A Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism*

Yi-Fan Tseng, Zi-Yuan Liu**, and Raylin Tso

Department of Computer Science, National Chengchi University, Taipei, Taiwan
\{yftseng, zyliu, raylin\}@cs.nccu.edu.tw

Abstract. Proxy re-encryption (PRE), formalized by Blaze et al. in 1998, allows a proxy entity to delegate the decryption right of a ciphertext from one party to another without obtaining the information of the plaintext. In recent years, many studies have explored how to construct PRE schemes that support fine-grained access control for complex application scenarios, such as identity-based PRE and attribute-based PRE. Besides, in order to achieve more flexible access control, the predicate proxy re-encryption (PPRE) is further studied. However, existing PPRE is restricted with the inner product predicate function. Therefore, how to realize the PPRE of arbitrary predicate function is still a problem to be solved. In this manuscript, we propose a secure generic construction of predicate proxy key re-encapsulation mechanism built from a “linear” predicate key encapsulation mechanism. Since the secure key encapsulation mechanism can be used as a building block to construct public key encryption, we can obtain a PPRE from our construction. As a result, the results open up new avenues for building more flexible and fine-grained PPRE.

Keywords: Predicate encryption · Predicate proxy re-encryption · Generic construction · Single-hop · Unidirectional

1 Introduction

Proxy re-encryption (PRE), first formalized by Blaze et al. in 1998 [4], allows a proxy entity to re-encrypt a ciphertext that has been encrypted for Alice and to generate a new ciphertext that can be decrypted using Bob’s private key. The proxy entity only needs a re-key provided by Alice without obtaining any other information of the plaintext or needing to access Alice’s and Bob’s private keys. In a word, the proxy entity can delegate the decryption right from one party to another. With this flexible property, PRE yields numerous real-world applications [6], such as outsourcing cryptography, distributed file storage systems, and law enforcement, etc. To support more flexibility on access control, some studies focus on supporting more complex access control mechanism, such as identity-based PRE [10, 7, 18] and attribute-based PRE [13, 15, 12].

On the other hand, predicate encryption (PE), formalized by Katz et al. in 2008 [11], is a paradigm for public-key encryption that conceptually generalizes the public-key encryption supporting fine-grained and role-based access to an encrypted data. More precisely, in a PE for a predicate function \(R_\kappa \), a private key is associated with a key attribute \(y \), while the ciphertext is associated with a ciphertext attribute \(x \), where \(\kappa \) is the description of a predicate. A ciphertext with ciphertext attribute \(x \) can be decrypted by a private key with key attribute \(y \) if and only if \(R_\kappa(x, y) = 1 \). Thus, PE captures wide classes of encryption in cryptography. For example, identity-based encryption can be viewed as PE supporting “equality” predicate function, and both ciphertext attribute and key attribute are strings.

Although many identity-based PRE and attribute-based PRE have been studied, only a few researches on how to construct predicate proxy re-encryption (PPRE) [17, 3, 16]. Unfortunately, these schemes consider only the case where the predicate function is an inner product predicate. Therefore, at present, many more flexible and fine-grained predicate proxy re-encryption schemes have not been implemented and discussed. Hence, how to realize a PPRE of arbitrary predicate function remains an open problem.

1.1 Contributions

In this manuscript, we affirmatively solve this by proposing a generic construction that can transform any linear predicate key encapsulation mechanism (PKEM) to a predicate proxy key re-encapsulation mechanism (PPKREM). Then, since secure key encapsulation mechanism (KEM) can be used as a building block to construct public key

* An extended abstract of this paper appears at AsiaJCIS 2020. This is the full version.
** Corresponding author.
encryption, i.e., combining with a secure symmetric encryption scheme, we can use our construction to obtain a secure PPRE.

We also prove that our construction is payload hiding of second-/first-level ciphertext (i.e., original/re-encapsulation ciphertext) secure in the standard model if the underlying PKEM satisfies indistinguishability under chosen ciphertext attacks (IND-CCA). Besides, we adopt our proposed generic construction for Water’s identity-based encryption [19]. More precisely, we first obtain an identity-based KEM from Water’s work and then obtain an identity-based proxy key re-encapsulation mechanism using our proposed construction.

1.2 Organization

The rest of the work is organized as follows. In Section 2 and 3, we introduce the definition and the security requirement of PKEM and PPKREM, respectively. In Section 4 and 5, we propose our generic construction and provide the security proofs, respectively. In Section 6, we give an instantiate of identity-based proxy key re-encapsulation mechanism from Water’s identity-based encryption. Finally, we conclude the work in Section 7.

2 Preliminary

2.1 Notations

For simplicity and convenience, we use the following notations and abbreviations throughout the manuscript. We use λ to denote the security parameter. We let \mathbb{N} and \mathbb{Z} denote the set of positive integer and the set of integer, respectively. Besides, for a prime p, \mathbb{Z}_p denotes the set of integers module p. PRE, PPRE, KEM, PKEM, PPKREM are the abbreviations of proxy re-encryption, predicate proxy re-encryption, key encapsulation mechanism, predicate key encapsulation mechanism, and predicate proxy key re-encapsulation mechanism, respectively. We also use PPT as the abbreviation of the probabilistic polynomial-time.

2.2 Predicate Key Encapsulation Mechanism

In this section, we recall the definition of the predicate family in [1, 2], and the definition of PKEM in [9] described by a binary relation.

Definition 1 (Predicate Family [2]). We consider a predicate family $R = \{R_\kappa \in \mathbb{N}^c\}$ for some constant $c \in \mathbb{N}$, where a relation $R_\kappa : X_\kappa \times Y_\kappa \rightarrow \{0, 1\}$ is a predicate function that maps a pair of ciphertext attribute in a ciphertext attribute space X_κ and key attribute in a key attribute space Y_κ to $\{0, 1\}$. The family index $\kappa = (n_1, n_2, \ldots)$ specifies the description of a predicate from the family.

Definition 2 (Predicate Key Encapsulation Mechanism). Let Ψ be the encapsulation ciphertext space and K be the encapsulation key space, a PKEM scheme \mathcal{PKEM} for predicate family R consists of the following four algorithms.

- $\text{Setup}(1^\lambda, \kappa) \rightarrow (\text{params}, \text{msk})$: Taking as input the security parameter $\lambda \in \mathbb{N}$ and a description $\kappa \in \mathbb{N}$, the algorithm outputs the system parameter params, where the description of κ is implicitly included, and the master secret key msk. Note that params will be an implicitly input for the following algorithms.
- $\text{Encaps}(\mathbf{x}) \rightarrow (\text{CT}_x, k)$: Taking as inputs a ciphertext attribute $\mathbf{x} \in X_\kappa$, the algorithm outputs a ciphertext $\text{CT}_x \in \Psi$ and an encapsulation key $k \in K$.
- $\text{KeyGen}($msk, y) \rightarrow SK_y: Taking as inputs the master secret key msk and a key attribute $y \in Y_\kappa$, the algorithm outputs a private key SK_y associated with y.
- $\text{Decaps}(\text{CT}_x, \text{SK}_y) \rightarrow M$: Taking as inputs a ciphertext $\text{CT}_x \in \Psi$ for some ciphertext attribute $\mathbf{x} \in X_\kappa$ and a private key SK_y for some key attribute $y \in Y_\kappa$, the algorithm outputs an encapsulation key $k \in K$ if $R_\kappa(x, y) = 1$. Otherwise, it outputs \bot.

