
On the Deployment of curve based cryptography
for the Internet of Things

Michael Scott

Cryptographic Researcher
MIRACL Labs

mscott@indigo.ie

Abstract. The typical battery supported IoT computing node has pro-
gressed in recent years from an 8-bit processor with limited memory
resources, to a 32-bit processor with ample amounts of ROM and RAM.
This is a game-changer for developers who no longer need to struggle
with assembly language programming, but rather can bring to bear all
of the tools of modern software engineering, including high level language
compilers. At the same time curve based cryptography has matured to
the extent that efficient curves and algorithms are now well known. How-
ever the dynamics of academic research are such that execution speed,
mandating continued use of assembly language, trumps all other consid-
erations. In this paper we report on the performance that can be expected
from simple portable high-level language implementations across a wide
range of contemporary architectures.
Keywords: Elliptic Curves, Pairing-based cryptography.

1 Introduction

With the advent of 5G communications there is expected to be an explosion in
the Internet of Things. Yet at the moment it is widely accepted that IoT de-
vices are often quite poorly secured. One problem we identify is that application
builders have found it difficult to embed modern cryptographic protections into
their small devices. There is therefore an onus on cryptographers to reduce the
amount of friction involved in that process

The Arduino eco-system has long existed to provide hobbyists and researchers
with a platform for experimentation. A decade ago a typical Arduino board
would have been the Arduno Nano. This was based on an 8-bit Atmega chip,
with up to 32KB of ROM and 2kB of RAM, and clocked at 16MHz. The latest
Arduino Nano board, the Nano 33 IoT, is available in the same form-factor, but
has a 32-bit ARM processor with 256KB of ROM and 32KB of RAM, clocked
at 48MHz. This represents a significant paradigm shift.

Elliptic curve cryptography always held particular promise for smaller de-
vices, requiring smaller keys and faster algorithms for group operation than
legacy methods like RSA. However even with these advantages implementation
on small IoT devices was challenging, and only really viable if implemented in as-
sembly language. Often security levels would be reduced, or non-standard forms

of elliptic curves would be deployed (for a recent example see [17]). A good sum-
mary would be provided in table 2 of Düll et al [12]. As can be seen such an
implementation is just about possible, but can be expected to consume about
half of the resources of a board like the original Arduino Nano. This leaves little
room for the actual application that needs securing, as the cryptography has
consumed the lions share of the boards limited resources.

It is of course a valuable and valid academic activity to leverage architectures
to the maximum and to demonstrate the limits of what can be achieved. But it
is less likely to lead to useful deployments of cryptography as a tool that exists
in the background for securing real-world applications.

Resourceful researchers still go to heroic lengths to squeeze some meaning-
ful cryptography into tiny spaces. And in doing do they have established an
academic tradition that persists to this day, which rewards small size and fast
execution, when really these are not that important anymore. In an overall de-
sign, the cryptography must not be the dominant component.

While size and speed are important, so is security against side-channel at-
tackers, and the security that arises from confidence that the implementation
is correct and does not suffer from memory leaks or other software engineering
failures. Assembly language is by definition non-portable, and the IoT setting
has a much wider range of competing CPU cores than the laptop/desktop/server
scene where a virtual monopoly exists. Clearly it will be much harder to develop,
maintain and test a collection of assembly language implementations across a
multitude of different architectures.

The question therefore arises: Given the capabilities of the current generation
of IoT computing nodes, what exactly can be achieved by high level language
implementations? The pursuit of faster execution times to the exclusion of all
else has already been questioned by Schwabe and Sprenkels [18], who point out
that a slower but arguably safer elliptic curve representation may have a role to
play. They also make the point that the FourQ curve [11], the undoubted current
speed record holder, is in some senses seen to be unnecessarily fast.

In the same vein Aumasson [3] re-introduces us to the issue of cryptographic
numerology, the unsupported and unquestioning pursuit of levels of security
beyond what the science requires. The implication is that we can, in the “real
world”, quite safely lower our hyper-paranoid cryptographic security levels.

Of course in any discussion of elliptic curve cryptography the question of the
quantum apocalypse arises. Bets have already been made on the timescale within
which to expect a crypto-busting quantum computer to arise. Here we suggest
an interesting side-bet: Which is more likely to be first to break a 160-bit elliptic
curve, a quantum computer or a network of advanced classical computers? The
implication being that if it is a quantum computer and if it happens in 20 years
time, then billions of cycles would have been wasted over 20 years implementing
pointlessly high levels of security.

