ABSTRACT

Privacy-preserving machine learning (PPML) has many applications, from medical image evaluation and anomaly detection to financial analysis. nGraph-HE (Boemer et al., Computing Frontiers’19) enables data scientists to perform private inference of deep learning (DL) models trained using popular frameworks such as TensorFlow. nGraph-HE computes linear layers using the CKKS homomorphic encryption (HE) scheme (Cheon et al., ASIACRYPT’17), and relies on a client-aided model to compute non-polynomial activation functions, such as MaxPool and ReLU, where intermediate feature maps are sent to the data owner to compute activation functions in the clear. This approach leaks the feature maps, from which it may be possible to deduce the DL model weights. As a result, the client-aided model may not be suitable for deployment when the DL model is intellectual property.

In this work, we present MP2ML, a machine learning framework which integrates nGraph-HE and the secure two-party computation framework ABY (Demmler et al., NDSS’15), to overcome the limitations of the client-aided model. We introduce a novel scheme for the conversion between CKKS and secure multi-party computation (MPC) to execute DL inference while maintaining the privacy of both the input data and model weights. MP2ML is compatible with popular DL frameworks such as TensorFlow that can infer pre-trained neural networks with native ReLU activations. We benchmark MP2ML on the CryptoNets network with ReLU activations, on which it achieves a throughput of 33.3 images/s and an accuracy of 98.6%. This throughput matches the previous state-of-the-art for hybrid HE-MPC networks from GAZELLE (Juvekar et al., USENIX’18), even though our protocol is more accurate and scalable than GAZELLE.

KEYWORDS

private machine learning, homomorphic encryption, secure multi-party computation.

1 INTRODUCTION

Several practical services have emerged that use machine learning (ML) algorithms to categorize and classify large amounts of sensitive data ranging from medical diagnosis to financial evaluation [14, 67]. However, to benefit from these services, current solutions require disclosing private data, such as biometric, financial or location information.

As a result, there is an inherent contradiction between utility and privacy: ML requires data to operate, while privacy necessitates keeping sensitive information private [71]. Therefore, one of the most important challenges in using ML services is helping data owners benefit from ML, while simultaneously preserving their privacy [69]. For instance, evaluating a private decision tree can provide a solution for private medical diagnosis where the patient’s medical data is sensitive information that needs to be protected while simultaneously protecting the model [4, 38, 64, 72].

Modern cryptographic techniques such as homomorphic encryption (HE) and secure multi-party computation (MPC) can help resolve this contradiction. Using HE, a data owner can encrypt its data with its public key, send the encrypted data for processing to an untrusted data processor, and receive the encrypted result, which only the data owner itself can decrypt with its private key [50]. In secure two-party computation (2PC), a special case of MPC with two parties [7, 33, 73], the data owner secret-shares its data with the data processor and uses the secret-shared data to securely compute the result without revealing any individual values.

While HE and MPC have the potential to address the privacy issues that arise in ML, each technique has its advantages and limitations. HE has high overhead for computing non-polynomial activations, such as ReLU and MaxPool, which are commonly used in deep learning (DL) models. While efficient HE-based inference is possible by replacing activation functions with polynomial approximations, this degrades the accuracy of the DL model [10], and requires a costly re-training of the model. MPC schemes support a larger set of functions and it is possible to perform private DL inference using only MPC schemes. However, MPC requires the structure (e.g., the Boolean circuit) of the neural network to be
public, and involves multiple rounds of interaction between the parties.

Hybrid methods combine HE and MPC to take advantage of each method’s strengths. Recent research has demonstrated the ability to evaluate neural networks using a combination of HE and MPC [5, 6, 31, 35, 37, 46, 50, 53, 54, 58, 61]. For example GAZELLE [37], using a combination of HE and MPC, demonstrates three orders of magnitude faster online run-time when compared to the existing exclusively MPC [54] and exclusively HE [31] solutions.

DL software frameworks, such as TensorFlow [1], MXNet [18], and PyTorch [51], as well as open-source graph compilers, such as Intel’s nGraph [22] and TVM [19] accelerate the development of DL. These libraries abstract away the details of the software and hardware implementation, enabling data scientists to describe DL models and operations at a high level (e.g., tensors and compute graphs). Historically, a major challenge for building privacy-preserving machine learning (PPML) systems has been the absence of software frameworks that support privacy-preserving primitives.

To overcome this challenge, Intel recently introduced nGraph-HE [10, 11], a HE-based framework that is compatible with existing DL frameworks. Using nGraph-HE, data scientists can deploy DL networks over encrypted data without extensive knowledge of cryptography. One of the major limitations of using HE in nGraph-HE is the cleartext evaluation of non-polynomial functions such as MaxPool and ReLU, which may leak information about the DL model weights and hyper-parameters to the client.

Outline and Our Contributions. In this work, we introduce MP2ML, a hybrid HE-MPC framework for privacy-preserving DL inference. MP2ML extends nGraph-HE with MPC-based computation of ReLU activations, which prevents the leakage of model weights to the client. We use the ABY framework [27] to implement a 2PC version of the ReLU activation function. Our framework integrates with TensorFlow, enabling data scientists to adopt MP2ML with minimal code changes. After presenting preliminaries from privacy-preserving DL (Sect. 2), and an overview of related work (Sect. 3), we detail MP2ML (Sect. 4), which provides the following core contributions:

- A privacy-preserving mixed-protocol DL framework based on a novel combination of nGraph-HE [10, 11] and ABY [27];
- A user-friendly framework that supports private inference on direct input from TensorFlow;
- Support for privacy-preserving evaluation of the non-linear ReLU activation function with high accuracy;
- The first DL application using additive secret sharing in combination with the CKKS homomorphic encryption scheme;
- An open-source implementation of our framework, available under the permissive Apache license at https://ngra.ph/he.

