ON THE CONCRETE SECURITY OF LWE WITH SMALL SECRET

HAO CHEN, LYNN CHUA, KRISTIN LAUTER, AND YONGSOO SONG

ABSTRACT. Lattice-based cryptography is currently under consideration for standardization in the ongoing NIST PQC Post-Quantum Cryptography competition, and is used as the basis for Homomorphic Encryption schemes worldwide. Both applications rely specifically on the hardness of the Learning With Errors (LWE) problem. Most Homomorphic Encryption deployments use small secrets as an optimization, so it is important to understand the concrete security of LWE when sampling the secret from a non-uniform, small distribution. Although there are numerous heuristics used to estimate the running time and quality of lattice reduction algorithms such as BKZ2.0, more work is needed to validate and test these heuristics in practice to provide concrete security parameter recommendations, especially in the case of small secret. In this work, we introduce a new approach which uses concrete attacks on the LWE problem as a way to study the performance and quality of BKZ2.0 directly. We find that the security levels for certain values of the modulus q and dimension nare smaller than predicted by the online LWE Estimator, due to the fact that the attacks succeed on these uSVP lattices for blocksizes which are smaller than expected based on current estimates. We also find that many instances of the TU Darmstadt LWE challenges can be solved significantly faster when the secret is chosen from the binary or ternary distributions.

1. INTRODUCTION

Lattice-based cryptography, proposed more than 20 years ago, is currently used as the basis for Homomorphic Encryption schemes world-wide. Cryptosystems based on the hardness of lattice problems are also under consideration for standardization in the ongoing NIST PQC Post-Quantum Cryptography competition. Both applications rely specifically on the hardness of the *Learning with Errors* (LWE) problem [Reg09].

Homomorphic Encryption allows computations on encrypted data, with security parameters for practical applications specified in HES, the Homomorphic Encryption Standard [ACC⁺18]. For efficiency reasons, it is common in homomorphic encryption to sample the secret from special distributions, such that it has small entries [BV11]. For example, two common distributions are the *binary* or *ternary* distributions [BLP⁺13, MP13], where the entries in the secret are in $\{0, 1\}$ or $\{0, \pm 1\}$ respectively. We also consider secrets sampled from the same small discrete gaussian distribution as the errors. In fact, the Homomorphic Encryption

Date: May 8, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 11T71.

Key words and phrases. Lattices, Learning With Errors, Hermite factor, unique Shortest Vector Problem.

Standard [ACC⁺18] specifies tables of secure parameters for three possible distributions for the secret vector: uniform, ternary, and error distributions.

When the secret has a small norm, instances of LWE can be embedded into instances of the *unique Shortest Vector Problem (uSVP)* [BG14, AGVW17, BMW19]. To recover the shortest vector, lattice reduction algorithms such as the BKZ2.0 algorithm [CN11] are currently the most effective in practice. Although there are numerous heuristics used to estimate the running time and quality of lattice reduction algorithms such as BKZ2.0, [GN08, APS15, ADPS16], more work is needed to validate and test these heuristics in practice to provide concrete security parameter recommendations, especially in the case of small secret and small error.

In this work, we introduce a new approach which uses concrete attacks on the LWE problem as a way to study the performance and quality of BKZ2.0 directly. We generate random LWE instances using secrets sampled from binary, ternary or discrete Gaussian distributions. We convert each LWE instance into a uSVP instance and run the BKZ2.0 algorithm to find an approximation to the shortest vector. When the attack is successful, we can deduce a bound on the Hermite factor achieved for the given blocksize. In practice we find that the attacks succeed for a smaller block size than would be expected based on current estimates.

Our approach is similar to the approach taken in earlier work [LL15] for estimating the approximation factor for the LLL algorithm. Laine and Lauter used synthetically generated LWE instances to study the approximation factor for LLL in dimension up to 800, without solving the Shortest Vector Problem. They found that the approximation factor for LLL is significantly better than expected in dimensions up to 800, which confirmed and extended what Gama and Nyugen [GN08] had found for LLL in dimension up to 200. But it was not clear how that would extend to other lattice reduction algorithms such as BKZ. The attacks presented in [LL15] also cover the case of secrets sampled from the uniform distribution, but in that case the attacks are only successful for very large moduli.

In this work, we find that the security levels for certain values of the modulus q and dimension n are smaller than predicted by the online LWE Estimator [APS15]. This is due to the fact that the attacks succeed on these uSVP lattices for smaller blocksizes 30, 35, 40 and 45 than expected, for randomly generated LWE instances with small secret. The work of [BG14] attempts to quantify the loss of security when using binary secret by analyzing how much larger the lattice dimension n should be in order to achieve the same level of security. We use the same approach as [BG14] for attacking the LWE instances, but we run experiments to find the smallest blocksize necessary to break each LWE instance.

The tables of experimental data we present in Section 4 can be interpreted as follows: for each fixed blocksize β and lattice dimension n, the bold line in the table represents the smallest value of $\log(q)$ for which the attacks succeed. There are several estimates in the literature predicting which blocksize will be necessary to achieve a sufficiently good approximation factor for the attack to succeed (the 2008 [GN08] and the 2016 [ADPS16] estimates). However our experiments on LWE instances with small secret (and small error) show that the approximation factor may be significantly better than predicted by the estimates for random lattices, and this translates into attacks succeeding with smaller blocksize than expected.

For example, in Table 1 for binary secret, observe that blocksize 30 is enough to break LWE instances with n = 120 and $\log(q) = 12$ and error width $\sigma = 3.2$ in under

2 hours. Although machines are more powerful now, this can be compared with [BG14, Table 4] where the predicted security levels for $(n, q, \sigma) = (128, 2^{12}, 22.6)$, depending on the Hermite factor δ , range from 94 – 175 bits of security for the standard attack to 34–59 bits of security for their attack. Note that their $\delta \approx 1.008$ is closer to the delta we get for failed instances $\delta \approx 1.01$ than our average δ for successful cases $\delta \approx 0.99$.

We also observe a marked difference in blocksize required for a successful attack in comparison with the experiments presented in [AGVW17]. For example, in [AGVW17, Table 1], they validate the 2016 estimate in the case of n = 110, $\log(q) = 11$, where their attack requires blocksize 78. In our experiments attacking LWE instances with binary secrets, we successfully attack the same parameters with the same error width using blocksize 35 (see Table 2) with the dimension as predicted in the 2008 estimate. In this case the discrepancy is most likely due to the secret distribution: binary instead of uniform.

Our approach differs from the online LWE Estimator [APS15] in the sense that we run BKZ2.0 on synthetically generated LWE instances in order to study the approximation factor and the required blocksize, whereas the Estimator uses models based on heuristic estimates to predict the blocksize and running time necessary. We find for example that LWE instances in dimension 200 with $\log(q) = 19$ and binary secret can be broken using BKZ2.0 with blocksize 30, whereas the LWE Estimator predicts that blocksize 40 would be required, and a similar discrepancy with the LWE Estimator predictions applies to most entries in our Tables.

We present separate tables for each possible choice of the secret distribution: binary, ternary, and Gaussian, for blocksizes 30, 35, 40 and 45, and lattice dimension ranging from n = 40 to n = 200. Note the difference in security levels between the tables for binary, ternary, and Gaussian secrets. For the same choice of blocksize β and lattice dimension n, the attack succeeds for smaller values of $\log(q)$ for binary secret than for ternary secret and Gaussian secret (e.g. for $\beta = 30$, n = 120, $\log(q) = 12, 13, 14$ respectively).

We also generated synthetic instances of the TU Darmstadt LWE challenges [BBG⁺16] with binary, ternary and discrete gaussian secrets, and ran our same attack on these instances. Although our experiments only cover blocksizes 30, 35, 40 and 45, these blocksizes are already large enough to attack all the solved LWE challenges in the online tables, for secrets sampled from the binary and ternary secret distributions. We observed significantly lower running times for successful attacks on instances generated with the binary distribution for the secret vector. We observed that sampling the secret from the discrete Gaussian error distribution yielded greater security than the binary or ternary distributions for the same set of parameters, as the attack rarely succeeds. Our attacks run in a matter of minutes (under an hour) for blocksizes 30, 35, 40 and in a matter of hours for blocksize 45, for the range of parameters where the actual challenges have been solved.

2. Preliminaries

Let $\mathbf{b}_1, \ldots, \mathbf{b}_d \in \mathbb{R}^d$ be linearly independent vectors, and let $\mathbf{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_d) \in \mathbb{R}^{d \times d}$ be the matrix whose columns are formed by them. The lattice generated by **B** is

(2.1)
$$L(\mathbf{B}) = \left\{ \mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{Z}^d \right\}.$$

The Shortest Vector Problem (SVP) asks to find the shortest nonzero vector in the lattice, whose norm is the *first minimum*:

(2.2)
$$\lambda_1(L(\mathbf{B})) = \min_{\mathbf{v} \in L(\mathbf{B}), \mathbf{v} \neq 0} ||\mathbf{v}||,$$

where we use $|| \cdot ||$ to denote the ℓ_2 -norm. Similarly, the second minimum is

(2.3)
$$\lambda_2(L(\mathbf{B})) = \min_{\mathbf{v}_1, \mathbf{v}_2 \in L(\mathbf{B})} \left\{ \max\{||\mathbf{v}_1||, ||\mathbf{v}_2||\} : \mathbf{v}_1, \mathbf{v}_2 \text{ linearly independent} \right\}.$$

The unique Shortest Vector Problem (uSVP) with gap γ is a variant of the SVP where $\lambda_2 \geq \gamma \cdot \lambda_1$, for some $\gamma \geq 1$. While random lattices do not satisfy this condition, in Section 3 we describe a procedure for embedding an instance of LWE with small secrets to an instance of uSVP.

