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Abstract. SKINNY is a lightweight tweakable block cipher which re-
ceived a great deal of cryptanalytic attention following its elegant struc-
ture and efficiency. Inspired by the SKINNY competitions, multiple at-
tacks on it were reported in different settings (e.g. single vs. related-
tweakey) using different techniques (impossible differentials, meet-in-the-
middle, etc.). In this paper we revisit some of these attacks, identify issues
with several of them, and offer a series of improved attacks which were
experimentally verified. Our best attack can attack up to 18 rounds using
260 chosen ciphertexts data, 2116 time, and 2112 memory.

1 Introduction

Since lightweight cryptography gained academic interest in the early 2000’s,
many different block ciphers have been proposed. In parallel, the cryptographic
community has slowly reached the understanding that “just” block ciphers are
not always suitable or offer somewhat inferior solution, e.g., in the context of
authenticated encryption. Hence, solutions such as tweakable block ciphers were
introduced [9]. Obviously, with the need for lightweight cryptography, the need
for lightweight tweakable block ciphers grew. SKINNY [4] is a lightweight tweak-
able block cipher using the tweakey framework [7]. SKINNY also lies in the basis
of three of the submissions to the lightweight cryptography competition held by
NIST (US National Institute of Standards and Technology), namely ForkAE [1],
Romulus [6], and Skinny-AEAD [5].

This paper contains two main contributions: The paper first looks at extend-
ing truncated differential distinguishers of SKINNY by looking at the bias of
the differences. Namely, we show that one can extend the probability 1 6-round
truncated differential used before in [14] into a longer truncated differential.
However, the new truncated differential has a lower probability, and instead of
predicting the difference in some specific nibble, we predict its bias from random
(in our case, the bias from 1/16). We show that this bias can be observed after
7-, 8-, and even 9-rounds of SKINNY, where some nibbles are biased towards
zero. This results in attacks on up to 15-round SKINNY-64-128 in time 2104

and data 233.
Our second contribution is to revisit previous impossible differential attacks

against SKINNY. We show that some of these attacks had subtle flaws in them,
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which invalidate the attack. We then set to fix the attacks, which in turn re-
duce their number of rounds and increases their time and data complexity. The
resulting attack is against 18-round SKINNY-64-128 in time 2116 and data 260

chosen plaintexts.

1.1 Related work

Besides being an interesting target of its own accord, the designers of SKINNY
organized several cryptanalysis competitions to further inspire its analysis. This
effort led to several papers focusing on the cryptanalysis of SKINNY.

Single Tweakey analysis For the case of single-tweakey model, a series of im-
possible differential attacks (against 18-round SKINNY-n-n, 20-round SKINNY-
n-2n and 22-round SKINNY-n-3n) based on an 11-round impossible differential
distinguisher is presented in [14]. As we later show in Section 5, these attacks
contain some flaw that increases their complexity and reduces the number of af-
fected rounds. An additional impossible differential attack in the single-tweakey
setting is presented against 17-round SKINNY-n-n and 19-round SKINNY-n-
2n in [16]. In addition to this, [12] presents zero-correlation linear attacks against
14-round SKINNY-64-64 and 18-round SKINNY-64-128 in the single-tweakey
model.

Related Tweakey analysis An impossible differential attack against 19-round
SKINNY-n-n, 23-round SKINNY-n-2n and 27-round SKINNY-n-3n in the
related-tweakey model is presented in [10]. In addition, this paper presents sev-
eral rectangle attacks against 27-round SKINNY-n-3n in the related-tweakey
model. Improved impossible differential attacks against these variants in the
related-tweakey model are presented in [12]. Zero-correlation attacks in the
related-tweakey settings are presented against 20-round SKINNY-64-64 and
23-round SKINNY-64-192 in [3].

Another impossible differential attack in the related-tweakey settings is de-
scribed in [2] targeting 21-rounds of SKINNY-64-128 . Furthermore, this attack
is extended to 22-round and 23-round SKINNY-64-128 in the related-tweakey
model. These results use the assumption that certain tweakey bits are public.
Another related-tweak impossible differential attack is presented in [13]: an 18-
round SKINNY-64-64 in the related-tweakey model, which can be transformed
to an attack against 18-round SKINNY-64-128 in the related-tweakey model,
with 96-bit secret key and 32-bit tweak.

A new automatic search tool for truncated differential characteristics using
Mixed Integer Linear Programming is presented in [11]. This paper presents
8-round truncated differential characteristics with bias 2−8, 9-round truncated
differential characteristics with bias 2−20 and 10-round truncated differential
characteristics with bias 2−40.

