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Abstract. We consider threshold ring signatures (introduced by Bres-
son et al. [BSS02]), where any t signers can sign a message while anonymiz-
ing themselves within a larger (size-n) group. The signature proves that
t members of the group signed, without revealing anything else about
their identities.
Our contributions in this paper are two-fold. First, we strengthen exist-
ing definitions of threshold ring signatures in a natural way; we demand
that a signer cannot be de-anonymized even by their fellow signers. This
is crucial, since in applications where a signer’s anonymity is impor-
tant, we do not want anonymity to be compromised by a single insider.
Our definitions demand non-interactive signing, which is important for
anonymity, since truly anonymous interaction is difficult or impossible
in many scenarios.
Second, we give the first rigorous construction of a threshold ring signa-
ture with size independent of n, the number of users in the larger group.
Instead, our signatures have size linear in t, the number of signers. This
is also a very important contribution; signers should not have to choose
between achieving their desired degree of anonymity (possibly very large
n) and their need for communication efficiency.

Keywords: Threshold ring signatures · Anonymity · Unique ring sig-
natures · Compact signatures

1 Introduction

It is often desirable for parties to anonymously sign on behalf of a group. A group
signature scheme [Cv91] enables this; the signature proves that a member of the
group signed, but does not reveal which one. However, the downside of group
signatures is that the group must be set up and maintained by a trusted group
manager.1 Threshold (group) signatures similarly allow any t of the parties in

1 List signatures [CSST06] are a related primitive. Like group signatures, list signa-
tures require a group manager to set up the keys and parameters. However, in a
list signature scheme, signers may only sign a certain amount of times before their
anonymity is revoked.



2 Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yakoubov

a group to sign on behalf of the group together. The signature proves that t
members of the group signed without revealing which ones. But, as in group
signatures, trusted setup is required for each group.

A ring signature scheme (introduced by Rivest et al. [RST01]) enables signing
on behalf of a group without the need for interactive or trusted setup. Instead,
everyone independently generates a key pair, and publishes their public key. The
signer chooses the group (or ring) to anonymize herself amongst at signing time,
and does so using that ring’s public keys. In this paper, we focus on threshold ring
signature schemes (introduced by Bresson et al. [BSS02]), which are a natural
extension of ring signature schemes. In a threshold ring signature scheme, any t
signers can sign a message together while anonymizing themselves within a larger
(size-n) group. Like a ring signature scheme, a threshold ring signature scheme
allows the signers to pick the larger group they want to anonymize themselves
amongst in an ad-hoc way at signing time.

There are two main contributions in this paper: a strengthening of threshold
ring signature definitions, and a new construction with more compact signatures.
Our new definition demands that a signer cannot be de-anonymized even by
their fellow signers. In applications where a signer’s anonymity is important,
this protects their anonymity from insiders.

Our construction has signatures of size linear in t, the number of signers. All
prior rigorous constructions have signatures with size dependent on n, the size of
the larger group. Compact signatures are important; signers should not have to
choose between achieving their desired degree of anonymity (possibly very large
n) and their need for communication efficiency.

1.1 Application: Whistleblowing

We can imagine a set of people within a large corporation wanting to blow the
whistle on some corrupt activity within that organization; however, they are
afraid to come forward publicly because of the repercussions they might face.
On the other hand, blowing the whistle anonymously may not be effective, since
it is important that the public believe that the message came from within the
organization, from a sufficient number of organization members (and that it thus
has credibility). Threshold ring signatures are the perfect solution. The whistle-
blowers form a size-t sub-group, and anonymize themselves within the entire
size-n organization. Anyone can then verify that t members of the organization
all blew the whistle on the corrupt activity.

Small signature sizes are important here, since often the size n of an organi-
zation is unreasonably large. In this application, it also becomes especially im-
portant that each individual whistleblower retain anonymity, even against their
fellow whistleblowers. Otherwise, in order to de-anonymize all of the whistle-
blowers, all the organization administration would have to do is get one of the
whistleblowers’ cooperation.
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1.2 Our Contributions

As we mentioned earlier, we make two contributions: we give a stronger definition
of threshold ring signatures, and a construction that meets those definitions while
achieving signatures with size O(t).

Stronger Definitions Our most significant definitional contribution is a strength-
ening of the anonymity property. We require that an adversary not be able to
tell the difference between signatures produced by two different subsets of sign-
ers of the same size t (within the same group of size n), as long as the two
subsets contain the same corrupt parties. All previous definitions of anonymity
[YLA+11, PBB12, OTYO18, HS20] do not allow the sets of signers to contain
any corrupt parties at all; this is a dealbreaker in many applications, where one
insider should not be able to bring down the entire group.

We use a strong syntax that fits well with our stronger notion of anonymity.
We require that signers be able to produce partial signatures locally, without
interacting with their fellow signers; the partial signatures should preserve the
signers’ anonymity, and should be combinable into a threshold signature by any
third party. Having such a non-interactive structure is crucial for preserving
anonymity against fellow signers; if signing were interactive, signers might learn
their peers’ identities via e.g. their IP addresses.

Construction with Succinct Signatures We build the first threshold ring signature
scheme with signatures of size O(t); all previous constructions have signatures
with size dependent on n. For groups of signers of size t significantly smaller
than the larger group of size n they wish to anonymize themselves amongst, this
is crucial.

Naively, to produce a threshold ring signature, each of the t signers could
produce a ring signature, and their threshold ring signature would simply be
a concatenation of these. The issue here is that a verifier would need to be
convinced that these ring signatures were produced by distinct signers. An im-
mediate solution to this would be a zero-knowledge proof that each signature
was generated using a different secret key; however, this proof would be large,
inefficient, and producing it would require interaction between the signers.

Instead, we base our threshold ring signature scheme on a primitive called a
unique ring signature scheme (URS), introduced by Franklin and Zhang [FZ12]2.
A unique ring signature scheme is a ring signature scheme which allows the
linking of two signatures produced by the same signer on the same message with
respect to the same ring. We can construct a threshold ring signature simply by
concatenating t unique ring signatures. A verifier can check that no two unique

2 A similar approach to building a threshold ring signature scheme was mentioned
by Yuen et al. [YLA+13] where they would instead use a traceable ring signature
scheme [FS06]; however, it was not formalized or proven. As far as we can tell, the
definition of security they use for a traceable ring signature scheme does not seem
to allow such a proof.
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ring signatures were produced by the same signer, and so is convinced that t of
the n users signed the message.

Any unique ring signature scheme (secure under our definitions, which are
slightly modified from those of Franklin and Zhang) can be used to construct a
threshold ring signature scheme in such a way. Existing unique ring signature
schemes [FZ13] require an OR-proof showing that the signer is within the ring.
This leads to a signature size that scales with the size of the ring. We are the
first to propose a URS with signatures of size independent of the ring size. We
present a new, intuitive unique ring signature scheme with signatures of size
O(1) which draws inspiration from the construction of Dodis et al. [DKNS04].
Unlike the work of Yuen et al., we leverage a random oracle, allowing us to
get smaller unique signatures. We additionally use an RSA accumulator [Bd94]3

and the generalized DDH assumption. These assumptions are more standard
than the Link-Decisional RSA assumption used in some traceable ring signature
constructions [TW05,ACST06].

At a high level, our unique ring signature scheme works as follows: each signer
in the ring hashes the message (together with the set of n public keys belonging
to the super-set of users), and raises it to the power of their secret signing key.
By the generalized DDH assumption, this does not reveal the signer’s identity.
Each signer then proves using non-interactive zero knowledge (NIZK) that they
used a signing key corresponding to one of the public keys belonging to the ring.4

It may seem that such a proof must be linear in the number n of public keys, but
we get around that by using an accumulator [Bd94] (a compact representation of
an arbitrarily large set that supports efficient proofs of membership) to represent
the set of public keys, like in the construction of Dodis et al. [DKNS04].

