
Master-Key KDM-Secure IBE from Pairings

Sanjam Garg1?, Romain Gay2??, Mohammad Hajiabadi1

1 University of California, Berkeley
2 Cornell Tech, New York

Abstract. Identity-based encryption (IBE) is a generalization of public-key encryption (PKE) by
allowing encryptions to be made to user identities. In this work, we seek to obtain IBE schemes that
achieve key-dependent-message (KDM) security with respect to messages that depend on the master
secret key. Previous KDM-secure schemes only achieved KDM security in simpler settings, in which
messages may only depend on user secret keys.
An important motivation behind studying master-KDM security is the application of this notion in
obtaining generic constructions of KDM-CCA secure PKE, a primitive notoriously difficult to realize.
We give the first IBE that achieves master-KDM security from standard assumptions in pairing groups.
Our construction is modular and combines techniques from KDM-secure PKE based from hash-proof
systems, together with IBE that admits a tight security proof in the multi-challenge setting, which
happens to be unexpectedly relevant in the context of KDM security. In fact, to the best of our
knowledge, this is the first setting where techniques developed in the context of realizing tightly secure
cryptosystems have led to a new feasibility result.
As a byproduct, our KDM-secure IBE, and thus the resulting KDM-CCA-secure PKE both enjoy a
tight security reduction, independent of the number of challenge ciphertexts, which was not achieved
before.

1 Introduction

Key-dependent-message (KDM) security is a strengthening of the classical notion of semantic security, by
allowing the adversary to obtain encryptions of messages that depend on the secret key. Originally introduced
in [BRS03] in the setting of public/private key encryption, KDM security has since found applications in such
contexts as fully-homomorphic encryption [Gen09], function secret sharing [BGI16], and more recently in ob-
taining CCA-secure PKE and designated-verifier non-interactive zero knowledge (NIZK) [KMT19,LQR+19].

For a function class F , an encryption scheme is F-KDM secure if no adversary can distinguish between
encryptions of f(sk), where f ∈ F and sk is the secret key, and encryptions of fixed messages. We know how
to obtain KDM-secure encryption for arbitrarily-large classes of functions from various specific assumptions.
These results are achieved by first realizing KDM security for a ‘minimal’ class of functions, e.g., affine func-
tions [BHHO08,ACPS09,BG10,BLSV18], and then expanding the function family using KDM-amplification
theorems [BHHI10,App11].

KDM security for identity-based encryption (IBE). Alperin-Sheriff and Peikert [AP12] introduced
notions of KDM security in the setting of IBE, under which one may securely encrypt functions of user secret

? Supported in part from AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation,
Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the
authors and do not reflect the official policy or position of the funding agencies.

?? Supported in part by NSF Award SATC-1704788 and in part by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein. Work partially done while at UC Berkeley.

keys (as opposed to the master secret key). In more detail, these notions (that we call user-KDM security)
extend the semantic-security notion of IBE by allowing the adversary, who has specified a challenge identity
id, to ask for encryptions of functions of skid, the user-specific secret key for id, under id itself. They showed
how to build user-KDM secure IBE schemes from the learning with errors (LWE) assumption.

KDM security for master secret keys. In this work, we seek to realize stronger notions of KDM-security
for IBE where the adversary may obtain ciphertexts encrypting functions of the master secret key, as opposed
to user secret keys. In more detail, we would like the system to retain security even if the adversary obtains
encryptions of functions of the master secret key made with respect to “uncorrupted identities.” We call this
notion master-KDM security (Definition 3).

Why should we care about master-KDM secure IBE? Theoretically speaking, we believe that the
notion of master-KDM security for IBE is more natural than the user-KDM notion, as it implies KDM-
CCA security for public-key encryption, via the transformation of [CHK04]. In other words, just as IBE
implies CCA2 security, master-KDM security implies KDM CCA2 security. In contrast, the weaker user-
KDM security does not seem to imply KDM-CCA security.

Generically and simultaneously realizing both KDM security and CCA2 security for public-key encryption
has been beset with challenges; thus, also pointing to the challenge in realizing master-KDM IBE. One reason
that makes this combination challenging is the fact that KDM-secure PKE schemes typically come with
KDM-oblivious algorithms, which allow one to sample KDM ciphertexts — without knowledge of the secret
key — in such a way that such oblivious ciphertexts will even fool a real decryptor who is in possession of
the secret key. This obliviousness property is exactly the intuition behind KDM security: that real KDM
ciphertexts may be simulated by publicly samplable ciphertexts. On the other hand, this KDM-obliviousness
property is exactly what destroys CCA security: an adversary may query the decryption oracle on such
oblivious ciphertexts to retrieve the secret key.

Previous works showed how to get around the above obstacle against KDM-CCA2 PKE by using NIZK
along with CPA-KDM secure PKE [CCS09], or more directly from pairing-based assumptions [Hof13], or
by using the specific properties of hash-proof systems, and hence from DDH, QR and DCR [KT18]. Very
recently, the work of [KM19] shows the equivalence of KDM-CPA and KDM-CCA PKE schemes, via non-
blackbox constructions that make use of designated-verifier NIZK and garbled circuits. However, it is not
yet clear whether the more challenging notion of master-KDM secure IBE is at all realizable in the standard
model, and if so from what assumptions. In particular, by trying to build this latter notion from a variety
of assumptions, we will have an overarching approach for obtaining KDM-CCA secure PKE.

In summary, in addition to being interesting in its own right, master-KDM secure IBE offers a pathway
to realizing new KDM-CCA public-key encryption schemes.

Prior work on master-KDM secure IBE. The observation that master-KDM security for IBE suffices
for KDM-CCA secure PKE was first made by [GHV12], who gave constructions of bounded-master-KDM
secure IBE from pairing assumptions. Their constructions, however, only achieve bounded-KDM in the sense
that (a) the number of KDM queries should be bounded beforehand, meaning that the sizes of various IBE
parameters do grow with this fixed number; and (b) the set of identities against which KDM encryption are
allowed should also be chosen beforehand, and not adaptively.

1.1 Our Contributions and Open Problems

In this work, we show constructions of IBE systems satisfying master-KDM security with respect to affine
functions from standard assumptions in bilinear groups. Our construction does not suffer from any of the
limitations of [GHV12], which resulted in bounded master-KDM secure IBE. As a special case, our KDM
notion allows us to encrypt the bits as well as the negations of the bits of the master secret key. As shown
in [BHHI10,App11], KDM security with respect to affine functions is sufficient for obtaining KDM security
with respect to any a-priori bounded function family.

2

At a high level, our construction is obtained via a modular combination of the KDM-secure public-key en-
cryption from [BHHO08] and a tightly-secure IBE inspired by prior works [CW13,HKS15,AHY15,GDCC16].
This connection between tight security and KDM-security is novel to this work and made explicit by abstract
definitions that we put forth to capture the modular nature of our construction. Namely, we define a set of
properties that our IBE and an abstract underlying public-key encryption must satisfy to obtain KDM secu-
rity. These properties are naturally fulfilled by prior schemes relying on the standard dual system encryption
proof paradigm, introduced by [Wat09] in the context of fully-secure IBE; and by KDM-secure encryption
schemes such as [BHHO08,BG10,BGK11] that all rely on hash-proof systems, as unified in [Wee16]. Our IBE
is an instance of this new abstract framework with a combination of tightly-secure IBE and the KDM-secure
PKE from [BHHO08]. As a byproduct, our IBE also achieves tight security. Namely, the security loss is in-
dependent of the number of challenge ciphertexts, but is only a small constant times the security parameter.
In fact, to the best of our knowledge, this is the first setting where techniques developed in the context of
realizing tightly secure cryptosystems have led to new feasibility results.

Moreover, our IBE scheme implies KDM-CCA2 secure public-key encryption scheme. One of the benefits
of our approach is that we are able to build on the techniques realized in the context of IBE and leverage
them in the context of realizing KDM-CCA2 secure schemes. For example, this gives the first tightly secure
KDM-CCA2 secure public-key encryption scheme. We give more details on our construction in Section 1.2.

Open problems. The main open problem that arises from our work is to build master-KDM secure IBE
from other assumptions such as DDH, or factoring-based assumptions. One possible approach toward this is
to investigate what properties will allow us to prove the DDH-based IBE schemes of [DG17b,DG17a,BLSV18]
KDM-secure, and whether those properties are realizable under standard assumptions.

1.2 General Overview of our Construction

Modular construction of IBE from public-key encryption. We start with the observation that most
pairing-based IBE schemes are built upon traditional PKE schemes in the following way. The public key of
the IBE is the public key of the underlying PKE, plus some extra components that are generated from the
latter and some independently generated parameters params. The master secret key of the IBE is simply
the secret key of the underlying PKE. The IBE encryption algorithm outputs a ciphertext ct0, which is an
encryption of the plaintext m under the underlying PKE, and extra components that are generated from
ct0, the identity id, and the parameters params.

(PKE.pk,PKE.sk)← PKE.Setup(1λ)

IBE.msk := PKE.sk

IBE.pk := (pk0, pk1)
with pk0 := PKE.pk, pk1 := Expandpk(pk0, params)

IBE.Enc(m, id) := (ct0, ct1)
with ct0 := PKE.Enc(PKE.pk,m), ct1 := Expandct(params, ct0, id).

Fig. 1. Modular IBE. Here, (PKE.Setup,PKE.Enc,PKE.Dec) is a public-key encryption, and params are pa-
rameters that are generated independently.

Put simply, it is possible to generate the public key and a ciphertext of the IBE from an existing public key
and ciphertext of the underlying public-key encryption, which is not attribute-based, simply by sampling
independent parameters params, and running the algorithms Expandpk and Expandct. The key generation

3

algorithm of the IBE uses as input the master secret key, which is the secret key of the underlying public-key
encryption, and the public key of the IBE.

