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Abstract. Lattice-based cryptography is currently under consideration for

standardization in the ongoing NIST PQC Post-Quantum Cryptography com-
petition, and is used as the basis for Homomorphic Encryption schemes world-

wide. Both applications rely specifically on the hardness of the Learning With

Errors (LWE) problem. Most Homomorphic Encryption deployments use small
secrets as an optimization, so it is important to understand the concrete secu-

rity of LWE when sampling the secret from a non-uniform, small distribution.

Although there are numerous heuristics used to estimate the running time and
quality of lattice reduction algorithms such as BKZ2.0, more work is needed to

validate and test these heuristics in practice to provide concrete security pa-

rameter recommendations, especially in the case of small secret. In this work,
we introduce a new approach which uses concrete attacks on the LWE problem

as a way to study the performance and quality of BKZ2.0 directly. We find
that the security levels for certain values of the modulus q and dimension n

are smaller than predicted by the online LWE Estimator, due to the fact that

the attacks succeed on these uSVP lattices for blocksizes which are smaller
than expected based on current estimates. We also find that many instances

of the TU Darmstadt LWE challenges can be solved significantly faster when

the secret is chosen from the binary or ternary distributions.

1. Introduction

Lattice-based cryptography, proposed more than 20 years ago, is currently used
as the basis for Homomorphic Encryption schemes world-wide. Cryptosystems
based on the hardness of lattice problems are also under consideration for stan-
dardization in the ongoing NIST PQC Post-Quantum Cryptography competition.
Both applications rely specifically on the hardness of the Learning with Errors
(LWE) problem [Reg09].

Homomorphic Encryption allows computations on encrypted data, with security
parameters for practical applications specified in HES, the Homomorphic Encryp-
tion Standard [ACC+18]. For efficiency reasons, it is common in homomorphic
encryption to sample the secret from special distributions, such that it has small
entries [BV11]. For example, two common distributions are the binary or ternary
distributions [BLP+13, MP13], where the entries in the secret are in {0, 1} or
{0,±1} respectively. We also consider secrets sampled from the same small dis-
crete gaussian distribution as the errors. In fact, the Homomorphic Encryption
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Standard [ACC+18] specifies tables of secure parameters for three possible distri-
butions for the secret vector: uniform, ternary, and error distributions.

When the secret has a small norm, instances of LWE can be embedded into in-
stances of the unique Shortest Vector Problem (uSVP) [BG14, AGVW17, BMW19].
To recover the shortest vector, lattice reduction algorithms such as the BKZ2.0 al-
gorithm [CN11] are currently the most effective in practice. Although there are
numerous heuristics used to estimate the running time and quality of lattice reduc-
tion algorithms such as BKZ2.0, [GN08, APS15, ADPS16], more work is needed to
validate and test these heuristics in practice to provide concrete security parameter
recommendations, especially in the case of small secret and small error.

In this work, we introduce a new approach which uses concrete attacks on the
LWE problem as a way to study the performance and quality of BKZ2.0 directly.
We generate random LWE instances using secrets sampled from binary, ternary
or discrete Gaussian distributions. We convert each LWE instance into a uSVP
instance and run the BKZ2.0 algorithm to find an approximation to the shortest
vector. When the attack is successful, we can deduce a bound on the Hermite factor
achieved for the given blocksize. In practice we find that the attacks succeed for a
smaller block size than would be expected based on current estimates.

Our approach is similar to the approach taken in earlier work [LL15] for esti-
mating the approximation factor for the LLL algorithm. Laine and Lauter used
synthetically generated LWE instances to study the approximation factor for LLL
in dimension up to 800, without solving the Shortest Vector Problem. They found
that the approximation factor for LLL is significantly better than expected in di-
mensions up to 800, which confirmed and extended what Gama and Nyugen [GN08]
had found for LLL in dimension up to 200. But it was not clear how that would
extend to other lattice reduction algorithms such as BKZ. The attacks presented
in [LL15] also cover the case of secrets sampled from the uniform distribution, but
in that case the attacks are only successful for very large moduli.

In this work, we find that the security levels for certain values of the modulus q
and dimension n are smaller than predicted by the online LWE Estimator [APS15].
This is due to the fact that the attacks succeed on these uSVP lattices for smaller
blocksizes 30, 35, 40 and 45 than expected, for randomly generated LWE instances
with small secret. The work of [BG14] attempts to quantify the loss of security
when using binary secret by analyzing how much larger the lattice dimension n
should be in order to achieve the same level of security. We use the same approach
as [BG14] for attacking the LWE instances, but we run experiments to find the
smallest blocksize necessary to break each LWE instance.

The tables of experimental data we present in Section 4 can be interpreted as
follows: for each fixed blocksize β and lattice dimension n, the bold line in the
table represents the smallest value of log(q) for which the attacks succeed. There
are several estimates in the literature predicting which blocksize will be necessary
to achieve a sufficiently good approximation factor for the attack to succeed (the
2008 [GN08] and the 2016 [ADPS16] estimates). However our experiments on LWE
instances with small secret (and small error) show that the approximation factor
may be significantly better than predicted by the estimates for random lattices,
and this translates into attacks succeeding with smaller blocksize than expected.

For example, in Table 1 for binary secret, observe that blocksize 30 is enough to
break LWE instances with n = 120 and log(q) = 12 and error width σ = 3.2 in under
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2 hours. Although machines are more powerful now, this can be compared with
[BG14, Table 4] where the predicted security levels for (n, q, σ) = (128, 212, 22.6),
depending on the Hermite factor δ, range from 94 − 175 bits of security for the
standard attack to 34−59 bits of security for their attack. Note that their δ ≈ 1.008
is closer to the delta we get for failed instances δ ≈ 1.01 than our average δ for
successful cases δ ≈ 0.99.

We also observe a marked difference in blocksize required for a successful at-
tack in comparison with the experiments presented in [AGVW17]. For example,
in [AGVW17, Table 1], they validate the 2016 estimate in the case of n = 110,
log(q) = 11, where their attack requires blocksize 78. In our experiments attacking
LWE instances with binary secrets, we successfully attack the same parameters
with the same error width using blocksize 35 (see Table 2) with the dimension as
predicted in the 2008 estimate. In this case the discrepancy is most likely due to
the secret distribution: binary instead of uniform.

Our approach differs from the online LWE Estimator [APS15] in the sense that
we run BKZ2.0 on synthetically generated LWE instances in order to study the
approximation factor and the required blocksize, whereas the Estimator uses models
based on heuristic estimates to predict the blocksize and running time necessary.
We find for example that LWE instances in dimension 200 with log(q) = 19 and
binary secret can be broken using BKZ2.0 with blocksize 30, whereas the LWE
Estimator predicts that blocksize 40 would be required, and a similar discrepancy
with the LWE Estimator predictions applies to most entries in our Tables.

We present separate tables for each possible choice of the secret distribution:
binary, ternary, and Gaussian, for blocksizes 30, 35, 40 and 45, and lattice dimension
ranging from n = 40 to n = 200. Note the difference in security levels between the
tables for binary, ternary, and Gaussian secrets. For the same choice of blocksize β
and lattice dimension n, the attack succeeds for smaller values of log(q) for binary
secret than for ternary secret and Gaussian secret (e.g. for β = 30, n = 120,
log(q) = 12, 13, 14 respectively).

We also generated synthetic instances of the TU Darmstadt LWE challenges
[BBG+16] with binary, ternary and discrete gaussian secrets, and ran our same
attack on these instances. Although our experiments only cover blocksizes 30, 35,
40 and 45, these blocksizes are already large enough to attack all the solved LWE
challenges in the online tables, for secrets sampled from the binary and ternary
secret distributions. We observed significantly lower running times for successful
attacks on instances generated with the binary distribution for the secret vector.
We observed that sampling the secret from the discrete Gaussian error distribution
yielded greater security than the binary or ternary distributions for the same set of
parameters, as the attack rarely succeeds. Our attacks run in a matter of minutes
(under an hour) for blocksizes 30, 35, 40 and in a matter of hours for blocksize 45,
for the range of parameters where the actual challenges have been solved.

2. Preliminaries

Let b1, . . . ,bd ∈ Rd be linearly independent vectors, and let B = (b1, . . . ,bd) ∈
Rd×d be the matrix whose columns are formed by them. The lattice generated by
B is

L(B) =
{
Bx : x ∈ Zd

}
.(2.1)
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The Shortest Vector Problem (SVP) asks to find the shortest nonzero vector in
the lattice, whose norm is the first minimum:

λ1(L(B)) = min
v∈L(B) ,v 6=0

||v|| ,(2.2)

where we use || · || to denote the `2-norm. Similarly, the second minimum is

λ2(L(B)) = min
v1,v2∈L(B)

{
max{||v1||, ||v2||} : v1,v2 linearly independent

}
.(2.3)

The unique Shortest Vector Problem (uSVP) with gap γ is a variant of the SVP
where λ2 ≥ γ · λ1, for some γ ≥ 1. While random lattices do not satisfy this
condition, in Section 3 we describe a procedure for embedding an instance of LWE
with small secrets to an instance of uSVP.