In this work, we use the BKZ2.0 lattice reduction algorithm [CN11] to solve instances of the uSVP. Let $\mathbf{b}_1^*, \ldots, \mathbf{b}_d^*$ denote the Gram-Schmidt orthogonalization of the basis vectors. For $1 \leq i \leq d$, let π_i be the orthogonal projection over $(\mathbf{b}_1, \ldots, \mathbf{b}_{i-1})^{\perp}$. For $1 \leq j \leq k \leq d$, let $B_{[j,k]}$ be the local projected block $(\pi_j(\mathbf{b}_j), \ldots, \pi_j(\mathbf{b}_k))$, and let $L_{[j,k]}$ be the lattice spanned by $B_{[j,k]}$, of dimension k - j + 1.

Definition 2.1. A basis $\mathbf{b}_1, \ldots, \mathbf{b}_d$ is *BKZ-reduced* with blocksize $\beta \geq 2$ if it is LLL-reduced, and for each $1 \leq j \leq d$, $||\mathbf{b}_j^*|| = \lambda_1(L_{[j,k]})$ where $k = \min(j+\beta-1,d)$.

The BKZ algorithm works by iteratively reducing each local block $B_{[j,k]}$ of size up to β . Each block is first LLL-reduced, before being enumerated to find a vector that is the shortest in the projected lattice $L_{[j,k]}$. The BKZ2.0 algorithm [CN11] improves on BKZ by modifying the enumeration routine, incorporating the sound pruning technique by [GNR10].

The volume of a lattice is $Vol(L(\mathbf{B})) = |\det(\mathbf{B})|$. We use the root Hermite factor to measure the quality of the BKZ-reduced basis.

Definition 2.2. The root Hermite factor δ of a basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_d\}$ is defined by

(2.4)
$$||\mathbf{b}_1|| = \delta^d \cdot \operatorname{Vol}(L(\mathbf{B}))^{1/d}$$

For BKZ with block size β , Chen [Che13] gives the following estimate for δ which only depends on β .

(2.5)
$$\delta(\beta) \approx \left(\frac{\beta}{2\pi e} (\pi\beta)^{1/\beta}\right)^{\frac{1}{2(\beta-1)}}$$

For a large β , we can approximate this by $\beta^{1/2\beta}$.

3. Reduction from LWE to uSVP

In this work, we study the uSVP attack on LWE, which is currently the most effective attack if the LWE secret has small entries [BG14, AGVW17, BMW19]. There are two known estimates for the conditions under which uSVP can be solved by lattice reduction, which are known as the 2008 estimate [GN08] and the 2016 estimate [ADPS16]. In this section, we describe the reduction from LWE to uSVP, which proceeds by first reducing LWE to BDD and then reducing BDD to uSVP. We also describe the 2008 and 2016 estimates, and calculate the optimal parameters for the uSVP attack under these estimates, as well as the predicted values of the Hermite factor.

Definition 3.1. Let $n \ge 1$, $q \ge 2$ be a prime modulus and let D_{σ} be a discrete gaussian distribution over \mathbb{Z} with standard deviation σ . Let $A \in \mathbb{Z}_q^{m \times n}$ be a matrix with entries uniformly sampled from \mathbb{Z}_q , let $\mathbf{s} \in \mathbb{Z}_q^n$ be a secret vector, and let $\mathbf{e} \in \mathbb{Z}_q^m$ be an error vector with entries sampled independently from D_{σ} . Let $\mathbf{b} = \mathbf{As} + \mathbf{e} \pmod{q}$. The goal of the LWE problem is to find \mathbf{s} , given (\mathbf{A}, \mathbf{b}) .

We consider the following distributions for the secret:

- *Binary*: Secret has entries sampled uniformly at random from $\{0, 1\}$.
- Ternary: Secret has entries sampled uniformly at random from $\{0, \pm 1\}$.
- *Gaussian*: Secret has entries sampled from the same discrete gaussian distribution as the error.

3.2. Reduction from LWE to BDD. Assuming that the secret has a small norm, we can transform the LWE problem into the *Bounded Distance Decoding (BDD)* problem. Specifically, given a lattice $L(\mathbf{B})$ and a target vector \mathbf{t} , such that the distance of \mathbf{t} from $L(\mathbf{B})$ is bounded by a factor of λ_1 , the BDD problem asks to find a lattice vector $\mathbf{v} \in L(\mathbf{B})$ close to \mathbf{t} . Consider the lattice generated by

(3.1)
$$\mathbf{B}_0 = \begin{pmatrix} \mathbf{I}_n & \mathbf{0} \\ \mathbf{A} & q \cdot \mathbf{I}_m \end{pmatrix} \,.$$

Since $\mathbf{As} + \mathbf{e} = \mathbf{b} \pmod{q}$, we can write $\mathbf{b} = \mathbf{As} + \mathbf{e} + q \cdot \mathbf{c}$ for some $\mathbf{c} \in \mathbb{Z}^m$. Hence the lattice contains the vector $\mathbf{B}_0\begin{pmatrix}\mathbf{s}\\\mathbf{c}\end{pmatrix} = \begin{pmatrix}\mathbf{s}\\\mathbf{As} + q\mathbf{c}\end{pmatrix} = \begin{pmatrix}\mathbf{s}\\\mathbf{b} - \mathbf{e}\end{pmatrix}$. Thus if we solve the BDD problem in the lattice generated by \mathbf{B}_0 , with respect to the target point $\mathbf{t} = \begin{pmatrix}\mathbf{0}\\\mathbf{b}\end{pmatrix}$, then we obtain $\begin{pmatrix}\mathbf{s}\\-\mathbf{e}\end{pmatrix}$, allowing us to recover the secret.

3.3. Reduction from BDD to uSVP. We can reduce the BDD problem to an instance of uSVP using Kannan's embedding technique [Kan87]. Consider the basis matrix obtained by adding one row and column to (3.1):

(3.2)
$$\mathbf{B}_1 = \begin{pmatrix} \mathbf{B}_0 & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{A} & q \cdot \mathbf{I}_m & \mathbf{b} \\ 0 & 0 & 1 \end{pmatrix}$$

The lattice generated by the columns of \mathbf{B}_1 contains the unique shortest vector

(3.3)
$$\mathbf{B}_{1}\begin{pmatrix}\mathbf{s}\\\mathbf{c}\\-1\end{pmatrix} = \begin{pmatrix}\mathbf{B}_{0}\begin{pmatrix}\mathbf{s}\\\mathbf{c}\end{pmatrix} - \mathbf{t}\\-1\end{pmatrix} = \begin{pmatrix}\mathbf{s}\\-\mathbf{e}\\-1\end{pmatrix}.$$

Assuming that the gap between λ_1 and λ_2 in this lattice is sufficiently large, we can solve for the unique shortest vector using lattice reduction algorithms such as BKZ2.0. Following [BG14], we further optimize this by balancing the lengths of the secret and error vectors, scaling the secret by some constant factor ω . If the secret is sampled from the same discrete gaussian distribution as the error, then we set $\omega = 1$. For the binary or ternary secret distributions, consider the matrix

(3.4)
$$\mathbf{B} = \begin{pmatrix} \omega \cdot \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{A} & q \cdot \mathbf{I}_m & \mathbf{b} \\ 0 & 0 & 1 \end{pmatrix}.$$

The lattice $L(\mathbf{B})$ generated by (3.4) has dimension

$$(3.5) d = n + m + 1$$

and contains a short vector

(3.6)
$$\mathbf{B}\begin{pmatrix}\mathbf{s}\\\mathbf{c}\\-1\end{pmatrix} = \begin{pmatrix}\boldsymbol{\omega} \cdot \mathbf{s}\\\mathbf{As} + q\mathbf{c} - \mathbf{b}\\-1\end{pmatrix} = \begin{pmatrix}\boldsymbol{\omega} \cdot \mathbf{s}\\-\mathbf{e}\\-1\end{pmatrix}.$$

Since this is the shortest vector of this lattice, we approximate the first minimum of the lattice by its expected norm:

(3.7)
$$\lambda_1 = \sqrt{\omega^2 \cdot ||\mathbf{s}||^2 + ||\mathbf{e}||^2 + 1} \approx \sqrt{\omega^2 \cdot h + m\sigma^2 + 1},$$

where σ is the standard deviation of the discrete Gaussian distribution and h is the expected value of $||\mathbf{s}||^2$. We have $h = \frac{n}{2}$ for the binary distribution and $h = \frac{2}{3}n$ for the ternary distribution.

We estimate the second minimum λ_2 to be the same as the first minimum of a random lattice with the same dimension using the *Gaussian Heuristic*. Since the lattice is *q*-ary, it also contains vectors of norm *q*, so we have

(3.8)
$$\lambda_2 \approx \min\left\{q, \sqrt{\frac{d}{2\pi e}}\omega^{n/d}q^{m/d}\right\}.$$

We can solve the uSVP using lattice reduction algorithms if λ_2 is sufficiently larger than λ_1 . We choose ω to maximize the ratio $\frac{\lambda_2}{\lambda_1}$ as follows. First we write

(3.9)
$$\gamma = \frac{\lambda_2}{\lambda_1} \approx \frac{\min\left\{q, \sqrt{\frac{d}{2\pi e}}\omega^{n/d}q^{m/d}\right\}}{\sqrt{\omega^2 h + m\sigma^2}}$$

We choose the parameters to optimize the second term in the minimum, since the Gaussian Heuristic would asymptotically be smaller than q. Differentiating the expression in (3.9) with respect to ω and setting the result to zero, we get

(3.10)
$$\omega^2 = \frac{nm}{h(d-n)}\sigma^2 \approx \frac{n}{h}\sigma^2.$$

This gives us $\omega = \sqrt{2}\sigma$ for the binary distribution and $\omega = \sqrt{\frac{3}{2}}\sigma$ for the ternary distribution. Substituting (3.10) into (3.7), we get

(3.11)
$$\lambda_1 \approx \sqrt{d\sigma}$$
.

