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Abstract. Multivariate public key cryptography is a candidate for post-
quantum cryptography, and it allows generating particularly short signa-
tures and fast verification. The Rainbow signature scheme proposed by
J. Ding and D. Schmidt is such a multivariate cryptosystem and is con-
sidered secure against all known attacks. The Rainbow-Band-Separation
attack recovers a secret key of Rainbow by solving certain systems of
quadratic equations, and its complexity is estimated by the well-known
indicator called the degree of regularity. However, the degree of regu-
larity generally is larger than the solving degree in experiments, and an
accurate estimation cannot be obtained. In this paper, we propose a new
indicator for the complexity of the Rainbow-Band-Separation attack us-
ing the F4 algorithm, which gives a more precise estimation compared
to one using the degree of regularity. This indicator is deduced by the
two-variable power series ∏m

i=1(1− tdi11 tdi22 )

(1− t1)n1(1− t2)n2
,

which coincides with the one-variable power series at t1 = t2 deriving the
degree of regularity. Moreover, we show a relation between the Rainbow-
Band-Separation attack using the hybrid approach and the HighRank
attack. By considering this relation and our indicator, we obtain a new
complexity estimation for the Rainbow-Band-Separation attack. Con-
sequently, we are able to understand the precise security of Rainbow
against the Rainbow-Band-Separation attack using the F4 algorithm.

Keywords: Multivariate public key cryptography · Rainbow-Band-Separation
attack · degree of regularity.

1 Introduction

Standard RSA and EC cryptosystems are designed based on difficult mathe-
matical problems such as prime factorization and discrete logarithm problems.
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However, these mathematical problems are known to be solved in polynomial
time by a large scale quantum computer. Therefore, it is required to construct
cryptography that is based on new mathematical problems and is resistant to
quantum computers. Such cryptography is referred to as post-quantum cryptog-
raphy. In 2015, National Security Agency (NSA) announced a plan of a transition
to post-quantum cryptography, and National Institute of Standards and Tech-
nology (NIST) started a public recruitment of such cryptography candidates in
2016 [22].

Multivariate public key cryptography [10] is based on an NP-hard problem
of solving a system of quadratic equations, that is called the MQ problem [18].
It is especially expected to have potential in building post-quantum signature
schemes. Rainbow is a multivariate signature scheme proposed by J. Ding and
D. Schmidt in 2005 [9]. This signature scheme can be implemented simply and
efficiently using linear algebra methods over a small finite field, and in particular
produces shorter signatures than those of RSA and other post-quantum signa-
ture schemes [13]. In NIST Post-Quantum Cryptography (PQC) 2nd round,
secure Rainbow parameter sets are proposed and several attacks against them
are analyzed [13]. In particular, the Rainbow-Band-Separation (RBS) attack [11]
is the best among known attacks against Rainbow with a certain parameter set
and is important.

Previous estimation methods [13, 27] for the complexity of the RBS attack
use the degree of regularity [1, 2] as its indicator under the assumption that the
system of quadratic equations solved in the attack is semi-regular (see [1] for the
definition). For a semi-regular system, the degree of regularity is given as the
degree Dreg of the first term whose coefficient is non-positive in the power series

(1− t2)m

(1− t)n
, (1)

where m and n are the numbers of equations and variables, respectively. Since
a public quadratic system solved in the direct attack is often semi-regular, the
complexity estimation of the direct attack uses the degree of regularity [2, 13].
However, by our experiments, the quadratic system solved in the RBS attack
is non-semi-regular. Therefore, it is important to find an optimal indicator for
estimating the complexity of the RBS attack.

1.1 Our Contributions

The purpose of this paper is to give a more precise complexity estimation for the
RBS attack. Since the attack solves a certain quadratic system whose solving
complexity dominates the overall attack, that we call a RBS dominant system, we
need to estimate the complexity of a Gröbner basis algorithm solving this system.
In particular, for estimating the complexity, this paper considers (theoretical)
indicators approximating its solving degree, that the maximal degree in steps
which add a new non-zero polynomial during the Gröbner basis algorithm F4

[15]. As mentioned above, previous estimation methods have used the degree of
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regularity as its indicator. However, an RBS dominant system is solved faster
than a semi-regular system, and its solving degree is lower than the degree of
regularity. These are probably caused by the fact that an RBS dominant system
has a relation between its variables which is said to be bi-graded.

In this paper, we consider a polynomial h in F[x1, . . . , xn1
, y1, . . . , yn2

] graded
by (d1, d2) = (degx1,...,xn1

h,degy1,...,yn2
h) ∈ Z2

≥0 which is called a bi-graded

polynomial, such as a bilinear polynomial graded by (1, 1). Then, for a bi-graded
polynomial system (h1, . . . , hm), we introduce a new indicator Dbgd that is de-
fined as the minimum total degree of the terms whose coefficient are negative in
the two-variable power series ∏m

i=1(1− tdi1
1 tdi2

2 )

(1− t1)n1(1− t2)n2
. (2)

For a Rainbow parameter set (v, o1, o2), the top homogeneous component of
an RBS dominant system consists of v + o1 + o2 − 1 bilinear polynomials and
o1 + o2 quadratic homogeneous polynomials in v + o1 and o2 variables. Namely,
RBS dominant systems are bi-graded. By our experiments using F4 on RBS
dominant systems with v = oi and v ≲ 2oi (i = 1, 2), we show that our new
indicator Dbgd tightly approximates the solving degree of the system than the
degree of regularity Dreg . Note that the one-variable power series (1) deriving
the previous indicator Dreg is the same as the two-variable power series (2) at
t = t1 = t2. Hence, we can expect a relation Dbgd ≤ Dreg since tDreg in the series

(1) has a negative coefficient in our experiments, which deduces one of td1
1 td2

2 in
the series (2) where d1 + d2 = Dreg .