In this work, we use the BKZ2.0 lattice reduction algorithm [CN11] to solve
instances of the uSVP. Let b∗1, . . . ,b

∗
d denote the Gram-Schmidt orthogonaliza-

tion of the basis vectors. For 1 ≤ i ≤ d, let πi be the orthogonal projection
over (b1, . . . ,bi−1)⊥. For 1 ≤ j ≤ k ≤ d, let B[j,k] be the local projected block
(πj(bj), . . . , πj(bk)), and let L[j,k] be the lattice spanned by B[j,k], of dimension
k − j + 1.

Definition 2.1. A basis b1, . . . ,bd is BKZ-reduced with blocksize β ≥ 2 if it is
LLL-reduced, and for each 1 ≤ j ≤ d, ||b∗j || = λ1(L[j,k]) where k = min(j+β−1, d).

The BKZ algorithm works by iteratively reducing each local block B[j,k] of size
up to β. Each block is first LLL-reduced, before being enumerated to find a vector
that is the shortest in the projected lattice L[j,k]. The BKZ2.0 algorithm [CN11]
improves on BKZ by modifying the enumeration routine, incorporating the sound
pruning technique by [GNR10].

The volume of a lattice is Vol(L(B)) = |det(B)|. We use the root Hermite factor
to measure the quality of the BKZ-reduced basis.

Definition 2.2. The root Hermite factor δ of a basis {b1, . . . ,bd} is defined by

(2.4) ||b1|| = δd ·Vol(L(B))1/d .

For BKZ with block size β, Chen [Che13] gives the following estimate for δ which
only depends on β.

(2.5) δ(β) ≈
(

β

2πe
(πβ)1/β

) 1
2(β−1)

.

For a large β, we can approximate this by β1/2β .

3. Reduction from LWE to uSVP

In this work, we study the uSVP attack on LWE, which is currently the most
effective attack if the LWE secret has small entries [BG14, AGVW17, BMW19].
There are two known estimates for the conditions under which uSVP can be solved
by lattice reduction, which are known as the 2008 estimate [GN08] and the 2016
estimate [ADPS16]. In this section, we describe the reduction from LWE to uSVP,
which proceeds by first reducing LWE to BDD and then reducing BDD to uSVP.
We also describe the 2008 and 2016 estimates, and calculate the optimal parameters
for the uSVP attack under these estimates, as well as the predicted values of the
Hermite factor.
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3.1. The LWE Problem. We first define the search variant of the LWE problem.

Definition 3.1. Let n ≥ 1, q ≥ 2 be a prime modulus and let Dσ be a discrete
gaussian distribution over Z with standard deviation σ. Let A ∈ Zm×nq be a matrix
with entries uniformly sampled from Zq, let s ∈ Znq be a secret vector, and let
e ∈ Zmq be an error vector with entries sampled independently from Dσ. Let
b = As + e (mod q). The goal of the LWE problem is to find s, given (A,b).

We consider the following distributions for the secret:

• Binary : Secret has entries sampled uniformly at random from {0, 1}.
• Ternary : Secret has entries sampled uniformly at random from {0,±1}.
• Gaussian: Secret has entries sampled from the same discrete gaussian dis-

tribution as the error.

3.2. Reduction from LWE to BDD. Assuming that the secret has a small norm,
we can transform the LWE problem into the Bounded Distance Decoding (BDD)
problem. Specifically, given a lattice L(B) and a target vector t, such that the
distance of t from L(B) is bounded by a factor of λ1, the BDD problem asks to
find a lattice vector v ∈ L(B) close to t. Consider the lattice generated by

(3.1) B0 =

(
In 0
A q · Im

)
.

Since As + e = b (mod q), we can write b = As + e + q · c for some c ∈ Zm.

Hence the lattice contains the vector B0

(
s
c

)
=

(
s

As + qc

)
=

(
s

b− e

)
. Thus

if we solve the BDD problem in the lattice generated by B0, with respect to the

target point t =

(
0
b

)
, then we obtain

(
s
−e

)
, allowing us to recover the secret.

3.3. Reduction from BDD to uSVP. We can reduce the BDD problem to an
instance of uSVP using Kannan’s embedding technique [Kan87]. Consider the basis
matrix obtained by adding one row and column to (3.1):

(3.2) B1 =

(
B0 t
0 1

)
=

In 0 0
A q · Im b
0 0 1

 .

The lattice generated by the columns of B1 contains the unique shortest vector

(3.3) B1

 s
c
−1

 =

B0

(
s
c

)
− t

−1

 =

 s
−e
−1

 .

Assuming that the gap between λ1 and λ2 in this lattice is sufficiently large, we
can solve for the unique shortest vector using lattice reduction algorithms such as
BKZ2.0. Following [BG14], we further optimize this by balancing the lengths of
the secret and error vectors, scaling the secret by some constant factor ω. If the
secret is sampled from the same discrete gaussian distribution as the error, then we
set ω = 1. For the binary or ternary secret distributions, consider the matrix

(3.4) B =

ω · In 0 0
A q · Im b
0 0 1

 .
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The lattice L(B) generated by (3.4) has dimension

(3.5) d = n+m+ 1

and contains a short vector

(3.6) B

 s
c
−1

 =

 ω · s
As + qc− b

−1

 =

ω · s−e
−1

 .

Since this is the shortest vector of this lattice, we approximate the first minimum
of the lattice by its expected norm:

(3.7) λ1 =
√
ω2 · ||s||2 + ||e||2 + 1 ≈

√
ω2 · h+mσ2 + 1 ,

where σ is the standard deviation of the discrete Gaussian distribution and h is the
expected value of ||s||2. We have h = n

2 for the binary distribution and h = 2
3n for

the ternary distribution.
We estimate the second minimum λ2 to be the same as the first minimum of a

random lattice with the same dimension using the Gaussian Heuristic. Since the
lattice is q-ary, it also contains vectors of norm q, so we have

(3.8) λ2 ≈ min

{
q,

√
d

2πe
ωn/dqm/d

}
.

We can solve the uSVP using lattice reduction algorithms if λ2 is sufficiently
larger than λ1. We choose ω to maximize the ratio λ2

λ1
as follows. First we write

(3.9) γ =
λ2
λ1
≈

min

{
q,
√

d
2πeω

n/dqm/d
}

√
ω2h+mσ2

.

We choose the parameters to optimize the second term in the minimum, since the
Gaussian Heuristic would asymptotically be smaller than q. Differentiating the
expression in (3.9) with respect to ω and setting the result to zero, we get

(3.10) ω2 =
nm

h(d− n)
σ2 ≈ n

h
σ2 .

This gives us ω =
√

2σ for the binary distribution and ω =
√

3
2σ for the ternary

distribution. Substituting (3.10) into (3.7), we get

(3.11) λ1 ≈
√
dσ .

This also holds for the case where the secret is sampled from the same discrete
gaussian distribution as the error. Notably, the shortest vector has the same `2-
norm regardless of the secret distribution, whereas the `1-norm differs. Thus

(3.12) γ =

min

{
q,
√

d
2πeω

n/dqm/d
}

√
dσ

.

Remark 3.2. Another commonly used secret distribution is the uniform distribu-
tion on Zq, where the entries of the secret are sampled uniformly at random from
{0, 1, . . . , q − 1}. Since the secret does not have a small norm, the uSVP attack
would require a much larger q to succeed. To balance the norms of the secret and

error vectors, we have to choose the scaling factor to be ω ≈
√
3
q σ. However, the
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Gaussian heuristic would then be greater than q, and so λ2 = q from (3.8). For
the uSVP attack to be effective, λ2 would have to be much greater than λ1, which
means that q would have to be much larger than for the other secret distributions.

There are two known ways for estimating the conditions under which uSVP can
be solved using lattice reduction, which are called the 2008 estimate and the 2016
estimate in the literature. We study each of these in turn.

3.4. 2008 estimate. From experiments by Gama and Nguyen [GN08], they claimed
that the shortest vector can be recovered if

(3.13) γ =
λ2
λ1
≥ δd ,

where δ is the root Hermite factor of the lattice reduction algorithm, up to a
multiplicative constant. In what follows, we will compute the estimate of δ based
on the heuristic in (3.13) for our setting. We will fix n and q, while choosing the
lattice dimension d to maximize γ. First we write

(3.14) γ ≈

√
d

2πeω
n/dqm/d

√
dσ

=
1√
2πe

ωn/dqm/d

σ
≈ 1√

2πe

( q
ω

)−n/d ( q
σ

)
≥ δd .

