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Abstract. In this paper we analyse the algorithm Chaskey - a lightweight
MAC algorithm for 32-bit micro controllers - with respect to rotational
cryptanalysis. We perform a related-key attack over Chaskey and find
a distinguisher by using rotational probabilities. Having a message m
we can forge and present a valid tag for some message under a related
key with probability 2−57 for 8 rounds and 2−86 for all 12 rounds of the
permutation for keys in a defined weak-key class. This attack can be
extended to full key recovery with complexity 2120 for the full number
of rounds. To our knowledge this is the first published attack targeting
all 12 rounds of the algorithm. Additionally, we generalize the Markov
theory with respect to a relation between two plaintexts and not their
difference and apply it for rotational pairs.
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1 Introduction

When constructing a cryprographic system, one of the main building blocks is
the Message Authentication Code (MAC). It is accompanying most symmetric
cryptosystems used in online communication and every application where au-
thenticity is needed. When given a message m, the MAC algorithm ensures it is
authentic and that no third party has tampered with the message by providing
a tag τ , computed after processing the message and a secret key k. It is usually
sent together with the message as a combination (m, τ). It should be hard for
the attacker to forge a valid tag for some message without knowing the key.
Furthermore, the size of the tag should be large enough to prevent a guessing
attack. The encryption function F used in the MAC’s mode of operation can
be based on various primitives like hash functions, permutations, block ciphers,
pseudo-random functions, etc.

Microcontrollers are used for various applications from home devices such as
ovens, refrigerators, etc., to life important applications such as providing critical
functions for medical devices, vehicles and robots. They are small chips used
on embedded systems and consist of a processor, memory and input/output
(I/O) peripherals. Commonly used MAC algorithms for microcontrollers are



UMAC [5], CMAC [9], HMAC [21]. It is said that MACs based on a hash func-
tion or a block cipher might perform slow because of the computational cost
of the underlying operations. The algorithm Chaskey [20] is said by its authors
to overcome the implementation issues of a MAC on a microcontroller. It is
lightweight and performs well both in software and hardware. We present it
with more details in Section 4.

Rotational cryptanalysis [13] is a probabilistic technique mainly used over
ARX cryptographic structures as is the permutation layer of Chaskey. It takes
a rotational pair of plaintexts such that all words of one are rotations of the
corresponding words of the other. After encryption, if the outputs also form a
rotational pair with probability more than for a random permutation we can use
that as a distinguisher. This attack has been successfully applied to ciphers like
Threefish [12], Skein [11,13] and Keccak [18]. We apply it to Chaskey in a weak-
key related-key scenario with size of the weak-key class 2120 and forge a tag over
a related-key with probability 2−86 over all 12 rounds of the permutation. This
is extended to a key-recovery attack with complexity 2120 for the full cipher.
To our knowledge this is the first published attack targeting all 12 rounds of
the algorithm. Our attack is theoretical but since Chaskey is considered for
standardization we believe every input regarding its security is important.

This paper is structured as follows: In Section 2 we present some theory
needed for a better understanding of the subject. In Section 3 we discuss the
Markov theory and generalize it with respect to a relation between two plain-
texts. The rotational attack is shown in the same section. Further in Section
4 the MAC algorithm Chaskey is presented together with a short analysis and
previously published cryptanalysis techniques on it. Our results and the attack
performed on Chaskey are shown in Section 5. Finally, some comments and
future problems are discussed in Section 6.

2 Preliminaries and related work

2.1 Even-Mansour ciphers

The Even-Mansour cipher, first introduced in [10] is a minimalistic construction,
i.e. if we eliminate any of its components the security will be compromised. This
is the simplest cipher with provable security against a polynomialy bounded
adversary. It consist of a key divided into two subkeys K1 and K2 and a random
permutation F . The ciphertext is then obtained by C = K2 ⊕ F (M ⊕K1), see
Fig 1. The authors prove that the construction is secure under the assumption
that the permutation is (pseudo)randomly chosen and give a lower bound for
the probability of success of an adversary. In [6] Daemen shows that the security
claims do not hold against known plaintext and known ciphertext attacks and
particularly against differential attack which reduces the security from 22n for a
brute force attack over the keyspace of size 2n to 2n security. He also discusses
that the security proof should be based on diffusion and confusion properties
and not on complexity theory. Later in [8] it is shown that the construction have
the same security level even when the two keys K1 and K2 are equal. Attacks of
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the Even-Mansour construction include differential cryptanalysis and the sliding
attack [4,22]. Thanks to its simplicity this construction is widely used, including
in Chaskey.

