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Abstract. We propose a very fast lattice-based zero-knowledge proof system for exactly proving knowl-
edge of a ternary solution ~s ∈ {−1, 0, 1}n to a linear equation A~s = ~u over Zq, which improves upon
the protocol by Bootle, Lyubashevsky and Seiler (CRYPTO 2019) by producing proofs that are shorter
by a factor of 8.
At the core lies a technique that utilizes the module-homomorphic BDLOP commitment scheme (SCN
2018) over the fully splitting cyclotomic ring Zq[X]/(Xd + 1) to prove scalar products with the NTT
vector of a secret polynomial.

1 Introduction

Zero-knowledge proofs5 of knowledge are a central building-block in many cryptographic schemes, especially
in privacy-preserving protocols (e.g. group signatures). In these protocols there are often underlying basic
public-key primitives, such as encryption and signature schemes, and one has to prove certain statements
about the ciphertexts and signatures produced by the underlying primitives. In addition to their usefulness
in privacy-preserving protocols, zero-knowledge proof systems have also gained a lot of attention in recent
years due to their applications in blockchain protocols.

For post-quantum security the underlying public-key primitives have to be built based on quantum-safe
computational hardness assumptions, and lattice-based primitives are a leading choice in this regard. Now,
when proving statements related to lattice-based primitives, one always ends up proving knowledge of a
short solution to a linear system of equations over some prime field Zq. More precisely, we want to be able
to prove knowledge of a ternary solution ~s ∈ {−1, 0, 1}n to the equation

A~s = ~u, (1)

where the matrix A ∈ Zm×nq and the right hand side ~u ∈ Zmq are public. There is no loss of generality
in Equation (1) in the sense that it encompasses the situations when the secret vector ~s has coefficients
from a larger interval, or when the equation in fact describes linear relations between polynomials in some
polynomial ring Rq of higher rank over Zq, which arise in important so-called ring-based constructions. In
the first situation the secret coefficients can be expanded in base 3 and thereby the equation transformed
to the above form. In the second situation the matrix A has a certain structure that describes the linear
relations over Rq with respect to some Zq-basis of Rq. Then the equation is equivalent to an equation

A~s = ~u (2)

with polynomial matrix A, polynomial vector ~u and short polynomial vector ~s with coefficients that are
ternary polynomials.
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We call a proof system that exactly proves knowledge of a ternary vector ~s as in Equation (1), and hence
does not have any knowledge gap, an exact proof system. The goal of this paper is to construct an efficient
exact lattice-based proof system.

Currently the most efficient lattice-based protocols that include zero-knowledge proofs utilize so-called
approximate proof systems which are based on the rejection sampling technique by Lyubashevsky [Lyu09,
Lyu12]. Examples are the signature schemes [Lyu12, BG14, DKL+18], the group signature schemes [dPLS18,
YAZ+19, EZS+19], and the ring signatures [ESLL19, EZS+19]. Efficient approximate proofs work over poly-
nomial ringsRq and the prover ends up proving knowledge of a vector ~s∗ overRq fulfilling only the perturbed
equation

A~s∗ = c̄~u,

where c̄ is a short polynomial. Moreover, the coefficients of the polynomials in ~s∗ are from a much larger
range then the ternary coefficients in the vector ~s that the prover actually knows. The most important reason
for the practical efficiency of approximate proofs is that they achieve negligible soundness error with only
one repetition.

While approximate proofs are sufficient for many applications, their biggest drawback is that one has to
account for the longer vector ~s∗ when setting parameters for the underlying schemes so that these schemes
are still secure with respect to ~s∗. Concretely, suppose that as part of a larger protocol one has to encrypt
some message and prove linear relations on the message. Then, when using an approximate proof system, one
cannot choose a standard and vetted lattice-based encryption scheme such as Kyber [BDK+18], NTRU, or
another scheme in round 2 of the NIST PQC standardization effort. This is problematic for both theoretical
and practical reasons. Moreover, if some part of the protocol does not require zero-knowledge proofs, then
the efficiency of this part still suffers from the other parts involving zero-knowledge proofs because of the
described effect on parameters.

Finally, there are applications for which approximate proof systems are not sufficiently expressive. Natural
examples are range proofs for integers and proofs of integer relations, which have applications in blockchain
protocols. In these protocols one wants to commit to integers, prove that they lie in certain intervals, and
prove additive and multiplicative relations between them. All these problems can be directly solved with
an exact proof system that is capable of proving linear equations as above [LLNW18], but approximate
proof systems alone are not sufficient for this task. One reason is that one has to commit to the integers in
their binary or some other small-base representation and then prove that the committed message really is a
binary vector, i.e. that it does not have coefficients from a larger set. This cannot directly be achieved with
approximate proofs.

Coming back to exact proof systems, there is a long line of research using Stern’s protocol [Ste93] in a
lattice setting to exactly prove Equations as in (1) [LLNW17]. But even for the smallest equations, which
for example arise when proving a Ring-LWE sample, the proofs produced by this approach have several
Megabytes in size and hence are not really practical. The reason behind this is that a single protocol execution
has a very large soundness error of 2/3, and thus many protocol repetitions (in the order of hundreds) are
required to reach a negligible soundness error.

In [BLS19, YAZ+19], the authors use the BDLOP commitment scheme [BDL+18] to construct an exact
proof system and achieve proof sizes of several hundred Kilobytes for proving Ring-LWE samples. The results
in the present paper can be seen as an extension of the results of [BLS19].

Now, for post-quantum security, even when relying on underlying lattice-based primitives, it is of course
not necessary to also built the zero-knowledge proof system with lattice techniques, as long as the proof
system does not introduce computational assumptions that are known to be insecure against quantum
computers. In fact, there are PCP-type proof systems using Kilian’s framework [Kil92], such as Ligero
[AHIV17] or Aurora [BCR+19], that are capable of exactly proving linear equations as above, and that are
secure assuming only the security of a hash function. These proof systems are even succinct and produce
proofs with sizes that are sublinear or even logarithmic in the size of the witness ~s, but they have a base
cost in the order of 100 KB for Ligero and around 70 KB for Aurora.
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The proof system that we present in this paper scales linearly in the witness size but produces proofs of
only 47 KB for proving a Ring-LWE sample. So there is a regime of interesting statements where linear-sized
proof systems can beat the best logarithmic PCP-type systems in terms of proof size.

For larger equations where we cannot quite achieve proof sizes as small as the PCP-type systems, lattice-
based systems still have one big advantage. Namely, they are very computationally lightweight. Implementa-
tions of lattice-based cryptography are generally known to be very fast. For example, the fastest lattice-based
CCA-secure KEMs have encapsulation and decapsulation times in the order of a few microseconds on stan-
dard laptop processors [LS19] and are thus about one order of magnitude faster than a single elliptic curve
scalar multiplication. The reason for this very high speed is essentially twofold. Firstly, there is usually no
multi-precision arithmetic needed since efficient lattice-based schemes use finite field moduli q that are below
232. And secondly, the required arithmetic has a high degree of data-level parallelism that is favourable to
modern CPUs, which is especially true for schemes whose arithmetic natively supports the Number The-
oretic Transform (NTT). The protocols that we present in this paper are no exception to this; they use
single-precision 32-bit moduli, are NTT-friendly, and don’t introduce any computational tasks that are not
also present in standard lattice-based basic encryption or signature schemes. We demonstrate the fast speed
of our protocols with an optimized implementation for Intel CPUs that achieves prover and verifier running
times of 3.52 and 0.4 milliseconds, respectively, for the case of proving a ternary solution to a linear equation
of dimensions 1024× 2048.

Contrary to this, existing studies of using logarithmic PCP-type proof systems for proving the linear
equations (1) that arise in lattice-based privacy-preserving protocols show that one ends up with prover
runtimes in the order of several tens of seconds even for the smallest instances and on very powerful processors
[BCOS20]. This also seems to be the case for the logarithmic but not quantum-safe Bulletproofs proof
system [dPLS19]. For example, in [BCOS20] the authors construct a lattice-based group signature scheme
using Aurora as the proof system. They found that proving a Ring-LWE sample takes 40 seconds on a
laptop computer. Even worse, they could not successfully run the full signing algorithm, due to very large
memory requirements, even with the help of Google Cloud large-memory compute instances. This is especially
problematic since for privacy-preserving protocols to be used in practice, the prover would often need to be
run on constraint devices, possibly down to smart cards or TPM chips. We summarize the above comparison
in Table 1.

Table 1. Proof length comparison for proving knowledge of a Ring-LWE sample in dimension 1024 modulo a prime
q ≈ 232. Here the dimensions of the corresponding Equation as in (1) are m = 1024 and n = 2048. The sizes for the
Stern-type proof is taken from [BLS19]. The sizes for Ligero and the scheme from [Beu20] are taken from [Beu20]
and are for the parameter m = 512.

Stern-type proofs 3522 KB
[BLS19] 384 KB
[Beu20] 233 KB

Ligero [AHIV17] 157 KB
Aurora [BCR+19, BCOS20] 72 KB

Our work 47 KB

1.1 Our Approach

The proof system in the present work extends the system from [BLS19]. On a high level, the approach
entails committing to a polynomial š ∈ Rq whose NTT basis representation is equal to the secret vector
~s, NTT(š) = ~s. Then, using a product proof protocol that allows to prove multiplicative relations between
committed polynomials, the prover shows that š(1−š)(1+š) = 0. This implies that ~s has ternary coefficients
since the polynomial product is component-wise in the NTT basis,

NTT(š(1− š)(1 + š)) = ~s ◦ (~1− ~s) ◦ (~1 + ~s),
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where ~1 = (1, . . . , 1)T is the all-ones vector and ◦ denotes the component-wise product. What remains is
the linear part where the prover needs to show that ~s is a solution to Equation (1). The linear part was the
biggest obstacle to smaller proof sizes in [BLS19]. The reason is that while the BDLOP commitment scheme
makes it very easy to prove linear relations over the polynomial ring Rq, one needs to be able to prove linear
relations between the NTT coefficients corresponding to the committed polynomials when using the above
encoding of the secret vector.

Essentially there are two ways to commit to vectors using the BDLOP commitment scheme. Either
one commits to polynomials whose coefficient vectors are equal to the secret vectors, or one commits to
polynomials whose NTT vectors are the secret vectors. The first way makes it easy to prove structured linear
equations as in (2) by directly using the homomorphic property of the commitment scheme. The second way
allows for efficient range proofs with the help of an efficient product proof. But we need to prove a linear
equation and conduct a range proof at the same time.