Correctness. A PKEM scheme \mathcal{PKEM} is correct if for all $\lambda, \kappa \in \mathbb{N}$, we have

- $k \leftarrow \text{Decaps}(\text{CT}_x, \text{SK}_y)$, if $R_\kappa(x, y) = 1$;
- $\bot \leftarrow \text{Decaps}(\text{CT}_x, \text{SK}_y)$, otherwise.
where \((CT_x, k) \leftarrow \text{Encaps}(x), SK_y \leftarrow \text{KeyGen}(msk, y)\), and \((\text{params}, msk) \leftarrow \text{Setup}(1^\lambda, \kappa)\).

Security. In order to describe the security of the PKEM, we define the following IND-CCA game between a challenger \(C\) and an adversary \(A\).

Game - IND-CCA:

- **Setup.** The challenger \(C\) runs the algorithm \(\text{Setup}(1^\lambda, \kappa)\) to generate system parameter \(\text{params}\) and the master secret key \(msk\). It then sends \(\text{params}\) to the adversary \(A\).

- **Phase 1.** The adversary \(A\) makes polynomial times of queries to the following oracles.
 - **Key generation oracle \(O_{\text{ke}}\):** On input a key attribute \(y \in Y_\kappa\), the oracle returns the corresponding private key \(SK_y\).
 - **Decapsulation oracle \(O_{\text{de}}\):** On input a ciphertext \(CT_x \in \Psi\) and a key attribute \(y \in Y_\kappa\), the oracle returns an encapsulation key \(k\) or \(\perp\).

- **Challenge.** The adversary submits a target ciphertext attribute \(x^* \in X_\kappa\), where \(R_\kappa(x^*, y) = 0\) for all \(y \in Y_\kappa\) queried in Phase 1. Then the challenger \(C\) randomly chooses a bit \(b \leftarrow \{0, 1\}\), runs \((CT^*_x, k^*_0) \leftarrow \text{Encaps}(x^*)\), and chooses \(k^*_0 \leftarrow \mathcal{K}\). Finally, \(C\) returns \((CT^*_x, k^*_0)\) to \(A\).

- **Phase 2.** It is the same as Phase 1 except that \(\text{Decaps}(CT^*_x, y)\) and \(\text{KeyGen}(y)\) are not allowed if \(R_\kappa(x^*, y) = 1\).

- **Guess.** The adversary \(A\) outputs a bit \(b'\), and wins the game if \(b' = b\).

The advantage of the adversary \(A\) in winning the above game is defined as

\[
\text{Adv}^{\text{IND-CCA}}_{\text{PKEM}, A}(\lambda) = \left| \Pr[b' = b] - \frac{1}{2} \right|.
\]

Definition 3 (IND-CCA security of PKEM). We say that a PEKM scheme \(\text{PKEM}\) for predicate family \(R\) is IND-CCA secure if, for all PPT adversary \(A\), \(\text{Adv}^{\text{IND-CCA}}_{\text{PKEM}, A}(\lambda)\) is negligible.

The model can be easily changed for CPA security and selective security by removing the Decapsulation oracle and forcing the adversary to submit its target first, respectively.

Linearity. In this work, the whole correctness of the proposed construction is based on the linearity of the PKEM, defined as follows.

Definition 4 (Linearity of PKEM). We say that a correct PKEM scheme \(\text{PKEM} = (\text{Setup}, \text{Encaps}, \text{KeyGen}, \text{Decaps})\) for predicate family \(R\) is linear if for all \(\gamma \in \mathbb{Z}, \lambda, \kappa \in \mathbb{N}\), \((CT_x, k) \leftarrow \text{Encaps}(x)\), and \(SK_y \leftarrow \text{KeyGen}(msk, y)\), where \((\text{params}, msk) \leftarrow \text{Setup}(1^\lambda, \kappa)\) and \(R_\kappa(x, y) = 1\), the following equation is satisfied.

\[
\text{Decaps}(CT_x, (SK_y)^\gamma) = k^\gamma,
\]

where \((SK_y)^\gamma\) and \(k^\gamma\) denote the component-wise exponentiation to \(SK_y\) and \(k\), respectively.

3 Predicate Proxy Key Re-encapsulation Mechanism

In this section, we introduce the definition and security models of a single-hop unidirectional PPKREM. More precisely, we adopt the security game in [5], however, the game in [5] is defined for identity-based cryptography scheme, thus we revise it and provide new security games for our scheme. Additionally, for consistency and ease of interpretation, we use the terminologies defined in [8, 14], that is, an original ciphertext is called the second-level ciphertext and a re-encapsulation ciphertext is called the first-level ciphertext.

Definition 5 (Single-hop Unidirectional Predicate Proxy Key Re-encapsulation Mechanism). Let \(\Psi\) be the encapsulation ciphertext space and \(\mathcal{K}\) be the encapsulation key space, a PPKREM scheme \(\text{PPKREM}\) for predicate family \(R\) consists of seven PPT algorithms \((\text{Setup}, \text{KeyGen}, \text{Encaps}, \text{ReKey}, \text{ReEncaps}, \text{Decaps}_{\text{oct}}, \text{Decaps}_{\text{recl}})\):
Definition 6 (Derivatives). Let $ct \rightarrow (oct_x, k_x)$. Taking as input a ciphertext attribute $x \in \mathbb{X}_\kappa$, the algorithm outputs a second-level ciphertext $oct_x \in \Psi$ and an encapsulation key $k_x \in \mathcal{K}$.

- **ReEncaps**$(ct, rct, x') \rightarrow rct'$: Taking as input a ciphertext $oct_x \in \Psi$ for some ciphertext attribute $x \in \mathbb{X}_\kappa$ and a re-key rct, x', the algorithm outputs a first-level ciphertext $rct' \in \Psi$ which can be decaps by the private key $SK_{x'}$ for some key attribute $y' \in \mathbb{Y}_\kappa$, the algorithm outputs a re-key $rct' \in \mathcal{K}$.

- Decaps$_{oct}$(oct$_x$, SK$_y$) \rightarrow k: Taking as input a second-level ciphertext $oct_x \in \Psi$ for some ciphertext attribute $x \in \mathbb{X}_\kappa$ and a private key SK_y for key attribute $y \in \mathbb{Y}_\kappa$, the algorithm outputs a key $k \in \mathcal{K}$ if $R_k(x, y) = 1$. Otherwise, it outputs \bot.