As required by our definitions, our construction is completely non-interactive;
each of the t signers produces a unique ring signature independently, and those
signatures are then simply concatenated to produce the threshold ring signature.
This concatenation can be done by any third party. An important consequence of
this is that the scheme is flexible, meaning that a signer can contribute a partial
signature at any point, resulting in a threshold signature with a threshold t that
is larger by 1.

3 We could instead use a bilinear map accumulator [CKS09]; however, the use of such
an accumulator would require an a-priori upper bound on the ring size.

4 Our use of NIZK proofs requires the presence of a common reference string (CRS). At
first glance, since a CRS is a form of setup, this might seem to make our construction
a group signature scheme instead of a ring signature scheme. However, there is a
qualitative difference between a CRS (which is a global and reusable trusted setup)
and a per-user trusted setup (in group signatures, parties’ secret keys need to be
distributed by a trusted party). In particular, once the CRS is generated in a trusted
way (perhaps using an MPC ceremony), the parties in our system can generate their
own keys independently.
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1.3 Fully Compact Threshold Ring Signatures

While our threshold ring signature scheme is the first scheme to give signatures
of size independent of the ring size n, the signature size does still depend linearly
on the threshold t. A natural question to ask is,

Is it possible to build a threshold ring signature scheme
with signatures of constant size?

The answer is that it is possible; any threshold ring signature scheme can be
altered to have constant-size signatures with the use of succinct non-interactive
arguments of knowledge (SNARKs). This can be done simply by allowing any
third party — or perhaps one of the signers — to take the produced signature
(whose size might depend on n or t) and replace it with a SNARK of a verifying
signature for the given ring. Since SNARK sizes do not depend on the state-
ment being proven or the witness for that statement, this yields a constant-size
signature.

While this transformation is optimal from an asymptotic point of view, the
non-black box use of public-key cryptography inside a SNARK would make this
construction prohibive in practice.5

1.4 Related Work

Work Signature Size Adversarial Keys?

Our work O(t) Yes
Bresson et al. [BSS02] O(n log n) No
Petzoldt et al. [PBB12] O(n) No

Liu et al. [YLA+13] O(t
√
n) No

Zhou et al. [ZZY+17] O(n) No
Chen et al. [CHGL18] O(n) No

Okamoto et al. [OTYO18] O(tn) No
Haque et al. [HS20] O(n) Yes

Haque et al. [HKSS20] O(t) No

Fig. 1: Threshold Ring Signature Constructions

In Figure 1 we list some known threshold ring signature constructions, their
signature sizes and whether they support adversarial key generation. All prior
constructions of threshold ring signatures have signatures whose size depends on
the number n of users in the ring R. This is not ideal, as the threshold t may
be much smaller than n.
5 Even the most basic public-key type operation, a scalar multiplication in an elliptic

curve, requires billions of gates [JLE17] when represented by a circuit. This needs
to be multiplied by a function of n for any existing threshold ring signature, or t
for our construction. While this is the state of the art, we cannot of course rule out
that more efficient constructions might emerge in the future, and this could be an
interesting venue for further research.
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Concurrent Work. Haque et al. [HKSS20], posted shortly after this paper, also
construct threshold ring signatures of size O(t). The advantage of their work
is that their construction does not require a common reference string (CRS),
which our construction uses for non-interactive zero knowledge (NIZK) proofs.
They get around the need for a CRS by using NIWI (non-interactive witness-
indistinguishable) proofs instead of NIZK proofs. However, the advantage of our
work is that we support adversarially generated public keys. In the scheme of
Haque et al., an adversary who is able to generate and register keys themself is
immediately able to break anonymity and unforgeability.6

Relying on honestly generated keys can be riskier than relying on an honestly
generated CRS. CRS generation occurs once, and therefore efficiency is not too
much of a concern: we can ensure security e.g. via secure multiparty computation
(which can be slow), by involving a large number of parties all of whom are
extremely unlikely to collude. However, taking such measures in the generation
of every party’s key pair, which can happen frequently, could be unreasonable.

1.5 Outline

In Section 2, we describe the tools and assumptions necessary for our construc-
tions, such as cryptographic accumulators and zero knowledge proofs. In Sec-
tion 3, we define ring and threshold ring signatures. In Section 4, we describe
our threshold ring signature construction.

2 Preliminaries

In this section, we introduce some primitives that we leverage in our construc-
tions. In Section 2.1, we describe cryptographic accumulators; in Section 2.2, we
describe non-interactive zero knowledge arguments of knowledge.

2.1 Accumulators

At a high level, a cryptographic accumulator [Bd94] is defined as a compact
representation of a set S = {x1, . . . , xn} that supports proofs of membership
in the underlying set. One natural example of a cryptographic accumulator is a
Merkle hash tree; the root of the tree is the accumulator value corresponding to
the set S of leaf elements, and the authenticating path of a leaf element is its
membership witness. However, the disadvantage of Merkle hash trees is that they
are inefficient to use within zero knowledge proofs. Instead, in Section 2.1, we

6 This is by design; in the proof of anonymity, the authors need to create simulated
NIWI proofs that are independent of the identities of the signers. They do this by
additionally allowing a witness to demonstrate a relationship between two keys in the
ring, where this relationship never holds between keys that are honestly generated. If
an adversary was able to register maliciously generated keys, she could register two
keys that do have this relationship, and use this to forge signatures with arbitrarily
high threhsolds, as long as those two corrupt keys are in the ring in question.
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describe the RSA accumulator [Bd94], which requires only arithmetic operations
and is thus more efficient to use within zero knowledge.

Baldimtsi et al. [BCY20] give a thorough guide to accumulators and all of
their various flavors. In this paper, we only need a limited subset of accumulator
functionality, and we present simplified definitions of accumulators accordingly
(pared down from Baldimtsi et al. and the work cited therein). In particular,
we do not address dynamic changes to the accumulated sets (that is, we only
consider static accumulators). We also split the algorithm that was called gen in
previous work into two: a setup algorithm, and an accumulate algorithm. This
allows us to include the parameters produced by gen that are independent of the
accumulated set in the public parameters of our threshold ring signature scheme.

Accumulator Syntax An accumulator parameterized by a domain D has the
following algorithms:

setup(1λ)→ pp:
An algorithm that, given the security parameter, sets up the global public
parameters for the accumulator system.

accumulate(pp,S)→ aS :
An algorithm that, given the global public parameters pp and a set S ⊆ D,
returns an accumulator aS representing the set S. In this paper, we require
this algorithm to be deterministic.

witcreate(pp,S, x)→ w:
An algorithm that, given the parameters pp, a set S ⊆ D and an element
x ∈ S, returns a membership witness w for the element x.

verify(pp, x, a, w)→ accept/reject:
An algorithm that, given the parameters pp, an element x, an accumulator
a and a witness w, checks whether w proves that x is in the underlying set
a.

Accumulator Security Definitions Of course, an accumulator must be cor-
rect (that is, verification using an honestly produced witness must return accept).
The important security property of an accumulator is collision freeness. Infor-
mally, an accumulator is collision-free if it is hard to fabricate a membership
witness w for a value x that is not in the accumulated set. More formally:

Definition 1 (Collision Freeness for Accumulators). Let λ ∈ N be the
security parameter, and let ACC = (setup, accumulate,witcreate, verify) be an ac-
cumulator scheme. Consider the following game between a probabilistic polynomial-
time adversary A and a challenger CH:
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GamecolfreeACC,A(1λ)

A CH
pp pp← setup(1λ)

S∗ ⊆ D, x∗ 6∈ S∗, w∗

a← accumulate(pp,S∗)
A wins if verify(pp, x∗, a, w∗) = accept

ACC is collision-free for the domain D of elements if for any sufficiently large
security parameter λ, for any probabilistic polynomial-time adversary A, there
exists a negligible function ν in the security parameter λ such that the probability
that A wins the game is less than ν(λ).