Fig. 1. Schematic model of the encryption scheme of Even-Mansour

2.2 Markov ciphers and differential cryptanalysis

In differential cryptanalysis we choose two plaintexts X and X∗ with fixed dif-
ference ∆X and follow how it propagates throughout the rounds. We call a
differential (α, β) an input difference α that yields an output difference β, no
matter what the intermediate round differences are. The differential probability
(DP) of (α, β) is the number of pairs for which ∆X = α and ∆Y = β over the
total number of pairs with input difference α. The DP is difficult to compute
in practise, so what is normally done instead is to use the Expected Differen-
tial Probability (EDP), estimated by computing the product of all intermediate
round probabilities.

We say that two random variables X1 and X2, defined on a common prob-
ability space are called stochastically equivalent if Pr(X1 = X2) = 1. In most
reasonings about the security of a cipher against differential cryptanalysis, we
use the hypothesis of stochastic equivalence, defined as follows:

Definition 1 (Hypothesis of stochastic equivalence [15]). For an (r−1)-
round differential (α, β),

Pr(∆Y (r − 1) = β|∆X = α) ≈ Pr(∆Y (r − 1) = β|∆X = α,

Z(1) = ω1, Z
(2) = ω2, . . . , Z = ω(r−1))

for almost all subkeys values (ω1, . . . , ωr−1), where Z(i) denote the i− th subkey.

It means that the probability of a differential does not depend on the choice
of subkeys. We compute or bound the Expected Differential probability (EDP)
of a differential and assume that DP [k](α, β) ≈ EDP (α, β) holds for almost all
keys.
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Definition 2 (Markov cipher [15]). An iterated cipher with round function
Y = f(X,Z) is a Markov cipher if there is a group operation ⊗ for defining
differences such that, for all choices of α and β, (α, β 6= e),

Pr(∆Y = β|∆X = α,X = γ)

is independent of γ, when the subkey is uniformly random.

In other words, if we have a Markov cipher, then the probability of a differen-
tial does not depend on the choice of input text, EDP (αr, αr+1) = EDP (αr, αr+1|X(r)).
A Markov chain is a sequence v0, v1, . . . of random variables satisfying the rule
of conditional independence, or with other words variables for which the output
of the rth iteration does not depend on the previous r − 1 iterations. Mathe-
matically formulated, a sequence of discrete random variables (v0, . . . , vr) is a
Markov chain if, for 0 < i < r (where r =∞ is allowed)

P (vi+1 = βi+1|vi = βi, vi−1 = βi−1, . . . , v0 = β0) = P (vi+1 = βi+1|vi = βi).

Finally, the following theorem is formulated:

Theorem 1 ( [15]). If an r-round iterated cipher is a Markov cipher and the r
round keys are independent and uniformly random, then the sequence of differ-
ences ∆X = ∆Y (0), ∆Y (1), . . . ,∆Y (r) is a homogeneous Markov chain.

If we have a Markov cipher and the round keys are independent and uniformly
random we can use the Chapman-Kolmogorov equation for a Markov chain to
compute the EDP (α, β) by multiplying EDP (αr, αr+1) over all the rounds,
which is easy to compute in comparison to the real DP. In general, for alternating
ARX ciphers the Markov theory holds with respect to differential cryptanalysis.

2.3 Attack settings

There are different scenarios in which we can attack a MAC. The single-user
setting suggests that Alice and Bob share the same key so Bob can authenticate
that the messages he receives from Alice are not changed in any way. In the
existential forgery problem (EFP) the adversary has access to the encryption
and decryption oracles. If the adversary can present a new message with a valid
tag then this is a forgery and the adversary wins the game. Another scenario is
the multi-user setting in which we have multiple users typically with their own
secret keys. The adversary then wins if it can present a triplet (i,m′, τ ′) for some
user i and new message m′. If the number of users is large enough the adversary
can find a collision in the keys due to the birthday paradox. Having at least
two users using the same key or related in some way keys can then enhance any
further attack in matter of data, memory and time. Some environments allow to
tamper with the key and change it in a certain way, like adding a constant for
example. We can then observe the ciphertext under the related keys and draw
conclusions over the real key. This is called a related-key attack [14] and is quite
a powerful setting. As shown in [2, 3] even the AES is theoretically vulnerable
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under related-key attacks, but not if you can only add a constant. Stronger
attacks are such that reveal some bits of the key and in the multi-user scenario
one or more of the individual keys are exposed. They are called key-recovery
attacks.