In [BLS19] the problem is side-stepped by reusing a masked opening z of the committed polynomial š
with scalar challenge c ∈ Zq,

z = y + cš,

which is sent as part of the product proof. The verifier can apply the NTT to get a masked opening of the
secret vector ~s, NTT(z) = ŷ + c~s, and then check that ANTT(z) = ~w + c~u, where ~w = Aŷ is sent by the
prover before seeing the challenge c. This approach crucially requires that the challenge c is an integer from
Zq and not a proper polynomial. Otherwise the masked opening NTT(z) of ~s would include a component-wise
product that is incompatible with the linear equation. But with only an integer challenge c the protocol is
restricted to soundness error 1/q and hence needs to be repeated multiple times.

The main new technique in this paper is a more efficient method to directly prove linear relations among
NTT coefficients of the message polynomials in the BDLOP commitment scheme. Then the product proof
can make use of proper polynomial challenges and our proof system profits from further improvements in
the product proof presented recently in [ALS20].

We now go a bit more into detail and describe our method for the linear proof. For concreteness, let us
define Rq = Zq[X]/(Xd + 1), where d is a power of two and Xd + 1 splits fully into linear factors over Zq.
Then the i-th NTT coefficient of a polynomial š ∈ Rq is equal to the evaluation of š at the i-th primitive

2d-th root of unity ri. Therefore, if ~s = NTT(š) and ~γ
$← Zdq is a random vector, we have

〈A~s− ~u,~γ〉 = 〈A~s,~γ〉 − 〈~u,~γ〉 = 〈~s,AT~γ〉 − 〈~u,~γ〉

=

d−1∑
i=0

š(ri)
(
NTT−1(AT~γ)

)
(ri)− 〈~u,~γ〉

=
1

d

d−1∑
i=0

f(ri) = f0,

where f = NTT−1(dAT~γ)š − 〈~u,~γ〉 ∈ Rq and f0 ∈ Zq is the constant coefficient of f . The last equality
follows from Lemma 2.1. The idea is then to prove that f0, the constant coefficient of f , is zero. This proves
that 〈A~s− ~u,~γ〉 = 0. For a uniformly random ~γ ∈ Zdq , the probability that 〈A~s− ~u,~γ〉 = 0 when A~s 6= ~u is

1/q. Therefore, allowing the verifier to choose a random ~γ ∈ Zdq as a challenge, proving f0 = 0 proves that
A~s = ~u with a soundness error 1/q.

To prove that f has vanishing constant coefficient, the prover initially commits to š and a polynomial
g with vanishing constant coefficient. The polynomial g will be used to mask f . Upon receiving a challenge
~γ ∈ Zdq , the prover computes f and sets h = f + g. Using the given information, we show that the verifier
can compute a commitment to f (without requiring it to be sent by the prover). This allows to prove that
h is of the correct form and the verifier can simply observe that h has a zero constant coefficient.

The above proof system has a soundness error of 1/q, which is not negligibly small for typical choices
of q. We show in Section 3.2 how to amplify the soundness of this protocol at a low cost using Galois
automorphisms. Informally, consider k uniformly random vectors ~γ0, . . . , ~γk−1 such that 1/qk is negligible.
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Similarly as before, we can write

fi := dNTT−1(AT~γi)š− 〈~u,~γi〉

and thus the constant coefficient of fi is 〈A~s− ~u,~γi〉. For each i = 0, . . . , k−1, we will define maps Li : Rq →
Rq which satisfies the following property. Denote p = Li(fi) and (p0, . . . , pd−1) to be the coefficient vector
of p. Then, p0 = . . . = pi−1 = pi+1 = . . . = pk−1 = 0 and pi = 〈A~s− ~u,~γi〉. We can observe that if A~s = ~u
then f defined now as

f = L0(f0) + . . .+ Lk−1(fk−1)

has the first k coefficients equal to 0. Therefore, we can construct a protocol for proving this similarly as
above. On the other hand, when A~s 6= ~u then the probability that all the first k coefficients of f are equal to
zero is 1/qk. The advantage of this approach over the standard way of having k-parallel repetitions is that
the size of the commitment part of the non-interactive proof remains the same as that of a single protocol
run. Therefore, the overall cost is significantly reduced.

We believe that this protocol can be useful in other settings, where one wants to switch from the the
coefficient basis to the NTT basis.

Another obstacle against practical efficiency (as encountered in [BLS19, YAZ+19]) is that a proof of such
a non-linear relation as in (1) requires communication of “garbage terms”. These garbage terms end up being
a substantial cost in the proofs in [BLS19, YAZ+19]. In [ALS20], a better product proof is presented that
reduces the cost of the garbage terms, also using Galois automorphisms.

Applications. Having an efficient proof system to prove knowledge of ~s ∈ {−1, 0, 1}n satisfying (1) paves
the way for various efficient zero-knowledge proofs that can be used in many applications. In order to show
the effectiveness of our new techniques, we present two example applications with concrete parameters in
Appendix B. The first one is to prove knowledge of secrets in LWE samples. This is an important proof system
to be used, for example, with fully homomorphic encryption (FHE) schemes. The goal here is to prove that
~u is a proper LWE sample such that ~u = A′~s′+~e mod q for ~s′, ~e ∈ {−1, 0, 1}k, which is equivalent to proving
~u = (A′ ‖ Ik) · ~s mod q for ~s = (~s′, ~e) ∈ {−1, 0, 1}2k. As shown in Table 1, our proof system achieves an
improvement of 8× in terms of proof length over the state-of-the-art result by Bootle, Lyubashevsky and
Seiler [BLS19], and is dramatically shorter than the Stern-based proofs.

Our other example application is a proof of plaintext knowledge. In this case, the goal is to create
a ciphertext and a zero-knowledge proof to prove that the ciphertext is a proper encryption of a message
known by the prover. Proofs of plaintext knowledge have applications, for example, in the settings of verifiable
encryption, verifiable secret sharing and group signatures.

Being a very core proof system, there are many other applications beyond the two examples above, where
our main protocol and our new techniques can be useful. For example, one can apply our unstructured linear
proof to prove that one vector is a NTT representation of a polynomial (written as a vector of coefficients).
Indeed, the matrix A in (1) simply becomes a Vandermonde matrix. Furthermore, one can see [YAZ+19] for
various applications that all build on a similar core proof system.

2 Preliminaries

2.1 Notation

Table 2 summarizes the notation and parameters that will appear in this paper.
Let q be an odd prime, and Zq denote the ring of integers modulo q. We write [a, b[= {a, a+1, . . . , b−1} ⊂ Z

for the half-open interval of integers between a and b. For r ∈ Z, we define r mod q to be the unique element
in the interval [− q−12 , q−12 ] that is congruent to r modulo q. We write ~v ∈ Zmq to denote vectors over Zq and
matrices over Zq will be written as regular capital letters M . By default, all vectors are column vectors. We
write ~v ‖ ~w for the concatenation of ~v and ~w (which is still a column vector).

Let d be a power of two and denote R and Rq to be the rings Z[X]/(Xd + 1) and Zq[X]/(Xd + 1),
respectively. Bold lower-case letters p denote elements in R or Rq and bold lower-case letters with arrows
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Parameter Explanation

d Degree of the polynomial Xd + 1, power of two

q Rational prime modulus

Zq = Z/qZ The field over which the linear system is defined

m ∈ Z The number of rows in the linear system

n ∈ Z The number of columns in the linear system

R = Z[X]/(Xd + 1) The ring of integers in the 2d-th cyclotomic number field

Rq = Zq[X]/(Xd + 1) The ring of integers R modulo q

k ∈ Z Repetition rate

σ = σ2d/k+1 Automorphism in Aut(Rq) of order k

C ⊂ R Challenge set

C Probability distribution over C for challenges

T Bound for honest prover’s c~r in the infinity norm

δ1 width of the uniform distribution for sampling ~y

λ M-LWE dimension

κ M-SIS dimension

χ Error distribution on R in the M-LWE problem
Table 2. Overview of Parameters and Notation

~b represent column vectors with coefficients in R or Rq. We also use bold upper-case letters for matrices B
over R or Rq. For a polynomial denoted as a bold letter, we write its i-th coefficient as the corresponding
regular font letter with subscript i, e.g. f0 ∈ Zq is the constant coefficient of f ∈ Rq.

We write x
$← S when x ∈ S is sampled uniformly at random from the finite set S and similarly x

$← D
when x is sampled according to the distribution D.

Norms and Sizes. For an element w ∈ Zq, we write |w| to mean |w mod q|. Define the `∞ and `2 norms for
w ∈ Rq as follows,

‖w‖∞ = max
i
|wi| and ‖w‖2 =

√
|w0|2 + . . .+ |wd−1|2.

Similarly, for ~w = (w1, . . . ,wk) ∈ Rk, we define

‖ ~w‖∞ = max
i
‖wi‖∞ and ‖ ~w‖2 =

√
‖w1‖22 + . . .+ ‖wk‖22.

2.2 Prime Splitting and Galois Automorphisms

Let l be a power of two dividing d and suppose q−1 ≡ 2l (mod 4l). Then, Zq contains primitive 2l-th roots of
unity but no elements with order a higher power of two, and the polynomial Xd + 1 factors into l irreducible
binomials Xd/l − ζ modulo q where ζ runs over the 2l-th roots of unity in Zq [LS18, Theorem 2.3].

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to Z×2d,

i 7→ σi : Z×2d → Aut(Rq),

where σi is defined by σi(X) = Xi. In fact, these automorphisms come from the Galois automorphisms of
the 2d-th cyclotomic number field which factor through Rq.

The group Aut(Rq) acts transitively on the prime ideals (Xd/l − ζ) in Rq and every σi factors through
field isomorphisms

Rq/(Xd/l − ζ)→ Rq/(σi(Xd/l − ζ)).

Concretely, for i ∈ Z×2d it holds that

σi(X
d/l − ζ) = (Xid/l − ζ) = (Xd/l − ζi

−1

)
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To see this, observe that the roots of Xd/l − ζi−1

(in an appropriate extension field of Zq) are also roots of
Xid/l − ζ. Then, for f ∈ Rq,

σi

(
f mod (Xd/l − ζ)

)
= σi(f) mod (Xd/l − ζi

−1

).

The cyclic subgroup 〈2l + 1〉 < Z×2d has order d/l [LS18, Lemma 2.4] and stabilizes every prime ideal (Xd/l−ζ)
since ζ has order 2l. The quotient group Z×2d/〈2l + 1〉 has order l and hence acts simply transitively on the
l prime ideals. Therefore, we can index the prime ideals by i ∈ Z×2d/〈2l + 1〉 and write(

Xd + 1
)

=
∏

i∈Z×
2d/〈2l+1〉

(
Xd/l − ζi

)

Now, the product of the k | l prime ideals (Xd/l − ζi) where i runs over 〈2l/k + 1〉/〈2l + 1〉 is given by
the ideal (Xkd/l − ζk). So, we can partition the l prime ideals into l/k groups of k ideals each, and write(

Xd + 1
)

=
∏

j∈Z×
2d/〈2l/k+1〉

(
Xkd/l − ζjk

)
=

∏
j∈Z×

2d/〈2l/k+1〉

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
.

