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Abstract. To effectively trace the infection spread in a pandemic, a
large number of manual contact tracers are required to reach out to
all possible contacts of infected users. Exposure notification, a.k.a. digi-
tal contact tracing, can supplement manual contact tracing to ease the
burden on manual tracers and to digitally obtain accurate contact infor-
mation. We review the state-of-the-art solutions that offer security and
privacy-friendly design. We study the role of policies and decision mak-
ing to implement exposure notification and to protect user privacy. We
then study how risk emerges in security, privacy, architecture, and tech-
nology aspects of exposure notification systems, and we wrap up with a
discussion on architecture aspects to support these solutions.
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1 Introduction

In recent months, the SARS-CoV-2 virus has infected four million people claim-
ing over 300,000 lives. At the onset of SARS-CoV-2 virus infection, the gov-
ernments around the world placed entire states under lockdown to prevent the
spread of the infection. Although this strategy was effective in curtailing the
spread of the infection, it has adversely affected other aspects of life, increased
the unemployment rate, stressed the medical infrastructure, affected the global
supply chain, created both food shortage, and brought about food waste. To ease
the lockdown and to support long-term infection management, governments are
next considering and implementing a test-trace-isolate strategy. The aim of this
strategy is, first, to reduce the infection rate and, second, to limit the confine-
ment to exposed individuals and communities instead of countrywide lockdown.
The effectiveness of this strategy depends on widespread testing and contact
tracing.

The main goal of contact tracing is to interrupt ongoing transmission, reduce
the spread of infection, and study the epidemiology of the infection in a partic-
ular population. Contact tracing has been effectively used against tuberculosis,
sexually transmitted diseases, vaccine preventable diseases, bacterial and viral
infections. The World Health Organization has used contact tracing to prevent
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transmission of infection. It is performed by public health workers in three steps
including contact identification, contact listing, and contact follow-up [54].

– In contact identification, the public health workers, a.k.a contact tracers,
work with infected individuals to identify contacts by revisiting their move-
ments before the onset of illness. The exposed contacts may be family mem-
bers, co-workers, friends, health care personnel, or service providers.

– In contact listing, all potential contacts of the infected individual are in-
formed of their contact and advised about early care if they develop symp-
toms or advised to self-isolate, depending on the illness.

– In contact follow-up, contact tracers periodically follow-up with the contacts
for signs of symptoms and test for illness.

In this paper, we focus on digital contact tracing and its security and privacy.
We refer to digital contact tracing as exposure notification [56]. We present the
components required to build a secure and privacy friendly exposure notification
system through the following contributions:

– We study the state-of-the-art proposals in privacy preserving solutions and
differentiate their architectural and privacy design.

– We analyze the role of policies and guidelines that shape these solutions.
– We analyze the risks involved in exposure notification. In particular, we

analyze the security and privacy risks involved in collecting location data.
– We consolidate open research challenges in security and privacy friendly

architectures for exposure notification systems. We present a roadmap to
achieve secure and private architectures that may serve useful beyond the
COVID-19 pandemic.

Organization: The rest of the paper is organized as follows. Section 2 presents
the state-of-the-art exposure notification proposals and their security and privacy
design. Section 3 analyzes the role of policies and their effects on the propos-
als. Section 4 provides a classification of risks involved in exposure notification
based on several factors. Section 5 studies the role of architecture in designing,
selecting, and implementing these proposals. Section 6 summarizes a few open
research questions and presents an agenda to achieve secure and privacy friendly
architectures.

2 Summary of Proposals

To fight against the pandemic, the digital world has pulled together to propose
many exposure notification protocols, mobile phone applications, and frame-
works. They aim to aid health authorities in the time consuming tracing process
and to provide accurate contact information which may not be always possible
when only relying on the memory of infected patients. In this section, we summa-
rize the state-of-the-art systems proposed and implemented around the world.
First, we briefly describe the different types of exposure notifications systems
based on the architecture and security model. Then, we present a few deployed
apps followed by the proposals from the academia and private sector.
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Fig. 1. A generic exposure notification system

2.1 Preliminaries

We generalize exposure notification systems as follows. The contact information
can be collected as geolocation, Bluetooth pings, QR code, and/or WiFi access
point information, as illustrated Figure 1. It is stored with the corresponding
timestamp of collection. In all types of notification systems, the timestamp of
collection is used to mark the start of the required retention period for geolo-
cation contact data. In notification systems other than Bluetooth-based ones,
the timestamp is also a required parameter to properly define the location co-
ordinates of users in space and time. Bluetooth ping-based systems are directly
between users, and hence do not require space/time location coordinates.

