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Abstract

We propose a decentralized e-voting protocol that is coercion-resistant
and vote-selling resistant, while being also completely transparent and
not receipt-free. We achieve decentralization using blockchain technology.
Because of the properties such as transparency, decentralization, and non-
repudiation, blockchain is a fundamental technology of great interest in its
own right, and it also has large potential when integrated into many other
areas. We prove the security of the protocol under the standard DDH
assumption on the underlying prime-order cyclic group (e.g. the group
of points of an elliptic curve), as well as under standard assumptions on
blockchain robustness.
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1 Introduction
An election is a significant event in many democratic countries, however, tra-
ditional voting systems may be inefficient given the large number of areas and
population involved in modern elections. Since the advent of Internet there has
been interest in developing remote voting or e-voting [11], but with the develop-
ment of blockchain technologies there has been a significant boost in this field,
exploiting some nice properties of these constructions, such as transparency and
non-repudiation [32]. Usually, e-voting protocols are requested to provide two
properties: ballot-casting assurance, where each voter gains personal assurance
that their vote was correctly cast, and universal verifiability, where any observer
can verify that all cast votes were properly tallied. A voting scheme is also re-
quested to be robust and resistant to both coercion and vote-selling. A protocol
∗c.spadaf@libero.it
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is coercion-resistant if voters can cast their ballots as they want, even if some-
one tries to actively force them to vote for a specific candidate. A protocol is
vote-selling resistant if it does not give a proof of vote that can be understood
by everyone.

In this paper we propose an e-voting protocol, which aims at providing
resistance versus coercion and vote-selling, while giving ballot-casting assurance
(thanks to a receipt) to every voter. To the best of our knowledge the presence
of both the receipt of the vote and the described resistance to malicious entities,
all deployed on a blockchain infrastructure, is an innovative proposal.

Organization We present some preliminaries in Section 2, in particular in Sec-
tion 2.2 we state the protocol that we use to demonstrate the correctness of the
system, with a proof similar to that in [25] but with subtle modifications to
conform to our protocol’s requirements, and in Section 2.4 we describe what we
mean by the term blockchain and which are the consistency rules that miners are
needed to enforce. We describe our protocol in Section 3. We provide a proof of
security in Section 4 where we show vote indistinguishability with a simulation-
based proof and show that our protocols satisfies the desirable properties of a
voting system. In Section 5, we briefly discuss the generalization of our protocol
to multiple candidates. Finally, in Section 6 we draw some conclusions.

1.1 Related Work
The research in the field of e-voting is constantly growing, with a lot of protocols
proposed. Civitas [9] deals with coercion allowing voters to generate, with
their designated private key, fake credentials and then erasing all the votes
submitted through them. Helios [1] was designed mainly for the purpose of low-
coercion applications. It highlights the verifiability in remote e-voting systems.
In Helios, voters do not need to be authenticated until they cast votes. Under
such a situation, anyone can participate and test the system. Caveat Coercitor
[15] is a unique voting system that, instead of preventing coercion, allows it,
while recording unforgeable evidence of said coercions. Indeed, Caveat Coercitor
outputs the evidence of the amount of suspicious voter-coercions that occurred
in the elections. Observers can decide whether or not the outcome is valid based
on the number of suspicious ballots. Bingo Voting [6] is a e-voting protocol that
relies on a trusted random-number generator. Every voter receives a receipt for
all the candidates, even for those it did not vote for. Fake votes are generated
for every candidate and eliminated in tallying.

Concerning DLT voting systems, Crypto-voting [12] is a blockchain based
e-voting system developed by the University of Cagliari in collaboration with
Net Service SPA. It exploits the use of sidechains and guarantees vote privacy
thanks to an approach based on Shamir’s secret sharing scheme. Agora [13] runs
on a custom blockchain with three main components: Skipchain, Cotena and
Valeda. The first manages consensus, Cotena anchors the system to the Bitcoin
blockchain, periodically storing a hash of the most recent Skipblock in a Bitcoin
transaction. Valena validates both Skipchain and Cotena data by the use of
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cryptographic proofs. Vocdoni [30] is handled by a Tendermint blockchain called
vochain. Data integrity is provided by the Ethereum blockchain. Voatz [28] is
used by several counties and states in the USA. It is based on an application
which is able to perform biometric identifcation of the voter. The system runs
on the Voatz blockchain which was built using the Hyperledger framework.
On August 2020, the US Patent and Trademark Office [14] published a patent
application that outlines various blockchain-enabled approaches for potential
vote-by-mail systems. In one suggested implementation, the voter receives a
paper ballot on which there is printed an individualized, computer-readable
code. The voter could then scan the code with a mobile device, verify his
identification, and then cast the ballot digitally. This system separates the
voter ID from the actual vote to maintain anonymity, with the votes stored on
the blockchain. Other interesting systems are: Netvote [17], OV-net [21], Follow
My Vote [29] , Polys [2] and Colony [23]. A more comprehensive comparison of
voting protocols can be found in [18], [31].

A preliminary (weaker) version of the protocol presented here can be found
in [27].

2 Preliminaries
In this section we recall some basic definitions that we will use later on.

Definition 1 (Negligible Function). η : N→ R is a negligible function in k ∈ N
if, for every c ∈ N and for every γ ∈ N there exists k0 ∈ N such that

|η(k)| <
∣∣∣∣ 1

ckγ

∣∣∣∣ , ∀k > k0.

2.1 Decisional Diffie-Hellman Assumption
We adopt the definition of the Decisional Diffie–Hellman (DDH) problem and
the relative hardness assumption given in [20].

Let p be a prime. Let a, b, ξ ∈ Z∗p be chosen at random and g be a generator
of a cyclic group G of order p. The DDH problem consists in constructing an
algorithm

B
(
g,A = ga, B = gb, T

)
→ {0, 1} (1)

to distinguish between the tuples
(
g,A,B, gab

)
and

(
g,A,B, gξ

)
, outputting

respectively 1 and 0. The advantage of B in this case is written as:

AdvB =
∣∣P [B (g,A,B, gab) = 1

]
− P

[
B
(
g,A,B, gξ

)
= 1
]∣∣ , (2)

where the probability is taken over the random choice of the generator g, of a, b,
ξ ∈ Z∗p, and the random bits possibly consumed by B to compute the response.

Definition 2 (DDH Assumption). The Decisional Diffie-Hellman assumption
holds if no probabilistic polynomial-time algorithm B has a non-negligible ad-
vantage in solving the DDH problem.
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2.2 Zero-Knowledge Proofs
Zero-Knowledge proofs were first conceived in 1989 by Shafi Goldwasser, Silvio
Micali, and Charles Rackoff [5]. Together with the work of Laszlo Babai and
Shlomo Moran [4], those two papers invented the interactive proof system, for
which all five authors won the first Gödel Prize in 1993.