Table 1 summarizes all previously published attacks against SKINNY-64-64
and SKINNY-64-128.
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Complexity
Key (bits) Attack Rounds Time Data Memory Source

64 Zero-correlation 14 262 262.58 264 [12]
64 Impossible differential 17 261.8 259.5 249.6 [16]

64 Impossible differential† 18 257.1 247.52 258.52 [14]
128 Zero-correlation 18 2126 262.68 264 [12]

128 Impossible differential 18 2116 260 2112 Sec 5.2
128 Impossible differential 19 2119.8 262 2110 [16]

128 Impossible differential† 20 2121.08 247.69 274.69 [14]
†— As we show in Sect. 5, the attack is flawed.

Table 1. Complexity of Single-tweakey Attacks Against SKINNY-64

1.2 Organization

This paper is organized as follows: In Section 2 we briefly reiterate the specifi-
cation of SKINNY. After that the proposed distinguishers are described, dis-
cussing both the construction of the differential distinguisher (Section 3) and
the extension to biased differential distinguishers (Section 4). In Section 4.4 we
use the previously described distinguishers to construct key recovery attacks.
Section 5, contains a discussion of a previous impossible differential analysis
of SKINNY, which is fixed in Section 5.2, and improved upon in Section 5.3.
Finally, Section 6 summarizes this paper.

2 Specification of SKINNY

SKINNY is a family of lightweight tweakable block ciphers using a substitution-
permutation network (SPN) structure. The variants of SKINNY are denoted by
SKINNY-n-t, where n represents the block size (n ∈ {64, 128}) and t represents
the tweakey size (t ∈ {n, 2n, 3n}). Namely, the six variants of SKINNY are
SKINNY-64-64, SKINNY-64-128, SKINNY-64-192, SKINNY-128-128, SKINNY-
128-256, and SKINNY-128-384 with 32, 36, 40, 40, 48 and 56 rounds, respec-
tively. Both the 64-bit and 128-bit internal states are represented as an array of
4× 4 cells. The first row contains nibbles 0 to 3 (where 0 is the leftmost nibble,
3 is the rightmost nibble), the second row contains nibbles 4 to 7, etc. The cell
is a nibble in case of 64-bit version and a byte in case of 128-bit version. There
are 5 operations in each round (depicted in Figure 1):

1. SubCells (SC): The non-linear layer applies an `-bit S-box on each cell, where
` ∈ {4, 8}.

2. AddConstants (AC): This step XOR’s three cells of round constants to the
most significant three cells of the internal state.

3. AddRoundTweakey (ART): In this step, the tweakey bits are XORed to the
first two lines of the internal state.
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SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function.

4. ShiftRows (SR): The second, third, and fourth rows of the internal state are
right-rotated by 1 cell, 2 cells, and 3 cells, respectively.

5. MixColumns (MC): Each column of the internal state is multiplied by the
following binary matrix:

M =


1 0 1 0
1 0 0 0
0 1 1 0
1 0 1 0

 (1)

We omit the tweakey schedule as this is not used in our attacks, and refer the
interested reader to [4].

3 Differential Distinguisher

The attacks in this paper are built using extensions of the 6-round truncated
differential characteristic used in [14]. The characteristic is depicted in Figure 2.
The colored nibbles depict non-zero differences in the differential characteristic,
while the black nibbles signify unknown differences. The distinguisher starts with
a single active nibble, nibble 12, which after six rounds leads to four nibbles: 4, 7,
9, and 15, that necessarily have a non-zero difference. The distinguisher can be
rotated row-wise, e.g., if we take nibble 13 to be active, after six rounds nibbles:
4, 5, 10, 12, are non-zero, etc.

The six-round characteristic can be extended by one, two, or three rounds
by the use of structures at the beginning of the characteristic (see Figure 3).
This technique can also be used in the distinguishers discussed in Section 4.
Extending by one round does not incur any cost with respect to the data and
time complexity since the SC layer is before the key addition. The two and three
round extension respectively increase the data complexity by 28 and 220 with
respect to the non extended distinguisher. The time complexity is increased by
24 and 220 due to the added key guessing needed.