We evaluate atomic operations and a neural network benchmark using our framework (Sect. 5). Finally, we discuss our approach and highlight differences to existing solutions (Sect. 6) and conclude (Sect. 7).

2 BACKGROUND

We provide an overview of the techniques used in MP2ML. We define our notation in Sect. 2.1 and provide an overview of the cryptographic methods used in our framework and the adversary model in Sect. 2.2.

2.1 Notation

\(x\) denotes a plaintext scalar, \(X\) is a vector of \(n\) plaintext scalars \((x_1, x_2, ..., x_n)\). \(\llbracket x \rrbracket\) is a homomorphic encryption of \(x\). \(\llbracket X \rrbracket\) is an element-wise homomorphic encryption of \(X\), and \(q\) is the ciphertext modulus. Let \(\lfloor \cdot \rfloor\) denote rounding to the nearest integer, and \(\lfloor \cdot \rfloor_q\) denote modular reduction into the interval \((-q/2, q/2]\).

2.2 Cryptographic Preliminaries

Modern cryptographic protocols such as homomorphic encryption (HE) and secure multi-party computation (MPC) are essential building blocks for privacy-preserving ML.

Homomorphic Encryption (HE). HE is a cryptographic primitive supporting computation on encrypted data. HE schemes are classified by the types of computation they support. Somewhat HE (SHE) schemes support a limited number of additions or multiplications, while fully HE (FHE) schemes support an unlimited number of additions and multiplications. In this work, we utilize the CKKS HE scheme [20] and its SHE implementation in the Microsoft Simple Encryption Arithmetic Library (SEAL) version 3.4 [63].

The security of the CKKS scheme is based on the assumed hardness of the ring learning with errors (RLWE) problem. Let \(\Phi_M(X)\) be the \(M^{th}\) cyclotomic polynomial of degree \(N = \phi(M)\). Usually \(\deg(\Phi_M(X))\) is a power of two for both performance and security reasons. Then, the plaintext space is the ring \(\mathbb{R} = \mathbb{Z}[X]/(\Phi_M(X))\). The ciphertext space is \(\mathbb{R}_q = \mathbb{R}/(q\mathbb{R})\), i.e., degree-\(N\) polynomials with integer coefficients mod \(q\), where \(q\) is the coefficient modulus. Neural networks, however, typically operate on floating-point numbers. Hence, we need a conversion from floating-point numbers to integers, which is typically done by multiplying a floating-point number \(x\) by some scale \(s\) and encrypting \(\lfloor \lfloor x \rfloor s \rfloor_q\). However, the homomorphic product of two ciphertexts at scale \(s\) is a ciphertext with scale \(s^2\). Subsequent multiplications increase the scale quickly until the integers exceed the range \((-q/2, q/2]\), at which point decryption becomes inaccurate.

To mitigate this blow-up in the scale, CKKS introduces a rescaling procedure. The rescaling procedure relies on a ‘layered’ ciphertext space, in which each of \(L\) layers contains a different ciphertext modulus. Let \(p_0, \ldots, p_{L-1}\) be primes, and let \(q_i = \prod_{j=0}^{i} p_j\). Then, the layered ciphertext space \(\mathcal{R}_{q_{L-1}}\) consists of \(L\) layers, where layer \(i\) has coefficient modulus \(q_i\). Rescaling brings a ciphertext \(c\) with scale \(s\) from level \(l\) to a ciphertext at level \(l-1\) with scale \(s/q_l\), and reduces the ciphertext space from \(\mathcal{R}_{q_l}\) to \(\mathcal{R}_{q_{l-1}}\). The rescaling algorithm is the homomorphic equivalent to removing inaccurate LSBs as a rounding step in approximate arithmetic.

The security of the CKKS encryption scheme is measured in bits, with \(\lambda = 128\) bits implying \(\neg 2^{128}\) operations are required to break the encryption. \(\lambda\) is a function of the encryption parameters \(\{N, L, q_0, \ldots, q_{L-1}\}\).

Unlike other HE schemes, such as BFV [13, 29], CKKS is also an approximate HE scheme. The decryption after addition and multiplication is approximate, but the error in the decryption is bounded under certain assumptions on the selection of the encryption parameters. More concretely, if \(c_1\) and \(c_2\) are encryptions of
the messages \(m_1\) and \(m_2\), respectively, then \(Dec(c_1 + c_2) \approx m_1 + m_2\) and \(Dec(c_1 \cdot c_2) \approx m_1 \cdot m_2\).

The runtime performance of CKKS depends heavily on the choice of the encryption parameters. As shown in Table 1, larger \(N\) and \(L\) lead to larger runtimes in BFV. CKKS, however, is significantly faster than BFV. In both schemes, ciphertext-plaintext addition and multiplication are substantially faster than ciphertext-ciphertext multiplication. That is, if \(p\) is an encoding of \(m_1\), and \(c\) is an encryption of the message \(m_2\), then \(Dec(p + c) \approx m_1 + m_2\) and \(Dec(p \cdot c) \approx m_1 \cdot m_2\).