We also show a relation between the RBS attack and the HighRank attack
which recovers a lower rank quadratic polynomial by using a brute-force search.
Since an RBS dominant system has many bilinear polynomials, the hybrid ap-
proach [2] on the RBS attack gives an overdetermined linear system by fixing one
of these two variable sets. In this case, the RBS attack becomes similar to the
HighRank attack (see Subsection 5 for detail). This fact has not been mentioned
in previous research [13, 24, 27].

By using our indicator and reconsidering the hybrid approach on the RBS
attack, we can obtain a new complexity estimation for the RBS attack using F4.
Consequently, we are able to understand the precise security of Rainbow against
the RBS attack using F4.

1.2 Organization

This paper is organized as follows. In Section 2, we explain Rainbow and the RBS
attack. In Section 3, we explain the previous complexity estimation of the RBS
attack using the degree of regularity and present experiments for scaled down
Rainbow parameter sets in NIST PQC 2nd round. In Section 4, we introduce a
new indicator for estimating the complexity of the RBS attack and demonstrate
that this indicator more tightly approximates the solving degree of the quadratic
system solved in the attack. In Section 5, by using our indicator and reconsidering
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the hybrid approach on the RBS attack, we give a new complexity estimation
for the RBS attack. In Section 6, we conclude the results.

2 The Rainbow Signature Scheme

In this section, we briefly explain the Rainbow signature scheme and several
attacks against it. We explain Rainbow in Subsection 2.1 and its parameter sets
in Subsection 2.2. In Subsection 2.3, we describe the Rainbow-Band-Separation
(RBS) attack in detail.

2.1 Rainbow

Let n and m be positive integers. We denote by F the finite field of order q. An
element (f1, . . . , fm) of F[x1, . . . , xn]

m is called a polynomial system and gives a
map Fn → Fm by a 7→ (f1(a), . . . , fm(a)) which is called a polynomial map.

A multivariate public key signature scheme consists of the following three
algorithms:

Key generation: We construct two invertible linear maps S : Fn → Fn and
T : Fm → Fm randomly and an easily invertible quadratic map F : Fn → Fm

which is called a central map, and then compute the composition P :=
T ◦ F ◦ S. The public key is given as P . The tuple (T, F, S) is a secret key.

Signature generation: For a message b ∈ Fm, we compute b′ = T−1(b).

Next, we can compute an element a′ of F−1({b′}) since F is easily invertible.
Consequently, we obtain a signature a = S−1(a′) ∈ Fn.

Verification: We verify whether P (a) = b holds.

Rainbow is a multivariable signature scheme proposed by J. Ding and D.
Schmidt in 2005 [9]. For positive integers v, o1 and o2, let x = {x1, . . . , xv},y =
{y1, . . . , yo1} and z = {z1, . . . , zo2} be three variable sets and put n = v+o1+o2
and m = o1 + o2. The central map F = (f1, . . . , fm) ∈ F[x,y, z]m of Rainbow is
defined by 

f1 = g(1)(x) +
∑o1

i=1 l
(1)
i (x)yi,

...

fo1 = g(o1)(x) +
∑o1

i=1 l
(o1)
i (x)yi,

fo1+1 = g(o1+1)(x,y) +
∑o2

i=1 l
(o1+1)
i (x,y)zi,

...

fo1+o2 = g(o1+o2)(x,y) +
∑o2

i=1 l
(o1+o2)
i (x,y)zi,

(3)

where g(j) and l
(j)
i are randomly chosen quadratic polynomials and linear poly-

nomials, respectively. Then, in the signature generation algorithm above, we can
easily compute an element a′ in the pre-image of any element b′ = (b′1, . . . , b

′
o1+o2)

in Fm under F as follows.
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1. Randomly choose a′v = (a′1, . . . , a
′
v) as x.

2. Solve a system of linear equations

f1(a
′
v,y) = b′1, . . . , fo1(a

′
v,y) = b′o1 .

Let a′o1 = (a′v+1, . . . , a
′
v+o1) be one of its solutions if it exists. Otherwise,

return to the step 1.
3. Solve a system of linear equations

fo1+1(a
′
v,a

′
o1 , z) = b′o1+1, . . . , fo1+o2(a

′
v,a

′
o1 , z) = b′o1+o2 .

Let a′o2 = (a′v+o1+1, . . . , a
′
v+o1+o2) be one of its solutions if it exists. Other-

wise, return to the step 1.
4. Obtain an element a′ = (a′1, . . . , a

′
v+o1+o2) in the pre-image of b′.

2.2 Parameters of Rainbow

In this subsection, we briefly explain several attacks against Rainbow.
The central map of Rainbow with a parameter set (v, o1, o2) can be regard as

a UOV [20] instance with the parameter set (v+ o1, o2). Hence the UOV attack
[19] is available as an attack against Rainbow, and we have to take the Rainbow
parameter set such that

v + o1 ≈ so2 (s = 2, 3, 4, . . . ).

We can also consider attacks using the special structure of the Rainbow central
map (3) above. The HighRank attack [7] and the MinRank attack [3] are such
attacks. Due to influences of the UOV attack and the HighRank attack, we set

o1 = o2.