- Decaps$_{rct}$(rct$_x$, SK$_y$) \rightarrow k: Taking as input a first-level ciphertext $rct_x \in \Psi$ for some ciphertext attribute $x \in \mathbb{X}_\kappa$ and a private key SK_y for some key attribute $y \in \mathbb{Y}_\kappa$, the algorithm outputs an encapsulation key $k \in \mathcal{K}$ if $R_k(x, y') = 1$. Otherwise, it outputs \bot.

Correctness. A single-hop unidirectional PPKREM scheme \mathcal{PPKREM} is correct if for all $\lambda, \kappa \in \mathbb{N}, x, x' \in \mathbb{X}_\kappa$, and $y, y' \in \mathbb{Y}_\kappa$, we have

- $k = \text{Decaps}_{oct}(oct_x, SK_y)$ if $R_k(x, y) = 1$;
- $\bot = \text{Decaps}_{oct}(oct_x, SK_y)$ if $R_k(x, y) = 0$;
- $k = \text{Decaps}_{rct}(\text{ReEncaps}(oct_x, \text{ReKey}(SK_y, x')), SK_{y'})$ if $R_k(x, y) = 1 \wedge R_k(x', y') = 1$;
- $\bot = \text{Decaps}_{rct}(\text{ReEncaps}(oct_x, \text{ReKey}(SK_y, x')), SK_{y'})$ if $R_k(x, y) = 0 \lor R_k(x', y') = 0$,

where $(oct_x, k) \leftarrow \text{Encaps}(x), SK_y \leftarrow \text{KeyGen}(msk, y), SK_{y'} \leftarrow \text{KeyGen}(msk, y')$, and $(\text{params}, msk) \leftarrow \text{Setup}(1^\lambda, \kappa)$.

Security. Before introducing the security models, we follow [5] to define the derivatives for single-hop unidirectional PPKREM.

Game - Payload-hiding for Second-level Ciphertext:

- **Setup.** The challenger C runs the algorithm $\text{Setup}(1^\lambda, \kappa)$ to generate parameter params and the master secret key msk. It then sends params to the adversary A.

- Phase 1. The A may adaptively make polynomial times of queries to the following oracles.
 - **Key generation oracle** O_{ke}: On input $y \in \mathbb{Y}_\kappa$ by A, the challenger C computes $SK_y \leftarrow \text{KeyGen}(msk, y)$. It then gives SK_y to A.
 - **Re-encapsulation key generation oracle** O_{rk}: On input $(y \in \mathbb{Y}_\kappa, x' \in \mathbb{X}_\kappa)$ by A, the challenger C computes $rk_{y,x'} \leftarrow \text{ReKey}(SK_y, x')$, where $SK_y \leftarrow \text{KeyGen}(msk, y)$. It then gives $rk_{y,x'}$ to A.
 - **Re-encapsulation oracle** O_{re}: On input $(y \in \mathbb{Y}_\kappa, x' \in \mathbb{X}_\kappa, \text{oct}_{x} \in \Psi)$ by A, the challenger C first computes $rk_{y,x'} \leftarrow \text{ReKey}(SK_y, x')$ where $SK_y \leftarrow \text{KeyGen}(msk, y)$. It then computes $rct_{x'} \leftarrow \text{ReEncaps}(\text{oct}_x, rk_{y,x'})$. Finally, it gives $rct_{x'}$ to A.
 - **Second-level ciphertext decapsulation oracle** O_{sde}: On input $(x \in \mathbb{X}_\kappa, \text{oct}_x \in \Psi)$ by A, the challenger C computes $k \leftarrow \text{Decaps}_{\text{oct}}(\text{oct}_x, SK_y)$ where $SK_y \leftarrow \text{KeyGen}(msk, y)$ and $R_k(x, y) = 1$. It then returns k to A.
 - **First-level ciphertext decapsulation oracle** O_{fde}: On input $(x' \in \mathbb{X}_\kappa, rct_{x'} \in \Psi)$ by A, the challenger C computes $k \leftarrow \text{Decaps}_{\text{ct}}(rct_{x'}, SK_{y'})$ where $SK_{y'} \leftarrow \text{KeyGen}(msk, y')$ and $R_k(x', y') = 1$. It then returns k to A.

- **Challenge.** A outputs a ciphertext attribute $x^* \in \mathbb{X}_\kappa$ with restriction that
 1. $R_k(x^*, y) = 0$ for all $y \in \mathbb{Y}_\kappa$ submitted to O_{ke};
 2. for all $(y \in \mathbb{Y}_\kappa, x' \in \mathbb{X}_\kappa)$ submitted to O_{rk}, $R_k(x^*, y) = 0$.
 If x^* satisfies the above requirements, the challenger C then randomly chooses a bit $b \in \{0, 1\}$, and responds with (oct_x^*, k_b^*), where $(\text{oct}_x^*, k_b^*) \leftarrow \text{Encaps}(x^*)$ and k_b^* is randomly chosen from \mathbb{K}.

- **Phase 2.** A can continue to issue more queries to the oracles as follows:
 - **Key generation oracle** O_{ke}: The oracle is the same as Phase 1 with three additional restrictions:
 * $R_k(x', y) = 0$;
 * for all $y' \in \mathbb{Y}_\kappa$ such that $R_k(x^*, y') = 1 \land R_k(x, y) = 1$, the tuple (y', x) must not have been queried to O_{rk} before;
 * for all $y' \in \mathbb{Y}_\kappa, x, x' \in \mathbb{X}_\kappa$, and $\text{oct}' \in \Psi$ such that $R_k(x, y) = 1 \land R_k(x', y') = 1$, and (x', oct') is a derivative of (x^*, oct_x^*), the tuple (y', x, oct') has not been queried to O_{re} before.
 - **Re-encapsulation key generation oracle** O_{rk}: The oracle is the same as Phase 1 with a restriction: if $x = x^*$, then for all $y' \in \mathbb{Y}_\kappa$ such that $R_k(x, y) = 1 \land R_k(x^*, y') = 1$, y' must not have been queried to O_{ke} before.
 - **Re-encapsulation oracle** O_{re}: The oracle is the same as Phase 1 with a restriction: if (x, oct_x) is a derivative of (x^*, oct_x^*), then for all $y' \in \mathbb{Y}_\kappa$ such that $R_k(x, y) = 1 \land R_k(x^*, y') = 1$, y' must not have been queried to O_{ke} before.
 - **Second-level ciphertext decapsulation oracle** O_{sde}: The oracle is the same as Phase 1 with a restriction: (x, oct_x) is not a derivative of (x^*, oct_x^*).
 - **First-level ciphertext decapsulation oracle** O_{fde}: The oracle is the same as Phase 1 with a restriction: $(x', rct_{x'})$ is not a derivative of (x^*, oct_x^*).

- **Guess.** In the end, A outputs a guess $b' \in \{0, 1\}$ and wins the game if $b = b'$.