Another way to write this, which we will use in our protocols, is to note that Z×2d/〈2l/k + 1〉 ∼= Z×2l/k and

the powers (2l/k+ 1)i for i = 0, . . . , k− 1 form a complete set of representatives for 〈2l/k + 1〉/〈2l + 1〉. So,
if σ = σ2l/k+1 ∈ Aut(Rq), then

(
Xd + 1

)
=

∏
j∈Z×

2l/k

k−1∏
i=0

σi
(
X

d
l − ζj

)
,

and the prime ideals are indexed by (i, j) ∈ I = {0, . . . , k − 1} × Z×2l/k.

The fully splitting case. In this paper our main attention lies on the setup where q ≡ 1 (mod 2d) and hence
q splits completely. In this case there is a primitive 2d-th root of unity ζ ∈ Zq and

(Xd + 1) =
∏
i∈Z×

2d

(X − ζi).

Then, for a divisor k of d and σ = σ2d/k+1 of order k, we have the partitioning

(Xd + 1) =
∏

j∈Z×
2d/〈2d/k+1〉

∏
i∈〈2d/k+1〉

(X − ζij) =
∏

j∈Z×
2d/k

k−1∏
i=0

σi(X − ζj)

2.3 The Number Theoretic Transform

The Number Theoretic Transform (NTT) of a polynomial f ∈ Rq is defined by

NTT(f) = (f̂i)i∈Z×
2l
∈
∏
i∈Z×

2l

Zq[X]/(Xd/l − ζi) ∼= (Fqd/l)l

where f̂i = f mod (Xd/l − ζi). We write NTT−1(f̂) = f for the inverse map, which exists due to the
Chinese remainder theorem. Note that for f , g ∈ Rq, NTT(fg) = NTT(f) ◦ NTT(g) where ◦ denotes the
coefficient-wise multiplication of vectors.

The (scaled) sum of the NTT coefficients of a polynomial f ∈ Rq is equal to its first d/l coefficients. This
will be later used when proving unstructured linear relations over Zq.
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Lemma 2.1. Let f ∈ Rq. Then 1
l

∑
i∈Z×

2l
f̂i = f0 + f1X + · · ·+ fd/l−1X

d/l−1, when we lift the f̂i to Zq[X].

Proof. Write f(X) = f0(Xd/l) + f1(Xd/l)X + · · ·+ fd/l−1(Xd/l)Xd/l−1 Then, it suffices to prove

1

l

∑
i∈Z×

2l

fj(ζ
i) = fj

for all j = 0, . . . , d/l − 1, which is the sum over the coefficients of a fully splitting length-l NTT. We find

∑
i∈Z×

2l

fj(ζ
i) =

∑
i∈Z×

2l

l−1∑
ν=0

fνd/l+jζ
iν =

l−1∑
ν=0

fνd/l+j
∑
i∈Z×

2l

ζiν

and it remains to show that for every ν ∈ {1, . . . , l − 1},
∑
i∈Z×

2l
ζiν = 0. Indeed,

∑
i∈Z×

2l

ζiν =

l−1∑
i=0

ζ(2i+1)ν = ζν
l−1∑
i=0

ζ2iν = ζν
ζ2lν − 1

ζ2ν − 1
= 0

since ζ2lν = 1. ut

2.4 Challenge Space

Let C = {−1, 0, 1}d ⊂ Rq be the set of ternary polynomials, which have coefficients in {−1, 0, 1}. We define

C : C → [0, 1] to be the probability distribution on C such that the coefficients of a challenge c
$← C are

independently identically distributed with Pr(0) = 1/2 and Pr(1) = Pr(−1) = 1/4.

In [ALS20] it is shown that if c
$← C then the distribution of c mod Xkd/l − ζk is almost uniform.

Lemma 2.2. Let c
$← C. The coefficients of c mod Xkd/l− ζk are independently identically distributed, say

with distribution X. Then, for x ∈ Zq,

Pr(X = x) ≤ 1

q
+

2l/k

q

∑
j∈Z∗

q/〈ζk〉

l/k−1∏
i=0

∣∣∣∣12 +
1

2
cos(2πjζki/q)

∣∣∣∣ . (3)

For example, by numerical computing the probability in Lemma 2.2, one finds for d = 128, q ≈ 232 fully
splitting, i.e. l = d, and k = 4, that the maximum probability for the coefficients of c mod X4−ζ4 is bounded
by 2−31.4.

2.5 Module-SIS and Module-LWE Problems

We employ the computationally binding and computationally hiding commitment scheme from [BDL+18] in
our protocols, and rely on the well-known Module-LWE (MLWE) and Module-SIS (MSIS) [PR06, LPR10,
LS15] problems to prove the security of our constructions. Both problems are defined over a ring Rq for a
positive modulus q ∈ Z+. For the Module-SIS problem we use the variant with respect to the infinity norm.

Definition 2.3 (MSISn,m,βSIS). The goal in the Module-SIS problem with parameters n,m > 0 and βSIS > q

is to find, for a given matrix A
$← Rn×mq , ~x ∈ Rmq such that A~x = ~0 over Rq and 0 < ‖~x‖∞ ≤ βSIS. We

say that a PPT adversary A has advantage ε in solving MSISn,m,βSIS
if

Pr
[
0 < ‖~x‖∞ ≤ βSIS ∧ A~x = ~0 over Rq

∣∣∣A $← Rn×mq ; ~x← A(A)
]
≥ ε.
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Definition 2.4 (MLWEn,m,χ). In the Module-LWE problem with parameters n,m > 0 and an error distri-

bution χ over R, the PPT adversary A is asked to distinguish (A, ~t)
$← Rm×nq ×Rmq from (A,A~s+ ~e) for

A
$← Rm×nq , a secret vector ~s

$← χn and error vector ~e
$← χm. We say that A has advantage ε in solving

MLWEn,m,χ if ∣∣∣Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~s
$← χn; ~e

$← χm; b← A(A,A~s+ ~e)
]

(4)

− Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~t
$← Rmq ; b← A(A, ~t)

]∣∣∣ ≥ ε.
For our practical security estimations of these two problems against known attacks, the parameter m

in both of the problems does not play a crucial role. Therefore, we sometimes simply omit m and use the
notations MSISn,B and MLWEn,χ. The parameters κ and λ denote the module ranks for MSIS and MLWE,
respectively.

2.6 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define the particular variant of the
Module-LWE problem that we use, we need to specify the error distribution χd on R. In general any of the
standard choices in the literature is fine. So, for example, χ can be a narrow discrete Gaussian distribution
or the uniform distribution on a small interval. In the numerical examples in Section 4.2 we assume that χ
is the computationally simple centered binomial distribution on {−1, 0, 1} where ±1 both have probability
5/16 and 0 has probability 6/16. This distribution is chosen (rather than the more “natural” uniform one)
because it is easy to sample given a random bitstring by computing a1 + a2 − b1 − b2 mod 3 with uniformly
random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output a vector ~z whose distribution
should be independent of a secret randomness vector ~r, so that ~z cannot be used to gain any information on
the prover’s secret. During the protocol, the prover computes ~z = ~y+ c~r where ~r is the randomness used to

commit to the prover’s secret, c
$← C is a challenge polynomial, and ~y is a “masking” vector. To remove the

dependency of ~z on ~r, we use the rejection sampling technique by Lyubashevsky [Lyu08, Lyu09, Lyu12]. In
the two variants of this technique the masking vector is either sampled uniformly from some bounded region
or using a discrete Gaussian distribution.

Although the Gaussian variant allows to sample ~y from narrower distributions for acceptable rejection
rates, we use the uniform variant in this paper. The reasons for this are that, firstly, uniform sampling is much
faster in implementations and much easier to protect against side-channel attacks, and, secondly, uniform
sampling allows to be combined with the compression techniques from [BG14, DKL+18], which make up for
the disadvantage concerning the width of the distribution.

The gist of uniform rejection sampling is the following. Let T be a bound on the infinity norm of c~r
and let the coefficients of the polynomials of ~y be sampled from the interval [−δ1, δ1[. Then, the conditioned
distribution of the coefficients of ~z given that ‖~z‖∞ < δ1−T is the uniform distribution on ]−(δ1−T ), δ1−T [,
independent of c~r.

2.7 Commitment Scheme

In our protocol, we use a variant of the commitment scheme from [BDL+18], which allows to commit to a
vector of messages in Rq. Suppose that we want to commit to a message vector ~m = (m1, . . . ,ml)

T ∈ Rlq
and that module ranks of κ and λ are required for MSIS and MLWE security, respectively. Then, in the key

generation, a uniformly random matrix B0
$← Rκ×(λ+κ+l)q and vectors ~b1, . . . ,~bl

$← Rλ+κ+lq are generated

and output as public parameters. In practice, one may choose to generate B0,~b1, . . . ,~bl in a more structured
way as in [BDL+18] since it saves some computation. However, for readability, we write the commitment
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matrices in the “Knapsack” form as above. In our case, the hiding property of the commitment scheme is
established via the duality between the Knapsack and MLWE problems. We refer to [EZS+19, Appendix C]
for a more detailed discussion.

To commit to the message ~m, we first sample ~r
$← χ(λ+κ+l)d. Now, there are two parts of the commitment

scheme; the binding part and the message encoding part. Particularly, we compute

~t0 = B0~r,

ti = 〈~bi, ~r〉+mi for i = 1, . . . , l,

where ~t0 forms the binding part and each ti encodes a message polynomial mi. The commitment scheme is
computationally hiding under the Module-LWE assumption and computationally binding under the Module-
SIS assumption; see [BDL+18].

The utility of the commitment scheme for zero-knowledge proof systems stems from the fact that one can
compute module homomorphisms on committed messages. For example, let a1 and a2 be from Rq. Then

a1t1 + a2t2 = 〈a1
~b1 + a2

~b2, ~r〉+ a1m1 + a2m2

is a commitment to the message a1m1+a2m2 with matrix a1
~b1+a2

~b2. This module homomorphic property
together with a proof that a commitment is a commitment to the zero polynomial allows to prove linear
relations among committed messages over Rq.

2.8 Opening and Product Proof

We use the opening proof from [ALS20, Figure 2] that we sketch now. Suppose that the prover knows an
opening to the commitment

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m1.

As in previous opening proofs the prover gives an approximate proof for the first equation. To this end, the
prover and verifier engage in k parallel executions of a sigma protocol with challenges σi(c), i = 0, . . . , k− 1,

that are the rotations of a global challenge c
$← C. Concretely, in the first flow, the prover samples k short

masking vectors ~yi from the discrete Gaussian distribution D
(λ+κ+1)d
s and sends commitments ~wi = B0~yi

over to the verifier. The verifier replies with the challenge c. Then the prover applies rejection sampling, and,
if this does not reject, sends ~zi = ~yi + σi(c)~r. The verifier checks that the ~zi are short and the equations
B0~zi = ~wi + σi(c)~t0.