KDM-secure IBE. For modular IBE, we can hope to achieve KDM-security by replacing the underlying
PKE used in existing schemes with a KDM-secure PKE. This approach actually works for what we call
modular IBE schemes (Definition 4) whose security proof follows the dual system encryption paradigm,
originally put forth in [Wat09], in the simplified security model where the adversary gets to see only one
challenge ciphertext. Note that in the standard IND-CPA security game, one challenge ciphertext is equivalent
to many challenge ciphertexts, using a standard hybrid argument (this is valid for any public-key encryption).
However, this argument fails for KDM security, since the plaintexts depend on the secret key. We describe the
construction based on the dual system methodology, which is instructive despite the fact that its security
only handles one challenge ciphertext. Next, we explain how to modify this first attempt and get KDM
security with many challenge ciphertexts.

1.3 First Attempt: Dual System Encryption

Dual system encryption. For schemes using the dual system encryption paradigm, the security proof
makes use of the fact that the master secret key of the IBE consists of two independent components:
IBE.msk = PKE.sk := (mskN,mskSF), typically referred to as normal and semi-functional components, re-
spectively. The corresponding public key PKE.pk (and thus, honestly generated ciphertexts) only depends
on the normal component mskN. The security proof consists of a sequence of hybrid games, where the first
transition switches the distribution of the challenge ciphertext to a semi-functional distribution, where the
ciphertext now also depends on the component mskSF. In the next step of the security proof, the distribu-
tion of the functional secret keys is changed so that they do not depend on the semi-functional component
mskSF. This change of distribution should not be noticeable to the adversary, which implies that these
semi-functional keys still correctly decrypt honestly generated ciphertext. However, they fail to decrypt the
challenge ciphertext, which means the simulator can leverage the adversary’s ability to break semantic secu-
rity on the challenge ciphertext. At this point, the security relies on a statistical argument: the component
mskSF, which only appears in the challenge ciphertext, is used to mask the plaintext.

Hybrid game: ct sk

IND-CPA security game N N
game 1 SF N
game 2 SF SF

sk
ct

N SF

N 3 -

SF 3 7

Fig. 2. The dual system encryption proof paradigm. The leftmost table depicts the sequence of hybrid
games used in the security proof, starting with the original IND-CPA security game, and the rightmost table
illustrates when decryption succeeds, depending on whether the ciphertexts and keys are normal (N) or
semi-functional (SF). We denote by ct here the challenge ciphertext, and by sk the user secret keys generated
in the security game.

Making IBE KDM-secure, for one challenge ciphertext. As in prior works [BHHO08,BG10,BGK11],
we consider KDM-security for the class of affine functions, where the message space is a group G of order p,
generated by g, and the secret key is of the form msk := (g1, . . . , g`) ∈ G`, an encoding of an `-bit string.
The adversary can choose an affine combination (w1, . . . , w`) ∈ Z`p and M ∈ G, and obtain an encryption of
the message

∏
i∈[`] g

wi
i ·M . For convenience, we use bracket notations, where for any exponent a ∈ Zp, we

denote by [a] := ga. With this notation, we can write msk := [k] ∈ G`, and the adversary gets an encryption
of [k>w + m]. For simplicity, we focus on the single instance case, where only one public key, secret key

4

pair is generated, and we consider the simplified security model where the adversary gets to see only one
challenge ciphertext. We will see how to remove that restriction later, thereby allowing the adversary to
obtain multiple challenge ciphertexts for many identities and affine combinations of its choice.

We take a modular IBE where the underlying PKE is compatible with the dual system encryption
methodology, that is, a PKE whose ciphertext can be turned to a semi-functional distribution, even given
the secret key. Thus, the secret key can be used to simulate the user secret keys queried by the adversary
during the security proof, as well as the challenge ciphertext, whose underlying plaintext may depend on
the secret key. Then, user secret keys of the IBE are turned to semi-functional, following the standard dual
system encryption paradigm, except that this must be done with encryption of key-dependent messages. At
this point, user secret keys can be generated only knowing the normal component of the secret key mskN, as
opposed to the full master secret key. Finally, we rely on the KDM security of the underlying PKE, which
must hold even if the value mskN is revealed to the adversary. This value permits to simulate semi-functional
keys. This is achieved using a statistical argument which only involves mskSF (and not mskN). Indeed, since
the value mskSF only shows up in the challenge ciphertext, it can be used to hide the plaintext, and conclude
the security proof. As it turns out, most existing KDM-secure encryption, such as [BHHO08,BG10,BGK11]
can be shown to satisfy these additional properties (and in fact, as noted in [Wee16], all PKE based on
hash-proof systems).

We show a concrete exposition of this technique by combining the modular IBE from [CGW15] and the
KDM-secure PKE from [BHHO08], both of which rely on prime-order groups, and thus are compatible. This
construction gives some insight and prepares for the IBE satisfying full-fledged KDM security, where the
adversary gets to see many challenge ciphertexts, that we present later.

Chen et. al. Identity-Based Encryption. We illustrate the dual system encryption methodology with
the IBE from [CGW15]. We use a pairing group e : G1 × G2 → GT , where G1,G2,GT are all cyclic
groups of prime order p, generated respectively by g1, g2, and e(g1, g2), where e is a non-degenerate bilinear
map, that is, for all a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)ab. We use bracket notations, where for all exponents
a ∈ Zp and all groups s ∈ {1, 2, T}, we denote by [a]s the group element gas . We generalize this notation

for any matrix A =

a1,1 . . . a1,n
. . .

am,1 . . . am,n

 ∈ Zm×np , that is, we denote by [A]s the matrix of group elements

g
a1,1
s . . . g

a1,n
s

. . .

g
am,1
s . . . g

am,n
s

 ∈ Gm×ns .

The IBE from [CGW15] is a modular IBE that uses the following underlying public-key encryption, which
is essentially Damg̊ard El-Gamal encryption [Dam92], with message space GT .

– PKE.Setup(1λ): a,k←R Z2
p, return pk := ([a]1, [a

>k]T), and sk := k.

– PKE.Enc(pk,M ∈ GT): r ←R Zp, return ([ar]1, [ar
>k]T ·M).

– PKE.Dec(pk, ct,k): parse ct := ([c]1 ∈ G2
1, [c

′]T ∈ GT), and return [c′]T /e([c
>k]1, [1]2).

The rest of the IBE parameters are computed as follows. Note that the identity space is Zp.

– params := (W0,W1), where W0,W1 ←R Z2×2
p .

– Expandpk(pk0): given pk0 := ([a]1, [a
>k]T), samples b ←R Z2

p, and returns pk1 := ([W0a]1, [W1a]1,

[W>
0 b]2, [W

>
1 b]2).

– Expandct(params, ct0, id ∈ Zp): given ct0 := ([c]1, [c
′]T), returns ct1 := [(W0 + idW1)c]1.

– KeyGen(msk, pk, id ∈ Zp): samples s←R Zp, and returns skid := ([bs]2, [k + (W0 + idW1)>bs]2).
– Dec(mpk, ct, skid): parse ct := (ct0, ct1) with ct0 := ([c]1, [c

′]T), ct1 := [c1]1, skid := ([d]2, [d
′]2) and return

[c′]T · e([c1]>1 , [d]2)/e([c]>1 , [d
′]2).

We know there is an orthogonal vector a⊥ ∈ Z2
p, such that a⊥ 6= 0, and a>a⊥ = 0. Assuming a ←R Z2

p

is different from the zero vector a 6= 0, which happens with all but negligible probability over the choice of

5

a←R Z2
p, we have that (a|a⊥) is a basis of Z2

p, and we can write k := mskN +mskSF, where mskN, the normal
component, is of the form k0 · a with k0 ←R Zp, and mskSF, the semi-functional component, is of the form
k1 · a⊥ with k1 ←R Zp. That is, mskN (resp. mskSF) is the projection of the vector k onto the vector a (resp.
onto a⊥). This way, the public key only depends on mskN, since it only contains [a>k]T , and a>a⊥ = 0.

The semi-functional distribution of ciphertexts is illustrated in fig. 3. We can change the distribution of
the challenge ciphertext using the DDH assumption in G1, which says that ([a]1, [ar]1) is computationally
indistinguishable from ([a]1, [u]1), where a,u ←R Z2

p, and r ← Zp. Otherwise stated, DDH is a subgroup
membership problem, which states that it is hard to distinguish a vector of group elements that is proportional
to [a], from a uniformly random vector over G1. The consequence is that the semi-functional ciphertext
depends on the component mskSF, since the vector [u]1 that is part of the ciphertext (see fig. 3) is not
orthogonal to a⊥ (with all but negligible probability), unlike a.

Normal: Semi-functional:

ct0 := ([ar], [ar>k]T ·M) ct0 := ([u], [u>k]T ·M)

Fig. 3. Normal and semi-functional distributions for the challenge ciphertext. Here, a,k,u ←R Z2
p, and

r ←R Zp. The rest of the ciphertext is computed from ct0 using Expandct and params.

Then, in [CGW15], the distribution of all the user secret keys generated in the security game is changed,
so that they depend on mskN, but are independent of mskSF. Namely, all the keys are switched from
KeyGen(k, pk, id) to KeyGen(mskN, pk, id). Finally, we can use the component mskSF as a one-time pad to
mask the plaintext in the challenge ciphertext.

We observe that if we trade the underlying public-key encryption used here, namely Damg̊ard ElGamal
[Dam92], for the KDM-secure public-key encryption from [BHHO08], we obtain an overall IBE that enjoys
KDM-security. Roughly speaking, the dual system encryption is compatible with the proof techniques used
in [BHHO08].