The advantage of the adversary A in winning the above game is defined as

$$\text{Adv}^{PHSC}_{PPKREM,A}(\lambda) = |Pr[b = b'] - \frac{1}{2}|.$$

Definition 7 (Payload-hiding Security for Second-level Ciphertext). We say that a single-hop unidirectional PPKREM scheme $PPKREM$ for predicate family R is payload-hiding secure for second-level ciphertext if for any polynomial time adversary A the function $\text{Adv}^{PHSC}_{PPKREM,A}(\lambda)$ is negligible.

Game - Payload-hiding for First-level Ciphertext:
– **Setup.** The challenger C runs the algorithm Setup$(1^\lambda, \kappa)$ to generate parameter params and the master secret key msk. It then sends params to the adversary A.

– **Phase 1.** The A may adaptively make a polynomial times of queries to the following oracles.

 • **Key generation oracle O_{kg}:** On input $y \in \mathbb{Y}_{\kappa}$ by A, the challenger C computes $SK_y \leftarrow \text{KeyGen}(\text{msk}, y)$. It then gives SK_y to A.

 • **Re-encapsulation key generation oracle O_{rk}:** On input $(y \in \mathbb{Y}_{\kappa}, x' \in \mathbb{X}_{\kappa})$ by A, the challenger C computes $rk_{y,x'} \leftarrow \text{ReKey}(SK_y, x')$, where $SK_y \leftarrow \text{KeyGen}(\text{msk}, y)$. It then gives $rk_{y,x'}$ to A.

 • **Re-encapsulation oracle O_{re}:** On input $(y \in \mathbb{Y}_{\kappa}, x' \in \mathbb{X}_{\kappa}, \text{oct}_{x'} \in \Psi)$ by A, the challenger C first computes $rk_{y,x'} \leftarrow \text{ReKey}(SK_y, x')$ where $SK_y \leftarrow \text{KeyGen}(\text{msk}, y)$. It then computes $\text{rct}_{x'} \leftarrow \text{ReEncaps}($ oct$_{x'}, rk_{y,x'})$. Finally, it gives $\text{rct}_{x'}$ to A.

 • **Second-level ciphertext decapsulation oracle O_{scde}:** On input $(x \in \mathbb{X}_{\kappa}, \text{oct}_{x} \in \Psi)$ by A, the challenger C computes $k \leftarrow \text{Decaps}_{\text{oct}}($ oct$_{x}, SK_{y})$ where $SK_y \leftarrow \text{KeyGen}(\text{msk}, y)$ and $R_{x}(x, y) = 1$. It then returns k to A.

 • **First-level ciphertext decapsulation oracle O_{fde}:** On input $(x' \in \mathbb{X}_{\kappa}, \text{rct}_{x'} \in \Psi)$ by A, the challenger C computes $k \leftarrow \text{Decaps}_{\text{rct}}($ rct$_{x'}, SK_{y})$ where $SK_y \leftarrow \text{KeyGen}(\text{msk}, y')$ and $R_{x}(x', y') = 1$. It then returns k to A.

– **Challenge.** A outputs a ciphertext attribute $x^* \in \mathbb{X}_{\kappa}$ with restriction: for all $y \in \mathbb{Y}_{\kappa}$ submitted to O_{fde}, $R_{x}(x^*, y) = 0$. If x^* satisfies the above requirements, the challenger C first computes $SK_{y^*} \leftarrow \text{KeyGen}(\text{msk}, y^*)$ where $R_{x}(x^*, y^*) = 1$. Then, it chooses a ciphertext attribute $\hat{x} \in \mathbb{X}_{\kappa}$, and randomly chooses a bit $b \in \{0, 1\}$. Next, it computes
 1. $rk_{y^*, \hat{x}} \leftarrow \text{ReKey}(SK_{y^*}, \hat{x})$;
 2. $\text{rct}_{x^*}^{\hat{x}} \leftarrow$ \text{ReEncaps}(oct$_{x^*}, rk_{y^*, \hat{x}}$),

 where $(\text{oct}_{x^*}, k_{0}^{\hat{x}}) \leftarrow \text{Encaps}(x^*)$ and $k_{1}^{\hat{x}}$ is randomly chosen from \mathcal{K}. Finally, it responds $(\text{rct}_{x^*}^{\hat{x}}, k_{1}^{\hat{x}})$ to A.

– **Phase 2.** A can continue to issue more queries to the oracles as in Phase 1 with two additional restrictions:

 • **Key generation oracle O_{kg}:** for all $y \in \mathbb{Y}_{\kappa}$, $R_{x}(\hat{x}, y) = 0$.

 • **First-level ciphertext decapsulation oracle O_{fde}:** it cannot be queried with the challenge ciphertext rct_{x^*} as input.

– **Guess.** In the end, A outputs a guess $b' \in \{0, 1\}$ and wins the game if $b = b'$.

The advantage of the adversary A in winning the above game if defined as

$$\text{Adv}_{\text{PPKREM}, A}(\lambda) = |\text{Pr}[b = b'] - \frac{1}{2}|.$$

Definition 8 (Payload-hiding Security for First-level Ciphertext). We say that a single-hop unidirectional PPKREM scheme PPKREM for predicate family R is payload-hiding secure for first-level ciphertext if for PPT adversary A the function $\text{Adv}_{\text{PPKREM}, A}(\lambda)$ is negligible.

4 Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism

In this section, we give a generic construction that can obtain a PPKREM scheme from a secure linear PKEM scheme. At a high level, to generate a re-encapsulation key $rk_{y,x'}$, we first encaps the ciphertext attribute x' to obtain a pair $(\text{CT}_{x'}, k')$, then compute $h = H(k')$, where $H(\cdot)$ is a cryptographic hash function. Next we let the re-encapsulation key be $rk_{y,x'} = \{(SK_y)^h, \text{CT}_{x'}\}$, where $(SK_y)^h$ denotes the h component-wise exponentiation to SK_y. Note that due to the hardness of the discrete-log problem, the proxy entity is impossible to obtain h from $(SK_y)^h$. In other word, the proxy entity is also impossible to recover SK_y from $rk_{y,x'}$. In order to generate a first-level ciphertext $\text{rct}_{x'}$ from the second-level ciphertext oct_{x} using the re-encapsulation key $rk_{y,x'}$, we directly runs $\delta \leftarrow \text{PKEM-Decaps}(\text{oct}_{x}, (SK_y)^h)$. With the linear property of PKEM (Definition 4), if $R_{x}(x, y) = 1$, δ actually equals to $(k)^h$, where $(\text{oct}_{x}, k) \leftarrow \text{PKEM-Encaps}(x)$. Then, the first-level ciphertext $\text{rct}_{y,x'}$ is set as $\{(\delta, \text{CT}_{x'})\}$. Besides,
only the proxy receiver can decaps $CT_{x'}$ using her/his private key to obtain k', and recovery the value hid in the encapsulation key, i.e., $h = H(k')$. Finally, the proxy receiver can obtain $(\delta)^{h^{-1}} = (k)^{h^{-1}} = k$.

