
Inverse-Sybil Attacks in Automated Contact Tracing

Benedikt Auerbach∗∗, Suvradip Chakraborty∗, Karen Klein∗, Guillermo Pascual-Perez††,
Krzysztof Pietrzak∗, Michael Walter∗, and Michelle Yeo†

IST Austria, Klosterneuburg, Austria
{bauerbac, schakrab, kklein, gpascual, pietrzak, mwalter, myeo}@ist.ac.at

March 12, 2021

Abstract

Automated contract tracing aims at supporting manual contact tracing during pandemics by alerting
users of encounters with infected people. There are currently many proposals for protocols (like the
“decentralized” DP-3T and PACT or the “centralized” ROBERT and DESIRE) to be run on mobile
phones, where the basic idea is to regularly broadcast (using low energy Bluetooth) some values, and at
the same time store (a function of) incoming messages broadcasted by users in their proximity. In the
existing proposals one can trigger false positives on a massive scale by an “inverse-Sybil” attack, where a
large number of devices (malicious users or hacked phones) pretend to be the same user, such that later,
just a single person needs to be diagnosed (and allowed to upload) to trigger an alert for all users who
were in proximity to any of this large group of devices.

We propose the first protocols that do not succumb to such attacks assuming the devices involved in
the attack do not constantly communicate, which we observe is a necessary assumption. The high level
idea of the protocols is to derive the values to be broadcasted by a hash chain, so that two (or more)
devices who want to launch an inverse-Sybil attack will not be able to connect their respective chains
and thus only one of them will be able to upload. Our protocols also achieve security against replay,
belated replay, and one of them even against relay attacks.

∗Funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation
programme (682815 - TOCNeT)
†Funded by the European Union’s Horizon 2020 research and innovation programme under the Marie SkodowskaCurie Grant

Agreement No.665385.

1

Contents

1 Introduction 3
1.1 Automated Contact Tracing . 3
1.2 False Positives . 3

1.2.1 Replay Attacks . 3
1.2.2 Relay Attacks . 4
1.2.3 Inverse-Sybil Attacks . 4
1.2.4 Modeling Inverse-Sybil Attacks . 5
1.2.5 On the Assumption that Devices Can’t Communicate 6
1.2.6 Using Hash Chains to Prevent Inverse-Sybil Attacks 6
1.2.7 The Privacy Cost of Hash Chains . 7

2 Protocol 1: Decentralized, Non-Interactive Exchange 7
2.1 Toy Protocol . 7

2.1.1 Security . 8
2.1.2 Correctness . 9
2.1.3 Privacy . 9

2.2 Description of Protocol 1 . 9
2.2.1 Efficiency . 11
2.2.2 Epochs . 11
2.2.3 Correctness . 12
2.2.4 Privacy . 12
2.2.5 Security . 12

3 Security of Protocol 1 12
3.1 Security Game . 13
3.2 Security of Protocol 1 . 14

4 Protocol 2: Decentralized, Using Location for Chaining 15
4.1 Protocol Description . 15
4.2 Correctness, Privacy and Epochs . 16

4.2.1 Correctness . 16
4.2.2 Epochs . 17
4.2.3 Privacy . 17

5 Security of Protocol 2 18
5.1 Security Against Replay and Relay Attacks . 18
5.2 Security Against Inverse-Sybil Attacks . 18

5.2.1 A Weaker Security Model . 18
5.2.2 Security Proof . 18

A Protocol 1 With Efficient Risk-evaluation 21

2

1 Introduction

1.1 Automated Contact Tracing

One central element in managing the current Covid-19 pandemic is contact tracing, which aims at identifying
individuals who were in contact with diagnosed people so they can be warned and further spread can be
prevented. While contact tracing is done mostly manually, there are many projects which develop automated
contact tracing tools leveraging the fact that many people carry mobile phones around most of the time.

While some early tracing apps used GPS coordinates, most ongoing efforts bet on low energy Bluetooth
to identify proximity of devices. Some of the larger projects include east [2, 9] and west coast PACT [11],
Covid Watch [1], DP-3T [16], Robert [5], its successor Desire [10] and Pepp-PT [3]. Google and Apple [4]
released an API for Android and iOS phones which solves some issues earlier apps had (in particular, using
Bluetooth in the background and synchronising Bluetooth MAC rotations with other key rotations). As this
API is fairly specific its use is limited to basically the DP-3T protocol.

In typical contact-tracing schemes users broadcast messages to, and process messages received from other
users in close proximity. If a user is diagnosed she prepares a report message and sends it to the backend
server. The server uses the message to generate data which allows other users in combination with their
current internal state to evaluate whether they were in contact with an infected person.

Coming up with a practical protocol is challenging. The protocol should be simple and efficient enough
to be implemented in short time and using just low energy Bluetooth. As the usage of an app should be
voluntarily, the app should provide strong privacy and security guarantees to not disincentivize people
from using it.

1.2 False Positives

One important security aspect is preventing false positives, that is, having a user’s device trigger an alert
even though she was not in proximity with a diagnosed user. Triggering false positives cannot be completely
prevented, a dedicated adversary will always be able to e.g. ”borrow” the phone of a person who shows
symptoms and bring it into proximity of users he wants to get alerted. What is more worrying are attacks
which either are much easier to launch or that can easily be scaled. If such large scale attacks should happen
they will likely undermine trust and thus deployment of the app. There are individuals and even some
authoritarian states that actively try to undermine efforts to contain the epidemic, at this point mostly by
disinformation,1 but potential low-cost large-scale attacks on tracing apps would also make a worthy target.

Even more worrying, such attacks might not only affect the reputation and thus deployment of the app,
but also external events like elections; Launching false alerts on a large scale could keep a particular electorate
from voting.2

1.2.1 Replay Attacks

One type of such attack are replay attacks, where an adversary simply records the message broadcasted by
the device of a user Alice, and can later replay this broadcast (potentially after altering it) to some user Bob,
such that Bob will be alerted should Alice report sick. Such an attack is clearly much easier to launch and
scale than “borrowing” the device of Alice. One way to prevent replay attacks without compromising privacy
but somewhat losing in efficiency and simplicity is by interaction [17] or at least non-interactive message
exchange [10, 7]. The Google-Apple API [4] implicitly stores and authenticates the epoch of each encounter
(basically, the time rounded to 15 minutes) to achieve some security against replay attacks, thus giving up
a lot in privacy to prevent replaying messages that are older than 15 minutes. This still leaves a lot of room
for replays, in particular if combined with relaying messages as discussed next. A way to prevent replay
attacks by authenticating the time of the exchange without ever storing this sensitive data, termed “delayed

1 https://www.aies.at/download/2020/AIES-Fokus-2020-03.pdf
2https://www.forbes.com/sites/michaeldelcastillo/2020/08/27/google-and-apple-downplay-possible-election-

threat-identified-in-their-covid-19-tracing-software

3

https://www.aies.at/download/2020/AIES-Fokus-2020-03.pdf
https://www.forbes.com/sites/michaeldelcastillo/2020/08/27/google-and-apple-downplay-possible-election-threat-identified-in-their-covid-19-tracing-software
https://www.forbes.com/sites/michaeldelcastillo/2020/08/27/google-and-apple-downplay-possible-election-threat-identified-in-their-covid-19-tracing-software

authentication”, was suggested in [15]. Iovino et al. [14] show that the Google-Apple API also succumbs to
so called belated replay attacks. That is, adversaries that are able to control the targeted device’s internal
clock can trigger false positives by replaying report messages already published by the server.