3.1 Key recovery attack

The first attack that we look at is a 10-round attack using the basic 6-round
distinguisher. As can be seen in Figure 2: if we have an input difference with
one active nibble, i.e. nibble 12, the output difference after 6 rounds in nibbles
4, 7, 9, and 15 are necessarily non-zero. This distinguisher can be transformed
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AK SR MC
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AK SR MC
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Fig. 2. The basic six round differential. White cells are zero differences, colored cells
are non-zero differences and black cells have unknown differences.
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SC
AK SR MC

SC
AK SR MC

SC
AK SR MC

Fig. 3. Extending the characteristics by one, two, or three rounds. Before the main
differential distinguisher (Figure 2).

into an impossible differential attack. We can filter out wrong keys by partially
decrypting the ciphertext, such that we recover the difference in one of these
(necessarily non-zero) nibbles, and discard the key if we find a pair for which
the difference in one of these nibbles is 0. On average we need to test 24 pairs
to discard a key. Nevertheless, to filter out all but the correct key, with high
probability, we need more data. The probability that a wrong key passes the
filter is 1−2−4, thus the probability that a wrong key passes x filters is (1−2−4)x.
Given 2k candidate keys, we get the following equation:

(1− 2−4)x = 2−k (2)

Giving,

x =
k log(2)

log(1− 2−4)
. (3)

For k = 128 we get: x ≈ 1374 ≈ 210.4, which is the maximum amount of data
needed to mount this attack. Note that this is an upper bound on the amount
of data needed. If the number of possible keys is smaller the amount of data can
also be smaller, but to simplify the analysis we chose to keep the amount of data
needed constant as it does not affect the time complexities of the attacks.

We denote a difference in the i-th nibble by ∆i. Using this 6-round distin-
guisher ∆12 → ∆15 we construct a 10-round attack with four rounds of key
recovery, for which we need to guess 6 nibbles (=6 · 4 bits) of key material. This
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results in an attack which uses 26·4+4 = 228 4-round decryptions and

24 · log(2)

log(1− 2−4)
≈ 258 ≈ 28

data, and 28 memory to store the data. Analogous to this we can construct
the other attacks using the 6-round distinguisher. Note that in this instance we
computed the exact amount of data needed for the attack to succeed, in the
summary given in Table 6 we took the maximum amount of data for the attacks
of this form, due to the small difference in complexity.

4 A Biased Differential Distinguisher

The attack described in Section 4.4 is based on the observation that after seven
rounds, in some nibbles of the state, the probability that the nibble difference
is 0 is larger or smaller than 2−4, i.e., it is biased with respect to the random
case. We first show how to efficiently compute the bias of a difference in a state
nibble after r rounds. Then, we list the computed biases after seven and eight
rounds in Table 2 and Table 3, respectively. Afterwards, we show the results of
our experiments that confirm the existence of the bias in the output difference. It
is worth noting that in many cases, the observed bias is higher than expected. In
other words, the analysis offers evaluation of explainable attacks (and suggests
a “worst-case” analysis3). Note that although the results discussed here are for
the 64-bit version of SKINNY they can easily be extended to SKINNY-128. We
expect that the biases of SKINNY-128-128 are squared, i.e., they are expected
to exist, but their validation would be infeasible.

4.1 Computing Biases of Differences in Nibbles

To compute the biases in the nibbles after one round we need to compute the
biases after each step of SKINNY (AC, ART, MC, SC, SR). The differences
are unaffected by the tweakey addition (ART) or the add constant (AC), thus
we can ignore these step. The SR operation permutes the nibbles in the state.
The other two operations SC and MC change the biases in a more elaborate
way and are discussed below. Note that as we do not take the key schedule in
consideration we assume independence between the rounds of the cipher.

The bias towards each difference value in a nibble is stored in a vector v,
where v[∆] contains the bias for the output difference ∆. I.e., v contains 16
different biases, one for each possible difference in the nibble. The state of a
cipher is a vector of bias vectors denoted by W , where W [i] denotes the bias
vector for state nibble i, with in this case 0 ≤ i < 16. In other words, W [i][j]
contains the bias of the i-th nibble of the state with respect to the difference j.

3 One can argue that the only way to verify the full attacks is to run then in practice.
However, the running time of most of the attacks is far from being feasible.
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The SC layer applies a non-linear S-box to each nibble in the state. We
can compute the biases after the SC layer by using the Difference Distribution
Table (DDT) of SKINNY’s S-box. Recall that the j-th row of the DDT contains
the probability distribution of the output differences given an input difference
with value j. We denote the j-th row of the DDT as DDT[j]. The equation for
computing the biases for a nibble after the SC layer is given in Equation 4.