The RSA Accumulator The RSA accumulator, which was the original accu-
mulator introduced by Benaloh and de Mare [Bd94], is the one most suitable for
our needs. The domain D for the RSA accumulator is the set of prime integers.
We describe the RSA accumulator below.

setup(1λ):
1. Select two 1λ-bit safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′ and
q′ are also prime, and let m = pq.

2. Select a random integer g′ ← Z∗m.
3. Let g = (g′)2 mod m.
4. Return pp = (m, g).

accumulate(pp = (m, g),S):
Return a = g

∏
x∈S x mod m.

witcreate(pp = (m, g),S, x):

Return w = g
∏

y∈S,y 6=x y mod m.
verify(pp = (m, g), x, a, w):

If x is a prime and wx mod m = a, return accept. Otherwise, return reject.

The RSA accumulator is collision-free under the strong RSA assumption.

2.2 Non-Interactive Zero Knowledge Arguments of Knowledge
(NIZKAoK)

Non-interactive zero-knowledge (NIZK) proof and argument systems are a well
studied area and have been so for over 30 years [BFM88, FS87, FLS90]. Infor-
mally, a zero-knowledge proof of knowledge allows a prover to convince a verifier
that the prover knows a witness w for a statement φ such that (φ,w) satisfy some
relation R. The difference between a proof and an argument is in the soundness
requirement; a proof guarantees that even an all-powerful prover cannot break
soundness, while an argument only guarantees soundness against efficient (com-
putationally bounded) provers. Generally, for practical purposes, an argument
is enough.
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In this section we present the definition of a non-interactive zero knowl-
edge argument of knowledge (NIZKAoK), taken from the work of Groth and
Maller [GM17]. We also describe the concrete relation which we will need in
Section 4.2.

NIZKAoK Syntax A NIZKAoK scheme has the following algorithms, as de-
scribed by Groth and Maller [GM17]:

setup(1λ,R)→ (crs, td):
An algorithm that, given the security parameter, sets up the common refer-
ence string crs and the trapdoor td for the NIZKAoK system.

prove(crs, φ, w)→ π:
An algorithm that, given the common reference string crs for a relation R,
a statement φ and a witness w, returns a proof π that (φ,w) ∈ R.

verify(crs, φ, π)→ accept/reject:
An algorithm that, given the common reference string crs for a relation R,
a statement φ and a proof π, checks whether π proves the existence of a
witness w such that (φ,w) ∈ R.

simprove(crs, td, φ)→ π:
An algorithm that, given the common reference string crs for a relation R,
the trapdoor td and a statement φ, simulates a proof of the existence of a
witness w such that (φ,w) ∈ R.

NIZKAoK Security Definitions Of course, a NIZKAoK scheme must be cor-
rect (that is, verification using an honestly produced proof must return accept).
The important security properties of a NIZKAoK scheme are zero knowledge,
knowledge soundness, and simulation extractability, described below.

Definition 2 (Zero Knowledge for NIZKAoK). Informally, a NIZKAoK
scheme has zero knowledge if a proof does not leak any more information than
the truth of the statement.

More formally, let λ ∈ N be the security parameter, and let NIZKAoK =
(setup, prove, verify, simprove) be a NIZKAoK scheme. Consider the following
game between a probabilistic polynomial-time adversary A and a challenger CH:

GamezkNIZKAoK,A(1λ)

A CH
crs (crs, td)← setup(1λ)

b←R {0, 1}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query / Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

prove queries φ,w

if b = 0 : π ← prove(crs, φ, w)

if b = 1 : π ← simprove(crs, td, φ)
π

b′

A wins if b = b′
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NIZKAoK has zero knowledge if for any sufficiently large security parame-
ter λ, for any probabilistic polynomial-time adversary A, there exists a negligible
function ν in the security parameter λ such that the probability that A wins the
game is less than 1

2 + ν(λ).

Informally, knowledge soundness is the property that guarantees that it is
always possible to extract a valid witness from a proof that verifies. Simulation
extractability is a stronger version of knowledge soundness guaranteeing that it
is always possible to extract a valid witness from a proof that verifies even if the
adversary has access to a simulation oracle. This is a flavor of non-malleability;
an adversary should not even be able to modify a simulated proof in order to
forge a proof.

Definition 3 (Simulation Extractability for NIZKAoK). Informally, a
NIZKAoK scheme has simulation extractability if it is always possible to extract
a valid witness from a proof that verifies.

More formally, let λ ∈ N be the security parameter, and let NIZKAoK =
(setup, prove, verify, simprove) be a NIZKAoK scheme. Consider the following
game between a probabilistic polynomial-time adversary A and a challenger CH,
where transA denotes the adversary’s inputs and outputs, including its random-
ness7:

GameseNIZKAoK,A(1λ)

A CH
crs (crs, td)← setup(1λ), Qsim = ∅

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many

simulation queries φ π ← simprove(crs, td, φ)

π add π to Qsim

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ∗, π∗

w∗ ← extractA(crs, td, transA)

If all of the following checks pass, A wins:

(φ∗, w∗) 6∈ R
verify(crs, φ∗, π∗) = accept

(φ∗, π∗) 6∈ Qsim

NIZKAoK has simulation extractability if for any sufficiently large security
parameter λ, for any probabilistic polynomial-time adversary A, there exists an

7 In the standard simulation-extractability for NIZKs the extractor extracts the wit-
ness from the proof only. The definition of Groth and Maller which we use here
is more general and also captures non-black box extractions which is used e.g., in
SNARKS.
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extraction algorithm extractA and a negligible function ν in the security param-
eter λ such that the probability that A wins the game is less than ν(λ).

2.3 The Generalized Decisional Diffie-Hellman Problem

We leverage the Generalized Decisional Diffie-Hellman (Generalized DDH) Prob-
lem [BDZ03], described below.

Definition 4. The Generalized DDH Problem in group G asks that, given a
polynomial-length list L of tuples (u, v) of elements in a group G, an adversary
A determines whether there exists a fixed r such that for all (u, v) ∈ L u is a
random element of G and v = ur, or v and u are independent random elements
of G.

The generalized DDH problem is considered to be hard in group G if for all
efficient adversaries A, the probability that A solves a random instance of the
generalized DDH problem correctly is only negligibly greater than 1

2 . (We define
a random instance of the generalized DDH problem as an L contains independent
random elements with probability 1

2 , and elements v = ur for a random r and
independent random values u otherwise.)

3 (Threshold) Ring Signature Definitions

In this section, we recall the definitions of ring signatures and threshold ring
signatures (focusing on the latter).

3.1 Ring Signature Definitions

Ring signatures were originally defined by Rivest et al. [RST01] as a natural
extension of group signature schemes. Group signatures require some trusted
authority to act as a group manager, predefining groups of signers and dis-
tributing keys to members of those groups. These keys can then be used to
anonymously sign messages on behalf of the entire group. However, requiring a
trusted authority that distributes — and knows — signers’ keys can be a big
drawback. Ring signatures instead allow signers to generate their own key pairs,
and to form groups in an ad-hoc way.

Ring Signature Syntax A ring signature scheme is defined as a tuple of four
algorithms (setup, keygen, sign, verify):

setup(1λ)→ pp:
An algorithm that takes a security parameter λ and outputs a set of public
parameters pp. These public parameters pp include the security parameter
itself, and any global parameters which can be used within the other algo-
rithms.
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keygen(pp)→ (pk, sk):
An algorithm that takes the public parameters pp and outputs a key pair
(pk, sk).

sign(pp,msg, {pkj}j∈R, ski)→ σ:
An algorithm that takes the public parameters, a message msg ∈ {0, 1}∗ to
be signed, the set of public keys of the users within the ring {pkj}j∈R, and
the secret key ski of the signer i ∈ R (which must correspond to a public
key within the set of public keys {pkj}j∈R). Outputs a signature σ on the
message msg.

verify(pp,msg, {pki}i∈R, σ)→ accept/reject:
An algorithm that takes the public parameters, the message, the set of public
keys of the users within the ring, and a signature σ. Outputs accept or
reject, reflecting the validity of the signature σ on the message msg.