Boneh et. al. KDM-secure public-key encryption. We now recall the public-key encryption from
[BHHO08], which is KDM-secure for the class of affine functions. For simplicity, we focus on the single
instance case, where only one public key, secret key pair is generated.

It is a modification of the Damg̊arg ElGamal encryption scheme where the key space is changed to G`T
instead of Z2

p, so that affine combinations of the secret key [k]T ∈ G`T belong to the message space. To
preserve correctness of the encryption scheme, the authors of [BHHO08] choose a secret key [k]T where the
discrete logarithm k can be obtained efficiently, and decryption can proceed as for the Damg̊ard ElGamal
encryption scheme. Namely, k←R {0, 1}`. To have enough entropy in the secret key, it is necessary to take
a dimension ` = Θ(log p). The dimension of the vector [a]1 which is part of the public key is modified
accordingly. The security proof follows a similar pattern as outlined previously: the ciphertexts are switched
to semi-functional, using a computational assumption that holds even when the secret key is revealed. Then
the plaintexts are made independent of the key, using a perfect statistical argument. Finally, mskSF, the
semi-functional component of k, is used to mask the plaintext, using a statistical argument. Namely, we use
the Left Over Hash Lemma [ILL89] with entropy source mskSF. An overview is given fig. 4.

Combining Boneh et. al. PKE with Chen et. al. IBE.
We change the IBE from [CGW15], which uses as an underlying PKE Damg̊ard ElGamal encryption

scheme, to a similar modular IBE which uses the Boneh et. al. KDM-secure PKE instead. Namely, we have:
a ←R Z`p, and k ←R {0, 1}` for ` = Θ(log p), pk := ([a]1, [k

>a]T), and sk := [k]T . The parameters are

modified accordingly: params := (W0,W1) where W0,W1 ←R Z2×`
p .

This way, we can prove KDM security of the IBE simply by following the first steps of the KDM security
proof of [BHHO08]: the challenge ciphertext is switched to semi-functional, then the functional keys are
switched to semi-functional; the plaintext is made independent of the master secret key, using a hash proof

6

Hybrid game: challenge ct: explanation

KDM security game [ar]1, [k
>ar]T · [k>w +m]T

the adversary chooses an affine

combination w ∈ Z`p, [m] ∈ G

Game 1 [u]1, [k
>u]T · [k>w +m]T

ct is switched to semi-functional
using DDH in G1

Game 2 [u−w]1, [k
>u]T · [m]T

statistical change, the encrypted
plaintext is not key-dependent

Game 3 [u−w]1, [k
>u]T LOHL, with seed u←R Z`p

Fig. 4. KDM security proof of [BHHO08]. Here, [a]1 ←R G`1 is part of pk, and the secret key is [k]T with
k ←R {0, 1}`, ` = Θ(log p), and w ∈ Z`p, [m] ∈ G are chosen by the adversary. The randomness r ←R Zp,
u ←R Z`p is sampled upon creation of the challenge ciphertext. LHOL stands for Left Over Hash Lemma
[ILL89].

system style statistical argument; finally we use the Left Over Hash lemma with entropy source mskSF to
mask the plaintext in the challenge ciphertext. The security proof is illustrated in fig. 5.

Game: challenge c0: skid explanation

Game 0 [ar]1, [k
>ar]T · [k>w +m]T KeyGen(mpk, [k]T , id)

the adversary chooses
an affine combination

w ∈ Z`p, [m] ∈ G

Game 1 [u]1, [k
>u]T · [k>w +m]T KeyGen(mpk, [k]T , id)

ct is switched to
semi-functional using

DDH in G1

Game 2 [u]1, [k
>u]T · [k>w +m]T KeyGen(mpk, [mskN]T , pk, id)

skid are switched
to semi-functional

Game 3 [u−w]1, [k
>u]T · [m]T KeyGen(mpk, [mskN]T , pk, id)

statistical change,
the encrypted plaintext is

not key-dependent

Game 4 [u−w]1, [k
>u]T KeyGen(mpk, [mskN]T , pk, id)

LOHL, with seed

u←R Z`p
and entropy source

mskSF

Fig. 5. KDM security proof of the IBE. Here, [a]1 ←R G`1 is part of mpk, and the secret key is [k]T with
k ←R {0, 1}`, ` = Θ(log p), and w ∈ Z`p, [m] ∈ G are chosen by the adversary. The randomness r ←R Zp,
u←R Z`p is sampled upon creation of the challenge ciphertext. Recall that msk := [k]T , k := mskN + mskSF,

where mskN, and mskSF are the projections of k onto a and A⊥, respectively.

Dual system encryption, in more details. The proof of Chen et. al. IBE (and more generally, of any
scheme using the dual system encryption methodology) crucially relies on the fact that there is only one
challenge ciphertext. Recall that this is equivalent to many challenge ciphertexts for IND-CPA public-key
IBE, however, this doesn’t hold for KDM-secure IBE.

Indeed, to switch the functional keys to semi-functional, the proof uses an underlying statistical argument
that is only valid in the presence of one challenge ciphertext. Namely, the distribution of each functional key
is switched to a pseudo distribution, one by one. Doing so releases some entropy from the parameters params
in the pseudo functional key, while that entropy remains hidden from all others keys, and from the public key,
but not from the challenge ciphertext. At this point, the security relies on the fact the identity of the pseudo
key and semi-functional ciphertext don’t match, using a statistical one-time argument. This argument fails
for many semi-functional ciphertexts, the presence of which is unavoidable in the KDM security proof.

7

More concretely, the pseudo keys in Chen et. al. IBE are of the form: ([v]2, [k + (W0 + idW1)>v]2), for a
uniformly random [v]2 ←R G2, instead of [v]2 := [bs]2 with s ←R Zp in normal keys. This releases entropy
from W0,W1 ←R Z`×2p that is not revealed from the public key which only contains ([W0a]1, [W1a]1,

[W>
0 b]2, [W

>
1 b]2). Namely, the component from these matrices that is orthogonal to a and b can be used

to perform a statistical one-time argument with the semi-functional challenge ciphertext, which contains:
([u]1, [(W0 + id?W1)u]1) for [u]1 ←R G`1. This essentially uses the fact that the map id → W0 + idW1 is
a pairwise independent hash function, aka 2-universal hash function. This argument fails when there are
several challenge ciphertexts, each of which associated with a different identity.

1.4 Final Attempt: Handling Many Challenge Ciphertexts

To prove KDM security, we need to consider many challenge ciphertexts simultaneously. Ultimately, in the
security proof, we use the entropy from the semi-functional component mskSF of the master secret key to hide
the plaintexts in all the challenge ciphertexts. Since there number of challenge ciphertexts is unbounded,
this will require a computational argument, as opposed to the statistical argument used previously, in the
single challenge ciphertext setting. To that end, we first need to make the user secret keys and the plaintexts
in the challenge ciphertexts independent from mskSF. As explained previously, to do so, we make use of the
fact that the plaintext in semi-functional challenge ciphertexts can be made independent from the master
secret key, statistically (this is the transition from game 2 to game 3 in fig. 5). Thus, to make the plaintext
independent from msk in all challenge ciphertexts, we need to switch them to semi-functional distribution
all at the same time. More details are provided in Section 2.1.

Traditional dual system encryption, as explained previously, is incapable of handling many semi-functional
challenge ciphertext at once. Instead, we adapt techniques from [HKS15,AHY15,GDCC16] that build IBE
where the security proof can handle many challenge ciphertexts at once. These techniques, which builds upon
[CW13,BKP14,CGW15], were developed for a whole different purpose than KDM security, namely, they were
used to obtain IBE that are secure in the multi-challenge setting, where the security loss is independent of
the number of challenge ciphertexts. These tight security reductions yield shorter concrete parameters for a
given security level.

2 Preliminaries

2.1 Pairing groups

Let GGen be a PPT algorithm that on input the security parameter 1λ, returns a description PG =
(G1,G2,GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is a cyclic group of order p for a 2λ-bit prime p.
G1 and G2 are generated by P1 and P2 respectively, and e : G1 × G2 → GT is an efficiently computable
(non-degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT , of order p. We use implicit
representation of group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit
representation of a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit
representation of A in Gs:

[A]s :=

a11 · Ps ... a1m · Ps
an1 · Ps ... anm · Ps

 ∈ Gn×ms .

Given [a]1 and [b]2, one can efficiently compute [a ·b]T using the pairing e. For matrices A and B of matching
dimensions, define e([A]1, [B]2) := [AB]T . For any matrix A,B ∈ Zn×mp , any group s ∈ {1, 2, T}, we denote
by [A]s + [B]s = [A + B]s.

For any prime p, we define the following distributions. The DDH distribution over Z2
p: a←R Zp, output

a :=
(
1
a

)
.

Definition 1 (DDH assumption). For any adversary A, any group s ∈ {1, 2, T} and any security param-
eter λ, let

AdvDDH
Gs,A(λ) := |Pr[1← A(PG, [a]s, [ar]s)]− Pr[1← A(PG, [a]s, [u]s)]|,

8

where the probabilities are taken over PG ←R GGen(1λ, d), a←R DDH, r ←R Zp, u←R Z2
p, and the random

coins of A. We say DDH holds in Gs if for all PPT adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Definition 2 (SXDH assumption). For a pairing group PG = (G1,G2,GT , p, P1, P2, e) ←R GGen(1λ),
we say SXDH holds in PG if DDH holds in G1 and G2.

We define the (`,Q)-fold DDH assumption below. Note that the DDH assumption corresponds to the
(1, 1)-fold DDH assumption.

Lemma 1 (Random self reducibility of DDH). For any `,Q ≥ 1, any PPT adversary A, we define:

Adv`,Q-DDH
Gs,A (λ) := |Pr[1← A(PG, [a]s, {[ri]s, [ari]s}i∈[Q])]

− Pr[1← A(PG, [a]s, {[ri]s, [ui]s}i∈[Q])]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a ←R Z`p, ri ←R Zp, ui ←R Z`p for all i ∈ [Q],
and the random coins of A.