A Zero-Knowledge proof (ZKP) is a cryptographic proof which allows one
party (the prover) to convince another party (the verifier) about the truth of
some statement, without revealing anything else to the verifier.

Given a language L and a common input x then the three basic properties
of a ZKP are:

Definition 3 (Completeness). If x ∈ L (i.e. the prover is honest) then the
verifier should accept the proof with probability 1.

Definition 4 (Soundness). If x 6∈ L (i.e. the prover wants to convince the
verifier to know something that it does not know or the validity of a property that
is actually false) then the verifier should only accept with negligible probability.

Definition 5 (Zero-Knowledge). For every verifier V there exists an efficient
simulator that can generate transcripts that are indistinguishable from real in-
teraction between a real prover and V .

The third property guarantees that the verifier learns nothing from the in-
teraction, except that x ∈ L.

2.2.1 Equality of discrete logarithms

One of the simplest ZKPs is due to Schnorr [24]: the proof of knowledge of
a discrete logarithm. Here we present a variation of the Schnorr interactive
protocol, similar to that in [25], which will be used in the proof of security
described in Section 4.

Protocol 1. Let G be a cyclic group of prime order p, let u, ū be generators of
G, and let z, z̄ ∈ G, ω ∈ Zp. The prover knows ω and wants to convince the
verifier that:

uω = z and ūω = z̄, (3)

without disclosing ω. The values of u, z, ū and z̄ are publicly known.

1. The prover generates a random r and computes t = ur and t̄ = ūr,
then sends (t, t̄) to the verifier.

2. The verifier computes a random c ∈ {0, 1} and sends it to the prover.

3. The prover creates a response s = r + c · ω and sends s to the verifier.

4. The verifier checks that us = zc · t, ūs = z̄c · t̄. If the check fails the proof
fails and the protocols aborts.
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5. The previous steps are repeated τ = poly(log2(p)) times, i.e. the number
of repetitions is polynomial in the length of p (the security parameter).

Proposition 1 (Completeness of Protocol 1). Under the DDH assumption, the
Protocol 1 satisfies the completeness property, as per Definition 3.

Proof. To show that this protocol is correct, it suffices to verify that the equa-
tions of steps 3 and 4 hold when s is computed correctly.

Proposition 2 (Soundness of Protocol 1). Under the DDH assumption, the
Protocol 1 satisfies the soundness property, as per Definition 4.

Proof. To show soundness, first note that the prover can guess all τ values of
the challenges c only with probability 2−τ which is negligible. Therefore, if the
prover manages to complete a proof with more than negligible probability then,
in at least one protocol repetition, the prover does not fail even when guessing
wrong, i.e. it can answer both possible challenges correctly. This means that
the prover can compute both r+ω and r, and therefore compute ω, but we were
assuming that the prover did not know ω, hence the contradiction.

Proposition 3 (Zero-Knowledge of Protocol 1). Under the DDH assumption,
the Protocol 1 satisfies the Zero-Knowledge property, as per Definition 5.

Proof. This property states that the verifier cannot gain even a single bit of extra
information other that the prover knows ω. To show that, we use a simulator
S that takes in input (u, z, ū, z̄) and can interact with a (possibly malicious)
verifier V producing a view that is indistinguishable from a real one, as follows:

1. S initialises the verifier V with u, z, ū, z̄ and i = 0;

2. S selects c′ ∈ {0, 1} at random;

3. S selects s ∈ Zp at random and sets t = us · z−c′ , t̄ = ūs · z̄−c′ ;

4. S gives (t, t̄) and gets the challenge c;

5. If c 6= c′ S rewinds V and goes back to step 2 with the same i, otherwise
it proceeds;

6. S gives s to V , since the check succeeds, if i = τ the proof successfully
completes, otherwise S sets i = i + 1 and proceeds with the simulation
repeating from step 2.

Note that this simulator runs in expected polynomial time since for every rep-
etition the probability of guessing the correct c′ is 1

2 , so the expected number
of repetition needed to complete is 2τ which is polynomial. Now let us suppose
that there exists a V that can distinguish this simulation from a real protocol
interaction. Note that this is equivalent to distinguishing whether the input tu-
ple (u, z, ū, z̄) satisfies Equation (3) for some ω ∈ Zp, in fact when such ω exists
then the view produced by S has the exact same distribution of a real protocol
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interaction. To complete our proof we use this distinguishing verifier V to solve
the Decisional Diffie-Hellman problem: given a challenge (g,A,B, T ) we pass it
as input of S with u = g, z = A, ū = B, z̄ = T , that corresponds to implicitly
setting ω = a if T = gab. In this case S perfectly simulates the real protocol,
otherwise if T = gr then the verifier could detect that it is a simulation and we
can break DDH assumption.

From this proof the following corollary is immediately derived:

Corollary 1 (Simulation of a ZKP). Let S be a simulator that has to prove
the validity of an input (u, z, ū, z̄) to a verifier V that can be rewound. If the
DDH assumption holds, S can simulate the proof without knowing ω, and this
simulation is indistinguishable from a real Zero-Knowledge proof.

Further discussion on Zero-Knowledge proofs and simulations can be found
in [19].

In the proof of Theorem 1 we will need also the following lemma:

Lemma 1 (Extracting the Secret). If A has to prove to us the equality of
discrete logarithms with the protocol above, and we have the ability to rewind its
execution, then we can extract from A the secret exponent ω.

Proof. It is possible to retrieve from A the secret exponent ω as follows:

1. A sends (t, t̄).

2. We respond sending c = 0.

3. A then responds with s = r + c · ω = r.

4. If us = t, ūs = t̄, we rewind to Item 2, otherwise we abort.

5. This time we send c = 1, so A responds with s′ = r+ω, and since r is the
same we can compute ω = s′ − s = r + ω − r. Again if uω 6= z or ūω 6= z̄
we abort.

Clearly, if the protocol does not abort we recovered ω.

2.3 Commitment Scheme
A commitment scheme [7] is composed by two algorithms:

• Commit(m, r): takes the message m to commit with some random value r
as input and outputs the commitment c and a decommitment value d.

• Verify(c,m, d): takes the commitment c, the message m and the de-
commitment value d and outputs true if the verification succeeds, false
otherwise.

A commitment scheme must have the following two properties:
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• Binding: it is infeasible to find m′ 6= m and d, d′ such that
Verify(c,m, d) = Verify(c,m′, d′) = true.

• Hiding: Let [c1, d1] = Commit(m1, r1) and [c2, d2] = Commit(m2, r2) with
m1 6= m2, then it is infeasible for an attacker having only c1, c2, m1 and
m2 to distinguish which ci corresponds to which mi.