An important property of ring signatures is setup freeness, which requires
that signers’ keys be generated independently. (We note that most ring signature
schemes do have a setup algorithm that is run by a trusted authority. However,
this authority does not produce the secret keys for the signers; its only job is to
produce the public parameters such as moduli and generators used throughout
the scheme. The signers can then generate their keys independently using those
public parameters.)

Ring Signature Security Definitions Informally, a ring signature scheme
must satisfy the following properties [Liu19,BSS02,DKNS04]:

– Correctness requires that a correctly generated signature must verify.
– Unforgeability requires that an adversary should not be able to forge a sig-

nature on behalf of another user.
– Anonymity requires that a signature should completely hide the identity of

the signer, even if the adversary has access to a signing oracle.
– Unlinkability requires that no adversary should be able to determine whether

two signatures were produced by the same signer, even if the adversary has
access to a signing oracle.

Remark 1. Note that anonymity implies unlinkability, and vice versa; however,
when access to signing oracles is removed, this is no longer the case.

We omit the formal definitions of ring signatures from this paper, focusing
instead on threshold ring signatures.

3.2 Threshold Ring Signature Definitions

Threshold ring signatures are similar to ring signatures, but instead of allowing
any one signer to anonymize themselves among a set of signers, a threshold ring
signature scheme allows any t signers to anonymize themselves among a larger
set (or ring) of signers R. A verifier can then check that at least t signers in the
ring R signed the message. Note that a ring signature scheme can be viewed as
a threshold ring signature scheme with t = 1.
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Threshold Ring Signature Syntax A threshold ring signature scheme is
usually defined as a tuple of four algorithms (setup, keygen, sign, verify), where
sign is interactive and requires the secret keys of t of the signers. We instead
choose to define a threshold ring signature scheme as a tuple of five algorithms,
by adding combisign. We let sign be locally executed by each signer i (requiring
only that signer’s secret key ski), and produce partial signatures σi; combisign
can then be run by any third party to combine those partial signatures into a
threshold signature.

We describe the syntax of combisign below. Notice that it does not require
the secret keys of any of the signers.

combisign(pp, {σi}i∈S , t)→ σ:
An algorithm that takes partial signatures {σi}i∈S from t signers, and out-
puts a combined signature σ.

The syntax of setup, keygen, sign and verify remain unchanged from those of
a ring signature scheme, except that sign outputs partial signatures, and verify
takes the threshold t as input.

This syntax specification is very strong. In particular, it demands the follow-
ing desirable properties:

Setup Freeness:
Every signer can generate their own key pair. This is a feature of all ring
signature schemes.

Dynamic Choice of Ring Size n:
Different sets of signers can choose rings of different sizes.

Dynamic Choice of Threshold t:
Arbitrarily many signers’ partial signatures can be combined into a single
threshold signature; the signers don’t need to know t when they produce
their partial signature. Verification takes a threshold t, and checks that at
least that many signers have signed. The upside of this is what is called
flexibility [OTYO18], meaning that signers can contribute their partial sig-
natures after others have signed. Our syntax demands a weak notion of
flexibility where signers can contribute their signatures before combination
via combisign; if combisign is as simple as e.g. concatenation of the partial
signatures, the stronger notion of flexibility — where signers can contribute
even after combination — follows.

The downside of this flexibility is that the number of signers cannot be
hidden by a signature σ.

Non-Interactive Signing:
As per our syntax, parties generate partial signatures locally; those par-
tial signatures can be combined into a threshold signature by any third
party. Non-interactive signing is essential in ensuring the signers’ privacy
(even against their peers), since anonymous interactive signing would require
anonymous communication, which is often difficult to achieve in practice.
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Threshold Ring Signature Security Definitions We base our security def-
initions on Bresson et al. [BSS02] and Haque et al. [HS20]. (In particular, we
require security against an adversary who can generate and register public keys,
as required by Haque et al.) We strengthen the definition of anonymity to require
that signers remain anonymous even to their fellow signers.

Additionally, both of our security games are defined using partial signatures,
where a complete signature will be formed by combining the partial signatures
of all the signers. This allows for a simple statement of the games while still
demanding security against fellow members of the signing rings R. An adversary
wins the unforgeability game if he is able to forge a partial signature, and he wins
the anonymity game if he is able to distinguish between two partial signatures.

Definition 5 (TRS). A threshold ring signature scheme is secure if it satisfies
correctness (Definition 6), unforgeability (Definition 7), and anonymity (Defini-
tion 8).

Definition 6 (Correctness for TRS). Correctness requires that verification
return accept on any honestly generated signature.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. We say that TRS is correct if for all security parameters λ ∈ N, for
all messages msg ∈ {0, 1}∗, all rings R, and all signer sets S ⊆ R:

Pr


pp← TRS.setup(1λ),
{(pki, ski)← TRS.keygen(pp)}i∈R,
{σi ← TRS.sign(pp,msg, {pkj}j∈R, ski)}i∈S ,
σ ← TRS.combisign(pp, {σi}i∈S , t = |S|) :
TRS.verify(pp,msg, {pkj}j∈R, σ, t = |S|) = accept

 = 1

Definition 7 (Unforgeability for TRS). Unforgeability requires that no ef-
ficient adversary A is able to forge a valid signature σ for some ring R and
message msg∗ for which A has issued fewer than t corruption queries (on sign-
ers in R) or signing queries (for ring R and message msg∗), where t is the
threshold.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS

scheme. Consider the game GameUnforgeTRS,A (1λ) in Figure 2 between a probabilistic
polynomial-time adversary A and a challenger CH.

We say that TRS is unforgeable if for any efficient adversary A,

Pr[A wins GameunforgeTRS,A (1λ)] ≤ negl(λ)

for some negligible function negl(λ).

Remark 2. Note that in the unforgeability game, the challenger responds to
signing queries with partial signatures. This is to capture that the adversary
might know some of the secret keys (due to corruption queries), and is therefore
only interested in seeing the partial signatures by the honest parties. The same
holds true for the anonymity game.
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GameunforgeTRS,A (1λ)

A CH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U Qcorrupt = ∅, Qsign = ∅

pp← TRS.setup(1λ)

{(pki, ski)← TRS.keygen(pp)}i∈U

pp, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A may issue polynomially many corruption (C), signing (S) or registration (R) queries

C(i) / S(msg,R, i) / R(i, pki)

Corrupt :
add i to Qcorrupt, and look up ski ∈ {skj}j∈U ,

Sign :
ignore the query if i ∈ Qcorrupt
σi ← TRS.sign(pp,msg, {pkj}j∈R, ski)
add (msg,R, i) to Qsign

Register :
add i to U and to Qcorrupt, and store pki.

ski / σi / ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ∗,msg∗,R∗ ⊂ U , t

If all of the following checks pass, A wins:
TRS.verify(pp,msg∗, {pki}i∈R∗ , σ∗, t) = accept

Let Qmsg
∗,R∗

sign be the set of challenge signer indices

on which signing queries on the challenge message
and ring have been issued

|R∗ ∩ (Qcorrupt ∪Qmsg
∗,R∗

sign )| < t

Fig. 2: The unforgeability game for TRS

Definition 8 (Anonymity for TRS). Anonymity requires that no efficient
adversary A be able to distinguish between partial signatures produced by two
different signers in the same ring.

More formally, let TRS = (setup, keygen, sign, combisign, verify) be a TRS
scheme. Consider the game GameanonTRS,A(1λ) in Figure 3 between a probabilistic
polynomial-time adversary A and a challenger CH.