Moreover, for a public key P and a given message b, the direct attack [2] forges
a signature by solving P (x) = b directly. Complexity estimations for the direct
attack and the RBS attack [11], which also solves a certain quadratic system to
recovery a secret key (see Subsection 2.3 for detail), are important in deciding
concrete parameters v, o1 and o2. In this paper, we assume o1 = o2 implicitly
and consider a parameter set with v = oi or v ≲ 2oi (i = 1, 2).

NIST PQC standardization project [22] gives six security categories (see Ta-
ble 1). Here, due to the NIST specification, the number of gates is given by

♯ gates = ♯ field multiplications · (2 · log2(q)2 + log2(q)).

Table 2 and Table 3 show the Rainbow parameter sets Ia, IIIc and Vc [13]
proposed in NIST PQC 2nd round and the complexities of the above attacks.
Here, the bold numbers in Table 2 and Table 3 mean the best complexity of
attacks in each parameter set. Table 2 shows that the direct attack is the best
among attacks against the parameter sets IIIc and Vc in classical gates, and
Table 3 shows that the HighRank attack is the best among attacks against
all parameter sets in quantum gates. The parameter sets Ia, IIIc and Vc are
designed to satisfy the NIST security categories I, III/IV and V/VI in Table 1,
respectively [13].



6 S. Nakamura et al.

Table 1. NIST security categories (Table 10 in [13])

category log2 classical gates log2 quantum gates

I 143 130/106/74

II 146

III 207 193/169/137

IV 210

V 272 258/234/202

VI 274

Table 2. (Classical Attacks) Complexities (log2(♯classical gates)) of known attacks
against Rainbow (from tables of Section 7.2 in [13])

parameter set (q, v, o1, o2) direct MinRank HighRank UOV RBS

Ia (16, 32, 32, 32) 164.5 161.3 150.3 149.2 145.0

IIIc (256, 68, 36, 36) 215.2 585.1 313.9 563.8 217.4

Vc (256, 92, 48, 48) 275.4 778.8 411.2 747.4 278.6

Table 3. (Quantum Attacks) Complexities (log2(♯quantum gates)) of known attacks
against Rainbow (from tables of Section 7.2 in [13])

parameter set (q, v, o1, o2) direct MinRank HighRank UOV RBS

Ia (16, 32, 32, 32) 146.5 95.3 86.3 87.2 145.0

IIIc (256, 68, 36, 36) 183.5 309.1 169.9 295.8 217.4

Vc (256, 92, 48, 48) 235.5 406.8 219.2 393.4 278.6

2.3 Rainbow-Band-Separation Attack

In this subsection, we describe the Rainbow-Band-Separation (RBS) attack [11]
and a certain quadratic system solved in the attack which are subjects of our
research in this paper. For simplicity, we assume that the characteristic of F is
odd in this subsection. We then use the symmetric matrix representation of a
quadratic homogeneous polynomial.

Let (v, o1, o2) be a Rainbow parameter set and put n = v + o1 + o2 and
m = o1 + o2. For a Rainbow public key P = (p1, . . . , pm), the RBS attack
recovers its secret key (T, F, S) as follows. By the definition (3) of the central
map F = (f1, . . . , fm), each matrix corresponding to fi has the following form:

Mfi =



∗v×v ∗v×o1 0v×o2

∗o1×v 0o1×o1 0o1×o2

0o2×v 0o2×o1 0o2×o2

 if 1 ≤ i ≤ o1,

∗v×v ∗v×o1 ∗v×o2

∗o1×v ∗o1×o1 ∗o1×o2

∗o2×v ∗o2×o1 0o2×o2

 if o1 + 1 ≤ i ≤ o1 + o2.

(4)
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Here, ∗k×l mean k-by-l matrices over F. Similarly, the matrices corresponding
to S and T can be written as follows:

MS =

 Iv 0v×o1 0v×o2

∗o1×v Io1 0o1×o2

∗o2×v ∗o2×o1 Io2

 ,

MT =

(
Io1 0o1×o2

∗o2×o1 Io2

)
.

(5)

If S and T are taken as random invertible linear maps, then MS and MT cannot
be written as in the form (5). However, it is known that the security of Rainbow
does not decrease, even if S and T are took as in the form (5). Therefore, S and
T in [11] are set to be in the form (5), which induces a reduction in the secret
key size. The matrices Mp1

, . . . ,Mpm
corresponding to the public polynomials

p1, . . . , pm are given as

(Mp1
, . . . ,Mpm

) = (MSMf1
tMS , . . . ,MSMfm

tMS)MT . (6)

By the form (5), there exists an n-by-1 vector s = (λ1, . . . , λv+o1 , 0, . . . , 0, 1)
such that s ·MS = (0, . . . , 0, 1). Then, for i = 1, . . . ,m, we have

s ·MSMfi
tMS · ts = (0, . . . , 0, 1) ·Mfi · t(0, . . . , 0, 1) = 0.

Since each Mpk
is a linear combination of MSMf1

tMS , . . . ,MSMfm
tMS , we

obtain
s ·Mpk

· ts = 0, k = 1, . . . ,m. (7)

By the form (5), there exists anm-by-1 vector t = (1, 0 . . . , 0, λv+o1+1, . . . , λv+o1+o2)
such that MT · tt = t(1, 0, . . . , 0). Then, multiplying the equation (6) by tt, we
get

Mp1 +

o2∑
i=1

λv+o1+iMpo1+i = MSMf1
tMS .