W ′[i] =

j<16∑
j=0

W [i][j] · DDT[i]

16
(4)

To compute the bias after the MC layer we multiply each column of the state
with the matrix M (Equation 1) where we define the dot product used in the
matrix multiplication between two bias vectors v, w as:

w′[i] =

j<16∑
j=0

w[j] · v[j ⊕ i] (5)

Obviously, there is a subtle underlying assumption that the differences in dif-
ferent nibbles are independent of each other for the calculation to be accurate
(this actually echoes the Markov cipher assumption [8]). As our verification ex-
periments show, this assumption does not always hold, but luckily in our case,
on our favor.

We calculated the biases for 7 and 8 rounds of SKINNY and put the results
in Table 2 and Table 3. From Table 3 we can see that after 8 rounds of SKINNY
we have a bias of ≈ 2−19.5 when inserting a difference of A into nibble C.

One interesting observation, although the effect on the attack is small, is that
for some entries the choice of the input difference has an influence on the bias.
In some cases this difference is quite significant, but for the biases that we use
in the attack the difference is too small to be of any significance. Nevertheless,
in other cases, it can be useful to look at different input differences when doing
this analysis. To verify the results we ran some experiments, the results of these
experiments can be found in Table 4.

We note that the experimental verification suggests that the biases exists,
and in some cases it appears the the real bias is larger than we expect. A probable
cause for this phenomenon is dependencies between rounds.

4.2 Experimental Verification

We have experimentally verified the computed biases. As listed in Table 4, we can
see that in most of the cases, the observed bias either confirms the calculation,
or is significantly higher. As our calculation assumes independence it is very
likely that the higher biases are the result of dependencies between rounds. The
experiments were done using 240 samples under a single key. Hence, reported
biases of less than 2−19, are expected to take place at random. We mark in Table 4
the entries which were verified beyond the random case.
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Nibble Input nibble difference value
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 -26.7 -27.1 -27.4 -27.2 -27.2 -27.2 -27.4 -27.0 -27.0 -27.0 -26.7 -26.7 -26.7 -27.4 -27.2
1 -61.3 -63.9 -66.1 -64.0 -64.5 -64.2 -66.3 -62.4 -62.4 -63.0 -60.9 -61.4 -61.4 -66.2 -64.6
2 -41.0 -42.1 -42.9 -42.1 -42.2 -42.1 -43.0 -41.6 -41.6 -41.5 -40.8 -41.1 -41.1 -42.9 -42.3
3 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.5 -19.5 -19.6 -19.6 -19.6 -19.6
4 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9
5 -25.4 -26.4 -27.3 -26.5 -26.7 -26.6 -27.4 -25.9 -25.9 -26.1 -25.2 -25.5 -25.5 -27.3 -26.7
6 -29.4 -30.4 -31.2 -30.4 -30.6 -30.4 -31.3 -29.9 -29.9 -29.9 -29.2 -29.4 -29.4 -31.2 -30.6
7 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9
8 -11.7 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.7 -11.7 -11.7 -11.7 -11.8 -11.8
9 -14.5 -15.1 -15.6 -15.2 -15.3 -15.3 -15.7 -14.7 -14.7 -15.0 -14.5 -14.6 -14.6 -15.6 -15.3
10 -15.1 -15.5 -15.7 -15.5 -15.6 -15.5 -15.7 -15.3 -15.3 -15.4 -15.2 -15.2 -15.2 -15.7 -15.6
11 -21.9 -22.7 -23.4 -22.7 -22.9 -22.8 -23.5 -22.2 -22.2 -22.4 -21.7 -21.9 -21.9 -23.4 -22.9
12 -15.6 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.7 -15.6 -15.5 -15.6 -15.6 -15.7 -15.7
13 -35.9 -37.5 -38.9 -37.6 -38.0 -37.8 -39.0 -36.5 -36.5 -37.1 -35.7 -36.0 -36.0 -38.9 -38.1
14 -37.1 -38.2 -39.0 -38.2 -38.3 -38.2 -39.1 -37.7 -37.7 -37.6 -36.9 -37.2 -37.2 -39.0 -38.4
15 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 -11.8

Table 2. The absolute bias (log2) with respect to zero of each output nibble after 7
full rounds of SKINNY starting with only a difference in nibble 12. The bold values in
the table are verified experimentally, while for the underlined values we found higher
biases that could be verified experimentally.