3 Rotational Cryptanalysis and generalized Markov
ciphers

In this section we discuss the Markov theory with respect to a relation between
chosen plaintexts and not to their difference. We extend the definition for more
general cases and more specifically, we concentrate on plaintexts forming a rota-
tional pair. Further in Section 3.2 we recall the idea of rotational cryptanalysis
and how to compute the rotational probability for ARX ciphers.

3.1 Markov theory and rotational cryptanalysis

In [13] the authors mention the term rotational difference and argue that modular
additions do not form a Markov chain with respect to the rotational property. In
fact, we cannot consider a rotational difference in the sense it is defined in [15]:

Definition 3. [15] The difference ∆X between two plaintexts (or two cipher-
texts) X and X∗ is

∆X = X ⊗X∗−1,

where ⊗ denotes a specified group operation on the set of plaintexts (= set of
ciphertexts) and X∗−1 denotes the inverse of the element X∗ in the group.

According to this formulation the rotation has to be a group operation with
the integers, which it is not. It is a group action Fn2 ×N −→ Fn2 , whereas a group
operation is defined in Fn2 × Fn2 −→ Fn2 .

In order to use the Markov theory we need to slightly extend it. We generalize
the concept of “two plaintexts X and X∗ have a certain difference ∆X” to “X
and X∗ have a certain relation”. The definition of a Markov cipher can easily be
generalized to accommodate this. Let us have two related plaintexts X and X∗,
such that for a relation R ⊆ Fn2 × Fn2 we have (X,X∗) ∈ R if X∗ has a relation
R with X.

Definition 4 (Generalized Markov cipher). An iterated cipher with round
function Y = f(X,Z) is a generalized Markov cipher if there are two relations,
different from the identity, Rα and Rβ, such that for all choices of α and β,

Pr((Y, Y ∗) ∈ Rβ |(X,X∗) ∈ Rα, X = γ) (1)

is independent of the choise of γ when the subkeys Z are uniformly random.
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Note that for differences we have for α 6= 0, Rα = {(X,X∗)|X∗ = X ⊗
α−1, X ∈ Fn2}. For our purposes X∗ is a rotation of X with l positions to the
left, Rl = {(X,X∗)|X∗ = X≪l, X ∈ Fn2} and we want the same relation to
hold between the plaintexts and the ciphertexts. Then the condition for Markov
cipher is that for any l 6= 0 the probability Pr(Y ∗ = Y≪l|X∗ = X≪l, X = γ)
is independent of γ, when the subkeys are uniformly random.

Without generalization, the hypothesis of stochastic equivalence does not
hold for a rotational pair: XOR-ing with a fixed key will maintain the rotational
property only if the key is rotation-symmetric. The hypothesis can be generalized
to some related-key scenario where the relation between the keys is that the
second key is a rotation of the first key. Since for the rotational property to hold
in the last state we need it to hold in every intermediate state as well, in general
we do not have a Markov chain. Once the property is broken, it cannot come
back by chance. Therefore, EDP cannot be calculated as a product of the round
probabilities as in differential cryptanalysis.

3.2 Rotational attack

Let us consider a pair of plaintexts (m,m ≪ l), where m ≪ l is a rotation of
m to the left with l positions. We call this a rotational pair. When after some
operations the outputs also form a rotational pair we say that the rotational
property holds. It is preserved by all bit-wise operations like XOR or another
rotation, but not always by modular addition. The attack relies on the fact that
the probability after modular addition can be computed (proven in [7]) and is

Pr((x+ y) ≪ l = x≪ l + y ≪ l) =
1

4
(1 + 2l−n + 2−l + 2−n) (2)

for n-bit long words, while

Pr((x≪ l ⊕ y ≪ l = (x⊕ y) ≪ l) = 1.