This also holds for the case where the secret is sampled from the same discrete gaussian distribution as the error. Notably, the shortest vector has the same ℓ_2 -norm regardless of the secret distribution, whereas the ℓ_1 -norm differs. Thus

(3.12)
$$\gamma = \frac{\min\left\{q, \sqrt{\frac{d}{2\pi e}}\omega^{n/d}q^{m/d}\right\}}{\sqrt{d}\sigma}$$

Remark 3.2. Another commonly used secret distribution is the uniform distribution on \mathbb{Z}_q , where the entries of the secret are sampled uniformly at random from $\{0, 1, \ldots, q - 1\}$. Since the secret does not have a small norm, the uSVP attack would require a much larger q to succeed. To balance the norms of the secret and error vectors, we have to choose the scaling factor to be $\omega \approx \frac{\sqrt{3}}{q}\sigma$. However, the Gaussian heuristic would then be greater than q, and so $\lambda_2 = q$ from (3.8). For the uSVP attack to be effective, λ_2 would have to be much greater than λ_1 , which means that q would have to be much larger than for the other secret distributions.

There are two known ways for estimating the conditions under which uSVP can be solved using lattice reduction, which are called the 2008 estimate and the 2016 estimate in the literature. We study each of these in turn.

3.4. **2008 estimate.** From experiments by Gama and Nguyen [GN08], they claimed that the shortest vector can be recovered if

(3.13)
$$\gamma = \frac{\lambda_2}{\lambda_1} \ge \delta^d \,,$$

where δ is the root Hermite factor of the lattice reduction algorithm, up to a multiplicative constant. In what follows, we will compute the estimate of δ based on the heuristic in (3.13) for our setting. We will fix n and q, while choosing the lattice dimension d to maximize γ . First we write

(3.14)
$$\gamma \approx \frac{\sqrt{\frac{d}{2\pi e}}\omega^{n/d}q^{m/d}}{\sqrt{d}\sigma} = \frac{1}{\sqrt{2\pi e}}\frac{\omega^{n/d}q^{m/d}}{\sigma} \approx \frac{1}{\sqrt{2\pi e}}\left(\frac{q}{\omega}\right)^{-n/d}\left(\frac{q}{\sigma}\right) \ge \delta^d.$$

We choose d to maximize the ratio in (3.14), by setting

(3.15)
$$d = \sqrt{\frac{n\log\left(\frac{q}{\omega}\right)}{\log\delta}}$$

We solve for the largest possible value of δ as a function of n, q, ω, σ . First, we assume equality in (3.14) and take logarithms on both sides:

(3.16)
$$\log\left(\frac{q}{\sqrt{2\pi e\sigma}}\right) - \frac{n}{d}\log\left(\frac{q}{\omega}\right) = d\log\delta.$$

Substituting (3.15) and rearranging, we get the 2008 estimate for δ :

(3.17)
$$\log \delta_{2008} = \frac{\log^2 \left(\frac{q}{\sqrt{2\pi e\sigma}}\right)}{4n \log \left(\frac{q}{\omega}\right)}$$

We substitute (3.17) into (3.15) to obtain

(3.18)
$$d_{2008} = \frac{2n\log\left(\frac{q}{\omega}\right)}{\log\left(\frac{q}{\sqrt{2\pi e\sigma}}\right)}.$$

This is the lattice dimension that we use in our experiments to compute δ_{2008} . We observe that δ_{2008} increases with q. For fixed n, β , we experimentally find the smallest q such that the attack succeeds. Substituting the parameters into (3.17), we then obtain a heuristic estimate of δ_{2008} , which we compare with the actual value of δ from (2.4).

We remark that (3.17) only holds for large q, such that λ_2 is given by the Gaussian Heuristic. If $\lambda_2 = q$, then the same analysis as above gives

(3.19)
$$\log \delta_{2008} = \frac{1}{d} \log \left(\frac{q}{\sqrt{d\sigma}} \right) \,.$$

We also compare δ_{2008} with the actual value of δ that we expect from the experiments, using the definition in (2.4) and assuming that the shortest vector is successfully recovered, and that λ_2 is equal to the Gaussian Heuristic. We have

(3.20)
$$\delta_{2008}^d = \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{d}{2\pi e}} \delta^{-d}.$$

This gives us the relation between the expected experimental δ and δ_{2008} .

(3.21)
$$\delta = \frac{1}{\delta_{2008}} \left(\frac{d}{2\pi e}\right)^{1/2d}.$$

Hence we expect δ to trend differently from δ_{2008} .

3.5. **2016 estimate.** The 2016 estimate is given in the New Hope key exchange paper [ADPS16]. The authors consider the evolution of the Gram-Schmidt coefficients of the unique shortest vector in the BKZ tours, assuming that the Geometric Series Assumption [Sch03] holds. This says that the norms of the Gram-Schmidt vectors after lattice reduction satisfy

(3.22)
$$||\mathbf{b}_i^*|| \approx \delta^{d-2i+2} \cdot \operatorname{Vol}(L(\mathbf{B}))^{1/d}.$$

The reasoning in [ADPS16] is that, if the projection of the unique shortest vector onto the space spanned by the last β Gram-Schmidt vectors is shorter than $\mathbf{b}_{d-\beta+1}^*$, then the SVP oracle in BKZ would be able to find it when called on the last block of size β . The success condition is thus given by

(3.23)
$$\sqrt{\frac{\beta}{d}}\lambda_1 \le ||\mathbf{b}_{d-\beta+1}^*||$$

Based on these heuristics, we compute the estimated value of δ in our setting. Substituting $\lambda_1 \approx \sqrt{d\sigma}$ and (3.22), we get

(3.24)
$$\sqrt{\beta}\sigma \le \delta^{2\beta-d} \cdot \operatorname{Vol}(L(\mathbf{B}))^{1/d} = \delta^{2\beta-d} \omega^{n/d} q^{m/d}$$

If we choose d to optimize this ratio, we obtain (3.15) again. Substituting (3.15) into (3.24) and taking logarithms, we get a quadratic equation in $\sqrt{\log \delta}$:

(3.25)
$$2\beta \log \delta - 2\sqrt{n \log\left(\frac{q}{\omega}\right) \log \delta} + \log\left(\frac{q}{\sqrt{\beta}\sigma}\right) = 0$$

We solve this equation to get the 2016 estimate for δ :

(3.26)
$$\log \delta_{2016} = \frac{n \log\left(\frac{q}{\omega}\right)}{4\beta^2} \left(1 - \sqrt{1 - \frac{2\beta \log\left(\frac{q}{\sqrt{\beta\sigma}}\right)}{n \log\left(\frac{q}{\omega}\right)}}\right)^2,$$

If the value inside the squareroot is negative, then we take $\log \delta_{2016} = \frac{n \log(\frac{q}{\omega})}{4\beta^2}$. We obtain the lattice dimension d_{2016} by substituting (3.26) into (3.15). For large n, (3.26) is asymptotically

(3.27)
$$\log \delta_{2016} \approx \frac{\log^2 \left(\frac{q}{\sqrt{\beta}\sigma}\right)}{4n \log \left(\frac{q}{\omega}\right)}.$$

We observe that (3.27) is similar to (3.17) except for the denominator of q in the numerator. The experiments in [AGVW17, BMW19] suggest that the 2016 estimate

is more consistent with experiments than the 2008 estimate. In this paper, we will experimentally compare δ_{2008} and δ_{2016} with actual values of δ .

We compare δ_{2016} with the expected experimental value of δ , using the definition in (2.4) and assuming that the shortest vector is successfully recovered. We have

(3.28)
$$\delta_{2016}^{2\beta-d} = \sqrt{\frac{\beta}{d}} \frac{\lambda_1}{\operatorname{Vol}(L(\mathbf{B}))^{1/d}} = \sqrt{\frac{\beta}{d}} \delta^d.$$

Hence we have the relation

(3.29)
$$\delta = \delta_{2016}^{2\beta/d-1} \left(\frac{d}{\beta}\right)^{1/2d}$$

We observe that δ trends differently from δ_{2016} , similarly to (3.21) for δ_{2008} .

4. Experiments

4.1. Setup. We perform our experiments using a 2.4 GHz Intel® Xeon® E5-2673 v4 processor, with 48 virtual CPUs and 192 GB of RAM. We generate random instances of LWE, and convert them into instances of uSVP via (3.4). We sample the errors from a discrete gaussian distribution with standard deviation $\sigma = 3.2$, using the discrete gaussian sampler in [The19], and we sample secrets uniformly from the binary, ternary and discrete gaussian distributions. To recover the shortest vector, we use the BKZ2.0 algorithm implemented in fpl11 [The16], with the bkzautoabort option, and with blocksizes $\beta = 30, 35, 40, 45$. The bkzautoabort option causes the algorithm to terminate when the norms of the Gram-Schmidt vectors stop changing.

For $\beta = 30$, we run experiments for *n* from 40 to 200 in steps of 10. For $\beta = 35, 40$, we choose *n* from 40 to 150, and for $\beta = 45$, we choose *n* from 40 to 100. We use a smaller range of values of *n* for higher β , since the running time of BKZ2.0 grows exponentially with β , so it is infeasible to run the experiments for higher β with large *n*. For each set of parameters, we vary log *q* to determine the smallest value of log *q* such that BKZ2.0 succeeds in recovering the secret. We perform 10 trials per set of parameters, to account for the randomness in sampling the lattices.

The data are in Tables 1 to 6, where the rows in boldface contain the data for the smallest value of $\log(q)$ where the attack succeeds. For each set of parameters, we compute the values of δ using the estimates in (3.17) and (3.26), which we tabulate as δ_{2008} and δ_{2016} respectively. Based on the estimates, we also compute the optimal values of the lattice dimensions from (3.15), which we tabulate as d_{2008} and d_{2016} . Since these dimensions are different, we conducted two sets of experiments for each set of parameters, where one set has lattice dimension d_{2008} and the other has dimension d_{2016} . We thus divide Tables 1 to 6 into two parts, where the left parts indicate the experiments for the 2008 estimate and the right for the 2016 estimate.