We refer to all types of contact information with its timestamp as location
data in the rest of the paper unless explicitly differentiated. We refer to app users
who have tested positive for infection as infected users and the remaining as un-
infected users. The main parties involved in exposure notification systems are the
app users, health authorities, and backend servers. The system is implemented
as a mobile app and after app installation, it operates in three phases [21]:

I : The app collects and stores its user location data.
II : After diagnosis, infected users report their location data to a central exposure

database server.
III : Any user can query the server to compute their exposure risk.

Exposure risk is used to identify if any user was in contact with one or more
infected users. A positive exposure risk notification implies exposure to infection
and a negative exposure risk is perceived as no known exposure.
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Architectural differences in exposure notification: The proposed expo-
sure notification systems can be broadly classified based on the architecture of
the design. The main technology used in collecting location data includes Blue-
tooth pings, geolocation, QR code, WiFi access point, or a combination of these
techniques. The difference in architecture can be mostly observed in phase I of
the system operation, described below:

– Bluetooth: The user’s app broadcasts a pseudo ID at periodic intervals using
Bluetooth beacons. The pseudo IDs are generated using pseudo random func-
tions(PRF), AES module, or SHA-2. The app also collects all IDs it scans
via Bluetooth with the corresponding reception time. The scanned IDs and
broadcasted IDs are retained for a fixed amount of time, as prescribed by
epidemiologists. The user privacy is maintained by ensuring that pseudo IDs
cannot be used to identify its user.

– Geolocation: The app records its user location data such as GPS coordi-
nates at fine grained periodic intervals. The user privacy is maintained by
anonymizing the geolocation data before it leaves the user’s terminal device.
Alternately, the geolocation data can be encrypted. Homomorphic encryp-
tion schemes support privacy-friendly processing of location data.

– QR Code: The app is used to scan QR codes before entering public facilities,
such as trains and office buildings. The app stores a local history of locations
visited (QR code) along with the time visit. The user privacy is protected
as the QR code does not reveal the user identity.

– WiFi Access Point : The app records the MAC address of the WiFi access
points it encounters. Since the access points are considered stationary and
unrelated to its connecting users, they can be used as geomarkers.

Security models used in exposure notification: In phase II, an infected
user turns over stored location data to the health authority. With the consent
of the infected user, the health authority then shares the user’s anonymized
location data with a public server. The way the location data is used in Phase III
widely varies depending on the trust model of the server and the trust in central
authority. A majority of the existing proposals use a semi-trusted, also called
honest-but-curious, server. Such a server is assumed to follow the protocol but
may keep a record of intermediate computations and use it for further inference
beyond the protocol operation. In exposure notification systems, a semi-trusted
server is assumed to not add or remove information shared by infected users,
but the server will not protect the privacy of all users [10]. The privacy of users
in such models is independent of the trust placed in the server as the server
only stores anonymized user data. In exposure notification systems it is safe to
assume that the server is maintained by the government or the health authority.
The trust in the central authority that maintains this server differentiates the
operations in phase III. Based on this trust, the proposals are broadly classified
as centralized and decentralized models that operate as follows.
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StoA Apps O W Location Data
Security

and
Privacy

Country/
Company Protocol

TraceTogether[13] X X BLE IDs AES-GCM Singapore BlueTrace [35]

Hamagen[14] X - BLE IDs, GPS,
WiFi - Israel -

SmitteStop[18] × - BLE IDs, GPS - Norway -
Arogya Setu[31] - - BLE IDs, GPS - India -
ProteGo[15] X X GPS - Poland -

NHS COVID-19
App[25] - - BLE IDs - UK

StopCovid[24] X X BLE IDs - France ROBERT [21]
COVIDSafe[12] X - BLE IDs - Australia BlueTrace [35]

Covid Watch[8] X X BLE IDs Hash Function USA TCN
[23]

CoEpi [7] X X BLE IDs Hash Function USA TCN
[23]

PrivateKit
SafePath [20] X X BLE IDs, GPS Encrypted

Location data USA -

CovideSafe [9] X X BLE IDs TLS, SHA-256 USA PACT
[44]

WeTrace [26] X X BLE IDs, GPS Public key
cryptography Switzerland -

Check-In [29] × - BLE IDs, GPS,
WiFi - PwC -

Table 1. State-of-the-art(StoA) apps deployed by governments (group 1) and
academia/private sector (group 2). Their properties include availability of open source
implementation (O); availability of white papers (W); the type of location data col-
lected - Bluetooth pings(BLE IDs), geolocation data(GPS), WiFi Access Point informa-
tion(WiFi) and QR code; security and privacy design; country of origin; and underlying
protocol.

– In a decentralized model, the exposure risk is computed locally, by the user’s
mobile app, without revealing uninfected user’s location data to the server.
The server maintains a public exposure database of all the locations visited
by infected users. In phase III, an uninfected user queries the server for the
exposure database and locally compares it against their location data to
determine their exposure risk.