Pr((x≪ l1) ≪ l2 = (x≪ l2)� l1) = 1

That makes it applicable to ARX structures, which only operations are mod-
ular addition, rotation, and XOR. More precisely, we start the attack from a

rotational pair of two states (X,
←−
X ) of size n and divided into s words typi-

cally of 32 or 64 bits. With
←−
X we denote the word-wise rotation of X : X =

(x1, x2, . . . , xs),
←−
X = (x1 ≪ l, x2 ≪ l, . . . , xs ≪ l), where xi, i = 1, . . . s are

the state words.
If the corresponding output states also form a rotational pair with prob-

ability higher than for a random permutation, we can use this property as a
distinguisher.

When the attack was first formalized as a rotational cryptanalysis in [12]
the authors claimed that the rotational probability of an ARX cipher depends
only on the number of modular additions in the algorithm and can be easily
computed as shown in the following theorem:
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Theorem 2. [12] Let q be the number of additions in an ARX primitive. Then
the rotational probability of the primitive is pq+, where p+ is the rotational prob-
ability of modular addition as calculated in (2).

This is only valid under the assumption of stochastic equivalence and Markov
chain, both in fact do not hold with respect to the rotational property.

In [13] the authors introduce chained modular additions, namely additions
for which the output of one is the input to the other. The output of modular
addition is biased when the input is a rotational pair. Namely, if (x+ y) ≪ l =
x ≪ l + y ≪ l and r > 0, then the value z = x + y is biased. More precisely,
for l = 1, the most significant bit of z is biased towards 1. The second modular
addition has smaller probability and therefore Theorem 2 fails to give the correct
probability. Due to this bias the variables are not random and independent, so
we can say they do not form a Markov chain. Therefore, the probability does
not depend only on the number of additions but on their positions as well. The
authors also introduce the following formula, that very precisely calculates the
rotational probability of k − 1 consecutive modular additions:

Lemma 1. [13, Lemma 2] Let a1, . . . , ak be n-bit words chosen at random and
let l be a positive integer such that 0 < l < n. Then

Pr([(a1 + a2) ≪ l = a1 ≪ l + a2 ≪ l]∧
∧ [(a1 + a2 + a3) ≪ l = a1 ≪ l + a2 ≪ l + a3 ≪ l]∧
. . .

[(a1 + . . . ak) ≪ l = a1 ≪ l + . . . ak ≪ l]) =

=
1

2nk

(
k + 2l − 1

2l − 1

)(
k + 2n−l − 1

2n−l − 1

)
.

The more chained additions we have, the lower the probability. In Table 1 we
can see a comparison between the rotational probabilities calculated with the
independency assumption and with the formula from Lemma 1 for rotational
amount l = 1. We can see that for larger number of chained additions the
difference is quite big and suggests that chained additions are a better design
choice with respect to rotational cryptanalysis.

# of additions 1 2 3 4 5 10 20 30

Theorem 2 −1.4 −2.8 −4.2 −5.7 −7.1 −14.1 −28.3 −42.4

Lemma 1 −1.4 −3.6 −6.3 −9.3 −12.7 −32.7 −82.0 −138.7
Table 1. log2 values for the rotational probabilities calculated with the formula of
Theorem 2 and Lemma 1 for rotational amount r = 1.
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4 The MAC algorithm Chaskey

In this chapter we introduce the MAC algorithm Chaskey and the previously
performed attacks on it.

4.1 Chaskey

Chaskey [20] is a lightweight Message Authentication Code (MAC) algorithm
that is dedicated to 32-bit microcontrollers. It is claimed to have better perfor-
mance and efficiency than previously used algorithms and it is provably secure
based on the Even-Mansour structure.

The algorithm is as follows: a 128-bit key K is used with 128-bit blocks of
messages mi in a permutation π, designed only with XOR, rotation and modular
addition operations. These simple operations are very efficient in software and
in hardware.

