Abstract

Building on the Gennaro & Goldfeder and Lindell & Nof protocols (CCS ’18), we present a threshold ECDSA protocol, for any number of signatories and any threshold, that improves as follows over the state of the art:

- Signature generation takes only 4 rounds (down from the current 8 rounds), with a comparable computational cost. Furthermore, 3 of these rounds can take place in a preprocessing stage before the signed message is known, lending to a non-interactive threshold ECDSA protocol.
- The protocol withstands adaptive corruption of signatories. Furthermore, it includes a periodic refresh mechanism and offers full proactive security.
- The protocol realizes an ideal threshold signature functionality within the UC framework, in the global random oracle model, assuming Strong RSA, semantic security of the Paillier encryption, and a somewhat enhanced variant of existential unforgeability of ECDSA.

These properties (low latency, compatibility with cold-wallet architectures, proactive security, and composable security) make the protocol ideal for threshold wallets for ECDSA-based cryptocurrencies.
Contents

1 Introduction .. 4
 1.1 Our Results .. 4
 1.2 Our Techniques ... 6
 1.2.1 Background ... 6
 1.2.2 Our Approach ... 7
 1.2.3 Protocol overview 8
 1.2.4 Online vs Non-Interactive Signing 9
 1.2.5 Security .. 9
 1.2.6 Non-Interactive Zero-Knowledge 12
 1.2.7 Extension to t-out-of-n Access Structure 13
 1.3 Additional Related Work 14

2 Preliminaries .. 15
 2.1 Definitions .. 15
 2.2 NP-relations .. 15
 2.2.1 Auxiliary Relations 15
 2.3 Sigma-Protocols ... 16
 2.3.1 ZK-Module .. 16

3 Protocol .. 18
 3.1 Key Generation ... 18
 3.2 Key-Refresh & Auxiliary Information 20
 3.3 Pre-Signing ... 21
 3.4 Signing ... 24

4 Underlying Σ-Protocols 24
 4.1 Paillier Encryption in Range ZK (Π^{enc}) 24
 4.2 Paillier Operation with Group Commitment in Range ZK ($\Pi^{aff,g}$) ... 26
 4.3 Paillier-Blum Modulus ZK (Π^{mod}) 28
 4.3.1 Extraction of Paillier-Blum Modulus Factorization 29
 4.4 Ring-Pedersen Parameters ZK (Π^{prm}) 29
 4.4.1 On the Auxilliary RSA moduli and the ring-Pedersen Parameters ... 30

5 Security Analysis ... 30
 5.1 Global Random Oracle 30
 5.2 Ideal Threshold Signature Functionality 31
 5.3 Security Claims .. 31
 5.3.1 Proof of Theorem 5.2 31
 5.4 Simulators .. 34
 5.4.1 Paillier Distinguisher (R_1) 34
 5.4.2 ECDSA Forger (R_2) 35
 5.5 Standalone Simulators 36
 5.5.1 Key-Generation Simulator (S_1) 36
 5.5.2 Auxiliary Info. & Key-Refresh Simulator (S_2) 36
 5.5.3 Pre-Signing Simulator (S_3) 37

Appendix ... 43

A Overview of the UC Model 43
B More Sigma Protocols
B.1 Schnorr PoK (Π^{sch}) ... 45
B.2 Group Element vs Paillier Encryption in Range ZK (Π^{gge}) 45
B.3 Paillier Operation with Paillier Commitment ZK ($\Pi^{\text{aff-p}}$) 46
B.4 No Small Factor Proof (Π^{fac}) .. 47

C Complexity Benchmarks ... 48

D Number Theory & Probability Facts .. 49

E Assumptions ... 50
E.1 Enhanced Existential Unforgeability of ECDSA 50
 E.1.1 $O(1)$-Enhanced Forgeries .. 50
 E.1.2 Multi-Enhanced Forgeries: Preliminaries 51
 E.1.3 Multi-Enhanced Forgeries: Proof ... 52
 E.1.4 Multi-Enhanced Forgeries: Proof ... 52
1 Introduction

Introduced by Desmedt [25] and Desmedt and Frankel [26], threshold signatures allow a number of signatories to share the capability to digitally sign messages, so that a given message is signed if and only if a certain threshold of the signatories agree to sign it. In more detail, a t-out-of-n threshold signature scheme is a mechanism whereby a set of n signatories, presented with a message m, jointly and interactively compute a signature σ such that (1) if at least t of the signatories agree to sign m, then the pair m, σ is accepted as a valid by a pre-determined public verification algorithm, and (2) no attacker that controls up to t − 1 signatories can forge signatures – namely, it cannot come up with a pair m’, σ’ such that the verification algorithm accepts σ’ as a valid signature on m’, if the latter was never signed before.