Moreover, multiplying this equation by s, we have

s ·Mp1
+

o2∑
i=1

λv+o1+is ·Mpo1+i
= s ·MSMf1

tMS = (0, . . . , 0).

Thus, we have the following equations

s ·Mp1 · tek +

o2∑
i=1

λv+o1+is ·Mpo1+i · tek = 0, k = 1, . . . , n− 1, (8)

where ek is the n-by-1 vector (0, . . . , 0,
k
1, 0, . . . , 0). Here, we remove the case

k = n, since the equation (8) for k = n follows from the equation (7).
Since s = (λ1, . . . , λv+o1 , 0, . . . , 0, 1), it is clear that the equations (7) and (8)

are n+m− 1 quadratic equations in n variables λ1, . . . , λn, and are constructed
from the public key p1, . . . , pm. Solving these quadratic system, an attacker can
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recover a part of the secret key S and T , namely, s and t. The RBS attack can
recovery S and T by repeating similar discussions as above (see [11] for detail).
Since the complexity of solving the quadratic system dominates one of the RBS
attack, it suffices to treat only the system. We refer to the quadratic system
consisting of the equations (7) and (8) as the RBS dominant system.

3 Revisiting Previous Complexity Estimation for the
RBS Attack

In this section, we explain the previous complexity estimation for the RBS at-
tack. In Subsection 3.1, by using a certain experimental degree called the solving
degree, we explain the complexity of a Gröbner basis algorithm for solving a
quadratic system. In Subsection 3.2, we recall the degree of regularity to ap-
proximate the solving degree for such a quadratic system. In Subsection 3.3, we
show that RBS dominant systems have a gap between the solving degree and
the degree of regularity.

3.1 Complexity of Attacks using a Gröbner Basis Algorithm

In the RBS attack, Gröbner basis algorithms are used for solving the RBS dom-
inant system.

A Gröbner basis algorithm that computes a Gröbner basis for the ideal gen-
erated by a given polynomial system was discovered by B. Buchberger [5], and
improved as faster algorithms, for example, XL [28], F4 [15] and F5 [16]. In this
paper, we use the following complexity of the F4 algorithm solving a polynomial
system in n variables: (

n+ dslv
dslv

)ω

where 2 < ω ≤ 3 is a linear algebra constant and dslv is the maximal degree in
steps which add a new non-zero polynomial during the Gröbner basis algorithm
and is called the solving degree.

The solving degree is important for obtaining the complexity, but is an ex-
perimental value. In order to estimate the complexity of solving a large scale
polynomial system, we need to find its (theoretical) indicator approximating the
solving degree (see Subsection 3.2).

Using the solving degree dslv , we describe the complexity of the RBS attack
against Rainbow with a parameter set (v, o1, o2) as follows. Put n = v+ o1 + o2
and m = o1 + o2. Since the RBS dominant system then has n+m− 1 quadratic
equations in n variables (see the equations (7) and (8)), the complexity of the
attack is given by (

n+ dslv
dslv

)ω

.

Furthermore, by using the hybrid approach [2] of brute-force search and Gröbner
basis algorithm which solves the RBS dominant system in n− k variables after
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fixing k variables, the complexity is improved as

min
k

qk ·
(
n− k + dslv

dslv

)ω

. (9)

3.2 Degree of Regularity

In this subsection, we explain the degree of regularity as an indicator approxi-
mating the solving degree.

Denoting by F[x1, . . . , xn]d the vector space generated by the monomials of
the total degree d over F in F[x1, . . . , xn], we have the following decomposition:

F[x1, . . . , xn] = ⊕d≥F[x1, . . . , xn]d.

We denote by ⟨f1, . . . , fm⟩ the ideal generated by f1, . . . , fm, and by ⟨f1, . . . , fm⟩d
its component of degree d in the decomposition if f1, . . . , fm are homogeneous.

For a polynomial system (f1, . . . , fm), M. Bardet et al. [1] considered the
degree of regularity as the minimal value of the following set if it exists:{

d | ⟨f top
1 , . . . , f top

m ⟩d = F[x1, . . . , xn]d
}
.

For a polynomial system whose top homogeneous component is semi-regular
[1], the degree of regularity is equal to the degree Dreg of the first term whose
coefficient is non-positive in the following power series (see [1] for detail):∏m

i=1(1− tdeg fi)

(1− t)n
. (10)

Note that a quadratic system whose coefficients are randomly chosen is often
semi-regular. For this reason, in using the degree of regularity for a quadratic
system, we assume that the system is semi-regular, and also call Dreg the degree
of regularity.

By using the degree of regularity under the assumption that an RBS domi-
nant system is semi-regular, the previous estimation method gives complexities
of the RBS attack as follows. For a Rainbow parameter set (v, o1, o2), the RBS
dominant system has m + n − 1 quadratic polynomials in n variables where
n = v + o1 + o2 and m = o1 + o2 (see the equations (7) and (8)). Then, by the
formula (9), the complexity in classical gates of the RBS attack is given by

min
k

qk ·
(
n− k +Dreg

Dreg

)ω

(11)

where 2 < ω ≤ 3 is a linear algebra constant, k is the number of variables fixed
by the hybrid approach and Dreg is given by the degree of the first term whose
coefficient is non-positive in the power series

(1− t2)m+n−1

(1− t)n−k
. (12)
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In quantum gates, by using Grover’s algorithm, the complexity is given by

min
k

qk/2 ·
(
n− k +Dreg

Dreg

)ω

. (13)

In the next subsection, by our experiments, we show that an RBS dominant
system is non-semi-regular.