We say that TRS is anonymous if for any efficient adversary A,

Pr[A wins GameanonTRS,A(1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).
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GameanonTRS,A(1λ)

A CH
. . . . . . . . . . . . . . . . . . . . .Setup phase: as in GameunforgeTRS,A (1λ) . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .First Query phase: as in GameunforgeTRS,A (1λ) . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗,R∗ ⊂ U , i∗0, i∗1

b←R {0, 1}
σi ← TRS.sign(pp,msg∗, {pkj}j∈R∗ , ski∗

b
)

σi∗
b

. . . . . . . . . . . . . . . . . Second query phase: as in first query phase . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .Challenge response phase . . . . . . . . . . . . . . . . . . . . . . . . . .

b′ If all of the following checks pass, A wins:

b′ = b,

∀β ∈ {0, 1} : (msg∗,R∗, i∗β) 6∈ Qsign,
i∗β ∈ R∗, i∗β 6∈ Qcorrupt

Fig. 3: The anonymity game for TRS

4 Our Threshold Ring Signature Construction

A natural approach to building threshold ring signatures is having each of the t
signers produce a ring signature, and then appending to the list of t signatures
a zero knowledge proof that all of the signatures were produced using distinct
signing keys. However, this approach has two downsides.

1. Producing the zero knowledge proof requires interaction among the signers.
2. The zero knowledge proof may be complex. (One way to do this is to commit

to the secret keys used, order the commitments by secret key, prove that each
key was used to produce the corresponding signature, and use t range proofs
to prove that each committed key is strictly larger than the previous one
- since we need to prove that the signatures were produced by t distinct
signers).

In order to circumvent these two issues, we leverage unique ring signatures
(URS) [FZ12,FZ13], which allow the linking of two signatures produced by the
same signer on the same message with respect to the same ring.

There are several related primitives in this space. Linkable ring signatures
[LWW04] allow the linking of any two signatures produced by the same signer,
regardless of message and ring. Traceable ring signatures [FS06] additionally use
nonces, and allow the linking of any two signatures produced by the same signer
with respect to the same nonce. Furthermore, traceable ring signatures allow a
notion of anonymity revocation; if a signer produced two signatures on different
messages using the same nonce, her identity can be recovered.
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Unique ring signatures can be thought of as traceable ring signatures, with
nonces always equal to the message together with the ring, and without anonymity
revocation. Unique ring signatures are called unique because in most construc-
tions, there is a part of the signature (called the tag) which is deterministic given
the message, ring and signing key.

To build our threshold ring signatures, each of the t signers produce a unique
ring signature; then, there is no need to additionally prove that the signatures
were produced using distinct signing keys, since this is immediately apparent.8

If the underlying unique ring signatures have size O(1), then the threshold ring
signatures will have size O(t).

The rest of this section proceeds as follows:

1. In Section 4.1, we state the definition of a unique ring signature scheme
(URS) [FZ12].

2. In Section 4.2, we construct a URS scheme with signatures of size O(1).
3. In Section 4.3, we use our URS scheme to construct a TRS scheme with

signatures of size O(t).

4.1 Unique Ring Signature Definitions

We leverage the notion of unique ring signature (URS) schemes, as defined by
Franklin and Zhang [FZ12]. We modify the definitions of Franklin and Zhang to
allow the adversary to register its own public keys.

Unique Ring Signature Syntax We define a unique ring signature scheme
as a tuple of five algorithms (setup, keygen, sign, verify, link). The setup, keygen,
sign and verify algorithms all have the same input and output behavior as the
corresponding ring signature algorithms. The link algorithm (described below)
allows any verifier to determine whether two signatures were produced by the
same signer (on the same message).

link(pp, msg, {pkj}j∈R, σ0, σ1)→ {linked, unlinked}:
An algorithm that takes a message msg, public keys belonging to members of
a ringR, and two signatures σ0, σ1. Outputs linked or unlinked, depending
on whether the two signatures were produced by the same signer.

Franklin and Zhang avoid the need for a link algorithm by requiring that a
part (called the tag) of every signature be uniquely determined by the message,
ring and signing key; however, we introduce the link algorithm, which is a more
general formalization of this requirement.

8 A similar idea was mentioned by Yuen et al. [YLA+13]; however, it was not for-
malized or proven. In particular, a stronger linkability property is needed from the
underlying traceable ring signature scheme in order for the TRS construction to be
secure. Additionally, since Yuen et al. focus on avoiding the random oracle assump-
tion and we do not, we obtain a TRS construction with size O(t) signatures, while
they obtain a TRS construction with size O(t

√
n) signatures.)
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Unique Ring Signature Security Definitions Informally, a unique ring
signature scheme must satisfy the following properties:

– Correctness requires that a correctly generated signature must verify. (This
is inherited from ring signatures.)

– Uniqueness requires that no t − 1 corrupt signers can produce t signatures
that verify for the same message and ring and appear unlinked. (We present
this property as Definition 10.)

– Anonymity requires that no adversary can determine whether two signatures
that verify for different messages or under different rings were produced by
the same signer. (We present this property as Definition 11.)

– Defamation Freeness requires that no adversary can produce a signature
that appears linked to an honest signer’s signature. We do not require this
property for our TRS construction, so we do not define it formally nor prove
that our construction meets it. This is loosely defined as an adversary forging
an identifier.

Definition 9 (URS). A unique ring signature scheme is secure if it satisfies
correctness, uniqueness (Definition 10) and anonymity (Definition 11).

Definition 10 (Uniqueness for URS). Let URS = (setup, keygen, sign, verify,
link) be a URS scheme. Consider the game GameuniqueURS,A(1λ) in Figure 4 between
a probabilistic polynomial-time adversary A and a challenger CH.

We say that URS is unique if for any efficient adversary A,

Pr[A wins GameuniqueURS,A(1λ)] ≤ negl(λ)

for some negligible function negl(λ).

Definition 11 (Anonymity for URS). Given two signatures for different
messages it should be infeasible for an adversary to determine whether they were
created by the same signer or not. More formally, let URS = (setup, keygen,
sign, verify, link) be a URS scheme. Consider the game GameanonURS,A(1λ) in Figure
5 between a probabilistic polynomial-time adversary A and a challenger CH.

We say that URS is anonymous if for any efficient adversary A,

Pr[A wins GameanonURS,A(1λ)] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ).

4.2 A Unique Ring Signature Scheme

We describe a unique ring signature scheme in Construction 1 in terms of an un-
derlying accumulator scheme ACC, a non-interactive zero-knowledge argument
of knowledge scheme NIZKAoK, a group G (of order p, with generator g) in
which the generalized DDH problem is hard, and a random oracle H which maps
arbitrary strings to elements in G.
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GameuniqueURS,A(1λ)

A CH
U Qcorrupt = ∅, Qsign = ∅

pp← URS.setup(1λ)

{(pki, ski)← URS.keygen(pp)}i∈U
pp, {pki}i∈U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A may issue polynomially many queries corruption (C), signing (S) or registration (R) queries

C(i) / S(msg,R, i) / R(i, pki)

Corrupt :
add i to Qcorrupt, and look up ski ∈ {skj}j∈U

Sign :
ignore the query if i ∈ Qcorrupt or if i 6∈ R
σ ← URS.sign(pp,msg, {pkj}j∈R, ski)
add (msg,R, i) to Qsign

Register :
add i to U and to Qcorrupt, and store pki

ski / σ / ⊥

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗,R∗, {σk}k∈[t]

Let Qmsg
∗,R∗

sign be the set of signer indices i such that

(msg∗,R, i) ∈ Qsign, where R is any ring s.t. {pki}i∈R∗ = {pki}i∈R.

If all of the following checks pass, A wins:

|R∗ ∩ (Qcorrupt ∪Qmsg
∗,R∗

sign )| < t

For k ∈ [t]:

URS.verify(pp,msg∗, {pkj}j∈R∗ , σk) = accept

For l ∈ [t], l 6= k:

URS.link(pp,msg∗, {pkj}j∈R∗ , σk, σl) = unlinked

Fig. 4: The uniqueness game for URS.
Note that t verifying pairwise-unlinked signatures only count as a win for the adversary
if the adversary has not corrupted (or queried the signing oracle on the appropriate
message and ring for) t or more of the relevant parties.