Now, unlike in previous protocols, the algebraic setup is such that it is not possible to extract a pair
of accepting transcript with invertible challenge difference c̄ = c − c′. Instead, extraction works by piecing
together l/k accepting transcripts where for each ideal (Xkd/l−ζkj), there is a transcript pair with challenge
difference c̄j mod (Xkd/l − ζkj) 6= 0. For this to work out it is required that the maximum probability p
over Zq of the coefficients of c mod (Xkd/l − ζk), as given by Lemma 2.2, is such that pkd/l is negligible. For
example, if d = 128, q ≈ 232 fully splits so that l = d, and k = 4, then pkd/l = p4 ≈ 2−128.

Next, the analysis of the protocol given in [ALS20, Theorem 4.4] shows that it is possible to extract a
weak opening from a prover with non-negligible high success probability, as given in the following definition.

Definition 2.5. A weak opening for the commitment ~t = ~t0 ‖ t1 consists of l polynomials σi(c̄j) ∈ Rq, a
randomness vector ~r∗ over Rq and a message m∗1 ∈ Rq such that∥∥σi(c̄j)∥∥1 ≤ 2d and σi(c̄j) mod σi(Xd/l − ζj) 6= 0 for all (i, j) ∈ I,∥∥σi(c̄j)~r∗∥∥2 ≤ 2β for all (i, j) ∈ I,

B0~r
∗ = ~t0,

〈~b1, ~r∗〉+m∗1 = t1.
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The commitment scheme is binding with respect to weak openings, c.f. [ALS20, Lemma 4.3]. Furthermore,
in the extraction it is also possible to obtain vectors ~y∗i such that every accepting transcript satisfies the
following

~zi = ~y∗ + σi(c)~r∗,

when it contains the same prover commitments ~wi that were used in the extraction.
We also apply the product proof from [ALS20, Figure 4], adapted to the case of a cubic relation, to

prove that our secret vector has ternary coefficients. In addition to the opening proof, the product proof only
requires two additional commitments to garbage terms.

3 Proving Unstructured Linear Relations over Zn
q

Our goal for this section is to construct an efficient protocol for proving unstructured linear relations among
committed Zq-elements. By this we mean that we want to be able to commit to a vector ~s ∈ Znq and prove
that it fulfills an arbitrary linear equation A~s = ~u for a public matrix A ∈ Zm×nq and vector ~u ∈ Zmq . We
borrow LWE terminology and call the linear equation “unstructured” to highlight the fact that A can be an
arbitrary matrix over Zq that does not necessarily express linear relations over some ring of higher rank.

Proofs of linear relations are useful for applications in lattice cryptography only if it is possible to amend
them by a proof of shortness. So, we will also want to be able to prove that the vector ~s is short. As opposed
to the so-called approximate proofs that are ubiquitous in lattice cryptography and where the prover only
proves knowledge of a vector that is much longer than the one it actually knows, we are interested in exact
proofs of shortness. These have the advantage that the parameters of underlying cryptographic schemes do
not have to account for the longer vectors that can be extracted from a prover, i.e. the schemes do not
need to be secure with respect to the longer vectors. This results in more efficient schemes. For example,
one interesting goal of this line of research is to construct a proof of plaintext knowledge or a verifiable
encryption scheme for a standard unmodified lattice-based public-key encryption scheme. In particular, for
one of the schemes submitted to the NIST PQC standardization effort.

The most efficient lattice-based exact proofs of shortness work by encoding the vector ~s in the NTT
representations NTT(ši) of possibly several polynomials ši ∈ Rq. In the first step, we restrict to the case
where q splits completely in R. Then NTT(ši) is a vector in Zdq .

Now, for simplicity, assume that n is divisible by d. Suppose the prover P knows an opening to a
commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tn/d to n/d secret polynomials š1, . . . , šn/d ∈ Rq. More precisely,

~t0 = B0~r,

ti = 〈~bi, ~r〉+ ši for i ∈ {1, . . . , n/d}.

Then, the goal of P is to prove that the vector

~s = NTT(š1) ‖ · · · ‖ NTT(šn/d) ∈ Znq
satisfies the linear equation A~s = ~u over Zq where A ∈ Zm×nq and ~u ∈ Zmq are public.

Firstly, we describe the main ideas and present a protocol which achieves soundness error 1/q. Then, in
Section 3.2 and Appendix A we present two methods to efficiently decrease the soundness error to negligible
quantities. The latter one, however, is only interesting when the secret vector ~s is strictly shorter than d. In
that case, we make use of non-fully splitting rings Rq.

Although we present all of our protocols so that only non-aborting protocol transcripts are simulatable,
there is a standard generic method to simulate aborts of an interactive protocol as given in [BCK+14],
which is also used, e.g., in [ESS+19]. In particular, for all but the last move of the prover, the prover sends
aCom(M) instead of the transmitted text M for an auxiliary commitment aCom. In the last move, all of these
committed texts are revealed unless aborted. In the case of abort, the prover just sends an error message
⊥. The abort can easily be simulated in this case by relying on the hiding property of aCom. We refer to
[BCK+14, ESS+19] for more details. Also, note that the simulation of aborts is not important for most of
the practical applications as the protocol is made non-interactive and the simulation of aborts is not needed
in that case.
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3.1 Basic Protocol

Let us assume that n = d and denote š := š1. We show how to deal with the case n > d in Section 3.3.
The first protocol relies on the following simple observation. Suppose that A~s = ~u. This means that for
all ~γ ∈ Zmq , we have 〈A~s− ~u,~γ〉 = 0. On the contrary, if A~s 6= ~u, then for a uniformly random ~γ ∈ Zmq ,
〈A~s− ~u,~γ〉 = 0 only with probability 1/q. Hence, ~γ will become a challenge generated from the verifier.
Using Lemma 2.1, we rewrite the inner product,

〈A~s− ~u,~γ〉 = 〈A~s,~γ〉 − 〈~u,~γ〉 = 〈~s,AT~γ〉 − 〈~u,~γ〉

=
∑
j∈Z×

2d

s(ζj)
(
NTT−1(AT~γ)

)
(ζj)− 〈~u,~γ〉 =

1

d

∑
j∈Z×

2d

f(ζj) = f0,

where f ∈ Rq is the polynomial defined by f := NTT−1(dAT~γ)š − 〈~u,~γ〉 and f0 ∈ Zq is the constant
coefficient of f . So, by utilizing the polynomial product in Rq, it is possible to compute a scalar product
over Zq with a vector encoded in the NTT representation of the polynomial. We observe that the verifier
can compute a commitment to f . Indeed, note that

NTT−1(dAT~γ)t1 − 〈~u,~γ〉 = 〈NTT−1(dAT~γ) ~b1, ~r〉+ f .

Hence, V can compute the commitment

τ = NTT−1(dAT~γ)t1 − 〈~u,~γ〉. (5)

Now, P needs to prove that f has a zero constant coefficient. The idea is to first send a commitment t2 to
a random polynomial g with a zero constant coefficient before ~γ is generated. Intuitively, g is introduced to
mask f . After getting ~γ, P sends h = f + g and the verifier can check that h0 = 0. Note that by knowing
τ , t2 and h, the verifier can compute a commitment τ + t2−h to the zero polynomial 0. Hence, in the final
stage, P needs to prove that this polynomial is indeed a commitment to 0 in the usual way.

The full protocol is presented as follows. First, the prover P generates a random polynomial g ∈ Rq
with zero constant coefficient and computes a commitment to g defined as t2 = 〈~b2, ~r〉 + g. The prover
also starts the opening proof with soundness error 1/q for the commitments and samples a vector of small
polynomials ~y and computes the commitment ~w = B0~y. Then, P sends t2 and ~w to the verifier. Next,
V generates and sends a uniformly random vector ~γ ∈ Zmq . P can then compute the polynomial f defined

above and h = f + g. Furthermore, it sets v = 〈NTT−1(dAT~γ) ~b1 + ~b2, ~y〉 and sends h,v to V. Then, the

verifier generates a challenge c
$← C and sends it to the prover. Eventually, P sends a response ~z = ~y + c~r.

The verifier V first checks that ~z consists of small polynomials and that h has constant coefficient equal
to 0. Also, V checks that B0~z = ~w + c~t0 and

〈NTT−1(dAT~γ) ~b1 + ~b2, ~z〉 = v + c (τ + t2 − h)

where τ is computed as in Equation (5).
One can observe that if A~s 6= ~u then the constant coefficient of f becomes a uniformly random element

of Zq, outside the control of the prover. Thus, also the constant coefficient of h = f + g will be uniformly
random because the constant coefficient of g is independent of the constant coefficient of f . In particular, it
will be non-zero with probability 1− 1/q and this can be detected by the verifier. Therefore, the probability
that a malicious prover manages to cheat is essentially 1/q.

3.2 Boosting Soundness by Mapping Down

More abstractly, in the above protocol we checked 〈A~s− ~u,~γ〉 = 0 by investigating whether L(~γ) has a zero
constant coefficient where L : Zmq → Rq is defined as

L(~γ) := NTT−1(dAT~γ)š− 〈~u,~γ〉. (6)
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As we observed earlier, the constant coefficient of L(~γ) is indeed 〈A~s− ~u,~γ〉.
Now, suppose we can define k functions L0, . . . , Lk−1 with the following property. For any 0 ≤ µ < k

and ~γµ ∈ Zmq , p = Lµ(~γµ) ∈ Rq is a polynomial such that p0 = . . . = pµ−1 = pµ+1 = . . . = pk−1 = 0 and
pµ = 〈A~s− ~u,~γµ〉. This would mean that for 0 ≤ µ < k, the µ-th coefficient related to Xµ of the polynomial

f = L0(~γ0) + L1(~γ1) + . . .+ Lk−1(~γk−1)

is equal to 〈A~s− ~u, ~γµ〉. In particular, if A~s = ~u, then f0 = f1 = . . . = fk−1 = 0. Thus, in order to decrease
the soundness error, we can let the verifier V send k independently uniformly random vectors ~γ0, . . . , ~γk−1
and then P proves that f ∈ Rq has the first k coefficients equal to zero. Note that we still need to find a

way for V to compute a commitment to f from ~t1 and ~γ0, . . . , ~γk−1.

Constructing Lµ. Let Sq be the Zq-submodule of Rq generated by Xk, i.e.

Sq = {p0 + p1X
k + · · ·+ pd/k−1X

d−k ∈ Rq} ⊂ Rq.