3.3 Experiments on the Degree of Regularity

In this subsection, by our experiments on Rainbow parameter sets with v ≲ 2oi,
we show that RBS dominant systems have a gap between the solving degree
and the degree of regularity. The assertions in this paper were verified by using
the Gröbner basis algorithm F4 with respect to the graded reverse lexicographic
monomial order in Magma V2.24-4 [4] on CPU: 3.2 GHz Intel Core i7.

For small Rainbow parameter sets (v, o1, o2) with v ≲ 2oi, Table 4 demon-
strates the fundamental assertion that the degree of regularity Dreg tightly ap-
proximates the solving degree dslv for a semi-regular system of v+2o1 +2o2 − 1
quadratic equations in v + o1 + o2 variables which of the same size as the RBS
dominant system (see the equations (7) and (8)). Under the assumption that an
RBS dominant system is semi-regular, the previous estimation method [13, 27]
for the RBS attack uses the degree of regularity Dreg (see Subsection 3.2) as the
solving degree dslv . Table 4 also shows that this assumption does not hold for
small Rainbow parameter sets (v, o1, o2) with v ≲ 2oi.

In Table 4, we see that each RBS dominant system is solved faster than
a semi-regular system of the same size and has a gap between the degree of
regularity and the solving degree. Since the degree of regularity does not tightly
approximate the solving degree of an RBS dominant system, it is important to
find an optimal indicator for estimating the complexity of the RBS attack. Note
that an experiment on the RBS attack is also carried out in the paper [27], and
Table 2 in the paper shows that an RBS dominant system is solved faster than a
semi-regular system of the same size. However, the paper [27] does not mention
a relation between the degree of regularity and the solving degree.

In the reminder of this subsection, we show the state of the step degrees
in the Gröbner basis algorithm with the RBS dominant system for a certain
Rainbow parameter set. We denote by dmem the degree of the most memory-
consuming step and by dtim the degree of the most time-consuming step during
the Gröbner basis algorithm. A number of experiments in this subsection show
that the relation

dslv ≤ dtim = dmem (14)

holds on an RBS dominant system for small parameter sets with v ≲ 2oi. Figure
1 shows the state of the step degrees in the Gröbner basis algorithm with the RBS
dominant system for the Rainbow parameter set (q, v, o1, o2) = (256, 11, 6, 6) as
input. Then, in the Gröbner basis algorithm, steps after the 8-th step do not
find new polynomials. Namely, dslv = 6. We can verify the relation (14). Here,
for obtaining the Gröbner basis, it suffices to compute up to the 7-th step for
the RBS attack.
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Table 4. (Gap Between Dreg and dslv for an RBS Dominant System) For the
parameter relation v ≲ 2oi (i = 1, 2), the degree of regularity Dreg (see the series (12))
and experimental values dslv (see Subsection 3.1), dtim and dmem (see the last paragraph
in Subsection 3.3) in the Gröbner basis algorithm F4 for RBS dominant systems and
semi-regular systems of the same size. Each RBS dominant system is solved faster than
a semi-regular system of the same size, and has a gap between the degree of regularity
Dreg and the solving degree dslv .

q = 256
# eq. # var. Dreg

Semi-regular system RBS dominant system
(v, oi) Time (sec) dslv dtim dmem Time (sec) dslv dtim dmem

(4, 3) 15 10 4 0.03 4 4 4 0.01 4 4 4
(5, 3) 16 11 5 0.09 5 5 5 0.01 4 4 4
(6, 3) 17 12 5 0.24 5 5 5 0.03 4 4 4

(6, 4) 21 14 5 1.57 5 5 5 0.12 4 4 4
(7, 4) 22 15 6 9.86 6 6 6 0.25 4 4 4
(8, 4) 23 16 6 31.56 6 6 6 0.58 4 4 4

(8, 5) 27 18 6 213.57 6 6 6 7.50 5 5 5
(9, 5) 28 19 6 796.80 6 6 6 35.08 5 5 5
(10, 5) 29 20 7 7818.25 7 7 7 71.54 5 5 5

(10, 6) 33 22 7 47311.77 7 7 7 954.82 6 6 6
(11, 6) 34 23 7 ≥ 2 days - - - 3265.14 6 6 6
(12, 6) 35 24 7 ≥ 2 days - - - 6609.50 6 6 6

Fig. 1. The state of the step degrees in the Gröbner basis algorithm F4 with the RBS
dominant system for the parameter set (q, v, o1, o2) = (256, 11, 6, 6). A step marked
with the square black box adds a new polynomial. A step marked with the square
white box does not add a new polynomial. The relation dslv ≤ dtim = dmem holds.
(dslv : Subsection 3.1, dtim and dmem : the last paragraph in Subsection 3.3)
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4 New Indicator for the Complexity of the RBS Attack

In this section, we propose an indicator for estimating the complexity of the
RBS attack. We first explain the bi-graded polynomial. We then introduce a
new indicator for bi-graded polynomial systems and show that this indicator
tightly approximates the solving degree of an RBS dominant system than the
degree of regularity by experiments using the F4 algorithm.

4.1 Bi-graded Polynomial Systems

In this subsection, we explain the bi-graded polynomial and show that an RBS
dominant system is bi-graded.