Threshold signatures are an instance of “threshold cryptography” which, in turn, is one of the main application areas of the more general paradigm of secure multi-party computation. Threshold cryptography offers an additional layer of security to the entity performing a cryptographic task that involves using a private key, by distributing the capabilities that require using the secret key among multiple servers/devices. Indeed, this way the system has no single point of failure. Examples include threshold El-Gamal, RSA, Schnorr, Cramer-Shoup, ECEIS and others [50, 23, 49, 51, 13].

With the advent of blockchain technologies and cryptocurrencies in the past decade, there has been a strong renewed interest in threshold cryptography and threshold signatures in particular. Specifically, because transactions are made possible via digital signatures, many stakeholders are looking to perform signature-generation in a distributed way, and many companies are now offering solutions based on (or in combination with) threshold cryptography.\(^1\)

Threshold ECDSA. The digital signature algorithm (DSA) [41] in its elliptic curve variant (ECDSA) [47] is one of the most widely used signature schemes. ECDSA has received a lot of attention from the cryptography community because, apart from its popularity, it is viewed as somewhat “threshold-unfriendly”, i.e. (naive) threshold protocols for ECDSA require heavy cryptographic machinery over many communication rounds. Early attempts towards making threshold (EC)DSA practically efficient include Gennaro et al. [32] in the honest majority setting and MacKenzie and Reiter [46] in the two-party setting. (Of course, threshold ECDSA can be done using generic MPC protocols such as [35, 16]. Furthermore, these solutions would even allow for non-interactive signing with preprocessing. However, they are prohibitively costly.)

In recent years, there has been an abundance of protocols for threshold ECDSA [33, 2, 31, 42, 45, 27, 28, 22, 20, 21] that support any number \(n\) of parties and allow any threshold \(t < n\). The protocols that stand out here in terms of overall efficiency are the ones by Gennaro and Goldfeder [31], Lindell et al. [45] and Doerner et al. [28], and the recent work of Castagnos et al. [21].

We note that all recent protocols achieve competitive practical performance (with trade-offs between computation and communication costs depending on the tools used). Furthermore, all recent protocols require at least eight communication rounds, which for many modern communication settings (involving geographically dispersed servers and/or mobile devices) is the most time-consuming resource.

1.1 Our Results.

We present a new threshold ECDSA protocol. The protocol builds on the techniques of Gennaro and Goldfeder [31] and Lindell et al. [45], but provides new functionality, and has improved efficiency and security guarantees. We first discuss the new characteristics of the protocol at high level, and then provide more details on the construction and the analysis. Figure 1 provides a rough comparison between the main cost and security guarantees of our scheme and those of Gennaro and Goldfeder [31], Lindell et al. [45], Doerner et al. [28], and Castagnos et al. [21].

Non-Interactive Signing. As seen in Figure 1, in all of these protocols the signing process is highly interactive, i.e. the parties exchange information in a sequence of rounds to compute a signature for a given message. However, in many real-life situations it is desirable to have non-interactive signature generation, namely have each signatory, having seen the message, generate its own “signature share” without having to interact with any other signatory, and then have a public algorithm for combining the signature shares into a

\(^1\)See https://www.mpcalliance.org/ for companies in the threshold cryptography space.
single signature. For instance, such a mechanism is mandatory if one wants to use a “cold wallet” mechanism for some of the signatories — which is a common practice in the digital currency realm for securing non-threshold wallets. Indeed, a number of popular signature schemes do admit threshold protocols with non-interactive signing (e.g. RSA [39], BLS [1]).