1.2.2 Relay Attacks

Even if replay attacks are not possible (e.g. because one uses message exchange [17, 10, 7] or a message can
only trigger an alert if replayed right away [15]) existing schemes can still succumb to relay attacks, where
the messages received by one device are sent to some other device far away, to be replayed there. This attack
is more difficult to launch than a replay attack, but also more difficult to protect against. The only proposals
we are aware of which aim at preventing them [17, 13, 15] require some kind of location dependent value like
coarse GPS coordinates or cell tower IDs.

1.2.3 Inverse-Sybil Attacks

While replay and relay attacks on tracing apps have already received some attention, “inverse-Sybil” attacks
seem at least as devastating but have attained little attention so far. In such attacks, many different devices
pretend to be just one user, so that later it’s sufficient that a single person is diagnosed and can upload its
values in order to alert all users who were in proximity to any of the many devices. The devices involved
in such an attack could belong to malicious covidiots, or to honest users whose phones got hacked. In
this work we propose two protocols that do not succumb to inverse-Sybil attacks. Below we first shortly
discuss how such attacks affect the various types of tracing protocols suggested, the discussion borrows from
Vaudenay [18], where this attack is called a “terrorist attack”. The attacks are illustrated in Figure 1.

Decentralized. In so called decentralized schemes like DP-3T [16], devices regularly broadcast ephemeral
IDs derived from some initial key K, and also store IDs broadcasted by other devices in their proximity.
If diagnosed, the devices upload their keys K to a backend server. The devices daily download keys
of infected users from the server and check if they have locally stored any of the IDs corresponding to
those keys. If yes, the devices raise an alert.3

It’s particularly easy to launch an inverse-Sybil attack against decentralized schemes, one just needs
to initialize the attacking devices with the same initial key K.

Centralized. Centralized schemes like Robert [5] and CleverParrot [8] are similar, but here an infected user
uploads the received (not the broadcasted) IDs to the server, who then informs the senders of those
broadcasts about their risk. To launch an inverse-Sybil attack against such schemes the attacking
devices don’t need to be initialized with the same key, in fact, they don’t need to broadcast anything
at all. Before uploading to the server, the attacker simply collects the messages received from any
devices he gets his hands on, and uploads all of them.

As in centralized schemes the server learns the number of encounters, he can set an upper bound on the
number of encounters a single diagnosed user can upload, which makes an inverse-Sybil attack much
less scalable.

Non-interactive exchange. Schemes including Desire [10] and Pronto-C2 [7] require the devices to ex-
change messages (say X and Y) at an encounter, and from these then compute a shared token
S = f(X,Y).4

3This oversimplifies things, in reality a risk score is computed based on the number, duration, signal strength etc., of the
encounters, which then may or may not raise an alert. How the risk is computed is of course crucial, but not important for this
work.

4In Desire it’s called a “private encounter token” (PET), and is uploaded to the server for a risk assessment (so it’s a more
centralized scheme), while in Pronto-C2 only diagnosed users upload the tokens, which are then downloaded by all other devices
to make the assessment on their phones (so a more decentralized scheme).

4

In Desire and Pronto-C2 the token is derived by a non-interactive key exchange (NIKE), concretely, a
Diffie-Hellman exchange X = gx, Y = gy, S = gxy. The goal is to prevent a user who passively records
the exchange to learn S.

Our first protocol also uses an exchange, but for a different goal, and for us it’s sufficient to just use
hashing S = H(X,Y) to derive the token.

The inverse-Sybil attack as described above also can be launched against schemes that use a non-
interactive exchange, but now the attack devices need to be active (i.e., broadcast, not just record)
during the attack also for centralized schemes like Desire.

bob1 A1 bob2 A2A0 A3

bob1 A1 bob2 A2A0 A3 bob1 A1 bob2 A2 A3 bob1 A1 bob2 A2 A3

Decentralized (DP-3T, Google-Apple API) Centralized (ROBERT) Non-interactive exchange (Desire, Pronto C2)

eid, eid′ computed from sk

sk

eid eid′

sk

sk

eid eid′
eid eid′

eid
eid′

A1,A2 just record, no broadcast needed

x
y

y′

x′
f(x′,y′)

f(x,y)
f(x,y),f(x′,y′)

f(x,y)
f(x′,y′)

f(X,Y) can be hash(X,Y) or
gxy where X = gx, Y = gy

Figure 1: (top) Illustration of a successful inverse-Sybil attack: both
bobs trigger an alert even though they interacted with different devices
A1,A2. (bottom) The attacks on the various protocol types outlined in
§1.2.3.

While recently formal models of integrity properties of contact tracing schemes have been proposed, they
either do not consider inverse-Sybil attacks [12], or only do so in the limited sense of imposing upper bounds
on the number of alerts a single report message to the server can trigger [8].

1.2.4 Modeling Inverse-Sybil Attacks

We first discuss a simple security notion for inverse-Sybil attacks that considers an adversary which consists
of four parts (A0,A1,A2,A3) where

• A0 chooses initial states for A1,A2.

• A1 and A2 interact with honest devices bob1 and bob2.

• A1 and A2 pass their state to A3.

• A3 is then allowed to upload some combined state to the backend server (like a diagnosed user).

5

• The adversary wins the game if both, bob1 and bob2, raise an alert after interacting with the backend
server.

The notions we achieve for our actual protocols are a bit weaker, in particular, in Protocol 1 the adversary
can combine a small number of received random beacons from two devices (basically the encounters in the
first epoch) and in our Protocol 2 we need to assume that the locations of the devices in the future are not
already known when the attack starts.

1.2.5 On the Assumption that Devices Can’t Communicate

Let us stress that in the security game above we do not allow A1 and A2 to communicate. The reason is
that a successful inverse-Sybil attack seems unavoidable (while preserving privacy) if such communication
was allowed: A1 can simply send its entire state to A2 after interacting with bob1, who then interacts with
bob2. The final state of A2 has the distribution of a single device C first interacting with bob1 then with
bob2, and if this was the case we want both bobs to trigger an alert, this is illustrated in Figure 2. Thus,
without giving up on privacy (by e.g. storing location data and checking movement patterns), presumably
the best we can hope for is a protocol which prevents an inverse-Sybil attack assuming the devices involved
in the attack do not communicate. Such an assumption might be justified if one considers the case where

bob1 A1 bob2 A2A0 A3 bob1 C bob2

∼
encounter

encounter

upload
(if diagnosed)

check risk/alert

Figure 2: If the attacking devices A1,A2 could communicate during the
attack (arrow in red), they can emulate the transcript (shown in green)
of a single honest device C interacting with bob1, bob2 and the server.
As such a C can make both bobs trigger an alert by running the honest
protocol, the adversary can always win the game.

the attack is launched by hacked devices, as such communication might be hard or at least easily detectable.
If we can’t exclude communication, we note that the security of our schemes degrades gracefully with the

frequency in which such communication is possible. Basically, in our first protocol, at every point in time at
most one of the devices will be able to have interactions with other devices which later will trigger an alert,
and moving this “token” from one device to another requires communication between the two devices. In
our second protocol the token can only be passed once per epoch, but on the downside, several devices can
be active at the same time as long as they are at the same location dependent coordinate.

Only under very strong additional assumptions, in particular if the devices run trusted hardware, inverse-
Sybil attacks can be prevented in various ways, even if the devices can communicate.

1.2.6 Using Hash Chains to Prevent Inverse-Sybil Attacks

Below we outline the two proposed protocols which do not succumb to inverse-Sybil attacks. The basic idea
is to force the devices to derive their broadcasted values from a hash chain. If diagnosed, a user will upload
the chain to the server, who will then verify it’s indeed a proper hash chain.

The main problem with this idea is that one needs to force the chains of different attacking devices
to diverge, so later, when the adversary can upload a chain, only users who interacted with the device

6

creating that particular chain will raise an alert. To enforce diverting chains, we will make the devices infuse
unpredictable values to their chains. We propose two ways of doing this, both protocols are decentralized
(i.e., the risk assessment is done on the devices), but it’s straightforward to change them to centralized
variants.