In our construction we use commitments to prevent some possible malicious
choice of parameters, specifically we want that the authorities choose their val-
ues independently. However, this kind of suspicious behavior does not affect
Vote-Indistinguishability (see Definition 14) thanks to the hardness of DLOG
problem, so in our analysis commitments are not directly involved in the proof
of Theorem 1. For this reason we do not specify the meaning of infeasibility in
the aforementioned security properties, noting that a commitment scheme can
achieve perfect (information theoretic) security in only one of the two properties,
while the other is at most computationally secure.

2.4 Blockchain
The e-voting protocol we propose exploits the accountability and immutabil-
ity properties of an underlying blockchain. With blockchain we mean a de-
centralised data structure containing a list of transactions with the following
properties:

• public: the contents of the blockchain is publicly readable and exam-
inable by anyone, in particular we assume that an attacker is not able to
efficiently and indefinitely negate access to the blockchain or pass off a
counterfeit (tampered) copy as the original one;

• append-only: the contents of the blockchain are immutable once pub-
lished, but new data can be added afterwards, more specifically an attacker
is not able to reorder, delete or modify past transactions, but it can add
new transactions.

Users send their proposals of new data to be included in the blockchain to
the miners, a special subset of users that actively maintain the blockchain by
reaching a consensus (e.g. [22]) on the transaction to append and by publishing
the updated state.

In our protocol the main users are the voters, the miners are roughly equiv-
alent to election officers, while the data registered on the blockchain is how
the ballots are cast (with suitable obfuscation to preserve privacy), in the form
of transactions that transfer voting tokens to special accounts representing the
candidates.

Not every user of the blockchain is allowed to participate in the election,
however we do not take in consideration how users are identified. We follow
their actions only once they become “voters”, that is, the protocols knows which
blockchain addresses correspond to possible voters. To restrict the participation
only to identified blockchain users, there are at least two possible ways:
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• to use a permissioned blockchain1 (so the internal PKI will guarantee the
identification)

• to use a permissionless blockchain2 with either a smart contract and/or
an external oracle.

Remark. For any e-voting protocol the problem of voter registration and au-
thentication is very hard to solve, as shown in [8, 16], however it is out of scope
of this paper.

Finally, we need that miners enforce some consistency rules:

• transactions are properly authorized by the user who owns the token, i.e.
a user’s tokens cannot be spent by anybody else;

• only valid votes are accepted and registered on the blockchain, i.e. users
must spend both of their tokens together, and send them to different
candidates (see Section 3);

• no double spending of tokens (each token can be spent only once).

This abstract model can be implemented using one of the many blockchain
constructions already available.

2.5 General requirements for remote voting systems
Since an election is a sensitive matter, remote voting systems should satisfy
certain requirements before being deployed. In this section we define such prop-
erties, we will prove that our proposed protocol satisfies them in Section 4.2.

Definition 6 (Correctness). A voting system is correct if an adversary cannot
alter or cancel the votes of the honest voters (i.e. the one that are not coerced),
and cannot cause voters to cast ballots resulting in double voting (i.e. use one
credential to vote multiple times).

Definition 7 (Fairness). A voting system is fair if no information about how
many votes each candidate has received can be learned until the voting results
are published. Any participant cannot gain knowledge of the voting result before
its final publication.

Definition 8 (Transparency). A voting system is transparent if the voters are
able to understand the voting system in all its components.

Definition 9 (Privacy). A voting system is private if no entity involved in the
voting process can link a cast ballot to the voter who cast it.

1We are implementing a prototype with HyperLedger Fabric [3], the source code will be
published on github.

2We are also implementing a prototype with Quadrans [10], the source code will be pub-
lished on github.
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Definition 10 (Verifiability). A voting system is verifiable if it satisfies the
following two properties:

1. Universal Verifiability: the correctness of elections results can be veri-
fied by all observers;

2. Individual Verifiability: every voter can check that their vote has been
cast correctly and has been accurately counted in tallied results.

A secure voting scheme should posses some counter attacks requirements to
enhance the security of the model.

Definition 11 (Vote-coercion resistance). Voters should be able to cast their
ballots as they want, even if someone tries to coerce them.

In some cases, voters are willing to sell their vote to obtain various material
or immaterial goods. However, in order to actually prove a vote, the voter has
to provide an evidence of the vote (like a picture of the ballot or a receipt of the
vote) or sell directly their credentials. The latter situation is applicable only in
the case of remote electronic voting and there is no mathematical countermea-
sure to prevent it. However, a mitigation is to require additional information to
properly operate with said credentials, and prevent the certification of correct-
ness of this additional info.

Definition 12 (Vote-Selling Resistance). A voting system is vote-selling resis-
tant if any vote receipt that it provides and the credentials to cast a vote can
be respectively properly interpreted and properly used only knowing some addi-
tional information ζ. The value of ζ is randomly generated and specific to the
voter, who is the only one who knows it, and can easily construct a fake value
ζ ′ indistinguishable from ζ (in particular there is no certificate for the real value
of ζ).

Note that this definition covers also Definition 11, if, given two candidate’s
choices C and C ′, for every coercer that wants to force the choice C ′, a voter
(that wishes to express the choice C) can fabricate a value ζ ′ (as before) such
that the vote it casts expresses the choice C ′ if the additional information is ζ ′,
while it expresses C if the additional information is ζ.

3 Two-Candidate Voting System
This section presents our proposal for a remote e-voting protocol in an election
with two candidates, based on blockchain technology.

The basic idea is that every voter owns two voting tokens (v-tokens): one
is valid, the other is fake, but only the voter knows which is which. When
voting, every voter expresses its preference assigning the valid v-token to the
chosen candidate and the fake one to the other. The voter gets a vote receipt

9



on which both transactions will be displayed. In the final tally the fake v-tokens
are discarded3 and the whole process is publicly auditable.

The aim of this voting system is to be fully verifiable, and to prevent coercion
and vote selling (while being almost completely transparent and giving to the
voter ballot casting assurance). The protocol is divided into five phases:

• Setup. The authorities, knowing a list of eligible voters, generate the
values for the creation of the v-tokens and the masks associated to the
candidates.

• Registrar. The voter creates a wallet (that no one else has control over)
and registers it with the two authorities, which then proceed to create two
indistinguishable v-tokens, one valid and one fake, that will be controlled
by this wallet. During the creation the voter receives also the information
on which token is valid and which is fake, and the authorities prove with
ZKPs that the tokens are correct. We assume that the interaction between
the voter and any authority is private and untappable (even one authority
does not see what the other is telling the voter). The information on which
v-token is valid and which is fake is given without a receipt so the voter
cannot officially prove the validity of a v-token, in particular this means
that the ZKP must be interactive, so that any transcript of the proofs is
worthless for an outsider.

• Voting Phase. Both v-tokens must be spent together to have a valid
transaction and they have to go to distinct candidates. After the v-tokens
have been spent, a receipt is given to the voter. Here we assume that
both candidates receive at least one legitimate vote (with a valid v-token),
otherwise it is trivial to discern valid tokens from the election results.