Fig. 2. The Chaskey mode of operation

The mode of operation can be seen in Fig. 2. The text is broken into 128-bit
blocks mi which are consecutively XORed and passed through a permutation.
There is a key addition before the first and after the last block. If the last block
is less than 128 bits, a 1 is appended and as many 0 bits as necessary (the second
mode in Fig. 2). Finally, the last t bits of the output are used as a tag. In the
paper in which Chaskey was first proposed [20] the authors suggested that 8
or 16 rounds should be used on the permutation π, although 8 provide enough
security. Later in [19] the rounds were set to 12. One round of the permutation
is shown in Fig. 3. The algorithm can also be considered as an Even-Mansour
cipher with keys K and K1, respectively K2 when the last message block is
less than 128 bits. Here K1,K2 are generated from K by simple polynomial
multiplication by x, respectively x2 over the finite field F2128 with generating
polynomial g(x) = x128 + x7 + x2 + x + 1. For K1 = xK this means we shift
K with one position to the left if the first bit(the leftmost bit) is equal to zero
or shift and then XORed with 012010000111 if the first bit is one. If the bit is
0 then K1 can be considered as a state-rotation of K. For K2 = x2K the same
operation is valid and applied twice.
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v1 v0 v2 v3

≪ 15 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

v1 v0 v2 v3

Fig. 3. A round of the Chaskey permutation

4.2 Markov theory and Chaskey

Chaskey is Even-Mansour cipher, hence there are no round keys. The generalized
hypothesis of stochastic equivalence holds. This means if we are in a related-key
scenario, the probability that the rotational property holds is independent of the
choice of keys as long as the second key is a rotation of the first one. This can
be proven easily for any Even-Mansour construction. Chaskey is Even with the
generalized definition (def. 4) Chaskey is not a Markov cipher. Since there are no
roundkeys, EDP (ar, ar+1|Xr) is either 0 or 1 (there is no randomness when the
input is fixed). EDP (ar, ar+1) is the average over all inputs, which will often be
a value between 0 and 1. One can still hope to estimate EDP (α) with respect
to rotational operation as the product over all rounds. Khovratovich at all [13]
show that this leads to wrong results and propose improved formula - Lemma
1(Lemma 2 in [13]). Our experiments confirm that the formula gives trustable
results.

4.3 Previous attacks on Chaskey

In [17] a collision-based attack both in the single and multi-user scenarios is
executed. That is, we define two functions fs(m) = Ks ⊕ π(m ⊕ (Ks ⊕ K))
and Ffs(M) = fs(M) ⊕ fs(M ⊕ δ) ⊕M and search for collisions between the
chains constructed from this two functions. It can be seen from Fig. 4 that fs(M)
describes the Chaskey mode for one block of text. As a result, The attack has
complexity 264 in the single-user scenario and to recover all keys in the multi-user
scenario needs 243 users and 243 queries per user.

In [16] a differential-linear attack is performed over Chaskey, improved with
the partitioning technique proposed in [1]. Their best result is over 6 and 7
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Rounds Data Time Attack Reference

6 225 229 linear-differential attack with partitioning,
gains 6 bits of the key

[16]

7 248 267 linear-differential attack with partitioning,
gains 6 bits of the key

[16]

8 264 collision attack in single user mode, full key
recovery

[17]

8
243 per
user for
243 users

collision attack in multi-user mode, full key
recovery

[17]

6 242 weak-key related-key rotational distinguishing
attack

here

12 286 weak-key related-key rotational attack, forge a
valid tag

here

12 2120 weak-key related-key rotational attack, full
key recovery

here

Table 2. Review of the existing attacks over Chaskey

rounds with data complexity 225 and 248 respectively and time complexity 229

and 267 respectively. The attack builds differential-linear distinguisher which is
extended to key-bits recovery in the last round phase.

A comparison between those attacks and our contribution can be seen in
Table 2.

5 Application to Chaskey

In this section we will show how we apply the rotational property in different
attack scenarios. We first show how to calculate the rotational probabilities and
then how to use them as a distinguisher, to forge a message or for key-recovery.

5.1 Calculating the rotational probability

m τπ+ +

K ⊕K1 K1

Fig. 4. Chaskey mode of operation for messages with single block of 128 bits

We consider the case where we want to tag a message m that has only one
block of 128 bits. Then the tag would be τ = π(K ⊕K1⊕m)⊕K1, as shown in
Fig. 4.
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To apply rotational cryptanalysis to Chaskey we first need to calculate the
rotational probability of the permutation π, i.e. the probability for a rotational

pair of input texts (m,←−m) to produce output pair (π(m),
←−−−
π(m)). It depends only

on the number of modular additions and their positions. Note that in one round
of π (see Fig. 3) we have 4 modular additions - two single additions and one
chain of two. Further note that when we continue the permutation to a second
round, the addition of v0 + v3 makes a chain with the addition v0 + v1 of the
second round which bring us to 2 singles and 3 chains of two modular additions
for 2 rounds, and so on for any further round. These chains are depicted in bold
in Fig. 5. We then calculate the probability using Lemma 1 [13]. More precisely,
we take the parameter k to be the number of chained additions that we have
plus 1 and set the rotation r to 1, because then the probability is maximized.
The size of the words is n = 32. Let a1, a2 and a3 be the words that we are
adding. Then the probability of a chain with two additions (a1 + a2) + a3 is