– In a centralized model, the exposure risk is computed by the server and
it notifies each user who queries. The server maintains a private exposure
database of all locations visited by infected users. In phase III, an uninfected
user queries the server for their exposure risk by revealing their location data.
The server compares the query input with its database and replies with the
user’s exposure risk.
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2.2 Existing Deployments

Table 1 lists a few existing mobile applications implemented around the world.
It is divided into two groups - government deployments and academia/private
sector deployments.

The first group contains the apps used by governments of different countries.
They are all based on the centralized model, where the server is trusted to an
extent to maintain user privacy and to compute the exposure risk. The Singa-
pore government published TraceTogether [13], a Bluetooth contact tracing app
based on the BlueTrace protocol [35]. It uses pseudonyms to track users and
to notify potential contacts. Israel’s Ministry of Health released Hamagen [14],
an exposure prevention app that uses location based on mobile device data to
identify possible contacts. Norway’s Institute of Public Health introduced the
Smittestopp app [18] to anonymously track movement patterns. Smittestopp
uses smartphone’s built-in location services and Bluetooth to detect nearby
phones. The Indian government has developed Arogya Setu [31] and it has made
it mandatory for citizens to use the app in certain localities and offices. Even
though these apps were conceived to protect the citizens, it creates an avenue
for exploiting user privacy by nation-states, powerful corporations, and hackers
when there is a lack of transparency in design, implementation, and evaluation.
Recently, Arogya Setu was hacked to reveal the infection rate at any location
with a precision of a meter [17].

The second group primarily contains the apps deployed by academia [9, 8, 7,
20, 10, 26] that are based on the decentralized model and are well documented
with reference implementation, white papers, and open discussion on improv-
ing their privacy. A majority of them are based on the protocols discussed in
Section 2.3. In the private sector, PricewaterhouseCooper (PwC) has developed
an enterprise version of a digital contact tracing app, called Check-In, for status
checking and automated contact tracing [29]. It is targeted towards its corporate
clients who are considering digital contact tracing to re-open their offices. If an
employee is tested positive for the infection, the human resources department
notify other employees who were in contact with the infected employee of their
exposure risk [28].

2.3 Exposure Notification Protocols

Several privacy preserving digital contact tracing solutions were proposed to pre-
vent using contact tracing as a new tool for tracking people and to prevent misuse
of health data. Table 2 lists a few emerging proposals discussed here. Decen-
tralized Privacy-Preserving Proximity Tracing (DP-3T) [10], Privacy-Sensitive
Protocols And Mechanisms for Mobile Contact Tracing (PACT) [44], Private
Automated Contact Tracing - the PACT protocol [19], the TCN(temporary con-
tact number) protocol, and the Apple|Google collaboration framework [47] are
proposals for secure and decentralized Bluetooth-based tracing that minimize
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StoA proposals Open
source Location Data Security and

Privacy
Trust
Model

DP-3T[10] X BLE IDs AES-CTR, SHA-256 Decentralized
Google|Apple[47] No BLE IDs AES, SHA-256 Decentralized

PACT[19] - BLE IDs PRF Decentralized
PACT[44] X BLE IDs TLS, SHA-256 Decentralized

TCN Protocol[23] X BLE IDs Hash function Decentralized
ROBERT[21] No app BLE IDs Block-cipher , AES-OFB Centralized
DESIRE[11] No App BLE IDs Diffie-Hellman Cenralized

ConTra Corona[39] No app BLE IDs Hash function, Public
key cryptography

Centralized+
decentralized

Pronto-C2[34] No app BLE IDs TOR, mix-nets,
Diffie-Hellman

Centralized+
decentralized

Epione[67] - BLE IDs PIR Decentralized
TraceSecure[37] No app BLE IDs Homomorphic encryption Decentralized
PrivateKit[16] X BLE IDs, GPS Encrypted location data Decentralized
SafeTrace[22] - GPS MPC Decentralized

Berke1 et al.[38] No app GPS Hash tables, PSI Decentralized

Tjell et al.[66] No app BLE IDs, GPS Homomorphic
encryption, PSI Decentralized

WeTrace[43] X GPS, BLE IDs Public Key
Cryptography Decentralized

CONTAIN[50] No app BLE IDs Symmetric Key
Encryption

Centralized,
decentralized

CAUDHT[41] No app BLE Blind signatures,
hash tables Decentralized

Table 2. State-of-the-art(StoA) proposals from the academia and private
sector. Their properties include the availability of open source implementation; loca-
tion data type; security and privacy design; and the server trust model.

security and privacy risks in digital exposure notification. ROBust and privacy-
presERving proximity Tracing protocol (ROBERT) [21] is a centralized protocol
with similar design and federated servers. In these designs, user privacy is main-
tained by generating ephemeral pseudo IDs, referred to as BLE IDs in Table 2,
using AES and SHA-2 based algorithms. Bluetooth-based protocols only relying
on anonymous BLE IDs, are susceptible to various risks as discussed in Section 4.
These risks may be exploited to carry out replay attacks, linkage attacks, power
drainage attacks, trolling attacks, paparazzi attacks, tracking, and deanonymiza-
tion of infected users [68, 49, 55].