Let $\mathcal{PKEM} = (\text{Setup}, \text{KeyGen}, \text{Encaps}, \text{Decaps})$ be an IND-CCA secure PKEM with linear property for predicates family $R = \{R_k\}$ and let $H : \mathcal{K} \rightarrow \mathbb{Z}$ be a cryptographic hash function, we define the construction of PPRKEM as follows:

- $\text{Setup}(1^\lambda, \kappa)$: On input a security parameter $\lambda \in \mathbb{N}$ and a description $\kappa \in \mathbb{N}$, this algorithm runs $(\text{params}, \text{msk}) \leftarrow \mathcal{PKEM}.\text{Setup}(1^\lambda, \kappa)$. It then outputs the parameter params and the master secret key msk.

- $\text{KeyGen}(\text{msk}, y)$: On input a master secret key msk and a key attribute $y \in \mathbb{Y}_\kappa$, this algorithm runs $\mathcal{PKEM}.\text{KeyGen}(\text{msk}, y)$ to output a private key SK_y for key attribute y and outputs it.

- $\text{Encaps}(x)$: On input a ciphertext attribute $x \in \mathbb{X}_\kappa$, this algorithm runs $(\text{oct}_x, k) \leftarrow \mathcal{PKEM}.\text{Encaps}(x)$. It then outputs a second-level ciphertext oct_x and an encapsulation key k.

- $\text{ReKey}(SK_y, x')$: On input a private key SK_y for some key attribute $y \in \mathbb{Y}_\kappa$ and a ciphertext attribute $x' \in \mathbb{X}_\kappa$, this algorithm runs the following steps to generate a re-encapsulation key:
 - Computes $(CT_{x'}, k') \leftarrow \mathcal{PKEM}.\text{Encaps}(x')$;
 - Computes $h = H(k')$;
 - Outputs $rk_{y, x'} = \{(SK_y)^h, CT_{x'}\}$.

- $\text{ReEncaps}(\text{oct}_x, rk_{y, x'})$: On input a second-level ciphertext oct_x encrypted by ciphertext attribute $x \in \mathbb{X}_\kappa$ and a re-encapsulation key $rk_{y, x'} = \{(SK_y)^h, CT_{x'}\}$, to generate a first-level ciphertext $\text{rct}_{x'}$ which can be decapsed by the private key $SK_{y'}$ for some key attribute $y' \in \mathbb{Y}_\kappa$ where $R(x', y') = 1$, this algorithm runs $\delta \leftarrow \mathcal{PKEM}.\text{Decaps}(\text{oct}_x, (SK_y)^h)$, and outputs $\text{rct}_{x'} = \{\delta, CT_{x'}\}$.

- $\text{Decaps}_{\text{oct}}(\text{oct}_x, SK_y)$: On input a second-level ciphertext oct_x and a private key SK_y for some key attribute $y \in \mathbb{Y}_\kappa$, this algorithm runs $\mathcal{PKEM}.\text{Decaps}(\text{oct}_x, SK_y)$ to obtain an encapsulation key k or \bot, and outputs it.

- $\text{Decaps}_{\text{rct}}(\text{rct}_{x'}, SK_{y'})$: On input a first-level ciphertext $\text{rct}_{x'} = \{\delta, CT_{x'}\}$ and a private key $SK_{y'}$ for some key attribute $y' \in \mathbb{Y}_\kappa$, this algorithm runs the following steps:
 - Computes $h = H(k')$;
 - Computes $k = (\delta)^{h^{-1}}$.

Lemma 1. The proposed PPKREM scheme \mathcal{PPKREM} described above is correct if the underlying PKEM scheme \mathcal{PKEM} is correct and linear.

Proof. We separate this proof into two parts: one for the second-level ciphertext and the other for the first-level ciphertext.

For all security parameter $\lambda \in \mathbb{N}$ and description $\kappa \in \mathbb{N}$, W.L.O.G., we assume that the second-level ciphertext oct_x and the key k are generated from $\mathcal{PPKREM}.\text{Encaps}(x)$ for some $x \in \mathbb{X}_\kappa$ and the first-level ciphertext $\text{rct}_{x'} = \{\delta, CT_{x'}\}$ is generated from $\mathcal{PPKREM}.\text{ReEncaps}(\text{oct}_x, rk_{y, x'})$ where $rk_{y, x'} \leftarrow \text{ReKey}(SK_y, x')$.

Besides, $SK_y \leftarrow \text{KeyGen}(\text{msk}, y \in \mathbb{Y}_\kappa)$, $SK_{y'} \leftarrow \text{KeyGen}(\text{msk}, y' \in \mathbb{Y}_\kappa)$, and $(\text{params}, \text{msk}) \leftarrow \text{Setup}(1^\lambda, \kappa)$.

- Second-level ciphertext: Since the pair of second-level ciphertext and encapsulation key (oct_x, k) is actually generated from $\mathcal{PKEM}.\text{Encaps}(x \in \mathbb{X}_\kappa)$, with the correctness of the underlying PKEM, it is trivial that the same encapsulation key k can be obtained by running $\mathcal{PKEM}.\text{Decaps}(\text{oct}_x, SK_y)$ if $R_n(x, y) = 1$. Thus, the encapsulation key k can be correctly obtained.

- First-level ciphertext: Since the pair of $(CT_{x'}, k')$ is generated from $\mathcal{PKEM}.\text{Encaps}(x')$, with the correctness of the underlying PKEM, k' can be obtained using private key $SK_{y'}$ where $R_n(x', y') = 1$ is satisfied. On the other hand, since $\delta \leftarrow \mathcal{PKEM}.\text{Decrypt}(\text{oct}_x, (SK_y)^h)$ and the underlying PKEM is linear, δ actually equals to $\mathcal{PKEM}.\text{Decrypt}(\text{oct}_x, SK_y)^h$, that is $\delta = k^h$ if $R_n(x, y) = 1$. Therefore, we can compute $(\delta)^{h^{-1}} = k^{h^{-1}} = k$.

5 Security Proofs

In this section, we provide the security proofs for the payload-hiding security of the proposed construction.

Theorem 1. The proposed construction is payload-hiding secure for second-level ciphertext under predicate family \(R \) if the underlying PKEM scheme \(\mathcal{PKEM} \) is IND-CCA secure under the same predicate family, and the underlying hash function \(\mathcal{H} \) is collision-resistant.

Proof. Suppose there exists an adversary \(A \) against the payload-hiding security for second-level ciphertext of the proposed construction that has non-negligible advantage. Then, there exists another adversary \(B \) can use \(A \) to break the IND-CCA game of the underlying PKEM scheme \(\mathcal{PKEM} \) with non-negligible advantage. \(B \) constructs a hybrid game interacting with \(A \) as follows.