Protocol 1 (§ 2, decentralized, non-interactive exchange) The basic idea of our first proposal is to
let devices exchange some randomness at an encounter, together with the heads of their hash chains.
The received randomness must then be used to progress the hash chain. Should a user be diagnosed
and her hash-chain is uploaded, the other device can verify that the randomness it chose was used to
progress that chain from the head it received. A toy version of this protocol is illustrated in Figure 3
(the encounter) and 4 (report and alert).

Protocol 2 (§ 4, decentralized, location based coordinate) Our second protocol is similar to simple
protocols like the unlinkable DP-3T, but the broadcasted values are derived via a hash-chain (not
sampled at random). We also need the device to measure some location dependent coordinate with
every epoch which is then infused to the hash chain at the end of the epoch. Apart from the need of a
location dependent coordinate, the scheme is basically as efficient as the unlinkable variant of DP-3T.
In particular, no message exchanges are necessary and the upload by a diagnosed user is linear in the
number of epochs, but independent of the number of encounters. This comes at the cost of weaker
security against inverse-Sybil attacks compared to Protocol 1, since we need the location coordinate
to be unpredictable for the protocol to be secure, cf. Figure 10.

1.2.7 The Privacy Cost of Hash Chains

In our protocols diagnosed users must upload the hash chain to the backend server, that then checks if the
uploaded values indeed form a hash chain. This immediately raises serious privacy concerns, but we’ll argue
that the privacy cost of our protocols is fairly minor; apart from the fact that the server can learn an ordering
of the uploaded values (which then would give some extra information should the server collude with other
users), the protocols provide the same privacy guarantees as their underlying protocols without the chaining
(which do not provide security against inverse-Sybil attacks).

2 Protocol 1: Decentralized, Non-Interactive Exchange

In this section we describe our first contact tracing protocol using hash chains which does not succumb to
inverse-Sybil attacks. To illustrate the main idea behind the protocol, in Section 2.1 we’ll consider a toy
version of the protocol which assumes a (unrealistic) restricted communication model. We will then describe
and motivate the changes to the protocol required to make it private and correct in a general communication
model.

2.1 Toy Protocol

The description of our toy protocol is given below, its broadcast/receive phase is additionally depicted in
Figure 3, and its report/evaluate phase in Figure 4. To analyze it, we’ll make the (unrealistic) assumptions
that all parties proceed in the protocol in a synchronized manner, i.e., messages between two parties are
broadcast and received at the same time, and consider a setting where users meet in pairs: a broadcasted
message from user A is received by at most one other user B, and in this case also A receives the message
from B.

• (setup) Users sample a genesis hash value h1 and set the current head of the hash chain to h ← h1.
Then they initialize empty lists Lrep and Leval which are used to store information to be reported to
the backend server in case of infection or used to evaluate whether contact with an infected person
occurred, respectively.

7

Alice Bob

// hA current hash value // hB current hash value

ρA ←$ {0, 1}r ρB ←$ {0, 1}r

hA, ρA

hB , ρB

store (hA, ρB) in Lrep
A store (hB , ρA) in Lrep

B

store (hB , ρA) in Leval
A store (hA, ρB) in Leval

B

hA ← H(hA, ρB) hB ← H(hB , ρA)

Figure 3: Broadcast/receive phase of the toy protocol.

Alice Server Bob

// L
rep

report list // L
ser

server list // L
eval

evaluation list

. report infection .

Lrep

((h1, ρ1), . . . , (hn, ρn))← Lrep

for i in {1, . . . , n− 1}
if hi+1 6= H(hi, ρi)

reject report
Lser ← Lser ∪ Lrep

. evaluate risk .

Lser

if Lser ∩ Leval 6= ∅
return “contact”

return “no contact”

Figure 4: Report/risk-evaluation phase of the toy protocol.

• (broadcast) In regular intervals each user samples a random string ρ←$ {0, 1}r and broadcasts the
message (h, ρ) where h is the current head of the hash chain.

• (receive broadcast message) When Alice with current hash value hA receives a message (hB , ρB) from
Bob she proceeds as follows. She appends the pair (hA, ρB) to Lrep and stores (hB , ρA) in Leval. Then
she computes the new head of the hash chain as hA ← H(hA, ρB).

• (report message to backend server) When diagnosed users upload the list Lrep = ((h1, ρ1), . . . , (hn, ρn))
to the server. The server verifies that the uploaded values indeed form a hash chain, i.e., that hi+1 =
H(hi, ρi) for all i ∈ {1, . . . , n−1}. If the uploaded values pass this check the server includes all elements
of Lrep to the list Lser.

• (evaluate infection risk) After downloading Lser from the server users check whether Lser contains any
of the hash-randomness pairs stored in Leval. If this is the case they assume that they were in contact
with an infected party.

2.1.1 Security

The toy protocol does not succumb to inverse-Sibyl attacks. In Section 3 we provide a formal security model
for inverse-Sybil attacks and give a security proof for the full protocol described in Section 2.2.

8

2.1.2 Correctness

Assume that Alice and Bob met and simultaneously exchanged messages (hA, ρA) and (hB , ρB). Then the
pair (hA, ρB) is stored by Alice in Lrep and by Bob in Leval. If Alice later is diagnosed and uploads Lrep,
Bob will learn that he was in contact with an infected person.

This toy protocol cannot handle simultaneous encounters of more than two parties. For example, assume
both, Bob and Charlie, received Alice’s message (hA, ρA) at the same time. Even if Alice records messages
from both users, it’s not clear how to process them. We could let Alice process both sequentially, say
first Bob’s message as h′A ← H(hA, ρB), and then Charlie’s h′′A ← H(h′A, ρC). Then later, should Alice
be diagnosed and upload (hA, ρB), (h′A, ρC), Charlie who stored (hA, ρC) will get a false negative and not
recognize the encounter.

Our full protocol overcomes this issue by advancing in epochs. The randomness broadcast by other
parties is collected in a pool that at the end of the current epoch is used to extend the hash chain by one
link.

2.1.3 Privacy

The toy protocol is a minimal solution to prevent inverse-Sybil attacks but has several weaknesses regarding
privacy. Below, we discuss some privacy issues of the toy protocol, and how they are addressed in Protocol 1

(i) Problem (Reconstruction of chains): After learning the list Lser from the server, a user Bob is able
to reconstruct the hash chains contained in this list even if the tuples in Lser are randomly permuted:
check for each pair (h, ρ), (h′, ρ′) ∈ Lser if h′ = H(h, ρ) to identify all chain links. If a reconstructed
chain can be linked to a user, this reveals how many encounters this user had. Moreover a user can
determine the position in this chain where it had encounters with this person.
Solution (Keyed hash function): We use a keyed hash function so Bob can’t evaluate the hash function.
Let us stress that this will not improve privacy against a malicious server because the server is given
the hashing key as it must verify the uploaded values indeed form a chain. Leakage of the ordering of
encounters to the server is the price we pay in privacy for preventing inverse-Sybil attacks.

(ii) Problem (Correlated uploads): Parallel encounters are not just a problem for correctness as we discussed
above, but also privacy. If both Bob and Charlie met Alice at the same time, both will receive the
same message (hA, ρA). Bob will then store (hB , ρA) and Charlie (hC , ρA) in their Lrep list. This is
bad for privacy, for example if both, Bob and Charlie, later are diagnosed and upload their Lrep lists,
(at least) the server will see that they both uploaded the same ρA, and thus they must have been in
proximity.
Solution (Unique chaining values): The chaining value (σA in Figure 5 below) in Protocol 1 is not just
the received randomness as in the toy protocol, but a hash of the received randomness and the heads
of the hash chains of both parties. This ensures that all the Lrep lists (containing the chains users will
upload if diagnosed) simply look like random and independent hash chains.