The non-interactive zero-knowledge argument of knowledge scheme NIZKAoK
will be used for the relation Rsig, which is described below.
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GameanonURS,A(1λ)

A CH
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Setup phase: as in GameuniqueURS,A(1λ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First query phase: as in GameuniqueURS,A(1λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

msg∗,R∗, i0, i1 ∈ R∗

b←R {0, 1}
σ∗ ← URS.sign(pp,msg∗, {pkj}j∈R∗ , skib)

σ∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Second query phase: as in first query phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge response phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b′ If all of the following checks pass, A wins:

b′ = b

i0 6∈ Qcorrupt, i1 6∈ Qcorrupt
(msg∗,R∗, i0) 6∈ Qsign, (msg∗,R∗, i1) 6∈ Qsign

Fig. 5: The anonymity game for URS.
Note that, if the adversary queried the signing oracle on either of the challenge signer
identities with the challenge message and ring, he could legitimately link the output
of the signing oracle to one of the signatures, helping him determine whose secret key
was used to produce it. So, if such a signing query was asked, we do not count the
adversary’s win.

Rsig

φ = (G, g,ACC.pp,
aR, σ

′, h),
w = (pk, sk, wa)

 =

 (pk = gsk)
∧ACC.verify(ACC.pp, aR, pk, wa)
∧(σ′ = hsk)


Construction 1.

setup(1λ):
– Sample a DDH group (G, g, p) with security parameter 1λ.
– Run ACC.pp← ACC.setup(1λ).
– Run (NIZKAoK.crs,NIZKAoK.td)← NIZKAoK.setup(1λ,Rsig).
– Set pp = ((G, g, p),ACC.pp,NIZKAoK.crs).

keygen(pp):
– Pick sk ← Zp at random.
– Set pk = gsk.
– If pk is not prime (when interpreted as an integer), redo the first two

steps until it is. (We require the public keys to be prime so that they are
within the domain of the RSA accumulator.)

sign(pp,msg, {pkj}j∈R, sk):
– Check that each pkj is prime.
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– Accumulate {pkj}j∈R as

aR ← ACC.accumulate(ACC.pp, {pkj}j∈R).

(Note that this is publicly computable from the set of public keys, and
thus does not need to be included in the threshold ring signature.)

– Let pk = gsk ∈ {pkj}j∈R. Compute an accumulator witness

wa ← ACC.witcreate(ACC.pp, {pkj}j∈R, pk) .

– Compute σ′ = H(msg, {pkj}j∈R)sk.
– Compute π proving that σ′ is H(msg, {pkj}j∈R) raised to the power of

a secret key corresponding to a public key in the accumulator. In other
words,

π ← NIZKAoK.prove


NIZKAoK.crs,
φ = (G, g,ACC.pp,

aR, σ
′,H(msg, {pkj}j∈R)),

w = (pk, sk, wa)


– Return σ = (σ′, π).

verify(pp,msg, {pkj}j∈R, σ = (σ′, π)):
– Check that each pkj is prime.
– Accumulate {pkj}j∈R as

aR ← ACC.accumulate(ACC.pp, {pkj}j∈R)

– Verify the proof π; return

NIZKAoK.verify(NIZKAoK.crs, φ =

(G, g,ACC.pp, aR, σ
′,H(msg, {pkj}j∈R)), π).

link(pp,msg, {pkj}j∈R, σ0 = (σ′0, π0), σ1 = (σ′1, π1)):
return linked if σ′0 = σ′1, and unlinked otherwise.

Theorem 1. If NIZKAoK is a secure non-interactive zero knowledge argu-
ment of knowledge, if ACC is a secure accumulator, if H is a random oracle,
and if the generalized DDH problem is hard in G, then Construction 1 is a secure
unique ring signature scheme (Definition 9).

Proof of Security We prove Theorem 1 in several steps. First, correctness
is apparent on inspection. Second, in Lemma 1 we address uniqueness (Defini-
tion 10). Last, in Lemma 2 we address anonymity (Definition 11).

Lemma 1. Construction 1 is unique under the assumptions listed in Theorem 1.

Proof. We will construct an algorithm B which will use an adversary A who can
break the uniqueness of the URS scheme in Construction 1 to break the discrete
logarithm problem with non-negligible probability if NIZKAoK and ACC are
both secure, if the generalized DDH assumption holds, and if H is a random
oracle.

We augment our algorithm B with the following powers:
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Programmable Random Oracle: We allow B to program the random oracle
H.

Simulation Extractor extractA: We give B access to the NIZKAoK simu-
lation extractor extractA corresponding to the adversary A. Such an effi-
cient extractor is guaranteed to exist, by the simulation extractability of
NIZKAoK (Definition 3).

Inputs and Outputs of A: We give B access to the inputs and outputs of A,
including its randomness tape. We denote this transcript as transA.

We build B in a sequence of games. The final game — G6 — describes the
full behavior of B. If the adversary A can distinguish interacting with B from
interacting with an honest challenger, it will have broken NIZKAoK, ACC, or
the generalized DDH assumption. If it cannot distinguish between the two, then
it must supply B with sufficiently many unlinked signatures with non-negligible
probability, which B can then use to solve an instance of the discrete logarithm
problem. (Note that B only solves the discrete logarithm problem with respect to
prime challenges; however, since there is a noticeable probability that a random
input to the discrete logarithm problem will be prime, this is sufficient.)

Game G0: B honestly executes the role of the challenger in the uniqueness game
described in Definition 10.

Game G1: This is the same as the previous game, but instead of computing
the proofs π honestly in response to signing queries, B uses the trapdoor
NIZKAoK.td to simulate the proofs using the NIZKAoK.simprove algo-
rithm.
This game is indistinguishable from G0 by the zero knowledge property of
NIZKAoK (Definition 2). Imagine that B interacts with a zero knowledge
challenger to obtain NIZKAoK.crs and the proofs π. If, in the game de-
scribed in Definition 2, the challenger chooses b = 0, the view of the adver-
sary will be as in the previous game; if instead the challenger chooses b = 1,
the view of the adversary will be as in this game. If it can guess b with
non-negligible probability, it will have broken zero-knowledge.

Game G2: This is the same as the previous game, but B keeps track of all of
the messages msg and rings R it is asked signing queries on, or which it
is given forgeries for. If it sees (msg0, {pkj}j∈R0

) 6= (msg1, {pkj}j∈R1
) such

that H(msg0, {pkj}j∈R0) = H(msg1, {pkj}j∈R1), it aborts.
B only aborts with negligible probability, since if A can find two messages
that hash to the same thing, it can be used to break the collision-resistance
of H.

Game G3: This is the same as the previous game, but B keeps track of all of the
signing setsR it is asked signing queries on behalf of, or which it is given forg-
eries on behalf of. If it ever sees two signer sets R,R′ such that {pki}i∈R 6=
{pki}i∈R′ and aR = aR′ (where aR = ACC.accumulate(ACC.pp, {pki}i∈R)),
it aborts.
B only aborts with negligible probability, since if A can find two signer sets
that accumulate to the same value, it can be used to break the collision
freeness of ACC (Definition 1).
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Game G4: This is the same as the previous game, but when the adversary
returns its unlinked signatures, B extracts the witnesses from those sig-
natures that were not previously returned in response to a signing oracle
query. Let L ⊂ [t] be the indices of such signatures. For (msg∗, {(σk =
(σ′k, πS,k),Rk)}k∈L), B extracts the witnesses wk = (pkik , skik , wa,k) ←
extractA(NIZKAoK.crs,NIZKAoK.td, transA).
If it holds that (φk = (G, g,ACC.pp, aRk

, σ′k,H(msg∗)), wk) 6∈ R and NIZKAoK.verify
(NIZKAoK.crs, φk, πk) = accept, B aborts.
Since in the previous two games B aborted if it ever saw two messages hash
to the same value or two signer sets accumulate to the same value, it must
be that the statement φk is one it has never returned a proof for.
B only aborts with negligible probability, since if A can find such a state-
ment φ and witness w that cause B to abort, A can trivially be used to
break the simulation extractability of NIZKAoK (Definition 3). (Just imag-
ine that B interacts with a simulation extractability challenger to obtain
NIZKAoK.crs and the simulated proofs π for signing query responses,
and forwards the proofs to A. It then forwards the proofs supplied by A to
the challenger. Of course, in the simulation extractability game, the adver-
sary gives only one proof π from which extraction should succeed; however,
if B picks a proof from {πS,k}k∈L at random to forward to the challenger,
if extraction fails for any of the proofs, B breaks simulation extractability
with non-negligible probability.)
If A succeeds in winning the uniqueness game and if B does not abort
at this point, B has successfully extracted witnesses {wk = (pkik , skik ,
wa,k)}k∈L from the unique signatures (msg∗,R∗, {σk = (σ′k, πS,k)}k∈[t])
such that (pkik = gskik ) ∧ ACC.verify(ACC.pp, aR∗ , pkik , wa,k) ∧ (σ′k =
H(msg∗, {pkj}j∈R∗)skik ). For A to have won, it must also be true that there
exists a k∗ ∈ L such that ik∗ is not corrupt.