In our protocol, the signing process can be split into two phases: A first, preprocessing, phase that takes 3 rounds and can be performed before the message is known, followed by a non-interactive step where each signatory generates its own signature share, after the message to be signed becomes known. To the best of our knowledge, this is the first threshold ECDSA in the literature that has manageable performance and it boils down to computing and sending a single field-element (i.e. allows for non-interactive signing with preprocessing). Furthermore, the non-interactive step is very efficient: it boils down to computing and sending a single field-element (i.e. 256 bits for the Bitcoin curve). We mention that a similar pre-signing capability for ECDSA was noticed by Dalskov et al. [22] who employed generic (i.e. all-purpose) MPC to compute the ECDSA functionality in the context of securing DNSSEC Keys.

Round-Minimal Interactive Signing. We stress that, even in its interactive variant, our protocol is the most round-efficient among the state-of-the-art protocols, and thus our protocol may notably improve the performance of many applications that require ECDSA (e.g. cryptocurrency custody).

Proactive Key Refresh [48, 38, 14, 40]. While threshold signatures do provide a significant security improvement over plain signature schemes, they may still be vulnerable to attacks that compromise all share-holders one by one, in an adaptive way, over time. This vulnerability is particularly bothersome in schemes that need to function and remain secure over long periods of time. Proactive security is designed to alleviate this concern: In a proactive threshold signature scheme, time is divided into *epochs*, such that at the end of each epoch the parties engage in a protocol for refreshing their keys and local states. The security guarantee is that the scheme remains unforgeable as long as at most $t - 1$ signatories are compromised within a single epoch, or more precisely in any time period that starts at the beginning of one key refreshment and ends at the end of the next key refreshment. It is stressed that the public signature verification algorithm (and key) of the scheme remains the same throughout.

Our protocol offers a two-round key refresh phase. The refreshment is the most expensive component of our protocol: for standard choice of security parameters, computation requires roughly $400 + 330n + n^2$ RSA
ring operations (see Appendix C for more details). However, this may be manageable, given that the refresh is done only periodically, and it can be scheduled at times of low use of the system.

We stress that none of the other protocols in Figure 1 support proactive key refreshing. In fact, these protocols are not even known to provide traditional threshold security against an adversary that corrupts parties adaptively as the system progresses.

The communication model. For simplicity of exposition we assume that the signatories are connected via an authenticated (but lossy) broadcast mechanism. That is, the communication is public, and every message sent can potentially be received by all parties. Still, the adversary can drop and delay messages at will. We note that the use of authenticated communication is in fact essential for obtaining proactive security. Indeed, without already-established authenticated communication, an adversary that formally “left” a previously corrupted party and controls all the communication between the party and the rest of the network can continue impersonating that party indefinitely [15].

Security & Composability. We provide security analysis of our protocols within the Universally Composable (UC) Security framework [10]. For this purpose, we first formulate an ideal threshold signature functionality which guarantees that legitimate signatures are verifiable by the standard ECDSA verification algorithm, and, at the same time, guarantees ideal and unconditional unforgeability. We show that our protocols UC-realize this ideal functionality even in the presence of an attacker that adaptively corrupts and controls parties under the sole restriction that at most t parties are corrupted in between two consecutive refresh phases. This way, we can use universal composability to assert that the protocol remains unforgeable even when put together with arbitrary other protocols. Such a strong property is of particular importance in decentralized, complex and highly security sensitive distributed systems such as cryptocurrencies.

Security of the interactive protocol is proven assuming the unforgeability of ECDSA, the semantic security of Paillier encryption and strong-RSA. It might appear a bit unsatisfying to have the unforgeability of ECDSA as an underlying assumption, given that it is an interactive – and by no means “simple” – assumption. We do this since this is the weakest assumption that one can hope for: indeed, recall that unforgeability of ECDSA is not known to follow from any standard hardness assumption on elliptic curve groups (we do however know that ECDSA is existentially unforgeable in the generic group model [6]).

Security of the non-interactive protocol is proven under the same assumptions, but with a somewhat stronger unforgeability property of ECDSA, that considers situations where the adversary obtains, ahead of time, some “leakage” information on the random string that the signer will be using for generating the upcoming several signatures. Still, the adversary should not be able to forge signatures, even given this leakage. We call this property enhanced unforgeability, and demonstrate that (a) ECDSA is enhanced unforgeable in the generic group model, and (b) in some cases, enhanced unforgeability of ECDSA follows from standard unforgeability of ECDSA, in the random oracle model.