We have Sq ∼= Zq[X]/(Xd/k + 1). From Galois theory, there is a corresponding subgroup H of Aut(Rq) of
order k such that σ(p) = p for all σ ∈ H if and only if p ∈ Sq. It is easy to see that this group is generated by
σ = σ2d/k+1 ∈ Aut(Rq), which is the same automorphism that we use in the automorphism opening proof.

In fact, this follows from the fact that ord(σ) = k and σ(Xk) = Xk(2d/k+1) = Xk.
We have the trace map Tr : Rq → Sq given by

Tr(p) =

k−1∑
ν=0

σν(p).

Notice that the constant coefficient of Tr(p) is equal to kp0. Now define Lµ by

Lµ(~γ) =
1

k
XµTr(L(~γ)) =

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γ)š− 〈~u,~γ〉

)
.

If p = Lµ(~γ), then p is of the form

p = pµX
µ + pk+µX

k+µ + · · ·+ pd−k+µX
d−k+µ

and thus has the property that the first k coefficients except the µ-th coefficient are zero. Moreover, it is
clear from above that pµ = 〈A~s− ~u,~γ〉.

Finally, given the commitment t1 to s, the verifier can compute a commitment to f = L0(~γ0) + · · · +
Lk−1(~γk−1) via

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)t1 − 〈~u,~γµ〉

)
=

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~r〉

)
+ f . (7)

The Protocol. We present the full protocol in Figure 1 with the verification algorithm given in Figure 2.
It is natural to separate the commitment (~t0, t1) to the secret polynomial š from our protocol for proving

the linear relation. Then, (~t0, t1) is given as input to the protocol, which also proves knowledge of an
opening to the external commitment. Now, for efficiency reasons, one wants to avoid sending a completely
fresh commitment to the masking polynomial g and instead reuse the top part ~t0 of the commitment to š,
but this creates a problem with the standard notion of a zero-knowledge proof. Namely, with this approach
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it is required that the randomness vector ~r, which is a part of the witness, is really random so that the
commitment to g is hiding, but the zero-knowledge definition demands simulatability for any (fixed) witness.
Hence, we don’t take this approach and also send the commitment to š as part of our protocol. Then, our
protocol only shows knowledge of a solution ~s to the linear equation A~s = ~u. This in itself is not a solution
to a hard problem but our protocol is still useful because it can be combined with a shortness proof that
simultaneously shows that ~s is short (see Section 4). In isolation our protocol is best viewed as a so-called
commit-and-proof protocol [CLOS02], which is interesting even without involving a hard problem because
of the commitment that can later be used outside of the protocol.

The Prover P starts by generating a uniformly random polynomial g satisfying g0 = . . . = gk−1 = 0 and
then computes the commitment

~t0 = B0~r

t1 = 〈~b1, ~r〉+ š

t2 = 〈~b2, ~r〉+ g.

Now the prover needs to start an opening proof with soundness 1/qk. Also, it is going to prove a relation
which involves the k automorphisms σi. Therefore, it uses the automorphism opening proof from [ALS20]
and samples vectors ~y0, . . . , ~yk−1 of short polynomials that are going to be used to mask ~r k times with
challenges of the form σi(c). Also, P computes ~wi = B0~yi. The prover sends ~t0, t1, t2 and ~wi to V.

Next, the verifier selects uniformly random vectors ~γ0, . . . , ~γk−1 ∈ Zmq and sends them to P. Then, the
prover computes

f =

k−1∑
µ=0

Lµ(~γµ) =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)š− 〈~u,~γµ〉

)
.

By construction, f0 = . . . = fk−1 = 0. Note that V can compute a commitment τ to f as explained above.
Now the prover sets h = f + g and computes for i = 0, . . . , k − 1,

vi =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~yi−ν mod k〉

)
+ 〈~b2, ~yi〉.

It sends h and v0, . . . ,vk−1. The verifier sends a random challenge polynomial c
$← C. Eventually, P computes

~zi = ~yi + σi(c)~r for i = 0, . . . , k − 1 and sends ~z0, . . . , ~zk−1.
The Verifier V first checks that for all i = 0, . . . , k − 1, ~zi is short, and

B0~zi = ~wi + σi(c)~t0.

Then, V checks that h0, . . . , hk−1 are all equal to zero and computes τ as in (7). Finally, the verifier checks
whether for all i = 0, . . . , k − 1,

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~zi−ν mod k〉

)
+ 〈~b2, ~zi〉

= vi + σi(c)(τ + t2 − h)

to test whether τ + t2 − h really is a commitment to zero.

Security Analysis.

Theorem 3.1. The protocol in Figure 1 is complete, computational honest verifier zero-knowledge under the
Module-LWE assumption and computational special sound under the Module-SIS assumption. More precisely,
let p be the maximum probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.
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Prover P Verifier V

Inputs:

š ∈ Rq, ~s = NTT(š) A, ~u

A ∈ Zm×nq B0,~b1,~b2

~u = A~s

B0 ∈ Rκ×(λ+κ+2)
q ,~b1,~b2 ∈ Rλ+κ+2

q

g
$← {g ∈ Rq | g0 = · · · = gk−1 = 0}

~r
$← χ(λ+κ+2)d

~t0 = B0~r

t1 = 〈~b1, ~r〉+ š

t2 = 〈~b2, ~r〉+ g

~t = ~t0 ‖ t1 ‖ t2
For i = 0, . . . , k − 1 :

~yi
$← [−δ1, δ1[(λ+κ+2)d

~wi = B0~yi

~t, ~wi -

~γµ� ~γ0, . . . , ~γk−1
$← Zmq

h = g +

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)š− 〈~u,~γµ〉

)
For i = 0, . . . , k − 1 :

vi =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~yi−ν mod k〉

)
+ 〈~b2, ~yi〉

h,vi -

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If ‖~zi‖∞ ≥ δ1 − T, abort

~zi -

Ver(~t, ~wi, ~γi,h,vi, c, ~zi)

Fig. 1. Automorphism proof of knowledge of a solution to an unstructured linear equation over Zq. Verification
equations are described in Figure 2.

Then, for completeness, unless the honest prover P aborts due to the rejection sampling, it always con-
vinces the honest verifier V.

For zero-knowledge, there exists a simulator S, that, without access to secret information, outputs a
simulation of a non-aborting transcript of the protocol between P and V for every statement A~s = ~u. Then for
every algorithm A that has advantage ε in distinguishing the simulated transcript from an actual transcript,
there is an algorithm A′ with the same running time that has advantage ε in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a deterministic prover P∗ that sends the commitment ~t in the first round and convinces V with
probability ε ≥ q−k + pk, E either outputs a weak opening for ~t with message š∗ such that ANTT(š∗) = ~u,
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Ver(~t, ~wi, ~γi,h,vi, c, ~zi)
01 For i = 0, . . . , k − 1:

02 ‖~zi‖∞
?
< β = δ1 − T

03 B0~zi
?
= ~wi + σi(c)~t0

04 h0
?
= . . .

?
= hk−1

?
= 0

05 τ =
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(
NTT−1(dAT~γµ)t1 − 〈~u,~γµ〉

)
06 For i = 0, . . . , k − 1:

07
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(
〈NTT−1(dAT~γµ)b1, ~zi−ν mod k〉

)
+ 〈~b2, ~zi〉

?
= vi + σi(c)(τ + t2 − h)

Fig. 2. Verification equations for Figure 1.

or a MSISκ,8dβ solution for B0 in expected time at most 1/ε + (d/k)(ε − pk)−1 when running P∗ once is
assumed to take unit time.

Proof. Completeness. It follows by careful inspection that the verification equations are always true for the
messages sent by P.

Zero-Knowledge. We can simulate a non-aborting transcript between the honest prover and the honest
verifier in the following way. First, in a non-aborting transcript the vectors ~zi are independently uniformly

random in ]−(δ1−T ), δ1−T [(λ+κ+2)d and also independent from c~r. So the simulator can just sample ~zi
$←]−

(δ1−T ), δ1−T [(λ+κ+2)d and c
$← C. The polynomial h is such that h0 = · · · = hk−1 = 0 in honest transcripts

and the other coefficients are uniformly random because of the additive term g. Hence, the simulator samples

h
$← {h ∈ Rq | h0 = · · · = hk−1 = 0}. Then, the challenges ~γµ ∈ Zmq are independently uniformly random

and the simulator samples them in this way. Now, we turn to the commitment ~t. In the honest execution the
randomness vector ~r is statistically independent from the ~zi and the other messages already handled, i.e. c,
h, ~γµ. So, it follows that the additive term B0~r ‖ 〈~b1, ~r〉 ‖ 〈~b2, ~r〉 is indistinguishable from uniform given

~zi, c,h, ~γµ if MLWEλ is hard. Hence ~t is indistinguishable from uniform since the committed polynomials
š and g are also independent from ~r in the honest execution. Therefore, we let the simulator sample a
uniformly random ~t ∈ Rκ+2

q . Now, in an honest transcript, the remaining messages ~wi and vi are all uniquely
determined from the already handled messages and the verification equations because of completeness. We
see that if the simulator computes these messages so that the verification equations become true, then
the resulting transcript is indistinguishable from the honest transcript. More precisely, if there exists some
distinguisher that is able to distinguish a simulated transcript from an honest transcript, then it must be
able to distinguish the MLWE samples in the commitment ~t from uniform with the same advantage.

Soundness. First, the extractor opens the commitments t1 and t2. From [ALS20, Theorem 4.4], unless
E finds an MSISκ,8dβ solution, the extractor can compute vectors ~y∗ and ~r∗ such that for every accepting
transcript with first messages t2 and ~wi,

zi = ~y∗i + σi(c)~r∗.

The expected runtime for this equals the runtime in the theorem statement. Then let š∗ ∈ Rq and g∗ ∈ Rq
be the extracted messages, which are defined by

t1 = 〈~b1, ~r∗〉+ š∗ and t2 = 〈~b2, ~r∗〉+ g∗.

Now substituting these expressions into τ gives

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~r

∗〉
)

+ f∗,

where

f∗ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)š∗ − 〈~u,~γµ〉

)
.
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From the discussion in this section we know that f∗µ = 〈A~s∗ − ~u,~γµ〉 for µ = 0, . . . , k − 1, ~s∗ = NTT(š∗).
Next we find from the last verification equations,(

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~y

∗
i−ν mod k〉

)
+ 〈~b2, ~y∗〉 − vi

)
= σi(c) (f∗ + g∗ − h) . (8)

for all i = 0, . . . , k−1. The coefficients of these linear polynomials in σi(c) are independent from c in a random
accepting transcript. We bound the success probability ε of the prover under the assumption A~s∗ 6= ~u. In
this case the coefficients f∗µ for µ = 0, . . . , k−1 are uniformly random elements in Zq in a random transcript.
Hence, f∗µ + g∗µ is uniformly random since g∗ is independent from the ~γµ. Also we know that hµ = 0 in every

accepting transcript. So, suppose f∗µ + g∗µ − h∗µ = f∗µ + g∗µ 6= 0 for some µ. Then there exists some j ∈ Z×2d
with f∗ + g∗ − h mod (X − ζj) 6= 0. Therefore, there is only one possible value modulo (Xk − ζjk) for the
challenge in such a transcript, otherwise Equation 8 cannot be true for all i. Since the maximum probability
of every coefficient of c mod (Xk − ζjk) is less than p we see that the success probability is bounded by

ε = Pr [accepting] <

(
1

q

)k
+ Pr

[
accepting

∣∣ f∗µ + g∗µ 6= 0 for some µ
]

≤
(

1

q

)k
+ pk.