There are several proposals that use techniques beyond ephemeral pseudo
IDs to protect user privacy, particularly infected user privacy, in Bluetooth-based
systems. DESIRE [11] was proposed by the ROBERT [21] team as a protocol
that leverages aspects from both centralized and decentralized models. While the
exposure risk computation is still centralized, DESIRE’s ephemeral IDs are gen-
erated on mobile phones using Diffie-Hellman protocol [45]. It also stores scanned
IDs in two parts - one for uploading to exposure database if infected and the
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other for checking the exposure risk. ConTra Corona [39] divides the ephemeral
IDs into two unlinkable IDs - one for broadcasting via Bluetooth and the other
for publishing in the exposure database. It employs two servers (to publish and
to check for exposure risk) and an anonymous communication channel, such as
TOR [3], to prevent the server from linking IDs to metadata. Pronto-C2 [34] is de-
signed to provide protection against mass surveillance, which is possible in many
decentralized Bluetooth-based systems. It uses blind signatures to authenticate
infectious user location data, TOR to break the link between ephemeral IDs and
real identities, and mix-nets to reduce the relation between two ephemeral IDs
from the same user. Epione [67] proposes to use a single-server private infor-
mation retrieval (PIR) scheme with homomorphic encryption or two-server PIR
scheme with symmetric encryption to protect location privacy. TraceSecure [37]
is a set-based protocol that protects all user privacy irrespective of their infection
status. It protects the Bluetooth-based location data using public key encryption
and additive homomorphic encryption techniques.

The privacy of GPS based proposals, such as PrivateKit [16], Safe-
Trace [22]and [38, 66], differ from Bluetooth based proposals because geoloca-
tion data itself is not anonymized. Instead, they rely on private set intersection
(PSI), PIR, homomorphic encryption, and multi-party computation(MPC) pro-
tocols to achieve user privacy, similar to the approach of TraceSecure [37] and
Epione [67].

3 Role of Policies and Standards

The data collected in exposure notification systems typically consist of both
location and health data of users. There is a risk of infringement of fundamental
civil and data rights when these systems are deployed at a large scale. And there
is a threat of public and private surveillance. In this section, we discuss how the
government’s decision and policy making capabilities can help safeguard user
data.

Consider the Apple|Google collaboration [47] to provide a privacy friendly
exposure notification system. They are working on a common framework that
can work across Android and iOS. They propose to incorporate the pseudo ID
generation and rotation capabilities, first, in an API framework and later, to
embed it in the OS. The exposure notification app would access the ID via the
API and broadcast it. Even though this type of solution restricts the access and
generation of IDs to the ‘trusted’ OS, it creates a monopoly on ID generation.
Switzerland, UK, USA, and Australia are already considering implementing their
exposure notification apps based on the Apple|Google API framework [33]. The
apps using this framework are forced to follow its decentralized model. Bluetooth-
based decentralized systems, such as DP-3T and Apple|Google framework, are
proven to be exploitable for mass surveillance using paparazzi attack [60]. Unless
Apple and Google update their framework, all apps that use their framework
are also susceptible to such attacks. This is an example of how a few tech giants
monopolies in the smartphone industry affect user privacy.
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PwC’s Check-In app is another example of how private companies may force
their employees to use exposure notification apps [28]. With Check-In, executives
and human resource department of corporate companies will have access to all
employee interaction and routines in a workspace. There are no clear regulations
on enterprise exposure notification systems, on corporate companies using user
data from exposure notification systems, and on post-COVID-19 data privacy
management.

We need regulations and laws that can be applicable in this emergency set-
ting where user’s (or citizen’s) rights must be protected. These laws will play an
important role in holding all actors accountable for their roles and instill trust
in the users to participate in exposure notification. The ACLU [46], EDPB [40],
AccessNow [30] and other data rights and privacy groups have published guide-
lines for selection and widespread implementation of exposure notification sys-
tems [27]. These guidelines may be adopted by policymakers and government
officials when designing, selecting, and implementing exposure notification sys-
tems. The guidelines proposed for the COVID-19 pandemic revolve around the
central themes of social and technical requirements listed below. The following
requirements were consolidated from the guidelines proposed by AccessNow [30],
ACLU [46], EDPB [40], and CCC [27].