2

2 Is an assembly language implementation necessary?

In the world of high-end computing, faster is always better, all other things
being equal. Consider for example the case of a server farm which must handle
multiple SSL connections, and where a 10% speed increase implies the need for
10% less servers, with a a 10% saving on electricity.

But in the Internet of Things, where often the Things are not under any
great time pressure, we would suggest that this may be less important. But of
course it depends on the actual application, and we accept that there may well be
applications where it would be important in terms of the application’s viability
that the cryptography does not constitute a significant performance bottleneck.

The main advantages of an assembly language implementation are

– Faster execution time
– Smaller memory (ROM/RAM) requirement
– Complete control over side-channel leakage

First consider the likely execution speed advantage that can be expected by
programming in assembly language. A recent paper by Alkim et al. [1], imple-
ments some post-quantum methods of cryptography based on the Ring Learning
with Errors (RLWE) and related problems. By programming in assembly lan-
guage and exploiting architectural features of the Cortex-M4 processor, notably
its SIMD instruction set, they succeed in coding the Number Theoretic Trans-
form which lies at the heart of such RLWE implementations, such that for a
1024-degree polynomial it executes in just 68,131 clock cycles. We find that a C
language version based on [20], takes 115,698 clock cycles, about 1.7 times slower.
The authors also made the rather startling observation that around 75% of the
protocol’s execution time was spent in hashing operations required to generate
the random noise polynomials required by the protocols, and that therefore the
NTT was not in fact the bottleneck calculation.

In the case of elliptic curve cryptography we find that the assembly language
speed advantage can be more impressive. The popular X25519 elliptic curve [6]
has been the object of much optimization and record-setting assembly language
implementation over the years. In [14] a scalar multiplication can be obtained on
an ARM Cortex M4 processor in just 634,567 clock cycles. We find that using
C++ code the best we can do is 2,632,112 cycles, about 4 times slower.

From these examples one might have the expectation that an assembly lan-
guage implementation on a 32-bit processor will be at most 2 to 4 times faster
than its high level language competitor. But it would be a mistake to under-
estimate the ingenuity of the assembly language programmer1. An assembly
language implementation can access architectural features like specialised SIMD
instructions that are invisible to, or otherwise unusable by, a standard compiler.
The assembly language programmer can also keep variables in registers for longer
and minimize the number of memory accesses. In the particular case of the ARM

1 https://devzone.nordicsemi.com/f/nordic-q-a/18578/

arm-cryptocell-310-performance

3

M4 processor, they can fully exploit the powerful UMAAL instruction which in
a single instruction can carry out the key operation necessary to process a par-
tial product calculation in the context of time-critical multi-precision arithmetic.
Such arithmetic lies at the heart of a prime field elliptic curve implementation.

3 High level language implementation

The advantages of writing code exclusively in a high level language, like C or
C++, are

– Portability
– Maintainability
– Faster, simpler deployment. Less debugging
– More certainty around code correctness and safety

In the IoT world there are several competing architectures. The dominance
of ARM is being challenged by open sourced and license-free competitors, which
can result in much cheaper solutions. Amongst the alternatives we have iden-
tified are the MIPS32 and RISC-V architectures, both of which are attracting
a following. Even within the ARM world there are radically different Instruc-
tion Set Architectures (ISA), from the Cortex-M0/3/4 families to the higher end
models. An assembly language implementation needs to be tuned specifically for
each individual ISA. This strengthens the case for a high level language solution,
if one is available. It is certainly worth the effort to ascertain just what level of
performance can be expected from compiler generated code.

We have accessed some representative board samples, see table 1. All the
boards under consideration use a 32-bit processor. These boards are inexpensive,
the cheapest being the ESP32 board at less than $5. Some allow a range of
clock speeds. It is well known that the relationship between clock speed and
power consumption is almost linear, so simply increasing clock speed to the
maximum may not represent a viable solution. Indeed it may not produce a pro-
rata improvement in execution speed as extra wait states may be inserted into
each memory access, if the memory cannot keep up with the faster clocked CPU.
We also indicate our very subjective view on the quality of the architecture’s
integer multiplication instruction, as this has a big impact on performance.