There exists a PPT adversary B such that

Adv`,Q-DDH
Gs,A (λ) ≤ AdvDDH

Gs,B(λ).

2.2 Entropy Extraction

We give a particular case of the left over hash lemma, that is tailored to our purpose.

Lemma 2 (Leftover hash lemma [ILL89]). Let p be a 2λ-bit prime, and ` := 4dlog2(p)e. The following
distribution are within 2−λ statistical distance:

(a,b,u,k>a,k>b,k>u) and (a,b,u,k>a,k>b, r),

where a,b,u←R Z`p, k←R {0, 1}`, and r ←R Zp.

2.3 Identity Based Encryption

An Identity Based Encryption for identity space I and message space M is a tuple of PPT algorithms:

– Setup(1λ): on input the security parameter λ, returns a master public key mpk which defines an identity
space I, and a master secret key msk.

– Enc(mpk, id ∈ I,m ∈M): returns a ciphertext ct.
– KeyGen(mpk,msk, id ∈ I): returns skid, a user secret key for identity id.
– Dec(mpk, ct, sk): deterministic algorithm that returns a message, or a special symbol ⊥ if it fails.

Correctness. For any security parameter λ, any id ∈ I, any message m, Pr[Dec(mpk, ct, skid) = m] = 1,
where the probability is taken over (mpk,msk)← Setup(1λ), ct← Enc(mpk, id,m), skid ← KeyGen(mpk,msk, id).

Remark 1 (Public-key encryption (PKE)). Note that a public-key encryption is a special case of IBE with
identity space I := {ε}. Of course, the interesting case of IBE is when I is of exponential size in the security
parameter.

Definition 3 (Master-KDM security). An IBE scheme IBE for identity space I and message space M
is said to be KDM-secure for the class of (efficiently computable) functions F if for all PPT adversaries A,
the following advantage is a negligible function of the security parameter λ:

AdvKDM
IBE,A(λ) := 2 ·

∣∣∣∣∣∣1/2− Pr

b′ = b

∣∣∣∣∣∣
b←R {0, 1}

(mpk,msk)← Setup(1λ)
b′ ← AOEnc(·,·),OKeyGen(·)(mpk)

∣∣∣∣∣∣ ,
9

where the oracle OEnc(id, f), on input an identity id ∈ I and a function f ∈ F , computes y := f(msk) ∈M,
returns Enc(mpk, id, f(msk)) if b = 0, and computes a uniformly random message M ←R M, and returns
Enc(mpk, id,M) if b = 1; the oracle OKeyGen(id), on input an identity id ∈ I, returns KeyGen(mpk,msk, id).
We require that the identities queried by the adversary to the oracle OEnc(·, ·) are different from the identities
queried to OKeyGen(·). This is in order to avoid trivial attacks, where the adversary can win the game simply
using the correctness of the scheme.

In this paper, as in prior works [BG10,BGK11], we consider the class of affine functions, that is, we
consider IBE where the message space is a group G of order p, and msk := [k] ∈ G` for some integer `. The
adversary is allowed to query encryption of affine functions on msk, that is, encryption of messages of the
form [k>w + γ], for w ∈ Z`p, [γ] ∈ G of its choice. In [App11,BHHI10], the authors showed that this can be
boosted to KDM-security with respect to the class of circuits of a-priori bounded size.

The work of Alperin-Sheriff and Peikert [AP12] gives KDM-secure IBE schemes that only support KDM
messages that depend on user secret keys. Also, the work of Galindo et al. [GHV12] only achieved a restricted
version of master-KDM security, on in which (a) the number of KDM queries is bounded and (b) the oracle
OKeyGen may only be called on identities that were fixed at the beginning of the game.

3 KDM-Secure IBE from Pairings

In this section we give our construction of KDM-secure IBE from pairing assumptions. To make our con-
struction modular, we first introduce an intermediate primitive (which we call modular IBE), and show that
any modular IBE with some specific properties is already KDM secure. We then show how to realize the
notion of modular IBE with those required properties.

3.1 Ingredients of Our Construction

We first start with the definition of modular IBE. Informally, we call an IBE scheme modular if it is built
upon a PKE scheme in the sense we define below.

Definition 4 (Modular IBE). We say an IBE (Setup,Enc,KeyGen,Dec) for identity space I is modu-
lar if there exists a PKE (PKE.Setup,PKE.Enc,PKE.Dec), and PPT algorithms SampParams, Expandpk and
Expandct such that:

1. Setup(1λ): (pk, sk)← PKE.Setup(1λ), params← SampParams(pk, I), pk′ ← Expandpk(params, pk), mpk :=

(pk, pk′, I), msk := sk, returns (mpk,msk).
2. For all identities id ∈ I and all messages m, the following are identically distributed:

ct← Enc(mpk, id,m),

and
(ct0, ct1) where ct0 ← PKE.Enc(pk,m), ct1 ← Expandct(pk, params, ct0, id).

In both distributions, we have (pk, sk)← PKE.Setup(1λ), params← SampParams(pk, I), pk′ ← Expandpk(params, pk),

and mpk := (pk, pk′, I).

The definition implies that there are two ways to compute the encryption of a message m under identity id:
either using Enc on input mpk, id and m; or using the underlying PKE encryption algorithm on input pk
and message m, and using the Expandct algorithm that takes as input the PKE ciphertext, pk, and id. These
two ways are identically distributed.

We will now define the properties that need to be fulfilled by our IBE and its underlying PKE in order
to achieve KDM security. Recall that we denote by IBE := (Setup,Enc,KeyGen,Dec) the modular IBE, with
underlying pke PKE := (PKE.Setup,PKE.Enc,PKE.Enc) whose message space is a group G of order p, and
whose secret key is of the form sk := [k] ∈ G` for some ` ∈ N. We can write k := mskN + mskSF ∈ Z`p, where
mskN is the normal component of sk, and mskSF is the semi-functional component of sk.

10

Property 1 (semi-functional encryption). There exists a PPT algorithm Ẽnc that takes as input pk, sk,M
and returns a ciphertext. For all PPT adversaries A, the following advantage is a negligible function of the
security parameter λ:

AdvSF-ctPKE,A(λ) := 2 ·

∣∣∣∣∣∣1/2− Pr

b′ = b

∣∣∣∣∣∣
b←R {0, 1}

(pk, sk)← PKE.Setup(1λ)
b′ ← AOEnc(·)(pk, sk)

∣∣∣∣∣∣ ,
where the oracle OEnc(M), on input a message M ∈ G, outputs PKE.Enc(pk,M) if b = 0, or Ẽnc(pk, sk,M)
if b = 1. Note that the message M can depend on sk since the latter is given to A.

Property 2 (semi-functional keys). There exists a PPT algorithm K̃eyGen that takes as input pk,mskN where
sk = [mskN + mskSF] and (pk, sk) is generated by Setup(1λ), together with an identity, and outputs a user
secret key. We require that for all PPT adversaries A, the following advantage is a negligible function of λ:

AdvSF-skIBE,A(λ) := 2 ·

∣∣∣∣∣∣∣∣∣∣∣∣
1/2− Pr

b
′ = b

∣∣∣∣∣∣∣∣∣∣∣∣

b←R {0, 1}
(pk, sk)← Setup(1λ)

params← SampParams(pk, I)
pk′ ← Expandpk(params, pk)
mpk := (pk, pk′, I),msk := sk

b′ ← AOEnc(·,·),OKeyGen
(b)(·)(mpk)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the oracle OEnc(id, (w, [m])), on input an identity id ∈ I, a vector w ∈ Z`p, and a message [m] ∈ G,

computes ct0 ← Ẽnc(pk, sk, [k>w + m]), ct1 ← Expandct(pk, params, ct0, id) an returns (ct0, ct1). The oracle

OKeyGen
(b)(id), on input an identity id ∈ I, returns KeyGen(mpk,msk, id) if b = 0 or KeyGen(mpk, [mskN], id)

if b = 1. Recall that msk := [mskN + mskSF]. We require that the identities queried by A to OEnc are distinct
to the identities it queries to OKeyGen.

Property 3 (KDM security). For all PPT adversaries A, the following advantage is a negligible function of
the security parameter λ:

AdvKDM
PKE,A(λ) := 2 ·

∣∣∣∣∣∣1/2− Pr

b′ = b

∣∣∣∣∣∣
b←R {0, 1}

(pk, sk)← Setup(1λ),
b′ ← AOEnc(·)(pk, [mskN]T)

∣∣∣∣∣∣ ,
where the oracle OEnc(w, [m]), on input a vector w ∈ Z`p and a message [m] ∈ G, outputs Ẽnc(pk, sk, [w>k +

m]) if b = 0, or Ẽnc(pk, sk, [r]) for a fresh random r ←R Zp if b = 1. Recall that sk := [k], with k :=
mskN + mskSF.

3.2 KDM-Secure IBE Construction

We now give our theorem statement for KDM-secure IBE.

Theorem 1 (KDM-security). Any modular IBE that satisfies properties 1 to 3 is KDM-secure for the
class of affine functions.

Proof. The proof goes through a hybrid argument, starting with game G0, which is the KDM security
experiment from Definition 3. Let A be a PPT adversary. For any game G, we denote by AdvA(G) the
advantage of A in the game G.