Definition 1. A commutative ring R is said to be bi-graded if the two following
conditions holds:

1. R = ⊕d∈Z2
≥0
Rd

2. Rd1
Rd2

⊆ Rd1+d2
for all di ∈ Z2

≥0

Moreover, an element in a bi-graded commutative ring R is said to be bi-graded
if it is contained in Rd for some d ∈ Z2

≥0. Then, for a bi-graded element h ∈ Rd,

we define degZ2
≥0

h as d ∈ Z2
≥0.

Remark 1. In this paper, an element of R whose top homogeneous component
is bi-graded is also said to be bi-graded.

For a Rainbow parameter set (v, o1, o2), the RBS dominant system consists of
m quadratic polynomials (7) in a variable set {λ1, . . . , λv+o1} and n− 1 bilinear
polynomials (8) in two variable sets {λ1, . . . , λv+o1} and {λv+o1+1, . . . , λn} where
n = v + o1 + o2 and m = o1 + o2 (see Subsection 2.3). The polynomial ring
F[λ1, . . . , λn] can be graded by

degZ2
≥0

λ1 = · · · = degZ2
≥0

λv+o1 = (1, 0) and,

degZ2
≥0

λv+o1+1 = · · · = degZ2
≥0

λn = (0, 1).

Top homogeneous components h1, . . . , hm of quadratic polynomials (7) are con-
tained in F[λ1, . . . , λn](2,0), and those hm+1, . . . , hm+n−1 of quadratic polynomi-
als (8) are in F[λ1, . . . , λn](1,1). Namely,

degZ2
≥0

h1 = · · · = degZ2
≥0

hm = (2, 0),

degZ2
≥0

hm+1 = · · · = degZ2
≥0

hm+n−1 = (1, 1).
(15)

Hence, the RBS dominant system is a bi-graded polynomial system.
In the next section, based on the fact that an RBS dominant system is bi-

graded, we introduce an indicator for estimating the complexity of the RBS
attack.
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4.2 New Indicator for the Complexity of Solving a Bi-graded
Polynomial System

In this subsection, we introduce a new indicator for bi-graded polynomial systems
and show that this indicator tightly approximates the solving degree of an RBS
dominant system than the degree of regularity.

We introduce the following indicator for the complexity of a Gröbner basis
algorithm with a bi-graded polynomial system:

Definition 2. For a bi-graded polynomial system (h1, . . . , hm) in F[x1, . . . , xn1
,

y1, . . . , yn2 ]
m where degZ2

≥0
hi = (di1, di2), let

∑
(d1,d2)∈Z2

≥0

a(d1,d2)t
d1
1 td2

2 =

∏m
i=1(1− t

di,1

1 t
di,2

2 )

(1− t1)n1(1− t2)n2
, (16)

and we define Dbgd = Dbgd(h1, . . . , hm) as the minimal value of the following
set if it exists:

{d1 + d2 | a(d1,d2) < 0}.

The two-variable series in (16) is regarded as a bi-graded version of the Hilbert
series (see [21] for example).

Remark 2. For a bi-graded polynomial system, we note that the one-variable
power series (10) deducing Dreg coincides with the two-variable power series
(16) when t = t1 = t2. Hence, if we define D′

bgd as the minimum value of the set

{d1 + d2 | a(d1,d2) ≤ 0}

where a(d1,d2) is the coefficient of td1
1 td2

2 in the series (16) and it exists, then
D′

bgd ≤ Dreg . D
′
bgd is often smaller than the solving degree for some Rainbow

parameter sets. Thus we do not use D′
bgd as a suitable indicator. On the other

hand, the term tDreg in the series (10) often has a negative coefficient which
deduces one of td1

1 td2
2 in the series (16) where d1 + d2 = Dreg . Namely, the

relation Dbgd ≤ Dreg often holds (see Table 5 and Table 6 below).

In the reminder of this subsection, by our experiments, we show that the
introduced indicator Dbgd tightly approximates the solving degree on an RBS
dominant system than the degree of regularity. By Definition 2 and the equation
(15), the indicator Dbgd for an RBS dominant system with a parameter set
(v, o1, o2) is given by the minimal total degree of the terms whose coefficient are
negative in the two-variable power series

(1− t1t2)
v+o1+o2−1(1− t21)

o1+o2

(1− t1)v+o1(1− t2)o2
. (17)

Table 5 compares the indicator Dbgd and the degree of regularity Dreg for RBS
dominant systems with v = oi and v ≲ 2oi.
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Table 5. (Dbgd vs Dreg for an RBS Dominant System) Experimental degrees dslv
(see Subsection 3.1), dmem and dtim (see the last paragraph in Subsection 3.3) in the
F4 algorithm and theoretical degrees Dbgd (from the series (17)) and Dreg (from the
series (12) at k = 0) for an RBS dominant system with v ≲ 2oi or v = oi (i = 1, 2).
The proposed indicator Dbgd coincides with dslv in the cases except for (q, v, oi) =
(256, 8, 4), (16, 8, 8). The degree of regularity Dreg is always larger than dslv except for
(q, v, oi) = (256, 4, 4).

