms together, our system allows users to reveal only
approximate reputations to mitigate such de-anonymization
attacks.

Our system requires a single offline phase in which the
identity of the peer has to be verified, since otherwise it
would be impossible to offer protection against Sybil attacks
as shown in [2]. However, we show that even this phase can be
decentralized in a privacy-preserving manner so that “identity”
remains unlinkable to subsequent user actions. Additionally,
we explain how our system can be used with legacy systems
and online marketplaces (e-Bay, Amazon, Airbnb, to name a
few). In those systems, identity verification already takes place
since users register private information (credit card, civil id,
etc.) to buy and sell goods or services online. Here we show
that once this verification phase is over, our system can still
be applied as no trust needs to be placed on this entity to
secure the privacy and integrity of the peer’s actions. Thus,
our system can be combined with these platforms to ensure
that peers enjoy the benefits of both identity-bound reputation
and unlinkability. We then go one step further and suggest, in
Section VII, how to create verifiable IDs using mechanisms
provided by the Trusted Computing Group (TCG) and Trusted
Platform Modules (TPMs).

In summary, we make the following contributions:

• We present a decentralized system that does not require
any trusted setup or trusted group of users to ensure the

privacy of participants when showing or updating their
reputation.

• We explain how to address and remove the identity
verification challenge in the face of untrusted networks of
peers by either relying on public assertions or employing
the use of TCG functionalities.

• In systems where identity verification already exists, our
reputation framework can help build trustworthy relation-
ships as verification is only needed to ensure reputation
soundness but not privacy.

• We use succinct zero-knowledge proofs to ensure not only
anonymity but also the well-formedness and efficiency of
the various operations.

• We utilize the blockchain as an append-only ledger to
realize a reputation system that satisfies the properties
described above. Participants that use the blockchain
network have a single view of all transactions, requiring
no trust on any particular entity. Hence the system is also
publicly verifiable without reliance on any trusted third
party.

• We formally prove the security and privacy aspects of
our proposal, showing that our system is indeed privacy-
preserving. We have also studied the efficiency aspects of
the proposal demonstrating the efficiency of the various
operations.

• Finally, our framework can either be used as is or used in
combination with other (possibly decentralized) host P2P
systems to provide the necessary proofs of interaction
and increase resistance to malicious peer behavior at the
host level. In those cases, we provide the right handles
to facilitate interaction between our framework and the
host system.

Organization: The remainder of the paper is structured
as follows. In the next section we review related work on
reputation with emphasis on decentralized systems. Section
III discusses our system model and the assumptions we use
throughout the paper, while Section IV highlights the cryp-
tographic primitives used in our proposal. In Section V, we
detail the operations of our system; its security and efficiency
properties are analyzed in Section VI and further discussed in
Section VII. Finally, Section VIII concludes this work.

II. RELATED WORK

In an anonymous reputation system nobody should be able
to link the identity of a user to posted feedback. However,
maintaining correct reputation without identity seems to con-
tradict the fact that past user activities need to be reflected
to the reputation score [16]. A number of pseudonym-based
reputation systems have tried to address this problem. For ex-
ample, Androulaki et al. [15] developed a cash-based scheme
where users exchange reputation coins that are maintained
by a central “bank”. Pseudonyms and anonymous credentials
are combined to ensure unlinkability, however the system
depends on this online centralized entity to maintain the
privacy of peers. Similarly, Bethencourt et al. [17] developed
a pseudonym-based scheme in which a user’s reputation is
simply the number of cryptographic “votes” users construct
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and send to others. Signatures of reputation are then used
to prove that a user is in possession of a number of votes.
To participate in the system, each user must register with
a registration authority which generates the user’s private
credentials. Hence, contrary to our work, this authority is
trusted for privacy. Additionally the system supports only
monotonic reputation.

Other variants of decentralized blockchain-based reputation
systems include [22], [23], [24], [25]. Soska et al. [22]
proposed a decentralized anonymous marketplace that uses
linkable signatures and the ledger’s consensus and fees mech-
anism to aggregate the reputation of vendors. The system as-
sumes that customers purchase a product using an anonymous
payment system like Zerocash [34]. They can then leave a
review by privately linking it to the transaction made earlier.
While anyone can check the ledger to enumerate the reviews,
no transaction privacy is provided for vendors. In [23], another
decentralized reputation system is proposed in which the trust
each user gives to others is directly expressed as Bitcoins. In
[24], Azaz et al. presented a bulletin board approach where
users submit encrypted ratings for vendors which are then
aggregated together for a final score. Our work differs from
this and similar works ([10], [12], [13]) in the sense that
peers can rate each other directly. Finally, Florian et al. [25]
developed a pseudonymization system in which pseudonyms
are directly encoded in the outputs of transactions. However,
to validate a pseudonym, a chain of transactions leading to an
initial genesis pseudonym transaction is required. Furthermore,
generation of new pseudonyms needs to be coordinated and
mixed with pseudonym change transactions of other peers in
order to avoid linkability.

Anonymous credential systems (ACS) have also been used
in building sound reputation systems. This connection is not
accidental as reputation itself may be considered an attribute
that can be demonstrated anonymously. In an ACS, a user
may act under a number of unlinkable pseudonyms rather than
using her identity. The process of showing a credential then
allows a user to prove possession of certain attributes in a
privacy-preserving manner. For example, in [18], Bemmann
et al. developed an ACS that is combined with a reputation
system to let users anonymously rate service providers. Simi-
larly, Blömer et al. [19] constructed a cryptographic reputation
system based on group signatures.

Our work uses fewer assumptions, i.e. it does not require the
trustworthy generation of credentials, and is based on lighter
mechanisms than the use of group and ring signatures that
appear in typical credential schemes. Towards this direction,
Garman et al. [20], and later Yang et al. [21], developed
a decentralized ACS in which the credential issuer is re-
placed with a blockchain-based append-only ledger. To issue
a credential, the user establishes an identity and uploads the
credential together with her personal information to the ledger.
She can then convince a verifier that a set of attributes appears
in one of the credentials posted in the ledger. Thus privacy
is preserved. While these works can be used to remove the
initial verification phase of our proposal, we should remark
that reputation systems need to be able to handle attacks that
are inherent to reputation manipulation (self-implosion, sybils,

Fig. 1. System Model. (a) Identity verification phase and minting of initial
reputation token. (b) Interaction among peers. Peer U can provably show or
update her reputation after interacting with peer V . Both peers can choose
one-time pseudonyms for the interaction.

etc.), so they cannot be handled by credential systems whose
focus is mostly on anonymity preservation. Hence additional
care is needed to develop the right mechanisms to withstand
these types of attacks.

III. MODEL AND ASSUMPTIONS

Our model consists of peers which are regular users of a P2P
network and a registrar R. Peers can be “buyers” or “sellers”
and interact with each other via pseudonyms of their choice.
The role of R is to ensure uniqueness of user identities; hence
it is not trusted for privacy but only for reputation soundness.
As a result, once a user is registered, R may go offline. More
importantly, this role can be decentralized as well (for more
on the registrar see Sections III-A and V-A.) After interaction,
peers can award reputation points to other peers (through their
pseudonyms), and can demonstrate their reputation to other
peers by means of appropriate ledger transactions. The ledger
keeps a record of all transactions that have happened in the
network and can be verified by any third party. A snapshot of
the system is shown in Figure 1.

Without loss of generality, we assume that a peer’s reputa-
tion consists of a single value v which captures the aggregate
sum of ratings given to this peer. This can easily be extended to
the average v/n of ratings received, where n is the number of
other peers that have rated this one. In such a case, a reputation
token (see Section V and the relevant operations) will need to
contain as an attribute not only v but also n, and the user will
have to prove that both v and n are updated accordingly with
every new rating, i.e. that v is increased by the feedback score
received and n by one (this is straightforward and omitted).
Hence our system supports non-monotonic reputation.