Pr([(a1 + a2) ≪ 1 = a1 ≪ 1 + a2 ≪ 1]∧
∧ [(a1 + a2 + a3) ≪ 1 = a1 ≪ 1 + a2 ≪ 1 + a3 ≪ 1]) =

=
1

232.3

(
3 + 2− 1

2− 1

)(
3 + 232−1 − 1

232−1

)
= 2−3.6.

rounds
Modular additions

Expected probability Experimental probability
singles chains

1 2 1 -6.436 -6.421

2 2 3 -13.636 -13.639

3 2 5 -20.836 -20.844

4 2 7 -28.036 -28.142

5 2 9 -35.236 -36

6 2 11 -42.436

7 2 13 -49.636

8 2 15 -56.836

9 2 17 -64.036

10 2 19 -71.236

11 2 21 -78.436

12 2 23 -85.636
Table 3. Table with the expected and experimentally calculated rotational probabili-
ties for any number of rounds of the permutation π

Further, for 8 rounds we have 15 chains of two additions and 2 single addi-
tions, which corresponds to probability p = (2−3.6)15.(2−1.4)2 = 2−56.836. Table
3 presents how many single and chained additions we have for any number of
rounds up to 12 and what is the evaluated rotational probability calculated with
lemma 1 and the experimental probability we get after running simulations. We
performed our experiments on a computer with an Intel(R) Core(M) i5-4590

11



CPU running at 3.30GHz. We did not perform experiments beyond 5 rounds
due to the time complexity. Our experimental results are very close to the ex-
pected ones and based on that observation we anticipate that the probability
calculated with this formula is correct and further take it as verified and refer
to it when considering larger number of rounds.

We show an example how certain words change through the operations of
the Chaskey permutation in Fig. 5. The rotational property after the modu-
lar additions can be observed for message m and its rotation ←−m. We can see
that for words v2 = 0xA1008E9C = 01000010000000010001110100111001 and
v3 = 0x45EAA81C = 10001011110101010101000000111000 the rotational prop-

erty holds and the pair (v2 + v3,
←−
v2 +

←−
v3) is rotational.

What we have to consider next is the rotational probability of the whole
Chaskey function Π = π(K⊕K1⊕m)⊕K1, that is with the key addition before
and after the permutation π. In fact π(K ⊕K1 ⊕←−m)⊕K1 cannot be a rotation

of π(K⊕K1⊕m)⊕K1, since a⊕ b 6= a⊕
←−
b . Therefore we need to consider also

a rotated key. The pair π(K ⊕K1 ⊕m)⊕K1 and π(
←−
K ⊕K ′1 ⊕←−m)⊕K ′1, where

K ′1 is the key generated from
←−
K , i.e. K ′1 = x

←−
Kmod g(x), is rotational for a large

set of keys, but not all keys. To ensure K ′1 is word rotation of K1, i.e. K ′1 =
←−
K1,

we need the first 2 bits of every word to be equal to zero. This becomes clear
with the following example: denote with a, b, f, g, k, l, p and q the first 2 bits of
the 4 words of K and with ∗ any bundle of 30 bits that we are not interested in.
Then the word and state rotations of K and K1 are as follows: .

K = ab ∗ fg ∗ kl ∗ pq∗; K1 = b ∗ f g ∗ k l ∗ p q ∗ a

←−
K = b ∗ a g ∗ f l ∗ k q ∗ p; K ′1 = ∗ag ∗ fl ∗ kq ∗ pb

If a = 1(resp. b = 1) then K1(resp. K ′1) will not be a rotation of K(resp.
←−
K) but a rotation and XOR with 135 in decimal. Therefore we set a = b = 0.