We choose d to maximize the ratio in (3.14), by setting

(3.15) d =

√
n log

(
q
ω

)
log δ

.

We solve for the largest possible value of δ as a function of n, q, ω, σ. First, we
assume equality in (3.14) and take logarithms on both sides:

(3.16) log

(
q√

2πeσ

)
− n

d
log
( q
ω

)
= d log δ .

Substituting (3.15) and rearranging, we get the 2008 estimate for δ:

(3.17) log δ2008 =
log2

(
q√

2πeσ

)
4n log

(
q
ω

) .

We substitute (3.17) into (3.15) to obtain

(3.18) d2008 =
2n log

(
q
ω

)
log
(

q√
2πeσ

) .
This is the lattice dimension that we use in our experiments to compute δ2008.
We observe that δ2008 increases with q. For fixed n, β, we experimentally find the
smallest q such that the attack succeeds. Substituting the parameters into (3.17),
we then obtain a heuristic estimate of δ2008, which we compare with the actual
value of δ from (2.4).

We remark that (3.17) only holds for large q, such that λ2 is given by the
Gaussian Heuristic. If λ2 = q, then the same analysis as above gives

(3.19) log δ2008 =
1

d
log

(
q√
dσ

)
.
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We also compare δ2008 with the actual value of δ that we expect from the ex-
periments, using the definition in (2.4) and assuming that the shortest vector is
successfully recovered, and that λ2 is equal to the Gaussian Heuristic. We have

(3.20) δd2008 =
λ2
λ1

=

√
d

2πe
δ−d .

This gives us the relation between the expected experimental δ and δ2008.

(3.21) δ =
1

δ2008

(
d

2πe

)1/2d

.

Hence we expect δ to trend differently from δ2008.

3.5. 2016 estimate. The 2016 estimate is given in the New Hope key exchange
paper [ADPS16]. The authors consider the evolution of the Gram-Schmidt coeffi-
cients of the unique shortest vector in the BKZ tours, assuming that the Geometric
Series Assumption [Sch03] holds. This says that the norms of the Gram-Schmidt
vectors after lattice reduction satisfy

(3.22) ||b∗i || ≈ δd−2i+2 ·Vol(L(B))1/d .

The reasoning in [ADPS16] is that, if the projection of the unique shortest vector
onto the space spanned by the last β Gram-Schmidt vectors is shorter than b∗d−β+1,
then the SVP oracle in BKZ would be able to find it when called on the last block
of size β. The success condition is thus given by

(3.23)

√
β

d
λ1 ≤ ||b∗d−β+1|| .

Based on these heuristics, we compute the estimated value of δ in our setting.
Substituting λ1 ≈

√
dσ and (3.22), we get

(3.24)
√
βσ ≤ δ2β−d ·Vol(L(B))1/d = δ2β−dωn/dqm/d .

If we choose d to optimize this ratio, we obtain (3.15) again. Substituting (3.15)
into (3.24) and taking logarithms, we get a quadratic equation in

√
log δ:

(3.25) 2β log δ − 2

√
n log

( q
ω

)
log δ + log

(
q√
βσ

)
= 0 .

We solve this equation to get the 2016 estimate for δ:

(3.26) log δ2016 =
n log

(
q
ω

)
4β2

1−

√√√√
1−

2β log
(

q√
βσ

)
n log

(
q
ω

)


2

,

If the value inside the squareroot is negative, then we take log δ2016 =
n log( qω )

4β2 . We

obtain the lattice dimension d2016 by substituting (3.26) into (3.15). For large n,
(3.26) is asymptotically

(3.27) log δ2016 ≈
log2

(
q√
βσ

)
4n log

(
q
ω

) .

We observe that (3.27) is similar to (3.17) except for the denominator of q in the
numerator. The experiments in [AGVW17, BMW19] suggest that the 2016 estimate
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is more consistent with experiments than the 2008 estimate. In this paper, we will
experimentally compare δ2008 and δ2016 with actual values of δ.

We compare δ2016 with the expected experimental value of δ, using the definition
in (2.4) and assuming that the shortest vector is successfully recovered. We have

(3.28) δ2β−d2016 =

√
β

d

λ1
Vol(L(B))1/d

=

√
β

d
δd .

Hence we have the relation

(3.29) δ = δ
2β/d−1
2016

(
d

β

)1/2d

.

We observe that δ trends differently from δ2016, similarly to (3.21) for δ2008.

4. Experiments

4.1. Setup. We perform our experiments using a 2.4 GHz Intel R© Xeon R© E5-2673
v4 processor, with 48 virtual CPUs and 192 GB of RAM. We generate random
instances of LWE, and convert them into instances of uSVP via (3.4). We sample
the errors from a discrete gaussian distribution with standard deviation σ = 3.2,
using the discrete gaussian sampler in [The19], and we sample secrets uniformly
from the binary, ternary and discrete gaussian distributions. To recover the short-
est vector, we use the BKZ2.0 algorithm implemented in fplll [The16], with the
bkzautoabort option, and with blocksizes β = 30, 35, 40, 45. The bkzautoabort

option causes the algorithm to terminate when the norms of the Gram-Schmidt
vectors stop changing.

For β = 30, we run experiments for n from 40 to 200 in steps of 10. For
β = 35, 40, we choose n from 40 to 150, and for β = 45, we choose n from 40 to
100. We use a smaller range of values of n for higher β, since the running time
of BKZ2.0 grows exponentially with β, so it is infeasible to run the experiments
for higher β with large n. For each set of parameters, we vary log q to determine
the smallest value of log q such that BKZ2.0 succeeds in recovering the secret. We
perform 10 trials per set of parameters, to account for the randomness in sampling
the lattices.

The data are in Tables 1 to 6, where the rows in boldface contain the data for the
smallest value of log(q) where the attack succeeds. For each set of parameters, we
compute the values of δ using the estimates in (3.17) and (3.26), which we tabulate
as δ2008 and δ2016 respectively. Based on the estimates, we also compute the optimal
values of the lattice dimensions from (3.15), which we tabulate as d2008 and d2016.
Since these dimensions are different, we conducted two sets of experiments for each
set of parameters, where one set has lattice dimension d2008 and the other has
dimension d2016. We thus divide Tables 1 to 6 into two parts, where the left parts
indicate the experiments for the 2008 estimate and the right for the 2016 estimate.

For each instance, we compute the actual values of δ using the definition in (2.4).
We split the instances into cases where BKZ2.0 succeeds in recovering the secret,
and cases where it fails, and we compute the average value of δ in each scenario.
We tabulate these experimental values of δ under the columns labeled “Average
successful δ” and “Average failed δ”.
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Table 1. Binary secrets

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

30

40
5 156 0.99952 0 1 - 1.00344 178 1.00255 0 2 - 1.00264
6 128 1.00484 5 1 1.00176 1.00661 114 1.00805 7 2 1.00277 1.00835
7 114 1.01014 10 1 0.99893 - 83 1.01933 10 1 1.00340 -

50
6 160 1.00317 0 2 - 1.00525 157 1.00535 0 2 - 1.00545
7 143 1.00810 7 2 0.99992 1.00826 123 1.01096 8 2 1.00125 1.01118
8 133 1.01126 10 2 0.99722 - 105 1.01821 10 2 0.99952 -

60
7 171 1.00671 0 3 - 1.00689 158 1.00793 0 3 - 1.00808
8 160 1.00937 8 4 0.99819 1.00950 138 1.01258 8 5 0.99903 1.01278
9 152 1.01219 10 4 0.99558 - 125 1.01808 10 4 0.99752 -

70
8 186 1.00803 0 6 - 1.00816 169 1.00974 0 7 - 1.00990
9 177 1.01044 10 8 0.99672 - 155 1.01374 10 12 0.99780 -

80
8 213 1.00702 0 8 - 1.00709 200 1.00798 0 13 - 1.00805
9 203 1.00913 2 10 0.99701 1.00921 184 1.01115 0 12 - 1.01123
10 196 1.0112 10 12 0.99547 - 173 1.01438 10 16 0.99607 -

90
9 228 1.00811 0 27 - 1.00820 212 1.00940 0 23 - 1.00949
10 221 1.00995 4 32 0.99628 1.01001 200 1.01207 6 27 0.99644 1.01224
11 215 1.01183 10 31 0.99452 - 192 1.01485 10 24 0.99525 -

100
10 245 1.00895 0 45 - 1.00903 227 1.01041 0 42 - 1.01053
11 239 1.01064 7 55 0.99515 1.01073 218 1.01277 8 33 0.99579 1.01291
12 234 1.01235 10 54 0.99365 - 211 1.01520 10 35 0.99430 -