1.2 Our Techniques

Hereafter, \mathbb{F}_q denotes the finite field with q elements and $\mathcal{H} : M \rightarrow \mathbb{F}_q$ denotes a hash function used for embedding messages into the field with q elements. Furthermore, let (\mathbb{G}, q, g) denote the group-order-generator tuple associated with the ECDSA curve. We use multiplicative notation for the group-operation.

1.2.1 Background

Plain (Non-Threshold) ECDSA. Recall that an ECDSA signature for secret key $x \in \mathbb{F}_q$ and message msg has the form $(\rho, k \cdot (m + \rho x)) \in \mathbb{F}_q^2$, where $m = \mathcal{H}(\text{msg})$, ρ is the x-projection (mod q) of the point $g^{k^{-1}} \in \mathbb{G}$, and k is a uniformly random element of \mathbb{F}_q. The verification algorithm accepts a signature (ρ, σ) as valid for message $\text{msg} \in M$ with respect to public key $X = g^x \in \mathbb{G}$, if ρ is the x-projection of $g^{m \sigma^{-1}} \cdot X^\sigma^{-1}$, where $m = \mathcal{H}(\text{msg})$.

Overview of the threshold ECDSA of Gennaro and Goldfeder [31]. We first describe the basic protocol for the honest-but-curious case with security threshold $t = n - 1$, i.e. the case where all signatories follow the protocol. Each signatory (henceforth, party) P_i chooses a random $x_i \in \mathbb{F}_q$ and sends $X_i = g^{x_i}$ to all
other parties. The public key is defined as $X = X_1 \ldots X_n \in \mathbb{G}$. The secret key then corresponds to the value $x = x_1 + \ldots + x_n$ (it is stressed that no one knows x). In addition, each party P_i is associated with parameters for an additively homomorphic public encryption scheme (specifically, Paillier encryption). That is, all parties know P_i’s public encryption key, and P_i knows its own decryption key. We write enc_i, dec_i for the encryption and decryption algorithm associated with P_i. It is stressed that all parties can run the encryption algorithm.

To sign a message msg, the parties P_1, \ldots, P_n generate local shares k_1, \ldots, k_n, respectively, of the random value $k = k_1 + \ldots + k_n$, as well as local shares $\gamma_1, \ldots, \gamma_n$, respectively, of an ephemeral value $\gamma = \gamma_1 + \ldots + \gamma_n$ which will be used to mask k. Using their respective encryption schemes, each pair of parties P_i, P_j computes additive shares $\alpha_{i,j}, \hat{\alpha}_{i,j}$ for P_i and $\beta_{j,i}, \hat{\beta}_{j,i}$ for P_j, such that $\alpha_{i,j} + \beta_{j,i} = \gamma_j k_j$ and $\hat{\alpha}_{i,j} + \hat{\beta}_{j,i} = x_j k_i$. In more detail, the share computation phase between P_i and P_j for computing $\alpha_{i,j}$ and $\beta_{j,i}$ proceeds as follows ($\hat{\alpha}_{i,j}$ and $\hat{\beta}_{j,i}$ are analogously constructed). Party P_i sends $K_i = \text{enc}_i(k_i)$ to P_j, i.e. K_i an encryption of k_i under his own public key. Then, P_j samples a random $\beta_{j,i}$ from a suitable range, and, using the homomorphic properties of the encryption scheme, P_j computes $D_{i,j} = (\gamma_j \odot K_i) \oplus \text{enc}_i(-\beta_{j,i}),^3$ i.e. $D_{i,j}$ is an encryption of $\gamma_j k_i - \beta_{j,i}$ under P_i’s public key. Finally, P_j sends $D_{i,j}$ to P_i who sets $\alpha_{i,j} = \text{dec}_i(D_{i,j})$, and the share-computation phase terminates. Upon completion, each party P_i can compute $\delta_i = \gamma_i k_i + \sum_{j \neq i} \alpha_{i,j} + \beta_{j,i}$, where $\delta_1, \ldots, \delta_n$ is an additive sharing of γk, i.e. $\gamma k = \delta_1 + \ldots + \delta_n$.