Table 1: SEAL CKKS and BFV performance test. Parameters satisfy \(\lambda = 128\)-bit security. Runtimes averaged across 1000 trials.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Runtime (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 2^{12}, L = 3)</td>
</tr>
<tr>
<td></td>
<td>BFV</td>
</tr>
<tr>
<td>Add</td>
<td>16</td>
</tr>
<tr>
<td>Multiply plain</td>
<td>643</td>
</tr>
<tr>
<td>Decrypt</td>
<td>462</td>
</tr>
<tr>
<td>Square</td>
<td>3,246</td>
</tr>
<tr>
<td>Multiply</td>
<td>4,578</td>
</tr>
<tr>
<td>Rescale</td>
<td>N/A</td>
</tr>
<tr>
<td>Encrypt</td>
<td>2,060</td>
</tr>
<tr>
<td>Relinearize</td>
<td>952</td>
</tr>
<tr>
<td>Rotate one step</td>
<td>953</td>
</tr>
<tr>
<td>Rotate random</td>
<td>3,611</td>
</tr>
</tbody>
</table>

While CKKS induces a significant runtime and memory overhead compared to unencrypted computation, the use of plaintext packing, also referred to as batching, improves the amortized overhead. Plaintext packing encodes \(N/2\) complex scalars into one plaintext or ciphertext. It works by defining an encoding map \(\mathbb{C}^{N/2} \rightarrow \mathcal{R}\), where \(\mathcal{R}\) is the plaintext space. An operation (addition or multiplication) performed on an element in \(\mathcal{R}\) corresponds to the same operation performed on \(N/2\) elements in \(\mathbb{C}^{N/2}\). The number of \(N/2\) elements in the packing is also referred to as the number of slots in the plaintext. We use the complex packing optimization from nGraph-HE [11] to increase the slot count to \(N\).

MP2ML uses batch-axis plaintext packing: encode an inference data batch of shape \((n, c, h, w)\), where \(n \leq N\) is the batch size, as \(c \times h \times w\) ciphertexts, with ciphertext \(c_{c,h,w}\) packing the \(n\) values \((c, h, w)\) in the data batch. Then, inference is performed on the \(n\) data points simultaneously. We refer to [10] for more details.

Secure Multi-Party Computation (MPC). MPC is a cryptographic technique, which enables two or more parties to jointly evaluate a function \(f\) without revealing their private inputs to each other. In this work, we focus on the two-party case, in which typically one of two approaches is used: Yao’s garbled circuit (GC) protocol [74] or the Goldreich-Micali-Wigderson (GMW) protocol [33]. In both protocols, the function to be computed is represented as a Boolean circuit.

In Yao’s GC protocol [74], each of the two parties – called garbler and evaluator – evaluates a function \(f\), represented as a Boolean circuit, without exposing its input to the other party. The GC protocol consists of two phases. In the first phase, the circuit is garbled by assigning two random labels to each wire in the circuit, with each label corresponding to the logical values of 0 and 1. A garbled table maps each possible combination of these input labels to its corresponding output label, according to the logic function of each Boolean gate. The privacy of GCs stems from the fact that output labels are encrypted and only a single output label per gate can be decrypted by using the input labels as decryption keys. Since wire labels are random strings, the garbler can simply encode its own private inputs into the circuit. The evaluator receives the wire labels corresponding to its private inputs privately by using an oblivious transfer protocol [28, 39]. In the second phase, the evaluator computes the circuit outputs using the garbled tables to iteratively decrypt the outputs of each gate until the output of the entire circuit has been decrypted. The output can then be revealed to one or both parties by providing the final mapping of output labels to plaintext bits to the designated parties.

In the GMW protocol [33], the two parties secret-share all inputs and intermediate values using an XOR-based secret sharing scheme. Then the parties interact in several communication rounds to securely compute the function \(f\) on their shared values. By exchanging their final shares and computing the XOR, one or both parties can reconstruct the plaintext outputs of the circuit.

The ABY MPC framework [27], provides an efficient implementation of both protocols and their state-of-the-art optimizations such as [3, 8, 40, 47, 62, 75].

Adversary Model. In this work, we use the semi-honest\footnote{also called passive, or honest-but-curious adversary model} adversary model, in which we assume that the adversary follows the protocol honestly, but attempts to infer additional sensitive information from the observed protocol messages. This model is weaker than the malicious (active) adversary model, where the adversary can arbitrarily deviate from the protocol. However, the semi-honest model allows to build highly efficient secure computation protocols and is therefore widely used in privacy-preserving DL applications [5, 6, 10, 11, 31, 35, 37, 50, 54, 58]. This assumption is similar to the one used in HE-based DL, where it is assumed that a server correctly computes a function on a homomorphic ciphertext. Proofs of security w.r.t. semi-honest adversaries are given for Yao’s protocol in [45], and the GMW protocol in [32].

MP2ML protects the privacy of both the client’s and the server’s inputs. In the setting where the server stores a trained neural network and the client provides encrypted data for inference, our framework provides privacy for both parties’ inputs. The client is unable to infer sensitive information about the trained model, which may be intellectual property of the server. MP2ML reveals only the total size of the model and the number and type of non-linear operations, since these values must be known in the MPC protocol. At the same time, the server cannot access the client’s plaintext inference inputs or classification outputs, which may be sensitive medical or financial information.

3 RELATED WORK

Previous work in privacy-preserving DL typically uses either exclusively HE or exclusively MPC. GAZELLE [37] is a notable exception, using both HE and MPC in a hybrid scheme. Table 2 shows a comparison between MP2ML and previous work. While pure HE
Table 2: Comparison of privacy-preserving DL Frameworks. Model privacy includes preventing the data owner from deducing the weights from intermediate feature maps, protecting the activation function (i.e., ReLU or MaxPool), protecting the model architecture, and only the number of ciphertexts can be leaked. Usability includes support for non-polynomial activation functions, integration with a standard DL framework such as TensorFlow or PyTorch, and availability as open-source code.