CPU ROM RAM Clock Speeds Mul Instruction
Arduino Nano 33 IoT ARM Cortex M0+ 256K 32K 48MHz poor
Arduino Nano 33 BLE ARM Cortex M4 1M 256K 64MHz excellent
Fishino Piranha MIPS32 512K 128K 20-120MHz good
Teensy 3.2 ARM Cortex M4 256K 64K 24-120MHz excellent
ESP32S WROOM Xtensa LX6 4M 512K 20-240MHz poor
Sifive Hifive1 revb RISC-V 4M 16K 32-320MHz poor

Table 1. Boards tested

4

3.1 Is compiler generated code side-channel safe?

Before we answer this question there is an even more fundamental one. Is the
processor itself side-channel safe? For example if the multiply instruction takes a
variable number of cycles depending on the sizes of its operands, then it will be
very difficult to defend against side-channel leakage. Ideally we need to know that
the machine code instructions we will need to use, whether generated by compiler
or written by hand, when they execute, do not leak information concerning their
data operands. Some architectures, for example ARM Cortex-M4, are considered
as OK in this regard. Others, for example ARM Cortex-M3, are not, typically
because the multiply instruction takes a number of cycles that depends on the bit
length of its operands. Some instructions like integer division will almost always
leak information: But cryptographic code should never need integer division.

Given a good ISA, the best defense against side channel leakage is to imple-
ment all algorithms such that they execute in constant time. This should include
the scenario where cache memory is used to make some memory accesses faster
than others. Constant time programming is an art form in itself, but assuming
that the algorithms chosen are suitable for constant time implementation, it can
be achieved with careful coding, and with only a minor performance impact.

But if coding in a high-level language a problem arises: How can we be
sure that the compiler has not, in the interests of optimization, translated our
constant time high level code into non-constant time assembly language? Perhaps
surprisingly cases have been found where this happens [13]. This is an active
research area (see also [2]), but the general feeling seems to be that this is a
problem which can be overcome.

As a last resort we can always visually examine the generated code and
selectively turn off compiler optimization for any section of code if a non-constant
time code sequence is introduced by the compiler. So we do not regard this issue
as a show-stopper. In any case we now observe that many language developers
are now aware of our constant time requirement, and are making efforts to help.
See for example the package “subtle” in the Go programming language2.

4 The curves

Commonly used elliptic curves in the IoT setting are the NIST standard Weier-
strass secp256r1 curve, and the closely related Montgomery and Edwards curves
X25519 [6] and Ed25519 [7] respectively. All provide security at the 128-bit level,
which would be considered as adequate for the IoT world. However, since our
high level language implementations may be slower, we will also consider a curve
offering just 80-bits of security, which we call C1665. Security levels are often
considered in the context of how successful cryptanalysts have been is using
brute-force methods to break the hard problems that underpin security. In the
case of elliptic curves over prime fields like these, this would be the discrete
logarithm problem, and the current record is currently at the 56-bit level [10],

2 https://golang.org/pkg/crypto/subtle/

5

having made little apparent progress in the last decade. C1665 is a twist-secure
Edwards curves defined over the prime field 2166 − 5 by the equation

x2 + y2 = 1 + 5766x2y2

The world of cryptography has had its horizons widened in the last 20 year
by the advent of pairing-based cryptography which has opened up all kinds of
new cryptographic possibilities, like identity-based cryptography [8], which has
often been touted as having a role to play in the IoT setting. So we also consider
the 254-bit “pairing-friendly” BN254 Barreto-Naehrig curve [5]. This was once
assumed to exhibit 128-bits of security, but this has now been revised down to
about 100-bits [15]. So we include the 381-bit BLS12-381 curve [4] which gets us
back up close to the 128-bits of security.

5 Our Implementation

Surprisingly little effort has gone into the optimization of high-level language
implementations of cryptography, as clearly speed records will only ever be set
using assembly language. Nevertheless using some new ideas from [21], [19] in-
cremental improvement is possible. For example the Karatsuba method for op-
timising multi-precision multiplication, most often requiring a careful assembly
language implementation to extract its full benefit, can now easily be used from
a high-level language like C++ [19].