– Epidemiology perspective: The system must be designed and used under the
supervision of qualified personnel. It must be designed for specific epidemics
and pandemics. For example, Bluetooth based tracing is effective in COVID-
19 but ineffective in sexually transmitted diseases.

– Voluntary enrolling, consent, and no discrimination: User participation must
be voluntary and the user must consent to all the functionalities of the
system, such as, collecting location data and sharing the required data with
a server. Punitive and restrictive measures to control the infection using the
system must not be allowed.

– Transparency and audits: The system design and implementation must be
transparent to the public with open source implementation, regular audits
with published reports, clear definition of parties involved in the system, and
their roles.

– Central authorities and accountability : The system must place minimal or
no trust in a central authority. Any trusted central authority must be held
accountable for their actions under the law.

– Data minimization: The system must only collect necessary data and only
share necessary data with the server. Whenever possible the data should be
encrypted to restrict access to authorized parties. The collected data must
be stored only as long as it is deemed useful by epidemiologists.

– Data Anonymisation refers to the removal of the ability to link the data
with an identified or identifiable natural person using any “reasonable” effort
[40]. Any data that leaves the user’s terminal device, such as a mobile phone,
must not be used to recognize the user. This data includes the exchanged
Bluetooth IDs and location data shared with the server.

– Security : All communications and storage must be secured with state-of-the-
art cryptographic algorithms. This includes mutually authenticated commu-
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nication between the server and the app and secure data storage at both the
server and the app side.

– Sunset provisions: At the onset, the system must define clear goals for an
exit strategy. The exit strategy may need to be implemented because of an
ineffective system or because the pandemic was successfully combated. The
exit strategy must include provision for safe disposal of stored data at the
server (either erasure or further anonymization for historic use) and provide
guidelines to uninstall and clear local data on the user’s mobile phone.

4 Risks in Exposure Notification

In this section, we classify the risks present in all types of exposure notification
systems. Figure 2 illustrates the potential attacks that exploit the risks detailed
below. Replay, trolling, linkage, coercion, eavesdropping, paparazzi, collusion,
deanonymization, Denial of Service(DoS), battery drain, and tracing attacks are
discussed by Gvili [49] and Vaudenay [68]. BleedingBit [63] and BlueBorne [62]
attacks are particular to Bluetooth technology.

4.1 Security Risks

Integrity based risks: An uninfected user may add bogus location data to
their location data to check if a particular location or user is infected. A malicious
infected user may add bogus location data to their location data before they
share it with the exposure database, which causes widespread panic among other
users and generate false positive exposure risks.

A malicious server may modify the exposure database. The server may add
bogus location to induce false positives or the server may delete certain locations
to induce false negatives. The former could be used to create panic in certain
locations and the latter may be exploited by certain services such as cafes and
restaurants to delete their location data from the database to maintain a steady
influx of customers.

Integrity based risks may be exploited for trolling attacks, replay attacks,
and to stigmatize infected users.

Authenticity based risks: The authenticity of the exposure database and
exposure risk notification is at risk. Unverified uploading of location data to
the exposure database can be exploited to upload bogus location data to the
server. An attacker may impersonate the server and provide false positive and
false negative exposure notification to users. The same attacker may also send
malicious exposure database entries to the user and influence the user to compute
a false positive/negative exposure notification. These risks may be exploited for
trolling attacks.
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Fig. 2. A flow chart of risks in and attacks [68, 49, 62, 63] on exposure notification
systems

Confidentiality based risks: An attacker can passively observe the commu-
nication between the app and the server. The attacker can obtain the location
data when it is shared with the server. The attacker may also have access to the
victim’s terminal device, from which the stored location data may be extracted.
All unencrypted data is vulnerable to the attacker. This data can be used for
replay attacks, linkage attacks, and coercion threats.

4.2 Privacy Risks

Server trust model risks: All the exposure notification proposals use a server
in a centralized or decentralized model. In both cases, the server typically stores
anonymous location data for exposure notification. The anonymous location data
is typically received as network packets from the app user to the server along
with metadata, such as the source IP address. A malicious server may store
the metadata related to users and break user anonymity. This can be further
exploited by the server to build social graphs of the users without their consent.
A social graph represents the relationship between app users which leaks user
privacy. A malicious server may introduce bogus location data to aid in trolling
attacks, as described in authenticity based risks [57].

A server in the centralized model compares infected user location data and
uninfected user location data to compute exposure risk. An untrusted centralized
server has access to all user location data, which can be exploited by the central
authority to sell location data for profit.

The server trust model is inherently derived from the assumed attacker
model. The attacker (app user or a third party) may collude with the server
to perform collusion attacks to deanonymize location data using metadata, to
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obtain the social graph of all users, and obtain location data of all users. Col-
lusion attacks may also be used to exploit the inherent risks of MPC protocols
based exposure notification systems [66].