• Tallying. The v-tokens are processed (see 3.1.4) and the number of valid
and fake votes received by each candidate is published. In the same time,
the authorities publish a set of values that permits to check that there
have been no manipulations of the ballots. Every voter can check, by
examining the history of transactions received by the candidate’s node,
that their v-token has been cast correctly. Finally, anyone can request a
series of ZKPs to assure that the v-tokens have been correctly processed
during the tallying phase.

3.1 Protocol Description
The key components involved in the protocol are:

1. A finite set of voters V = {v1, . . . , vN} with N ∈ N the number of eligible
voters.

3With discard we do not mean that the tokens are removed from the blockchain, which is
infeasible due to our assumptions, but that everyone can count the valid tokens, among all
received by the candidate.
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2. Two distinct candidates named Alpha and Beta.

3. Two different trusted authorities4 A1 and A2.

4. One ballot bi comprising two v-tokens for i ∈ {1 . . . N}, i.e. one for each
eligible voter.

Let us now present the details of the protocol phase by phase.

3.1.1 Setup

The first authority, A1, selects a secure group G of prime order p in which the
DDH assumption holds, along with a generator g ∈ G, then it publishes G, g,
p.

Then, A1 performs the following operations:

1. Chooses at random a value α′l ∈ Z∗p for l ∈ {1, 2} (i.e. one for each
candidate), with α′1 6= α′2. Those will be the first half of the masks for the
votes.

2. Chooses uniformly at random two values x′i, y′i ∈ Z∗p for every voter vi,
with x′i 6= x′j , y′i 6= y′j for all i 6= j ∈ {1 . . . N}.

3. Chooses two random values k and λ in Z∗p. A1 knows that the v-tokens
computed using k are valid, while the ones computed using λ are fake, but
this information is kept secret.

4. Finally, A1 commits (see Section 2.3) to the values gk, gλ, gα
′
1 , gα

′
2 , and

for every i ∈ {1 . . . N} it commits to the pairs (vi, g
x′
i), (vi, g

y′i).

It is important that all the values x′i, y′i, α′l k, λ remain private.

Similarly, the second authority, A2, performs the following operations:

1. Chooses at random a value α′′l ∈ Z∗p for each candidate, with α′′1 6= α′′2 .
Those will be the second half of the masks for the votes.

2. Chooses uniformly at random two values x′′i , y′′i ∈ Z∗p for every voter vi,
with x′′i 6= x′′j , y′′i 6= y′′j for all i 6= j ∈ {1 . . . N}.

3. Finally, A2 commits (see Section 2.3) to the values gα
′′
1 , gα

′′
2 , and for every

i ∈ {1 . . . N} it commits to the pairs (vi, g
x′′
i ), (vi, g

y′′i ).

It is important that all the values x′′i , y′′i , α′′l remain private.

Once that all the commitments have been published, the authorities can de-
commit the values:

4We use a weak concept of trust here, since the conduct of these authorities can be checked
by voters.
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• A1 publishes the decommitments for the values gk, gλ, gα
′
1 , gα

′
2 , and the

pairs (vi, g
x′
i), (vi, g

y′i) for every i ∈ {1 . . . N}.

• A2 publishes the decommitments for the values gα
′′
1 , gα

′′
2 , and the pairs

(vi, g
x′′
i ), (vi, g

y′′i ) for every i ∈ {1 . . . N}.

3.1.2 Registrar Phase

In the description of this phase we omit the details of the operations that involve
the blockchain, focusing on the interactions between the registering voter and
the authorities.

For every voter vi, the following steps are performed:

1. Let Alice be the person associated to the voter vi, note that the authorities
do not need to know this association, and vi can be a pseudonymous
id. She creates her own new wallet, and goes in a safe and controlled
environment where she is identified and authenticated as the eligible voter
vi. In this environment she can interact with both authorities without
fear that any adversary can eavesdrop.

2. Alice proves to both authorities that she controls her wallet (e.g. signing
a challenge message with the wallet’s private key), and the authorities
associate the wallet address to vi in their respective voters lists.

3. A1 creates the preliminary ballot:

b̄i =
(
gy

′
i(x

′
i+k), gy

′
i(x

′
i+λ)

)
(4)

and sends it to Alice.

4. A1 gives Alice the values gx
′
iy

′
i , gy

′
ik, gy

′
iλ, and proves the correctness of

the preliminary ballot with the Schnorr ZKP presented in Section 2.2.1:

(a) First A1 proves that gx
′
i , gy

′
i , and gx

′
iy

′
i are correctly related using:

ω = x′i, u = g, z = gx
′
i , ū = gy

′
i , z̄ = gy

′
ix

′
i , (5)

and:

ω = y′i, u = g, z = gy
′
i , ū = gx

′
i , z̄ = gy

′
ix

′
i . (6)

(b) Then A1 proves that gy
′
ik and gy

′
iλ are correctly linked to gy

′
i and to

gk and gλ respectively, using:

ω = k, u = g, z = gk, ū = gy
′
i , z̄ = gy

′
ik, (7)

and:

ω = λ, u = g, z = gλ, ū = gy
′
i , z̄ = gy

′
iλ. (8)
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(c) Finally Alice can check that:

b̄i,1 = gy
′
ix

′
i · gy

′
ik, (9)

b̄i,2 = gy
′
ix

′
i · gy

′
iλ. (10)

5. A2 gives Alice the value gx
′′
i y

′′
i and proves that it is correct with the Schnorr

ZKP presented in Section 2.2.1 and using:

ω = x′′i , u = g, z = gx
′′
i , ū = gy

′′
i , z̄ = gy

′′
i x

′′
i , (11)

and:

ω = y′′i , u = g, z = gy
′′
i , ū = gx

′′
i , z̄ = gy

′′
i x

′′
i . (12)

6. A2 sends gy
′′
i x

′′
i to A1. Defining yi := y′i · y′′i , A1 computes gyix

′′
i =

(gy
′′
i x

′′
i )y

′
i , sends it to Alice, and proves to Alice its correctness using:

ω = y′i, u = g, z = gy
′
i , ū = gy

′′
i x

′′
i , z̄ = gyix

′′
i . (13)

7. Alice flips a random coin ci ∈ {0, 1} and defines b̃i = (b̄i,1, b̄i,2) = b̄i if
ci = 0, b̃i = (b̄i,2, b̄i,1) if ci = 1, and sends b̃i and gyix

′′
i to A2. Note that,

thanks to ci, A2 does not know which token is valid and which is fake.