We use our MIRACL Core multilingual library3. This library is written in
multiple languages, which brings some advantages, as each language and com-
piler has its particular strengths. For example the Rust version ensures at compile
time that there will be no memory leaks. By default Swift generates a run-time
error on integer overflow, so it is easy to check such overflows only occur where
expected. Since the implementations are straightforward transcriptions from one
language to another, we can have increasing confidence that, between them, the
compilers and runtimes will catch most bugs. For our tests we used the C and
C++ versions of the library, as these are still the languages of choice in embed-
ded environments. One thing that can be safely said about compilers – they can
only get better. In all of our tests we use the GCC compiler, with maximum
optimization of time critical sections of code. Only stack memory is used, and
in some cases the default stack allocation had to be increased.

All of the devices from table 1, other than the Sifive product, are supported
by the Arduino infrastructure, which makes it very easy to develop applications
in C++. For the Sifive board we use the PlatformIO development tool and the
C version of the MIRACL Core library.

In most cases the ROM and RAM provision was more than adequate, and
our code fitted comfortably within it. The only problem was with the Sifive
board, as its 16k RAM allocation was a little small for the larger pairing code.
To give an indication of the ROM requirement, on the Arduino Nano 33 IoT

3 https://github.com/miracl/core

6

board a combined implementation of the ECDH, ECDSA and ECIES protocols
requires 52792 bytes of ROM memory. An implementation of the BLS signature
scheme [9] on a 381-bit BLS12381 curve occupies 55192 bytes of memory. On the
MIPS32 processor the same scheme occupies 89832 bytes of memory. However
using MIPS16 compression, code size can be reduced by about a third, while
approximately doubling execution time. In no case did the ROM requirement
for our cryptographic code exceed 20% of the available allocation.

6 Results

First we attempt some comparisons with other high-level language implemen-
tations, where we could find them. In table 2 we consider the time it takes to
perform a point multiplication (without precomputation) on an elliptic curve,
as might arise in the context of the generation of private/public key pairs, or
digital signature, or Diffie-Hellman key agreement. For comparison purposes we
include some timings from the WolfSSL Benchmarks4, and timings taken from
the examples provided with the Arduino Cryptography library (ACL)5 and the
micro ECC library6 (an * indicates an assembly language implementation). As
can be seen we often achieve a useful two-times (or better) speed-up, which helps
close the gap with assembly language.

MIRACL Core WolfSSL ACL µECC
Device / Elliptic Curve secp256r1 ed25519 secp256r1 ed25519 ed25519 secp256r1
ESP32 240MHz 0.075 0.021 0.275 - 0.048 0.126
ARM M0 48MHz 1.365 0.420 3.117 - 1.033 0.825*
ARM M4 48MHz 0.170 0.056 - - 0.241 0.187*
MIPS32 50MHz 0.197 0.070 - - 0.177 0.370
RISC-V 320Mhz 0.151 0.024 0.550 1.436 - -

Table 2. Elliptic curve point multiplication (in seconds)

Finally in the tables below we provide full results for all of the boards tested.
Execution times are indicated in elapsed times rather than by cycle counts, as
it is actual timings that ultimately matter. For standard elliptic curves we again
provide timings for a scalar point multiplication. For pairing-friendly curves we
time point multiplications in the elliptic curve groups G1 and G2, and exponen-
tiation in the finite extension field GT , and also times for the ate pairing and
the final exponentiation which calculate a mapping G1 ×G2 → GT . See [16] for
more details on pairings.

4 https://www.wolfssl.com/docs/benchmarks/
5 https://github.com/rweather/arduinolibs
6 https://github.com/kmackay/micro-ecc

7

Time in seconds

Curve op \ Clock Frequency 48MHz

ed25519 EC mul 0.420
secp256r1 EC mul 1.365
c1665 EC mul 0.158

bn254 G1 mul 0.637
bn254 G2 mul 1.193
bn254 GT exp 1.580
bn254 pairing ate 2.028
bn254 pairing fexp 1.559

bls12381 G1 mul 1.175
bls12381 G2 mul 2.246
bls12381 GT exp 2.501
bls12381 pairing ate 3.387
bls12381 pairing fexp 4.188

Table 3. Timings for Arduino Nano 33 IoT ARM Cortex-M0+ board

Time in seconds

Curve op \ Clock Frequency 64MHz

ed25519 EC mul 0.060
secp256r1 EC mul 0.173
c1665 EC mul 0.027

bn254 G1 mul 0.082
bn254 G2 mul 0.206
bn254 GT exp 0.318
bn254 pairing ate 0.339
bn254 pairing fexp 0.296

bls12381 G1 mul 0.141
bls12381 G2 mul 0.311
bls12381 GT exp 0.430
bls12381 pairing ate 0.514
bls12381 pairing fexp 0.713