Nibble Input nibble difference value
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 -77.4 -79.9 -81.8 -80.1 -80.5 -80.3 -82.0 -78.7 -78.7 -79.2 -77.2 -77.7 -77.7 -81.9 -80.6
1 -120 -124 -128 -124 -125 -125 -128 -122 -122 -122 -119 -120 -120 -128 -125
2 -64.3 -65.4 -66.4 -65.5 -65.5 -65.4 -66.4 -64.9 -64.9 -64.8 -64.1 -64.3 -64.3 -66.4 -65.6
3 -49.5 -50.2 -50.8 -50.2 -50.3 -50.3 -50.8 -49.8 -49.8 -49.9 -49.3 -49.5 -49.5 -50.8 -50.4
4 -26.7 -27.1 -27.4 -27.2 -27.2 -27.2 -27.4 -27.0 -27.0 -27.0 -26.7 -26.7 -26.7 -27.4 -27.2
5 -61.3 -63.9 -66.1 -64.0 -64.5 -64.2 -66.3 -62.4 -62.4 -63.0 -60.9 -61.4 -61.4 -66.2 -64.6
6 -41.0 -42.1 -42.9 -42.1 -42.2 -42.1 -43.0 -41.6 -41.6 -41.5 -40.8 -41.1 -41.1 -42.9 -42.3
7 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.6 -19.5 -19.5 -19.6 -19.6 -19.6 -19.6
8 -22.9 -21.3 -23.5 -23.3 -23.4 -23.3 -23.5 -23.2 -23.2 -23.2 -22.9 -23.0 -23.0 -23.5 -23.4
9 -29.7 -30.5 -31.2 -30.5 -30.7 -30.6 -31.3 -30.0 -30.0 -30.2 -29.5 -29.7 -29.7 -31.2 -30.7
10 -36.9 -38.1 -39.0 -38.2 -38.4 -38.3 -39.1 -37.5 -37.5 -37.7 -36.8 -37.0 -37.0 -39.0 -38.4
11 -43.8 -45.4 -46.7 -45.4 -45.8 -45.6 -46.9 -44.5 -44.5 -44.8 -43.5 -43.9 -43.9 -46.8 -45.8
12 -41.7 -42.5 -43.0 -42.6 -42.6 -42.6 -43.0 -42.2 -42.2 -42.3 -41.7 -41.8 -41.8 -43.0 -42.7
13 -83.0 -86.5 -89.4 -86.6 -87.3 -86.9 -89.7 -84.5 -84.5 -85.2 -82.5 -83.2 -83.2 -89.5 -87.5
14 -52.6 -53.7 -54.6 -53.7 -53.9 -53.8 -54.7 -53.2 -53.2 -53.1 -52.4 -52.7 -52.7 -54.6 -53.9
15 -34.0 -34.6 -35.2 -34.7 -34.8 -34.8 -35.2 -34.2 -34.2 -34.5 -33.9 -34.0 -34.0 -35.2 -34.8

Table 3. The absolute bias (log2) with respect to zero of each output nibble after 8
full rounds of SKINNY starting with only a difference in nibble 12. The bold values in
the table are verified experimentally, while for the underlined values we found higher
biases that could be verified experimentally.
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Nibble Bias after
7 rounds 8 rounds

Experiment Theory Experiment Theory

0 -16.986 -26.7 -22.067 -75.4
1 -19.610 -61.3 -23.053 -120
2 -20.364 -41.0 -21.580 -64.3
3 -15.505 -19.6 -22.734 -49.5
4 -7.535 -7.9 -18.696 -26.7
5 -11.960 -25.4 -20.470 -61.3
6 -15.790 -29.4 -23.493 -41.0
7 -7.580 -7.9 -15.699 -19.6
8 -9.884 -11.7 -17.772 -22.9
9 -10.836 -14.5 -19.612 -29.7
10 -11.756 -15.5 -20.473 -36.9
11 -14.620 -21.9 -20.051 -43.8
12 -10.446 -15.6 -19.454 -41.7
13 -19.297 -35.9 -21.876 -83.0
14 -18.006 -37.1 -21.753 -52.6
15 -11.382 -11.8 -24.723 -34.0

Table 4. The absolute bias (log2) with respect to zero for each output nibble after 7
and 8 rounds. The biases are computed using 240 samples. The statistical significant
results are marked in bold.

4.3 Decreasing the time and data complexity

To distinguish the permutation from random using the bias in the difference, we
need to verify the presence of the bias. In this section we discuss the number of
samples we need to verify the bias. The cost of verifying the bias directly affects
the time and data complexity of the attacks.