Next, each P_i sends (g^{γ_i}, δ_i) to all, and the parties compute $g^{k^{-1}} = (\prod_i g^{\gamma_i})^{(\sum_i \delta_i)^{-1}}$, and obtain their respective shares $\sigma_1, \ldots, \sigma_n$ of $\sigma = k (m + \rho x)$. By setting $\sigma_i = k_i m + \rho (x k_i + \sum_{j \neq i} \hat{\alpha}_{i,j} + \hat{\beta}_{j,i})$, where $m = H(msg)$ is the hash-value of msg and ρ is the x-projection of $g^{k^{-1}}$. Finally, each P_i sends σ_i to all, and the signature is set to (ρ, σ). To sum up, the protocol proceeds as follows from party P_i’s perspective, where each item denotes a round:

1. Sample k_i, γ_i and send $K_i = \text{enc}_i(k_i)$ to all.
2. When obtaining $\{K_j\}_{j \neq i}$, set $\{D_{j,i}, \hat{D}_{i,j}\}_{j \neq i}$ as prescribed, and send $(D_{j,i}, \hat{D}_{j,i})$ to P_j, for each $j \neq i$.
3. When obtaining $\{(D_{i,j}, \hat{D}_{i,j})\}_{j \neq i}$, set δ_i as prescribed, and send $(\Gamma_i = g^{\nu_i}, \delta_i)$ to all.
4. When obtaining $\{(\Gamma_j, \delta_j)\}_{j \neq i}$, set σ_i as prescribed, and send it to all.

Output. When obtaining $\{\sigma_j\}_{j \neq i}$, set σ and ρ as prescribed, and output (ρ, σ).

The above protocol takes four rounds of communication. For security, it can be seen that, if everything was computed correctly, then up to the point where the σ_i’s are released, no coalition of up to $n - 1$ parties gains any information on the secret key x. Furthermore, releasing σ_i is equivalent to releasing the signature (ρ, σ).

However, if a corrupted party deviates from the specification of the protocol, then releasing an honest party’s (maliciously influenced) signature-share σ_i may reveal information about the secret key share (potentially the entirety of it). To mitigate this problem, Gennaro and Goldfeder [31] devise a special-purpose, clever technique that allows the parties to verify the validity of the signature-shares before releasing them. However, this alternative technique ends up adding five rounds of communication.

1.2.2 Our Approach

Using the above blueprint, we show how the parties can verify the validity of the signature shares without adding any rounds on top of the 4 rounds of the basic protocol, and at a comparable computational cost to that of [31]. Interestingly, we achieve this result by employing the “generic” (and often deemed prohibitively expensive) GMW-approach of proving in zero-knowledge the validity of every computation along the way, with optimizations owing to the nature of the signature functionality. Furthermore, our approach preserves the natural property of the basic protocol, whereby the message is used only in the fourth and last round. This, in turn, leads to our non-interactive variant. Proactive key-refresh phases are also built in a natural way, on top of the basic protocol, with appropriate zero-knowledge proofs.

2For presentation purposes we use additive n-out-of-n secret-sharing of the private key, instead of n-out-of-n Shamir secret-sharing that is prescribed in [31].

3We emphasize that \oplus and \odot denote homomorphic evaluation of addition and (scalar) multiplication, respectively, rather than standard addition and multiplication.
For the analysis, we take a different approach than that taken by either [31] or [45]. Recall that Gennaro and Goldfeder [31] only demonstrates that an adversary which interacts with a stand-alone instance of their protocol and (non-adaptively) corrupts $t < n$ parties cannot forge ECDSA signatures under the public key chosen by the parties. On the other hand, Lindell et al. [45] show that their protocol UC-realizes the ECDSA functionality, in the presence of an adversary that non-adaptively corrupts $t < n$ parties. The latter is indeed a stronger property than stand-alone unforgeability, in two ways: First, this result holds even when the threshold signature protocol is part of a larger system. Second, secure evaluation of the ECDSA functionality is significantly stronger than mere unforgeability. While the first strengthening is clearly needed, the second is perhaps overly strong (for instance, it implies that the distribution of the secret randomness k is almost uniform for all signatures, regardless of the message).