This is in contradiction to the bound in the theorem statement and thus it must hold A~s∗ = ~u. ut

3.3 General Case

Previously, we assumed that n = d so that ~s = NTT(š) = NTT(š1). When n > d, we slightly modify our
approach. We have ~s = NTT(š1) ‖ · · · ‖ NTT(šn/d) and now also define polynomials ψj such that

AT~γ = NTT(ψ1) ‖ · · · ‖ NTT(ψn/d).

Then the inner product 〈A~s,~γ〉 = 〈~s,AT~γ〉 can be written as a sum of smaller inner products. We find

〈A~s− ~u,~γ〉 =

n/d∑
j=1

〈NTT(šj),NTT(ψj)〉 − 〈~u,~γ〉

=

n/d∑
j=1

∑
i∈Z×

2d

šj(ζ
i)ψj(ζ

i)− 〈~u,~γ〉 =
1

d

∑
i∈Z×

2d

n/d∑
j=1

dšjψj − 〈~u,~γ〉

 (ζi).

Next, similarly as before, we incorporate more challenges. So, for ~γ0, . . . , ~γk−1 ∈ Zmq we write

AT~γµ = NTT(ψ
(µ)
1 )‖ · · · ‖NTT(ψ

(µ)
n/d)

and then set

f =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j sj − 〈~u,~γµ〉

 .
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It holds that for µ = 0, . . . , k − 1, fµ = 〈A~s− ~u,~γµ〉. Now, note that τ defined as

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j tj − 〈~u,~γµ〉


=

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

〈dψ(µ)
j
~bj , ~r〉+ dψ

(µ)
j šj − 〈~u,~γ〉


=

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

〈n/d∑
j=1

dψ
(µ)
j
~bj , ~r

〉+ f

is indeed a commitment to f and can be computed by the verifier.

4 Main Protocol

In this section we present our main protocol for proving knowledge of a ternary solution ~s ∈ {−1, 0, 1}n to
an arbitrary linear equation A~s = ~u over Zq. The protocol is essentially an amalgamation of the linear proof
from Section 3 and the product proof from [ALS20]. We use a fully splitting prime q and automorphisms to
boost the soundness. So, at a high level the prover commits to n/d polynomials šj whose NTT coefficients
are the coefficients of ~s. That is,

~s =

 NTT(š1)
...

NTT(šn/d)

 .

Then the prover uses a generalization of the product proof to many cubic relations to show that

šj(šj + 1)(šj − 1) = 0

for all j. This shows that NTT(šj) ∈ {−1, 0, 1}d since the polynomial product in Rq is coefficient-wise in the
NTT representation. This is the technique that was used in [BLS19].

In parallel, the prover uses the linear proof for the general case from Section 3.3, to show that the
polynomials šj really give a solution to the linear equation. The complete protocol is given in Figure 3 and
it is proven secure in Theorem 4.1.

4.1 Security Analysis

Theorem 4.1. The protocol in Figure 3 is complete, computational honest verifier zero-knowledge under the
Module-LWE assumption and computational special sound under the Module-SIS assumption. More precisely,
let p be the maximum probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.

Then, for completeness, in case the honest prover P does not abort due to rejection sampling, it always
convinces the honest verifier V.

For zero-knowledge, there exists a simulator S, that, without access to secret information, outputs a
simulation of a non-aborting transcript of the protocol between P and V for every statement A~s = ~u, ~s ∈
{−1, 0, 1}n. Then for every algorithm A that has advantage ε in distinguishing the simulated transcript from
an actual transcript, there is an algorithm A′ with the same running time that also has advantage ε in
distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a deterministic prover P∗ that convinces V with probability ε > (3p)k, E either outputs a solution
~s∗ ∈ {−1, 0, 1}n to A~s∗ = ~u, or a MSISκ,8dβ solution for B0 in expected time at most 1/ε+ (ε− pk)−1 when
running P∗ once is assumed to take unit time.

18



Prover P Verifier V

Inputs:

š1, . . . , šn/d ∈ Rq A, ~u,B0,~bi

~s = NTT(š1)‖ · · · ‖NTT(šn/d) ∈ {−1, 0, 1}n

A ∈ Zm×nq

~u = A~s

B0 ∈ Rκ×(λ+κ+n/d+3)
q ,~b1 . . . ,~bn/d+3 ∈ Rλ+κ+n/d+3

q

g
$← {g ∈ Rq | g0 = · · · = gk−1 = 0}

~r
$← χ(λ+κ+n/d+3)d

~t0 = B0~r

tn
d
+1 = 〈~bn

d
+1, ~r〉+ g

For j = 1, . . . , n/d : tj = 〈~bj , ~r〉+ šj

For i = 0, . . . , k − 1 :

~yi
$← [−δ1, δ1[(λ+κ+n/d+3)d

~wi = B0~yi

~t0, tj , tn
d
+1, ~wi-

α1, . . . ,αkn/d
$←Rq

αi, ~γµ� ~γ0, . . . , ~γk−1
$← Zmq

tn
d
+2 = 〈~bn

d
+2, ~r〉+ 〈~bn

d
+3, ~y0〉 −

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(

3šj〈~bj , ~yi〉2
)

tn
d
+3 = 〈~bn

d
+3, ~r〉+

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(

(3š2j − 1)〈~bj , ~yi〉
)

v = 〈~bn
d
+2, ~y0〉+

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(
〈~bj , ~yi〉3

)
For µ = 0, . . . , k − 1 :

AT~γµ = NTT(ψ
(µ)
1 )‖ · · · ‖NTT(ψ

(µ)

n/d)

h = g +

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j šj − 〈~u,~γµ〉


For i = 0, . . . , k − 1 :

v′i =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

n/d∑
j=1

σν
(
〈dψ(µ)

j
~bj , ~yi−ν〉

)
+ 〈~bn/d+1, ~yi〉

tj ,h,v,v
′
i-

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If ‖~zi‖∞ ≥ δ1 − T, abort

~zi -

Ver(tj , ~wi, αi, ~γi,

h,v,v′i, c, ~zi)

Fig. 3. Proof of knowledge of a ternary solution to an unstructured linear equation over Zq. Verification equations
are defined in Figure 4.
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Ver(tj , ~wi,αi, ~γi,h,v,v
′
i, c, ~zi)

01 For i = 0, . . . , k − 1 :

02 ‖~zi‖2
?
< β = δ1 − T

03 B0~zi
?
= ~wi + σi(c)~t0

04 For i = 0, . . . , k − 1:
05 For j = 1, . . . , n/d :

06 f
(i)
j = 〈~bj , ~zi〉 − σi(c)tj

07 fn
d
+2 = 〈~bn

d
+2, ~z0〉 − ctn

d
+2

08 fn
d
+3 = 〈~bn

d
+3, ~z0〉 − ctn

d
+3

09
∑k−1
i=0

∑n/d
j=1αin/d+jσ

−i
(
f

(i)
j (f

(i)
j + σi(c))(f

(i)
j − σ

i(c))
)

+ fn
d
+2 + cfn

d
+3

?
= v

10 For µ = 0, . . . , k − 1 :

11 hµ
?
= 0

12 AT~γµ = NTT(ψ
(µ)
1 )‖ · · · ‖NTT(ψ

(µ)

n/d)

13 τ =
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(∑n/d

j=1 dψ
(µ)
j tj − 〈~u,~γµ〉

)
14 For i = 0, . . . , k − 1:

15
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0

∑n/d
j=1 σ

ν
(
dψ

(µ)
j 〈~bj , ~zi−ν mod k〉

)
+ 〈~bn/d+1, ~zi〉

16
?
= v′i + σi(c)(τ + tn/d+1 − h)

Fig. 4. Verification equations for Figure 3.

Proof. Completeness. It follows by careful inspection that the verification equations are always true for the
messages sent by P.

Zero-Knowledge. We can simulate a non-aborting transcript between the honest prover and the honest
verifier in the following way. First, in a non-aborting transcript the vectors ~zi are independently uniformly
random in ]− (δ1 − T ), δ1 − T [(λ+κ+n/d+3)d and also independent from c~r. So the simulator can just sample

~zi
$←] − (δ1 − T ), δ1 − T [(λ+κ+n/d+3)d and c

$← C. The polynomial h is such that h0 = · · · = hk−1 = 0 in
honest transcripts and the other coefficients are uniformly random because of the additive term g. Hence,

the simulator samples h
$← {h ∈ Rq | h0 = · · · = kk−1 = 0}. Then, the challenges αi ∈ Rq and ~γµ ∈ Zmq

are independently uniformly random and the simulator samples them in this way. Next, all the commitment
messages ~t0, tj , j = 1, . . . , n/d+3, are computationally indistinguishable from uniformly random polynomials
if MLWEλ is hard since the randomness vector ~r is statistically independent from the ~zi. In fact, they
include independent Module-LWE samples. So the simulator can just take uniformly random ~t0 ∈ Rκq ,
tj ∈ Rq. Now, in an honest transcript, the remaining messages ~wi, v, v′i are all uniquely determined by
the verification equations because of completeness. We see that if the simulator computes these messages so
that the verification equations become true, then the resulting transcript is indistinguishable from an honest
transcript.

Soundness. First the extractor opens the commitments tj , j = 1, . . . , n/d+3. From [ALS20, Theorem 4.4],
unless E has found a MSISκ,8dβ solution, the extractor can compute vectors ~y∗i and ~r∗ such that for every
accepting transcript with first messages tj , ~wi, it holds zi = ~y∗i + σi(c)~r∗. The expected runtime for this is
equal to the runtime given in the theorem statement. Then let š∗j , g

∗, m∗n/d+2 and m∗n/d+3 be the extracted
messages, which are such that

tj = 〈~bj , ~r∗〉+ š∗j for j = 1, . . . , n/d,

tn
d +1 = 〈~bn

d +1, ~r
∗〉+ g∗,

tn
d +2 = 〈~bn

d +2, ~r
∗〉+m∗n

d +2,

tn
d +3 = 〈~bn

d +3, ~r
∗〉+m∗n

d +3.
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Now substituting these expressions into f
(i)
j , fn

d +2, fn
d +3 as computed in the verification algorithm gives

f
(i)
j = 〈~bj , ~y∗i 〉 − σi(c)š∗j ,

fn
d +2 = 〈~bn

d +2, ~y
∗
0〉 − cm∗nd +2

fn
d +3 = 〈~bn

d +3, ~y
∗
0〉 − cm∗nd +3.