2.2 Description of Protocol 1

We now describe our actual hash-chain based protocol. Unlike the toy protocol it proceeds in epochs. Users
broadcast the same message during the full duration of an epoch and pool incoming messages in a set that
is used to update the hash chain at the beginning of the next epoch. The protocol makes use of three
hash functions H1, H2, and H3. It is additionally parametrized by an integer γ that serves as an upper
limit on the number of contacts that can be processed per epoch. Its formal description is given below. Its
broadcast/receive phase is additionally depicted in Figure 5, and its report/evaluate phase in Figure 6.

• (setup) Alice samples a key kA and a genesis hash value h1. She sets the current head of the hash
chain to h ← h1. Then she initializes empty lists Lrep and Leval which are used to store information
to be reported to the backend server in case of infection or used to evaluate whether contact with an
infected person occurred, respectively.

9

Alice our protocol Other parties

// kA hash key, hA current hash value

// τ, γ, max. time & encounters per epoch

. epoch t .

C ← ∅
ρA ←$ {0, 1}r

hA, ρA

broadcast during full epoch

hB , ρB

σA ← H2(hA, hB , ρB)
C ← C ∪ σA

σ′A ← H2(hB , hA, ρA)
store H3(hB , σ

′
A) in Leval

A

hC , ρC

σA ← H2(hA, hC , ρC)
C ← C ∪ σA

σ′A ← H2(hC , hA, ρA)
store H3(hC , σ

′
A) in Leval

A

...

. if τ seconds passed or |C| = γ .

if C 6= ∅ // progress chain

store (hA, C) in Lrep

hA ← H1(kA, hA, C)

. epoch t+ 1 .

Figure 5: Broadcast/receive phase of Protocol 1

• (broadcast) At the beginning of every epoch Alice samples a random string ρA←$ {0, 1}r and sets C
to the empty set. She broadcasts the message (hA, ρA) consisting of the current head of the hash chain
and this randomness during the full duration of the epoch.

• (receive broadcast message) Let hA denote her current head of the hash chain. Whenever she receives
a broadcast message (hB , ρB) from Bob she proceeds as follows. She computes σA ← H2(hA, hB , ρB)
and adds σA to the set C. Then she computes the value σ′A ← H3(hB , hA, ρA) and stores it in Leval.

• (end of epoch) When the epoch ends (we discuss below when that should happen), Alice appends the
tuple (hA, C) to Lrep and updates the hash chain using C as hA ← H1(kA, hA, C), but for efficiency
reasons only if she received at least one broadcast, i.e., C 6= ∅.

• (report message to backend server) If diagnosed, Alice is allowed to upload her key kA and the list Lrep =
((h1, C1), . . . , (hn, Cn)) to the server. The server verifies that the uploaded values indeed form a hash
chain, i.e., that hi+1 = H(kA, hi, Ci) for all i ∈ {1, . . . , n − 1}. If the uploaded values pass this check
the server updates its list Lser as follows. For every set Ci it adds the hash value H3(hi, σ) to Lser for
all σ ∈ Ci.

10

Alice Server Bob

// L
rep

report list // L
ser

server list // L
eval

evaluation list

// k private key

. report infection. .

k, Lrep

((h1, C1), . . . , (hn, Cn))← Lrep

for i in {1, . . . , n− 1}
if hi+1 6= H1(k, hi, Ci)

reject report // invalid chain

for i in {1, . . . , n}
if |Ci| > γ

reject report // too many encounters

for σ ∈ Ci

store H3(hi, σ) in Lser

. evaluate risk .

Lser

if Lser ∩ Leval 6= ∅
return “contact”

return “no contact”

Figure 6: Report/risk-evaluation phase of Protocol 1

• (evaluate infection risk) After downloading Lser from the server a user Bob will check whether Lser

contains any of the pairs stored in Leval (of the last two weeks say, older entries are deleted). If this is
the case he assumes that he was in proximity to another infected user.

2.2.1 Efficiency

In Protocol 1 the amount of data a diagnosed user has to upload, and more importantly, every other user
needs to download, is linear in the number of encounters a diagnosed user had. In Appendix A we describe
a variant of Protocol 1 where the up and downloads are independent of the number of encounters, but which
has weaker privacy properties.

2.2.2 Epochs

As the hash chain only progresses if the device received at least one message during an epoch, we can choose
fairly short epochs, say τ = 60 seconds, without letting the chain grow by too much, but it shouldn’t be
too short so that we have a successful encounter (i.e., one message in each direction) of close devices within
each sufficiently overlapping epochs with good probability. Choosing a small τ also gives better security
against replay attacks, which are only possible within an epoch. Another advantage of a smaller τ is that it
makes tracing devices using passive recording more difficult as the broadcasts in consecutive epochs cannot
be linked (except retroactively by the server after a user reports). We also bound the maximum number of
contacts per epoch to some γ. We do this as otherwise an inverse-Sybil attack is possible by simply never
letting the attacking devices progress the hash chain. With this bound we can guarantee that in a valid
chain all but at most γ of the encounters must have been received by the same device.

11

2.2.3 Correctness

Consider two parties A and B who meet, and where B receives (hA, ρA) from A, and A receives (hB , ρB)
from B. Then (by construction) B stores H3(hA, σ) ∈ Leval where σ = H2(hA, hB , ρB), while A stores
(hA, C) ∈ Lrep where σ ∈ C. Should A be diagnosed and upload Lrep, B will get a Lser which contains
H3(hA, σ), and thus B will raise a contact alert as this value is in its Leval list.

2.2.4 Privacy

We briefly discuss the privacy of users in various cases (user diagnosed or not, server privacy breached or
not).

Non-diagnosed user. As discussed in §2.1, as we use a keyed hash function a device just broadcasts
(pseudo)random and unlinkable values. Thus, as long as the user isn’t diagnosed and agrees to upload
its Lrep list, the device gets hacked or is seized, there’s no serious privacy risk.

Diagnosed user. We now discuss what happens to a diagnosed user who agrees to upload its Lrep list.

• Server view: As the chaining values are just randomized hashes, from the server’s perspective
the lists Lrep uploaded by diagnosed users just look like random and independent hash chains.
In particular, the server will not see which chains belong to users who had a contact. What the
chains do leak, is the number of epochs with non-zero encounters, and the number of encounters
in each epoch.

• Other users’ view: A user who gets the Lser list from the server only learns the size of this list, and
combined with its locally stored data this only leaks what it should: the size of the intersection
of this list with his Leval list, which is the number of exchanges with devices of later diagnosed
users.

• Joint view of Server and other users: If the view of the server and the data on the device X is
combined, one can additionally deduce where in an uploaded chain an encounter with X happened.

The above discussion assumes an honest but curious adversary,5 once we consider active attacks, tracking
devices, etc., privacy becomes a much more complex issue. Discussions on schemes similar to ours are
in [18, 7, 10]. We will not go into this discussion and rather focus on the main goal of our schemes, namely
robustness against false positives.

2.2.5 Security

As triggering an alert requires that the hash chain includes a value broadcasted by the alerted device,
Protocol 1 does not succumb to replay attacks and belated replay attacks. In the next section we show that,
most importantly, it also is secure against inverse-Sybil attacks.

3 Security of Protocol 1

We now discuss the security of Protocol 1 against inverse-Sybil attacks. As a first observation, note that
two rogue devices could broadcast the same value (h, ρ) in the first epoch, and later combine their respective
lists (h,C1), (h,C2) for this epoch into a report list Lrep = ((h,C = C1 ∪ C2)) and upload it. As it consists
of a single link, Lrep will pass the server’s verification of the hash chain. Thus, assuming that C1 and C2

jointly do not contain more than γ elements, all users who interacted with one of the devices will raise an
alert.