Furthermore, to have K ′1 =
←−
K1 = ∗fb ∗ kg ∗ pl ∗ aq we need to set a =

b = f = g = k = l = p = q which means we set the first 2 bits of every word of
K to be zero.

The keys satisfying this property we call a weak-key class of keys and there
are 2120 weak-keys for which we can apply the attack. For the rest of the keys
the rotational property will definitely not hold. This means if a random key K is
chosen, the probability that we will have a rotational pair after Π is 2−8p1,where
p1 is the rotational probability of π.

5.2 Attack scenarios

Distinguisher. Using the rotational property we can distinguish whether a key
is in the weak-key class of keys that we defined earlier, namely one of the 2120

keys with the first two bits of every word being zero.
In this setting we can use the authentication oracles for the related keys K

and
←−
K , denoted respectively as OK and O←−

K
. The properties of the algorithm
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v1 v0 v2 v3

A1008E9CB76A951F 3296EE54 45EAA81C

E6EB36B8
≪ 5 ≪ 8

7532085
≪ 16

EE3E573D
≪ 7 ≪ 13

≪ 16

≪ 5 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

573DEE3E

v1 v0 v2 v3

←−v1 ←−v0 ←−v2 ←−v3
42011D396ED52A3F 652DDCA8 8BD55038

CDD66D71
≪ 5 ≪ 8

EA6410A
≪ 16

DC7CAE7B
≪ 7 ≪ 13

≪ 16

≪ 5 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

AE7BDC7C

v1 v0 v2 v3

Fig. 5. 2 rounds of Chaskey’s permutation for chosen input(left) and its word-wise
rotation (right). The chained modular additions are connected with ticker line. The
words are represented in hexadecimal.
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Chaskey allow us to tag 248 messages under the same key, therefore we will take
a set of that many messages D = {m ∈ F 128

2 }, |D| = 248. We send all messages
mi ∈ D, i = 1 . . . 248 to OK and their word-wise rotations ←−mi to O←−

K
and the

oracles give back the corresponding tags τi and τ ′i . If the key K is one of the
weak-key class keys, then the expected number of messages for which ←−τ = τ ′

will be 248p, where p is the rotational probability according to Table 3. For
example, over 6 rounds we will have 248 · 2−42 = 28 = 64 messages for which
that happens. In the single user mode for the full 12 rounds the probability of
success is p = 248 · 2−86 = 2−38 with data complexity 249 encryptions, time
complexity 248 look ups in a table and memory of storing a table with 128 · 248
bits which is 247 bytes. In order to have success probability one we repeat the
experiment 238 times which gives us data complexity of 286.

Tag forgery. We can find users with related keys and exploit this fact to forge
a tag. One way of doing this is by querying each of the n users with the same
message m and then store the corresponding tags τi. By doing the same thing
but this time with message ←−m, we can look for a collision between the stored
tags and the new tags τ ′j . When τi = τ ′j for some i, j, then users i and j have
related keys and we can perform a forgery attack that goes as follows:

1. We collect data of pairs of a message and its corresponding tag (m, τ) from
user ui.

2. We rotate them word-wise and send (←−m,←−τ ) for verification.

If we are attacking 8 rounds and we have 257 pairs we expect at least 1 pair
to be accepted as authentic which means we will posses a message and a valid
tag. That is considered a forgery and a success to our attack. As a result from
user with key K we can generate a valid tag for some message ←−m under the

related key
←−
K with complexity of the attack 257 under the assumption that we

are in the weak-key class. For 12 rounds of the permutation the probability of
success is 2−86.

Key-recovery. After distinguishing that we are in the weak-key class we know 8
bits of the key. The rest of the bits can be recovered by guessing which gives us
a key-recovery with complexity 2120.

6 Conclusions and future work

In this work we showed how by using the property of rotational probabilities
we can forge a valid tag using the MAC algorithm Chaskey. Our results are
not compromising the security of the algorithm in practice and do not violate
the security claims of the authors, however they show a vulnerability in the
underlying permutation. Our best result is a distinguishing attack over the full
number of rounds of the algorithm with complexity 286.

The Chaskey algorithm suggests that only the last t bits of the output can
be used as a tag. Our attack is over all 128 bits. However, for shorter tag the

14



results could be enhanced by only following the rotational property to 2 or 3
words of the output. This is to be further analysed.
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