110
11 263 1.00967 0 71 - 1.00973 244 1.01122 0 57 - 1.01131
12 258 1.01122 10 86 0.99442 - 237 1.01333 10 69 0.99504 -

120
11 287 1.00886 0 94 - 1.00890 270 1.01001 0 85 - 1.01006
12 281 1.01028 2 106 0.99492 1.01035 262 1.01187 0 75 - 1.01192
13 277 1.01172 10 122 0.99372 - 255 1.01378 10 138 0.99409 -

130
12 304 1.00949 0 78 - 1.00957 287 1.01071 0 112 - 1.01075
13 300 1.01081 2 141 0.99411 1.01085 280 1.01242 2 129 0.99452 1.01247
14 296 1.01214 10 174 0.99297 - 274 1.01413 10 148 0.99324 -

140
13 323 1.01003 0 206 - 1.01007 304 1.01130 0 121 - 1.01138
14 319 1.01126 3 216 0.99360 1.01130 298 1.01286 8 220 0.99385 1.01296
15 315 1.01250 10 258 0.99257 - 294 1.01443 10 122 0.99301 -

150
14 341 1.01051 0 281 - 1.01058 322 1.01180 0 174 - 1.01188
15 338 1.01166 8 315 0.99306 1.01170 317 1.01323 10 244 0.99333 -
16 335 1.01282 10 347 0.99196 - 313 1.01467 10 268 0.99224 -

160
15 360 1.01093 0 253 - 1.01099 341 1.01222 0 334 - 1.01226
16 357 1.01201 10 397 0.99258 - 336 1.01355 10 368 0.99288 -

170
16 379 1.01130 0 531 - 1.01136 359 1.01259 0 546 - 1.01267
17 376 1.01232 10 516 0.99210 - 335 1.01382 10 422 0.99250 -

180
16 402 1.01067 0 609 - 1.01069 383 1.01175 0 484 - 1.01178
17 398 1.01163 2 626 0.99254 1.01170 378 1.01291 2 528 0.99268 1.01298
18 396 1.01260 10 739 0.99167 - 375 1.01406 10 392 0.99179 -

190
17 421 1.01102 0 761 - 1.01103 401 1.01210 0 392 - 1.01217
18 418 1.01193 9 836 0.99217 1.01196 398 1.01319 10 851 0.99231 -
19 415 1.01285 10 937 0.99129 - 394 1.01427 10 881 0.99156 -

200
18 440 1.01133 0 1183 - 1.01135 420 1.01241 0 951 - 1.01247
19 437 1.01220 6 1266 0.99169 1.01225 417 1.01343 10 1077 0.99200 -
20 435 1.01307 10 1450 0.99090 - 414 1.01446 10 1107 0.99114 -

35

40
5 156 0.99952 0 1 - 1.00344 196 1.00210 0 2 - 1.00218
6 128 1.00484 8 2 1.00180 1.00661 114 1.00812 4 3 1.00234 1.00835
7 114 1.01014 10 2 0.99879 - 71 1.02702 10 0 1.00566 -

50
6 160 1.00317 0 3 - 1.00525 161 1.00507 0 3 - 1.00518
7 143 1.00810 9 5 0.99989 1.00826 120 1.01159 10 2 1.00101 -
8 133 1.01126 10 4 0.99730 - 96 1.02173 10 2 0.99982 -

60
7 171 1.00671 0 6 - 1.00689 158 1.00795 0 5 - 1.00808
8 160 1.00937 10 6 0.99829 - 134 1.01332 10 8 0.99996 -

70
7 200 1.00534 0 6 - 1.00585 194 1.00614 0 10 - 1.00622
8 186 1.00803 0 7 - 1.00816 167 1.00994 2 11 0.99917 1.01014
9 177 1.01044 10 9 0.99656 - 151 1.01447 10 10 0.99747 -

80
8 213 1.00702 0 12 - 1.00709 199 1.00799 0 15 - 1.00813
9 203 1.00913 5 13 0.99712 1.00921 181 1.01145 6 16 0.99777 1.01160
10 196 1.01120 10 24 0.99545 - 170 1.01504 10 15 0.99620 -

90
9 228 1.00811 0 29 - 1.00820 211 1.00952 0 26 - 1.00958
10 221 1.00995 5 41 0.99620 1.01001 198 1.01240 10 33 0.99676 -
11 215 1.01183 10 43 0.99468 - 189 1.01544 10 30 0.99545 -

100
10 245 1.00895 0 50 - 1.00903 225 1.01058 0 44 - 1.01072
11 239 1.01064 10 66 0.99526 - 215 1.01312 10 52 0.99580 -
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Table 2. Binary secrets (continued)

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

35

110
10 269 1.00814 0 65 - 1.00823 253 1.00924 0 83 - 1.00931
11 263 1.00967 2 51 0.99557 1.00973 242 1.01142 0 66 - 1.01150
12 258 1.01122 10 95 0.99449 - 234 1.01367 10 59 0.99489 -

120
11 287 1.00886 0 111 - 1.00890 268 1.01012 0 88 - 1.01021
12 281 1.01028 2 113 0.99495 1.01035 259 1.01209 3 99 0.99544 1.01220
13 277 1.01172 10 137 0.99362 - 252 1.01411 10 91 0.99391 -

130
12 304 1.00949 0 155 - 1.00957 285 1.01085 0 156 - 1.01090
13 300 1.01081 7 188 0.99430 1.01085 277 1.01264 7 194 0.99466 1.01274
14 296 1.01214 10 203 0.99309 - 271 1.01445 10 180 0.99358 -

140
13 323 1.01003 0 217 - 1.01007 302 1.01146 0 182 - 1.01153
14 319 1.01126 8 265 0.99361 1.01130 296 1.01309 10 233 0.99396 -
15 315 1.01250 10 289 0.99250 - 291 1.01473 10 132 0.99281 -

150
14 341 1.01051 0 312 - 1.01058 320 1.01196 0 243 - 1.01203
15 338 1.01166 10 350 0.99304 - 315 1.01345 10 305 0.99341 -

40

40
5 156 0.99952 0 3 - 1.00344 216 1.00173 0 6 - 1.00179
6 128 1.00484 6 4 1.00202 1.00661 111 1.00857 6 6 1.00242 1.00881
7 114 1.01014 10 5 0.99919 - 80 1.02062 10 3 1.00158 -

50
6 160 1.00317 0 6 - 1.00525 164 1.00488 0 9 - 1.00499
7 143 1.00810 10 11 0.99999 - 113 1.01297 10 12 1.00202 -

60
6 192 1.00217 0 9 - 1.00435 211 1.00353 0 14 - 1.00360
7 171 1.00671 1 11 1.00017 1.00689 156 1.00811 0 15 - 1.00829
8 160 1.00937 9 14 0.99821 1.00950 128 1.01464 10 14 0.99965 -

70
7 200 1.00534 0 17 - 1.00585 195 1.00609 0 21 - 1.00616
8 186 1.00803 5 29 0.99886 1.00816 164 1.01032 4 23 0.99954 1.01051
9 177 1.01044 10 32 0.99666 - 145 1.01562 10 17 0.99817 -

80
8 213 1.00702 0 38 - 1.00709 198 1.00810 0 32 - 1.00821
9 203 1.00913 9 46 0.99727 1.00921 178 1.01193 8 36 0.99828 1.01200
10 196 1.01120 10 52 0.99552 - 164 1.01601 10 35 0.99651 -

90
9 228 1.00811 0 54 - 1.00820 208 1.00974 0 64 - 1.00986
10 221 1.00995 10 72 0.99628 - 194 1.01290 10 55 0.99703 -

100
9 253 1.00730 0 79 - 1.00738 238 1.00825 0 82 - 1.00835
10 245 1.00895 0 81 - 1.00903 223 1.01085 2 74 0.99722 1.01091
11 239 1.01064 10 105 0.99524 - 212 1.01360 10 74 0.99599 -

110
10 269 1.00814 0 111 - 1.00823 251 1.00939 0 109 - 1.00946
11 263 1.00967 8 117 0.99574 1.00973 239 1.01172 3 119 0.99612 1.01179
12 258 1.01122 10 147 0.99442 - 230 1.01413 10 121 0.99520 -

120
11 287 1.00886 0 185 - 1.00890 266 1.01031 0 125 - 1.01037
12 281 1.01028 8 196 0.99508 1.01035 256 1.01240 7 148 0.99515 1.01249
13 277 1.01172 10 235 0.99374 - 249 1.01454 10 145 0.99409 -

130
12 304 1.00949 0 235 - 1.00957 282 1.01105 0 195 - 1.01113
13 300 1.01081 10 296 0.99428 - 274 1.01295 10 210 0.99467 -