Infected user privacy risks: In decentralized exposure notification proposals,
the infected user’s location data is broadcasted to the public. The attacker can
associate location data of each user with an identifier, when there is a match in
location data between the attacker’s app and public database, the attacker can
identify the infected user using their identifier. This may be exploited to target
a particular victim, where the attacker only interacts with the victim and has
location data only from the victim. When this location data is compared with
the public database the attacker can identify if the victim is infected or not [68,
49]. This risk could be exploited to deanonymize the infected user using linkage
attacks and perform one-entry attacks [21]. A potential solution is not to publish
the location data of infected users, but to have a federated server perform the
exposure risk calculation using both user and infected user location data. This
type of solution has its own risks mentioned above.

Sunset provision risks: The purpose of exposure notification systems is to
limit the spread of infection. Without preset deadlines to stop contact tracing,
these systems may be exploited to track users beyond the scope of infection
control.

4.3 Architecture and Technology Risks

Bluetooth based risks: A majority of proximity tracing proposals [21, 10, 44,
19, 13] are based on Bluetooth technology. Bluetooth can be exploited to attack
the exposure notification system by extending Bluetooth discoverability using a
directional antenna. The attacker can create false positive contact data and to
potentially perform trolling attacks.

Using Bluetooth, an attacker can attack the general operation of a user’s
mobile phone as the Bluetooth is always on for the operation of exposure notifi-
cation systems. Bluetooth is vulnerable to Denial of Service (DoS) attacks where
the attacker can flood a victim’s Bluetooth with a large volume of messages. The
device consumes power in analyzing these messages, storing valid messages in
memory which overloads the memory, and discarding invalid messages. This may
drain the battery on the mobile phone, keep the phone occupied, and lead to
slow or no response to its regular operation.

Bluetooth-based systems are not accurate in detecting the precise distance
between two phones, which may lead to false positives [33]. A majority of them
use received signal strength indicator(RSSI) to compute the distance. RSSI may
not convey accurate distance measurements because it is affected by obstructions
such as a phone case. A large number of false positives may also stress the health
system by using medical supplies to test false positive users.
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These systems also interact with existing ad-tech surveillance equipment,
which uses BLE beacons for marketing and advertisement [61]. With this inter-
action, the marketing companies may associate Bluetooth pings with the abso-
lute location of their beacons. On a large scale, such trackers maybe employed
for mass surveillance [60].

The Bluetooth-based exposure notification system may be used to exploit
Bluetooth vulnerabilities such as BleedingBit [63] and BlueBorne [63] which
may affect regular mobile phone operation. They are also vulnerable to passive
tracking and identity exposure without an accurate implementation of BLEMAC
address randomization [36].

WiFi Access Point based risks: WiFi Access Point based proximity tracing
systems [32] keep track of the network identifiers of WiFi Access Points. If the
attacker has access to these network identifiers and their collection timestamp,
they can identify the exact location of the user which leaks user privacy [65].
Similar to Bluetooth, WiFi-based systems do not provide accurate contact in-
formation as an access point maybe used by users who are physically separated,
for example, in different rooms.

Geolocation based risks: When exposure notification proposals use geolocation-
based location data, they have access to the absolute user location data. The
geolocation data is a commodity to be sold which can be used to construct
social graphs. This maybe exploited as a monitoring tool by nation-state and
corporations.

4.4 Political risks:

Table 1 lists various apps and initiatives deployed in different countries, where
each country and its current government are implementing their choice of expo-
sure notification system in a centralized model. There are a few political risks
in such systems. First, a change in government might affect citizen privacy as
there is a change in central authority. For example, the existing government
may adopt a system where it stores location data from its citizen and only uses
it to compute exposure risks when requested. The database may not necessar-
ily anonymize user data because the central authority is trusted to not misuse
the data. This data maybe exploited by the next government to enforce stricter
measures to fight the pandemic or maybe used to track its citizens. Second, the
exposure notification system may be exploited by other nation-states. For exam-
ple, country A’s exposure database with location data from its citizens maybe
exploited by country B. User privacy is at risk from cross-border cybersecu-
rity attacks. Edward Snowden also suggested that exposure notification systems
maybe exploited for mass surveillance by governments [64].
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14-day retention Broadcast Overhead
@ 0.25s interval

Scan Overhead
@ *1s interval Units

ID storage size 224 *224,000 B
Battery drain 0.0132 3.75 %/hr

Table 3. An example of overhead incurred by the Google|Apple framework in iPhone
5S. ID storage size includes the keys used to derive the broadcasted IDs and the scanned
IDs in 14-days. The percentage battery drain was computed using Aislelabs technical
reports [6, 5]. *We assume 1000 contacts/day and a 1s scan interval