Lemma 1 (Number of samples). Given a differential characteristic with a
bias b and block size n we need 2` samples such that the biased distribution is
u standard deviations away from the distribution of differences for a random
permutation. Where:

` ≥ 2b− n− log(1− 2−n) + 2 · log(u)

Proof. The number of output differences observed after N = 2` samples is
binomially distributed with p1 = 2−n in the random permutation case and
p2 = 2−n + 2−b in the construction case. Due to the high number of samples we
are working with we can assume the distributions to be normal. The two dis-
tributions are distinguishable with a non-negligible probability when the means
are at least u standard deviations apart from each other. Thus we look at the
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case where:

µ1 + u · sd1 ≤ µ2

N · p1 + u ·
√
N · p1 · (1− p1) ≤ N · p2

u2 · 2−` · 2−n(1− 2−n) ≤ 2−2b

` ≥ 2b− n− log(1− 2−n) + 2 · log(u)

Following Lemma 1, we obtain that ` ≥ 2b + 3.450, for the case that the
number of guessed keys, k′ = 128, and the blocksize n = 4.

` ≥ 2b− n− log(1− 2−n) + 2 · log(erf(
k′√

2
))

` ≥ 2b+ 3.451

4.4 Key Recovery Attacks

Rounds Nibble Position
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
3 3 3 3 3 5 5 5 5 3 3 3 3 3 3 3 3
4 6 6 6 6 11 10 11 11 7 8 8 8 6 6 6 6
5 11 11 11 12 20 19 21 22 15 16 16 14 12 11 12 12
6 20 20 21 23 29 29 30 31 26 26 26 22 23 20 22 22
7 29 29 30 31 32 32 32 32 32 32 32 30 31 29 30 30
8 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

Table 5. For each nibble position the number of key nibbles that have to be guessed
to partially decrypt the nibble for the given number of rounds of SKINNY-64-128 is
given in the table.

In this section we look at several key recovery attacks that can be mounted
using the biases in the difference. The attacks are rather straight forward, thus
we only discuss in detail some of the attacks and give the complexities for the
other attacks in Table 6.

Note that for the attacks in this section we use the theoretical biases (Table 2
and Table 3). As is shown in Table 4, the real bias of the distinguishers is
significantly higher. Most probably this difference is caused by dependencies
between rounds that were not accounted for. In comparison, given that the 8-
round distinguisher has an observed bias better by a factor of 16, we expect an
attack better by a factor of 256 (data, time, and memory complexities).
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Next we construct a 12-round attack using the 7-round distinguisher by
prepending one round and appending 4 rounds of key recovery. As can be seen in
Table 2 we have four sensible choices for the distinguisher: ∆12 → ∆4,∆12 → ∆7,
∆12 → ∆8, and ∆12 → ∆15, with biases respectively: 2−7.9, 2−7.9, 2−11.7, 2−11.8.
Recall that as is shown in Lemma 1 to be able to distinguish a bias of b we need
at most 2−2·b+3.451 pairs (the exact value depends on the number of candidate
keys that need to be filtered and can be computed using Lemma 1). To decrease
the number of pairs needed and to optimize the overall time complexity of the
key recovery we use the 7-round distinguisher ∆12 → ∆15. This means that,
since we have a set of 224 possible keys, for every key we need to evaluate ap-
proximately 22·11.8−4+0.028+2·log(5.3) = 224.44 plaintext pairs for each of the 224

possible keys. time. This adds up to a time complexity of 224.44+24 = 248.44

time, 224.44 data complexity and 224.44 memory to store the data. We note that
due to the SC layer being before the key addition we do not need to guess the
first round subkey since we can choose the pairs such that they have the right
difference.

Rounds
Distinguisher 10 11 12 13 14 15

6-round 228.00(211.00) 248.00(211.00) 284.00(211.00) 2120.0(211.00) - -
7-round 235.12(223.12) 248.43(224.43) 273.55(225.55) 2114.49(226.49) - -
8-round 246.09(238.09) 259.75(239.75) 274.90(246.90) 2108.10(248.10) - -

1 + 6-round 216.00(211.00) 228.00(211.00) 248.00(211.00) 284.00(211.00) 2120.0(211.00) -
1 + 7-round - 235.12(223.12) 248.43(224.43) 273.55(225.55) 2114.49(226.49) -
1 + 8-round - 246.09(238.09) 259.75(239.75) 274.90(246.90) 2108.10(248.10) -

2 + 6-round 212.00(219.00) 220.00(219.00) 232.00(219.00) 252.00(219.00) 288.00(219.00) 2124.0(219.00)
2 + 7-round - 234.49(230.49) 239.12(231.12) 252.43(232.43) 277.55(233.55) 2118.49(234.49)
2 + 8-round - - 250.09(246.09) 263.75(247.75) 278.90(254.90) 2112.10(256.10)

3 + 6-round - 228.00(235.00) 236.00(235.00) 248.00(235.00) 268.00(235.00) 2104.0(235.00)
3 + 7-round - - 255.12(247.12) 268.43(248.43) 293.55(249.55) -
3 + 8-round - - - - - -

Table 6. Summary of the time (data/memory) complexities for key recovery attacks
on Skinny using the different differential distinguishers described in this paper.