<table>
<thead>
<tr>
<th>Framework</th>
<th>Protocol</th>
<th>Model privacy</th>
<th>Usability</th>
</tr>
</thead>
<tbody>
<tr>
<td>nGraph-HE2 [10]</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>CHET [26]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CryptoDL [35]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RAMPARTS [2]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CryptoNets [31]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>nGraph-HE [11]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chimera [12]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cingulata [15]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TFHE [21]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SecureML [49]</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Barni [5]</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sadeghi et al. [58]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chameleon [54]</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XONN [53]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SecureNN [70]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ABY3 [48]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TASTY [34]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dalskov et. al [24]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PySyft [57]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TF Encrypted [23]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CrypTFlow [43]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Slalom [66]</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>GAZELLE [37]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MP2ML (This work)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

1 https://ngra.ph/he
2 https://github.com/microsoft/CryptoNets
3 https://github.com/CEA-LIST/Cingulata
4 https://github.com/tfhe/tfhe
5 https://github.com/snwagh/securenn-public
6 https://github.com/ladnir/aby3
7 https://github.com/tastyproject
8 https://github.com/OpenMined/PySyft
9 https://github.com/tf-encrypted/tf-encrypted
10 https://github.com/mpc-msri/EzPC
11 https://github.com/framer/slalom
12 https://ngra.ph/he

Solutions maintain complete model privacy, they typically lack the support for non-polynomial activation functions, such as ReLU and MaxPool, with the notable exception of TFHE [21], which is used as a backend in Cingulata [15] and Chimera [12]. Pure MPC solutions, on the other hand, support non-polynomial activations at the cost of leaking the full model architecture. Hybrid HE-MPC schemes provide the advantages of both HE and MPC approaches. MP2ML provides the first hybrid HE-MPC framework that integrates with a DL framework such as TensorFlow. Similar to GAZELLE [37], our framework leaks the number of ciphertexts and the activation function used in each non-linear layer. However, MP2ML does not reveal the functionality and size of the linear layers.

Next, we summarize several different approaches for preserving privacy DL.

HE-based DL. The main workload of DL models is multiplication and addition in convolution and general matrix multiply (GeMM) operations [36], making HE an attractive solution for privacy-preserving DL. However, DL models typically consist of functions which are not suitable for HE. For example, computing ReLU or
MaxPool requires a comparison operation that is not supported efficiently in all HE methods.

One solution, which requires access to the entire DL workflow including training, is re-training the DL model with polynomial activation functions [6, 50]. The CryptoNets network [31] by Microsoft Research is an HE-based private DL framework, which uses the polynomial activation function \(f(x) = x^2 \) to achieve 99% accuracy on the MNIST dataset [44]. CHER [26] takes the same approach on the CIFAR-10 dataset [42] and uses the activation function \(f(x) = ax^2 + bx \). This approach reduces the accuracy from 84% in models with ReLU to 81.5%. CryptoDL [35] uses a similar approach, which reduces the accuracy from 94.2% in the original model to 91.5% for the CIFAR-10 dataset.

Depending on the use cases, such accuracy degradation may not be acceptable. Furthermore, polynomial activations introduce further difficulties in training. Polynomial activation functions are not bounded and grow faster than standard activation functions such as ReLU, possibly resulting in overflows during the training.

RAMPARTS [2] uses the Julia language to implement HE operations with the PALISADE HE library [56]. However, RAMPARTS is not open-source, and lacks support for source code outside of Julia. The Cingulata compiler [15] uses a custom implementation of the Fan-Vercauteren HE scheme [29] in C++. Cingulata translates computations to Boolean circuits, reducing performance on GeMM workloads.

FHE-based DL. In this setting, we assume the network has been trained with non-polynomial activation functions, and no changes can be made. Fully homomorphic encryption (FHE) schemes, which support an unlimited number of additions and multiplications, are used to provide precise polynomial approximations of non-polynomial activations. However, due to their large computational overhead, FHE schemes are typically much slower than other alternatives. For instance, using TFHE [21], FHE-based DL models have very low efficiency for arithmetic functions such as GeMM.

MPC-based DL. Pure MPC schemes are another method to evaluate pre-trained neural networks. For instance, in [58], Yao’s garbled circuits [74] applied to a generalization of universal circuits [41, 68] are used to evaluate neural networks and hide their topology. ABY [27] supports arithmetic and Boolean circuits and efficient switching between them, enabling arbitrary functions for network models. ABY3 [48] combines arithmetic secret sharing and garbled circuits and optimized conversions between these protocols to improve previous work. SecureNN [70], an extension of SecureML [49], demonstrates enhanced performance using a third party. Chameleon [54] is an ABY-based framework for secure evaluation of DL models, using a somewhat-trusted third party in the offline phase to generate correlated randomness. Specially, Chameleon performs polynomial operations using arithmetic secret sharing and non-linear operations such as ReLU using Boolean sharing protocols, GC or GMW [33].

XONN [53] use GCs for private inference. However, XONN binaryizes the network, i.e., evaluates networks with weights that are bits, which is costly to train and reduces accuracy. PySyft [57] and TF Encrypted [23] are two frameworks for secure DL models built on PyTorch and TensorFlow, respectively, and use only MPC to evaluate DL models. CryptoFlow [43], a system extending SecureNN [70], is a recent framework for private DL model evaluation based on TensorFlow and uses pure MPC to evaluate DL layers securely. In [24], the authors provide secure inference of ML quantized models in MP-SPDZ [25] with active and passive security, and evaluate the output by TensorFlow directly. MPC-based DL solutions tend to evaluate all DL layers with MPC protocols.

Two main disadvantages in this setting include sharing the functional form (i.e., structure/topology) of the network—which may be intellectual property—with all the parties, and the high communication overhead for multiplication operations. GAZELLE [37], for instance, replaces arithmetic sharing with HE for multiplication, resulting in a 30× faster runtime than Chameleon’s MPC-based multiplication scheme [37]. GAZELLE [37], for instance, replaces arithmetic sharing with HE for multiplication, resulting in a 30× faster runtime than Chameleon’s MPC-based multiplication scheme [37].

Hybrid DL. Hybrid PPML frameworks combine different privacy-preserving protocols. Slalom [66] performs all linear layers in secure inference using Intel SGX, a trusted execution environment (TEE). TEE-based solutions are very efficient, but are prone to attacks [17]. Hybrid HE-MPC schemes compute linear layers (e.g., Fully-Connected and Convolutional) using HE and activation functions using MPC. The work of [5] combined garbled circuits with additive HE schemes. Chimera [12] is a hybrid HE-HE scheme where the ReLU activation function is performed using TFHE [21] and the other functions are performed by the FV/CKKS HE scheme [20]. The main drawback of Chimera is the expensive switching between the two HE schemes.