Next, the verification equation in Line 9 of the verification algorithm readsk−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(
〈~bj , ~y∗i 〉3

)
+ 〈~bn

d +2, ~y
∗
0〉 − v


− c

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(

3〈~bj , ~yi〉2š∗j
)
− 〈~bn

d +3, ~y
∗
0〉+m∗n

d +2


+ c2

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(
〈~bj , ~y∗i 〉(3(š∗j )

2 − 1)
)
−m∗n

d +3


− c3

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i (š∗j (š∗j − 1)(š∗j + 1)

) = 0.

If we assume that š∗j (š
∗
j − 1)(š∗j + 1) 6= 0 for some j, then following the same argument as in [ALS20,

Theorem 5.1], the success probability of the prover must be bounded by

ε ≤
k∑
i=0

(
k

i

)(
1

q

)i(
1− 1

q

)k−i
2k−iqipk < (3p)k.

This is not the case and therefore ~s∗j = NTT(š∗j ) ∈ {−1, 0, 1}d for all j.
Now substituting tj into τ gives

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

〈dψ(µ)
j
~b1, ~r

∗〉

+ f∗.

where

f∗ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j š∗j − 〈~u,~γµ〉


We know that f∗µ = 〈A~s∗ − ~u,~γµ〉 for µ = 0, . . . , k − 1 and ~s∗ = ~s∗j‖ · · · ‖~s∗j . Next we find from the last
verification equations, k−1∑

µ=0

1

k
Xµ

k−1∑
ν=0

n/d∑
j=1

σν
(
〈dψ(µ)

j
~b1, ~y

∗
i−ν mod k〉

)
+ 〈~b2, ~y∗〉 − v′i

 (9)

= σi(c) (f∗ + g∗ − h) . (10)

for all i = 0, . . . , k − 1. The coefficients of these linear polynomials in σi(c) are independent from c in a
random accepting transcript. With the same reasoning as in the proof of Theorem 3.1 it follows that if
A~s∗ 6= ~u, then

ε <

(
1

q

)k
+ pk

in contradiction to the bound in the statement. Hence A~s∗ = ~u.

21



4.2 Proof Size

We now look at the size of the non-interactive proof outputs via the Fiat-Shamir transform of the protocol
in Figure 3. First, note that for the non-interactive proof the messages wi, v and vi need not be included
in the output as they are uniquely determined by the remaining components. Further, the challenges can be
generated from a small seed of 256 bits, which itself is generated as the hash of some components. Therefore,
the contribution of the challenges to the total proof length is extremely small and thus we neglect it.

As “full-sized” elements of Rq, we have ~t0, tj , and h (in fact, h is missing k coefficients, but that is a
negligible consideration). Therefore, we have in total

κ+ n/d+ 3 + 1

full-sized elements of Rq, which altogether costs

(κ+ n/d+ 4) ddlog qe bits.

Now, the only remaining part are the vectors ~zi. Since the k vectors ~zi of length (λ+ κ+ n/d+ 3)d over Zq
are bounded by δ1 in infinity norm, they require

k(λ+ κ+ n/d+ 3)ddlog 2δ1e bits

in the proof. It is easy to see that no coefficient of the product σi(c)~r can exceed d for any 0 ≤ i ≤ k − 1.
Hence, we set T = d.

In conclusion, the overall proof length is about

(κ+ n/d+ 4) ddlog qe+ k (λ+ κ+ n/d+ 3) ddlog 2δ1e bits, (11)

Proof length optimizations. The size of the non-interactive proof can be reduced with a number of
standard techniques. The first techniques are the two compression techniques from the Bai-Galbraith [BG14]
and Dilithium [DKL+18] signature schemes. They reduce the size of the masked openings ~zi and the top part
~t0 of the commitment. As we have mentioned in Section 2.7, the commitment matrix B0 can be decomposed
as B0 = (B′0, I), where I is the identity matrix of dimension κ. Then we can similarly decompose ~r = ~r1 ‖ ~r2
and write

~t0 = B0~r = B′0~r1 + ~r2.

Now, we see that when we give an approximate proof for this equation that proves c̄~t0 = B′0~̄z1 + ~̄z2, we are
essentially proving knowledge of a short vector ~̄z1 such that B1~̄z1 is close to c̄~t0. But this can be achieved
in zero-knowledge without sending both masked openings ~z1 and ~z2 as follows. Let ~y be the masking vector
for ~r1, ~z = ~y + c~r1, and ~w = B′0~y. Then decompose ~w as quotient and remainder modulo α = 2δ2 ≈ δ1,

~w = α ~w1 + ~w0

where ‖ ~w0‖∞ ≤ δ2. It follows that

B′0~z − c~t0 = α ~w1 + ~w0 − c~r2.

Hence, when we keep the remainder ~w0 secret, it can serve as the masking vector for ~r2. Moreover, by
rejecting if ‖ ~w0 − c~r2‖∞ ≥ δ2 − T , this doesn’t leak information about ~r2 and the equation can be checked

by the verifier by decomposingB′0~z−c~t0. The second compression technique starts with the same observation
that it suffices to prove knowledge of a preimage of B′0 that is close to c̄~t0. When we decompose

~t0 = ~t0,12D + ~t0,0,

then it is actually sufficient to only send the high bits ~t0,1, because the low bits only introduce an additional

noise term c̄~t0,0 in the verification equation that can be handled with sending a few hint bits. We defer to
the Dilithium paper for the details.
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Another optimization we employ is in the calculation of a maximum absolute coefficient in σi(c)~r. In our
applications, we aim to minimize d and set d = 128. Now in this case, a coefficient of σi(c)~r is the sum of
128 coefficients with i.i.d. P (−1) = P (1) = 5/32 and P (0) = 22/32.6 If we calculate the convolution of this
distribution, we find that a coefficient is bigger than 78 in absolute value with probability less than 2−114.
Hence, by a union bound the probability that any of the coefficients in

(
σ0(c)~r, . . . , σk−1(c)~r

)
is bigger than

78 will still be negligibly small. Therefore, we can set T = 78 instead of T = d = 128.
The previous optimization can be combined with the following optimization. Instead of using the k

rotations σi(c) of one dense challenge for the masked openings ~zi, we can write c in the subring generated
by Xk and fixed by σ, i.e. c = c0 + c1X + · · ·+ ck−1Xk−1 where the polynomials cj are sparse with only at
most d/k nonzero coefficients. Then all the images σi(c) are just different linear combinations of the cj . So
it suffices to use these sparse challenges cj in the masked openings that are transmitted and the verifier can
then recombine them to obtain the masked openings with challenges σi(c) as needed in the protocols.
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Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS - kyber: A cca-secure module-lattice-based KEM.
In 2018 IEEE European Symposium on Security and Privacy, EuroS&P, pages 353–367, 2018.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. More efficient
commitments from structured lattice assumptions. In SCN, pages 368–385, 2018.

Beu20. Ward Beullens. Sigma protocols for mq, PKP and sis, and fishy signature schemes. In EUROCRYPT (3),
volume 12107 of Lecture Notes in Computer Science, pages 183–211. Springer, 2020.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning
with errors. In CT-RSA, pages 28–47, 2014.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) exact lattice-
based zero-knowledge proofs. In CRYPTO (1), pages 176–202. Springer, 2019.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In STOC, pages 494–503. ACM, 2002.

CvH91. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT,
volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer, 1991.
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Auxiliary Supporting Material

A Boosting Soundness by Going Up

We now present the second method to decrease the soundness error of the protocol from Section 3.1. This
method is efficient if there are fewer secret coefficients than the ring dimension, i.e. if n < d such as n = 32
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and d = 128. Then it is better not to choose a completely splitting prime q so that the opening proof has
negligible soundness error with only one repetition (k = 1). So, assume q − 1 ≡ 2l (mod 4l) with l < d, and
n = l. In this case, the analysis of the basic protocol from Section 3.1 does not apply directly and we cannot
use automorphisms to boost soundness by mapping down to a smaller ring. Instead, we go the other direction.
The prime q splits completely in the subring Sq = {p0 + p1X

d/l + · · ·+ pl−1X
d−d/l ∈ Rq} ∼= Zq[X]/(X l + 1)

of Rq. So we choose the secret polynomial š such that it lies in Sq, which is the case if and only if the NTT
vector NTT(š) lies in the subvector space Zlq of (Fqd/l)l. Then š encodes the l coefficients of ~s. Our protocol
assumes that there is a proof for this property. This can for example be part of the shortness proof since
š(š − 1)(š + 1) = 0 shows that NTT(š) even lies in {−1, 0, 1}l ⊂ Zlq ⊂ (Fqd/l)l. With this setup the basic
protocol using ~γ ∈ Zmq proves the linear relation A~s = ~u with soundness error 1/q. But now we can let ~γ be
uniformly random over Fqd/l and directly get negligible soundness error. Indeed, note that by Lemma 2.1,

〈A~s− ~u,~γ〉F
qd/l

= 〈~s,AT~γ〉F
qd/l
− 〈~u,~γ〉F

qd/l

=
∑
j∈Z×

2l

(
šNTT−1(AT~γ) mod (Xd/l − ζj)

)
− 〈~u,~γ〉F

qd/l

=
1

l

∑
j∈Z×

2l

(f mod (Xd/l − ζj)) = f0 + f1X + · · ·+ fd/l−1X
d/l−1,

where the scalar product is over the finite field Fqd/l and the polynomial f ∈ Rq is defined by f =

šNTT−1(lAT~γ)− 〈~u,~γ〉. The protocol is given in Figure 5.

B Applications

B.1 Proving Knowledge of LWE Secrets

As also considered in [BLS19], the first application of our proofs is to prove knowledge of secrets in LWE
samples. For a fair comparison, we consider the same setting as in [BLS19]. That is, for n = 2048, we want
to prove knowledge of a ternary vector ~s ∈ {−1, 0, 1}n such that

~u = (A′ ‖ Im) · ~s (mod q),

where Im is them-dimensional identity matrix, A′ ∈ Zm×(n−m)
q is a public matrix chosen uniformly at random

and q is a modulus of about 32 bits (i.e., log q ≈ 32). Note that ~s here corresponds to the concatenation
of a secret vector and an error vector of 1024 dimension each in the usual LWE setting. Let us denote
A = (A′ ‖ Im). This setting is now precisely the one of the protocol in Figure 1 with ~u = A~s mod q,
n = 2048 and q ≈ 232.