Game G5: This is the same as the previous game, but B now aborts if A can
be used to break the collision freeness property of ACC (Definition 1). Re-
call that B computes aR∗ as aR∗ ← ACC.accumulate(ACC.pp, {pki}i∈R∗).
B aborts if ACC.verify(ACC.pp, pkik , aR∗ , wa,k) = accept, and pkik 6∈
{pki}i∈R∗ .
B only aborts with negligible probability, since if A finds pkik , wa,k,R∗ that
make B abort, A can trivially be used to break the collision freeness property
of ACC. (Just imagine that B interacts with a collision freeness challenger
to obtain ACC.pp.)
If A succeeds in winning the uniqueness game and if B does not abort at
this point, it must be that pkik ∈ {pki}i∈R∗ .

Game G6: If A successfully breaks the uniqueness property, we know that each
pair of signatures it returned appears unique. So, σ′k = H(msg, {pki}i∈R∗)skik
for k ∈ L are all distinct, and skik for k ∈ L must all be distinct as well. At
least one of those secret keys belongs to an honest party. Let i∗ = ik be the
identity of that honest signer (whose secret key ski∗ was extracted by B).
In this game, B guesses i∗ at the beginning of the game. If B does not
abort in the previous game, pki∗ is guaranteed to be an actual public key
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corresponding to one of the signers i∗ in the system (of which there are
polynomially many), so B has a non-negligible (one-in-polynomial) chance
of guessing correctly. At the beginning, when it is generating public-private
key pairs, it generates all the others honestly, but sets pki∗ to a random
prime element of G (for which it does not know the corresponding secret
key). (Note that pki∗ is still identically distributed to an honestly generated
public key.)
Now that B does not know ski∗ , it will have trouble coming up with σ′ =
H(msg)ski∗ for signing queries on msg on behalf of signer i∗. (Note that
the proof π in the signature is already being simulated, and so not knowing
ski∗ does not pose an obstacle to producing π.) Instead of computing them
honestly, B will now pick σ′ to be a random element of G (consistently
returning the same element per message msg that A asks for a signature
from signer i∗ on).
This game is indistinguishable from the previous game by the hardness of the
generalized decisional Diffie-Hellman problem, thanks to the use of the pro-
grammable random oracle H. Just imagine that B interacts with a generalized
DDH challenger at the beginning of the game to obtain (u1 = g, v1 = pki∗)
(aborting if pki∗ isn’t prime) and all (u = H(msg, {pki}i∈R), v = σ′) pairs. B
will store the (u, v) tuples, and set H(msg, {pki}i∈R) = u, σ = v as needed.
Finally, if B is correct in its guess of i∗, then it will have been able to use
A to compute the discrete log of pki∗ , since if A succeeds in winning the
unforgeability game, B can extract ski∗ such that pki∗ = gski∗ from A’s
forgery. (Just imagine that, instead of picking pki∗ randomly, B gets pki∗ as
a discrete log challenge.)

Lemma 2. Construction 1 is anonymous under the assumptions listed in The-
orem 1 (however, it does not require the security of the RSA accumulator).

Proof. Game G0: B honestly executes the role of the challenger in the anonymity
game described in Definition 11.

Game G1: This is the same as the previous game, but instead of computing
the proofs π honestly in response to signing queries, B uses the trapdoor
NIZKAoK.td to simulate the proofs using the NIZKAoK.simprove algo-
rithm.
This game is indistinguishable from G0 by the zero knowledge property of
NIZKAoK (Definition 2) (as in the proof of Lemma 1).

Game G2: At the beginning of this game, B guesses the signer index i0 that A
will ask for a challenge on. It also guesses when A will ask the first hash query
on the challenge message and ring (“never” being a valid guess). B has a non-
negligible (one-in-polynomial) chance of guessing both those things correctly.
It sets pki0 to be a random prime element of G (such that the corresponding
secret key is not known) and H(msg∗, {pki}i∈R∗) to be a random element of
G.
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Now that B does not know ski0 , it will have trouble coming up with the
“unique” parts of signatures σ′ on behalf of signer i0. (Note that the proof π
in the signature is already being simulated, and so not knowing ski0 does not
pose an obstacle to producing π; the only remaining challenge is in producing
σ′.) Instead of computing σ′ honestly, B will now pick σ′ to be a random
element of G (consistently returning the same element per message msg that
A asks for a signature from signer i0 on).
If B is incorrect in its guesses, it aborts.
Just like in the last game of the proof of Lemma 1, if B does not abort, this
game is indistinguishable from the previous game by the generalized DDH
assumption, thanks to the powers of the programmable random oracle.

Game G3: At the beginning of this game, B additionally guesses the signer
index i1 that A will ask for a challenge on. If B is incorrect in its guesses, it
aborts. It handles signing queries / challenges for i1 just like it does for i0.
If B does not abort, this game is indistinguishable from the previous game,
for the same reasons as above.
Note that now, the distribution of the challenge is independent of b, so the
adversary cannot win with probability greater than 1

2 .

4.3 A Threshold Ring Signature Scheme

We build threshold ring signatures out of unique ring signatures in a generic
way. If the underlying unique ring signatures have size O(1), then the resulting
threshold ring signatures have size O(t), where t is the threshold. We require the
additional assumption that no message msg is ever signed twice by the same ring
R. This is because we use the underlying unique ring signature scheme to sign
the message together with the ring; if the same message is signed twice by the
same ring, then the partial signatures will be linkable across the two threshold
signature instances, and in this case we cannot guarantee anonymity.

We describe our TRS construction formally below, in terms of the underlying
URS. (We assume the public keys are always ordered in a canonical way (e.g.
lexicographically), so that in the underlying URS, the same message and set of
keys always hashes to the same value.)

Construction 2.

setup(1λ): Return URS.pp← URS.setup(1λ).
keygen(pp): Return (sk, pk)← URS.keygen(URS.pp).
sign(pp,msg, ski, {pkj}j∈R): Return σi ← URS.sign(URS.pp,msg, {pkj}j∈R, ski).
combisign(pp, {σi}i∈S , t = |S|): Return σ = {σi}i∈S . (So simple!)9

verify(pp,msg, {pkj}j∈R, σ = {σi}i∈S , t):
– If |σ| < t, return reject.

9 The signing set S is only mentioned here for the sake of clarity. The set of signers
is never leaked to the party who performs the combining of the signatures, as each
signature is anonymous and does not leak the individual signers.



26 Alexander Munch-Hansen, Claudio Orlandi, and Sophia Yakoubov

– For σi ∈ σ, if URS.verify(URS.pp,msg, {pkj}j∈R, σi) = reject, return
reject.

– For all pairs of different signatures σi, σj in σ, if URS.link(URS.pp,
msg, {pkj}j∈R, σi, σj) = linked, return reject.10

– Return accept.