– **Setup.** \(B \) first invokes the IND-CCA game of \(\mathcal{PKEM} \) to obtain the system parameters \(\text{params} \). \(B \) then passes \(\text{params} \) to \(A \).

– **Phase 1.** In this phase, \(A \) can adaptively make polynomial times of queries to the following oracles.

 • **Key generation oracle** \(\mathcal{O}_{\text{kg}} \): When \(A \) queries this oracle for a key attribute \(y \in \mathbb{Y}_\kappa \), \(B \) invokes the key generation oracle of \(\mathcal{PKEM} \) on the same \(y \), and is given a private key \(\text{SK}_y \). \(B \) then passes \(\text{SK}_y \) to \(A \).

 • **Re-encapsulation key generation oracle** \(\mathcal{O}_{\text{rk}} \): When \(A \) queries this oracle for a key attribute \(y \in \mathbb{Y}_\kappa \), and a ciphertext attribute \(x' \in \mathbb{X}_\kappa \), \(B \) first invokes the key generation oracle of \(\mathcal{PKEM} \) on the same \(y \), and is given a private key \(\text{SK}_y \). Then, \(B \) runs \((\text{CT}_{x'}, k') \leftarrow \mathcal{PKEM}.\text{Encaps}(x')\) and \(h = \mathcal{H}(k') \). Finally, \(B \) returns \(r_k = \{\text{SK}_y \}^h, \text{CT}_{x'}\} \) to \(A \).

 • **Re-encapsulation oracle** \(\mathcal{O}_{\text{re}} \): When \(A \) queries this oracle for a key attribute \(y \in \mathbb{Y}_\kappa \), a ciphertext attribute \(x' \in \mathbb{X}_\kappa \), and a second-level ciphertext \(\text{oct}_x \in \mathcal{Y} \), \(B \) first invokes the key generation oracle of \(\mathcal{PKEM} \) on the same \(y \), and is given a private key \(\text{SK}_y \). Then, \(B \) runs \((\text{CT}_{x'}, k') \leftarrow \mathcal{PKEM}.\text{Encaps}(x')\), computes \(h = \mathcal{H}(k') \), and sets \(r_y = \{\text{SK}_y \}^h, \text{CT}_{x'}\} \). Finally, \(B \) runs \(\text{ReEncaps}(\text{oct}_x, r_y) \) as the proposed construction to obtain a first-level ciphertext \(\text{rct}_{x'} = \{\delta, \text{CT}_{x'}\} \), and returns \(\text{rct}_{x'} \) to \(A \).

 • **Second-level ciphertext decapsulation oracle** \(\mathcal{O}_{\text{ode}} \): When \(A \) queries this oracle for a ciphertext attribute \(x \in \mathbb{X}_\kappa \), and a second-level ciphertext \(\text{oct}_x \in \mathcal{Y} \), \(B \) first randomly chooses a key attribute \(y \in \mathbb{Y}_\kappa \) such that \(R_k(x, y) = 1 \). \(B \) then invokes the decapsulation oracle of \(\mathcal{PKEM} \) on \((\text{oct}_x, y) \), and is given an encapsulation key \(k \in \mathcal{K} \). In the end, \(B \) returns \(k \) to \(A \).

 • **First-level ciphertext decapsulation oracle** \(\mathcal{O}_{\text{ode}} \): When \(A \) queries this oracle for a ciphertext attribute \(x' \in \mathbb{X}_\kappa \) and a first-level ciphertext \(\text{rct}_{x'} = \{\delta, \text{CT}_{x'}\} \), \(B \) first randomly chooses a key attribute \(y \in \mathbb{Y}_\kappa \) such that \(R_k(x', y') = 1 \). Then \(B \) invokes the decapsulation oracle of \(\mathcal{PKEM} \) on \((\text{CT}_{x'}, y') \), and is given a key \(k' \in \mathcal{K} \). \(B \) computes \(h = \mathcal{H}(k') \) and computes \(k = \delta^h \). Finally, \(B \) returns \(k \) to \(A \).

– **Challenge.** In this phase, \(A \) submits a target ciphertext attribute \(x^* \in \mathbb{X}_\kappa \) to \(B \) with following restrictions

 • \(R_k(x^*, y) = 0 \) for all \(y \in \mathbb{Y}_\kappa \) submitted to \(\mathcal{O}_{\text{kg}} \);

 • for all \(y \in \mathbb{Y}_\kappa \) submitted to \(\mathcal{O}_{\text{rk}} \), \(R_k(x^*, y) = 0 \).

After receiving \(x^* \) from \(A \), \(B \) invokes the challenge phase of \(\mathcal{PKEM} \) on \(x^* \), and is given \((\text{CT}^*, k^*) \). \(B \) then returns \((\text{CT}^*, k^*) \) to \(A \).

– **Phase 2.** This phase is the same as **Phase 1** with the additionally restrictions described in the payload-hiding security for second-level ciphertext game in Section 3.

– **Guess.** Finally, After \(A \) outputs a guess \(b' \), \(B \) takes \(b' \) as its own guess.

If \(k^* \) is indeed an encapsulation key of \(\text{CT}^* \), then \((\text{CT}^*, k^*) \) is a valid second-level ciphertext. On the other hand, if \(k^* \) is sampled from the key space \(\mathcal{K} \), to the view of \(A \), \((\text{CT}^*, k^*) \) is still a valid second-level ciphertext. Therefore, if \(A \) can distinguish whether \(k^* \) is an encapsulation key of the ciphertext \(\text{CT}^* \) or not, and wins the payload-hiding game for second-level ciphertext with non-negligible advantage, then \(B \) can follow \(A \)'s answer to win the IND-CCA security game of the underlying PKEM scheme with the non-negligible advantage. Thus, the proof is completed.
The proposed construction is payload-hiding secure for the first-level ciphertext under predicate family R if the underlying PKEM scheme $PKEM$ is IND-CCA secure under the same predicate family, and the underlying hash function H is collision-resistant.

Proof. Suppose there exists an adversary A against the payload-hiding security for the first-level ciphertext of the proposed construction that has non-negligible advantage. Then, there exists another adversary B can use A to break the IND-CCA game of the underlying PKEM scheme $PKEM$ with non-negligible advantage. B constructs a hybrid game interacting with A as follows.

- **Setup.** B first invokes the IND-CCA game of $PKEM$ to obtain the system parameter $params$. B then passes $params$ to A.

- **Phase 1.** In this phase, A can adaptively make polynomial times of queries to the following oracles.
 - **Key generation oracle O_{kg}:** When A queries this oracle for a key attribute $y \in \mathbb{Y}_k$, B invokes the key generation oracle of $PKEM$ on the same y, and is given a private key SK_y. B then passes SK_y to A.