For each instance, we compute the actual values of δ using the definition in (2.4). We split the instances into cases where BKZ2.0 succeeds in recovering the secret, and cases where it fails, and we compute the average value of δ in each scenario. We tabulate these experimental values of δ under the columns labeled "Average successful δ " and "Average failed δ ".

Average Average Average Average Average Average Number of successes Number of ß δ_{2008} time (min) failed δ δ_{2016} time (min) $successful \delta$ failed δ n $\log(q)$ d_{200} successful δ d_{2016} 156 0.99952 1 00344 178 1.002551 00264 0 1.00176 1 00277 40 $\mathbf{6}$ 128 1.004845 1.00661114 1.00805 7 2 1.008351 7 114 1 01014 10 1 0.9989383 1.0193310 1 1.003401.00525 1.00545 6 160 1.003170 2 157 1.005350 2 500.999921.001257 1431.00810 7 2 1.00826123 1.01096 8 2 1.01118 8 133 1.01126 10 2 0.99722105 1.0182110 2 0.99952 1.00808 1.00689 171 1.006710 3 1581.007930 3 0.99819 60 8 160 1.00937 8 $\mathbf{4}$ 1.00950 138 1.012588 5 0.99903 1.012789 1521.01219100.99558 1251.01808 10 0.997524 4 1.00816 1.00974 1.00990 8 186 1.008030 6 169 0 70 9 1771.01044 10 8 0.99672 1.0137410 $\mathbf{12}$ 0.99780 1551.00702 1.00709 200 1.00798 13 1.00805 8 0 8 0 -0.99701 809 2031.00913 $\mathbf{2}$ 101.00921184 1.011150 121.0112310 196 1.0112 10 120.995471731.01438 10 16 0.99607 1 00949 228 1.00811 27 1.00820212 1.00940 23 9 0 0 10 $\mathbf{221}$ 1.00995 $\mathbf{32}$ 0.99628 1.01001 1.01207 6 $\mathbf{27}$ 0.99644 1.0122490 4 200 1.01183 310.994521.01485240.9952511 21510 192 10 1 01053 10 245 1.00895 0 45 1.00903 227 1 01041 0 42 0.99515 100 11 239 1.01064551.01073218 1.012778 33 0 99579 1.012917 12 234 1.0123510540.99365 211 1.0152010 35 0.994301.009731.01131 263 1.00967 0 71 0 11012 2581.0112210 86 0.994422371.0133310 69 0.99504 1.00890 1.01006 11 287 1.00886 0 94 2701.01001 0 85 30 120 1.01028 0.99492 12 2812 106 1.010352621.01187 0 75 1.011921.011720.993721.01378 138 0.99409 132771012225510 1.00957 1.01075 12 304 1.00949 1.01071 112 0 78 2870 0.99411 1.01247130 1.01081 $\mathbf{2}$ 1.01085 1.01242 $\mathbf{2}$ 0.9945213300 141280 129 0.99297 0.99324 10 10 2961.01214 1742741.01413 148 14 1.01007 121 1.01138 13 323 1.01003 206304 1.01130 0 0 0.99360 0.99385 14014319 1.011263 $\mathbf{216}$ 1.011302981.012868 2201.012963151.01250102580.992572941.0144310 1220.99301151.01051 281 1.01058 322 174 1.01188 140 1.01180 0 1501.01166 8 3150.99306 1.01170317 1.0132310 2440.99333 15338 1.0128210 3470.991961.01467268 0.9922416335 313 1015 360 1.01093 2531.01099 341 1.01222 3341.01226 160 16 357 1.0120110 397 0.99258 336 1.0135510 368 0.99288 1.01136 1.0126716 379 1 01130 0 531 359 1.012590 546 170 376 1.0123210 5160.99210 335 1.0138210 4220.99250 17 1 01069 1 01178 16 402 1.01067609 383 1.01175484 0 0 180 2 0.992542 528 0.99268 17 398 1.01163 626 1.01170378 1.01291 1.0129818 396 1.0126010 739 0.991673751.01406 10 392 0.99179 1.01103 1.01217 17 421 1.01102 0 761 401 1.01210 0 392 190 0.992170.99231 18 418 1.01193 9 836 1.01196 398 1.01319 10 851 -937 0.99129 0.99156194151.01285103941.0142710 881 1.01133 1183 1.01135 1.01241 951 1.01247 420 18 440 0 0 200 0.99169 1.012250.99200 19 437 1.012206 1266 1.013431077 41710 -204351.0130710 14500.990901.01446 1107 0.99114414105156 0.99952 0 1 1 00344 196 1.00210 0 2 1.00218 1.00180 1 00234 40 6 128 1.00484 8 $\mathbf{2}$ 1.00661 114 1.008124 3 1.00835 114 1 01014 10 2 0.9987971 1.0270210 0 1.005661.005251.00518 6 160 1.003170 3 161 1.005070 3 0.99989 1.00101 -507 1.00810 9 5 1.00826 2 143 120 1.0115910 8 0.99730 2 0.999821331.0112610 4 96 1.0217310 1.00689 1.00808 1.00671 1.00795171 0 6 158 0 60 8 0.99829 0.99996 1.00937 1.0133210 160 10 6 1348 1.005851.00622 1.005341.00614 10 2000 6 1940 -351.008030 1.00994 $\mathbf{2}$ 0.99917 70 8 186 7 1.00816 167 11 1.01014 9 0.99656 177 1.01044 $\mathbf{10}$ 9 1511.0144710 100.997471.00702 12 1.00709 1.00799 1.00813 0 199 0 1580 9 203 1.00913 5 $\mathbf{13}$ 0.997121.00921181 1.011456 16 0.99777 1.01160 10 196 1.01120 10 24 0.99545170 1.0150410 150.99620 228 1.00811 29 1.00820 211 1.00952261.00958 9 0 90 102211.00995 $\mathbf{5}$ $\mathbf{41}$ 0.99620 1.01001 $\mathbf{198}$ 1.01240 $\mathbf{10}$ 33 0.99676 -11 2151.0118310430.99468189 1.0154410 30 0.9954510 2451.0089550 1.00903 2251.01058 44 0 0 100 0.995260.99580 11 239 1.0106410 66 $\mathbf{215}$ 1.0131210 52

TABLE 1. Binary secrets

10

TABLE 2.	Binary secrets	(continued)

					Number of	Average	Average	Average			Number of	Average	Average	Average
β	n	$\log(q)$	d_{2008}	δ_{2008}	successes	time (min)	successful δ	failed δ	d_{2016}	δ_{2016}	successes	time (min)	successful δ	failed δ
		10	269	1.00814	0	65	-	1.00823	253	1.00924	0	83	-	1.00931
	110	11	263	1.00967	2	51	0.99557	1.00973	242	1.01142	0	66	-	1.01150
		12	258	1.01122	10	95	0.99449	-	234	1.01367	10	59	0.99489	-
	120	11	281	1.01028	2	111	0.99495	1.01035	208 259	1.01012	3	99	0.99544	1.01021
		13	277	1.01172	10	137	0.99362	-	252	1.01411	10	91	0.99391	-
0.5		12	304	1.00949	0	155	-	1.00957	285	1.01085	0	156	-	1.01090
35	130	13	300	1.01081	7	188	0.99430	1.01085	277	1.01264	7	194	0.99466	1.01274
		14	296	1.01214	10	203	0.99309	-	271	1.01445	10	180	0.99358	-
		13	323	1.01003	0	217	-	1.01007	302	1.01146	0	182	-	1.01153
	140	14	319	1.01126	8	265	0.99361	1.01130	296	1.01309	10	233	0.99396	-
		15	315	1.01250	10	289	0.99250	-	291	1.01473	10	132	0.99281	-
	150	14	338	1 01166	10	312	0.99304	1.01058	315	1.01190	10	245 305	0 99341	1.01205
<u> </u>		5	156	0.99952	0	3	-	1 00344	216	1.00173	0	6	-	1.00179
	40	6	128	1.00484	6	4	1.00202	1.00661	111	1.00857	6	6	1.00242	1.00881
		7	114	1.01014	10	5	0.99919	-	80	1.02062	10	3	1.00158	-
	50	6	160	1.00317	0	6	-	1.00525	164	1.00488	0	9	-	1.00499
	90	7	143	1.00810	10	11	0.99999	-	113	1.01297	10	12	1.00202	-
		6	192	1.00217	0	9	-	1.00435	211	1.00353	0	14	-	1.00360
	60	7	171	1.00671	1	11	1.00017	1.00689	156	1.00811	0	15	-	1.00829
		8	160	1.00937	9	14	0.99821	1.00950	128	1.01464	10	14	0.99965	-
	70	7	200	1.00534	0	17	-	1.00585	195	1.00609	0	21	-	1.00616
	70	8	186	1.00803	5 10	29	0.99886	1.00816	104	1.01032	4	17	0.99954	1.01051
		9	213	1.01044	10	32	0.99000	-	145	1.01302	10	32	0.99817	-
	80	9	213	1.00913	9	46	0.99727	1.00921	178	1.01193	8	36	0.99828	1.01200
	00	10	196	1.01120	10	52	0.99552	-	164	1.01601	10	35	0.99651	-
	90	9	228	1.00811	0	54	-	1.00820	208	1.00974	0	64	-	1.00986
		10	221	1.00995	10	72	0.99628	-	194	1.01290	10	55	0.99703	-
40		9	253	1.00730	0	79	-	1.00738	238	1.00825	0	82	-	1.00835
	100	10	245	1.00895	0	81	-	1.00903	223	1.01085	2	74	0.99722	1.01091
		11	239	1.01064	10	105	0.99524	-	212	1.01360	10	74	0.99599	-
	110	10	269	1.00814	0	111	-	1.00823	251	1.00939	0	109	-	1.00946
		11	263	1.00967	8	117	0.99574	1.00973	239	1.01172	3	119	0.99612	1.01179
		12	208	1.01122	10	147	0.99442	-	230	1.01413	10	121	0.99520	-
	120	11	281	1.00000	8	196	0.99508	1.00890	200	1.01031	7	125	0 99515	1 01249
	120	13	277	1.01172	10	235	0.99374	-	249	1.01454	10	145	0.99409	-
	100	12	304	1.00949	0	235	-	1.00957	282	1.01105	0	195	-	1.01113
	130	13	300	1.01081	10	296	0.99428	-	274	1.01295	10	210	0.99467	-
		12	328	1.00881	0	242	-	1.00885	308	1.00998	0	260	-	1.01004
	140	13	323	1.01003	1	300	0.99479	1.01007	299	1.01167	0	295	-	1.01176
		14	319	1.01126	10	372	0.99361	-	292	1.01339	10	391	0.99393	-
	150	13	340	1.00936	0 6	402	-	1.00940	325	1.01063		521 949	-	1.01066
	150	14	341	1.01051	10	424	0.99412	1.01058	311	1.01218	9 10	348	0.99452	1.01220
<u> </u>		10	156	0.00059	10	92	0.33320	1 00944	0990	1.01373	10	21	0.53504	1.00149
	40	6	130 128	1 00484	10	23	1 00187	1.00344	101	1.00142	10	45	1 00366	1.00146
		6	160	1.00317	0	69	-	1.00525	166	1.00474	0	64	-	1.00487
	50	7	143	1.00810	10	106	0.99988	-	94	1.01874	10	72	1.00434	-
		6	192	1.00217	0	104	-	1.00435	217	1.00334	0	164	-	1.00340
	60	7	171	1.00671	3	165	1.00038	1.00689	153	1.00846	0	137	-	1.00862
		8	160	1.00937	10	166	0.99804	-	118	1.01737	10	132	1.00113	-
		7	200	1.00534	0	167	-	1.00585	194	1.00611	0	149	-	1.00622
45	70	8	186	1.00803	6	228	0.99869	1.00816	160	1.01094	10	222	0.99947	-
		9	177	1.01044	10	264	0.99667	-	137	1.01755	10	160	0.99959	-
	80	8	213	1.00702	10	284	- 0.00741	1.00709	196	1.00831		320	-	1.00838
		9	203	1.00913	0	418	0.99741	1.00820	205	1.01203	0	200 384	0.99840	1 01015
	90	10	221	1.00995	10	450	0.99616	-	189	1.01360	10	401	0.99718	-
		9	253	1.00730	0	411	-	1.00738	236	1.00841	0	512	-	1.00849
	100	10	245	1.00895	4	562	0.99665	1.00903	219	1.01123	0	496	-	1.01132
		11	239	1.01064	10	659	0.99520	-	207	1.01426	10	557	0.99624	-