Remark 3. Note that, since combisign simply takes a concatenation of the partial
signatures, our construction satisfies flexibility [OTYO18]. Flexibility requires
that a signer i ∈ R can take an existing threshold signature σ on message msg
using the ring R that verifies with threshold t, and create a signature σ∗ on the
same msg and R, that verifies with threshold t + 1. This is trivially achieved
in our construction; signer i simply produces his own partial signature σi, and
appends it to the existing signature.

Remark 4. Note that there is an immediate transformation from this construc-
tion to a linkable threshold ring signature scheme. Our threshold ring signature
scheme uses a unique ring signature scheme as a primitive, providing a way of
using the signatures to verify the distinctness of the t signers while disallowing
linking across signatures. If one instead uses a regular linkable ring signature
scheme (where signatures from the same signer are linkable across messages and
rings), our TRS construction (Construction 2) would also be linkable across
multiple signatures. See [MH20] for details.

Theorem 2. If URS is a secure unique ring signature scheme (Definition 9),
then Construction 2 is a secure threshold ring signature scheme (Definition 5).

Proof of Security We prove Theorem 2 in several steps. First, correctness
is apparent on inspection. Second, in Lemma 3 we address anonymity. Last, in
Lemma 4 we address unforgeability.

Lemma 3. If URS satisfies anonymity (Definition 11) then Construction 2 sat-
isfies anonymity (Definition 8).

Proof. We will construct an algoritm B which will break the anonymity of the
underlying URS scheme against a URS challenger CH, by assuming we have an
attacker A who can break the anonymity of the TRS scheme in Construction 2.

Setup B receives from A the set of users U on which A wants to play the game.
B then sets up the game with the URS challenger CH, receiving the public
parameters pp as well as public keys for each user i ∈ U . It forwards this
information to the TRS adversary A.

First Query Phase Amay issue corruption, signing and registration queries
to B, which are handled as follows:

10 Recall that the link algorithm simply checks equality of two sub-strings in σi, σj .
Thus the running time of verify can be made O(t log(t)) by sorting these strings and
checking for repeated entries.
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Corruption or Registration for Party i: B forwards this query to CH,
and the answer from CH is then forwarded back to A.

Signing message msg by i ∈ R: B issues a signing query to CH for (msg,
R, i), getting σi. B then returns σi to A.

Challenge OnceA is done issuing queries,A sends B a challenge message msg∗,
a ring R∗, and two users i∗0 and i∗1. B then forwards (msg∗,R∗, i∗0, i∗1) to CH
and gets back σ∗. B forwards σ∗ to A.

Second Query Phase A is allowed to issue additional signing, registration
and corruption queries to B. These are handled in similar fashion to the
first query phase.

Challenge Response A returns a bit b′ to B. This bit b′ is simply fowarded
to CH.

If A has a non-negligible probability of winning the TRS anonymity game then B
has non-negligible probability of winning the URS anonymity game. This follows
from σ∗ being a URS signature for msg∗ using the ring R∗ signed by either i∗0
or i∗1. If A can then with non-negligible probability guess which case we are in,
with b = 0 implying that i∗0 signed the message and b = 1 that i∗1 signed the
message, then B will with non-negligible probability guess correctly as well.

Lemma 4. If URS satisfies uniqueness (Definition 10) then Construction 2
satisfies unforgeability (Definition 7).

Proof. We will construct an algorithm B which will break the uniqueness of the
underlying URS scheme against a URS challenger CH, by assuming we have an
attacker A who can break the unforgeability of the TRS scheme in Construc-
tion 2.

Setup B receives from A the set of users U on which A wants to play the game.
B then sets up the game with the URS challenger CH, receiving the public
parameters pp as well as public keys for each user i ∈ U . B forwards this
information to the TRS adversary A.

Query Amay issue corruption, signing and registration queries to B, which
B handles as in the proof of Lemma 3, by forwarding to the URS challenger
CH (with the appropriate modifications to the messages) and returning the
challenger’s response to the adversary.

Challenge A produces a signature σ∗ on some message msg∗ and under some
ring R∗ such that fewer than t members of R∗ are corrupt.

– B parses σ∗ = {σ∗1 , . . . , σ∗t }.
– B sends msg∗,R∗, {σ∗k}k∈[t] to CH.

If A has a non-negligible probability of winning the TRS unforgeability game,
then B has non-negligible probability of winning the URS uniqueness game
against the challenger CH.
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5 Conclusion

In this paper, we made two contributions to the field of threshold ring signature
schemes. First, we gave a stronger security definition for TRS anonymity which
is more natural in practice. In particular, our definition demands that signers
cannot be de-anonymized even by their fellow signers and ring-members. This
is crucial, as in many applications, it is unrealistic to assume that there are no
insiders in the ring.

Secondly, we construct the first TRS scheme with signatures of size O(t)
(where t is the number of signers), independent of the number n of parties in
the ring R. This new construction meets our stronger definitions. We achieve
this by using a TrRS scheme as a building block. To this end, we strengthen
the definitions of TrRS, and propose a new TrRS construction from standard
assumptions which produces signatures of constant size.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their useful feedback, and in particular for pointing us to [FZ12] (a previ-
ous version of this manuscript used a different abstraction for the intermedi-
ate building block). This research was supported by: the Concordium Block-
hain Research Center, Aarhus University, Denmark; the Carlsberg Foundation
under the Semper Ardens Research Project CF18-112 (BCM); the European
Research Council (ERC) under the European Unions’s Horizon 2020 research
and innovation programme under grant agreement No 669255 (MPCPRO); the
European Research Council (ERC) under the European Unions’s Horizon 2020
research and innovation programme under grant agreement No 803096 (SPEC)
and the Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001120C0085. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Defense Advanced Research Projects Agency (DARPA).

References

ACST06. Man Ho Au, Sherman S. M. Chow, Willy Susilo, and Patrick P. Tsang.
Short linkable ring signatures revisited. In Andrea S. Atzeni and Antonio
Lioy, editors, Public Key Infrastructure, pages 101–115, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

BBB+17. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. Cryptology ePrint Archive, Report 2017/1066, 2017.
https://eprint.iacr.org/2017/1066.

BCFK19. Daniel Benarroch, Matteo Campanelli, Dario Fiore, and Dimitris Kolone-
los. Zero-knowledge proofs for set membership: Efficient, succinct, modu-
lar. Cryptology ePrint Archive, Report 2019/1255, 2019. https://eprint.
iacr.org/2019/1255.

BCY20. Foteini Baldimtsi, Ran Canetti, and Sophia Yakoubov. Universally com-
posable accumulators. In Stanislaw Jarecki, editor, Topics in Cryptology –

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2019/1255
https://eprint.iacr.org/2019/1255


Threshold Ring Signatures 29

CT-RSA 2020, volume 12006 of Lecture Notes in Computer Science, pages
638–666, San Francisco, CA, USA, February 24–28, 2020. Springer, Heidel-
berg, Germany. doi:10.1007/978-3-030-40186-3_27.

Bd94. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decen-
tralized alternative to digital sinatures (extended abstract). In Tor Helle-
seth, editor, Advances in Cryptology – EUROCRYPT’93, volume 765 of Lec-
ture Notes in Computer Science, pages 274–285, Lofthus, Norway, May 23–
27, 1994. Springer, Heidelberg, Germany. doi:10.1007/3-540-48285-7_24.

BDZ03. Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman
problem. In Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors,
ICICS 03: 5th International Conference on Information and Communica-
tion Security, volume 2836 of Lecture Notes in Computer Science, pages
301–312, Huhehaote, China, October 10–13, 2003. Springer, Heidelberg,
Germany.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, page 103–112,
New York, NY, USA, 1988. Association for Computing Machinery. doi:

10.1145/62212.62222.
BSS02. Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring sig-

natures and applications to ad-hoc groups. In Moti Yung, editor, Advances
in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 465–480, Santa Barbara, CA, USA, August 18–22, 2002.
Springer, Heidelberg, Germany. doi:10.1007/3-540-45708-9_30.

CFQ19. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modu-
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