8. A2 contacts A1 to have confirmation that gyix
′′
i is correct and that b̃i is a

permutation of b̄i (without learning which component is valid and which
is fake), then computes (b̃i,l)

y′′i for l ∈ {1, 2} and proves to Alice their
correctness using:

ω = y′′i , u = g, z = gy
′′
i , ū = b̃i,l, z̄ = (b̃i,l)

y′′i . (14)

9. Finally, A2 flips a random coin c′i ∈ {0, 1} and sends to Alice’s wallet her
final ballot bi that is defined as:

bi =


(

(b̃i,1)y
′′
i · gyix′′

i , (b̃i,2)y
′′
i · gyix′′

i

)
if c′i = 0,(

(b̃i,2)y
′′
i · gyix′′

i , (b̃i,1)y
′′
i · gyix′′

i

)
if c′i = 1.

(15)

If we define xi := x′i+x
′′
i then for l ∈ {1, 2} we have that bi,l = gyi(xi+σi,l),

with σi,l ∈ {k, λ}, σi,1 6= σi,2. Note that Alice, thanks to the proofs and
the knowledge of the intermediate values, knows which one is the valid
token (the one with σi,l = k), but thanks to ci, c′i neither A1 nor A2 can
distinguish the tokens unless they collude.
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3.1.3 Voting Phase

Voters express their preference sending the valid token to the preferred candi-
date, and the fake token to the other candidate. The two v-tokens are sent
with a transaction on the blockchain to the respective candidates. As stated
in Section 2.4, blockchain rules allow only votes that send one token to the
first candidate and one to the second, prevent voters to vote twice, and guar-
antee that only registered voters can cast their ballots. Each voter receives the
receipt of the vote (which basically is the insertion of the transaction in the
blockchain), moreover the assumed properties of the blockchain guarantee that
no vote is changed or deleted.

3.1.4 Tallying

Once the voting phase is over, the tallying can start.
In order to count the votes, the authorities have to process the tokens re-

ceived by each candidate, substituting the voter’s mask yi with the appropriate
candidate mask αl = α′lα

′′
l . Suppose that T ≤ N participants voted. Without

loss of generality, we can assume that only the participants with index 1 ≤ i ≤ T
voted, while the remaining N − T abstained from voting. Note that the voting
addresses can be seen by everyone in the blockchain, and since the authorities
have registered the association of these addresses to the ids vi, they can correctly
process each token, but they do not know the real identities of the associated
person.

This phase is symmetrical for the two candidates, and note that it is sufficient
to count the preferences collected by only one candidate since the number of
total votes is known, so we will describe just the tallying of the first candidate’s
votes.

For 1 ≤ i ≤ T , let li the index of the token that the voter vi sent to the first
candidate, that is bi,li = gyi(xi+σi,li ), then the authorities process the token bi,li
performing the following steps:

1. A1 computes the preliminary vote t̄1,i as:

t̄1,i = b

α′
1
y′
i

i,li
=
(
gyi(xi+σi,li)

)α′
1
y′
i = gα

′
1·y

′′
i (xi+σi,li), (16)

and registers it on the blockchain.

2. Any observer could ask for a proof that this computation is correct. A1

proves that t̄1,i is correct using:

ω =
α′1
y′i
, u = gy

′
i , z = gα

′
1 , ū = bi,1, z̄ = t̄1,i. (17)

3. A2 then computes the final vote t1,i as:

t1,i = t̄

α′′
1
y′′
i

1,i =
(
gα

′
1·y

′′
i (xi+σi,li)

)α′′
1
y′′
i = gα1(xi+σi,li), (18)
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and registers it on the blockchain (remember that α1 := α′1 · α′′1).

4. Again, any observer could ask for a proof that this computation is correct.
A2 proves that t1,i is correct using:

ω =
α′′1
y′′i
, u = gy

′′
i , z = gα

′′
1 , ū = t̄1,i, z̄ = t1,i. (19)

Once that all final votes have been computed, the actual tallying is performed.
Let Rl be the number of valid tokens given to the l-th candidate (i.e. the

number of preferences received by said candidate), and let Fl be the number
of fake tokens given to the l-th candidate. Clearly T = R1 + F1 = R2 + F2,
R1 = F2, R2 = F1. The count R1 can be computed with the following steps:

1. A1 computes and publishes gα1 =
(
gα

′′
1

)α′
1

, gα1k, gα1λ.
A1 proves that gα1 is correct using:

ω = α′1, u = g, z = gα
′
1 , ū = gα

′′
1 , z̄ = gα1 , (20)

then proves that gα1k is correct using:

ω = k, u = g, z = gk, ū = gα1 , z̄ = gα1k, (21)

and finally that gα1λ is correct using:

ω = λ, u = g, z = gλ, ū = gα1 , z̄ = gα1λ. (22)

2. Then A1 computes
∑T
i=1 x

′
i, and publishes gα1

∑T
i=1 x

′
i .

3. Note that any observer could compute g
∑T
i=1 x

′
i =

∏T
i=1 g

x′
i , and then ask

for a proof that the authority’s computations are correct.
A1 proves that gα1

∑T
i=1 x

′
i is correct using:

ω =

T∑
i=1

x′i, u = g, z = g
∑T
i=1 x

′
i , ū = gα1 , z̄ = gα1

∑T
i=1 x

′
i . (23)

4. Similarly, A2 computes
∑T
i=1 x

′′
i and publishes gα1

∑T
i=1 x

′′
i .

5. Again, any observer could compute g
∑T
i=1 x

′′
i =

∏T
i=1 g

x′′
i , and then ask for

a proof that the authority’s computation is correct.
A2 proves that gα1

∑T
i=1 x

′′
i is correct using:

ω =

T∑
i=1

x′′i , u = g, z = g
∑T
i=1 x

′′
i , ū = gα1 , z̄ = gα1

∑T
i=1 x

′′
i .

(24)
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6. Note that any observer could compute the value:

gα1(
∑T
i=1 xi+R1k+F1λ) =

T∏
i=1

t1,i, (25)

given that:

gα1
∑T
i=1 xi = gα1

∑T
i=1(x′

i+x
′′
i ) = gα1

∑T
i=1 x

′
i · gα1

∑T
i=1 x

′
i , (26)

anyone can compute:(
gα1k

)R1 ·
(
gα1λ

)F1
=
(
gα1

∑T
i=1 xi

)−1

· gα1(
∑T
i=1 xi+R1k+F1λ). (27)

7. Finally note that now R1 and F1 can be easily computed by brute force.
In fact, given a positive integer T ∈ N it is possible to represent it in T +1
ways as a sum of two non-negative integers, and the number of valid and
fake votes must sum up to the number of actual voters T , so the effort is
linear in the number of actual votes.

4 Security Analysis
In this section we prove the security of the proposed protocol and its validity as
a voting system.

4.1 Vote Indistinguishability
The goal is to prove that an adversary cannot distinguish between valid and
fake v-tokens and guess how voters cast their preference. Since election results
are obviously public we have to avoid some trivial cases in which the adversary
can deduce the votes simply by observing the results. Therefore, we assume
that the adversary controls one authority and all but two voters, and that these
two voters select distinct candidates. The adversary wins the security game if
it guesses correctly for which candidate each of the two voted.