GAZELLE [37] is a hybrid HE-MPC scheme which uses additive HE for polynomial functions and MPC (garbled circuits) for non-polynomial activation functions. GAZELLE uses a small plaintext modulus, which will result in degraded accuracy on larger networks, and does not integrate with DL frameworks.

GAZELLE [37], for instance, replaces arithmetic sharing with HE for multiplication, resulting in a 30× faster runtime than Chameleon’s MPC-based multiplication scheme [37].

4 THE MP2ML FRAMEWORK

In this section, we provide a detailed description of our MP2ML framework. The main idea borrows from three popular frameworks in literature, including pure MPC using the ABY framework [27], pure HE as in nGraph-HE [10], and hybrid MPC-HE frameworks such as TASTY [34] or GAZELLE [37]. See Sect. 6 for a comparison of MP2ML and GAZELLE.

nGraph-HE [10, 11], an HE-based extension of Intel’s DL graph compiler, provides compatibility with popular DL frameworks such as TensorFlow, enabling data scientists to benchmark linear layers in DL models in a privacy-preserving manner without extensive knowledge in cryptography.

ABY [27] supports both linear and non-linear operations and can implement and securely evaluate them as arithmetic or Boolean circuit. ABY also supports single instruction multiple data (SIMD) gates for high throughput.

MP2ML is a hybrid HE-MPC framework integrating ABY and nGraph-HE, and is compatible with DL frameworks such as TensorFlow. Our work focuses on the setting in which the client can privately perform inference without disclosing his or her input to the server as well as preserving the privacy of the server’s DL
model. In MP2ML we directly build on the usability of nGraph-HE, which requires only minimal changes to existing TensorFlow code. In particular, similar to [11], only a single line of code must be added to enable evaluation with MP2ML, as shown in Sect. 4.3.

4.1 Private ML Workflow

MP2ML combines HE and MPC to enable the evaluation of neural network models in an efficient and privacy-preserving manner. We detail the steps in which a server performs private inference on a client’s encrypted data. Briefly summarized, the steps are as follows:

- **Client**: Input encryption, transmission to the server
- **Private Inference**
 - **Server**: Non-interactive evaluation of linear layers
 - **Both**: Conversion from HE values to MPC values
 - **Both**: Interactive evaluation of non-linear layers
 - **Both**: Conversion from MPC values to HE values
 - **repeat until network output is reached**
- **Server**: Transmission of the encrypted model output to the client
- **Client**: Output decryption

We now explain each of these steps in more detail:

Client Input Encryption. First, the client encrypts its input using the CKKS HE scheme, as implemented by Microsoft SEAL [63], and sends it to the server. For increased throughput, multiple values are packed into a single ciphertext using batch-axis plaintext packing (cf. Sect. 2.2). Now we sequentially evaluate each layer in the DL model using HE or MPC.

Linear Layers. The server evaluates linear layers using the HE-based nGraph-HE [10, 11] implementation. This includes tensor computation operations, such as Convolutional, AvgPool, and Fully-Connected layers, as well as tensor manipulation operations, such as Broadcast, Reshape, Concatenate, and Slice. Using HE for the linear layers enables the server to hide the model structure/topology from the client, and results in no communication overhead.

Non-Linear Layers. We use an MPC protocol to privately evaluate non-linear layers, i.e., ReLU activations. This distinguishes our framework from nGraph-HE. In nGraph-HE’s client-aided model, the server sends the encrypted non-linear layers’ inputs to the client, which decrypts these inputs, performs the non-linear operation locally, encrypts the result and sends it back to the server. The client-aided protocol reveals intermediate values to the client and thus directly leaks information about the trained model, which is often considered private or intellectual property by the server.

In contrast, MP2ML evaluates the non-linear functions using a secure two-party protocol between the client and the server, such that no sensitive information about the intermediate values is leaked. The client learns only the type of non-linear activation function and their total number, but no intermediate value. This approach protects both the server’s model as well as the client’s inputs. Next, we describe the ReLU, ReLU6 and MaxPool activation functions and our implementations thereof.

ReLU Evaluation. Fig. 1 illustrates our secure MPC-based ReLU computation. We assume that the server has previously homomorphically computed linear layers or received the client’s inputs and holds a homomorphic ciphertext \([x]\). The first step is to convert the ciphertext to an MPC value.

Previous work [5, 34, 37] uses arithmetic masking to convert a homomorphic ciphertext into an MPC value: the server additively blinds \([x]\) with a random mask \(r\) and sends the masked ciphertext \([x + r]\) to the client, who decrypts. Then, both parties evaluate a subtraction circuit in MPC to remove the random mask. MP2ML extends this approach to fixed-point arithmetic.

In our private ReLU protocol, the server and the client perform the following steps:

1. **Conversion from HE to MPC:** The first step is to convert the homomorphic ciphertext to an MPC value. To do this, the server generates two random masks, \(r_1\) and \(r_2\), which are integers chosen uniformly at random from the entire domain of the ciphertext space at the lowest level: \((-q_0/2, q_0/2)\). The server first rescales the ciphertext to the lowest level, such that the ciphertext space is \(\mathbb{R}_{q_0}\). Then, the server performs the homomorphic subtraction \(r_1\) from the ciphertext \([x]\) with the ciphertext modulus \(q_0\), and sends the resulting ciphertext \([x - r_1]_{q_0}\) to the client. Since \(r_1\) is chosen uniformly at random, the resulting ciphertext \([x - r_1]_{q_0}\) perfectly masks the plaintext value \(x\).