However, demonstrating exact reputation values could allow
an attacker to infer whether two pseudonyms correspond to
the same user by observing transactions on the ledger and
continuously querying for reputation values. It may then be
easier to link pseudonyms having the same reputation value
with a limited set of actual identities. An inherent tradeoff thus
exists between the precision reputation values are presented
and the desired anonymity guarantees.

To increase the anonymity sets and avoid these inference
attacks, we will allow a peer to demonstrate any lower bound
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they desire on their reputation instead of the actual value.
These reputation levels are chosen by the peers and they do
not need to be disjoint. For example, level Li can be the set
of values ≥ 2i. Hence a peer may round down its reputation
to the nearest power of two or even show a lower reputation
level if desired. Even if reputation is captured by the average
v/n as discussed above, a reputation level can correspond to
a lower bound of this rolling average.

In our system, peers can have many pseudonyms however all
of them must be bound to the same secret ID which is known
only to the peer. Thus participants can enjoy the benefits of
anonymity while using their reputation in different contexts.
As a consequence people are more incentivized to improve
their online behavior. However, care is needed to ensure that
peers cannot generate multiple IDs that can be used to mount
attacks against the reputation system.

The necessary security properties are listed below:

• Key-binding reputation. The reputation of a peer is unique
and expressed by a reputation token committed to the
ledger. While peers may generate as many pseudonyms
they like for their transactions, all of them must be bound
to the same reputation token and secret key. Thus a token
may only be created and used by its legitimate owner
(key-binding and unforgeability aspect of reputation).

• Aggregation-binding. No peer should be able to present a
reputation score higher than the one bound to the token.
In particular, for any pseudonym used, a peer cannot show
more points than the ones that have legitimately been
awarded to the secret key bound to the token.

• Anonymity/Unlinkability. Reputation values are updated
and demonstrated in a way that anonymity is not com-
promised. In particular, the system should maintain un-
linkability between the identity of a peer and his/her
pseudonyms as well as unlinkability among pseudonyms
of the same peer.

The goal of a reputation system is to ensure that reputation
metrics correctly reflect the actions taken by participants and
cannot be manipulated. So, in addition to the above security
and privacy goals, the system should be immune to the
following attacks:

• Sybil attacks: The Sybil attack refers to malicious peers
joining the system multiple times under different fake
identities. These peers can then mount a wide range of
attacks as described below.

• Self-promotion: This reflects a peer’s deliberate attempts
to increase her own reputation. Since peers are allowed
to possess more than one unlinkable pseudonyms, they
can fake an interaction and use one of them to rate the
other. Our system defends against this attack through the
introduction of self-redeeming tags.

• Re-entry (or whitewashing): A malicious peer may at-
tempt to remove her bad reputation by re-entering the
system with a new identity and a fresh reputation token.
As identities are bound to unique long-term secret keys,
this is also prevented by our system.

• Denial of reputation updates and visibility of ratings: A
rating which is known in advance may cause the ratee to

abort a transaction if that rating is unfavorable. It should
not be up to the ratee to decide whether to accept or deny
the reputation update.

• Out-of-range values. Malicious peers may be tempted
to award out-of-range values in an effort to inflate the
reputation of collaborators or simply create erroneous val-
ues. This is further magnified by the fact that reputations
are not centrally managed in our system. Hence care is
needed to ensure that ratings are appropriate.

• Denial of service: Attackers cause denial of service by
preventing the calculation and dissemination of reputation
values. By relying on a decentralized infrastructure, our
system is more resilient to this type of attack.

The above cover the most important attacks against repu-
tation systems [5], with the exception of bad-mouthing (or
slandering) attacks. In such an attack, one or more peers
falsely produce negative feedback about other peers. As this
attack cannot be defended by purely cryptographic means
(requires methods to detect outliers and distinguish this from
the case where the peer actually deserved the bad feedback),
it is outside the scope of this work.

A. Operational assumptions

a) Identity-bound pseudonyms and decentralized identi-
ties: In our framework, peers can have as many pseudonyms
they like but all of them must be bound to the same identity
through the use of a long-term secret key. This allows peers to
have a unique reputation but use different pseudonyms when
interacting with other peers. Hence, uniqueness of the key is
important to prevent various attacks introduced by sybils.

A Sybil attacker is an adversary that creates multiple
identities in a peer-to-peer network in order to subvert the
reputation mechanism. The goal of a reputation system is to
ensure that reputation scores correctly reflect the actions taken
by participants and cannot be manipulated, for example, by
allowing peers to boost their own reputation.

There is a rich line of work for peer-to-peer systems and so-
cial networks that explores the conditions a reputation function
must satisfy in order to be robust to sybil attackers. Analysis
focuses on the properties (such as conductance, mixing time,
etc.) of the underlying trust network, where edges represent
interactions among users (for a survey see [26]). However,
these solutions depend on various graph theoretic assumptions
and none of these remains sybil-proof.

Traditional approaches to limiting the influence of sybil
adversaries are based on the use of additional infrastruc-
tures that bind identities to cryptographic keys or connecting
identities to resources that cannot be easily obtained by the
attacker. Douceur [2] has shown that the existence of a trusted
certification authority (CA) is the only method that has the
potential to eliminate sybil attacks completely. Although CAs
and public key servers are typically centralized and difficult to
implement in a distributed way, matching secret keys to real
IDs reduces the impact of attacks.

Our decentralized reputation framework assumes the exis-
tence of an entity (the Registrar) to verify identities in order
to prevent malicious peers from claiming multiple IDs. This
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is a one-time step needed to prevent sybil-related attacks
like whitewashing and self promotion. Although this seems
to oppose the idea of “decentralization”, in what follows we
explain how this role can be decentralized as well.

One way to do this is to rely on public assertions; these
have already been used in practice to replace statements from
trustworthy parties. For example, domain name registration
provides an entity with a recognized identity that can be
mapped to an IP address and other public attributes (email
address, location, etc.). A blockchain variant of this idea is
Namecoin [27], while Certcoin [28] is another decentralized
authentication system which maintains a public ledger of
domains and their associated public keys1. Garman et al. [20]
have also demonstrated that identity certification can be de-
centralized. By tying identity to a secret key, one can then
prove certain facts about various public attributes in a privacy-
preserving manner. Thus, their system allows a user to make
identity assertions without the need for a trusted credential
issuer.

Recently, Maram et al. [29] implemented CanDID, a system
for realizing the concept of decentralized identity. CanDID
relies on a blockchain-style oracle like DECO [30] to provide
assurance about identities imported from existing web services
(government sites, bank accounts, etc.) that can be accessed via
a secure channel such as TLS. For example, Alice can access
her Social Security account page to generate a credential
attesting to her Social Security Number (SSN). Then she can
generate further context-based pseudonyms that are uniquely
bound to her master credential, the SSN. CanDID deduplicates
identities making sure that users present credentials that are
unique to them, and that a user cannot create multiple identi-
ties. Thus, CanDID ensures Sybil resistance.

Now the role of the registrar in our protocol can be assumed
by the CanDID committee, a decentralized set of nodes, which
performs deduplication (identity uniqueness) in a privacy-
preserving manner. Hence committee nodes not only cannot
learn a user’s real-world identity (e.g. her SSN), but cannot
even learn whether a user is active in a given context.

In Section V-A, we give further details on how the opera-
tions expected by the registrar can be fulfilled in the context
of CanDID. We then refer to Section VII and explain how the
use of TPM functionalities can provide another alternative in
this respect.

b) Synergy with host systems: While we make an effort
to make our system self-contained, we cannot cope with
information (or the lack of it) generated outside its scope.
Nonetheless, we provide the right handles (in the form of
auxiliary information) to facilitate the synergy between our
framework and any host system. Consider for example a host
P2P system for exchanging digital goods among peers. Our
framework can be extended to provide the necessary proofs
of interaction in order to validate the rating assigned from
one peer to another. When two peers engage in some activity
(say a file exchange) they can use their pseudonyms to sign

1For some recent work, both in the academic and in the broader community,
that focuses on blockchain methods to establish and manage identities, see
https://github.com/peacekeeper/blockchain-identity.

this activity in an anonymous yet verifiable manner. These
signatures can be used to validate the rating if needed in order
to avoid attacks where peers continuously elevate each other’s
reputation without a real basis of an interaction. Such bonding
between our framework and any host system is facilitated by
the use of auxiliary information, indicated by aux, that can
be supplied if desired to the various operations described in
the next section.

c) Anonymous communications: We assume that all com-
munications take place over an anonymous communication
network such as TOR. While we make sure that our operations
are privacy preserving, other sources of information can be
used to break user privacy. One such side channel is the IP
address of a user; if this is visible when a peer communicates
with other peers then all pseudonyms can be easily linked
together, which may lead to complete de-anonymization. Thus,
we require that any message transmitted is sent through an
anonymous connection. Metadata transferred at the host level
are out of the scope of this work since information leaked at
the host level may compromise privacy at the reputation level.
Hence such data should be similarly protected.