Game G0. This is the KDM security experiment for the class of affine functions. The message space is a
group G of order p, the master secret key is of the form [k] ∈ G`, and the adversary gets access to encryption
of affine combinations of the form [k>w + m], for w ∈ Z`p, [m] ∈ G of its choice. Namely, the adversary A

11

first receives mpk. Then it can adaptively query OEnc(id, (w, [m])), to receive Enc(mpk, id, [k>w+m]) if b = 0,
Enc(mpk, id, [r]) for a fresh [r]←R G if b = 1. Upon querying OKeyGen(id), A receives KeyGen(mpk,msk, id).

Game G1. We change the challenge ciphertexts to semi-functional. That is, in game G0, OEnc(id, (w, [m]))

computes [m0] := [k>w +m], [m1]←R G, ct0 := PKE.Enc(pk, [mb]); whereas ct0 := Ẽnc(pk, sk, [mb]) in game

G1, where Ẽnc is the PPT algorithm that generates semi-functional ciphertexts (see Property 1). The rest
of the challenge ciphertext is computed as ct1 := Expandct(pk, params, ct0, id) in both games. We show there
exists a PPT adversary B0 such that:

|AdvA(G0)− AdvA(G1)| ≤ AdvSF-ctPKE,B0
(λ),

which is negligible by Property 1. The reduction B0 receives (pk, sk := [k] ∈ G`) from its own experiment,
samples b ←R {0, 1}, params ← SampParams(pk, I), computes pk′ ← Expandpk(params, pk), and returns

mpk := (pk, pk′, I) to A. B0 can simulate the oracle OKeyGen straightforwardly using sk and mpk. To simulate
OEnc(id, (w, [m])), it computes [m0] := [k>w +m], [m1]←R G, and uses its own encryption oracle on input
the message [mb] to obtain a challenge ciphertext ct0. Then it computes ct1 ← Expandct(pk, params, ct0, id),
and returns the challenge ciphertext (ct0, ct1). If A’s guess b′ is such that b′ = b and identities queried by A
to its encryption oracle are distinct from the identities queried to its key generation oracle, then B0 returns
1. Otherwise, it returns 0.

Game G2. We change the user secret keys to semi-functional. That is, in game G1, OKeyGen(id) returns
KeyGen(mpk,msk, id), whereas it returns KeyGen(mpk, [mskN]T , id) in game G2. Recall that msk := [k]T , and
k := mskN + mskSF.

We show there exists a PPT adversary B1 such that:

|AdvA(G1)− AdvA(G2)| ≤ AdvSF-skIBE,B1
(λ),

which is negligible by Property 2. The reduction B1 receives mpk from its own experiment, which it forwards
to A, and simulates the oracles to A straightforwardly using its own oracles. Here, we make use of the fact
that the the identities queried by A to its encryption oracle OEnc must be distinct to the identities it queries
to its key generation oracle OKeyGen, since this condition must also be fulfilled in the security game from
Property 2.

Game G3. We use the KDM security of the underlying PKE to change the challenge ciphertexts to encryp-
tions of random message [r] ←R G. That is, OEnc(id, (w, [m])) computes [m0] := [w>k + m], [m1] ←R G,

ct0 := Ẽnc(pk, sk, [mb]) in game G3, whereas it computes Ẽnc(pk, sk, [r]) for a fresh random r ←R Zp in game
G3. The rest of the challenge ciphertext is computed as ct1 := Expandct(pk, params, ct0, id) in both games. It
is clear that the challenge ciphertexts do not depend on the random bit b←R {0, 1} chosen by the experiment
in game G3, since the plaintexts are random, regardless of the value of b. Thus, we have:

AdvA(G3) = 0.

Now, we show there exists a PPT adversary B3 such that:

|AdvA(G3)− AdvA(G3)| ≤ AdvKDM
PKE,B3

(λ),

which is negligible by Property 3. The reduction B3 receives (pk, [mskN]T) from its own experiment, sam-
ples b ←R {0, 1}, params ← SampParams(pk, I), computes pk′ ← Expandpk(params, pk), and returns mpk :=

(pk, pk′, I) toA. WhenA queries OKeyGen(id), B3 returns KeyGen(mpk, [mskN]T , id). WhenA queries OEnc(id, (w, [m])),
B3 computes [m0] := [m], [m1] ←R G, and queries its own encryption oracle on input (w, [mb]) to obtain
a challenge ciphertext ct0. Then, B3 computes ct1 ← Expandct(pk, params, ct0, id) and returns the challenge
ciphertext (ct0, ct1) to A. If A’s guess b′ is such that b′ = b and identities queried by A to its encryption

12

oracle are distinct from the identities queried to its key generation oracle, then B0 returns 1. Otherwise, it
returns 0.

Overall, we have:

AdvKDM
IBE,A(λ) ≤ AdvSF-ctPKE,B0

(λ) + AdvSF-skIBE,B1
(λ) + AdvKDM

PKE,B3
(λ).

ut

3.3 Concrete Instantiations

We instantiate the framework presented in the previous section with a modular IBE inspired from [CW13],
and the KDM-secure PKE from [BHHO08]. Both of them rely on prime-order groups, which make them
compatible. In Figure 6, we give a description of the [BHHO08] when adapted to fit pairing groups, and in
Figure 7, we show how to extent it in a modular way to obtain a KDM-secure IBE. A concrete description
of our IBE is given in Figure 8.

PKE.Setup(1λ):

PG := (G1,G2,GT , p, P1, P2, e) ← GGen(1λ), ` := 4dlog2(p)e, a ←R Z`p, k ←R {0, 1}`, return
pk := (PG, [a]1, [k

>a]1) and sk := [k]T .

PKE.Enc(pk, [m]T ∈ GT):

r ←R Zp, return ([ar]1, [k
>ar]T + [m]T)

PKE.Dec(pk, sk, ct):

Recover k ∈ {0, 1}` from sk := [k] ∈ G`T .
Parse ct := ([c0]1, [c1]T), return [c1]T − e([k>c0]1, [1]2).

Ẽnc(sk, pk, [m]T ∈ GT):

u←R Z`p, return ([u]1, [k
>u]T + [m]T)

Fig. 6. KDM-secure public-key encryption from [BHHO08].

SampParams(pk):

For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z2×`
p . b←R DDH. Return params :=

(
b, {Wi,b}i∈[λ],b∈{0,1}

)
.

Expandpk(params, pk):

Parse pk := (PG, [a]1, [k
>a]1).

Return pk′ :=
(
[b]2, {[Wi,ba]1, [W

>
i,bb]2}i∈[λ],b∈{0,1}

)
Expandct(pk, params, ct0, id ∈ {0, 1}λ):

Parse ct0 := ([c]1, [c
′]T), return ct1 :=

∑
i∈[λ][Wi,idic]1.

Fig. 7. KDM-secure modular IBE, for the identity space {0, 1}λ. We denote by idi the i’th bit of id ∈ {0, 1}`.
It builds upon the PKE from Figure 6.

We now proceed to prove the required properties from our concrete instantiation of the modular frame-
work presented in the previous section.

13

Setup(1λ):

PG := (G1,G2,GT , p, P1, P2, e)← GGen(1λ), ` := 4dlog2(p)e, a←R Z`p, b←R DDH, k←R {0, 1}`. For all
i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z2×`

p . Return mpk := (PG, [a]1, [b]2, {[Wi,ba]1, [W
>
i,bb]2}i∈[λ],b∈{0,1}, [k>a]T)

and msk := [k]T

Enc(mpk, id ∈ {0, 1}λ, [m]T ∈ GT):

r ←R Zp, return: ct := ([ar]1, [
∑
i∈[λ] Wi,idiar]1, [k

>ar]T + [m]T)

KeyGen(msk, id ∈ {0, 1}λ):

Recover k from [k]T , s←R Zp, return skid := ([bs]2, [k +
∑
i∈[λ] W

>
i,idi

bs]2).

Dec(mpk, ct, skid):

Parse ct := ([c]1, [c
′]1, [c

′′]T) ∈ G`1 ×G2
1 ×GT and skid := ([d]2, [d

′]2) ∈ G2
2 ×G`2.

Return [c′′]T − e([c]>1 , [d
′]2) + e([c′]>1 , [d]2).

Fig. 8. Concrete description of our KDM-secure IBE.

Property 1 (semi-functional encryption). The difference between normal and semi-functional cipher-
texts is that the vector [ar]1, with r ←R Zp that is part of each challenge ciphertext is switched to a uniformly
random vector over G`1, using the (`,Q)-fold DDH assumption, where Q denotes the number of encryption
queries. By Lemma 1, this assumption is implied by the DDH assumption. Upon receiving a (`,Q)-DDH
challenge ([a]1, {[zi]1}i∈[Q]), where either [zi]1 = [ari]1 for ri ←R Zp, or [zi]1 ←R G`1, the reduction samples

k←R {0, 1}`, and returns pk := ([a]1, [k
>a]T) and sk := [k]T to A. On the i’th query OEnc([m]T ∈ GT), the

reduction answers with ([zi]1, [k
>zi]T + [m]T), for i ∈ [Q].

Property 2, semi-functional keys. The proof goes through a sequence of hybrid games, defined in
Figure 9. Let A be a PPT adversary. For each game G, we denote by AdvA(G) the advantage of A if game
G. We start with game G0, which is the security game defined in Property 2.

Game G1: we change the vector [u]1 ←R G`1 used in each challenge ciphertext to [a0r], for r ←R Zp, and
a0 ←R Z`p, independent of a used in the public key, using the (`,Q)-fold DDH assumption in G1, where Q
denotes the number of queries to OEnc. By Lemma 1, this is implied by the DDH assumption. We build a
PPT adversary B0 such that:

|AdvA(G0)− AdvA(G1)| ≤ Adv`,Q-DDH
G1,B0

(λ).