5 Revisiting Impossible Differential Attacks on
Single-Tweak SKINNY

An impossible differential attack against reduced-round SKINNY in the single-
tweakey model is proposed in [14]. The attack uses an 11-round impossible dif-
ferential, i.e., a single nibble difference in nibble 12 cannot lead to a difference
only in nibble 8 after 11 rounds.
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5.1 Problems with the Attack of [14]

Given the 11-round impossible differential, a standard impossible differential
attack is applied — several structures of plaintexts are taken, such that in each
structure there are many pairs which may obtain the input difference needed for
the impossible differential. Then, in each structure, all the pairs that may lead
to the impossible output difference are located, and each pair is analyzed for the
keys it suggests. These keys are of course wrong, and thus discarded.

The attack relies heavily on two parts: first, using a series of elaborate and
elegant data structures that allow easy and efficient identification of the proposed
key from a given pair, and, that given a pair, it disqualifies a fraction 2−72 of the
2116 subkeys which are recovered by the attack. Unfortunately,4 the true ratio
is 2−84 as can be seen in Figure 4 in Appendix A: the probability that a pair of
plaintexts chosen from the structure reaches the input difference is 2−24, whereas
the probability that the corresponding ciphertexts reach the output difference is
2−60.

The result of this issue is that the attack requires more data (and thus time)
to succeed — namely, about 212 times the reported time and data (which are 247.5

chosen plaintexts for 18-round SKINNY-64-64 and 262.7 chosen plaintexts for
20-round SKINNY-64-128). Hence, the corrected attacks either require more
data than the entire codebook or take more time than exhaustive search (or
both). In Section 5.2 we propose a new attack that solves the aforementioned
problems.

5.2 Fixing the Impossible Differential Attack

One can fix the attacks by reducing the number of attacked rounds. For exam-
ple, in the case of SKINNY-64-128, attacking 17-round reduced version (which
corresponds to the first 17 rounds of the original attack). Taking 2m structures
of 228 chosen plaintexts, we expect from each structure 255 pairs, out of which
255·2−36 = 219 obtain ciphertext difference that may lead to the output difference
of the impossible differential. Even a näıve implementation, of guessing the 60
involved subkey bits (40 in the two rounds before the impossible differential and
20 after), allows checking which subkeys suggest impossible events. The proba-
bility of an analyzed (pair, subkey) pair to “succeed” (i.e., that a pair/subkey
combination results in a contradiction, thus discarding a wrong subkey guess) is

2−24 · 2−24 = 2−48. Hence, we require 260 · (1− 2−48)2
19+m � 260 (as each of the

260 subkeys has probability of (1 − 2−48) to be discarded by any of the 219+m

pairs). Picking m = 32.6 balances between the complexity of exhaustive search
over the remaining key candidates and the näıve partial encryption/decryption
of the pairs.

Specifically, 232.7 structures offer 219+32.7 = 251.7 pairs. Given these pairs,
a wrong subkey guess remains with probability (1 − 2−48)2

51.7

= (1/e)2
3.6

=
(1/e)12.1 = 2−17.5, which implies an exhaustive key search phase of 2128 ·2−17.5 =

4 We have contacted the authors of [14] who confirmed our claim.
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2110.5, together with 260 · 219+m · 2 = 2112.6 partial encryptions/decryptions for
each pair. Hence, a näıve implementation takes 2112.9 time and 260.7 chosen
plaintexts for attacking 17-round SKINNY-64-128.

We note that there is another small issue with the analysis of the attacks
reported in [14] related to the memory complexity. In impossible differential
attacks, one needs to store both the data and the list of “discarded” keys (some-
times one can optimize various parts of this complexity). Hence, the memory
complexity reported in [14] should also be considerably higher. Namely, it is
more than the data complexity (e.g., for the SKINNY-64-128 attack, it is 2116).
In comparison, our 17-round attack has memory complexity of 260.7.