 The client decrypts \([x - r_1]\) using its private key. We now have \(r_1\) and \(r_2\) on the server side and \([x - r_1]_{q_0}\) on the client side. Since ABY operates on unsigned integers, we map the range \((-q_0/2, q_0/2)\) to \((0, q_0)\) by performing the transformation \(\text{SignedToUnsigned}_{q_0}(x) = \begin{cases} x + q_0, & x < 0 \\ x, & x \geq 0 \end{cases}\), with inverse transformation \(\text{UnsignedToSigned}_{q_0}(y)\).

2. **MPC circuit evaluation:** We now evaluate the ReLU circuit shown in Fig. 1, which is similar to that of GAZELLE [37]. To do this, we

 a. First, compute the arithmetic integer addition of \(x_u - r_1\) from the client and \(r_1\) from the server to obtain \(x_u\), possibly outside the range \((0, q_0)\). A multiplexer compares the result to \(q_0\) and performs conditional arithmetic subtraction of \(q_0\) to obtain \(x_u \mod q_0\).

 b. In the second step, we compute
 \[
 \text{ReLU}(x_u) = \begin{cases} x_u, & x_u \leq q_0/2 \\ 0, & x_u > q_0/2 \end{cases},
 \]
 which corresponds to ReLU in the signed floating-point domain.

 c. In the last step, to prevent \(\text{ReLU}(x_u)\) from leaking to the client, we compute \(\text{ReLU}(x_u) + r_2 \mod q_0\), using the addition circuit and multiplexer, and output the plaintext value \(\text{ReLU}(x_u) + r_2 \mod q_0\) to the client.

3. **Conversion from MPC to HE:** The client performs the transformation \(\text{UnsignedToSigned}_{q_0}\), encrypts the resulting \([\text{ReLU}(x_u) + r_2]_{q_0}\) value at level \(L - 1\) using the CKKS HE scheme, and sends the encrypted value \([\text{ReLU}(x_u) + r_2]_{q_0}\) to the server. The server homomorphically subtracts \(r_2\), to obtain the corresponding ciphertext \([\text{ReLU}(x_u)]_{q_0}\) = \([\text{ReLU}(x)]_{q_0}\).

ReLU6 Evaluation. Some neural networks, such as MobileNetV2 [59], use a BoundedReLU function, where BoundedReLU
(x, α) = \min(\max(x, 0), α). Let ReLU/6 refer to BoundedReLU (6).

Fig. 2 describes the steps to perform ReLU/6. The evaluation procedure is similar to that of ReLU, with an additional comparison against the bound value, e.g. 6 for ReLU/6.

Maxpool Evaluation. Fig. 3 shows the steps for Maxpool evaluation. In this scenario, we want to obtain the maximum of n ciphertexts on the server side:

MaxPool([X]) = \max([x_1], [x_2], ..., [x_n]).

When evaluating MaxPool, the server holds a vector of n ciphertexts [X]. Then server and client do the following steps:

1. **Conversion from HE to MPC:** To convert homomorphic values to MPC values, the server generates a uniform random integer r \in \mathbb{U}(-q_0/2, q_0/2) and random vector R1 of n ciphertexts as R1 = r1[0], ..., Rn, where all ri \in \mathbb{U}(-q_0/2, q_0/2). The server first rescales the ciphertexts [X] to the lowest level. Then, the server homomorphically subtracts R1 from the vector of ciphertexts [X] and sends the resulting vector [[X - R1]_q] to the client. The client decrypts [[X - R1]_q] using its private key. We now have a vector R2 and number r on the server side and vector [X - R1]_q on the client side. As with the ReLU circuit, [X - R1]_q, r, and R1 are mapped to unsigned integers using the transformation SignedToUnsignedShift_q, (x) = x + q_0. Let UnsignedToSignedShift denote the inverse transformation.

2. **MPC circuit evaluation:** After evaluating the circuit from Fig. 3, we have the value SignedToUnsignedShift(max(x_1, ..., x_n) + r) mod q on the client side.

3. **Conversion from MPC to HE:** At this point, the client performs the inverse mapping UnsignedToSignedShift, encrypts max(x_1, ..., x_n) + r mod q using CKKS, and sends the resulting ciphertext [[max(x_1, ..., x_n) + r]] to the server.

The server homomorphically subtracts r to obtain the corresponding ciphertext of MaxPool:

\[\max([x_1], [x_2], ..., [x_n]) + r - [r]_{q_0} = [\max([x_1], [x_2], ..., [x_n])]_{q_0} = \text{MaxPool}([X])_{q_0}\]

To evaluate a complete network, MP2ML computes linear layers using HE, and the above protocol for non-polynomial activations. The encrypted final classification result is sent to the client for decryption.

One detail to note is that the MPC-to-HE conversion yields a ciphertext \[\lfloor y \rfloor := \lfloor \text{ReLU}(x) \rfloor\] at level \(L\), i.e., modulo \(q_{L-1}\), whereas the masking was performed at level 0, i.e., modulo \(q_0\). Subsequent computation on \(\lfloor y \rfloor\) is performed at modulo \(q_{L-1}\). However, since \(q_{L-1}\) is a factor of \(q_0\), the computation is still accurate modulo \(q_0\). Thus, the final decryption must perform modulus-switching to \(q_0\) before performing the decryption. Alternatively, the decryption output must be modified to return values modulo \(q_0\) rather than values modulo \(q_L\).

Note, the integers of the ReLU and MaxPool circuits are only accurate in the interval \((-q_0/2, q_0/2)\). Hence, for fixed-point numbers scaled to integers using a scaling factor \(s\), the result is only accurate in the interval \((-q_0/(2s), q_0/(2s))\). Therefore, \(q_0 \gg s\) must be chosen accordingly to preserve accuracy of the computation.