4.1.1 Security Model

The security of the protocol will be proven in terms of vote indistinguishability
(VI), as it will be detailed in Definition 14.

The security of the protocol will be proved in the presence of at least one
honest authority, so the simulator in the proof will take on the roles of both the
honest authority and the two voters that the adversary does not control. To sim-
plify our analysis we assume that the adversary A controls one authority, which
is in favor of the adversary, and A does not intentionally fail decommitments
or ZKPs, otherwise the protocol would abort and A would not win the security
game with non-negligible advantage (in fact, since it outputs its guess only once
the protocol has correctly terminated, A must run the protocol smoothly).
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Definition 13 (Security Game). The security game for a two-candidate protocol
proceeds as follows:

• Init. The adversary A chooses the authority and the N − 2 users that it
controls and therefore A knows which are the valid and fake v-tokens of
these users. The remaining two are called free voters. The challenger C

takes the role of the other authority and the free voters.

• Phase 0. A and C run the Setup and Registrar phases of the protocol,
interacting as needed.

• Phase 1. A votes with some or all of the voters it controls.

• Challenge. Let C0 and C1 be the two candidates, C flips a random coin
µ ∈ {0, 1} and votes with the v-tokens of the free voters accordingly: the
first free voter votes for Cµ, the second one for Cµ⊕1.

• Phase 2. A votes with some or all of the voters it controls which did not
vote in Phase 1.

• Phase 3. A and C run the Tallying phase of the protocol, and the election
result is published. Note that A can request the ZKPs of the correctness
of the computations done by C.

• Guess. A outputs a guess µ′ of the coin flip that randomly assigned the
voting preferences of the two free voters5.

Definition 14 (Vote Indistinguishability). A Two-Candidates Protocol with
security parameter θ is VI-secure if, for every probabilistic polynomial-time ad-
versary A that outputs a guess µ′ of the coin flip µ (as described in the security
game of Definition 13), there exists a negligible function η such that:

P[µ′ = µ] ≤ 1

2
+ η(θ). (28)

In the following theorem we prove our voting protocol VI-secure under the
DDH assumption (Definition 2) in the security game defined above.

Theorem 1. If the DDH assumption of Definition 2 holds, then the protocol
described in Section 3.1 is VI-secure, as per Definition 14.

Proof. Suppose there exists a polynomial-time adversary A that can guess µ
with advantage ε, i.e. P[µ′ = µ] ≥ 1

2 + ε. We will show how a simulator S can
play the DDH game with advantage ε

2 interacting with A (also rewinding A’s
execution).
The simulator starts with considering a DDH challenge:

(g,A = ga, B = gb, T ), (29)
5In other words, for each of the four v-tokens outside its control, A guesses if the v-token

is valid or not.
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with T = gab or T = R = gξ. We will consider separately the case when A

controls A2 and when A controls A1.

First we consider the case in which the adversary controls A2, the simulation
proceeds as follows.

• Init. The adversary chooses the N − 2 users to control. Without loss of
generality we may assume that the two free voters are v1 and v2.

• Setup. The simulator S chooses uniformly at random in Z∗p the values
x̄1, x̄2, ȳ1, ȳ2, k, λ, ᾱ1, ᾱ2. Then S chooses uniformly at random y′i, x

′
i for

3 ≤ i ≤ N . Finally S implicitly sets:

x′1 = x̄1 + b, x′2 = x̄2 − b, (30)
y′1 = a · ȳ1, y′2 = a · ȳ2, (31)
α′1 = a · ᾱ1, α′2 = a · ᾱ2 (32)

Notice that in the improbable case where a = 0 the DDH problem is easily
solvable (ga = gab = 1), otherwise since a and b come from an uniform
distribution, then also these implicit values are uniform distributed, so
the choices of the simulator are indistinguishable from a real protocol
execution. Note also that S can compute the values gx

′
1 , gx

′
2 , gy

′
1 , gy

′
2 , gα

′
1 ,

gα
′
2 as follows:

gx
′
1 = gx̄1 ·B, gx

′
2 = gx̄2 ·B−1, (33)

gy
′
1 = Aȳ1 , gy

′
2 = Aȳ2 , (34)

gα
′
1 = Aᾱ1 , gα

′
2 = Aᾱ2 , (35)

while the other values can be computed following the protocol, so S per-
fectly simulates the actions that A1 would perform in the setup phase.

• Registrar Phase. For the vi with 3 ≤ i ≤ N , S can simulate A1 following
the protocol, while for v1 and v2 the simulation is carried on as follows:

1. S computes the preliminary ballot as:

b̄1 =
(
Aȳ1(x̄1+k) · T ȳ1 , Aȳ1(x̄1+λ) · T ȳ1

)
, (36)

b̄2 =
(
Aȳ2(x̄2+k) · T−ȳ2 , Aȳ2(x̄2+λ) · T−ȳ2

)
. (37)

Since it controls the corresponding voter, fortunately S does not need
to perform the ZKPs (which would fail).

2. A gives to S the value gx
′′
i y

′′
i and proves that it is correct with the

Schnorr ZKP, so S can extract the values x′′i , y′′i , thanks to Lemma 1,
so S can compute:

gyix
′′
i = Aȳi·y

′′
i ·x

′′
i . (38)
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3. S follows the protocol: it flips a random coin ci ∈ {0, 1}, computes b̃i
accordingly and sends b̃i and gyix

′′
i to A.

4. S continues to interact with A to complete the phase. Note that
even knowing k and λ the adversary cannot distinguish valid and
fake tokens, while S can tell that the valid tokens in bi are equal to:

Aȳ1·y
′′
1 (x̄1+x′′

1 +k) · T ȳ1·y
′′
1 for v1, (39)

Aȳ2·y
′′
2 (x̄2+x′′

2 +k) · T−ȳ2·y
′′
2 for v2, (40)

while the fake tokens are equal to:

Aȳ1·y
′′
1 (x̄1+x′′

1 +λ) · T ȳ1·y
′′
1 for v1, (41)

Aȳ2·y
′′
2 (x̄2+x′′

2 +λ) · T−ȳ2·y
′′
2 for v2. (42)

Note that if T = gab then the simulator S gives a perfect simulation.

• Phase 1. The adversary chooses some voters i, 3 ≤ i ≤ N and casts their
votes.

• Challenge. S flips a coin µ, and sends the tokens accordingly, as described
in Definition 13.

• Phase 2. Trivial as Phase 1.

• Tallying. Without loss of generality, only the vis with 1 ≤ i ≤ T voted.
For 3 ≤ i ≤ T , S can follow the protocol. S carries on the simulation as
follows:

1. S computes and proves the correctness of the preliminary votes fol-
lowing the protocol without problems. In fact, for i, l ∈ {1, 2}, we
have that

α′l
y′i

=
aᾱl
aȳi

=
ᾱl
ȳi

∀l ∈ [M ], (43)

and these values are known to S.