140
12 328 1.00881 0 242 - 1.00885 308 1.00998 0 260 - 1.01004
13 323 1.01003 1 300 0.99479 1.01007 299 1.01167 0 295 - 1.01176
14 319 1.01126 10 372 0.99361 - 292 1.01339 10 391 0.99393 -

150
13 346 1.00936 0 402 - 1.00940 325 1.01063 0 521 - 1.01066
14 341 1.01051 6 424 0.99412 1.01058 317 1.01218 5 348 0.99452 1.01226
15 338 1.01166 10 420 0.99328 - 311 1.01375 10 361 0.99364 -

45

40
5 156 0.99952 0 23 - 1.00344 238 1.00142 0 31 - 1.00148
6 128 1.00484 10 44 1.00187 - 101 1.01033 10 45 1.00366 -

50
6 160 1.00317 0 69 - 1.00525 166 1.00474 0 64 - 1.00487
7 143 1.00810 10 106 0.99988 - 94 1.01874 10 72 1.00434 -

60
6 192 1.00217 0 104 - 1.00435 217 1.00334 0 164 - 1.00340
7 171 1.00671 3 165 1.00038 1.00689 153 1.00846 0 137 - 1.00862
8 160 1.00937 10 166 0.99804 - 118 1.01737 10 132 1.00113 -

70
7 200 1.00534 0 167 - 1.00585 194 1.00611 0 149 - 1.00622
8 186 1.00803 6 228 0.99869 1.00816 160 1.01094 10 222 0.99947 -
9 177 1.01044 10 264 0.99667 - 137 1.01755 10 160 0.99959 -

80
8 213 1.00702 0 284 - 1.00709 196 1.00831 0 320 - 1.00838
9 203 1.00913 10 340 0.99741 - 172 1.01265 10 283 0.99840 -

90
9 228 1.00811 0 418 - 1.00820 205 1.01007 0 384 - 1.01015
10 221 1.00995 10 450 0.99616 - 189 1.01360 10 401 0.99718 -

100
9 253 1.00730 0 411 - 1.00738 236 1.00841 0 512 - 1.00849
10 245 1.00895 4 562 0.99665 1.00903 219 1.01123 0 496 - 1.01132
11 239 1.01064 10 659 0.99520 - 207 1.01426 10 557 0.99624 -
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Table 3. Ternary secrets

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

30

40
5 173 0.99927 0 1 - 1.00348 203 1.00218 0 2 - 1.00253
6 139 1.00416 2 1 1.00148 1.00667 129 1.00683 5 2 1.00271 1.00775
7 122 1.00949 10 2 0.99893 - 95 1.01570 10 1 1.00126 -

50
6 174 1.00267 0 2 - 1.00528 174 1.00469 0 3 - 1.00528
7 152 1.00758 7 3 0.99991 1.00842 135 1.00967 3 2 1.00077 1.01069
8 141 1.01065 10 3 0.99729 - 115 1.01609 10 2 0.99900 -

60
7 183 1.00608 0 4 - 1.00694 172 1.00714 0 5 - 1.00785
8 169 1.00887 10 6 0.99812 - 149 1.01143 7 6 0.99868 1.01235
9 159 1.01163 10 6 0.99574 - 134 1.01655 10 7 0.99634 -

70
8 197 1.00759 0 7 - 1.00820 181 1.00895 0 9 - 1.00973
9 186 1.00996 10 10 0.99684 - 165 1.01274 10 14 0.99735 -

80
9 212 1.00871 0 16 - 1.00936 195 1.01040 0 27 - 1.01108
10 204 1.01075 10 23 0.99573 - 182 1.01351 10 20 0.99659 -

90
9 239 1.00774 0 30 - 1.00827 224 1.00881 0 33 - 1.00942
10 230 1.00955 4 40 0.99631 1.01012 211 1.01138 0 21 - 1.01203
11 223 1.01141 10 44 0.99468 - 201 1.01408 10 23 0.99554 -

100
10 255 1.00859 0 58 - 1.00913 239 1.00985 0 69 - 1.01040
11 248 1.01026 7 62 0.99530 1.01080 228 1.01215 6 57 0.99580 1.01279
12 242 1.01195 10 69 0.99380 - 220 1.01452 10 50 0.99439 -

110
11 273 1.00932 0 84 - 1.00979 255 1.01069 0 73 - 1.01122
12 266 1.01086 9 94 0.99462 1.01141 246 1.01276 10 92 0.99483 -
13 261 1.01241 10 100 0.99313 - 239 1.01487 10 93 0.99360 -

120
12 290 1.00995 0 116 - 1.01046 272 1.01138 0 102 - 1.01189
13 285 1.01137 9 143 0.99382 1.01187 264 1.01325 10 110 0.99407 -
14 281 1.01280 10 159 0.99252 - 258 1.01514 10 137 0.99295 -

130
13 309 1.01049 0 152 - 1.01093 289 1.01195 0 144 - 1.01250
14 304 1.01181 10 200 0.99319 - 283 1.01365 10 173 0.99366 -

140
13 332 1.00974 0 225 - 1.01019 314 1.01089 0 219 - 1.01139
14 327 1.01096 5 263 0.99376 1.01142 308 1.01243 0 153 - 1.01289
15 323 1.01219 10 286 0.99262 - 302 1.01398 10 181 0.99296 -

150
14 351 1.01023 0 315 - 1.01061 332 1.01141 0 286 - 1.01187
15 346 1.01137 7 354 0.99314 1.01181 326 1.01283 10 354 0.99354 -
16 343 1.01252 10 386 0.99207 - 321 1.01426 10 288 0.99246 -

160
15 369 1.01065 0 372 - 1.01106 350 1.01185 0 353 - 1.01231
16 365 1.01173 10 465 0.99269 - 345 1.01317 10 466 0.99296 -

170
16 388 1.01104 0 584 - 1.01142 369 1.01224 0 455 - 1.01264
17 385 1.01205 10 639 0.99228 - 364 1.01347 10 528 0.99259 -

180
16 411 1.01042 0 758 - 1.01077 393 1.01143 0 675 - 1.01179
17 407 1.01138 2 756 0.99272 1.01175 387 1.01258 0 680 - 1.01300
18 404 1.01234 10 855 0.99179 - 383 1.01373 10 808 0.99218 -

190
17 430 1.01078 0 857 - 1.01110 411 1.01180 0 708 - 1.01216
18 426 1.01169 6 930 0.99225 1.01205 406 1.01287 0 639 - 1.01328
19 423 1.01260 10 986 0.99144 - 402 1.01395 10 866 0.99174 -

200
18 449 1.01110 0 1320 - 1.01141 430 1.01212 0 1290 - 1.01245
19 446 1.01197 6 1498 0.99197 1.01228 425 1.01314 10 1156 0.99209 -
20 443 1.01284 10 1426 0.99106 - 422 1.01416 10 765 0.99116 -

35

40
5 173 0.99927 0 2 - 1.00348 224 1.00179 0 4 - 1.00208
6 139 1.00416 5 2 1.00181 1.00667 131 1.00668 5 3 1.00203 1.00751
7 122 1.00949 10 2 0.99901 - 85 1.01988 10 1 1.00321 -

50
6 174 1.00267 0 3 - 1.00528 180 1.00441 0 4 - 1.00494
7 152 1.00758 5 4 1.00009 1.00842 133 1.00998 6 4 1.00054 1.01101
8 141 1.01065 10 4 0.99736 - 108 1.01816 10 2 0.99953 -

60
7 183 1.00608 0 6 - 1.00694 173 1.00708 0 9 - 1.00776
8 169 1.00887 10 7 0.99831 - 146 1.01192 9 6 0.99935 1.01267

70
8 197 1.00759 0 10 - 1.00820 180 1.00906 0 12 - 1.00983
9 186 1.00996 10 14 0.99688 - 161 1.01328 10 14 0.99752 -

80
8 225 1.00664 0 21 - 1.00717 214 1.00735 0 23 - 1.00793
9 212 1.00871 2 26 0.99750 1.00936 193 1.01062 1 15 0.99757 1.01131
10 204 1.01075 10 29 0.99569 - 179 1.01403 10 25 0.99637 -

90
9 239 1.00774 0 40 - 1.00827 223 1.00888 0 24 - 1.00950
10 230 1.00955 7 53 0.99636 1.01165 208 1.01165 8 31 0.99691 1.01238
11 223 1.01141 10 54 0.99473 - 198 1.01458 10 27 0.99554 -

100
10 255 1.00859 0 65 - 1.00913 237 1.00997 0 51 - 1.01058
11 248 1.01026 10 85 0.99537 - 225 1.01234 10 62 0.99591 -
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Table 4. Ternary secrets (continued)

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

35

110
11 273 1.00932 0 48 - 1.00979 253 1.01085 0 62 - 1.01140
12 266 1.01086 10 95 0.99459 - 243 1.01305 10 82 0.99468 -