B. Algorithms

In the following we define the various operations expected
from our system. For simplicity, only a high-level system
interface is presented here, not listing every single input which
may be required by the parties to execute the protocols. More
details are presented in the relevant sections.

Our distributed anonymous reputation system consists of
a global transaction ledger, a set of transactions and the
following operations:
• Setup(1λ)→ params. Generates the system parameters.
• Register(params,U,R) → (skU , SigR(I)). Executed

between a peer U and registrar R. First, U generates her
long-term secret key skU and computes I = gskU . Once
R verifies U ’s identity, it signs I in a privacy-preserving
way. The signature SigR(I) serves as a registration token
to prevent peers from creating multiple keys. The registrar
cannot associate I with U , however if U tries to obtain
a new sk′U the registrar will notice in its records that U
has already been registered.

• NymGen(params,U, skU ) → nymU . This function is
run by U to generate a new pseudonym nymU bound to
skU that can be used in an interaction of U with some
other peer or organization. NymGen can be called any
number of times to generate additional pseudonyms as
needed.

• MintRep(params, skU , nymU , SigR(I), auxU ) →
(repU , πM ). This is executed by U to create an initial
reputation token bound to U ’s long term secret skU .
The output is a token repU and a proof πM that both
the token and the pseudonym were issued to the same
skU . This operation should only be executed once per
user, to prevent Sybils as per the discussion in Section
III-A. Hence the role of sigR(I); if the user tries to mint
another reputation using I , it will not be accepted to the

https://github.com/peacekeeper/blockchain-identity
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ledger. Auxiliary data auxU can provide additional input
in this respect.

• MintVerify(params, nymU , repU , v, auxU , πM ) →
{0, 1}. This is used by any entity to validate the
reputation value v stored in repU . The operation returns
1 if the proof πM verifies successfully. In that case,
the tuple 〈nymU , repU , v, auxU , πM 〉 is stored in the
ledger.

• ShowRep(params, nymV
U , repU ) → (repnewU , πS).

This is run by U to prove to another peer V that her
reputation level is captured by repU , and that repU was
issued to the same user who owns nymV

U . The proof is
given by πS . A new reputation repnewU is constructed to
replace the old one in the ledger.

• ShowVerify(params, nymV
U , repU , rep

new
U , πS) →

{0, 1}. This is run by a verifier to validate a shown
reputation. It returns 1 if the proof πS is valid for
nymV

U , repU , and 0 otherwise. If everything checks out,
the new reputation token is added to the ledger.

• UpdateRep(params, nymV
U , repU , val, auxU,V ) →

(repnewU , πUpd). This operation has the same effect as
MintRep, however the value of the reputation is updated
by val in repnewU . The proof πUpd shows the reputation
was updated correctly and that both (repU , rep

new
U )

are bound to the same key skU . Auxiliary information
auxU,V may be used to characterize the interaction
between U and V .

• UpdateVerify(params, nymV
U , val, rep

new
U , auxU,V , πUpd)→

{0, 1}. This is run by a verifier to ensure that the value
in the new reputation token has been increased by val.
If the proof πUpd checks out, repnewU is added to the
ledger.

C. Definition of system security

Throughout this work, we define a function ε(.) as negligi-
ble, if ε(λ) < λ−c for all c > 0 and sufficiently large λ.

In the system security experiments, we formalise an ad-
versary A who may behave dishonestly and does not follow
the corresponding protocols. A may have corrupted other
users and concurrently interact with honest users an arbitrary
number of times. To formalise this adversarial setting, we let
A query the following oracles:
• AdvRegRep(U) lets A initiate the Register, NymGen

and MintRep protocols provided there was no pending
or successful AdvRegRep call for peer U yet.

• AdvShow() lets A initiate the ShowRep protocol.
• AdvUpdate(v) lets A initiate the UpdateRep protocol

with a rating v.
Next we consider the adversarial goals against the properties

of key-binding reputation and aggregation-binding. The prop-
erty of Key-binding reputation (Kbr), given in Definition 1, is
used to model the behaviour of an adversary who may succeed
in holding a valid long-term secret and reputation token but
the token is not bound with any U that was an input to a
successful AdvRegRep call.

Definition 1: (Key-binding reputation) A decentralized rep-
utation scheme holds the property of Key-binding reputation

Experiment ExpKbrA (λ):
params← Setup(1λ)
b← AAdvRegRep(sk, I = gsk)
The experiment returns 1 iff

1) A holds a valid registration token SigR(I) that is not
output from any AdvRegRep query.

2) A mints an initial reputation token rep that is not
output from any AdvRegRep query.

Fig. 2. Key-binding reputation experiment.

Experiment ExpAbrA (λ):
params← Setup(1λ)
b← AAdvRegRep, AdvShow, AdvUpdate()
The experiment returns 1 iff

1) A managed to extract a reputation token’s attributes
〈r, s, sk, v〉 of an honest user that she can subse-
quently show or update.

2) A claims a reputation score that does not equal the
sum of previously collected ratings for skU .

Fig. 3. Aggregation-binding reputation experiment.

if for any PPT adversary A in the experiment ExpKbrA (λ) from
Figure 2 the advantage of A defined by

AdvKbrA (λ) := Pr[ExpKbrA (λ) = 1]

is negligible in λ.

The Aggregation-binding reputation property (Abr), given in
Definition 2, is used to model adversaries who want to show
a reputation score higher than then one aggregated thus far.
This property ensures that the reputation demonstrated never
exceeds the sum of ratings aggregated in the user’s token.
This suggests that an adversary cannot issue or forge tokens,
redeem a token more than once or use another user’s token.

Definition 2: (Aggregation-binding reputation) A de-
centralized reputation scheme holds the Aggregation-binding
property if for any PPT adversary A in the experiment
ExpAbrA (k) from Figure 3 the advantage of A defined below is
negligible in λ:

AdvAbrA (λ) := Pr[ExpAbrA (λ) = 1]

D. Definition of user privacy

For user privacy, we consider an adversary A whose goal is
to identify a user when trying to show or update her reputation.
With the exception of the initial MintRep operation, the token-
based reputation mechanism should not leak any user-sensitive
information other than information that the user decides to
reveal herself (eg. reputation levels).

To formalise the behaviour of the adversary, we let A make
the following queries:
• Sys() lets A initiate the system setup process and outputs

the system parameters params.
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Experiment ExpPrivA (λ):

b← ASys, RegU, CorU, ShowU, UpdateU, Challenge(1λ)

The experiment returns 1 iff A passes the following phases:
• Setup phase: params← ASys(1λ)
• Learning phase:

transRecord← ARegU, CorU, ShowU, UpdateU()
• Challenge phase:

transRecord()← AChallenge(U0, U1)

Finally, A outputs Ub′ that is equal to Ub.

Fig. 4. User Privacy experiment.

• RegU() lets A create a new user U with a NymGen and
MintRep protocols, and after a successful query A will
obtain the transaction record from these two protocols.

• CorU() lets A interfere (corrupt) an honest user U and
obtain U ’s secret key skU and reputation token τU .

• ShowU() lets A initiate the ShowRep protocol with an
honest U .

• UpdateU(v) lets A initiate the UpdateRep protocol with
an honest U for a rating v of A’s choice.