Below we will show that this restricted attack is basically the only possible inverse-Sybil attack against
Protocol 1. In more detail, consider an attack where the adversary initiates a large number of devices

5And some precautions we didn’t explicitly mention, like the necessity to permute the Lser list and let the devices store the
Leval list in a history independent datastructure.

12

ISA=(A0,A1,...,Ak,Ak+1)
γ

(τ1, . . . , τk)←$A0

for i ∈ {1, . . . , k} do

bi ← 0

τ ′i ←$Abobi oracles
i (τi)

Lrep ←$Ak+1(τ ′1, . . . , τ
′
k)

send Lrep to backend server

server processes Lrep, computes Lser

for i ∈ {1, . . . , k} do

ai ← 0

for j ∈ {1, . . . , bi} do

bobi,j evaluates risk w.r.t. Lser

if bobi,j evaluates to “contact”

ai ← ai + 1

if ai1 > 0 and ai2 > 0 for some i1 6= i2 and
∑
i

ai > γ

return 1

else

return 0

bobi setup()

bi ← bi + 1

bobi,bi ←$ setup

return 1

bobi receive(j,m)

if bi < j

return ⊥
run bobi,j receive procedure

return 1

bobi broadcast(j)

if bi < j

return ⊥
m← run bobi,j broadcast procedure

return m

Figure 7: Inverse-Sybil security game

(that cannot communicate during the attack), and later combines their states into a hash chain Lrep =
(h1, C1), (h2, C2), . . . , (hn, Cn) to upload. Assume this upload later alerts users bob1, bob2, . . . , bobt because
they had an encounter with one of the devices. Then, as we show below, with overwhelming probability one
of two cases holds:

1. There was no inverse-Sybil attack, that is, all alerted bob’s encountered the same device.

2. All the encounters of the bobs that trigger an alert are recorded in the same Ci and all other Cj , j 6= i
contain only values that cannot trigger an alert.

While the 2nd point means an inverse-Sybil attack is possible, it must be restricted to an upload which in
total can only contain γ values that will actually raise an alert.

3.1 Security Game

We now give a formal description of the inverse-Sybil security game ISAγ against which Protocol 1 is secure.
The game is given in Figure 7. It is parameterized by an integer γ and defined with respect to adversary A =
(A0,A1, . . . ,Ak,Ak+1), k being the number of independently acting devices used in the attack. AdversaryA0

sets up states to be used by these devices. More precisely, A0 for i ∈ {1, . . . , k} generates initial states τi.
Then Ai is run on input τi. Each Ai has access to three oracles. The jth call to oracle bobi setup sets
up a user bobi,j . Oracle bobi receive on input of index j and message m results in bobi,j receiving and
processing m. Finally, bobi broadcast on input of index j runs bobi,j ’s broadcast procedure and returns the
corresponding message.

At the end of the game A1, . . . ,Ak output states, on input of which Ak+1 generates a single report
message Lrep which in turn is processed by the backend server. Then all bobi,j evaluate their risks status
with respect to the resulting Lser. The attack is considered to have been successful if (a) at least two bobs
that interacted with different Ai raise an alert and (b) the overall number of alerts raised exceeds γ.

13

3.2 Security of Protocol 1

We obtain the following.

Theorem 1. If H1, H2, H3 are modeled as random oracles with range {0, 1}w, any adversary A making at
most a total of q queries to H1, H2, H3 and having at most t interactions with the bobs in total, can win

the ISAγ game against Protocol 1 with probability at most t2+tq
2r + 2q2+2qt+tq(q+t)

2w , where r is the length of the
random values ρ broadcast during the protocol execution.

Proof. Let A = (A0, . . . ,Ak+1) be an adversary that wins the ISAγ game. Note that in order to win, the
adversary must have initiated bobi,j for at least γ + 1 different values (i, j) and made them raise an alert.
Thus, for these (i, j) the report list Lrep = ((h1, C1), . . . , (hn, Cn)) uploaded by Ak+1 must contain C`i,j and
σ`i,j ∈ C`i,j such that H3(h`i,j , σ`i,j) ∈ Leval

bobi,j
.

We will show that with overwhelming probability all values stored in the evaluation lists Leval
bobi,j

are pair-

wise distinct. To this end, recall that the lists Leval
bobi,j

contain hash values of the form H3(hA, H2(hA, hB , ρB)),

where ρB is sampled uniformly at random from {0, 1}r. With probability at least 1−t2/2r all ρB are distinct.
Thus with probability at least (1− t2/2r)(1− q2/2w) all values H2(hA, hB , ρB), are distinct and in turn with
probability at least

(1− t2/2r)(1− q2/2w)2 ≥ 1− t2/2r − 2q2/2w

all values in {Leval
bobi,j

}i,j are distinct.

In turn, as the server when processing Lrep verifies that all C` satisfy |C`| ≤ γ, there must exist `1 < `2
such that C`1 and C`2 contain values resulting in an alert of some bobi,j . Further, A winning the inverse-
Sybil game implies that the i values of at least two bobs raising an alert differ. So there exist i1 6= i2, j1, j2
and σ`1 ∈ C`1 , σ`2 ∈ C`2 such that

H3(h`1 , σ`1) ∈ Leval
bobi1,j1

and H3(h`2 , σ`2) ∈ Leval
bobi2,j2

.

Note that H3(h`1 , σ`1) depends on randomness ρ`1 that was generated by bobi1,j1 and hence is not known
to adversary Ai2 who had to send the value h`2 to bobi2,j2 via oracle bobi2 broadcast(j2). Since the server
verifies that Lrep forms indeed a hash chain under H1, in order to win Ak+1 needs to find inputs to a hash
chain under H1 from some (k, h`1 , C`1) to h`2 , where C`1 contains a value generated independently from h`2 .
If H1, H2 and H3 are random oracles, this is infeasible with polynomially many oracle calls, as we show next.

For i ∈ {0, . . . , k + 1} let Qi denote the queries of Ai to random oracles H1, H2, H3 and qi = |Qi|. For
i ∈ {1, . . . , k} let Ti be the values h′Ai

sent by Ai as part of a query bobi receive(j, (h
′
Ai
, ρ′Ai

)) for some j,
and let ti = |Ti|. Finally, we define Ij = {0, . . . , k} \ {j} and

Qj =
⋃
i∈Ij

Qi ,

i.e. Qj contains all queries made by A except the ones by Aj and Ak+1. We next argue that with over-

whelming probability there is no query (k, h`1 , C`1) to H1 in Qi1 . Recall that C`1 contains a value σ`1 such
that H3(h`1 , σ`1) = σB for some σB = H3(hA, H2(hA, hB , ρB)) ∈ Leval

bobi1,j1
, where ρB is sampled uniformly at

random by bobi1,j1 . Since bobi1,j1 only interacts with Ai1 , with probability at least 1−q/2r there is no query
(hA, hB , ρB) to oracle H2 in Qi1 . Conditioned on no such query being made, since H2 is modeled as a random

oracle, with probability at least 1− q/2w the set Qi1 contains no query of the form (hA, H2(hA, hB , ρB)) to
H3. Finally, as H3 is modeled as a random oracle, in this case σB looks uniformly random to all Ai with
i ∈ Ii1 . Note that Qi1 containing the query (k, h`1 , C`1) to H1 implies that the adversary found a preimage
of σB under H3. Thus, the probability of this event is bounded by q/2w. Summing up, the probability that
(k, h`1 , C`1) is queried to H1 in Qi1 is at most q/2r + 2q/2w.