120
11 297 1.00854 0 136 - 1.00901 280 1.00964 0 118 - 1.01014
12 290 1.00995 1 142 0.99525 1.01046 269 1.01156 3 120 0.99542 1.01216
13 285 1.01137 10 168 0.99382 - 261 1.01354 10 113 0.99422 -

130
12 315 1.00918 0 172 - 1.00959 296 1.01039 0 147 - 1.01087
13 309 1.01049 4 203 0.99437 1.01093 287 1.01215 4 157 0.99483 1.01268
14 304 1.01181 10 251 0.99313 - 280 1.01393 10 188 0.99371 -

140
13 332 1.00974 0 260 - 1.01019 313 1.01102 0 218 - 1.01147
14 327 1.01096 8 302 0.99383 1.01142 305 1.01263 10 180 0.99404 -
15 323 1.01219 10 306 0.99256 - 299 1.01425 10 233 0.99289 -

150
14 351 1.01023 0 352 - 1.01061 330 1.01155 0 303 - 1.01202
15 346 1.01137 10 417 0.99324 - 324 1.01303 10 365 0.99350 -

40

40
5 173 0.99927 0 4 - 1.00348 246 1.00147 0 12 - 1.00172
6 139 1.00416 8 6 1.00180 1.00667 131 1.00667 6 8 1.00248 1.00751
7 122 1.00949 10 6 0.99880 - 81 1.02205 10 2 1.00269 -

50
6 174 1.00267 0 7 - 1.00528 184 1.00418 0 13 - 1.00472
7 152 1.00758 7 10 0.99982 1.00842 129 1.01063 10 11 1.00082 -
8 141 1.01065 10 11 0.99731 - 94 1.02384 10 6 1.00122 -

60
6 209 1.00179 0 18 - 1.00437 234 1.00310 0 24 - 1.00349
7 183 1.00608 1 12 1.00002 1.00694 172 1.00713 0 16 - 1.00785
8 169 1.00887 10 13 0.99811 - 141 1.01275 10 15 0.99952 -

70
7 213 1.00487 0 28 - 1.00595 212 1.00546 0 34 - 1.00601
8 197 1.00759 1 33 0.99829 1.00820 178 1.00930 2 27 0.99904 1.01006
9 186 1.00996 10 35 0.99666 - 156 1.01412 10 23 0.99772 -

80
8 225 1.00664 0 43 - 1.00717 213 1.00740 0 43 - 1.00800
9 212 1.00871 5 52 0.99735 1.00936 189 1.01097 2 42 0.99838 1.01179
10 204 1.01075 10 56 0.99566 - 174 1.01480 10 50 0.99665 -

90
9 239 1.00774 0 63 - 1.00827 221 1.00903 0 60 - 1.00968
10 230 1.00955 8 86 0.99622 1.01012 205 1.01204 7 66 0.99673 1.01237
11 223 1.01141 10 93 0.99468 - 193 1.01527 10 76 0.99537 -

100
9 265 1.00696 0 95 - 1.00746 253 1.00770 0 84 - 1.00819
10 255 1.00859 1 106 0.99648 1.00913 235 1.01019 0 105 - 1.01076
11 248 1.01026 10 124 0.99540 - 222 1.01284 10 132 0.99573 -

110
11 273 1.00932 0 134 - 1.00979 250 1.01110 0 134 - 1.01168
12 266 1.01086 10 171 0.99461 - 239 1.01344 10 140 0.99529 -

120
11 297 1.00854 0 170 - 1.00901 278 1.00979 0 189 - 1.01029
12 290 1.00995 4 218 0.99502 1.01046 267 1.01185 4 207 0.99541 1.01235
13 285 1.01137 10 233 0.99385 - 258 1.01392 10 185 0.99443 -

130
12 315 1.00918 0 288 - 1.00959 293 1.01056 0 166 - 1.01109
13 309 1.01049 8 304 0.99437 1.01093 284 1.01241 10 205 0.99474 -
14 304 1.01181 10 356 0.99311 - 277 1.01430 10 236 0.99377 -

140
13 332 1.00974 0 369 - 1.01019 310 1.01121 0 376 - 1.01169
14 327 1.01096 10 436 0.99380 - 302 1.01289 10 412 0.99399 -

150
13 356 1.00909 0 479 - 1.00948 336 1.01022 0 363 - 1.01065
14 351 1.01023 1 470 0.99412 1.01061 327 1.01175 0 343 - 1.01224
15 346 1.01137 10 500 0.99323 - 320 1.01329 10 367 0.99379 -

45

40
5 173 0.99927 0 44 - 1.00348 272 1.00121 0 54 - 1.00141
6 139 1.00416 7 53 1.00188 1.00667 129 1.00687 10 57 1.00261 -
7 122 1.00949 10 95 0.99884 - 90 1.01738 10 73 0.99989 -

50
6 174 1.00267 0 89 - 1.00528 188 1.00400 0 105 - 1.00452
7 152 1.00758 10 135 0.99984 - 121 1.01200 10 137 1.00121 -

60
7 183 1.00608 0 180 - 1.00694 170 1.00728 0 139 - 1.00804
8 169 1.00887 10 201 0.99827 - 133 1.01422 10 184 1.00026 -

70
7 213 1.00487 0 217 - 1.00595 213 1.00542 0 241 - 1.00595
8 197 1.00759 3 270 0.99869 1.00820 174 1.00970 7 306 0.99933 1.01053
9 186 1.00996 10 329 0.99674 - 150 1.01544 10 263 0.99816 -

80
8 225 1.00664 0 344 - 1.00717 211 1.00752 0 285 - 1.00815
9 212 1.00871 9 404 0.99749 1.00936 185 1.01150 10 381 0.99828 -
10 204 1.01075 10 444 0.99575 - 168 1.01590 10 328 0.99736 -

90
9 239 1.00774 0 430 - 1.00827 218 1.00927 0 395 - 1.00995
10 230 1.00955 10 542 0.99641 - 200 1.01259 10 416 0.99740 -

100
10 255 1.00859 0 583 - 1.00913 231 1.01049 0 570 - 1.01114
11 248 1.01026 10 739 0.99528 - 217 1.01337 10 714 0.99624 -
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Table 5. Gaussian secrets

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

30

40
7 170 1.00677 0 3 - 1.00694 157 1.00799 0 4 - 1.00814
8 150 1.00998 10 3 0.99758 - 126 1.01413 10 4 0.99918 -

50
7 213 1.00487 0 5 - 1.00550 207 1.00571 0 11 - 1.00582
8 187 1.00798 4 7 0.99833 1.00813 171 1.00965 0 7 - 1.00973
9 171 1.01086 10 8 0.99621 - 147 1.01467 10 6 0.99726 -

60
8 225 1.00664 0 10 - 1.00671 213 1.00738 0 16 - 1.00749
9 205 1.00904 5 11 0.99709 1.00912 186 1.01099 7 16 0.99800 1.01109
10 192 1.01148 10 10 0.99506 - 168 1.01492 10 12 0.99561 -

70
9 239 1.00775 0 18 - 1.00781 224 1.00882 0 23 - 1.00889
10 223 1.00983 4 35 0.99609 1.00996 204 1.01185 5 25 0.99659 1.01191
11 212 1.01200 10 31 0.99415 - 189 1.01516 10 22 0.99487 -

80
10 255 1.00859 0 46 - 1.00868 238 1.00985 0 32 - 1.00997
11 242 1.01049 9 52 0.99521 1.01060 222 1.01253 10 42 0.99544 -
12 232 1.01245 10 56 0.99341 - 209 1.01537 10 43 0.99389 -

90
11 272 1.00932 0 69 - 1.00943 255 1.01069 0 64 - 1.01073
12 261 1.01106 10 87 0.99419 - 241 1.01307 10 75 0.99463 -

100
12 290 1.00995 0 107 - 1.01004 272 1.01138 0 133 - 1.01142
13 281 1.01155 10 126 0.99363 - 260 1.01352 10 90 0.99387 -

110
12 319 1.00904 0 138 - 1.00912 303 1.01008 0 116 - 1.01011
13 309 1.01049 1 156 0.99435 1.01053 289 1.01195 0 136 - 1.01205
14 300 1.01196 10 172 0.99298 - 279 1.01388 10 144 0.99346 -

120
13 337 1.00961 0 209 - 1.00965 319 1.01072 0 228 - 1.01077
14 327 1.01096 3 235 0.99367 1.01104 308 1.01243 7 212 0.99396 1.01246
15 320 1.01232 10 253 0.99248 - 298 1.01417 10 211 0.99292 -