 - **Re-encapsulation key generation oracle O_{rk}:** When A queries this oracle for a key attribute $y \in \mathbb{Y}_k$, and a ciphertext attribute $x' \in \mathbb{X}_k$, B first invokes the key generation oracle of $PKEM$ on the same y, and is given a private key SK_y. Then, B runs $(CT_{x'}, k') \leftarrow PKEM.Encaps(x')$ and computes $h = H(k')$. Finally, B returns $rk_{y, x'} = \{(SK_y)^h, CT_{x'}\}$ to A.

 - **Re-encapsulation oracle O_{re}:** When A queries this oracle for a key attribute $y \in \mathbb{Y}_k$, a ciphertext attribute $x' \in \mathbb{X}_k$, and a second-level ciphertext $oct_{x'} \in \Psi$, B invokes the key generation oracle of $PKEM$ on the same y, and is given a private key SK_y. Then, B runs $(CT_{x'}, k') \leftarrow PKEM.Encaps(x')$, computes $h = H(k')$, and sets $rk_{y, x'} = \{(SK_y)^h, CT_{x'}\}$. Finally, B runs $ReEncaps(oct_{x'}, rk_{y, x'})$ as the proposed construction to obtain a first-level ciphertext $rc_{x'} = \{\delta, CT_{x'}\}$, and returns $rc_{x'}$ to A.

- **Second-level ciphertext decapsulation oracle O_{sde}:** When A queries to this oracle for a ciphertext attribute $x \in \mathbb{X}_k$, and a second-level ciphertext $oct_{x} \in \Psi$, B first randomly chooses a key attribute $y \in \mathbb{Y}_k$, such that $R_{\kappa}(x, y) = 1$. B then invokes the decapsulation oracle of $PKEM$ on (oct_{x}, y), and is given an encapsulation key $k \in \mathcal{K}$. In the end, B returns k to A.

- **First-level ciphertext decapsulation oracle O_{fde}:** When A queries this oracle for a ciphertext attribute x' and a first-level ciphertext $rc_{x'} = \{\delta, CT_{x'}\}$, B first randomly chooses a key attribute $y' \in \mathbb{Y}_k$ such that $R_{\kappa}(x', y') = 1$. B then invokes the decapsulation oracle of $PKEM$ on $(CT_{x'}, y')$, and is given a key $k' \in \mathcal{M}$. B computes $h = H(k')$ and computes $k = (\delta)^{h^{-1}}$. Finally, B returns k to A.

- **Challenge.** In this phase, A submits a target ciphertext attribute $x^* \in \mathbb{X}_k$ to B with the restriction: $R_{\kappa}(x^*, y) = 0$ for all $y \in \mathbb{Y}_k$ submitted to O_{kg}. After receiving x^* from A, B invokes the challenge phase of $PKEM$ on x^*, and is given (CT^*, k^*). B then randomly chooses $\tilde{x} \in \mathbb{X}_k$ and computes $(CT_\tilde{x}, k) \leftarrow PKEM.Encaps(\tilde{x})$. Next, B returns $rc_{x^*} = \{(k^*)^{H(k)}, CT_\tilde{x}\}$ to A.

- **Phase 2.** This phase is the same as **Phase 1** with the additionally restrictions described in the payload-hiding security for the first-level ciphertext game in Section 3.

- **Guess.** Finally, After A outputs a guess b', B takes b' as its own guess.

We first analyze the distribution of the first-level ciphertext $rc_{x^*} = \{(k^*)^{H(k)}, CT_\tilde{x}\}$. First, the distribution of $CT_\tilde{x}$ is trivially the same as $CT_{x'}$ returned from O_{kg}. Second, actually, δ in O_{re} is equals to k^h if the linear property is hold, where k is the encapsulation key of the second-level ciphertext and $h \in \mathbb{Z}$. That is, the distribution of $(k^*)^{H(k)}$ is the same as δ returned from O_{re}. Therefore, the distribution of rc_{x^*} and the first-level ciphertext queried from O_{re} are the same to A.

The following we discuss the advantage of B that wins the game. If A wins the payload-hiding security game for first-level ciphertext of PPKREM scheme with non-negligible advantage it implies that A has the ability to distinguish whether k^* is an encapsulation key of the CT^*. B can follow A's answer to win the IND-CCA security game of the underlying PKEM scheme with non-negligible advantage. Therefore, the proof is completed.

Remark 1. In order to provide a more general construction, we start our proposed scheme from a PKEM rather than a PE. Since a secure KEM combines a secure symmetric encryption implies a secure public-key encryption, we can combine our PPRKEM with a secure symmetric encryption to obtain a PPRE. On the other hand, a secure PE implies a secure PKEM, our construction can also be obtained from a secure PE.
6 Instantiate

In this section, we propose a (single-hop unidirectional) identity-based proxy key re-encapsulation scheme from Water’s identity-based encryption [19]. More precisely, we first obtain an identity-based KEM from [19]. Then, since the scheme satisfies the linear property, we can adopt our proposed generic construction to obtain an identity-based proxy key re-encapsulation mechanism scheme. Here, we note that identity-based KEM actually is a kind of PKEM over the predicate function \(R \), such that \(R(x, y) = 1 \) if \(x = y \); \(R(x, y) = 0 \), otherwise.

6.1 Identity-based Key Encapsulation Mechanism

Let \(G, G_1 \) be two groups with the same order \(p \). Besides, let \(g \in G \) be the generator of \(G \) and \(e : G \times G \rightarrow G_1 \) be a bilinear mapping that maps two elements of \(G \) to group \(G_1 \). The identity-based key encapsulation mechanism from [19] is presented as follows.

- **Setup(\(\lambda \))**: On input the security parameter \(\lambda \in \mathbb{N} \), this algorithm runs the following steps to generate system parameter \(\text{params} \) and master secret key \(\text{msk} \):
 - Randomly chooses \(\alpha \in \mathbb{Z}_p \);
 - Randomly chooses a generator \(g \in G \);
 - Sets \(g_1 = g^\alpha \), and randomly chooses \(g_2 \in G \);
 - Chooses an encode function \(F : \{0, 1\}^* \rightarrow G \) that maps an arbitrary length string to a group element of \(G \);
 - Finally outputs system parameter \(\text{params} = \{g, g_1, g_2, F\} \) and master secret key \(\text{msk} = g_2^\alpha \).

Here, we note that the system parameter \(\text{params} \) will be an implicitly input for the following algorithms.

- **Encaps(id)**: On input an identity \(id \in \{0, 1\}^* \), this algorithm first randomly selects \(t \in \mathbb{Z}_p \) and then computes
 - \(c_1 = g^t \);
 - \(c_2 = \text{id}^t \).

Finally, it outputs a ciphertext \(\text{CT} = \{c_1, c_2\} \) and an encapsulation key \(k = e(g_1, g_2)^t \).

- **KeyGen(\(\text{msk}, id \))**: On input a master secret key \(\text{msk} = g_2^\alpha \) and an identity \(id \in \{0, 1\}^* \), this algorithm first encodes user’s identity to a group element, that is \(\text{id} = F(id) \). Then, it randomly selects \(r \in \mathbb{Z}_p \) and computes
 - \(d_1 = g_2^r \cdot \text{id}^r \);
 - \(d_2 = g^r \).