		1 ()	,	5	Number of	Average	Average	Average	,	5	Number of	Average	Average	Average
p	n	$\log(q)$	a ₂₀₀₈	02008	successes	time (min)	successful o	Tailed 0	a2016	0 ₂₀₁₆	successes	time (min)	successful o	Tailed 0
	40	5	173	0.99927	0	1	-	1.00348	203	1.00218	0	2	-	1.00253
	40	7	122	1 00949	10	2	0.99893	1.00007	95	1.00083	10	1	1.00271	1.00775
		6	174	1.00267	0	2	-	1.00528	174	1.00469	0	3	-	1.00528
	50	7	152	1.00758	7	3	0.99991	1.00842	135	1.00967	3	2	1.00077	1.01069
		8	141	1.01065	10	3	0.99729	-	115	1.01609	10	2	0.99900	-
		7	183	1.00608	0	4	-	1.00694	172	1.00714	0	5	-	1.00785
	60	8	169	1.00887	10	6	0.99812	-	149	1.01143	7	6	0.99868	1.01235
		9	159	1.01163	10	6	0.99574	-	134	1.01655	10	7	0.99634	-
	70	8	197	1.00759	0	10	-	1.00820	181	1.00895	0	9	-	1.00973
		9	219	1.00996	10	10	0.99684	-	105	1.01274	10	14 27	0.99735	-
	80	10	204	1 01075	10	23	0 99573	1.00930	182	1.01040	10	20	0 99659	1.01100
		9	239	1.00774	0	30	-	1.00827	224	1.00881	0	33	-	1.00942
	90	10	230	1.00955	4	40	0.99631	1.01012	211	1.01138	0	21	-	1.01203
		11	223	1.01141	10	44	0.99468	-	201	1.01408	10	23	0.99554	-
		10	255	1.00859	0	58	-	1.00913	239	1.00985	0	69	-	1.01040
	100	11	248	1.01026	7	62	0.99530	1.01080	228	1.01215	6	57	0.99580	1.01279
		12	242	1.01195	10	69	0.99380	-	220	1.01452	10	50	0.99439	-
	110	11	213	1.00932	0	84	-	1.00979	255	1.01009	10	13	-	1.01122
	110	12	260	1.01080	10	94 100	0.99462	1.01141	240	1.01270	10	92	0.99483	-
		12	201	1.01241	0	116	-	1 01046	233	1.01407	0	102	-	1 01189
30	120	13	285	1.01137	9	143	0.99382	1.01187	264	1.01325	10	110	0.99407	-
		14	281	1.01280	10	159	0.99252	-	258	1.01514	10	137	0.99295	-
	190	13	309	1.01049	0	152	-	1.01093	289	1.01195	0	144	-	1.01250
	150	14	304	1.01181	10	200	0.99319	-	283	1.01365	10	173	0.99366	-
		13	332	1.00974	0	225	-	1.01019	314	1.01089	0	219	-	1.01139
	140	14	327	1.01096	5	263	0.99376	1.01142	308	1.01243	0	153	-	1.01289
		15	323	1.01219	10	286	0.99262	-	302	1.01398	10	181	0.99296	-
	150	14	301	1.01023	7	310	-	1.01001	332	1.01141	10	280	- 0.00354	1.01187
		16	343	1 01252	10	386	0.99207	-	321	1 01426	10	288	0.99246	-
		15	369	1.01065	0	372	-	1.01106	350	1.01120	0	353	-	1.01231
	160	16	365	1.01173	10	465	0.99269	-	345	1.01317	10	466	0.99296	-
	170	16	388	1.01104	0	584	-	1.01142	369	1.01224	0	455	-	1.01264
	170	17	385	1.01205	10	639	0.99228	-	364	1.01347	10	528	0.99259	-
		16	411	1.01042	0	758	-	1.01077	393	1.01143	0	675	-	1.01179
	180	17	407	1.01138	2	756	0.99272	1.01175	387	1.01258	0	680	-	1.01300
		18	404	1.01234	10	855	0.99179	-	383	1.01373	10	808	0.99218	-
	100	11	430	1.01078	6	807	0.00225	1.01110	411	1.01180		630	-	1.01210
	150	10	420	1.01105	10	986	0.99225	1.01205	400	1.01207	10	866	0 99174	1.01320
		18	449	1.01110	0	1320	-	1.01141	430	1.01000	0	1290	-	1.01245
	200	19	446	1.01197	6	1498	0.99197	1.01228	425	1.01314	10	1156	0.99209	-
		20	443	1.01284	10	1426	0.99106	-	422	1.01416	10	765	0.99116	-
		5	173	0.99927	0	2	-	1.00348	224	1.00179	0	4	-	1.00208
	40	6	139	1.00416	5	2	1.00181	1.00667	131	1.00668	5	3	1.00203	1.00751
		7	122	1.00949	10	2	0.99901	-	85	1.01988	10	1	1.00321	-
	FO	6	174	1.00267	0	3	-	1.00528	180	1.00441	0	4	-	1.00494
	50	7	152	1.00758	5	4	1.00009	1.00842	133	1.00998	10	4	1.00054	1.01101
		8 7	141	1.01005	10	4	0.99730	-	108	1.01810	10	2	0.99953	-
	60	8	169	1.00008	10	7	0.99831	1.00034	146	1.00708	9	6	0 99935	1.00770
0.5		8	197	1.00759	0	10	-	1.00820	180	1.00906	0	12	-	1.00983
35	70	9	186	1.00996	10	14	0.99688	-	161	1.01328	10	14	0.99752	-
		8	225	1.00664	0	21	-	1.00717	214	1.00735	0	23	-	1.00793
	80	9	212	1.00871	2	26	0.99750	1.00936	193	1.01062	1	15	0.99757	1.01131
		10	204	1.01075	10	29	0.99569	-	179	1.01403	10	25	0.99637	-
	00	9	239	1.00774	0	40	-	1.00827	223	1.00888		24	-	1.00950
	90	10	230	1.00955	10	53 54	0.99636	1.01165	208	1.01165	10	31 97	0.99691	1.01238
1		10	255	1.00859	10	65	-	1.00913	237	1.00997	0	51	-	1.01058
1	100	11	248	1.01026	10	85	0.99537	-	225	1.01234	10	62	0.99591	-
	1	1								1				

TABLE 3. Ternary secrets

TABLE 4. Ternary secrets (continued)