Upon receiving a (`,Q)-DDH challenge ([a0]1, {[zi]1}i∈[Q], B0 samples b ←R {0, 1}, a ←R Z`p, k ←R {0, 1}`,
and for all i ∈ [λ], b ∈ {0, 1}: Wi,b ←R Z2×`

p , thanks to which it can compute mpk and simulate OKeyGen to

A as described in Figure 9. On the i’th query of A to OEnc(id,w, [m]T), B0 returns ([zi]1, [Widzi]1, [k
>zi +

k>w +m]T), where Wid :=
∑
i∈[λ] Wi,idi .

Game G2: we change the vector [d]2 in each user secret key from [bs]2 for s ←R Zp to uniformly random
over G2

2, using the DDH assumption in G2. We build a PPT adversary B1 such that:

|AdvA(G1)− AdvA(G2)| ≤ Adv1,Qsk-DDH
G1,B1

(λ),

where Qsk denotes the number of queries to OKeyGen.
Upon receiving a 1, Qsk-fold DDH challenge ([b]2, {[zi]2}i∈[Qsk]), B1 samples b ←R {0, 1}, a,a0 ←R Z`p,

k←R {0, 1}`, and for all i ∈ [λ], b ∈ {0, 1}: Wi,b ←R Z2×`
p , thanks to which it can compute mpk and simulate

14

OEnc to A as described in Figure 9. On the i’th query of A to OKeyGen(id), B0 returns ([zi]2, [kb + Widzi]2),

where Wid :=
∑
i∈[λ] Wi,idi , k0 := k and k1 := k>a

‖a‖22
.

Game G3: we change the way Wid is computed, as described in Figure 9. In Lemma 3, we show that there
exists a PPT adversary B2 such that:

|AdvA(G2)− AdvA(G3)| ≤ 3λ · AdvDDH
G2,B2

(λ) +
2λQsk

p
,

where Qsk denotes the number of queries to OKeyGen.

Game G4: we change the distribution of the user secret keys as described in Figure 9.
First, we use the fact that the following distributions are statistically 1/p-close:

d←R Z2
p and γ · d, with γ ←R Zp,d←R Z2

p.

Thus, we can write the output of OKeyGen(id) as

([γ · d]2, [kb +
∑
j∈[λ]

W>
j,idj (γ · d) + A⊥γ · RF(id) · (b⊥)>d]2),

with fresh d←R Z2
p and γ ←R Zp. Using the DDH assumption in G2, for any identity id queried to OKeyGen

(and therefore, not queried to OEnc), we can switch ([γ]2, [RF(id)]2, [γ ·RF(id)]2) to ([γ]2, [RF(id)]2, [t]2), where
γ ←R Zp and t←R Z`−1p . Note that we make crucial use of the fact the value RF(id) for an identity id queried
to OKeyGen only appears in the output of OKeyGen(id), since this identity must not be queried to OEnc by A.
This means the output of OKeyGen(id) becomes:

([γ · d]2, [kb +
∑
j∈[λ]

W>
j,idj (γ · d) + A⊥t · (b⊥)>d]2),

where γ ←R Zp, d←R Z2
p and t←R Z`−1p are sampled freshly upon generation of each user secret key.

Finally, we switch back γ · d to d, for d ←R Z2
p, γ ←R Zp, which are 1/p statistically close, such that

OKeyGen(id) becomes:

([d]2, [kb +
∑
j∈[λ]

W>
j,idjd + A⊥t · (b⊥)>d]2),

which exactly as in game G4. We have successfully transitioned from game G3 to G4; overall we have a PPT
adversary B4 such that:

|AdvA(G3)− AdvA(G4)| ≤ AdvDDH
G2,B4

(λ) +
2Qsk

p
,

where Qsk denotes the number of queries to OKeyGen.
Now, we show that:

AdvA(G4) ≤ Qsk

p
.

This is due to the fact that in game G4, the semi-functional component of msk is statistically hidden in the
generated user secret keys.

Indeed, OKeyGen(id) outputs ([d]2, [kb +
∑
j∈[λ] W

>
j,idj

d + A⊥t · (b⊥)>d]2), where d ←R Z2
p, and t ←R

Z`−1p are sampled freshly for each generated user secret key. Using the basis (a|A⊥) of Z`p, we can write

k := a · mskN + A⊥ · mskSF, where mskN ∈ Zp and mskSF ∈ Z`−1p denotes the normal and semi-functional

components of k, respectively. The component mskSF is completely hidden by the random vector t←R Z`−1p .

Namely, conditioned on the fact that d>b⊥ 6= 0, which holds with probability 1/p over the choice of d←R Z2
p,

the output of OKeyGen(id) is identically distributed to:

([d]2, [a ·mskN +
∑
j∈[λ]

W>
j,idjd + A⊥t · (b⊥)>d]2),

15

where mskN := k>a
‖a‖22

. At this point, the output is independent of the random bit b ←R {0, 1} picked by the

experiment. ut

Game G0, G1, G2, G3,G4 :

b ←R {0, 1}, PG ← GGen(1λ), ` := 4dlog2(p)e, a ←R Z`p, a0 ←R Z`p , A⊥ ←R Z`×(`−1)
p s.t. a>A⊥ = 0 ,

b ←R DDH, b⊥ ←R Z2
p s.t. b>b⊥ = 0 , k ←R {0, 1}`. For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z2×`

p .

mpk := (PG, [a]1, {[Wi,ba]1, [W
>
i,bb]2}i∈[λ],b∈{0,1}, [k>a]T)

b′ ←R AOEnc(·,·),OKeyGen
(b)(·)(mpk)

Return 1 if b′ = b and identities queried to OEnc are distinct from identities queried to OKeyGen.
Return 0 otherwise.

OEnc(id ∈ {0, 1}λ,w ∈ Z`p, [m]T ∈ GT): G0, G1, G2, G3, G4

u←R Z`p, [c]1 := [u]1, r ←R Zp, [c]1 := [a0r]1

Wid :=
∑
i∈[λ] Wi,idi + b⊥(A⊥RF(id))>

ct := ([c]1, [Widc]1, [k
>c]T + [k>w +m]T)

OKeyGen
(b)(id ∈ {0, 1}λ): G0, G1, G2, G3 , G4

s←R Zp, [d]2 := [bs]2, [d]2 ←R G2
2 , k0 := k, k1 := k>a

‖a‖22
· a, t←R Z`−1

p

Wid :=
∑
i∈[λ] Wi,idi + b⊥(A⊥RF(id))> + b⊥(A⊥t)>

Return skid := ([d]2, [kb + W>
idd]2).

Fig. 9. Games for the proof of Property 2. In each procedure, the components inside a solid (dotted, gray)
frame are only present in the games marked by a solid (dotted, gray) frame. Here, RF : {0, 1}λ → Z`−1p

denotes a random function that is computed on the fly.

Lemma 3 (From game G2 to game G3). There exists a PPT adversary B2 such that:

|AdvA(G2)− AdvA(G3)| ≤ 3λ · AdvDDH
B2

(λ) +
2λQsk

p
,

where Qsk denotes the number of queries to OKeyGen.

Proof. The proof goes over a series of hybrid games defined in Figure 10. We progressively increase the entropy
in the matrices Wid, originally set as Wid :=

∑
j∈[λ] Wj,idj in game G2, up to Wid := (

∑
j∈[λ] Wj,idj) +

(A⊥RF(id))> in game G3, where RF is a random function, computed on the fly by the experiment. Namely,
in game G2.i, we have Wid := (

∑
j∈[λ] Wj,idj) + (A⊥RFi(id))>, where RFi is a random function that only

depends on the first i’th bits on its input. It is clear that G2.λ is the same as G3. We prove that G2 is
statistically close to G2.0 (note that RF0 is a constant function, that ignores its input), and we show that for
all i ∈ [λ], Gi−1 is computationally indistinguishable from Gi, in a way that is reminiscent to the security
proof from [GHKW16]. One difference here is that the vector k is not uniformly random over Zp, which adds
technical difficulties.

Game G2.0. This game is as G1, except the matrix Wid is switched from Wid :=
∑
j∈[λ] Wj,idj to Wid :=

16

∑
j∈[λ] Wj,idj + b⊥(A⊥RF0(id))> , where RF0(id) is a random vector in Z`−1p , independent of id (the extra

term is highlighted in gray to better see the difference between G2 and G2.0). This does change the dis-
tribution of the game, since (W1,0,W1,1) is identically distributed to (W1,0 + b⊥(A⊥RF0(id))>,W1,1 +
b⊥(A⊥RF0(id))>). Note that these extra terms don’t appear in the public key, since a>A⊥ = 0 and
b>b⊥ = 0. Thus, we have:

AdvA(G1) = AdvA(G2.0).

Games G2.i−1.1, for all i ∈ [λ+ 1]. This game is as G2.i−1, except the vector [c]1 output OEnc(id,w, [m]T)
is switched from [a0r]1 to [aidir]1, with r ←R Zp, where idi denotes the i’th bit of id, and a0,a1 ←R Z`p are
two independent random vectors. We use the DDH assumption in G1, to first switch [a0r]1 to uniformly
random over G2

1 when necessary, that is, when idi = 1; then we use the DDH assumption again to switch
the uniformly random vector to [a1r]1 with r ←R Zp. Overall we have a PPT adversary Bi such that:

|AdvA(G2.i−1)− AdvA(G2.i−1.1)| ≤ 2 · AdvDDH
G1,Bi

(λ).

Games G2.i−1.2, for all i ∈ [λ+ 1]. See the description in Figure 10.
As in the security proof of the CCA-secure pke from [GHKW16], we use a basis (A⊥0 |A⊥1) ∈ Z`−1p of

A⊥ where a>0 A⊥0 = a>1 A⊥1 = 0, where both a0 and a1 are uniformly random vectors from Z`p, sampled
independently.