• Challenge(U0, U1) lets A initiate a ShowRep or Up-
dateRep protocol by suggesting two honest users U0 and
U1. The protocol is run between Ub for b = {0, 1} and
A, where A acts as a rater. The RegU and ShowU and
UpdateU queries for these two users should be asked,
and as a condition these two users must hold tokens with
the same score and generate new one-time pseudonyms
to be used in the various operations (otherwise it would
be easy to link Ub to one of U0 or U1).

The property of user privacy (Priv), given in Definition 3, is
formalised by the indistinguishability game shown in Figure
4. Initially, the adversary asks an arbitrary number of users to
register and then show or update their reputation tokens. Once
this learning phase is over, A initiates a Challenge phase
with two users U0 and U1 of A’s choice, in which a user Ub
from these two users is selected according to a random bit b
unknown to A and asked to show or update its reputation
by an amount v. After the Challenge phase, A can have
another query phase, called post-challenge phase, by asking
similar queries as in the first phase. Finally, A outputs the b′

value. The scheme will be privacy-preserving if the adversary
is unable to identify the bit b (i.e., b′ = b) with probability
better than random guessing.

Definition 3: (Privacy) A decentralized reputation scheme
holds the property of user privacy if for any PPT adversary A
in the experiment ExpPrivA (λ) from Figure 4 the advantage of
A is defined by

AdvPrivA (λ) := Pr[ExpPrivA (λ) = 1] = 1/2 + ε

where ε is negligible in λ.

An implicit assumption here is that the adversary does not
have access to the internal state of users since otherwise it
could act on behalf of them and could easily win the above

game. For instance, if the adversary could see the information
retained by users, random numbers used, etc., before and after
the challenge phase, she could easily infer the user chosen by
the oracle.

IV. BUILDING BLOCKS

1) Pedersen commitments: A commitment scheme allows
a user to commit to a message m without revealing this
message to a receiver. A commitment scheme is secure if it
is binding and hiding. The “binding” property ensures that,
once committed to m, a malicious committer cannot change
her mind, while the “hiding” property ensures that a receiver
does not learn anything about about m.

We will be using the Pedersen commitment scheme [32].
The public parameters are a group G of prime order q
and generators (g, h). To commit to a message m, the user
picks random r ∈ Zq and computes C = gmhr. To open
the commitment, the user reveals (m, r) and any receiver
can check whether gmhr =? C. The Pedersen commitment
can be generalized to commit to a number of messages
m,m1, . . . ,mn. If g, h, h1, . . . , hn are generators of G, to
commit to m,m1, . . . ,mn, the user picks random r ∈ Zq
and computes Comm(m,m1, . . . ,mn, r) = grhmΠn

i=1h
mi
i

mod q.

2) QAPs and zkSNARKs: We will base our constructions
on a class of zero-knowledge Succinct Non-interactive ARgu-
ments of Knowledge (zkSNARKs) that were introduced in [33].
Such arguments can be used to prove NP statements about
Quadratics Arithmetic Programs (QAPs) without revealing
anything about the corresponding witnesses. After taking a
QAP Q as input, a trusted party conducts a one-time setup
that results in two public keys: an evaluation key EKQ and an
verification key EVQ. The evaluation key allows an untrusted
prover to produce a proof π regarding the validity of the QAP
NP statement. The non-interactive proof is a zero knowledge
proof of knowledge, thus anyone can use the verification key
to verify the proof π. In our setting, the use of zkSNARKs will
be used to guarantee that pseudonyms and reputation tokens
possess certain attributes.

A zkSNARK for a QAP Q is a triple of algorithms
(KeyGen,Prove, Verify):
• KeyGen(Q, 1λ) → (EKQ, V KQ). On input a security

parameter 1λ and a QAP Q, this function produces a
public evaluation key EKQ and a public verification key
V KQ.

• Prove(EKQ, x, w) → πQ. On input a public evaluation
key EKQ, a x ∈ LQ, where LQ is the NP decision lan-
guage defined by the QAP, and a corresponding witness
w, this function produces a proof πQ that w is a valid
witness for x.

• Verify(V KQ, x, πQ)→ {⊥,>}. On input a public verifi-
cation key V KQ, x and a proof πQ, this function outputs
> if it is convinced that x ∈ LQ and ⊥ otherwise.

The properties expected by zkSNARKs are informally summa-
rized below (for more details see [33]):
• Completeness. Given (x,w) ∈ RQ, where RQ is the NP

relation for the language LQ, the prover P can produce
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a proof π such that the verifier V accepts (x, π) with
probability 1.

• Soundness. No polynomial-time adversary can generate a
proof π for x ∈ LQ that fools the verifier V to accept
(x, π).

• Zero-knowledge. There exists a (randomized) polynomial
simulator S, such that for any x ∈ LQ, S(x) generates
a proof that is computationally indistinguishable from a
honestly generated one.

We say a zkSNARK is secure if all the above properties hold.
Notice that the proof returned by algorithm Compute can

be turned into a signature scheme by making the message m to
be signed part of the challenges exchanged while constructing
the proof [33]. We will denote this by the notation

πQ ← zkSNARK[m]{(S) : P},

where S insides parentheses denotes private information
known only to the prover while P constitutes public infor-
mation available to the verifier.

3) Blockchains: A core component of our system is an
append-only ledger to hold the reputation tokens. The ledger
must ensure that (i) reputation tokens cannot be tampered with
once added to the ledger, and (ii) all parties have a consistent
view of the ledger. Such a ledger can be instantiated using
Bitcoin’s blockchain.

A blockchain is a linked-list data structure in which data is
organized as blocks, and blocks are connected together through
pointers to the hash value of the previous block, thus turning
the blockchain into an append-only data structure. As all nodes
point to the hash of the previous node, updating a node will
result in a chain of updates all the way until the first node in
the list. Thus any change to an earlier node can be detected by
maintaining the first node’s hash value. This property allows
the blockchain to maintain its integrity.

The process of extending the blockchain is called mining.
Miners compete against each other to extend the blockchain
with new blocks, where each block packs a number of trans-
actions consisting of an amount of bitcoin, a sender, and a
receiver that are collected from the Bitcoin broadcast network.
This competition ensures that the network always maintains
the largest chain through appropriate consensus mechanisms
and incentives in the form of processing fees. As a result,
nodes have a consistent view of the blockchain and any nodes’
dishonest behavior can be detected and prevented by other
nodes.

V. DECENTRALIZED REPUTATION SYSTEM

Overview: Our system associates reputation tokens with
pseudonyms created by a peer U . These pseudonyms can be
used by U when transacting with other entities. All these
pseudonyms are tagged with the same long-term secret skU
which is known only to the user.

The general structure of a reputation token repU is given
by a tuple of the form2

〈random r, secret key sk, serial number s, value v〉, (1)

whose elements are bound together with a Pedersen commit-
ment. The reputation token is then posted to a blockchain-
based ledger and can be verified by any interested party. The
serial number is used to prevent peers from demonstrating
old reputation tokens when queried by some other peer. For
example, when an update in reputation occurs and peer U
creates a new reputation token, the serial number of the old
one is revealed so that it cannot be re-used. In such a case the
old and new reputation tokens are bound together using a ZK
proof that these correspond to the same long term secret skU .
Thus, at any time each peer can possess only one up-to-date
reputation token.

The peer’s pseudonym is an arbitrary name which is used
when interacting with other peers. A peer can issue as many
pseudonyms as she likes, however all these must be tied to the
same long-term secret key using appropriate proofs. To register
(or update) a reputation token, the user must show using a ZK
proof that the committed attributes and the pseudonym belong
to the same person (through knowledge of sk). If everything
checks out, the reputation is added to the ledger.

When another peer V wants to interact with U , he must
query for U ’s reputation first. To ensure unlinkability, U
can show a reputation level under different pseudonym if
desired. Then each peer computes a self-redeeming tag τ =
Hash(nymU , nymV , timestamp, sk) and signs it in a way
that does not compromise their long term identities. The tag
is needed to prevent self-promotion attacks and helps ensure
the commitment of both U and V to the transaction. Finally,
U ’s reputation is updated based on the rating of V .