					Number of	Average	Average	Average			Number of	Average	Average	Average
β	n	$\log(q)$	d_{2008}	δ_{2008}	successes	time (min)	successful δ	failed δ	d_{2016}	δ_{2016}	successes	time (min)	successful δ	failed δ
	110	11	273	1.00932	0	48	-	1.00979	253	1.01085	0	62	-	1.01140
		12	266	1.01086	10	95 126	0.99459	-	243	1.01305	10	118	0.99468	-
	120	12	291	1.00995	1	142	0.99525	1.01046	260	1.01156	3	110	0.99542	1.01216
	120	13	285	1.01137	10	168	0.99382	-	261	1.01354	10	113	0.99422	-
		12	315	1.00918	0	172	-	1.00959	296	1.01039	0	147	-	1.01087
35	130	13	309	1.01049	4	203	0.99437	1.01093	287	1.01215	4	157	0.99483	1.01268
		14	304	1.01181	10	251	0.99313	-	280	1.01393	10	188	0.99371	-
	1.40	13	332	1.00974	0	260	-	1.01019	313	1.01102	0	218	-	1.01147
	140	14	327	1.01096	8	302	0.99383	1.01142	305	1.01263	10	180	0.99404	-
		15 14	351	1.01219	10	352	0.99256	-	299	1.01425	10	200	0.99289	-
	150	15	346	1.01137	10	417	0.99324	-	324	1.01303	10	365	0.99350	-
<u> </u>		5	173	0.99927	0	4	_	1 00348	246	1 00147	0	12	-	1 00172
	40	6	139	1.00416	8	6	1.00180	1.00667	131	1.00667	6	8	1.00248	1.00751
		7	122	1.00949	10	6	0.99880	-	81	1.02205	10	2	1.00269	-
		6	174	1.00267	0	7	-	1.00528	184	1.00418	0	13	-	1.00472
	50	7	152	1.00758	7	10	0.99982	1.00842	129	1.01063	10	11	1.00082	-
		8	141	1.01065	10	11	0.99731	-	94	1.02384	10	6	1.00122	-
	60	0 7	209	1.00179	0	18	-	1.00437	234	1.00310		24	-	1.00349
	00	8	160	1.00608	10	12	0.00811	1.00694	1/2	1.00713	10	10	0 00052	1.00785
		7	213	1.00387	0	28		- 1.00595	212	1.00546	0	34	-	1.00601
	70	8	197	1.00759	1	33	0.99829	1.00820	178	1.00930	2	27	0.99904	1.01006
		9	186	1.00996	10	35	0.99666	-	156	1.01412	10	23	0.99772	-
		8	225	1.00664	0	43	-	1.00717	213	1.00740	0	43	-	1.00800
	80	9	212	1.00871	5	52	0.99735	1.00936	189	1.01097	2	42	0.99838	1.01179
		10	204	1.01075	10	56	0.99566	-	174	1.01480	10	50	0.99665	-
	90	9	239	1.00774	0	63	-	1.00827	221	1.00903		60 60	-	1.00968
40		10	230 223	1.00955	10	03	0.99622	1.01012	103	1.01204		76	0.99673	1.01237
		9	265	1.00696	0	95	-	1.00746	253	1.00770	0	84	-	1.00819
	100	10	255	1.00859	1	106	0.99648	1.00913	235	1.01019	0	105	-	1.01076
		11	248	1.01026	10	124	0.99540	-	222	1.01284	10	132	0.99573	-
	110	11	273	1.00932	0	134	-	1.00979	250	1.01110	0	134	-	1.01168
		12	266	1.01086	10	171	0.99461	-	239	1.01344	10	140	0.99529	-
	120	11	297	1.00854	0	170	-	1.00901	278	1.00979	0	189	-	1.01029
	120	12	290	1.00995	4	218	0.99502	1.01046	267	1.01185	4	207	0.99541	1.01235
		10	315	1.001137	10	233	0.33385	- 1.00959	203	1.01392	10	165	0.33443	-
	130	13	309	1.01049	8	304	0.99437	1.01093	284	1.01241	10	205	0.99474	-
		14	304	1.01181	10	356	0.99311	-	277	1.01430	10	236	0.99377	-
	140	13	332	1.00974	0	369	-	1.01019	310	1.01121	0	376	-	1.01169
	140	14	327	1.01096	10	436	0.99380	-	302	1.01289	10	412	0.99399	-
	150	13	356	1.00909	0	479	-	1.00948	336	1.01022	0	363	-	1.01065
	150	14	351	1.01023	10	470	0.99412	1.01061	327	1.01175	10	343	-	1.01224
		10	340	0.00007	10	500	0.99525	-	320	1.01329	10	507	0.99379	-
	40	5 6	173	0.99927	7	44 53	-	1.00548	120	1.00121	10	57	- 1.00261	1.00141
	40	7	122	1 00949	10	95	0.99884	-	90	1.000007	10	73	0.99989	_
	20	6	174	1.00267	0	89	-	1.00528	188	1.00400	0	105	-	1.00452
	50	7	152	1.00758	10	135	0.99984	-	121	1.01200	10	137	1.00121	-
	60	7	183	1.00608	0	180	-	1.00694	170	1.00728	0	139	-	1.00804
	00	8	169	1.00887	10	201	0.99827	-	133	1.01422	10	184	1.00026	-
15	70	7	213	1.00487	0	217	-	1.00595	213	1.00542	0	241	-	1.00595
40	10	8	197	1.00759	3 10	270	0.99869	1.00820	174	1.00970		306	0.99933	1.01053
		3	225	1.00990	0	344	- 0.55014	- 1.00717	211	1.01344	0	200		- 1.00815
	80	9	212	1.00871	9	404	0.99749	1.00936	185	1.01150	10	381	0.99828	-
		10	204	1.01075	10	444	0.99575	-	168	1.01590	10	328	0.99736	-
	90	9	239	1.00774	0	430	-	1.00827	218	1.00927	0	395	-	1.00995
	50	10	230	1.00955	10	542	0.99641	-	200	1.01259	10	416	0.99740	-
	100	10	255	1.00859	0	583	-	1.00913	231	1.01049	0	570	-	1.01114
1	1	11	248	1.01026	10	739	0.99528		Z 17	1.01337	1 10	1 714	0.99624	

ſ	Q		$\log(a)$	d	2	Number of	Average	Average	Average failed §	d	2	Number of	Average	Average	Average
Ļ	р	\overline{n}	$\log(q)$	170	02008	successes	time (min)	successiui o	1 00004	a ₂₀₁₆	02016	successes	time (min)	successiui o	1 00014
		40	7	170	1.00677	0	3	-	1.00694	157	1.00799	10	4	-	1.00814
			8	213	1.00998	10	<u>э</u> 5	0.99758	-	207	1.01413	10	4	0.99918	-
		50	8	187	1.00798	4	7	0.99833	1.00813	171	1.00965	0	7		1.00973
		00	9	171	1.01086	10	8	0.99621	-	147	1.01467	10	6	0.99726	-
			8	225	1.00664	0	10	-	1.00671	213	1.00738	0	16	-	1.00749
		60	9	205	1.00904	5	11	0.99709	1.00912	186	1.01099	7	16	0.99800	1.01109
			10	192	1.01148	10	10	0.99506	-	168	1.01492	10	12	0.99561	-
			9	239	1.00775	0	18	-	1.00781	224	1.00882	0	23	-	1.00889
		70	10	223	1.00983	4	35	0.99609	1.00996	204	1.01185	5	25	0.99659	1.01191
			11	212	1.01200	10	31	0.99415	-	189	1.01516	10	22	0.99487	-
			10	255	1.00859	0	46	-	1.00868	238	1.00985	0	32	-	1.00997
		80	11	242	1.01049	9	52	0.99521	1.01060	222	1.01253	10	42	0.99544	-
			12	232	1.01245	10	56	0.99341	-	209	1.01537	10	43	0.99389	-
		90	11	272	1.00932	0	69	-	1.00943	255	1.01069	0	64	-	1.01073
			12	261	1.01106	10	87	0.99419	-	241	1.01307	10	75	0.99463	-
		100	12	290	1.00995	10	107	-	1.01004	272	1.01138	10	133	-	1.01142
			10	310	1.01133	0	138	0.33303	1.00012	200	1.01002	10	116	0.33381	1 01011
		110	13	309	1 01049	1	156	0 99435	1 01053	289	1.01000	0	136		1.01205
		110	14	300	1 01196	10	172	0.99298	-	279	1.01388	10	144	0.99346	-
			13	337	1.00961	0	209	-	1.00965	319	1.01072	0	228	-	1.01077
		120	14	327	1.01096	3	235	0.99367	1.01104	308	1.01243	7	212	0.99396	1.01246
	30		15	320	1.01232	10	253	0.99248	-	298	1.01417	10	211	0.99292	-
			14	355	1.01011	0	172	-	1.01014	336	1.01126	0	193	-	1.01133
		130	15	346	1.01137	9	327	0.99318	1.01144	326	1.01283	7	292	0.99352	1.01290
			16	339	1.01264	10	358	0.99195	-	318	1.01443	10	285	0.99215	-
		140	15	373	1.01055	0	423	-	1.01059	354	1.01172	0	390	-	1.01177
			16	365	1.01173	9	487	0.99266	1.01181	345	1.01317	10	405	0.99279	-
			17	359	1.01292	10	499	0.99151	-	337	1.01465	10	429	0.99184	-
		150	15	399	1.00985	0	524	-	1.00991	382	1.01078	0	369	-	1.01082
			16	391	1.01095	1	516	0.99319	1.01101	372	1.01212	2	601	0.99333	1.01217
			17	385	1.01205	10	560	0.99214	-	364	1.01347	10	430	0.99242	-
		160	17	410	1.01130	0	691	-	1.01135	391	1.01247	0	344	-	1.01249
			18	404	1.01234	10	860	0.99177	-	383	1.01373	10	401	0.99195	-
		170	18	430	1.01005	1	040	-	1.01000	417	1.01100	2	000 587	-	1.01100
			19	423	1 01260	10	1168	0.99134	1.01100	402	1.01211	10	688	0.99158	1.01204
			18	454	1.01200	0	1256	-	1.01102	435	1.01333	0	1285	-	1.01201
		180	19	448	1.01190	2	1533	0.99184	1.01195	428	1.01305	7	1188	0.99209	1.01310
			20	443	1.01284	10	1600	0.99102	-	422	1.01416	10	694	0.99103	-
			19	473	1.01127	0	1642	-	1.01131	454	1.01225	0	1445	-	1.01228
		190	20	467	1.01216	1	1871	0.99153	-	447	1.01329	10	1023	0.99178	-
			21	462	1.01305	10	1853	0.99057	-	441	1.01434	10	1698	0.99098	-
		200	20	492	1.01155	0	1969	-	1.01158	472	1.01252	0	1757	-	1.01259
L		200	21	487	1.01239	10	2249	0.99123	-	466	1.01351	10	1124	0.99131	-
ſ			6	207	1.00183	0	4	-	1.00403	225	1.00335	0	13	-	1.00341
1		40	7	170	1.00677	1	4	0.99939	1.00694	157	1.00802	0	9	-	1.00814
			8	150	1.00998	10	5	0.99750	-	121	1.01534	10	3	0.99973	-
			7	213	1.00487	0	7	-	1.00550	210	1.00556	0	12	-	1.00565
		50	8	187	1.00798	2	8	0.99874	1.00813	169	1.00984	7	13	0.99870	1.00996
			9	171	1.01086	10	8	0.99614	-	143	1.01560	10	8	0.99759	-
			8	225	1.00664	0	13	-	1.00671	214	1.00735	0	22	-	1.00742
		60	9	205	1.00904	6	13	0.99701	1.00912	183	1.01127	6	19	0.99776	1.01146
	95		10	192	1.01148	10	19	0.99512	-	164	1.01567	10	10	0.99641	-
	35	70	9	239	1.00775	0	34	-	1.00781	223	1.00889		20	-	1.00897
		70	10	223	1.00983	10	66 26	0.99011	T.00330	195	1.01210	10	39	0.99082	-
			10	212	1.0120	0	57	0.53420	- 1.00868	227	1.01000	10	40	0.53010	1 01006
1		80	11	200	1 01049	10	69	0.99516	1.00000	219	1 01285	10	50	0.99573	1.01000
1			11	272	1.00932	0	84	-	1.00943	253	1.01085	0	76	-	1.01090
		90	12	261	1.01106	10	97	0.99436	-	238	1.01339	10	80	0.99508	-
			11	303	1.00839	0	117	-	1.00843	286	1.00941	0	101	-	1.00946
1		100	12	290	1.00995	2	133	0.99508	1.01004	269	1.01156	3	112	0.99533	1.01168
			13	281	1.01155	10	140	0.99359	-	257	1.01383	10	109	0.99404	-
_															