Assuming that no such query is made, since H1 is modeled as a random oracle, the link hi1+1 of the
hash chain looks uniformly random to all adversaries Ai with i ∈ Ii1 and in particular is independent from
h`2 ∈ Ti2 . So, to construct a hash chain from h`1+1 to h`2 it is necessary that some query in Qi1 ∪Qk+1 \Qi1

14

for H1 collides with one in Ti2 or any of the queries in Qi1 . The probability of this event is at most q(q+t)/2w.
Finally, we get another multiplicative factor of t by taking the union bound over all possible σ`2 resulting in
an upper bound of

t2

2r
+ 2

q2

2w
+ t ·

(
q

2r
+

2q

2w
+
q(q + t)

2w

)
on A’s probability to win game ISAγ .

4 Protocol 2: Decentralized, Using Location for Chaining

In this section we describe our second protocol, which requires that the devices have access to some location
based coordinate. This coordinate is infused into the hash-chain so chains of different devices (at different
coordinates) will diverge, and thus prevent an inverse-Sybil attack. Possible coordinates are coarse grained
GPS location, cell tower IDs or information from IP addresses.

The protocol progresses in epochs (say of τ = 60 seconds), where at the beginning of an epoch the device
samples randomness ρ and its coordinate `. It then broadcasts ρ together with the head h of its hash chain.
If during an epoch at least one message was received, the hash chain is extended by hashing the current head
with a commitment of the location ` using randomness ρ.

4.1 Protocol Description

The protocol makes use of collision resistant hash functions H1 to progress the chain, and a hash function
H2 which is basically used as a commitment scheme (and we use notation H2(m; ρ) to denote it’s used as
commitment for message m using randomness ρ), but we need H2 to be hiding even if the same randomness
is used for many messages. For this it’s sufficient that H2 is collision resistant (for binding), and for a random
ρ, H2(· ; ρ) is a PRF with key ρ.

A formal description of Protocol 2 is given below. The broadcast/receive phase is additionally depicted
in Figure 8, and its report/evaluate phase in Figure 9.

• (setup) Users sample a key k and a genesis hash value h1, and set the current head of the hash chain
to h ← h1. Then they initialize empty lists Lrep and Leval which are used to store information to be
reported to the backend server in case of infection or used to evaluate whether contact with an infected
person occurred, respectively.

• (epoch starts) An epoch starts every τ seconds, and the epoch number t is the number of epochs since
some globally fixed timepoint (say Jan. 1st 2020, 12am CEST). At the beginning of every epoch the
device samples a random string ρ←$ {0, 1}r and retrieves its current coordinate `← get Coordinate.

• (broadcast) During the epoch the device regularly broadcasts the head h of its current chain together
with ρ.

• (receive broadcast message) Whenever the device receives a message (hB , ρB) it computes a com-
mitment to the current coordinate and time (i.e., epoch number t) using the received randomness
σB ← H2(`, t; ρB), and stores the tuple (hB , σB) in Leval.

• (epoch ends) If at the end of the epoch there was at least one message received during this epoch
(contact= 1), the device computes a commitment σ ← H2(`, t; ρ) to its coordinate and time using
randomness ρ, it appends this σ and the head h of the chain to the list Lrep (of values to be reported
in case of being diagnosed), and progresses its hash chain as h← H1(k, h, σ).

• (report message to backend server) If diagnosed users upload their key k as well as the list Lrep =
((h1, σ1), . . . , (hn, σn)) to the server. The server verifies that the uploaded values indeed form a hash
chain, i.e., that hi+1 = H1(k, hi, σi) for all i ∈ {1, . . . , n − 1}. If the uploaded values pass this check
the server updates its list Lser by adding Lrep to it.

15

Alice our protocol Other parties

// kA key

// hA current hash value

. epoch t (t time in τ second units) .

ρA ←$ {0, 1}r

`A ← get Coordinate

hA, ρA

broadcast during full epoch

hB , ρB

contact← 1
store (hB , H2(`A, t ; ρB)) in Leval

A

hC , ρC

store (hC , H2(`A, t ; ρC)) in Leval
A

...

. after τ seconds .

if contact = 1 // progress chain

σA ← H2(`A, t ; ρA)
store (hA, σA) in Lrep

hA ← H1(kA, hA, σA)
contact← 0

. epoch t+ 1 .

Figure 8: Broadcast/receive phase of Protocol 2

• (evaluate risk) After downloading Lser from the server users check whether Lser contains any of the
pairs stored in Leval. If this is the case they assume that they were in contact with an infected party.
As the user learns the size of the intersection, a more sophisticated risk evaluation is also possible.

4.2 Correctness, Privacy and Epochs

4.2.1 Correctness

Consider two devices A and B who measured locations `A and `B and are in epochs tA and tB , and where
A receives (hB , ρB) from B and thus stores (hB , σ = H2(`A, tA; ρB)) in Leval

A . Assume B receives at least
one message during this epoch, then it will store (hB , σ

′ = H2(`B , tB ; ρB)) in its Lrep
B list.

If later B is diagnosed it uploads its Lrep
B list to the server. At its next risk evaluation A will receive Lser

(which now contains Lrep
B) from the server. It will report a contact if Lser ∩ Leval

A 6= ∅ which holds if σ′ = σ
or equivalently

(hB , H2(`B , tB ; ρB) = (hB , H2(`A, tA; ρB))

which is implied by (`A, tA) = (`B , tB). Summing up, in the setting above A will correctly report a contact
if

16

Alice Server Bob

// L
rep

report list // L
ser

server list // L
eval

evaluation list

// k private key

. report infection .

k, Lrep

((h1, σ1), . . . , (hn, σn))← Lrep

for i in {1, . . . , n− 1}
if hi+1 6= H1(k, hi, σi)

reject report
store Lrep in Lser

. .evaluate risk. .

Lser

if Lser ∩ Leval 6= ∅
return ”contact”

return ”no contact”

Figure 9: Report/risk-evaluation phase of Protocol 2

1. A and B are synchronised, i.e., in the same epoch tA = tB .

2. B received at least one message during epoch tB .

3. A and B were at the same locations (i.e., `A = `B) at the beginning of the epoch.

Condition 2. should be satisfied in most cases simply because the fact that A received a message from B
means B should also have received a message from A. This condition only exists because we let the devices
progress their chains only in epochs where encounters happened.6

4.2.2 Epochs

As epochs are synchronized, even if the coordinates of the devices change frequently because the devices are
moving, two devices will still have the same coordinate as long as they were at the same coordinate at the
beginning of an epoch, think of two passengers in a moving train. But we can have a mismatch (and thus
false negative) if two devices meet that were at different coordinates at the beginning of an epoch, e.g., two
people meet at a train station, where at the beginning of the epoch, one person was in the moving train,
while the other was waiting at the platform. To address this problem one should keep the epochs sufficiently
short, in particular, much shorter than the exposure time that would raise an alert.

4.2.3 Privacy

Our Protocol 2 is similar to the unlinkable variant of DP-3T, and thus has similar privacy properties. In
particular, the only thing non-diagnosed users broadcast are pseudorandom and unlinkable beacons. But
there are two privacy issues that arise in our protocol which DP-3T does not have. The first is because we
use chaining, the second because we use coordinates:

6The reason for only progressing if there was an encounter is that this way the chain is shorter (thus there’s less to up and
download), the chain reveals less information (i.e., even the server can’t tell where the empty epochs were) and tracing using
passive recording devices becomes more difficult.

17

1. (Server can link) Even though the beacons broadcasted by a diagnosed user are not linkable by other
users (assuming the server permutes the Lser list before other users can download it), the server itself
can link the beacons (it gets them in order and also the hash key to verify this). So – similar to
Protocol 1 – compared to DP-3T we put more trust in the server concerning this privacy aspect.