5 Role of Architecture

In Section 2, we saw that a majority of exposure notification systems are only
based on Bluetooth based location data. One of the reasons for using Bluetooth
is that tracing geolocation data, such as GPS, is considered to be intrusive and
in the wrong hands, it may be used to track the user. The attacker can use
geolocation data to discern a victim’s home address, workspace, their daily ac-
tivities, and social interactions. Short-wavelength technology based proximity
tracing was thought to be an alternative to GPS based contact tracing. The
ubiquitousness of mobile phones with Bluetooth technology was an off-the-shelf
solution to solve the tracing problem. In this section, we analyze the role ar-
chitecture and technology play in the design and choice of exposure notification
proposals. We provide back-of-the-envelope calculations for the cost of using
Bluetooth in exposure notification. We present the architectural requirements
for using geolocation based location data for privacy friendly designs.

5.1 Bluetooth, Privacy, and Overhead

The privacy of the user is guaranteed in a majority of Bluetooth-based proposals
based on two properties. First, the pseudo IDs collected using Bluetooth do not
provide any information about the absolute location of the contact. Second, the
pseudo IDs are frequently changed to ensure that no observer is able to track
a user with their IDs. These properties are guaranteed by the cryptographic
algorithms used to derive the IDs. The pseudo IDs are typically generated using
SHA-2 [10], AES [47] or a pseudo random function [19]. Although modern mobile
phone technology is equipped with hardware acceleration for AES and SHA-1,
it is optimized for computation on large data. Since the IDs are typically 16B
they can be generated with minimal overhead in software.

Bluetooth Low Energy (BLE) is the recommended Bluetooth technology to
be used in implementing these proposals. BLE is known for consuming low en-
ergy when compared to Bluetooth Classic by essentially operating in sleep mode.
The exposure notification apps do not establish a Bluetooth connection, they
2 The percentage battery drain for iPhone BLE broadcasting was extrapolated from
the battery life of low-power iBeacon device broadcasting [6]. Broadcasting using
iPhone may consume significantly more battery.
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only broadcast their IDs to and scan IDs from contacts. Table 3 lists the po-
tential overhead of deploying the Google|Apple framework [47] in iPhone 5S.
We differentiate the overhead based on two Bluetooth operation - broadcasting
and scanning. We compute the broadcasting overhead with a 0.25s broadcast
interval, the recommended broadcast interval is between 0.2-0.27s [47]. The scan
overhead is computed at an assumed scan interval of 1s. For simplicity, we only
consider the storage overhead of the BLE IDs without the timestamp and other
metadata.

The overhead is listed in terms of the size of memory required based on a
14-day retention period and the percentage of battery drain per hour for each
Bluetooth operation. The broadcasted ID storage includes the Temporary Ex-
posure Keys (TEK) used to compute the Rolling Proximity Identifiers(RPID) in
the past 14-days. Since TEKs are computed daily, the net broadcast ID storage
overhead is computed as a product of TEK size in bytes (16B) and the number of
days in retention period (14 days) which comes to 224B. The scanned ID storage
is computed as a product of the scanned ID size (16B), number of contacts per
day (assumed to be 1000), and number of days in retention period (14 days),
which equals 224,000B.

The percentage battery drain is computed using technical reports from Aisle-
labs [1]. iPhone 5S is equipped with a 1560mAh battery [2]. When this iPhone
broadcasts its RPIDs at 0.25s broadcasts interval, it uses 0.013%3battery per
hour [6]. The same iPhone uses 3.75% battery per hour to scan for incoming
RPIDs in 1s scan interval [5]. During each scan operation, the phone may detect
multiple beacons and process them which could be attributed to a higher battery
drain during scanning. The percentage battery drain for Bluetooth operations
can be reduced by increasing the broadcast and scan intervals [4], but this may
adversely affect the protocol operation.

We highlight that Bluetooth communication is not free even in BLE. Apart
from the proximity communication and storage overhead, there are overheads in
communicating with the server, computing new IDs, and computing exposure
risk.