First, for about 128 bits of security we set k = 128/ log q = 4. Then, to optimize the proof length, we
need to set d = dim(Rq) as small as possible. This is due to the fact that regardless of what level of security
is desired, each “garbage term”, namely tn/d+1, . . . , tn/d+3,h, requires d log q bits of storage. Using Lemma
2.2, the smallest possible d we can choose is 128, thus we set d = 128. Next, we need to set the width δ1
of the masking vectors ~yi to be large enough as to achieve an acceptable rejection rate. We incorporate the
optimization techniques from Section 4.2. In particular, we have T = 32 for the bound on the secrets cj~r1
in the masked openings. With this we find that δ = 218 gives an expected number of 18.87 rejections. For
the parameters in the compression techniques we chose δ2 = (q − 1)/215 ≈ 217 and D = 14. The remaining
task is to choose λ and κ to make M-LWE and M-SIS hard in practice against known attacks.

As in prior works (cf. [ESS+19, ESLL19, BLS19]), we measure the hardness of these problems in terms
of root Hermite factor δ, aim for δ ≈ 1.0043 and follow an estimation strategy as in the recent works
[ESS+19, ESLL19], where the authors also aimed for about 128-bit security. Particularly, we use the “LWE
estimator” in [APS15] and the methodology and scripts from [DKL+18] to estimate the concrete SIS security
in the infinity norm. We can reach the desired security level with λ = 10 and κ = 9 for a root Hermite factor
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Prover P Verifier V

Inputs:

A ∈ Zm×lq , ~s = NTT(š) ∈ Zlq A, ~u

~u = A~s B0;~b1,~b2

B0 ∈ Rκ×(λ+κ+2)
q ;~b1,~b2 ∈ Rλ+κ+2

q
~t0, t1

g
$← {g ∈ Rq | g0 = · · · = gd/l−1 = 0}

~r
$← χ(λ+κ+2)d

~t0 = B0~r

t1 = 〈~b1, ~r〉+ š

t2 = 〈~b2, ~r〉+ g

~t = ~t0 ‖ t1 ‖ t2

~y
$← [−δ1, δ1[(λ+κ+2)d

~w = B0~y

~t, ~w -

~γ� ~γ
$← (Fqd/l)

m

h = g + NTT−1(lAT~γ)š− 〈~γ, ~u〉

v = 〈NTT−1(lAT~γ) ~b1 + ~b2, ~y〉
h,v -

c� c
$← C

~z = ~y + c~r

If ‖~z‖∞ ≥ δ1 − T, abort

~z -

‖~z‖∞
?
< β = δ1 − T

B0~z
?
= ~w + c~t0

h0
?
= . . .

?
= hd/l−1

?
= 0

τ = NTT−1(lAT~γ)t1 − 〈~u,~γ〉

〈NTT−1(lAT~γ)~b1 + ~b2, ~z〉
?
= v + c (τ + t2 − h)

Fig. 5. Simple proof of unstructured linear relations among l | d committed integers. The prime q is such that q ≡ 2l
(mod 4l) and hence splits into l prime ideals in the ring R.

(for both SIS and LWE) of δ ≈ 1.0043. An advantage of our construction here over [BLS19] is that setting
of overall SIS/LWE dimension (which needs to be a multiple of d) is more flexible as we can use a relatively
small d of 128. Finally, with these parameters we obtain a proof size of 47 KB. As a result, we achieve an
improvement of more than 8× over the proposal in [BLS19] in terms of proof length. Our proof system is
fast enough so that a higher rejection rate than 18.37 would be acceptable in practice. For example, δ1 = 217

and δ2 ≈ 216 would result in an expected number of 356.38 rejections. But the proof size would only go down
to 45.3 KB, so this small reduction is not worth the much larger running time.
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B.2 Proof of Plaintext Knowledge

In a proof of plaintext knowledge (also called a verifiable encryption), the goal is to produce a ciphertext
and a zero-knowledge proof such that the decryption of a valid ciphertext is guaranteed to yield a plaintext
known by the prover.

The only lattice-based verifiable encryption scheme with a satisfactory practical efficiency is presented
in [LN17]. Although this proposal is very efficient in practice, it has some undesirable properties. First, the
guarantee on the message ~m′ decrypted from a valid ciphertext is relaxed in a way that ~m′ only satisfies an
“approximate” lattice relation. Second, the running time of the decryption algorithm is dependant on the
running time of the prover and only the expected number of decryption tries is theoretically investigated.

Our proofs from previous sections can help mitigate these drawbacks at the cost of larger proofs. How-
ever, unlike the other previous approaches such as [YAZ+19] that can provide an exact proof of plaintext
knowledge, we believe our results are of practical relevance.

Let us first recall a Module-LWE encryption scheme similar to Kyber [BDK+18] for a message m ∈ Rp
for p ∈ Z+. The secret keys are sampled as ~s1, ~s2

$← S`1, where S1 is the set of polynomials in Rq with

infinity norm at most 1, and the public keys are A
$← R`×`q and ~t = A~s1 + ~s2. An encryption (~v,w) of a

plaintext m ∈ Rp satisfies

(
~v
w

)
=

(
pA> pI` 0 0

p~t> 0`×` p 1

)
·


~r
~e
e′

m

 mod q, (12)

where ~r, ~e
$← S`1, e′

$← S1 and I` is the ` × ` identity matrix over R. The decryption in this case works by
computing

m = w − ~s>1 ~v mod q mod p.

For a successful decryption, we require

q/2 >
∥∥p(~s>2 ~r + e′ − ~s>1 ~e) +m

∥∥
∞ . (13)

For simplicity, we consider ‖m‖∞ = 1, i.e., p = 3. It is easy to adjust also to the setting where m is a binary
polynomial.

What we need now is to construct a non-interactive protocol that proves knowledge of (~r, ~e, e′,m) with
‖~r‖∞ = ‖~e‖∞ = ‖e′‖∞ = ‖m‖∞ = 1 that satisfies the relation in (12).

If we expand the matrix in the middle of the relation (12) to its representative matrix over Zq and denote
it by A, and denote the concatenated coefficient vector of (~r, ~e, e′,m) by ~s, then we again end up with a

relation suitable for the protocol in Figure 1. In this case ~s ∈ Z(2`+2)d
q , i.e., n = (2`+ 2)d. As in the previous

application, let us consider the setting of q ≈ 232 (i.e., log q = 32 and k = 4) and d = 128. From the previous
section, we know that a module rank of ` = 10 for the M-LWE encryption would be sufficient with q ≈ 232

and d = 128. As a result, we get n = 2816, which is close to the value of n = 2048 in the previous section.
The same module ranks of λ = 10 and κ = 9 suffice for the zero-knowledge proof with δ ≈ 1.0045 in this
case as well.

For this parameter setting, correctness of decryption (i.e., the inequality in (13)) is easily satisfied.
Plugging in this parameter setting into (11) (with the described optimizations), we end up with a proof
length of 60.89 KB.

B.3 Other Applications

The two applications from Section B show how effective our new techniques are. There are actually various
other applications, where our unstructured linear equation proof and our techniques can be useful. Some
examples include group signatures [CvH91], ring signatures [RST01], exact range proofs, cryptographic
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accumulators and proof of message-signature pairs. These examples are all studied in [YAZ+19], where each
of them build mainly on a zero-knowledge proof of a relation similar to that of our unstructured linear
equation proof. Since this core proof can be realized more efficiently in practice using our novel techniques,
we expect more efficient applications to follow.

Particularly, we believe that our zero-knowledge proofs and techniques can be useful in more efficient
group signatures that do not rely on relaxed zero-knowledge proofs as in [dPLS18, EZS+19]. Although these
two works [dPLS18, EZS+19] offer relatively efficient constructions in practice, they have certain drawbacks.
More specifically, the opening algorithm in [dPLS18] relies on the decryption algorithm of the verifiable
encryption in [LN17], and therefore its worst-case running time for adversarially-generated group signatures
is not clear. This case of opening adversarially-generated signatures is not at all supported in [EZS+19], and
the group public key length in [EZS+19] grows linearly in the group size, rendering the scheme unsuitable
for large groups. Therefore, extending of our techniques here to build a group signature seems to be an
interesting future research direction.

C Implementation

We have implemented our proof system for our benchmark application of proving LWE-samples in dimension
1024 modulo q = 1073479681. Our implementation achieves a prover runtime of 3.52 ms and a verifier
runtime of 0.4 ms. These runtimes are the medians of 500 executions each on a single core of an Intel Skylake
CPU running at 3.5 GHz. We used many of the implementation techniques that have been used to speed
up the Kyber [BDK+18], Dilithium [DKL+18] and NTTRU [LS19] lattice-based schemes. The software is
optimized for x86 CPUs supporting the AVX2 instruction set and especially all of the polynomial arithmetic
over Rq is fully vectorized. Most parts of the AVX2 code are written using C intrinsics, while the AVX2 NTT
is implemented in assembly language. As in many lattice-based construction based on the Module-LWE and
Module-SIS problems, among the most time-consuming tasks are the expansion of the commitment matrices
B0 and ~bi and polynomial multiplication.

The matrix B0 ∈ Rκ×(λ+κ+n/d+3)
q is chosen with the structure B0 = (Iκ | B′0) with B′0 ∈ R

κ×(λ+n+2)
q .

Likewise, the vectors ~bi, i = 1, . . . , n/d + 3, are of the form ~bi = ~0κ ‖ ~ei ‖ ~b′i where ~ei is the i-th standard

basis vector of length n/d + 3 and ~b′i ∈ Rλq . We expand all uniformly random polynomials in B0 and ~bi
from the same 32-bit seed using the output stream of AES-256 in counter mode, where we use a fresh nonce
for each polynomial. Our vectorized rejection sampling implementation samples up to 8 uniformly random
coefficients simultaneously and the AES implementation is based on the AES-NI instructions.

For fast polynomial multiplication, whenever possible, we keep polynomials in the NTT basis represen-
tation to save NTT operations, and also sample uniformly random polynomials directly in the NTT basis.
Specifically, uniform polynomials that are sent as part of the proofs are sent in the NTT basis. Our code
also includes fast in-place implementations of the Galois automorphisms that operate in the NTT basis.

The AVX2 optimized NTT implementation operates on dense vectors of 8 32-bit coefficients. It uses the
modified Montgomery reduction algorithm from [Sei18] and [LS19] to reduce intermediate 64 bit products.
This allows to handle dense vector registers more efficiently and saves multiplication instructions that lie
on the critical path. At the core of the code lies a vectorized interleaved butterfly implementation that
processes 32 coefficients in 4 vector registers at a time. The instruction for parallel Montgomery and single-
word reductions in a butterfly operation are very carefully scheduled, taking into account the front-end
decoding throughput from the L1 cache and the back-end execution resources. A full NTT execution runs
in 540 cycles on an Intel Skylake core.

For the hash function that is needed in the Fiat-Shamir transform to obtain all the challenge polynomials,
we use SHAKE128.
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