Our conversion protocol achieves two important tasks. First, it enables the secure computation of non-polynomial activation functions, i.e., without leaking pre- or post-activation values to the data owner. Second, as in the client-aided model, our protocol...
refreshes the ciphertexts, resetting the noise and restoring the ciphertext level to the top level L. This refreshment is essential to enabling continued computation without increasing the encryption parameters. Rather than selecting encryption parameters large enough to support the entire network, they must now only be large enough to support the linear layers between non-linear activations. For instance, the client-aided model in nGraph-HE performs inference on MobileNetV2 [60], a model with 24 convolution layers, using $N = 4096, L = 4 \ll 24$. Without the ciphertext refreshment, $N = 32768, L = 24$ would be required, and each ciphertext would have size ~ 12.58MB of memory, by factor 48x more than the ~ 262KB of our ciphertexts with $N = 4096, L = 4$.

4.2 Security

MP2ML protects the client’s inference input from the server, and at the same time hides the full model structure of the server from the client, revealing only the number and type of non-linear operations. The MPC protocols we implement provide security against semi-honest adversaries (cf. Sect. 2.2).
We evaluate MP2ML on small atomic operations (Sect. 5.1) and on which enables TensorFlow code to run on an nGraph backend, as where the entire structure of the evaluated circuit is public and thus Table 3 shows the runtimes of MP2ML for atomic operations. No-ocation. In contrast, pure MPC solutions require communication for additively, the addition and multiplication operations, which are evalu-
ated using CKKS, require no offline computation and no communi-
tably, the addition and multiplication operations, which are evalu-
ations in the LAN setting, averaged across 10 runs. We use
\(N = 2048 \) and a 54-bit ciphertext modulus. ADD and MULT are offline only, and the use of plaintext packing yields the same runtime for each batch size up to \(N \).

<table>
<thead>
<tr>
<th>Function</th>
<th>Outputs</th>
<th>MPC proto.</th>
<th>Time (ms) offline</th>
<th>Time (ms) online</th>
<th>Bandwidth (MB) offline</th>
<th>Bandwidth (MB) online</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReLU</td>
<td>1,000</td>
<td>Yao</td>
<td>161</td>
<td>57</td>
<td>22.3</td>
<td>2.0</td>
</tr>
<tr>
<td>ReLU</td>
<td>1,000</td>
<td>GMW</td>
<td>304</td>
<td>18</td>
<td>53.9</td>
<td>0.9</td>
</tr>
<tr>
<td>ReLU</td>
<td>2,048</td>
<td>Yao</td>
<td>314</td>
<td>118</td>
<td>45.8</td>
<td>4.1</td>
</tr>
<tr>
<td>ReLU</td>
<td>2,048</td>
<td>GMW</td>
<td>533</td>
<td>20</td>
<td>110.4</td>
<td>1.8</td>
</tr>
<tr>
<td>ReLU6</td>
<td>1,000</td>
<td>YAO</td>
<td>190</td>
<td>67</td>
<td>27.2</td>
<td>2.0</td>
</tr>
<tr>
<td>ReLU6</td>
<td>1,000</td>
<td>GMW</td>
<td>326</td>
<td>20</td>
<td>61.5</td>
<td>1.1</td>
</tr>
<tr>
<td>ReLU6</td>
<td>2,048</td>
<td>YAO</td>
<td>370</td>
<td>141</td>
<td>55.8</td>
<td>4.1</td>
</tr>
<tr>
<td>ReLU6</td>
<td>2,048</td>
<td>GMW</td>
<td>650</td>
<td>25</td>
<td>125.9</td>
<td>2.1</td>
</tr>
<tr>
<td>ADD</td>
<td>1,000</td>
<td>—</td>
<td>0</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ADD</td>
<td>2,048</td>
<td>—</td>
<td>0</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MULT</td>
<td>1,000</td>
<td>—</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MULT</td>
<td>2,048</td>
<td>—</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5.2 Neural Networks

We evaluate a deep learning application, the CryptoNets [31] net-
work, to show how our MP2ML framework can be leveraged. Cryp-
toNets is the seminal HE-friendly deep learning network, yielding ~99% accuracy on the MNIST handwritten digits dataset, which consists of \(28 \times 28 \) pixel images classified into 10 categories. The CryptoNets network has multiplicative depth of 5, with the full architecture detailed in as follows, where \(n \) indicates the batch size:

- CryptoNets, with activation \(\text{Act}(x) = x^2 \).
 - (1) Conv. [Input: \(n \times 28 \times 28 \); stride: 2; window: 5 \times 5; filters: 5; output: \(n \times 845 \) + \(\text{Act} \)].
 - (2) FC. [Input: \(n \times 845 \); output: \(n \times 100 \) + \(\text{Act} \)].
 - (3) FC. [Input: \(n \times 100 \); output: \(n \times 10 \)].
- CryptoNets-ReLU, with activation \(\text{Act}(x) = \text{ReLU}(x) \).
 - (1) Conv with bias. [Input: \(n \times 28 \times 28 \); stride: 2; window: 5 \times 5; filters: 5; output: \(n \times 845 \) + \(\text{Act} \)].
 - (2) FC with bias. [Input: \(n \times 845 \); output: \(n \times 100 \) + \(\text{Act} \)].
 - (3) FC with bias. [Input: \(n \times 100 \); output: \(n \times 10 \)].