Finally, it sets the private key \(\text{SK}_{id} = \{d_1, d_2\} \) for the identity \(id \), and output \(\text{SK}_{id} \).

- **Decaps(\(\text{CT}, \text{SK}_{id} \))**: On input a ciphertext \(\text{CT} = \{c_1, c_2\} \) and a private key \(\text{SK}_{id} = \{d_1, d_2\} \), this algorithm decrypts the ciphertext by computing
 \[
 k = e(d_1, c_1) = e(g_1, g_2)^t.
 \]

Finally, it outputs an encapsulation key \(k \in G_1 \).

6.2 Identity-based Proxy Key Re-encapsulation Mechanism

The following we obtain an identity-based proxy key re-encapsulation mechanism scheme from the above scheme. Here we use the same notation setting as Section 6.1.

- **Setup(\(\lambda \))**: On input the security parameter \(\lambda \in \mathbb{N} \), this algorithm runs the following steps to generate system parameter \(\text{params} \) and master secret key \(\text{msk} \):
 - Randomly chooses \(\alpha \in \mathbb{Z}_p \);
 - Randomly chooses a generator \(g \in G \);
 - Sets \(g_1 = g^\alpha \), and randomly chooses \(g_2 \in G \);
• Randomly chooses \(u \in \mathbb{G} \);
• Chooses an encode function \(F : \{0, 1\}^* \rightarrow \mathbb{G} \) that maps an arbitrary length string to a group element of \(\mathbb{G} \);
• Chooses a cryptographic hash function \(H : G_1 \rightarrow \mathbb{Z}_p \);
• Finally outputs system parameter \(\text{params} = \{g, g_1, g_2, F, H\} \) and master secret key \(msk = g_2^0 \).

Here, we note that the system parameter \(\text{params} \) will be an implicitly input for the following algorithms.

- **KeyGen(msk, id)**: On input a master secret key \(msk = g_2^a \) and an identity \(id \in \{0, 1\}^* \), this algorithm first encodes user’s identity to a group element, that is \(\text{id} = F(id) \). Then, it randomly selects \(r \in \mathbb{Z}_p \) and computes \(d_1 = g_2^a \cdot (u \cdot \text{id})^r \), \(d_2 = g^r \). Finally, it sets the private key \(\text{SK}_id = \{d_1, d_2\} \) for the identity \(id \), and output \(\text{SK}_id \).

- **Encaps(id)**: On input an identity \(id \in \{0, 1\}^* \), this algorithm first randomly selects \(t \in \mathbb{Z}_p \) and then computes \(c_1 = g^t \), \(c_2 = \text{id}^t \). Finally, it outputs a second-level ciphertext \(\text{oct} = \{c_1, c_2\} \) and an encapsulation key \(k = e(g_1, g_2)^t \).

- **ReKey(SK_id, id')**: On input an identity’s private key \(\text{SK}_id = \{d_1, d_2\} \) and a target identity \(id' \), this algorithm first randomly chooses \(t' \in \mathbb{Z}_p \). Then, it encodes the identity, that is \(\text{id}' = F(id') \). Next, it computes \(r_1 = g^{t'} \), \(r_2 = \text{id}'^r \), and sets \(\text{CT}_{id'} = \{r_1, r_2\} \). It also computes \(h = H(e(g_1, g_2)^t') \). Finally, it outputs a re-encryption key \(\text{rk}_{id,id'} = \{\text{SK}_id^h = \{d_1^h, d_2^h\}, \text{CT}_{id'} = \{r_1, r_2\}\} \).

- **ReEncaps(oct_id, rk_id,id')**: On input a first-level ciphertext \(\text{oct}_id = \{c_1, c_2\} \) and a re-encryption key \(\text{rk}_{id,id'} = \{\text{SK}_id^h = \{d_1^h, d_2^h\}, \text{CT}_{id'} = \{r_1, r_2\}\} \), this algorithm computes

\[
\delta = \frac{e(d_1^h, c_1)}{e(d_2^h, c_2)} = (e(g_1, g_2)^t)^h.
\]

Finally, it outputs a first-level ciphertext \(\text{rct}_{id'} = \{\delta, \text{CT}_{id'}\} \).

- **Decaps_{oct} (oct_id, SK_id)**: On input a second-level ciphertext \(\text{oct}_id = \{c_1, c_2\} \) and a private key \(\text{SK}_id = \{d_1, d_2\} \), this algorithm deciphers the ciphertext by computing

\[
k = \frac{e(d_1, c_1)}{e(d_2, c_2)} = e(g_1, g_2)^t.
\]

Finally, it outputs an encapsulation key \(k \in \mathbb{G}_1 \).

- **Decaps_{rct} (rct_{id'}, SK_{id'})**: On input a first-level ciphertext \(\text{rct}_{id'} = \{\delta = (e(g_1, g_2)^t)^h, \text{CT}_{id'} = \{r_1, r_2\}\} \) and a private key \(\text{SK}_{id'} = \{d_1', d_2'\} \), this algorithm first computes:

\[
H \left(\frac{e(d_1, r_1)}{e(d_2, r_2)} \right) = H \left(\frac{e(g_1, \text{id}') e(g_2, \text{id}')}{e(g_1, \text{id}') e(g_2, \text{id}')} \right) = H \left(\frac{e(g_1, g_2)^{t'} e(\text{id}', \text{id}')}{e(g_1, g_2)^{t'} e(\text{id}', \text{id}')} \right) = H \left(e(g_1, g_2)^{t'} \right) = h.
\]

Finally, it outputs an encapsulation key \(k = (\delta)^{-1} = (e(g_1, g_2)^{th})^{-1} = e(g_1, g_2)^t. \) Note that we use \(r' \in \mathbb{Z}_p \) to represent the random number that use in the key generation algorithm for identity \(id' \).

7 Conclusions and Future Work

In this manuscript, we present a novel generic construction that can obtain a (single-hop unidirectional) predicate proxy key re-encapsulation mechanism from a linear predicate key encapsulation mechanism. Besides, by combining with a secure symmetric encryption, a (single-hop unidirectional) predicate proxy re-encryption mechanism is also obtained. Hence, the result provides a new solution for constructing a predicate proxy re-encryption that supports any predicate function, and solves the problem that the current predicate proxy re-encryption only supports the inner product predicate function. In further work, we will expand the single-hop setting to multi-hop setting to support more complex scenarios, while considering bidirectional setting.

Acknowledgment

This research was supported by the Ministry of Science and Technology, Taiwan (ROC), under Project Numbers MOST 108-2218-E-004-001-, MOST 108-2218-E-004-002-MY2, MOST 109-2218-E-011-007-, and by Taiwan Information Security Center at National Sun Yat-sen University (TWISC@NSYSU).
References