A detailed description of the various operations is given in
the following sections.

A. Setup and Registration

Let λ be a security parameter. Let G be a group of prime
order q = O(2λ) and g be an order q generator of G. The
system parameters params include (q,G, g, h, h1, h2), where
h, hi ∈ G will be used by the Pedersen commitment scheme
to commit to reputation attributes.

Register(params,U,R) is executed between a user U and
the registrar. The user generates a long-term secret skU ∈ Zq ,
which will be used to bind reputation to user-generated
pseudonyms. The role of the registrar is to ensure that a
user can have only one such secret. The user also computes
I = gskU , which serves as the user’s public identifier. In
the following, we explain how R’s role can be served by the
CanDID committee [29].

The committee’s general task in CanDID is to act as a
credential issuer. A credential consists of the user’s identifier
I , a description of the context in which the credential will

2To be able to compute the average v/n, where n is the number of users
that have provided a rating for U , the reputation token has to be augmented
with the attribute n.
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be used (e.g., “reputation system”), one or more claims and
a signature over the credential’s body using the committee’s
joint secret key skC . The corresponding public key pkC is
known to all system users and is used to verify credentials.

The most important aspect of the committee’s job is to
ensure that each user can only have one master credential in
order to prevent Sybil attacks. Hence users must be screened
according to some unique identifier such as a Social Security
Number (SSN) or equivalent. This process is called dedu-
plication. The basic idea is that each committee node stores
locally IDTable = {PRF (skC , vU )}, where vU is U ’s unique
identifier (e.g., her SSN) and skC is a secret key shared
among committee members. When a new user attempts to
register with a pre-credential containing an identifier vU (this
is obtained by leveraging secure connections to governmental
services and DECO proofs [30]), the committee evaluates
ṽ = PRF (skC , vU ) and checks if ṽ ∈ IDTable. If not a
master credential is issued to U and ṽ is added to IDTable.

The master credential has the form credmaster =
{I, claim, {“dedupOver”, {SSN}}, σC}, where σC denotes
the committee’s joint signature on the credential. Notice that
at all times, I cannot be linked to the unique identity vU (e.g.,
SSN) of the user due to the privacy-preserving character of
the whole process (for details please refer to [29]). Hence
this provides unlinkability between the user’s real ID (her
SSN) and her pseudonymous one (I). In the remaining paper,
the master credential will be denoted by SigR(I), since the
committee plays the role of the registrar R in our protocol.

Compatibility with legacy systems: The previous para-
graphs explained how the role of the registrar can be decen-
tralized. Legacy registration authorities can be used as well
to derive the master user credential. In such a case, the user
computes I = gskU and asks the registrar to blindly-sign I .
The registrar first verifies the identity of the user by looking
at some supporting document and then signs I using any
blind signature scheme. For example, if R possesses an RSA
key pair (e, d) with modulus N , the user submits reH(I)
mod N and gets back a signature rH(I)d mod N . By
removing the blinding factor r, the user obtains R’s signature
on H(I). In this case, SigR(I) will denote the blinded
signature of R on I .

Hence the role of R now is basically to verify the identity
of users and ensure that a user cannot create another secret
key. Thus its role is minimal and much weaker than that of
certification authorities who need to bind identities to users’
authenticated public keys. Due to the security of the blind
signature scheme, again R cannot relate I to the real identity
of the user.

This concludes the registration phase. The remaining phases
are decentralized as well and handled by the users themselves.
In Section VII, we further discuss how the role of the registrar
can be removed by resorting to TCG/TPM functionalities.

B. Minting the initial reputation token

One of the key requirements of our system is to let users
demonstrate their reputation in an anonymous way. For that,

they need to be able to generate pseudonyms that are tied to
their long term secret key.

Operation NymGen(params,U, skU ) allows U to generate
pseydonyms on the fly when interacting with other users V .
Each pseudonym has the form nymU = grhskU , for some
randomly chosen number r and user secret skU . The operation
returns (nymU , r) to the user.

Once the user creates a nym, they can register their initial
reputation repinit of value v = 0 (or any other default system
value vinit) to the ledger. This is taken care by operation
MintRep shown next.

MintRep(params, skU , nymU , auxU ) generates a set of
values to be stored in the ledger. First, a reputation token repU
is created which is a commitment on the elements shown in
(1). Its general form is given by the expression

repU = gr
′
hskhs1h

vinit
2 , (2)

where vinit is the user’s initial reputation value and s is a
serial number associated with repU . Then, the user must create
a proof πM showing that both nymU and repU belong to
the same user. Auxiliary data aux can be used to provide
further evidence about the correctness of user registration at
the host system as per the discussion in Section III-A. In
particular aux can be anything that prevents the user from
minting another reputation token. Here, aux = SigR(I),
hence SigR(I) serves as a registration token. If the user tries
to mint another reputation using I , it will not be accepted to
the ledger.

More formally, we define the NP language LM for the zk-
SNARK-proof system as a set of the following NP statements3:

LM =

〈nymU , repU , I, vinit〉

∣∣∣∣∣∣∣∣
∃ r, sk, r′, s :
I = gskU

nymU = grhsk

repU = gr
′
hskhs1h

vinit
2


For those cases where aux is s different from sigR(I),

i.e. the host system uses other means to ensure unique user
registration, the proof πM can be turned into a signature
scheme to sign aux. This is denoted by

πM = zkSNARKLM
[auxU ]{ (r, sk, r′, s) :

nymU = grhsk ∧
repU = gr

′
hskhs1h

vinit
2 }

The minting process results in a valid token repU and a mint
transaction txMint = 〈nymU , repU , v, SigR(I), πM 〉 which is
submitted to the ledger. To be accepted, algorithm MintVerify
is used.

MintVerify(params, nymU , repU , v, SigR(I), πM ) outputs
1 if (i) πM verifies successfully, (ii) the registration token is
authentic, i.e. is SigR(I) is a valid signature of R, and (iii)
I has not appeared in a previous mint transaction. In such a
case, txMint is added to the ledger. This operation is run by

3The three statements can be shown with a simpler discrete-log based proof.
However about ten group elements have to be transmitted which can result in
a communication overhead that exceeds the fixed size of the zkSNARK proof
as well as a verification overhead involving a large number of exponentiations.
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miners or any third party to validate the relationship between
nymU and repU .

C. Demonstrating reputation
Consider the case where peer V wants to obtain a service

from peer U (e.g. transfer a file). Recall, that all commu-
nication is taking place using the pseudonyms of V and U .
In particular, denote by nymV

U the pseudonym of U in the
interaction with V . It is thus imperative for V to know the
reputation of U before engaging in the actual interaction. This
is taken care by operation ShowRep(params, nymV

U , repU ).
However, as mentioned in Section III, demonstrating exact

reputation values could allow an attacker to link pseudonyms
and possibly deanonymize the user. Hence, we will allow the
user to show that her reputation belongs to a reputation level
Li of her choice.

Overall, U has to show that (i) repU belongs to a list
RepList of reputation tokens committed to the ledger, (ii)
repU and numV

U share the same secret sk (i.e. belong to the
same user), and (iii) the reputation value is in some set Li as
chosen by U .

One complication that arises from the above discussion
is that upon query from V , U may decide to show an old
reputation token, one whose value is more favourable (perhaps
due to a series of bad ratings) than the current one. As all
the attributes of the reputation token remain hidden, nothing
prevents U from doing so. To solve this problem, we will
require U to release the serial number in repU and then mint
a new reputation token repnewU whose value is equal to the
old one. Thus any operation on reputation tokens (apart from
MintRep) will require that the released serial number has not
appeared before in the ledger.