130
14 355 1.01011 0 172 - 1.01014 336 1.01126 0 193 - 1.01133
15 346 1.01137 9 327 0.99318 1.01144 326 1.01283 7 292 0.99352 1.01290
16 339 1.01264 10 358 0.99195 - 318 1.01443 10 285 0.99215 -

140
15 373 1.01055 0 423 - 1.01059 354 1.01172 0 390 - 1.01177
16 365 1.01173 9 487 0.99266 1.01181 345 1.01317 10 405 0.99279 -
17 359 1.01292 10 499 0.99151 - 337 1.01465 10 429 0.99184 -

150
15 399 1.00985 0 524 - 1.00991 382 1.01078 0 369 - 1.01082
16 391 1.01095 1 516 0.99319 1.01101 372 1.01212 2 601 0.99333 1.01217
17 385 1.01205 10 560 0.99214 - 364 1.01347 10 430 0.99242 -

160
17 410 1.01130 0 691 - 1.01135 391 1.01247 0 344 - 1.01249
18 404 1.01234 10 860 0.99177 - 383 1.01373 10 401 0.99195 -

170
17 436 1.01063 0 1067 - 1.01066 417 1.01160 0 838 - 1.01166
18 429 1.01161 1 949 0.99232 1.01166 409 1.01277 2 587 0.99220 1.01284
19 423 1.01260 10 1168 0.99134 - 402 1.01395 10 688 0.99158 -

180
18 454 1.01096 0 1256 - 1.01102 435 1.01194 0 1285 - 1.01201
19 448 1.01190 2 1533 0.99184 1.01195 428 1.01305 7 1188 0.99209 1.01310
20 443 1.01284 10 1600 0.99102 - 422 1.01416 10 694 0.99103 -

190
19 473 1.01127 0 1642 - 1.01131 454 1.01225 0 1445 - 1.01228
20 467 1.01216 1 1871 0.99153 - 447 1.01329 10 1023 0.99178 -
21 462 1.01305 10 1853 0.99057 - 441 1.01434 10 1698 0.99098 -

200
20 492 1.01155 0 1969 - 1.01158 472 1.01252 0 1757 - 1.01259
21 487 1.01239 10 2249 0.99123 - 466 1.01351 10 1124 0.99131 -

35

40
6 207 1.00183 0 4 - 1.00403 225 1.00335 0 13 - 1.00341
7 170 1.00677 1 4 0.99939 1.00694 157 1.00802 0 9 - 1.00814
8 150 1.00998 10 5 0.99750 - 121 1.01534 10 3 0.99973 -

50
7 213 1.00487 0 7 - 1.00550 210 1.00556 0 12 - 1.00565
8 187 1.00798 2 8 0.99874 1.00813 169 1.00984 7 13 0.99870 1.00996
9 171 1.01086 10 8 0.99614 - 143 1.01560 10 8 0.99759 -

60
8 225 1.00664 0 13 - 1.00671 214 1.00735 0 22 - 1.00742
9 205 1.00904 6 13 0.99701 1.00912 183 1.01127 6 19 0.99776 1.01146
10 192 1.01148 10 19 0.99512 - 164 1.01567 10 10 0.99641 -

70
9 239 1.00775 0 34 - 1.00781 223 1.00889 0 26 - 1.00897
10 223 1.00983 8 33 0.99611 1.00996 201 1.01216 10 39 0.99682 -
11 212 1.0120 10 36 0.99425 - 185 1.01580 10 20 0.99516 -

80
10 255 1.00859 0 57 - 1.00868 237 1.00998 0 49 - 1.01006
11 242 1.01049 10 69 0.99516 - 219 1.01285 10 50 0.99573 -

90
11 272 1.00932 0 84 - 1.00943 253 1.01085 0 76 - 1.01090
12 261 1.01106 10 97 0.99436 - 238 1.01339 10 80 0.99508 -

100
11 303 1.00839 0 117 - 1.00843 286 1.00941 0 101 - 1.00946
12 290 1.00995 2 133 0.99508 1.01004 269 1.01156 3 112 0.99533 1.01168
13 281 1.01155 10 140 0.99359 - 257 1.01383 10 109 0.99404 -
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Table 6. Gaussian secrets (continued)

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

35

110
12 319 1.00904 0 104 - 1.00912 301 1.01018 0 147 - 1.01024
13 309 1.01049 5 166 0.99425 1.01053 287 1.01215 10 170 0.99458 -
14 300 1.01196 10 203 0.99302 - 276 1.01417 10 193 0.99346 -

120
13 337 1.00961 0 235 - 1.00965 317 1.01084 0 259 - 1.01091
14 327 1.01096 10 278 0.99372 - 305 1.01263 8 209 0.99389 1.01270
15 320 1.01232 10 321 0.99243 - 295 1.01446 10 139 0.99285 -

130
13 365 1.00887 0 331 - 1.00890 347 1.00979 0 300 - 1.00985
14 355 1.01011 2 341 0.99413 1.01014 334 1.01139 0 286 - 1.01146
15 346 1.01137 10 376 0.99312 - 324 1.01303 10 245 0.99339 -

140
14 382 1.00939 0 438 - 1.00942 363 1.01038 0 468 - 1.01044
15 373 1.01055 2 463 0.99366 1.01059 352 1.01186 0 424 - 1.01190
16 365 1.01173 10 490 0.99274 - 342 1.01337 10 398 0.99292 -

150
15 399 1.00985 0 526 - 1.00991 380 1.01088 0 756 - 1.01093
16 391 1.01095 3 580 0.99309 1.01101 370 1.01226 1 557 0.99331 1.01231
17 385 1.01205 10 698 0.99234 - 361 1.01366 10 487 0.99236 -

40

40
6 207 1.00183 0 9 - 1.00403 233 1.00313 0 20 - 1.00318
7 170 1.00677 3 13 0.99979 1.00694 155 1.00820 0 12 - 1.00835
8 150 1.00998 10 12 0.99755 - 113 1.01773 10 10 0.99967 -

50
7 213 1.00487 0 18 - 1.00550 212 1.00547 0 26 - 1.00555
8 187 1.00798 6 19 0.99849 1.00813 166 1.01020 5 35 0.99884 1.01032
9 171 1.01086 10 20 0.99619 - 136 1.01713 10 19 0.99788 -

60
8 225 1.00664 0 41 - 1.00671 213 1.00740 0 31 - 1.00749
9 205 1.00904 8 45 0.99720 1.00912 180 1.01172 9 39 0.99748 1.01185
10 192 1.01148 10 47 0.99502 - 159 1.01679 10 32 0.99676 -

70
9 239 1.00775 0 65 - 1.00781 221 1.00904 0 73 - 1.00914
10 223 1.00983 10 79 0.99618 - 197 1.01263 10 51 0.99644 -

80
9 273 1.00677 0 86 - 1.00682 261 1.00739 0 75 - 1.00747
10 255 1.00859 1 99 0.99653 1.00868 234 1.01019 0 63 - 1.01032
11 242 1.01049 10 102 0.99520 - 215 1.01330 10 68 0.99588 -

90
10 287 1.00764 0 127 - 1.00769 271 1.00857 0 132 - 1.00863
11 272 1.00932 1 138 0.99573 1.00943 250 1.01110 2 127 0.99623 1.01117
12 261 1.01106 10 169 0.99440 - 234 1.01382 10 129 0.99515 -

100
11 303 1.00839 0 173 - 1.00843 284 1.00954 0 203 - 1.00960
12 290 1.00995 6 194 0.99498 1.01004 267 1.01182 5 166 0.99567 1.01186
13 281 1.01155 10 209 0.99357 - 253 1.01424 10 149 0.99419 -

110
12 319 1.00904 0 251 - 1.00912 299 1.01034 0 285 - 1.01038
13 309 1.01049 10 312 0.99430 - 284 1.01242 10 255 0.99472 -

120
13 337 1.00961 0 346 - 1.00965 315 1.01102 0 344 - 1.01105
14 327 1.01096 10 403 0.99367 - 302 1.01289 10 359 0.99393 -

130
13 365 1.00887 0 409 - 1.00890 345 1.00990 0 345 - 1.00997
14 355 1.01011 1 541 0.99421 1.01014 332 1.01158 0 433 - 1.01160
15 346 1.01137 10 552 0.99310 - 320 1.01329 10 368 0.99350 -

140
14 382 1.00939 0 597 - 1.00942 361 1.01051 0 485 - 1.01056
15 373 1.01055 4 606 0.99376 1.01059 349 1.01205 1 574 0.99384 1.01211
16 365 1.01173 10 656 0.99281 - 339 1.01363 10 537 0.99320 -

150
15 399 1.00985 0 716 - 1.00991 378 1.01102 0 690 - 1.01105
16 391 1.01095 8 842 0.99320 1.01101 367 1.01246 2 717 0.99356 1.01251
17 385 1.01205 10 914 0.99233 - 358 1.01391 10 589 0.99239 -