Namely, we sample A⊥0 ←R Z`×`/2p and A⊥1 ←R Z`×(`/2−1)p such that (A⊥0 |A⊥1) ∈ Z`−1p is full rank, and

a>A⊥0 = a>0 A⊥0 = a>A⊥1 = a>1 A⊥1 = 0.

Using this basis, we can decompose A⊥RFi−1(id) := A⊥0 RF
(0)
i−1(id)+A⊥1 RF

(1)
i−1(id), where RF

(0)
i−1 : {0, 1}λ →

Z`/2p and RF
(1)
i−1 : {0, 1}λ → Z`/2−1p are independent random functions that only read the first i− 1’th bits of

their inputs.
We define

RF
(0)
i (id) :=

{
RF

(0)
i−1(id) + R̃F

(0)

i−1(id) if idi = 0

RF
(0)
i−1(id) if idi = 1

,

and

RF
(1)
i (id) :=

{
RF

(1)
i−1(id) if idi = 0

RF
(1)
i−1(id) + R̃F

(1)

i−1(id) if idi = 1
,

where R̃F
(0)

i−1 : {0, 1}λ → Z`/2p and R̃F
(1)

i−1 : {0, 1}λ → Z`/2−1p are random functions that only read the first

i− 1’th bits of their inputs, that are independent of RF
(0)
i−1 and RF

(1)
i−1. Note that the random functions RF

(0)
i

and RF
(1)
i now depend on the first i’th bits of their inputs: we added a dependency on the i’th bit. Thus,

writing A⊥RFi(id) := A⊥0 RF
(0)
i (id)+A⊥1 RF

(1)
i (id), we have A⊥RFi(id) = A⊥RFi−1(id)+ A⊥idi R̃F

(idi)

i−1 (id) . The

game G2.i−1.2 is the same as G2.i−1.1, except the latter uses Wid := (
∑
j∈[λ] Wj,idj) + b⊥(A⊥RFi−1(id))>,

and the former uses Wid + A⊥idi R̃F
(idi)

i−1 (id) .

Note that this change doesn’t appear in the challenge ciphertexts, since OEnc(id,w, [m]T) outputs:

ct : = ([aidir]1, [(Wid + b⊥(A⊥idi R̃F
(idi)

i−1 (id))>aidir]1, [k
>aidir + k>w +m]T)

= ([aidir]1, [(Widaidir]1, [k
>aidir + k>w +m]T),

since a>0 A⊥0 = a>1 A⊥1 = 0. Thus, the output of the oracle OEnc is identically distributed in G2.i−1.1 and
G2.i−1.2. We now turn our attention to the output of OKeyGen.

17

First, we use the fact that the following are identically distributed:

d←R Z2
p and R̂Fi−1(id) · d, with d←R Z2

p,

where R̂Fi−1 : {0, 1}λ → Zp is a random function that only reads the first i− 1’th bits of its input. That is,

OKeyGen(id) uses a random vector [R̂Fi−1(id) · d]2 instead of [d]2 ←R G2
2.

Then, we use the fact that following distributions are within statistical distance 1/p:

(Wi,0,Wi,1) and (Wi,0 + b⊥(A⊥0 u0)>,Wi,1 + b⊥(A⊥1 u1)>),

where Wi,0,Wi,1 ←R Z2×`
p , u0 ←R Z`/2p , u1 ←R Z`/2−1p .

Thus, we can re-write the output of OKeyGen(id) as:

([d · R̂Fi−1(id)]2, [kb + W>
id R̂Fi−1(id) · d + A⊥idiuidi · R̂Fi−1(id)(b⊥)>d]2).

Note that the vectors u0 and u1 do not appear in the public key or the challenge ciphertexts, since a>0 A⊥0 =
a>1 A⊥1 = 0.

At this point, we use the DDH assumption in G2 to switch

([R̂Fi−1(id)]2, [uidi · R̂Fi−1(id)]2)

to

([R̂Fi−1(id)]2, [R̃F
(idi)

i−1 (id)]2).

The output of OKeyGen(id) becomes:

([d · R̂Fi−1(id)]2, [kb + W>
id R̂Fi−1(id) · d + A⊥idi R̃F

(idi)

i−1 (id)(b⊥)>d]2).

Finally, we reverse the statistical change from [R̂Fi−1(id) · d]2 to [d]2 in each user secret key, so that the
output of OKeyGen(id) becomes:

([d]2, [kb + (
∑
j∈[λ]

Wj,idj)d + (A⊥RFi−1(id) + A⊥idi R̃F
(idi)

i−1 (id))(b⊥)>d]2) =

([d]2, [kb + (
∑
j∈[λ]

Wj,idj)d + (A⊥RFi(id)(b⊥)>d]2),

exactly as in game G2.i−1.2. Putting everything together, we obtain a PPT adversary B′i such that:

|AdvA(G2.i−1.1)− AdvA(G2.i−1.2)| ≤ AdvDDH
G2,B′

i
(λ) +

2Qsk

p
,

where Qsk denotes the number of queries to OKeyGen.

Summing up for all i ∈ [λ], we obtain a PPT adversary B2 such that:

|AdvA(G2)− AdvA(G3)| ≤ 3λ · AdvDDH
B2

(λ) +
2λQsk

p
.

ut

18

Games G2.i−1, G2.i−1.1, G2.i−1.2 for i ∈ [λ+ 1]:

b ←R {0, 1}, PG ← GGen(1λ), ` := 4dlog2(p)e, a ←R Z`p, a0 ←R Z`p, a1 ←R Z`p , A⊥ ←R Z`×(`−1)
p s.t.

a>A⊥ = 0, b←R DDH, b⊥ ←R Z2
p s.t. b>b⊥ = 0, k←R {0, 1}`.

For all i ∈ [λ], b ∈ {0, 1}, Wi,b ←R Z2×`
p . mpk := (PG, [a]1, {[Wi,ba]1, [W

>
i,bb]2}i∈[λ],b∈{0,1}, [k>a]T)

b′ ←R AOEnc(·,·),OKeyGen(·)(mpk)
Return 1 if b′ = b and identities queried to OEnc are distinct from identities queried to OKeyGen.

OEnc(id ∈ {0, 1}`,w ∈ Z`p, [m]T ∈ GT):

r ←R Zp, [c]1 := [a0r]1, [c]1 := [aidir]1

Wid := (
∑
j∈[λ] Wj,idj) + b⊥(A⊥RFi−1(id))>

Wid := (
∑
j∈[λ] Wj,idj) + b⊥(A⊥RFi(id))>

ct := ([c]1, [Widc]1, [k
>c + k>w +m]T)

OKeyGen(id ∈ {0, 1}λ):

k0 := k, k1 := k>a
‖a‖22

· a
Wid := (

∑
j∈[λ] Wj,idj) + b⊥(A⊥RFi−1(id))>

Wid := (
∑
j∈[λ] Wj,idj) + b⊥(A⊥RFi(id))>

d←R Z2
p, return skid := ([d]2, [kb + W>

idd]2).

Fig. 10. Games for the proof of Lemma 3. In each procedure, the components inside a solid (dotted) frame
are only present in the games marked by a solid (dotted) frame. Here, for all i ∈ [λ], RFi : {0, 1}λ → Z`−1p

denotes a random function that only reads the first i’th bits of its input, and that is computed on the fly.

Property 3 (KDM security). First, as in the security proof of [BHHO08], we use the fact that the output

of Ẽnc(pk, sk, [k>w]T +[m]T), which is of the form ([u]1, [k
>(u+w)]T +[m]T with [u]1 ←R G`1, is identically

distributed to ([u−w]1, [k
>u]T + [m]T). That is, we can remove the dependence of the message on the key

k via a statistical argument. At this point, the proof in [BHHO08] relies on the DDH assumption on [a]1.
Namely, the ciphertexts are switched back to normal (as opposed to semi-functional), then a hybrid argument
goes over each ciphertext one by one, switching it to semi-functional and using a statistical argument (the Left
Over Hash lemma to extract the entropy from k ←R {0, 1}` and masks the plaintext). However, we cannot

use DDH on [a]1, since the normal component of the master secret key is of the form mskN := k>a
‖a‖22
· a. This

value is necessary to generate the user secret keys (see Property 2), and it is not clear how to generate [mskN]T
from [a]1, which prevents to use DDH with respect to [a]1. Instead, we switch the challenge ciphertexts from
([u−w]1, [k

>u]T + [m]T) to ([bs−w]1, [k
>bs]T + [m]T , for s←R Zp, which relies on the DDH assumption

with respect to a public vector [b]1 ←R G`1 that is independent of a. The rest of the proof is similar to that
[BHHO08]. It is given in Lemma 4.

Lemma 4 (Property 3, KDM security). The PKE from Figure 6 satisfies Property 3. Namely, for any
PPT adversary A, the advantage AdvKDM

PKE,A(λ) is a negligible function of λ.

Proof. The proof goes over a series of hybrid games, where for each game G, we denote by AdvA(G) the
advantage of PPT adversary A in game G. We start with G0, which is the security game defined in Property 3.
In that game, A receives pk := (PG, [a]1, [k

>a]T) and [mskN]T . Recall that msk := [k]T , with k := mskN +
mskSF, where mskN and mskSF are the projections of k onto a and A⊥, respectively; a←R Z`p, and A⊥ ←R

Z`×(`−1)p such that a>A⊥ = 0. For any w ∈ Z`p, [m]T ∈ GT , the oracle OEnc(w, [m]T) sets [m0]T := [m]T ,

[m1]T ←R GT , and returns Ẽnc(sk, pk, [k>w]T + [mb]T), where b←R {0, 1} is chosen by the experiment.

19

Game G1. We switch the challenge ciphertexts from Ẽnc(sk, pk, [k>w]T + [mb]T) := ([u]1, [k
>u]T + [k>w +

mb]T) with [u]1 ←R G`1 in game G0 to ([u − w]1, [k
>u]T + [mb]T) in game G1. Doing so, we remove the

dependence of the encrypted messages on k. We show that the two games are identically distributed, so

AdvA(G0) = AdvA(G1).