5.2 Hardware Acceleration for Privacy Protection

Apart from relying on AES and SHA-256 for security, some proposals use MPC
protocols, PSI, and PIR to protect user privacy [57, 66]. They use garbled cir-
cuits [67] and homomorphic encryption [37] as their underlying cryptographic
primitive in their protocol design. There are several advantages to selecting this
type of privacy protection. First, it protects infected users from deanonymiza-
tion. Since these proposals do not reveal any information about infected users,
an attacker cannot infer infected users from their contacts. Second, homomor-
phic encryption based solutions are effective in using geolocation data without
compromising user privacy. Third, homomorphic encryption solutions may be
post-quantum secure, which is an added benefit in designing futuristic applica-
tions.
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A major drawback in implementing such proposals is the computational over-
head involved both at the app user and server side. For example, homomorphic
computations generate large ciphertext with a message expansion factor of more
than two [59]. The encryption, decryption, and evaluation using homomorphic
encryption algorithms are also time consuming. Modern mobile phones are only
equipped with cryptographic hardware acceleration for AES and SHA-1 or they
are equipped for software acceleration for the same using custom instructions.
Hardware acceleration for garbled circuit [51] and homomorphic encryption [58]
exists only in academic literature. HEAX [58] is a novel architecture for homo-
morphic computation on encrypted data. It contains hardware modules for high
throughput Number Theoretic Transform(NTT), homomorphic multiplication,
and key switching. Prior work on hardware implementation for homomorphic
encryption mostly designed accelerators for large number [69], polynomial [52]
or integer [42] multiplication.

While the ubiquitousness of Bluetooth technology in mobile phones has lead
to its widespread adaptations in privacy preserving proposals, the dearth of
garbled circuit and homomorphic hardware may be attributed to the reason
behind their limited use in the same field.

5.3 Secure Location Data Storage

A few security risks from Section 4 can be exploited by the attacker when they
have access to read and to write local location data storage. The attacker may
add bogus locations to the exposure database to perform trolling attacks. They
can add targeted location data to check the infection data of a particular loca-
tion or user. They can coerce a victim to reveal their location data [68]. These
risks and attacks can be avoided if the location data is stored securely, without
access to the attacker or even the app user. If the local data storage is encrypted
and authenticated, the security risks can be avoided. Vaudenay [68] suggests
using Trusted Platform Modules(TPM) to prevent coercion threats and trolling
attacks, which is also suggested in the DP-3T proposal [10]. Trusted Computing
Group (TCG) has platform-specification for implementing TPM in mobile plat-
forms for secure storage and execution [48]. If mobile phones are equipped with
secure storage, a trusted exposure notification app may use this secure storage
to store local location data.

6 Towards Secure and Privacy Friendly Architectures

The state-of-the-art proposals summarized in Section 2 are by no means a com-
prehensive list. There is a deluge of exposure notification proposals in literature
but there is no dedicated policy on which type of privacy preserving solution
must be chosen by a government. In this section, we present a few challenges
that exist in deployed and proposed exposure notification systems. We conclude
by presenting potential add-ons to mobile architectures to overcome these chal-
lenges.
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6.1 Challenges in Design and Implementation

1. Security of location data: All the deployed and proposed solutions are pri-
marily focused on protecting user privacy. They mention some techniques
that maybe implemented to protect the security of location data but it is
not as clearly defined as the privacy protection.

2. User privacy irrespective of infection status: A majority of decentralized
proposals do not protect the privacy of infected users as their location data
is made public. Even anonymized location data can be used to deanonymize
infected users [68, 49]. The apps deployed by governments place trust on a
central authority to maintain infected user privacy and thus placing trust in
one entity.

3. Tracing multi-hop transmission: SARS-CoV-2 virus can be transmitted
through surfaces. A majority of the proposals use proximity tracing based
on Bluetooth which only traces human to human transmission. Geolocation
based tracing is set aside at the onset of design in the name of protecting
user privacy even though there are techniques that can be used to anonymize
such data.

4. Security and trust model: All the state-of-the-art protocols are designed for
an honest-but-curious server. It is not clear if their security and privacy
properties hold true in an honest or dishonest majority setting [53]. In real
life, there maybe malicious servers with a dishonest majority, where these
protocols may not protect user privacy.

5. Server implementation: All the proposals require a centralized or decentral-
ized honest-but-curious server. They lack in practical details on implement-
ing and maintaining such servers.

6.2 Achieving Overall Security and Privacy

A few of the challenges mentioned above (1,2, and 3) remain unsolved in de-
ployed solutions, which can be attributed to the lack of architectural support
in mobile phones. The presence of secure storage and its access to trustwor-
thy apps can help solve the security risks of location data. Challenge 2 and 3
are addressed in a few proposals [57, 66, 67, 37], but their practicality may be
hindered by the overhead incurred by their privacy protection solution. These
solutions use garbled circuits and homomorphic encryption in MPC, PSI, and
PIR based protocols to both protect infected user privacy and protect geolo-
cation data. They may be viable in the presence of hardware acceleration for
their cryptographic primitives, homomorphic encryption, and garbled circuits.
The availability of homomorphic hardware acceleration will not only be useful
for exposure notification, as homomorphic encryption and computation are con-
sidered post-quantum secure. In the age of mobile phones with multiple lens and
advanced software for night vision photography, why are they not equipped with
acceleration to support secure and privacy friendly applications?
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