2. Conversely S can ask A to prove that the values tl,i are correct, and
therefore extract the values α′′

l

y′′i
, and compute α′′l , since the values y

′′
i

have already been extracted from A.

3. S computes and publishes

gα1 = Aᾱ1α
′′
1 , gα1k = Aᾱ1α

′′
1 k, gα1λ = Aᾱ1α

′′
1 λ (44)

Since the simulator does not know the actual value of ω = α′1 to use
in the proof of gα1 , then S has to simulate the Schnorr protocol (pos-
sible thanks to Corollary 1). The other two proofs can be performed
normally since k and λ are known.
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4. S can compute:
T∑
i=1

x′i = x̄1 + x̄2 +

T∑
i=3

x′i, (45)

so for the rest of the tallying phase S follows the protocol. In partic-
ular notice that, for l ∈ {1, 2}:

T∏
i=1

tl,i = Aᾱlα
′′
l (x̄1+x̄2+x′′

1 +x′′
2 +

∑T
i=3 xi+Rlk+Flλ), (46)

that is T does not appear in the tally, so it is always correct.

• Guess. Eventually the adversary will output a guess µ′ of the coin flip
performed by S during the Challenge. The simulator then outputs 0 to
guess that T = gab if µ′ = µ, otherwise it outputs 1 to indicate that T is
a random group element in G.

Now we consider the case in which the adversary controls A1. In the following
we describe the differences from the first simulation.

• Setup. The simulator chooses uniformly at random in Z∗p the values
x̄1, x̄2, ȳ1, ȳ2, ᾱ1, ᾱ2, then it chooses uniformly at random y′′i , x

′′
i for

3 ≤ i ≤ N .
Finally S implicitly sets:

x′′1 = x̄1 + b, x′′2 = x̄2 − b, (47)
y′′1 = a · ȳ1, y′′2 = a · ȳ2, (48)
α′′1 = a · ᾱ1, α′′2 = a · ᾱ2 (49)

Notice that in the improbable case where a = 0 the DDH problem is easily
solvable (ga = gab = 1), otherwise since a and b come from an uniform
distribution, then also these implicit values are uniform distributed, so
the choices of the simulator are indistinguishable from a real protocol
execution. Note also that S can compute the values gx

′
1 , gx

′
2 , gy

′
1 , gy

′
2 , gα

′
1 ,

gα
′
2 as follows:

gx
′′
1 = gx̄1 ·B, gx

′′
2 = gx̄2 ·B−1, (50)

gy
′′
1 = Aȳ1 , gy

′′
2 = Aȳ2 , (51)

gα
′′
1 = Aᾱ1 , gα

′′
2 = Aᾱ2 , (52)

while the other values can be computed following the protocol, so S per-
fectly simulates the actions that A1 would perform in the setup phase.

• Registrar Phase. For i ∈ {1, 2} the simulation is carried on as follows:

1. From the ZKPs that A has to perform on behalf of A1, S extracts
the values x′i, y′i, k, λ.
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2. S computes:

gy
′′
1 ·x

′′
1 = Aȳ1·x̄1T ȳ1 , (53)

gy
′′
2 ·x

′′
2 = Aȳ2·x̄2T−ȳ2 . (54)

3. Without loss of generality suppose that ci ⊕ c′i = 0 (i.e. the valid
token is in first position), then S computes the final ballots as:

b1 =
(
Ay

′
1·ȳ1(x′

1+x̄1+k) · T y
′
1·ȳ1 , Ay

′
1·ȳ1(x′

1+x̄1+λ) · T y
′
1·ȳ1
)
, (55)

b2 =
(
Ay

′
2·ȳ2(x′

2+x̄2+k) · T y
′
2·ȳ2 , Ay

′
2·ȳ2(x′

2+x̄2+λ) · T−y
′
2·ȳ2
)
. (56)

Again, note that if T = gab then the simulator S gives a perfect simulation.

• Tallying. For l, i ∈ {1, 2}, S carries on the simulation as follows:

1. S extracts from the ZKPs of the preliminary votes the values α′
l

y′i
, and

compute α′l, since the values y′i have already been extracted from A,
and therefore compute αl also.

2. S computes and proves the correctness of the final votes following the
protocol without problems. In fact, for i, l ∈ {1, 2}, we have that

α′′l
y′′i

=
aᾱl
aȳi

=
ᾱl
ȳi

∀l ∈ [M ], (57)

and these values are known to S.
3. S can compute:

T∑
i=1

x′′i = x̄1 + x̄2 +

T∑
i=3

x′′i , (58)

so for the rest of the tallying phase S follows the protocol. In partic-
ular notice that, for l ∈ {1, 2}:

T∏
i=1

tl,i = Aα
′
lᾱl(x

′
1+x′

2+x̄1+x̄2+
∑T
i=3 xi+Rlk+Flλ), (59)

that is T does not appear in the tally, so it is always correct.

The steps omitted are either identical to the first simulation, or can be performed
following the protocol because the simulator knows all the necessary values.

In both cases, when T is not random the simulator S gives a perfect simula-
tion, this means that the advantage is preserved and so it holds that:

P[S(g,A,B, T = gab) = 0] =
1

2
+ ε. (60)

On the contrary when T is a random element R ∈ G, every token and vote
belonging to the free voters becomes independent from from the values that
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would have been computed following the protocol (since they are simulated
using the random value R), so A can gain no information about the votes from
them, while the tallying is always correct. Since the security game is structured
in such a way that the tallying and the token and votes of the other voters
(i.e. the values where T is not used in the computation by S) do not give any
information about the coin flip µ, then we have:

P[S(g,A,B, T = R) = 0] =
1

2
. (61)

Therefore, S can play the DDH game with non-negligible advantage ε
2 . As

already mentioned, when T is not random the simulator S gives a perfect simu-
lation in both cases, this means that the advantage is preserved and so it holds
that:

P[S(g,A,B, T = gab) = 0] =
1

2
+ ε. (62)

On the contrary when T is a random element R ∈ G the adversary gains no
information, so:

P[S(g,A,B, T = R) = 0] =
1

2
. (63)

Therefore, S can play the DDH game with non-negligible advantage ε
2 .

4.2 General properties of the protocol
In this section we prove that the protocol described in Section 3.1 satisfies the
general properties of a vote system introduced in Section 2.5.

Proposition 4 (Correctness). If the underlying blockchain is append-only,
checks the authorization of transactions, accepts only valid votes, and prevents
double spending of tokens (as described in Section 2.4), then the protocol is
correct, as per Definition 6.

Proof. This property derives directly from the properties of the underlying
blockchain: since it is append-only cast votes cannot be altered or erased, and
the tokens of an uncoerced voter cannot be spent by an adversary since the
consensus rule accepts only properly authorized transactions. Moreover, the
consensus rules assure that only valid votes are cast, and prevents any voter to
vote twice.