We use the fact that for any w ∈ Zp, the following distributions are identical:

u and u−w,

where u ←R Z`p. The leftmost distribution corresponds to the game G0, whereas the rightmost distribution
corresponds to the game G1.

Game G2. We switch the challenge ciphertexts to ([bs−w]1, [k
>bs]T +[mb]T) where s←R Zp, and b←R Z`p,

independent of a used in the public key and in mskN. Namely, we build a PPT adversary B such that:

|AdvA(G1)− AdvA(G2)| ≤ Adv`,Q-DDH
G1,B (λ).

By Lemma 1, the latter advantage is negligible by the DDH assumption in G1.

Upon receiving an (`,Q)-fold DDH challenge ([b]1, {[zi]1}i∈[Q]), B samples b ←R {0, 1}, a ←R Z`p,
k ←R {0, 1}`, sets pk := ([a]1, [k

>a]T), mskN := k>a
‖a‖22

· a, and returns (pk,mskN) to A. On the i’th query

OEnc(w, [m]T), B computes [m0]T := [m]T , [m1]T ←R GT , and returns ([zi −w]1, [k
>zi +mb]T) to A.

Game G3. We switch the challenge ciphertexts to ([bs−w]1, [γs]T + [mb]T) where s←R Zp, and b←R Z`p,
γ ←R Zp independent of a used in the public key and in mskN. We show that the games G2 and G3

are statistically close, using the left over hash lemma [ILL89] recalled in Lemma 2, which implies that
(a,b,k>a,k>b) is statistically close (within statistical distance 2−λ) from (a,b,k>a, γ), where γ ←R Zp. The
first distribution corresponds to the distribution of the game G2, whereas the second distribution corresponds
to the game G3. Note that pk and mskN can be computed from (a,k>a). Thus, we have

|AdvA(G2)− AdvA(G3)| ≤ 2−λ.

Game G4. We change all the messages in the challenge ciphertexts to uniformly random, regardless of the
random bit b ←R {0, 1}. Namely, in game G4, OEnc(w, [m]T), returns ([bs]1, [r]T), where [r]T ←R GT and
s←R Zp are sampled freshly for each query to OEnc. Clearly:

AdvA(G4) = 0.

To prove that game G4 is computationally indistinguishable from G3, we use the DDH assumption in G1 to
switch ([s]1, [γs]T) to ([s]1, [r]T). Namely, we build a PPT adversary B3 such that:

|AdvA(G3)− AdvA(G4)| ≤ Adv1,QEnc-DDH
G1,B3

(λ),

where QEnc denotes the number of queries to OEnc.

Upon receiving a 1, QEnc-fold DDH challenge {[si]1, [zi]1}i∈[QEnc]), B3 samples b ←R {0, 1}, a,b ←R Z`p,
k←R {0, 1}`, thanks to which it can compute mpk, mskN, which it forwards to A. On the i’th query of A to
OEnc(id,w, [m]T), B3 sets [m0]T := [m]T , [m1]T ←R GT , and returns ([bsi]1, [zi]T + [mb]T) to A. When [zi]1
is of the form [γsi]1, B3 simulates the game G3, whereas it simulates the game G4 when [zi]1 ←R G1. ut

20

References

ACPS09. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In CRYPTO 2009, LNCS 5677, pages 595–618. Springer,
Heidelberg, August 2009. 1

AHY15. N. Attrapadung, G. Hanaoka, and S. Yamada. A framework for identity-based encryption with almost
tight security. In ASIACRYPT 2015, Part I, LNCS 9452, pages 521–549. Springer, Heidelberg, Novem-
ber / December 2015. 3, 8

AP12. J. Alperin-Sheriff and C. Peikert. Circular and KDM security for identity-based encryption. In PKC 2012,
LNCS 7293, pages 334–352. Springer, Heidelberg, May 2012. 1, 10

App11. B. Applebaum. Key-dependent message security: Generic amplification and completeness. In EURO-
CRYPT 2011, LNCS 6632, pages 527–546. Springer, Heidelberg, May 2011. 1, 2, 10

BG10. Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under subgroup
indistinguishability - (or: Quadratic residuosity strikes back). In CRYPTO 2010, LNCS 6223, pages 1–20.
Springer, Heidelberg, August 2010. 1, 3, 4, 5, 10

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation under DDH.
In CRYPTO 2016, Part I, LNCS 9814, pages 509–539. Springer, Heidelberg, August 2016. 1

BGK11. Z. Brakerski, S. Goldwasser, and Y. T. Kalai. Black-box circular-secure encryption beyond affine functions.
In TCC 2011, LNCS 6597, pages 201–218. Springer, Heidelberg, March 2011. 3, 4, 5, 10

BHHI10. B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message security. In EURO-
CRYPT 2010, LNCS 6110, pages 423–444. Springer, Heidelberg, May / June 2010. 1, 2, 10

BHHO08. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from decision Diffie-
Hellman. In CRYPTO 2008, LNCS 5157, pages 108–125. Springer, Heidelberg, August 2008. 1, 3, 4, 5,
6, 7, 13, 19

BKP14. O. Blazy, E. Kiltz, and J. Pan. (Hierarchical) identity-based encryption from affine message authentica-
tion. In CRYPTO 2014, Part I, LNCS 8616, pages 408–425. Springer, Heidelberg, August 2014. 8

BLSV18. Z. Brakerski, A. Lombardi, G. Segev, and V. Vaikuntanathan. Anonymous IBE, leakage resilience and
circular security from new assumptions. In EUROCRYPT 2018, Part I, LNCS 10820, pages 535–564.
Springer, Heidelberg, April / May 2018. 1, 3

BRS03. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent
messages. In SAC 2002, LNCS 2595, pages 62–75. Springer, Heidelberg, August 2003. 1

CCS09. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In EUROCRYPT 2009, LNCS 5479, pages 351–
368. Springer, Heidelberg, April 2009. 2

CGW15. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings.
In EUROCRYPT 2015, Part II, LNCS 9057, pages 595–624. Springer, Heidelberg, April 2015. 5, 6, 8

CHK04. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In EU-
ROCRYPT 2004, LNCS 3027, pages 207–222. Springer, Heidelberg, May 2004. 2

CW13. J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups. In CRYPTO 2013,
Part II, LNCS 8043, pages 435–460. Springer, Heidelberg, August 2013. 3, 8, 13

Dam92. I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In
CRYPTO’91, LNCS 576, pages 445–456. Springer, Heidelberg, August 1992. 5, 6

DG17a. N. Döttling and S. Garg. From selective IBE to full IBE and selective HIBE. In TCC 2017, Part I, LNCS
10677, pages 372–408. Springer, Heidelberg, November 2017. 3

DG17b. N. Döttling and S. Garg. Identity-based encryption from the Diffie-Hellman assumption. In
CRYPTO 2017, Part I, LNCS 10401, pages 537–569. Springer, Heidelberg, August 2017. 3

GDCC16. J. Gong, X. Dong, J. Chen, and Z. Cao. Efficient IBE with tight reduction to standard assumption
in the multi-challenge setting. In ASIACRYPT 2016, Part II, LNCS 10032, pages 624–654. Springer,
Heidelberg, December 2016. 3, 8

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009. 1

GHKW16. R. Gay, D. Hofheinz, E. Kiltz, and H. Wee. Tightly CCA-secure encryption without pairings. In EURO-
CRYPT 2016, Part I, LNCS 9665, pages 1–27. Springer, Heidelberg, May 2016. 16, 17

GHV12. D. Galindo, J. Herranz, and J. L. Villar. Identity-based encryption with master key-dependent message
security and leakage-resilience. In ESORICS 2012, LNCS 7459, pages 627–642. Springer, Heidelberg,
September 2012. 2, 10

21

HKS15. D. Hofheinz, J. Koch, and C. Striecks. Identity-based encryption with (almost) tight security in the
multi-instance, multi-ciphertext setting. In PKC 2015, LNCS 9020, pages 799–822. Springer, Heidelberg,
March / April 2015. 3, 8

Hof13. D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. In EUROCRYPT 2013, LNCS
7881, pages 520–536. Springer, Heidelberg, May 2013. 2

ILL89. R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions (extended
abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May 1989. 6, 7, 9, 20

KM19. F. Kitagawa and T. Matsuda. CPA-to-CCA transformation for KDM security. In TCC 2019, Part II,
LNCS, pages 118–148. Springer, Heidelberg, March 2019. 2

KMT19. F. Kitagawa, T. Matsuda, and K. Tanaka. CCA security and trapdoor functions via key-dependent-
message security. In CRYPTO 2019, Part III, LNCS, pages 33–64. Springer, Heidelberg, August 2019.
1

KT18. F. Kitagawa and K. Tanaka. A framework for achieving KDM-CCA secure public-key encryption. In
ASIACRYPT 2018, Part II, LNCS 11273, pages 127–157. Springer, Heidelberg, December 2018. 2

LQR+19. A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New constructions of reusable
designated-verifier NIZKs. In CRYPTO 2019, Part III, LNCS, pages 670–700. Springer, Heidelberg,
August 2019. 1

Wat09. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
CRYPTO 2009, LNCS 5677, pages 619–636. Springer, Heidelberg, August 2009. 3, 4

Wee16. H. Wee. KDM-security via homomorphic smooth projective hashing. In PKC 2016, Part II, LNCS 9615,
pages 159–179. Springer, Heidelberg, March 2016. 3, 5

22

	Master-Key KDM-Secure IBE from Pairings
	Sanjam Garg , Romain Gay , Mohammad Hajiabadi