As in [10], we modify the network architecture to include biases and replace the non-standard \(x^2 \) activations with ReLU activations.
import tensorflow as tf
import ngraph_bridge
import numpy as np
from mnist_util import server_argument_parser, server_config_from_flags, load_pb_file

Load saved model
tf.import_graph_def(load_pb_file('.model/model.pb'))

Get input / output tensors
x_input = tf.compat.v1.get_default_graph().get_tensor_by_name('import/input:0')
y_output = tf.compat.v1.get_default_graph().get_tensor_by_name('import/output:0')

Create configuration to encrypt input
FLAGS, unparsed = server_argument_parser().parse_known_args()
config = server_config_from_flags(FLAGS, x_input.name)

with tf.compat.v1.Session(config=config) as sess:
 # Evaluate model (random input data is discarded)
y_output.eval(feed_dict={x_input: np.random.rand(10000, 28, 28, 1)})

Listing 1: Python3 source code for a server to execute a pre-trained CryptoNets-ReLU model in MP2ML. A server configuration specifies the encryption parameters and which tensors to obtain from the client. The server passes random dummy values as input. The encrypted input is provided by the client.

import numpy as np
from mnist_util import load_mnist_test_data, client_argument_parser
import pyhe_client

Parse command-line arguments
FLAGS, unparsed = client_argument_parser().parse_known_args()

Load data
(x_test, y_test) = load_mnist_test_data(FLAGS.start_batch, FLAGS.batch_size)

client = pyhe_client.HESealClient(FLAGS.hostname, FLAGS.port, FLAGS.batch_size,
 {FLAGS.tensor_name: (FLAGS.encrypt_data_str, x_test.flatten('C'))})
results = np.array(client.get_results())
y_pred = results.reshape(FLAGS.batch_size, 10)
accuracy = np.mean(np.argmax(y_test, 1) == np.argmax(y_pred, 1))
print('Accuracy: ', accuracy)

Listing 2: Python3 source code for a client to execute a pre-trained CryptoNets-ReLU model in MP2ML. The client passes the encrypted data to the server who runs the private inference.

We achieve 98.60% accuracy, a slight degradation from the 98.64% of the unencrypted model. Table 4 shows the performance of MP2ML on CryptoNets in comparison with previous methods. MP2ML uses encryption parameters $N = 8192, L = 5$, with coefficient moduli $(47, 24, 24, 24, 30)$ bits, scale $s = 2^{24}$, $\lambda = 128$-bit security, and Yao’s GC for the non-linear layers. Note, Table 4 omits several frameworks from Table 2 which do not report performance on the CryptoNets network: [2, 5, 12, 21, 23, 26, 34, 48, 57, 58, 66].

Chameleon [54] and SecureNN [70] use a semi-honest third party, which is a different setting than our two-party model. XONN [53] binarizes the network, which results in high accuracy on the MNIST dataset, but will reduce accuracy on larger datasets and models. CryptoNets [31] and CryptoDL [35] use polynomial activations, which will also reduce accuracy on larger datasets and models.

GAZELLE [37], whose method is most similar to our work, uses much smaller encryption parameters ($N = 2048, L = 1$), resulting in a significantly faster runtime (cf. [10, Tab.9]), albeit at a reduced 20-bit precision. See Sect. 6 for a detailed comparison between MP2ML and GAZELLE. nGraph-HE [11] uses a client-aided model to compute non-polynomial activations, which leaks intermediate values and potentially the model weights to the client.

6 DISCUSSION
Given the similarity of our approach to GAZELLE [37], we next highlight key differences and the motivations for our design choices, as well as limitations of our framework.
While the core idea of our HE-MPC protocol is similar to that of GAZELLE, there are two key differences:

- Our conversion from HE to MPC rescales to the lowest ciphertext modulus. Whereas GAZELLE considers only parameter choices with a single ciphertext modulus, our approach is more general. Our choice to rescale to the lowest level reduces the communication requirement by a factor of up to L compared to not rescaling.
- Our conversion from MPC to HE performs the additive unmasking at a different level q_1 than the original masking, which was performed at level q_0. GAZELLE’s choice of encryption parameter has just one level, so the masking and unmasking is performed at the same level.

6.4 Limitations of MP2ML

6.4.1 Model Extraction

In ML model extraction attacks, an adversary attempts to deduce the ML model without prior knowledge using black-box access to inferences on the model. The feasibility of ML model extraction has been demonstrated on a variety of ML models [52, 65]. Existing HE-based and MPC-based privacy-preserving ML frameworks protect user data from the model owner, or the model weights from the data owner. However, these frameworks fail to protect against model extraction attacks, since the adversary has black-box access to the inferences. We consider model extraction attacks an orthogonal issue to private DL inference using cryptographic primitives. Indeed, all the frameworks in Table 2 are vulnerable to model extraction attacks.

6.4.2 Fully-Private DL Inference

PPML inference solutions differ by their privacy guarantees. While the inference data is typically kept private, aspects of the DL model may leak. Pure HE solutions don’t leak any information about the model (subject to model extraction attacks), though at the cost of large runtime overhead. Pure MPC approaches such as XONN [53] reveal the entire structure/functional form (i.e., Boolean circuit) of the DL model, though yielding the lowest runtime overhead. Hybrid HE-MPC solutions such as GAZELLE [37] and MP2ML leak the type (i.e., ReLU or MaxPool) and dimension of each activation function.
7 CONCLUSION
HE and MPC have emerged as two candidate solutions for privacy-preserving DL inference. Hybrid HE-MPC protocols combine the advantages of HE and MPC to provide better efficiency and model privacy than each method individually. In this paper we presented MP2ML, the first user-friendly mixed-protocol framework for private DL inference. MP2ML is compatible with popular DL frameworks such as TensorFlow, enabling data scientist to perform secure neural network inference with ease. In addition, MP2ML is compatible with multiple activation functions and offers direct support for many operations and transformations that are common in the ML domain. The privacy guarantees of MP2ML are stronger than those of related work because it hides the topology of the classifier, while it achieves comparable performance compared to the state-of-the-art work CrypTFLOW [43].

AVAILABILITY
The open source code of MP2ML is freely available under the permissive Apache license at https://ngra.ph/he.

ACKNOWLEDGMENTS
We thank Casimir Wierzynski, Amir Khosrowshahi, and Naveen Rao for their unconditional support. This project has received funding from the European Union’s Horizon 2020 research and innovation program (grant agreement No. 850990 PSOTI). It was co-funded by the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within ATHENE.

REFERENCES