TABLE 5. Gaussian secrets

14

TABLE 6. Gaussian secrets (continued)

					Number of	Average	Average	Average			Number of	Average	Average	Average
β	n	$\log(q)$	d_{2008}	δ_{2008}	successes	time (min)	successful δ	failed δ	d_{2016}	δ_{2016}	successes	time (min)	successful δ	failed δ
		12	319	1.00904	0	104	-	1.00912	301	1.01018	0	147	-	1.01024
	110	13	309	1.01049	5	166	0.99425	1.01053	287	1.01215	10	170	0.99458	-
		14	300	1.01196	10	203	0.99302	-	276	1.01417	10	193	0.99346	-
		13	337	1.00961	0	235	-	1.00965	317	1.01084	0	259	-	1.01091
	120	14	327	1.01096	10	278	0.99372	-	305	1.01263	8	209	0.99389	1.01270
		15	320	1.01232	10	321	0.99243	-	295	1.01446	10	139	0.99285	-
		13	365	1.00887	0	331	-	1.00890	347	1.00979	0	300	-	1.00985
35	130	14	355	1.01011	2	341	0.99413	1.01014	334	1.01139	0	286	-	1.01146
		15	346	1.01137	10	376	0.99312	-	324	1.01303	10	245	0.99339	-
	1.40	14	382	1.00939	0	438	-	1.00942	363	1.01038	0	468	-	1.01044
	140	15	373	1.01055	10	463	0.00274	1.01059	352	1.01180	10	424	-	1.01190
		10	300	1.00085	10	430 526	0.33214	1 00001	380	1.01088	0	756	0.33232	1.01003
	150	16	391	1.00303	3	580	0.99309	1 01101	370	1.01000	1	557	0 99331	1 01231
	100	17	385	1 01205	10	698	0.99234	-	361	1.01220	10	487	0.99236	-
<u> </u>		6	207	1.00183	0	9		1.00403	233	1.00313	0	20		1.00318
	40	7	170	1.00677	3	13	0.99979	1.00694	155	1.00820	0	12	_	1.00835
	10	8	150	1.00998	10	12	0.99755	-	113	1.01773	10	10	0.99967	-
		7	213	1.00487	0	18	-	1.00550	212	1.00547	0	26	-	1.00555
	50	8	187	1.00798	6	19	0.99849	1.00813	166	1.01020	5	35	0.99884	1.01032
		9	171	1.01086	10	20	0.99619	-	136	1.01713	10	19	0.99788	-
		8	225	1.00664	0	41	-	1.00671	213	1.00740	0	31	-	1.00749
	60	9	205	1.00904	8	45	0.99720	1.00912	180	1.01172	9	39	0.99748	1.01185
		10	192	1.01148	10	47	0.99502	-	159	1.01679	10	32	0.99676	-
	70	9	239	1.00775	0	65	-	1.00781	221	1.00904	0	73	-	1.00914
		10	223	1.00983	10	79	0.99618	-	197	1.01263	10	51	0.99644	-
	00	9	273	1.00077	0	80	-	1.00082	201	1.00739	0	() ()	-	1.00747
	80	10	200	1.00859	10	102	0.99655	1.00868	234	1.01019	10	03	-	1.01052
		10	242	1.01049	10	102	0.99520	-	213	1.01330	0	132	0.99588	-
	90	10	272	1.00932	1	138	0.99573	1.00943	250	1.01110	2	132	0.99623	1.01117
40		12	261	1.01106	10	169	0.99440	-	234	1.01382	10	129	0.99515	-
		11	303	1.00839	0	173	-	1.00843	284	1.00954	0	203	-	1.00960
	100	12	290	1.00995	6	194	0.99498	1.01004	267	1.01182	5	166	0.99567	1.01186
		13	281	1.01155	10	209	0.99357	-	253	1.01424	10	149	0.99419	-
	110	12	319	1.00904	0	251	-	1.00912	299	1.01034	0	285	-	1.01038
	110	13	309	1.01049	10	312	0.99430	-	284	1.01242	10	255	0.99472	-
	120	13	337	1.00961	0	346	-	1.00965	315	1.01102	0	344	-	1.01105
		14	327	1.01096	10	403	0.99367	-	302	1.01289	10	359	0.99393	-
	190	13	365	1.00887	0	409	-	1.00890	345	1.00990	0	345	-	1.00997
	130	14	355	1.01011	10	541	0.99421	1.01014	332	1.01158	10	433	-	1.01160
		15	340	1.01137	10	507	0.99510	-	320	1.01329	10	485	0.99350	-
	140	14	373	1.00959	0	606	0.99376	1.00342	3/0	1.01001	1	574	0.00384	1 01000
	140	16	365	1.01055	10	656	0.99281	-	339	1 01363	10	537	0.99320	-
		15	399	1.00985	0	716	-	1.00991	378	1.01102	0	690	-	1.01105
	150	16	391	1.01095	8	842	0.99320	1.01101	367	1.01246	2	717	0.99356	1.01251
		17	385	1.01205	10	914	0.99233	-	358	1.01391	10	589	0.99239	-
		6	207	1.00183	0	90	-	1.00403	240	1.00294	0	118	-	1.00300
	40	7	170	1.00677	4	158	1.00007	1.00694	152	1.00856	5	168	0.99977	1.00869
		8	150	1.00998	10	149	0.99754	-	90	1.02778	10	42	1.00463	-
		7	213	1.00487	0	175	-	1.00550	213	1.00544	0	121	-	1.00550
	50	8	187	1.00798	7	236	0.99854	1.00813	161	1.01079	10	248	0.99938	-
		9	171	1.01086	10	300	0.99608	-	126	1.01990	10	107	0.99855	-
	60	8	225	1.00664	0	280	-	1.00671	211	1.00753	0	331	-	1.00763
		9	205	1.00904	10	334	0.99723	-	175	1.01240	10	308	0.99839	-
45	70	8	202	1.00509	1	307 410	- 0.00799	1.005/6	259	1.00585	0	521 947	-	1.00589
	10	9	⊿ 39 202	1.00775	10	410 496	0.99782	1.00781	218 102	1.00929	10	041 11	-	1.00939
		10	223	1.00983	10	430 542	0.99020	- 1.00868	231	1.01327	0	615	0.99748	-
	80	11	242	1.01049	10	656	0.99518	-	211	1.01391	10	593	0.99559	-
		10	287	1.00764	0	753	-	1.00769	269	1.00871	0	587	-	1.00876
	90	11	272	1.00932	4	804	0.99595	1.00943	246	1.01143	3	762	0.99634	1.01154
		12	261	1.01106	10	908	0.99427	-	229	1.01439	10	870	0.99482	-
	100	11	303	1.00839	0	941	-	1.00843	281	1.00973	0	840	-	1.00980
	100	12	290	1.00995	8	1080	0.99509	1.01004	263	1.01216	10	963	0.99534	-

15

In Figures 1, 2, 3, we plot the values of δ for various blocksizes, β , against the lattice dimension for the binary, ternary and gaussian secret distributions respectively, with separate graphs for each blocksize. In each graph, we plot the values of the 2008 and 2016 estimates for δ against the dimension of the lattice, using blue dots for 2008 and blue crosses for 2016 predictions. For comparison, we plot Chen's estimate (2.5) which only depends on the blocksize, using a black line. In green and red, we plot the average *observed* values of δ for the instances where BKZ2.0 succeeds and fails. The green and red represent the successful and failed instances respectively. The dots and crosses represent attacks run with the dimensions calculated from the 2008 and 2016 estimates respectively. The data for the successful cases is obtained from the smallest value of $\log(q)$ where the attack succeeds, which are the rows in boldface in the tables, while the data for the failed cases is obtained from the largest value of $\log(q)$ where the attack does not succeed, which are the rows directly above those in boldface.

FIGURE 2. Plots of δ for ternary secrets and $\beta = 30, 35, 40, 45$.