A second complication is that the naive implementation of
keeping all reputation commitments in a list RepList severely
limits scalability because the time and space complexity of
most proof algorithms grow linearly with RepList size. So,
as in [34], we maintain an updatable, append-only Merkle
tree, RepTree, over the set of committed reputation tokens.
Updating the tree with new leaves can be done in time and
space proportional to the tree depth, which is logarithmic to
the size of the tree. Thus checking whether repU belongs to
RepTree is equivalent to the following NP statement: “I know
(r′, sk, s, v) such that repU = gr

′
hskhs1h

v
2 and repU appears

as a leaf in a Merkle tree whose root is rt.” At the same time,
U must construct a new token repnewU = grnewhskhsnew

1 hvnew
2

with serial number snew and show that it shares the same
secret sk and value v with repU .

More formally, we define the NP language LS for the
zkSNARK-proof system as the set of the following NP state-
ments:

LS =


〈nymV

U , s, rep
new
U 〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ r, sk, repU , r′, v, rnew,
snew, vnew :

nymV
U = grhsk

repU = gr
′
hskhs1h

v
2

repU ∈ RepTree with root rt
v ∈ Li
repnewU = grnewhskhsnew

1 hvnew
2

vnew = v



This process results in a new valid token repnewU and a show
transaction txShow = 〈nymV

U , Li, s, rep
new
U , πS〉 which is

submitted to the ledger. To be accepted, algorithm ShowVerify
is used.

ShowVerify(params, nymV
U , Li, s, rep

new
U , πS) is run by

V (and the miners) to ensure that the advertised reputation
value is in Li, the old reputation token belongs to the same
person who possesses nymV

U , and the new token is built
correctly. For this, the proof πS is examined and validated.
Additionally, the released serial number s should not have
appeared in a previous transaction. If everything checks out,
txShow is added to the ledger.

D. Updating reputation

This procedure is the next logical step following ShowRep
and takes place when V has interacted with some user U
and wishes to rate this interaction4. Hence there should be a
mechanism for V to award reputation points to U through her
pseudonym nymV

U . This procedure takes place strictly between
pseudonyms instead of involving the actual identities of U
and V . The field auxU,V may contain additional, auxiliary
information about the interaction between the two parties so
that only entities who have actually interacted can rate each
other. Thus our framework can be used as a component in
systems where peers buy digital products, exchange files or
data, etc. and wish to rate these activities.

UpdateRep(params, nymV
U , nym

U
V , val, auxU,V ) is used

to update the reputation of U after an interaction with V .
It takes as input the pseudonyms of U, V and creates a new
reputation token whose value is increased by val. To prevent
a malicious U from using old reputation tokens, the serial
number s in repU is released and compared against used
ones. The operation is accepted only if s has not appeared
in previous transactions. Care is needed to ensure that (i)
reputation is updated correctly, and (ii) U cannot use another
pseudonym to improve her own reputation (i.e. take the role
of V and mount a self-promotion attack). The use of self-
redeeming tags helps in this respect. Detailed steps of U and
V are shown below:

U ’s actions:
1) U constructs a new token

repnewU = grnewhskhsnew
1 hvnew

2

with serial number snew and value vnew equal to the old
one.

2) U computes a self-redeeming tag τU = H(nymV
U ,

nymU
V , T, skU ), where T is a timestamp and H is a

secure hash function.
3) Now U has to show that (i) repU belongs to the tree of

committed reputation tokens, (ii) repU , nymV
U and τU

all share the same secret skU , and (iii) vnew = v.

4ShowRep and UpdateRep can be merged into one procedure if show is
always followed by a rating and thus update of a reputation score. However
users may just want to learn the reputation level of a pseudonym without
necessarily interacting with it. These cases require the use of a standalone
ShowRep procedure.
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More formally, we define the NP language LU for the
zkSNARK-proof system as a set of the following NP
statements:

LU =



〈nymV
U , nym

U
V ,

s, repnewU , T, τU 〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ r, sk, repU , r′, v, rnew,
snew, vnew :

nymV
U = grhsk

repU = gr
′
hskhs1h

v
2

repU ∈ RepTree with root rt
v ∈ Li (Optional)
repnewU = grnewhskhsnew

1 hvnew
2

vnew = v
τU = H(nymV

U , nym
U
V , T, skU )


The optional step (v ∈ Li) is included to eliminate the need

for the extra ShowRep when update immediately follows
show of reputation. The proof πU can be turned into a
signature by including auxU,V to the random values used by
the prover as in the case of MintRep. This signature is denoted
by π[auxU,V ].

This process results in a new valid token repnewU whose
value is the same as the old one. It would be a simple matter to
let U directly update her reputation by the rating val assigned
by V (just set vnew = v + val instead of vnew = v in the
zkSNARK statement), however doing so creates a potential
vulnerability: if this rating is unfavorable, U may not be
willing to submit the update transaction to the ledger. We can
solve this issue by having V complete the update as shown
below.

V ’s actions:
Immediately after U has created repnewU and the signature

π[auxU,V ], V does the following:
1) Creates a commitment cval = gr

′′
hval2 to the rating val

destined for U , where r′′ is a new random number.
2) Examines the proof/signature π[auxU,V ]. If the signature

is valid, V computes

repnew
′

U = repnewU · cval. (3)

3) Computes a self-redeeming tag τV = H(nymV
U , nym

U
V ,

T, skV ), where T is the same timestamp as in τU .
4) Proves knowledge of his long-term secret skV in his

pseudonym nymU
V , his reputation repV and his tag τV .

There is no need for V to mint a new reputation token
as V is not asked to show his reputation. Any reputation
token is sufficient as all of them are bound to the same
key skV .
More formally, we define the NP language LV for the
zkSNARK-proof system as a set of the following NP
statements:

LV =

〈nym
U
V , T, τV 〉

∣∣∣∣∣∣∣∣∣∣
∃ r, skV , repV , r′, s :
nymU

V = grhsk

repV = gr
′
hskhs1h

v
2

repV ∈ RepTree with root rt
τV = H(nymV

U , nym
U
V , T, skV )


The proof πV is turned into a signature of knowledge on
cval and auxU,V . This is indicated by πV [cval, auxU,V ].

5) Finally, V submits an update transaction to the ledger

txUpd = 〈nymV
U , s, rep

new
U , T, τU , πU [auxU,V ],

τV , rep
new′

U , cval, r
′′, val, π[cval, auxU,V ]〉.

The intended meaning is that during UpdateVerify a miner
first checks the validity of πU [auxU,V ] for the correctness of
repnewU , then computes cval, given r′′, val, and tests whether
Equation (3) holds. The role of πV [cval, auxU,V ] is to ensure
that a malicious miner (who might collaborate with U ) does
not replace cval and re-computes repnew

′

U to a different value.
The signature by the owner of nymU

V ensures that this cannot
happen.

What if both nymU
V and nymV

U belong to U? How can
a self-promotion attack be prevented? This is where the self-
redeeming tags come into play. Specifically, τU and τV can be
the same only if skU = skV , i.e. U and V are the same person
despite the fact that pseudonyms used were different. Hence
a miner should also check that τU 6= τV before committing
txUpd to the ledger.

If all the tests succeed, txUpd is accepted and repnew
′

U is
committed to the tree of valid commitments. Notice that peer
U , knowing r′′ and val can store in her records the new
randomness r′ + r′′ and the new value v + val. Thus, she
can demonstrate knowledge of all the attributes in repnew

′

U

upon a future query.

Remark 1: The above method reveals the rating val of V
to all peers in the network. V can hide this value but then he
has to push cval inside the NP-statement and show that val is
a valid rating, i.e. it is within the allowable set of values. This
does not increase the proof size or the verification time but
might increase the zkSNARK system’s public and verification
keys.

VI. SECURITY ANALYSIS AND PERFORMANCE

In this section we analyze the security, privacy and effi-
ciency aspects of the reputation framework.

A. System Security and Privacy

Our proofs assume the existence of a trustworthy, append-
only ledger in which nodes share a common view of commit-
ted transactions. This is accomplished by maintaining a high
degree of network connectivity and employing computational
proofs of work to extend the ledger with new blocks. Thus
active attacks against the ledger are out of scope of this work.
However, attackers can try active attacks against the protocol
operations themselves.