45

40
6 207 1.00183 0 90 - 1.00403 240 1.00294 0 118 - 1.00300
7 170 1.00677 4 158 1.00007 1.00694 152 1.00856 5 168 0.99977 1.00869
8 150 1.00998 10 149 0.99754 - 90 1.02778 10 42 1.00463 -

50
7 213 1.00487 0 175 - 1.00550 213 1.00544 0 121 - 1.00550
8 187 1.00798 7 236 0.99854 1.00813 161 1.01079 10 248 0.99938 -
9 171 1.01086 10 300 0.99608 - 126 1.01990 10 107 0.99855 -

60
8 225 1.00664 0 280 - 1.00671 211 1.00753 0 331 - 1.00763
9 205 1.00904 10 334 0.99723 - 175 1.01240 10 308 0.99839 -

70
8 262 1.00569 0 367 - 1.00576 259 1.00585 0 521 - 1.00589
9 239 1.00775 1 410 0.99782 1.00781 218 1.00929 0 347 - 1.00939
10 223 1.00983 10 436 0.99620 - 192 1.01327 10 441 0.99748 -

80
10 255 1.00859 0 542 - 1.00868 231 1.01049 0 615 - 1.01059
11 242 1.01049 10 656 0.99518 - 211 1.01391 10 593 0.99559 -

90
10 287 1.00764 0 753 - 1.00769 269 1.00871 0 587 - 1.00876
11 272 1.00932 4 804 0.99595 1.00943 246 1.01143 3 762 0.99634 1.01154
12 261 1.01106 10 908 0.99427 - 229 1.01439 10 870 0.99482 -

100
11 303 1.00839 0 941 - 1.00843 281 1.00973 0 840 - 1.00980
12 290 1.00995 8 1080 0.99509 1.01004 263 1.01216 10 963 0.99534 -



16 HAO CHEN, LYNN CHUA, KRISTIN LAUTER, AND YONGSOO SONG

In Figures 1, 2, 3, we plot the values of δ for various blocksizes, β, against the
lattice dimension for the binary, ternary and gaussian secret distributions respec-
tively, with separate graphs for each blocksize. In each graph, we plot the values of
the 2008 and 2016 estimates for δ against the dimension of the lattice, using blue
dots for 2008 and blue crosses for 2016 predictions. For comparison, we plot Chen’s
estimate (2.5) which only depends on the blocksize, using a black line. In green
and red, we plot the average observed values of δ for the instances where BKZ2.0
succeeds and fails. The green and red represent the successful and failed instances
respectively. The dots and crosses represent attacks run with the dimensions cal-
culated from the 2008 and 2016 estimates respectively. The data for the successful
cases is obtained from the smallest value of log(q) where the attack succeeds, which
are the rows in boldface in the tables, while the data for the failed cases is obtained
from the largest value of log(q) where the attack does not succeed, which are the
rows directly above those in boldface.

Figure 1. Comparing estimates (blue) for δ with observed δs from
successful (green) and failed (red) attacks for binary secrets and
block sizes β = 30, 35, 40, 45. The black line is Chen’s estimate.
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Figure 2. Plots of δ for ternary secrets and β = 30, 35, 40, 45.
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Figure 3. Plots of δ for gaussian secrets and β = 30, 35, 40, 45.
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Due to the experimental nature of our work, we could only produce data for
lattices of small dimensions, as the running time of BKZ2.0 grows exponentially
with the parameters. We plot the average running times of BKZ2.0 for each set
of parameters in Figure 4. In the plots, the dots and crosses represent attacks run
with the dimensions calculated from the 2008 and 2016 estimates respectively. The
blue, red, green and cyan represent blocksizes 30, 35, 40, 45 respectively.

Figure 4. Plots of running times in minutes. The dots and crosses
represent attacks run with the dimensions calculated from the 2008
and 2016 estimates respectively. The blue, red, green and cyan
represent blocksizes 30, 35, 40, 45 respectively.
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4.2. Results. The main observation is that the experimental values of δ for suc-
cessful instances decrease as the lattice dimension increases, whereas the 2008 and
2016 estimates show increasing trends which seem to approach Chen’s estimate.

We observe that the experimental values of δ for failed instances closely follow
the 2008 and 2016 estimates. The values of δ for failed instances are higher than for
successful instances, which is expected since BKZ2.0 finds shorter vectors for the
latter. Moreover, the values of δ for the successful instances decrease as the lattice
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dimension increases. In the cases where BKZ2.0 fails to recover the unique shortest
vector, it recovers instead a vector with length close to the Gaussian Heuristic, and
so the algorithm behaves like it would on a random lattice of the same dimension. In
these cases, the experimental values of δ closely follow the 2008 and 2016 estimates.
This indicates that the estimates accurately capture the behavior of BKZ2.0 on
random lattices, but not on successful instances of uSVP.

We also observe that the success rates for the 2008 and 2016 estimates are
comparable, although the 2008 estimate generally predicts higher lattice dimensions
which lead to longer running times. The 2008 estimate also generally predicts higher
values of δ than the 2016 estimate, for fixed lattice dimensions.

Additionally, for fixed n and β, the values of log q and d required to recover
the secret is significantly higher for the cases where the secret is sampled from
the discrete gaussian distribution, as compared to the binary and ternary distribu-
tions. The values for the binary and ternary distributions are comparable, though
slightly higher for the ternary distribution. This indicates that gaussian secrets
yield greater security levels, and would be recommended over binary or ternary se-
crets in practical applications. For all three secret distributions, the shortest vector
has the same `2-norm, whereas the `1-norm is highest for the gaussian distribution,
followed by the ternary and binary distributions. This indicates a trend of higher
security level with increasing `1-norm, and it would be interesting to study this
more systematically.

It is infeasible to run our experiments for β ≥ 50 and n > 100 within reason-
able times. For comparison, with blocksize 50, it takes about 19 hours to run the
experiment with binary secrets for n = 40 and log q = 6, as compared to an hour
for blocksize 45 with the same parameters. It would be desirable to conduct longer
experimental studies with higher blocksizes and dimensions, to simulate the param-
eters used in practical cryptosystems. Nevertheless, our work represents a first step
towards a systematic experimental understanding of the success characteristics of
BKZ2.0 on uSVP lattices, which we hope will motivate further studies on the topic.

4.3. TU Darmstadt LWE Challenge. Using the same experimental setup, we
generate instances of the TU Darmstadt LWE challenges [BBG+16]. In the ac-
tual challenges, the secrets are sampled from uniform distributions on Zq; in our
experiments we use instead the binary, ternary and gaussian secret distributions.

In the challenges, the discrete Gaussian error distributions have varying standard
deviations σ = αq, where α is a parameter. For each challenge, the parameters
n, q, α are fixed. We generate instances with binary, ternary and Gaussian secrets,
and we run the uSVP attack using the BKZ2.0 algorithm with blocksizes β =
30, 35, 40, 45. Due to resource limitations, we run only 3 trials for each set of
parameters.

The data from our experiments are in Figures 5, 6, 7. In each figure, we plot
a grid for each blocksize, where the columns are indexed by n and the rows by α.
Each cell in the grid is colored based on the number of successful trials, where the
colors red, orange, yellow and green indicate that the number of successful trials
is 3, 2, 1 and 0 respectively. Moreover, the bottom diagonal of each divided cell
indicates the 2008 estimate, while the top diagonal indicates the 2016 estimate.

We observe that there is a much higher success rate in solving the challenges
for the binary and ternary secret distributions, as compared to the gaussian dis-
tribution. This indicates that gaussian secret distributions are more secure for
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practical applications. Moreover, our running times for the successful instances are
significantly less than the records in the actual challenges, which use secrets from
uniform distributions. Furthermore, we also observe that we are already able to
attack all the solved LWE challenges in the online tables, for secrets sampled from
the binary or ternary secret distributions. This indicates that uniform secrets offer
much higher security than the secret distributions that we consider, and it would
be promising to study the case of uniform secrets in our experimental framework,
as a potential follow-up to this work.

Figure 5. TU Darmstadt LWE challenges for binary secrets.
Each cell is colored based on the number of successful trials, where
the colors red, orange, yellow and green indicate that the number
of successful trials is 3, 2, 1 and 0 respectively. The bottom diago-
nal of each divided cell indicates the 2008 estimate, while the top
diagonal indicates the 2016 estimate.
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Figure 6. TU Darmstadt LWE challenges for ternary secrets
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Figure 7. TU Darmstadt LWE challenges for gaussian secrets
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Fernando Virdia and Léo Ducas and the anonymous referees for their feedback and
suggestions.

References

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikun-
tanathan, Homomorphic encryption security standard, Tech. report, Homomorphi-

cEncryption.org, Toronto, Canada, November 2018.
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