Table 4. Timings for Arduino Nano 33 BLE Cortex-M4 board

Time in seconds

Curve op \ Clock Frequency 24MHz 48MHz 72MHz 96MHz 120MHz

ed25519 EC mul 0.110 0.056 0.039 0.034 0.033
secp256r1 EC mul 0.335 0.170 0.116 0.095 0.093
c1665 EC mul 0.042 0.022 0.016 0.014 0.013

bn254 G1 mul 0.168 0.085 0.059 0.049 0.047
bn254 G2 mul 0.436 0.220 0.150 0.121 0.111
bn254 GT exp 0.668 0.337 0.231 0.187 0.172
bn254 pairing ate 0.696 0.352 0.242 0.198 0.185
bn254 pairing fexp 0.609 0.308 0.212 0.174 0.162

bls12381 G1 mul 0.295 0.149 0.102 0.087 0.085
bls12381 G2 mul 0.670 0.339 0.232 0.193 0.184
bls12381 GT exp 0.945 0.479 0.329 0.271 0.253
bls12381 pairing ate 1.109 0.562 0.384 0.317 0.297
bls12381 pairing fexp 1.567 0.795 0.545 0.449 0.418

Table 5. Timings for Teensy 3.2 ARM Cortex-M4 board

Time in seconds

Curve op \ Clock Frequency 20MHz 50MHz 80MHz 120MHz

ed25519 EC mul 0.169 0.070 0.045 0.031
secp256r1 EC mul 0.476 0.197 0.127 0.087
c1665 EC mul 0.085 0.036 0.023 0.016

bn254 G1 mul 0.237 0.097 0.063 0.043
bn254 G2 mul 0.597 0.244 0.157 0.107
bn254 GT exp 0.908 0.376 0.245 0.169
bn254 pairing ate 0.959 0.396 0.258 0.178
bn254 pairing fexp 0.835 0.348 0.228 0.158

bls12381 G1 mul 0.426 0.173 0.110 0.075
bls12381 G2 mul 0.948 0.386 0.246 0.167
bls12381 GT exp 1.286 0.528 0.340 0.233
bls12381 pairing ate 1.528 0.625 0.401 0.273
bls12381 pairing fexp 2.125 0.874 0.564 0.386

Table 6. Timings for Fishino Piranha MIPS32 board

8

Time in seconds

Curve op \ Clock Frequency 20MHz 40MHz 80MHz 240MHz

ed25519 EC mul 0.281 0.134 0.065 0.021
secp256r1 EC mul 0.937 0.445 0.217 0.075
c1665 EC mul 0.115 0.055 0.027 0.009

bn254 G1 mul 0.429 0.204 0.099 0.033
bn254 G2 mul 0.987 0.469 0.229 0.079
bn254 GT exp 1.387 0.659 0.321 0.105
bn254 pairing ate 1.575 0.748 0.365 0.120
bn254 pairing fexp 1.305 0.619 0.302 0.099

bls12381 G1 mul 0.868 0.412 0.201 0.079
bls12381 G2 mul 1.765 0.839 0.409 0.158
bls12381 GT exp 2.188 1.040 0.507 0.189
bls12381 pairing ate 2.777 1.319 0.643 0.243
bls12381 pairing fexp 3.655 1.736 0.846 0.319

Table 7. Timings for ESP32 board

Time in seconds

Curve op \ Clock Frequency 32MHz 64MHz 128MHz 320MHz

ed25519 EC mul 0.249 0.123 0.062 0.024
secp256r1 EC mul 1.508 0.756 0.376 0.151
c1665 EC mul 0.118 0.059 0.029 0.012

bn254 G1 mul 1.089 0.546 0.272 0.108
bn254 G2 mul 2.252 1.122 0.563 0.224
bn254 GT exp 2.240 1.122 0.560 0.225
bn254 pairing ate 6.328 3.161 1.582 0.634
bn254 pairing fexp 5.740 2.864 1.438 0.572

Table 8. Timings for Sifive Hifive1 revb board

7 Conclusion

Our experiments show that even a high-level language implementation of curve-
based cryptography is now viable on available IoT processor nodes, without
swamping their resources. Therefore there can be no further excuses for not
implementing strong security on these devices. Failure to implement such mea-
sures can now be put down to wilful negligence on the part of IoT application
developers.