2. (Digital evidence) When discussing privacy, one mostly focuses on what information can be learned
about a user. But there’s a difference between learning something, and being able to convince others
that this information is legit. While in decentralized protocols like DP-3T a malicious device can
easily learn when and where an encounter with a later diagnosed user happened by simply storing the
recorded beacons together with the time and location, it’s not clear how the device would produce
convincing evidence linking the uploaded beacon with this time and location.

In a protocol that uses time and location, like our Protocol 2, one can produce such evidence by basically
time-stamping the entire transcript of an encounter (e.g. by posting a hash of it on a blockchain), and
later, when a user is diagnosed and its encounter tokens become public, use this time-stamped data as
evidence of the encounter. This problem already arises when one uses time to prevent replay attacks,
and location to prevent relay attacks as discussed in [15] for details.

5 Security of Protocol 2

5.1 Security Against Replay and Relay Attacks

The protocol is secure against replay, belated replay, and relay attacks in the following sense: Assume Alice
is at location `A and epoch tA, broadcasts (hA, ρA) and thus stores (hA, σA = H2(`A, tA; ρA)) ∈ Lrep. Now,
assume an adversary replays the message with potentially changed randomness (hA, ρ

′
A) to user Bob who

is at a different location and/or epoch (`B , tB) 6= (`A, tA) than Alice was. Bob then stores (hA, σB =
H2(`B , tB ; ρ′A)) ∈ Leval. Should Alice later upload her Lrep list, then the replayed message will trigger a
contact warning for Bob if σA = σB , i.e.,

H2(`A, tA; ρA) = H2(`B , tB ; ρ′A),

and this condition is necessary as long as Leval does not contain a pair (h′A, σ
′
A) with h′A = hA and σ′A 6= σA.

Since the latter happens only with negligible probability, this implies that Bob must break the binding
property of the commitment scheme.

5.2 Security Against Inverse-Sybil Attacks

5.2.1 A Weaker Security Model

Protocol 2 achieves weaker security against inverse-Sybil attacks since there is less interaction: the ran-
domness chosen by the users in Protocol 1 is replaced by location to defend somewhat against inverse-Sybil
attacks. Accordingly, we need to weaken the model in order to prove security. In particular, we cannot let
the adversary have control of the locations, otherwise it can trivially carry out an attack. So we assume
that the locations of the encounters with the bobs follow some unpredictable distributions Pi. The formal
security game weak-ISAP1,P2

can be found in Figure 10. We believe that whenever the location coordinates
are not chosen too coarse, this still implies a meaningful security guarantee.

5.2.2 Security Proof

For Protocol 2 we obtain the following theorem.

Theorem 2. If H1 is modeled as a random oracle, H2 is ε-collision-resistant, and P1,P2 are independent
and have min-entropy at least k, then any adversary A making at most q queries to H1 : {0, 1}∗ → {0, 1}w
and having at most t interactions with the bobs can win the weak-ISAP1,P2

game against Protocol 2 with

probability at most q+1
2k

+ 2q2

2w + ε.

18

weak-IS
A=(A0,A1,A2,A3)
P1,P2

τ1, τ2 ←$A0

for i ∈ {1, 2} do

bobi ←$ setup

τ ′i ←$Abobi oracles
i (τi)

Lrep ←$A3(τ ′1, τ
′
2)

send Lrep to backend server

server processes Lrep, computes Lser

for i ∈ {1, 2} do

bobi evaluates risk w.r.t. Lser

if both bobs evaluate to “contact”

return 1

else

return 0

bobi receive(hA, ρA)

`←$Pi

run bobi receive procedure with coordinate `

return `

bobi broadcast

`←$Pi

run bobi broadcast procedure with coordinate `

return the result and `

Figure 10: Weak inverse-Sybil security game

Proof. Let A = (A0,A1,A2,A3) be an adversary that wins the weak-ISAP1,P2
game with non-negligible

advantage. We assume that the first samples from P1 and P2 are different, which happens with probability
at least 1 − 2−k. Furthermore, since both bobs evaluate to “contact”, we must have that for both of them
Lser ∩ Leval 6= ∅, i.e. Lser contains pairs (hA1

, σA1
) and (hA2

, σA2
) such that during the game bobj received

hAj and ρAj at epoch tj and coordinate `j and it holds σAj = H2(`j , tj ; ρAj), where j ∈ {1, 2}. Then, since
the server verifies the hash chain, we must have that τ3 consists of a key k and a list L of pairs (hi, σi) such
that hi+1 = H1(k, hi, σi) and (hA1

, σA1
), (hA2

, σA2
) ∈ L.

We consider two cases: First, assume case 1) (hA1
, σA1

) = (hA2
, σA2

). Since hA1
= hA2

, either exactly
the same sequence of coordinates were infused into the hash chain to obtain hA1

and hA2
, or A found a

collision for H1 or H2. Furthermore, since σA1 = σA2 either the coordinates where the adversaries Ai meet
the respective bobi coincide as well, or A found a collision for H2. Thus, either the location histories of A1

and A2 coincide, which happens with probability at most 2−k, or A found a collision for H1 or H2, which
happens with probability at most ε+ q2/2w.

Now, let’s assume case 2) (hA1
, σA1

) 6= (hA2
, σA2

). We assume that A does not find a collision for H2,
since this case would already be covered by the upper bound for case 1. W.l.o.g. assume that (hA1 , σA1)
appears before (hA2 , σA2) in L. Note that A2 outputs hA2 without knowing (hA1 , σA1) and P1 has entropy
k. So A3 needs to find inputs to a hash chain from (hA1

, σA1
) that collides with hA2

. Similar to the proof
of Protocol 1, let Qi be the queries of Ai to H1 and qi = |Qi|. Furthermore, let h = H1(k, hA1

, σA1
). Since

(hA1
, σA1

) is not known to A2, we have (k, hA1
, σA1

) /∈ Q0 ∪ Q2 except with probability (q0 + q2)/2k. So
except with this probability h looks uniformly random to A0 and A2, because H1 is modeled as a RO.
Accordingly, h is independent of any of the queries in Q0 ∪ Q2. So constructing a hash chain between h
and any of the values in Q0 ∪ Q2 requires that the value of H1 under some query in Q1 ∪ Q3 collides with
(the first entry of) any of the queries in Q0 ∪Q2. The probability of this event is less than (q1 + q3) · q0+q22w .

Thus, in case 2) the probability of τ3 causing an alert for bob1 and bob2 is at most q0+q2
2k

+ (q1+q3)(q0+q2)
2w .

By setting q =
∑
i qi and combining the two cases, we get an upper bound of q+1

2k
+ 2q2

2w + ε.

References

[1] Covid watch. https://www.covidwatch.org/ (2020)

19

https://www.covidwatch.org/

[2] Pact: Private automated contact tracing. https://pact.mit.edu/ (2020)

[3] Pepp-pt: Pan-european privacy-preserving proximity tracing. https://github.com/pepp-pt (2020)

[4] Privacy-preserving contact tracing. https://www.apple.com/covid19/contacttracing (2020)

[5] Robert: Robust and privacypreserving proximity tracing. https://github.com/ROBERT-proximity-
tracing (2020)

[6] Auerbach, B., Chakraborty, S., Klein, K., Pascual-Perez, G., Pietrzak, K., Walter, M., Yeo, M.: Inverse-
sybil attacks in automated contact tracing. Cryptology ePrint Archive, Report 2020/670 (2020), https:
//eprint.iacr.org/2020/670

[7] Avitabile, G., Botta, V., Iovino, V., Visconti, I.: Towards defeating mass surveillance and sars-cov-2:
The pronto-c2 fully decentralized automatic contact tracing system. Cryptology ePrint Archive, Report
2020/493 (2020), https://eprint.iacr.org/2020/493