We take a mid-way approach: We formulate a threshold variant of the ideal signature functionality F_{sign} of [11] and show that our protocol UC-realizes this functionality. This way, we obtain a result that holds even when our threshold signature protocol is part of a larger system. On the other hand, we avoid the need to show that our protocol UC-realizes the ECDSA functionality. This seemingly small difference turns out to be crucial: For one, this is what allows us to prove security under adaptive (and even mobile [48]) corruption of parties. It also allows for a number of significant simplifications in the protocol.

1.2.3 Protocol overview

We proceed with an overview of our protocol. For simplicity, we have omitted many of the details, especially regarding the zero-knowledge proofs. We refer the reader to the subsequent technical sections for further details. Let $P = \{P_1, \ldots, P_n\}$ denote the set of parties. Let $(\text{enc}_i, \text{dec}_i)$ denote the Paillier encryption-decryption algorithms associated with party P_i; the public key is specified below. Throughout, when we say that some party broadcasts a message, we mean that the party simply sends the message to all other parties.

Key-Generation.

As in the basic protocol, Each P_i samples a local random secret share $x_i \leftarrow \mathbb{F}_q$ of the (master) secret key $x = \sum_i x_i$ and then reveals $X_i = g^{x_i}$ by committing and then decommitting to the group-element in a sequential fashion. In addition, each party P_i broadcasts a Schnorr NIZK (non-interactive zero-knowledge proof of knowledge) of x_i.

Auxiliary Info & Key-Refresh.

Each P_i locally generates a Paillier key N_i and sends it to the other parties together with a NIZK that N_i is well constructed (i.e., that it is a product of suitable primes). Next, each P_i chooses a random secret sharing of $0 = \sum_j x_j$ and computes $X'_j = g^{x'_j}$ and $C'_j = \text{enc}_j(x'_j)$, for every j, including himself. Each P_i then broadcasts (X'_j, C'_j), together with a NIZK that the plaintext value of C'_j modulo q is equal to the exponent of X'_j. The parties update their key shares by setting $x'_i = x_i + \sum_j \text{dec}_j(C'_j) \mod q$ if all the proofs are valid and $\prod_k X'_j = \text{id}_G$, for every j.

Pre-Signing.

One technical innovation that differentiates our protocol from [31] is our use of the Paillier cryptosystem as a commitment scheme. Namely, the process of encrypting values under the parties’ own public keys yields a commitment scheme that is perfectly binding and computationally hiding (as long as Paillier is semantically secure). Therefore, in the protocol we instruct each party to commit to γ_i and k_i by encrypting those values under their own keys and broadcast $G_i = \text{enc}_i(\gamma_i)$ and $K_i = \text{enc}_i(k_i)$. Concurrently, the parties initiate the share-computation phase (for $x_jk_i = \alpha_{i,j} + \beta_{j,i}$ and $\gamma_jk_i = \alpha_{i,j} + \beta_{j,i}$), while proving in zero-knowledge that the values used in the multiplication are the same as the values encrypted in G_i, K_i, as well as the exponent of the public key-share $X_i = g^{x_i}$. Finally, when the aforementioned share-computation phase terminates, the parties communicate an additional message to obtain information for computing the point $R = g^{k^{-1}} \in G$ on the curve which corresponds to the nonce of the (future) signature, while proving in zero-knowledge that the relevant message is consistent with the committed values K_i, G_i and X_i. At the end of the presigning phase, each party P_i stores in memory the tuple (k_i, χ_i, R), i.e. the share k_i of k (i.e. $\sum_i k_i = k$), the share χ_i of kx (i.e. $\sum_i \chi_i = kx$), and the nonce $R = g^{k^{-1}} \in G$.

4This instruction may appear rather superfluous, but it is important to our security analysis; it allows extraction of the adversary’s randomness.

5Notice that the ciphertexts are computationally hiding and thus the adversary cannot correlate his own k’s and γ’s with the honest parties’ values.
The advantage of using the Paillier cryptosystem as a commitment scheme is twofold. On one hand, Paillier ciphertexts are amenable to Schnorr-type proofs for proving the correctness of a prescribed computation. On the other hand, in the security analysis, it allows the simulator to extract the adversary’s secrets, because the corrupted parties’ Paillier keys are extracted during the preceding auxiliary information phase. We expand on this point in the following subsection.