q = 256 Exper. Theor.
(v, oi) dslv dtim dmem Dbgd Dreg

(4, 3) 4 4 4 4 4
(5, 3) 4 4 4 4 5
(6, 3) 4 4 4 4 5

(6, 4) 4 4 4 4 5
(7, 4) 4 4 4 4 6
(8, 4) 4 4 4 5 6

(8, 5) 5 5 5 5 6
(9, 5) 5 5 5 5 6
(10, 5) 5 5 5 5 7

(10, 6) 6 6 6 6 7
(11, 6) 6 6 6 6 7
(12, 6) 6 6 6 6 7

q = 16 Exper. Theor.
(v, oi) dslv dtim dmem Dbgd Dreg

(3, 3) 3 3 3 3 4
(4, 4) 4 4 4 4 5
(5, 5) 4 4 4 4 5
(6, 6) 5 5 5 5 6
(7, 7) 5 5 5 5 6
(8, 8) 5 6 6 6 7
(9, 9) 6 6 6 6 7

Table 6. (Dbgd vs Dreg for the Hybrid Approach on an RBS Dominant Sys-
tem) Experimental degrees dslv (see Subsection 3.1), dmem and dtim (see the last para-
graph in Subsection 3.3) in the F4 algorithm and theoretical degrees Dbgd (from the
series (18)) and Dreg (from the series (12)) of the hybrid approach on RBS dominant
systems in variables {λ1, . . . , λv+o1+o2} for (q, v, o1, o2) = (256, 10, 5, 5) and (16, 8, 8, 8).
The integers k1 and k2 are the number of variables fixed by the hybrid approach in
{λ1, . . . , λv+o1} and {λv+o1+1, . . . , λv+o1+o2}, respectively. The degree of regularity
Dreg is always larger than the solving degree dslv . The proposed indicator Dbgd tightly
approximates dslv than Dreg and is an upper bound of dslv .

(256, 10, 5, 5) Exper. Theor.
k1 + k2 (k1, k2) dslv dtim dmem Dbgd Dreg

0 (0, 0) 5 5 5 5 7

1 (1, 0) 5 5 5 5 6
(0, 1) 4 4 4 5 6

2 (2, 0) 4 5 5 5 6
(1, 1) 4 4 4 4 6
(0, 2) 4 4 4 4 6

3 (3, 0) 4 4 4 4 6
(2, 1) 4 4 4 4 6
(1, 2) 3 4 4 4 6
(0, 3) 3 3 3 3 6

4 (4, 0) 4 4 4 4 5
(3, 1) 3 4 4 4 5
(2, 2) 3 3 3 3 5
(1, 3) 3 3 3 3 5
(0, 4) 2 2 2 2 5

(16, 8, 8, 8) Exper. Theor.
k1 + k2 (k1, k2) dslv dtim dmem Dbgd Dreg

0 (0, 0) 5 6 6 6 7

1 (1, 0) 5 5 5 5 6
(0, 1) 5 5 5 5 6

2 (2, 0) 5 5 5 5 6
(1, 1) 5 5 5 5 6
(0, 2) 5 5 5 5 6

3 (3, 0) 4 5 5 5 6
(2, 1) 4 5 5 5 6
(1, 2) 4 5 5 5 6
(0, 3) 4 4 4 5 6

4 (4, 0) 4 4 4 4 6
(3, 1) 4 4 4 5 6
(2, 2) 4 4 4 4 6
(1, 3) 4 4 4 4 6
(0, 4) 4 4 4 4 6
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Furthermore, Table 6 compares the indicator Dbgd and the degree of reg-
ularity Dreg for the hybrid approach on the RBS attack against Rainbow pa-
rameter sets (q, v, o1, o2) = (256, 10, 5, 5) and (16, 8, 8, 8). Here, k1 and k2 are
the numbers of variables fixed by the hybrid approach in {λ1, . . . , λv+o1} and
{λv+o1+1, . . . , λv+o1+o2}, respectively, where λ1, . . . , λv+o1+o2 are the variables
of an RBS dominant system (see the equations (7) and (8)). Then the indicator
Dbgd is given by the minimal total degree of the terms whose coefficient are
negative in the two-variable power series

(1− t1t2)
v+o1+o2−1(1− t21)

o1+o2

(1− t1)v+o1−k1(1− t2)o2−k2
. (18)

Remark 3. Generally, the first term having a negative coefficient in the power
series (10) gives a non-Koszul syzygy by [8] if it exists. Hence we expect thatDbgd

gives a non-Koszul syzygy and, namely, signature-based algorithms (generalizes
F5 [16]) which return the generators of the syzygy module must compute up to
the degree Dbgd .

5 Our Complexity Estimation for the RBS Attack

In this section, we give a new complexity estimation of the RBS attack using the
F4 algorithm under the assumption that the indicator Dbgd is an upper bound
of the solving degree dslv (see Remark 4 in Subsection 4.2). Furthermore, we
investigate a relation between the RBS attack using the hybrid approach and
the HighRank attack.

For simplicity, we explain only a complexity estimation in classical gates for
the RBS attack against a Rainbow parameter set (q, v, o1, o2). Put n = v+o1+o2
and m = o1 + o2. Let k1 and k2 be the numbers of variables fixed by the
hybrid approach in {λ1, . . . , λv+o1} and {λv+o1+1, . . . , λn}, respectively, where
λ1, . . . , λn are the variables of the RBS dominant system (see the equations (7)
and (8)). When k1 < v + o1 and k2 < o2, the complexity is given by

qk1+k2 ·
(
n− k1 − k2 +Dbgd

Dbgd

)ω

where 2 < ω ≤ 3 is a linear algebra constant and Dbgd is given by the minimal
total degree in terms whose coefficient is negative in the two-variable power series
(18) in Subsection 4.2. When k1 = v + o1 and k2 < o2, we obtain a system of
v + o1 + o2 − 1 linear equations in o2 − k2 variables from the RBS dominant
system fixed k1 variables. Then, the complexity is given by

qk1+k2 · (2(o2 + 1)(v + o1)(o2 − k2) + (o2 − k2)
ω).