[8] Canetti, R., Kalai, Y.T., Lysyanskaya, A., Rivest, R.L., Shamir, A., Shen, E., Trachtenberg, A., Varia,
M., Weitzner, D.J.: Privacy-preserving automated exposure notification. Cryptology ePrint Archive,
Report 2020/863 (2020), https://eprint.iacr.org/2020/863

[9] Canetti, R., Trachtenberg, A., Varia, M.: Anonymous collocation discovery: Taming the coronavirus
while preserving privacy. CoRR abs/2003.13670 (2020), https://arxiv.org/abs/2003.13670

[10] Castelluccia, C., Bielova, N., Boutet, A., Cunche, M., Lauradoux, C., Métayer, D.L., Roca, V.: DE-
SIRE: A third way for a european exposure notification system leveraging the best of centralized and
decentralized systems. CoRR abs/2008.01621 (2020), https://arxiv.org/abs/2008.01621

[11] Chan, J., Gollakota, S., Horvitz, E., Jaeger, J., Kakade, S.M., Kohno, T., Langford, J., Larson, J.,
Singanamalla, S., Sunshine, J.E., Tessaro, S.: PACT: privacy sensitive protocols and mechanisms for
mobile contact tracing. CoRR abs/2004.03544 (2020), https://arxiv.org/abs/2004.03544

[12] Danz, N., Derwisch, O., Lehmann, A., Puenter, W., Stolle, M., Ziemann, J.: Security and privacy
of decentralized cryptographic contact tracing. Cryptology ePrint Archive, Report 2020/1309 (2020),
https://eprint.iacr.org/2020/1309

[13] Gvili, Y.: Security analysis of the covid-19 contact tracing specifications by apple inc. and google inc.
Cryptology ePrint Archive, Report 2020/428 (2020), https://eprint.iacr.org/2020/428

[14] Iovino, V., Vaudenay, S., Vuagnoux, M.: On the effectiveness of time travel to inject covid-19 alerts.
Cryptology ePrint Archive, Report 2020/1393 (2020), https://eprint.iacr.org/2020/1393

[15] Pietrzak, K.: Delayed authentication: Preventing replay and relay attacks in private contact tracing. In:
Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 3–15.
Springer, Heidelberg (Dec 2020)

[16] Troncoso, C., Payer, M., Hubaux, J.P., Salath, M., Larus, J., Bugnion, E., Lueks, W., Stadler, T.,
Pyrgelis, A., Antonioli, D., Barman, L., Chatel, S., Paterson, K., Capkun, S., Basin, D., Jackson, D.,
Preneel, B., Smart, N., Singelee, D., Abidin, A., Guerses, S., Veale, M., Cremers, C., Binns, R., Wiegand,
T.: Dp3t: Decentralized privacy-preserving proximity tracing (2020), https://github.com/DP-3T

[17] Vaudenay, S.: Analysis of dp3t. Cryptology ePrint Archive, Report 2020/399 (2020), https://eprint.
iacr.org/2020/399

[18] Vaudenay, S.: Centralized or decentralized? the contact tracing dilemma. Cryptology ePrint Archive,
Report 2020/531 (2020), https://eprint.iacr.org/2020/531

20

https://pact.mit.edu/
https://github.com/pepp-pt
https://www.apple.com/covid19/contacttracing
https://github.com/ROBERT-proximity-tracing
https://github.com/ROBERT-proximity-tracing
https://eprint.iacr.org/2020/670
https://eprint.iacr.org/2020/670
https://eprint.iacr.org/2020/493
https://eprint.iacr.org/2020/863
https://arxiv.org/abs/2003.13670
https://arxiv.org/abs/2008.01621
https://arxiv.org/abs/2004.03544
https://eprint.iacr.org/2020/1309
https://eprint.iacr.org/2020/428
https://eprint.iacr.org/2020/1393
https://github.com/DP-3T
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531

Alice Server Bob

// L
rep

report list // L
ser
1 , L

ser
2 server lists // L

eval
evaluation list

// k private key

. report infection .

k, Lrep

((h1, C1), . . . , (hn, Cn))← Lrep

for i in {1, . . . , n− 1}
if h+1 6= H1(k, hi, Ci)

reject report
if |Ci| > γ

reject report
for i in {1, . . . , n}

store hi in Lser
1

for σ ∈ Ci

store (hi, σ) in Lser
2

. evaluate risk .

Lser
1

for (h, σ) ∈ Leval

if h ∈ Lser
1

return ”potential contact”
return ”no contact”

// optional: exclude inverse-Sybil att.

(h, σ)

b←
[
(h, σ)

?
∈ Lser

2

]
b if b = 1 return ”contact”

return ”no contact”

Figure 11: Alternative report/risk-evaluation phase for Protocol 1 which
is more efficient at the cost of weaker privacy.

A Protocol 1 With Efficient Risk-evaluation

Users evaluating their risk status in Protocol 1 have to download a list Lser of size linear in the number of
contacts of all infected users. We now describe a variant of the protocol with download size depending only
on the number of epochs with non-zero encounters but otherwise independent of the number of encounters.
The variant makes use of the fact that, unless an inverse-Sybil attack occurred, already storing one element
of the hash chain of an infected user is enough to indicate that contact with this user occurred. The variant’s
broadcast/receive phase is as in Figure 5, except that we don’t apply H3 (think of H3 as the identity
function), so the incoming tuples (h, σ) are stored in the clear. The report/risk-evaluation of this variant is
shown in Figure 11.

Regarding reports of infections the server now prepares two lists Lser
1 and Lser

2 . The former contains
all elements hi of valid hash chains, the latter all tuples of the form (hi, σ) with sigma ranging over all
elements of the randomness pool Ci corresponding to hi. Users evaluate their risk status in two steps. After
downloading Lser

1 from the server they first check whether any of the elements of Lser
1 is contained in a tuple

stored in Leval. In this case they either were in contact with a diagnosed person or potentially an inverse-

21

Sybil attack is going on. In an optional second step users can exclude the latter possibility. To this end they
send the tuple (h, σ) that triggered the alert to the server which in turn verifies whether it is contained in
Lser
2 . If this is not the case the user has fallen victim to an inverse-Sybil attack.

Regarding this variant’s efficiency, note that the head of a user’s hash chain is updated only once per
epoch. Thus, Lser

1 ’s size corresponds to the number of infected users times the number of epochs.
We stress that the modified protocol introduces additional privacy issues. Assuming no inverse-Sybil

attack occurs users which did not have contact with infected individuals will never execute the second phase
of the risk evaluation protocol. Thus to prevent the server from learning this information it would be
necessary to make the download of Lser

1 and the second phase of the risk evaluation unlinkable and protect
the users’ identity in the second phase of the protocol. A second concern is that the server, as it is given
access to (h, σ), even learns with whom and at which position in the chain the contact occurred. To prevent
this one could implement the second part of the risk evaluation with a private-set-intersection protocol.

22

	Introduction
	Automated Contact Tracing
	False Positives
	Replay Attacks
	Relay Attacks
	Inverse-Sybil Attacks
	Modeling Inverse-Sybil Attacks
	On the Assumption that Devices Can't Communicate
	Using Hash Chains to Prevent Inverse-Sybil Attacks
	The Privacy Cost of Hash Chains

	Protocol 1: Decentralized, Non-Interactive Exchange
	Toy Protocol
	Security
	Correctness
	Privacy

	Description of Protocol 1
	Efficiency
	Epochs
	Correctness
	Privacy
	Security

	Security of Protocol 1
	Security Game
	Security of Protocol 1

	Protocol 2: Decentralized, Using Location for Chaining
	Protocol Description
	Correctness, Privacy and Epochs
	Correctness
	Epochs
	Privacy

	Security of Protocol 2
	Security Against Replay and Relay Attacks
	Security Against Inverse-Sybil Attacks
	A Weaker Security Model
	Security Proof

	Protocol 1 With Efficient Risk-evaluation