Key-binding property: We start by providing some intuition
why the key-binding property holds. Recall that by Defini-
tion 1, the adversary A can win the key-binding game in the
following cases:

1) A holds a valid registration token SigR(I) that is
not an output from any AdvRegRep query which is
used to model the Register protocol. Since R signs
I = gskU , this suggests that A managed to forge a
registration token without the involvement of R. This
contradicts the assumption that the signature scheme
used is unforgeable.

2) A makes a successful call to MintRep for which the
long-term key skU has not been the output of any
AdvRegRep up to this call. However, before the mint
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transaction is posted to the ledger, the validity of the sig-
nature on I is examined. This suggests that A managed
to forge SigR(I) without the involvement of R, which
again contradicts the security of the signature scheme.

We now state the theorem more formally.
Theorem 1: (Key-binding reputation) If the signature

scheme used to create the registration token is unforgeable,
the proposed scheme satisfies the key-binding property as
described in Definition 1.

Proof : Let A be an adversary in the key-binding experiment
ExpKbrA . Then, for any security parameter λ, we have that

AdvKbrA (λ) ≤ AdvUF−CMA
SIG,B (λ),

where AdvUF−CMA
SIG,B (λ) denotes the advantage of an adversary

B that succeeds in computing a signature to a message of her
choice using knowledge of the public key only.

Let EKbr
A,1 be the event that Case 1 happens and EKbr

A,2 be the
event that Case 2 happens. We will now show that, if either
these bad events happen, we can construct an adversary B that
breaks the unforgeability of the underlying signature scheme.
B uses A as follows.

In order to answer the challenge in the signature un-
forgeability game, B must present a message-signature pair
that passes the signature verification test. To this respect, B
simulates AdvRegRep queries by first generating a user pair
(sk, I = gsk) then calling AAdvRegRep(sk, I).

If A forges SigR(I) (event EKbr
A,1) then B could use SigR(I)

as its forgery in the unforgeability game to win. Additionally,
if A manages to pass verification when minting an initial
reputation token during MintRep for which sk has not been
the output of an AdvRegRep call (event EAbr

A,2) then B could
use SigR(I) as its forgery in the unforgeability game to win.
Therefore,

Pr[B wins] ≥ Pr[EKbr
A,1 ∨ EKbr

A,2].

However, because the underlying signature scheme is secure,
Pr[B wins] is bounded by AdvUF−CMA

SIG,B (λ). Thus,

AdvKbrA (λ) ≤ Pr[EKbr
A,1 ∨ EKbr

A,2] ≤ AdvUF−CMA
SIG,B (λ)

�

Aggregation-binding property: We start by providing some
intuition why this property holds. Note that, because the pro-
posed scheme satisfies the key-binding property, the adversary
can win the aggregation-binding game if any of the following
cases occurs.

1) The adversary observes the token repnew posted in
a txShow or txUpd transaction and extracts the token’s
attributes 〈r, s, sk, v〉. Now she can act on behalf of
U (which perhaps has a better reputation) and show or
update U ’s reputation value.

2) The adversary observes the proofs πS or πU posted in a
txShow or txUpd transaction, extracts the hidden attributes
〈r, s, sk, v〉 and again acts on behalf of U .

3) The adversary, during ShowRep or UpdateRep, pro-
duces a proof of an invalid statement to convince the
verifier that her reputation is of larger value.

We now formally state the theorem.
Theorem 2: (Aggregation-binding reputation) If Theo-

rem 1 holds, the commitment scheme is hiding, and the
zkSNARK scheme is sound and zero-knowledge, the proposed
scheme satisfies the aggregation-binding property as described
in Definition 2.

Proof : Let A be an adversary in the aggregation-binding
experiment ExpAbrA . Then for any security parameter λ we have
that

AdvAbrA (λ) ≤ (qM + qS + qU) · AdvHideCOMM,B(λ)+

(qM + qS + qU) · AdvZKPOK,C(λ)+

AdvsoundPOK,C(λ),

where AdvHideCOMM,B(λ) denotes the advantage of an adversary
B that succeeds in breaking the hiding property of the com-
mitment scheme, and AdvZKPOK,C(λ),AdvsoundPOK,C(λ) denote the
advantages of adversaries C,D that succeed in breaking the
soundness and zero-knowledge properties of the underlying
zkSNARK scheme.

Let EAbr
A,i be the event that Case i above happens, where

i ∈ {1, 2, 3}. Suppose A triggers event EAbr
A,1. Then there

exists an adversary that uses A to break the hiding property
of the commitment scheme. Adversary B starts by executing
AAdvRegRep, AdvShow, AdvUpdate() while simulating A’s queries.
Since EAbr

A,1 happens, A attacks a reputation token and recovers
the committed attributes 〈r, s, sk, v〉. Since it is unknown
which of the poly(λ) tokens might cause this event to happen,
B would select one of the qM Mint, qS Show, or qU Update
queries, submit either a valid set of attributes 〈s, sk, v〉 or a
random message 〈r1, r2, r3〉 to its challenger and get back a
token τ . It then creates the simulated proof π ← S(τ) and
forwards this to A to distinguish between the real token and
the random one. Then it submits A’s answer to its challenger
to win the game with probability 1/(qM + qS + qU). Therefore

Pr[B wins] ≥ Pr[EAbr
A,1]/(qM + qS + qU).

However, since the commitment scheme is hiding, we have
that Pr[B wins] ≤ AdvHideCOMM,B(λ), hence

Pr[EAbr
A,1] ≤ (qM + qS + qU) · AdvHideCOMM,B(λ).

Next, suppose that A triggers event EAbr
A,2. Then there exists

an adversary C that uses A to break the zero-knowledge
property of the underlying zkSNARK. Adversary C starts
by executing AAdvRegRep, AdvShow, AdvUpdate() while simulating
A’s queries. Because event EAbr

A,2 occurs during the course
of simulating A’s (qM + qS + qU) queries, C would form a
token 〈r, s, sk, v〉, then submit it to its challenger in the zero-
knowledge game. Once it gets back the proof π, it forwards it
to A to distinguish between the real and the simulated proof.
Thus, C can win the game with probability 1/(qM + qS + qU).
Therefore

Pr[C wins] ≥ Pr[EAbr
A,2]/(qM + qS + qU).

However, since the zkSNARK is zero-knowledge, we have that
Pr[C wins] ≤ AdvZKPOK,C(λ), hence

Pr[EAbr
A,2] ≤ (qM + qS + qU) · AdvZKPOK,C(λ).



13

Finally, suppose that A triggers event EAbr
A,3. Then there

exists an adversary D that uses A to break the soundness of
the underlying zkSNARK. The adversary D starts by executing
AAdvRegRep, AdvShow, AdvUpdate() while simulating A’s queries.
Because event EAbr

A,3 occurs, A will output a proof π∗ for a
statement not in one of the languages LS or LU such that the
false proof passes verification. D can then submit this proof
to its challenger to break the soundness. Therefore,

Pr[D wins] ≥ Pr[EAbr
A,3].

However, since the zkSNARK is sound, we have that

Pr[EAbr
A,3] ≤ Pr[B wins] ≤ AdvsoundPOK,C(λ)

The proof of the theorem follows since

AdvAbrA (λ) ≤ Pr[EAbr
A,1] + Pr[EAbr

A,2] + Pr[EAbr
A,3].

�

Privacy: By Definition 3, we observe that an adversary can
distinguish between different users under the following cases:

1) The adversary recovers the long-term user keys ski
during the registration phase.

2) The adversary extracts the key from the committed
token attributes posted during during the txShow or txUpd
transactions.

3) The adversary observes the proofs πS or πU posted
during the txShow or txUpd transactions and extracts the
hidden key.

We now formally state the theorem.
Theorem 3: (Privacy) If the Discrete Logarithm assumption

is true, the commitment scheme is hiding and the zkSNARK
scheme is zero-knowledge, the proposed scheme satisfies the
privacy property as described in Definition 3.

Proof : Let A be an adversary in the privacy experiment
ExpPrivA . Let EPriv

A,i be the event that Case i above happens,
where i ∈ {1, 2, 3}.