5.3 Improving the Fixed Impossible Differential Attack

We note that one can optimize the time complexity of the impossible differential
attack using pre-computed tables as in [14]. The simplest (and fastest) one is
to construct a table that accepts the two ciphertexts restricted to the 28 bits
with difference, and stores the list of all key candidates that lead to an “output
difference” of the impossible differential, i.e., a difference only in nibble 8. As for
a given 20-bit subkey guessed at the end, the probability that the pair indeed
reaches such an output difference is 2−24, we expect for each pair about 220 ·
2−24 = 2−4 possible subkey suggestions. There are 256 pairs of two 28-bit values
(one from each ciphertext of the pair), and thus we need a hash table of 256

entries (of which only 252 non-empty entries), we can take a ciphertext pair and
immediately identify the subkey it proposes (if it proposes one).

This reduces the time complexity of the basic filtering by a factor of 220, which
allows for an improved time complexity, in exchange for some more data.5 For
m = 24 ·229, we obtain an attack with data complexity of 261.6 chosen plaintexts
and time complexity of 294.6 encryptions. The attack can process each structure
separately and just store the pre-computed table and a bitmap of the subkeys
which are discarded, thus, requiring 260 cells of memory.

The second optimization relies on changing the direction of the attack—
from ciphertext to plaintexts, which allows attacking 18-round variant (rather
than 17 rounds). We collect m = 212 structures of ciphertexts, each structure
with 248 ciphertexts (just before the SC operation of round 18 there are 264

possible values, but they are effectively transformed into 248 possible values
when applying the inverse MC operation, so the structures are defined by having
7 active nibbles at the output of round 16). Each such structure suggests 295

pairs, out of which 295 · 2−36 = 259 satisfy the 0 difference in 9 nibbles when
partially encrypting the obtained plaintexts till the first key addition. For each
of the 40-bit subkey involved in the plaintext side, there is a chance of 2−24 that
a pair is partially encrypted to the input difference of the impossible differential.
Similarly, such a pair has probability 2−44 to partially decrypt (with the 60-bit

5 The extra data is needed to reduce the number of partial keys moving to the ex-
haustive search phase of the attack, so that the impossible differential phase and the
exhaustive search phase are balanced.
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subkey involved) to the output difference of the impossible differential. Hence,
we take each of the 259 pairs of each a structure, and use two pre-computed
tables to see which subkeys the pair suggests. On average, we expect a pair to
discard (through the contradiction) a given subkey guess with probability 2−68.
This means that given m = 212.3 structures, the probability of any given key to
remain is (1 − 2−68)m·2

59 ≈ (1/e)4.3 = 2−12. Then, the exhaustive key search
part takes time which is 2128 · 2−12 = 2116.

We note that the list of proposed subkeys can be pre-computed: From the
plaintext side, we take all (228)2 pairs of plaintexts and all 240 subkeys and
compute for each pair of plaintexts which keys satisfy the “input difference”
(in time 296 and memory of 272). For the ciphertext side we can either use
a straightforward approach of testing all (248)2 pairs of inputs and all 260 bit
subkeys, and amortize the pre-computation cost (as is done in many works). The
second option is to follow the early abort technique. Namely, we take all (248)2

pairs of input, and by partially encrypting the 8 nibbles which are not involved
with the key through the last round, we obtain the output differences needed
by the other nibbles to “follow” the differential transitions in the other nibbles.
Then, by the standard approach that given an input difference and an output
difference one knows the (expected) one solution for the key, we obtain the exact
subkey of round 17 that the pair suggests. We then continue for the (pair, subkey
value) and try all 220 remaining subkeys to see what options indeed lead to the
output difference of the impossible differential. Hence, the pre-computation of
the second table takes time (248)2 · 220 = 2116 time (and 2112 memory).

To conclude, by using this technique, we can attack 18-round SKINNY-64-
128 with a data complexity of 260 chosen ciphertexts, a time complexity of 2116

partial encryptions, and using 2112 memory.

6 Conclusion

In this paper we analyzed reduced-round versions of the SKINNY-64-128. We
made several observations regarding the diffusion offered by 8-round SKINNY,
namely showing that even after eight rounds of SKINNY there is a measurable
bias in the output difference. This observation shows that 8 rounds of SKINNY
does not satisfy the strict avalanche criteria [15]. We then used the bias to offer
multiple attacks of which the results are summarized in Table 6.

Finally, we revisited several previous results, showing that [11]’s proposed
bias has a lower bias than expected (if at all). We showed that the impossible
differential attack of [14] contained a subtle, yet, devastating issue. We followed
by fixing the attack (in exchange for a reduced number of attacked rounds). The
best attack we could devise is on 18-round SKINNY-64-128 using 260 chosen
ciphertexts, with time of 2116 encryptions and 2112 memory.
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Appendices

A Impossible Differential
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Fig. 4. The impossible differential used in [14] and in our attacks and which nibbles
are needed to evaluate its “existence”.
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