The main purpose of the ZK-proofs is to bypass the security pitfalls (also highlighted in [31] and [45]) that arise from using Paillier encryption (which resides in a ring of integers modulo an RSA modulus) to derive group elements on the elliptic curve associated with ECDSA. In more detail, malicious choices of \(k \)'s and \(\gamma \)'s may allow the adversary to probe bits of the honest parties’ secrets which may have devastating effect. To remedy this, similarly to [31, 45], we use ZK-range proofs with purpose of “forcing” the adversary to choose values from a suitable range, thus preventing the aforementioned attack. For this purpose we devise new and more efficient range proofs, taking advantage of the use of Paillier encryption as a perfectly binding commitment.

In summary, by virtue of the “Paillier commitments” and the accompanying ZK-proofs, party \(P_i \) is confident that the tuple \((R, k_i, \chi_i) \) is well-formed at the end of pre-signing phase, and there is no need for additional communication rounds to verify the correctness of the tuple, as opposed to [31, 45, 28, 21].

Signing. Once a message \(msg \) is known, to generate a signature for pre-signing data \((R, k_i, \chi_i) \), each \(P_i \) sets \(m = H(msg) \), computes \(\rho = R_{x-axis} \), and sends \(\sigma_i = k_i m + \rho \chi_i \mod q \) to all parties. After receiving the other parties’ sigmas, the parties output the signature \((\rho, \sum_i \sigma_i) = (\rho, k(m + \rho x)) \).

1.2.4 Online vs Non-Interactive Signing

Online Signing. For interactive (online signing), the parties simply run the pre-signing stage followed by the signing stage, for a total of 4 rounds.

Non-interactive Signing. To be able to sign non-interactively, the parties need to prepare some number of pre-signatures in an offline stage. That is, for some pre-signing parameter \(L \in \mathbb{N} \), the parties run the pre-signing phase \(L \)-times concurrently and obtain pre-signing data \(\{(\ell, R_{\ell}, k_{i\ell}, \chi_{i\ell})\}_{\ell=1,\ldots,L} \). Later, for each signature request using pre-signing data \((\ell, R_{\ell}, k_{i\ell}, \chi_{i\ell}) \) and message \(msg \), the parties run the signing phase for the relevant input to generate a signature. The parties then erase the pre-signing tuple \((\ell, \ldots) \). It is important to make sure that, as part of the refresh stage, any unused pre-signatures are discarded.\(^6\)

Remark 1.1. It is stressed that the security analysis of the non-interactive protocol is different than the online protocol, because the signature nonces (the \(R_{\ell}'s \)) are known well in advance of the corresponding messages to be signed. As mentioned earlier, to prove security we rely on a stronger assumption about the unforgeability of the underlying (non-threshold) scheme, and we present it in more detail in the next section.

1.2.5 Security

The present section assumes some familiarity with the ideal-vs-real paradigm and the UC-framework.

Real-vs-Ideal Paradigm & UC. We prove security via the real-vs-ideal paradigm and the Universal Composability framework. Namely, we show that our protocol emulates an ideal process involving an idealized version of the task at hand, and we prove that for every adversary attacking the protocol, there is an ideal adversary (referred to as a simulator) that achieves the same goals. In the non-UC (standalone) framework, this is done using the adversary’s code and by extracting the adversary’s secrets (typically via rewinding).

The UC-framework augments the above paradigm with an entity, called the environment, that interacts with the adversary (in the real world) or the simulator (in the ideal world), together with the parties in the computation. The goal of the environment is to guess which process (real or ideal) is executed. If no environment can tell the difference between the real and ideal processes, it follows that the protocol is secure even “in the wild”; i.e. even when it is composed arbitrarily with other (cryptographic or non-cryptographic) components of some larger system.

\(^6\)Alternatively, it is possible to keep the presigning data as long as it is appropriately refreshed, i.e. by re-randomizing the pair \((k_i, \chi_i)\).
One major technical difference between standalone-secure and UC-secure protocols is that, in the security analysis of the latter, the simulator’s arsenal of extraction techniques lacks rewinding. This typically makes the protocol more complicated because it requires tools that are amenable to so-called online extraction (see e.g. the non-rewinding version of Schnorr’s NIZK proof of knowledge in Fischlin [29]).Disallowing the rewinding technique in the security analysis is also one of the major obstacles towards achieving security against adaptive party corruptions.