Proposition 5 (Fairness). If the DDH assumption holds, then the protocol is
fair, as per Definition 7.

Proof. Thanks to Theorem 1, if the DDH assumption holds the protocol has
vote-indistinguishability. Therefore, the votes cast do not reveal how many
preferences each candidate has received until they are processed by the author-
ities, and this does not happen until the voting phase has ended. Even the
processed votes do not reveal such information until the tallying values gαl

∑
xi

are published by the authorities in the steps 2 and 4 of tallying, at which point
the end results are computable by anyone and therefore public.
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Proposition 6 (Transparency). If the underlying blockchain is public (as de-
scribed in Section 2.4), then the protocol is transparent, as per Definition 8.

Proof. Since the mathematical background of the whole process is public, ev-
eryone can audit it, so every part can be understood. If the blockchain is public
then anyone can check the progress of the voting processes.

Proposition 7 (Privacy). If the DDH assumption holds, the underlying blockchain
is public and append-only (as described in Section 2.4), then the protocol is pri-
vate, as per Definition 9.

Proof. Thanks to Theorem 1, if the DDH assumption holds the protocol has
vote-indistinguishability, so a vote (even processed for the tallying) does not
reveal the preference expressed by the voter, it only reveals that this voter
actually voted (note that in normal elections this information is often public).
Moreover, if the protocol uses pseudonymous wallets that can not be linked to
the real identity of the voter then the privacy is completely preserved.

Proposition 8 (Verifiability). If the DDH assumption holds, and the blockchain
is public, then the protocol is verifiable, as per Definition 10.

Proof. Since the blockchain is public, anyone can check that every vote has been
cast correctly by browsing the blockchain ledger. Moreover, anyone can see the
processed votes received by the candidates and count the preferences using the
values published by the authorities during the tallying. If the DDH assuption
holds the Zero-Knowledge proofs allow everyone to do a consistency check of
the computations performed at every step, so universal verifiability holds.

Similarly, the ZKP performed during the Registrar phase allow the voters
to verify which of their tokens is valid, then analyzing the blockchain and the
tallying values can check that their preferences have been correctly expressed
and counted in the final result.

Proposition 9 (Vote-Selling and Coercion Resistance). If the DDH assump-
tion holds, then the protocol is vote-selling and coercion resistant, as per Defi-
nitions 11 and 12.

Proof. Thanks to Theorem 1, if the DDH assumption holds the protocol has
vote-indistinguishability, and the only way to distinguish the proper votes is
to distinguish valid and fake tokens. The voter can do so with the additional
information ζ = ci⊕c′i (i.e. the coin flips that shuffle the ballot during its gener-
ation), that is known only to the voter since the ballot generation is performed
in a safe environment. Note that ζ ∈ {0, 1} and both values are admissible and
equiprobable, thus the voter can easily fabricate a value ζ ′ that possibly flips the
vote to fake compliance with the coercer’s choice. Thus, any value obtainable
by a third party cannot certify that the voter expressed a particular preference,
disallowing both vote-selling and vote-coercion.
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5 Generalization to multiple candidates
The protocol presented here is limited to the case of two candidates, however
the same approach can be generalized to elections with multiple candidates, but
extra care is required in ballot creation.

WithM > 2 distinct candidates, the ballot bi must comprehendM v-tokens,
one valid and the others fake. This means that there are multiple fake tokens
with the same (xi + λ), so the voter masks yi must become lists (yi,1, . . . , yi,M )
with yi,l 6= yi,l′ for all l 6= l′ ∈ {1, . . . ,M} in order to properly conceal fake
tokens.

This obviously complicates the shuffling of ballots, but with the introduction
of a third authority and the addition of a couple of rounds in the Registrar phase
it is possible to construct a generalization of the protocol that securely supports
multiple candidates, with a computational cost that scales linearly with the
number of candidates.

We are currently finalizing its construction and security proofs. We are
confident in our construction since a preliminary version of this voting protocol,
including the generalization to multiple candidates, has been developed complete
with the security proofs, for the MSC thesis [26] of the first author (supervised
by the other two authors).

Finally, note that with a multiple-candidate protocol we allow voting with
a blank ballot, simply by adding a dummy candidate that represents a blank
choice.

6 Conclusions and final remarks
In the protocol proposed here, an underlying blockchain infrastructure and a
system of ZKPs ensure transparency and full auditability of the whole process.
In fact, every computation involving secret material is proved correct, and the
public ledger given by the blockchain assures immutability of the past and a
public trail.

Although this system can be implemented on any blockchain, one should note
that the most common solutions require a sizeable amount of cryptocurrency
to run the protocol (e.g. for initialising and transferring the voting tokens).
In our application context, these costs could discourage voters to express their
preferences, so an ad-hoc ledger is probably preferable.

The protocol also achieves extensive security properties, including coercion
and vote-selling resistance, while retaining receipts. Indeed, our approach dis-
guises valid and fake votes, which remain indistinguishable even after tallying
and even considering a corrupt authority. Since only the actual voter can access
the authenticated and secure environment in which the tokens are proven valid
or false, and the proof transcript can be forged to state anything (as per Zero-
Knowledge properties), then no one else can be sure that a token is actually
valid or fake. This means that the voter cannot sell the vote and adversaries
cannot coerce a specific vote, unless they are content with expressing a random
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preference.
The passage through a secure and authenticated environment is quite of a

trouble, but to the best of our knowledge there is no other way to achieve co-
ercion resistance, since we need a moment in which voter and adversary are
separated. However, compared to traditional voting booths the trouble is ar-
guably reduced: in fact the Registrar phase could begin many months before
the election and last until voting ends, giving voters much more flexibility.

The work carried on by the two authorities is essential to the execution of the
protocol, so it may seem vulnerable to DOS attacks. However, the Setup and
Registrar phases can be executed well ahead of the election. Moreover, the Setup
can be done asynchronously by the two authorities, and the Registrar phase can
last a long time, and since it is infeasible to sustain an effective DOS attack for
extended periods of time, the voters should have ample opportunities to register
themselves. Note also that the authorities are not involved in the Voting phase,
which (relying on the decentralised blockchain) is difficult to disrupt on a large
scale. In the end, as long as the authorities are able to eventually go online for
tallying, we can get the election results.

This work considers two authorities for the sake of exposition clarity. In a
real case scenario, the work of these two authorities can be divided between
various pairs of independent authorities, each managing a restricted pool of
voters (like a voting district). These authorities do not need to share anything:
all of them can compute the result of the elections in their own way and then
share just the number of valid votes received in that district. This approach
limits the damage in case both authorities are corrupted, speeds up the final
step of tallying (whose computational cost is linear in the number of votes), and
enhances the overall efficiency distributing the workload.
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