During registration, the adversary observes the signed reg-
istration tokens Ii = gski . If case 1 happens, the adversary
can distinguish between U0 and U1 simply by recovering ski.
However, this is impossible due to the intractability of the
Discrete Logarithm problem.

Similarly, if case 2 happens and A recovers the committed
attributes (including the long-term secret skb) from the rep-
utation token of user Ub during the challenge phase, A can
relate the key to one of the two users simply by computing
gskb and comparing against the registration tokens I1 or I2.
Thus, the existence of such an adversary implies the existence
of an adversary B that uses A to break the hiding property
of the commitment scheme. This is similar to case 1 of the
aggregation-binding game.

Finally, if case 3 happens and A recovers the long-term
secret skb from the proof πS or πU posted during the challenge
phase, the adversary can use the key to identify the user from
its registration token as before. However, the existence of such
A implies the existence of an adversary B that uses A to
break the zero-knowledge property of the underlying zkSNARK
scheme. This is similar to case 2 of the aggregation-binding
game. �

B. Efficiency aspects

In this section, we describe in more detail the environment
used to test our scheme and provide the experimental set up
and results for the various zkSNARK proofs. The benchmarks
were evaluated on a virtual machine running Ubuntu 18.04.3
LTS x86 64 with a Linux 5.0.0-25-generic kernel. The pro-
cessor used was an Intel i7-3632QM CPU @ 2.20GHz with
access to 8GB of RAM.

To implement the zkSNARKs, we used the xJsnark [35]
framework to write our verification program then compiled
it into an arithmetic circuit. The circuit is constructed in such
a way that is recognizable by libsnark [36]. All operations are
performed over the bilinear BN128 curve.

In what follows we show the measurements for the mint
and update operations of a user U . The update operation is
the most expensive one as the statements in the proof are a
superset of those appearing in πS (Show) and πV (V ’s proof
in the interaction with U ).

1) Mint statement: Table I shows the timing and memory-
related measurements for the ZK-proof πM (recall Section
V-B). The proof attests to the validity of the key sk used
to form the registration token I , the pseudonym nymU and
the initial reputation token repU .

TABLE I
THE PERFORMANCE MEASUREMENTS FOR zkSNARK KEY GENERATION,

PROVING, AND VERIFICATION OF MINT STATEMENTS

Time Size
Key Generation 34.4 ms PK: 3.23 KB, VK: 0.82 KB

Prover 25.2 ms Proof Size: 287 B
Verifier 22.4 ms

2) Update statement: Table II shows the timing and
memory-related measurements for the ZK-proof πU (recall
Section V-D) constructed by U . The proof attests to the
validity of the key sk used to form the new and old reputation
tokens, the pseudonym nymU as well as the self-redeeming
tag τU . It also attests to the fact that there is a valid authen-
tication path showing that repoldU is committed to a tree with
root rt and that both tokens bear a value v that belongs to a
set Li. The number of constraints used to represent the circuit
is 269270.

TABLE II
THE PERFORMANCE MEASUREMENTS FOR zkSNARK KEY GENERATION,

PROVING, AND VERIFICATION OF UPDATE STATEMENTS

Time Size
Key Generation 42.6 s PK: 49.24 MB, VK: 1.849 KB

Prover 22.1 s Proof Size: 287 B
Verifier 21 ms

These findings show the efficiency of the protocol as the
proofs have constant size (287 bytes) and verification time in
the order of a few milliseconds. Hence any interested party or
miner can easily verify the validity of the relevant transactions
posted in the ledger.
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VII. DISCUSSION

A critical requirement in P2P networks is to have unique
and verifiable identities for each node in the nework. Without
this, malicious peers would be able to create an arbitrary
number of Sybil nodes and thus gain control of the network
or influence the reputation system itself. A common solution
for providing unique identities is to rely on the use of public
key cryptography and the existence of Certification Authorities
(CAs). The role of the CA is to sign a certificate that binds
a public key to the identity of the node. Yet, the process of
issuing and distributing certificates is manifested with many
problems including tracking and renewing expired or com-
promised certificates, dealing with potential vulnerabilities,
managing the certificate’s lifecycle, and so on.

In this work, the role of the registrar R (Section III) is
much simpler: R has to verify the peer’s identity and create
the user’s registration token SigR(I) either using the CanDID
approach or a legacy one (Section V-A). Hence R never sees
the public key of the user nor can track the user’s activities.
Furthermore the token is only used to ensure that a user cannot
register again and hence create multiple identities.

One way to replace the use of registration tokens (and hence
the dependency on the registrar) is to rely on the existence
of a hardware (identity) token as implied by the use of
Trusted Platform Modules (TPMs) and the Trusted Computing
paradigm. Thus, instead of verifying the identity of peers,
the Sybil attack can be mitigated by referring to the physical
foundation of nodes [37]. In the following, we outline how
such a trusted identity management service can be realized (for
more on TPM functionalities the reader is referred to [38]).

In the context of identification, the concept of Direct Anony-
mous Attestation (DAA) [39] can be adopted to verify that a
registration token is valid but without tying it to a particular
platform. During the join phase of the DAA scheme, the TPM
first authenticates to the DAA issuer using its Endorsement
Key (EK), then generates a secret value f and obtains a
credential. Note that the issuer does not actually learn f during
this process.

Once the join phase is complete, the TPM can use the DAA-
Sign algorithm to prove to any verifier that it possesses a
valid credential and then sign a message m using its DAA
secret f , its DAA certificate, and the public parameters of the
system. During this process the platform uses a pseudonym
of the form NV = ζf , where f is the same value as in the
DAA certificate. Knowledge of f and the soundness of the
process is ensured using an appropriate zero-knowledge proof
π. Hence the verifier is convinced about the validity of the
pseudonym but cannot link it to a particular platform. The user
U who owns the platform can then mint a user nym nymU

and reputation token repU as in Section V-B, where the secret
key skU is taken to be f . The mint transaction txMint consists
of 〈nymU , repU , vinit, ζ

f , π〉 which is then submitted to the
ledger.

The value ζf can be thought as a hardware token whose role
is to replace the registration token I(= gsk) in our protocol.
The secret f ensures that a user U who owns a platform cannot
register again by providing a different token ζ ′f since ζ is

chosen by the verifier. In our case, the parameter ζ can be fixed
in advance and be the same for all (i.e. it can be selected from
a static basename) so that it reflects the P2P network the users
are registering for. Notice that peer’s actions cannot be linked
to a particular TPM since the DAA process never reveals the
platform identity. Hence this method provides a solution for
creating unique (due to ζ and f ), undeniable and verifiable
hardware-bound identities. Of course, nothing prevents a Sybil
attacker from using different TPM-enabled devices in order to
register multiple reputation tokens. However, this puts a bound
to the number of devices the (average) attacker can have and
incurs a cost to the attacker.

In summary, we have presented two methods to stop such a
Sybil attacker. The first method binds identities to actual hu-
man beings. This requires access to user personal information
but is Sybil-proof. The second one binds identities to hardware
platforms but allows the attacker to create a small number of
additional identities. As such, we believe that each approach
has its own merits and both can be suitable for a wide range
of environments.

VIII. CONCLUSIONS

In this work we have presented an identity-bound reputation
framework where peers can use as many pseudonyms they
like in their interaction with other peers. Although these
pseudonyms are bound to the same reputation token thus
bearing the same reputation score, the user’s identity is never
revealed during shows or updates of reputation. Hence privacy
and forward anonymity are ensured.

Our scheme provides Sybil resistance that is critical for
applications based on reputation. Furthermore, our scheme is
completely decentralized; all operations are handled by the
peers themselves in a distributed manner using an append-only
ledger such as Bitcoin’s blockchain.

Our system is resistant to various reputation-based attacks
and maintains soundness, peer-pseudonym unlinkability as
well as unlinkability among pseudonyms of the same peer. We
have formally proved these properties and have evaluated the
efficiency of the various operations demonstrating the viability
of our approach.
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