References

1. E. Alkim, Y. Bilgin, M. Cenk, and F. Gerárd. Cortex-M4 optimizations for
{R,M}LWE schemes. Cryptology ePrint Archive, Report 2020/012, 2020. http:

//eprint.iacr.org/2020/012.
2. J. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying

constant-time implementations. In 25th USENIX Conference on Security Sym-
posium, pages 53–70, 2016.

3. J. Aumasson. Too much crypto. Cryptology ePrint Archive, Report 2019/1492,
2019. http://eprint.iacr.org/2019/1492.

4. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In Security in Communication Networks – SCN’2002,
volume 2576 of LNCS, pages 263–273. Springer-Verlag, 2002. https://eprint.

iacr.org/2002/088.
5. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In

Selected Areas in Cryptography – SAC’2005, volume 3897 of LNCS, pages 319–331,
Kingston, 2006. Springer-Verlag. https://eprint.iacr.org/2005/133.

6. D. Bernstein. Curve25519: New Diffie-Hellman speed records. In PKC 2006, vol-
ume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer Berlin
Heidelberg, 2006.

9

7. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Cryptology ePrint Archive, Report 2011/368,
2011. http://eprint.iacr.org/2011/368.

8. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – Asiacrypt’2001, volume 2248 of LNCS, pages 514–532.
Springer-Verlag, 2002.

10. J. Bos, M. Kaihara, T. Kleinjung, A. Lenstra, and P. Montgomery. Solving a 112-
bit prime elliptic curve discrete logarithm problem on game consoles using sloppy
reduction. IJACT, 2:212–228, 2012.

11. C. Costello and P. Longa. FourQ: four-dimensional decompositions on a Q-curve
over the Mersenne prime. In Asiacrypt 2015, volume 9452 of Lecture Notes in
Computer Science, pages 214–235, 2015.

12. M. Düll, B. Haase, G. Hinterwälder, and M. Hutter. High-speed curve25519 on 8-
bit, 16-bit, and 32-bit microcontrollers. Designs, Codes and Cryptography, 77:493–
514, 2015.

13. V. Laporte G. Barthe, B. Grégoire. Secure compilation of side-channel counter-
measures: The case of cryptographic “constant-time”. In CSF 2018 - 31st IEEE
Computer Security Foundations Symposium, 2018.

14. B. Haase and B. Labrique. AuCPace: Efficient verifier-based PAKE protocol tai-
lored for the IIoT. Cryptology ePrint Archive, Report 2018/286, 2018. http:

//eprint.iacr.org/2018/286.
15. T. Kim and R. Barbulescu. The extended tower number field sieve: A new com-

plexity for the medium prime case. In Crypto 2016, volume 9814 of LNCS, pages
543–571. Springer-Verlag, 2016. https://eprint.iacr.org/2015/1027.

16. N. El Mrabet and M. Joye, editors. Guide to Pairing-Based Cryp-
tography. Chapman and Hall/CRC, 2016. https://www.crcpress.

com/Guide-to-Pairing-Based-Cryptography/El-Mrabet-Joye/p/book/

9781498729505.
17. T. Pornin. Efficient elliptic curve operations on microcontrollers with finite field

extensions. Cryptology ePrint Archive, Report 2020/009, 2020. http://eprint.

iacr.org/2020/009.
18. P. Schwabe and D. Sprenkels. The complete cost of cofactor h=1. Cryptology

ePrint Archive, Report 2019/1166, 2019. http://eprint.iacr.org/2019/1166.
19. M. Scott. Missing a trick: Karatsuba variations. Cryptology ePrint Archive, Report

2015/1247, 2015. http://eprint.iacr.org/2015/1247.
20. M. Scott. A note on the implementation of the number theoretic transform. In

IMACC 2017, volume 10655 of Lecture Notes in Computer Science, pages 247–258.
Springer Berlin Heidelberg, 2017.

21. M. Scott. Slothful reduction. Cryptology ePrint Archive, Report 2017/437, 2017.
http://eprint.iacr.org/2017/437.

10