Similarly, when k1 < v+o1 and k2 = o2, we obtain a system consisting of o1+o2
quadratic equations and v+ o1 + o2 − 1 linear equations in v+ o1 − k1 variables.
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Then, since it suffices to solve a system of linear equations in v+o1−k1 variables,
the complexity is given by

qk1+k2 · (2(v + o1 + 1)(v + o1 − k1)o2 + (v + o1 − k1)
ω).

When k1 = v + o1 and k2 = o2, the complexity of a brute-force search is given
by qk1+k2 .

In summary, the complexity in classical gates of the RBS attack against
Rainbow with a parameter set (q, v, o1, o2) is given as the minimal value of



qk1+k2 ·
(
n−k1−k2+Dbgd

Dbgd

)ω
if k1 < v + o1 and k2 < o2,

qk1+k2 · (2(o2 + 1)(v + o1)(o2 − k2) + (o2 − k2)
ω) if k1 = v + o1 and k2 < o2,

qk1+k2 · (2(v + o1 + 1)(v + o1 − k1)o2 + (v + o1 − k1)
ω) if k1 < v + o1 and k2 = o2,

qk1+k2 if k1 = v + o1 and k2 = o2,

(19)

where 2 < ω ≤ 3 is a linear algebra constant and Dbgd is given by the minimal
total degree in terms whose coefficient is negative in the two-variable power series
(18), i.e.

(1− t1t2)
v+o1+o2−1(1− t21)

o1+o2

(1− t1)v+o1−k1(1− t2)o2−k2
.

Moreover, using Grover’s algorithm, the complexity in quantum gates is given
as the minimal value of

q(k1+k2)/2 ·
(
n−k1−k2+Dbgd

Dbgd

)ω
if k1 < v + o1 and k2 < o2,

q(k1+k2)/2 · (2(o2 + 1)(v + o1)(o2 − k2) + (o2 − k2)
ω) if k1 = v + o1 and k2 < o2,

q(k1+k2)/2 · (2(v + o1 + 1)(v + o1 − k1)o2 + (v + o1 − k1)
ω) if k1 < v + o1 and k2 = o2,

q(k1+k2)/2 if k1 = v + o1 and k2 = o2.

(20)

In the reminder of this subsection, we explain that the RBS attack using the
hybrid approach at k2 = o2 becomes similar to the HighRank attack [7]. Since
a Rainbow central map has low rank matrices Mf1 , . . . ,Mfo1

(see the form (4)),
we can obtain a lower rank quadratic polynomial by finding a linear combination
of Mp1 , . . . ,Mpm . For o2 +1 matrices from Mp1 , . . . ,Mpm , the HighRank attack
recovers such a quadratic polynomial by finding a linear combination of these
whose kernel subspace is of dimension one. On the other hand, the RBS attack
using the hybrid approach at k2 = o2 fixes o2 values λv+o1+1, . . . , λv+o1+o2 for
obtaining a linear combination

Mp1
+

o2∑
j=1

λv+o1+jMpo1+j

of o2 + 1 matrices Mp1
,Mpo1+1

, . . . ,Mpo1+o2
and solves a system of linear equa-

tions (8) in v + o1 − k1 variables. Consequently, the attack has a lower rank
quadratic polynomial, and is similar to the HighRank attack.
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Remark 4. By our experiments using the F4 algorithm [15] in Section 4, we see
that the Gröbner basis of the ideal generated by an RBS dominant system is
computed within the introduced indicator Dbgd and its solution can be obtained.
Although our experiments were performed by using the F4 algorithm, this fact
is independent of such Gröbner basis algorithms. More investigation on whether
Dbgd is an upper bound for the solving degree of an algorithm for finding a
solution, such as Wiedemann XL algorithm in the previous estimation [13], is
needed.

6 Conclusion

In this paper, we introduced the indicator Dbgd for estimating the complex-
ity of Gröbner basis algorithms with bi-graded polynomial systems. Since the
Rainbow-Band-Separation (RBS) attack recovers a secret key of Rainbow by
solving a certain bi-graded polynomial system, we are able to utilize Dbgd to
estimate the complexity of this attack.

According to our experiments using F4 on scaled down Rainbow parameter
sets in NIST PQC 2nd round, the indicator Dbgd tightly approximates its solving
degree than the degree of regularity Dreg , which has been used previously. Then
the relation Dbgd ≤ Dreg holds always. Furthermore, the RBS attack can reduce
the bi-graded polynomial system to a linear system by using the hybrid approach
with a special setting. Then this attack becomes similar to the HighRank attack.
Consequently, we can obtain a new complexity estimation of the RBS attack.

Although the RBS attack is not enough to threaten the security of Rainbow,
we were able to understand the security of Rainbow against the RBS attack
using F4. However, it is not clear whether an algorithm for finding a solution
of the RBS dominant system, such as Wiedemann XL algorithm, can terminate
within our indicator Dbgd , future investigation is needed.

The two-variable power series used for deducing the indicator Dbgd is avail-
able widely and can be extended more generally. Therefore, as future works, we
need to investigate its influence on the security of several other schemes.
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