17

Due to the experimental nature of our work, we could only produce data for lattices of small dimensions, as the running time of BKZ2.0 grows exponentially with the parameters. We plot the average running times of BKZ2.0 for each set of parameters in Figure 4. In the plots, the dots and crosses represent attacks run with the dimensions calculated from the 2008 and 2016 estimates respectively. The blue, red, green and cyan represent blocksizes 30, 35, 40, 45 respectively.

FIGURE 4. Plots of running times in minutes. The dots and crosses represent attacks run with the dimensions calculated from the 2008 and 2016 estimates respectively. The blue, red, green and cyan represent blocksizes 30, 35, 40, 45 respectively.

4.2. **Results.** The main observation is that the experimental values of δ for successful instances decrease as the lattice dimension increases, whereas the 2008 and 2016 estimates show increasing trends which seem to approach Chen's estimate.

We observe that the experimental values of δ for *failed* instances closely follow the 2008 and 2016 estimates. The values of δ for failed instances are higher than for successful instances, which is expected since BKZ2.0 finds shorter vectors for the latter. Moreover, the values of δ for the successful instances decrease as the lattice dimension increases. In the cases where BKZ2.0 fails to recover the unique shortest vector, it recovers instead a vector with length close to the Gaussian Heuristic, and so the algorithm behaves like it would on a random lattice of the same dimension. In these cases, the experimental values of δ closely follow the 2008 and 2016 estimates. This indicates that the estimates accurately capture the behavior of BKZ2.0 on random lattices, but not on successful instances of uSVP.

We also observe that the success rates for the 2008 and 2016 estimates are comparable, although the 2008 estimate generally predicts higher lattice dimensions which lead to longer running times. The 2008 estimate also generally predicts higher values of δ than the 2016 estimate, for fixed lattice dimensions.

Additionally, for fixed n and β , the values of $\log q$ and d required to recover the secret is significantly higher for the cases where the secret is sampled from the discrete gaussian distribution, as compared to the binary and ternary distributions. The values for the binary and ternary distributions are comparable, though slightly higher for the ternary distribution. This indicates that gaussian secrets yield greater security levels, and would be recommended over binary or ternary secrets in practical applications. For all three secret distributions, the shortest vector has the same ℓ_2 -norm, whereas the ℓ_1 -norm is highest for the gaussian distribution, followed by the ternary and binary distributions. This indicates a trend of higher security level with increasing ℓ_1 -norm, and it would be interesting to study this more systematically.

It is infeasible to run our experiments for $\beta \geq 50$ and n > 100 within reasonable times. For comparison, with blocksize 50, it takes about 19 hours to run the experiment with binary secrets for n = 40 and $\log q = 6$, as compared to an hour for blocksize 45 with the same parameters. It would be desirable to conduct longer experimental studies with higher blocksizes and dimensions, to simulate the parameters used in practical cryptosystems. Nevertheless, our work represents a first step towards a systematic experimental understanding of the success characteristics of BKZ2.0 on uSVP lattices, which we hope will motivate further studies on the topic.

4.3. **TU Darmstadt LWE Challenge.** Using the same experimental setup, we generate instances of the TU Darmstadt LWE challenges [BBG⁺16]. In the actual challenges, the secrets are sampled from uniform distributions on \mathbb{Z}_q ; in our experiments we use instead the binary, ternary and gaussian secret distributions.

In the challenges, the discrete Gaussian error distributions have varying standard deviations $\sigma = \alpha q$, where α is a parameter. For each challenge, the parameters n, q, α are fixed. We generate instances with binary, ternary and Gaussian secrets, and we run the uSVP attack using the BKZ2.0 algorithm with blocksizes $\beta = 30, 35, 40, 45$. Due to resource limitations, we run only 3 trials for each set of parameters.

The data from our experiments are in Figures 5, 6, 7. In each figure, we plot a grid for each blocksize, where the columns are indexed by n and the rows by α . Each cell in the grid is colored based on the number of successful trials, where the colors red, orange, yellow and green indicate that the number of successful trials is 3, 2, 1 and 0 respectively. Moreover, the bottom diagonal of each divided cell indicates the 2008 estimate, while the top diagonal indicates the 2016 estimate.

We observe that there is a much higher success rate in solving the challenges for the binary and ternary secret distributions, as compared to the gaussian distribution. This indicates that gaussian secret distributions are more secure for practical applications. Moreover, our running times for the successful instances are significantly less than the records in the actual challenges, which use secrets from uniform distributions. Furthermore, we also observe that we are already able to attack all the solved LWE challenges in the online tables, for secrets sampled from the binary or ternary secret distributions. This indicates that uniform secrets offer much higher security than the secret distributions that we consider, and it would be promising to study the case of uniform secrets in our experimental framework, as a potential follow-up to this work.

FIGURE 5. TU Darmstadt LWE challenges for binary secrets. Each cell is colored based on the number of successful trials, where the colors red, orange, yellow and green indicate that the number of successful trials is 3, 2, 1 and 0 respectively. The bottom diagonal of each divided cell indicates the 2008 estimate, while the top diagonal indicates the 2016 estimate.

FIGURE 6. TU Darmstadt LWE challenges for ternary secrets

FIGURE 7. TU Darmstadt LWE challenges for gaussian secrets

5. Acknowledgements

We would like to thank Shi Bai for helpful discussions, and Kim Laine for his help with setting up the Azure server for the experiments. We would also like to thank Fernando Virdia and Léo Ducas and the anonymous referees for their feedback and suggestions.

References

- [ACC⁺18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan, *Homomorphic encryption security standard*, Tech. report, HomomorphicEncryption.org, Toronto, Canada, November 2018.
- [ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe, Post-quantum key exchange—A New Hope, 25th USENIX Security Symposium (USENIX Security 16) (Austin, TX), USENIX Association, 2016, pp. 327–343.
- [AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer, Revisiting the expected cost of solving uSVP and applications to LWE, Advances in Cryptology – ASIACRYPT 2017 (Cham) (Tsuyoshi Takagi and Thomas Peyrin, eds.), Springer International Publishing, 2017, pp. 297–322.
- [APS15] Martin Albrecht, Rachel Player, and Sam Scott, On the concrete hardness of Learning with Errors, Journal of Mathematical Cryptology 9 (2015), no. 3, 169–203.
- [BBG⁺16] Johannes Buchmann, Niklas Büscher, Florian Göpfert, Stefan Katzenbeisser, Juliane Krämer, Daniele Micciancio, Sander Siim, Christine van Vredendaal, and Michael Walter, Creating cryptographic challenges using multi-party computation: The LWE challenge, Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography (New York, NY, USA), AsiaPKC '16, ACM, 2016, pp. 11–20.
- [BG14] Shi Bai and Steven D. Galbraith, Lattice decoding attacks on binary LWE, Information Security and Privacy (Cham), Springer International Publishing, 2014, pp. 322–337.
- [BLP⁺13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé, *Classical hardness of learning with errors*, Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC '13, ACM, 2013, pp. 575–584.
- [BMW19] Shi Bai, Shaun Miller, and Weiqiang Wen, A refined analysis of the cost for solving LWE via uSVP, Progress in Cryptology – AFRICACRYPT 2019 (Cham), Springer International Publishing, 2019, pp. 181–205.
- [BV11] Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, Oct 2011, pp. 97–106.
- [Che13] Yuanmi Chen, Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe, Ph.D. thesis, 2013, Thèse de doctorat dirigée par Nguyen, Phong-Quang Informatique Paris 7 2013, p. 1 vol. (133 p.).
- [CN11] Yuanmi Chen and Phong Q. Nguyen, BKZ 2.0: Better Lattice Security Estimates, Advances in Cryptology – ASIACRYPT 2011 (Berlin, Heidelberg) (Dong Hoon Lee and Xiaoyun Wang, eds.), Springer Berlin Heidelberg, 2011, pp. 1–20.
- [GN08] Nicolas Gama and Phong Q. Nguyen, Predicting lattice reduction, Advances in Cryptology – EUROCRYPT 2008 (Berlin, Heidelberg) (Nigel Smart, ed.), Springer Berlin Heidelberg, 2008, pp. 31–51.
- [GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev, Lattice enumeration using extreme pruning, Advances in Cryptology – EUROCRYPT 2010 (Berlin, Heidelberg) (Henri Gilbert, ed.), Springer Berlin Heidelberg, 2010, pp. 257–278.
- [Kan87] Ravi Kannan, Minkowski's convex body theorem and integer programming, Mathematics of Operations Research 12 (1987), no. 3, 415–440.
- [LL15] Kim Laine and Kristin Lauter, Key recovery for LWE in polynomial time, Cryptology ePrint Archive, Report 2015/176, 2015.

- [MP13] Daniele Micciancio and Chris Peikert, Hardness of SIS and LWE with small parameters, Advances in Cryptology – CRYPTO 2013 (Berlin, Heidelberg) (Ran Canetti and Juan A. Garay, eds.), Springer Berlin Heidelberg, 2013, pp. 21–39.
- [Reg09] Oded Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM 56 (2009), no. 6, 34:1–34:40.
- [Sch03] Claus Peter Schnorr, Lattice reduction by random sampling and birthday methods, STACS 2003 (Berlin, Heidelberg) (Helmut Alt and Michel Habib, eds.), Springer Berlin Heidelberg, 2003, pp. 145–156.
- [The16] The FPLLL development team, *fplll*, a lattice reduction library, 2016.
- [The19] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.8), 2019, https://www.sagemath.org.

MICROSOFT RESEARCH, REDMOND, USA *E-mail address:* haoche@microsoft.com

UNIVERSITY OF CALIFORNIA, BERKELEY, USA *E-mail address:* chualynn@berkeley.edu

MICROSOFT RESEARCH, REDMOND, USA E-mail address: klauter@microsoft.com

MICROSOFT RESEARCH, REDMOND, USA E-mail address: yongsoo.song@microsoft.com