UC-Secure Threshold ECDSA vs Threshold Signature. One important difference between our security proof and the simulation-based security proof of [45, 28] is that our protocol UC-realizes a “generic” ideal threshold signature functionality, rather than the ECDSA functionality per se. We opted for the former for the following reasons. First, it captures more accurately the purpose of our protocol; our goal is to compute unforgeable signatures that are verifiable with the ECDSA algorithm, rather than realizing the ECDSA functionality itself. Second, and more importantly, it allows us to reintroduce the rewinding technique in the security analysis, which greatly simplifies both the protocol and the security analysis, as we explain next.

Threshold Signature Ideal Functionality & UC-simulation. We define an ideal threshold signature functionality modeled after the (non-threshold) signature functionality of Canetti [11]. The definition of the functionality aims at capturing the essence of any threshold signature scheme. Namely (and very loosely):

1. Authorized sets of parties may generate valid signatures for any given message.
2. Unauthorized sets of parties cannot compute valid signatures for messages that were never signed before.

We stress that the ideal functionality is utterly oblivious to the format of the signature scheme (there are effectively no private/public keys). Consequently, the UC simulator is straightforward: It runs the programs of the uncorrupted parties without modification, interacting with the environment in away that is distributed identically as in the real system — as long as the environment doesn’t manage to forge a signature. Indeed, as long as the environment does not forge a signature, the simulation is perfect.

To demonstrate the validity of the simulation, it remains to show that the environment cannot forge signatures for some message that was never signed before; this is the crux of our security proof. Before we describe the proof, we stress that here we are only interested in demonstrating validity of the UC simulation, by way of reduction to the hardness of the underlying assumptions. These reductions are allowed to “take the environment offline” and employ the entire arsenal of extraction techniques, including rewinding. What’s more, this approach gives full power to the proof over the random oracle, so that any reduction may suitably program the environment’s queries to the random oracle, as long as these were never queried before.

Unforgeability Proof. We show unforgeability via reduction to the unforgeability of non-threshold ECDSA. In more detail, we consider the following experiments involving a simulator attempting to simulate the environment’s interaction with the honest parties.

1. In the first experiment, the simulator follows the specifications of the protocol except that:

 (a) The simulator samples an ECDSA key-pair \((x, X)\) and fixes the public key of the threshold protocol to \(X\) (this is achieved by rewinding the environment).

 (b) The simulator extracts the corrupted parties’ Paillier keys (this is achieved by programming the random oracle).

 (c) The simulator never decrypts the ciphertexts encrypted under the honest parties’ Paillier keys. Rather, to carry on the simulation, the simulator extracts the relevant values from the corrupted parties’ messages, using the Paillier keys extracted in Item 1b.

 (d) To compute the honest parties’ ZK-proofs, the simulator invokes the zero-knowledge simulator to generate valid proofs, and programs the random oracle accordingly.

2. The second experiment is identical to the first one except that:
(a) At the beginning of the experiment, the simulator picks a random honest party that is henceforth deemed as special (in fact, to handle adaptive corruptions, this random party is chosen afresh every time the key-refresh phase is executed. If the environment decides to corrupt the special party, then the experiment is reset to the last preceding key-refresh; by rewinding the environment).

(b) Every time an honest party is instructed to encrypt a value under the special party’s Paillier key and send it to the corrupted parties, the simulator sends a random encryption of 0 instead.

3. The third experiment is similar to the second one, except that the simulation is carried out without knowledge of the special party’s secrets, using a standard/enhanced ECDSA oracle.

We show that our scheme is unforgeable by showing that if an environment forges signatures in an execution of our protocol, then the environment also forges signatures in all three experiments above, and from the third experiment we conclude that the environment forges signatures for the plain (non-threshold) ECDSA signature scheme, in contradiction with its presumed security.

The first two experiments are stepping stones towards proving that the environment forges in the third experiment. In more detail, the real execution and the first experiment are statistically close as long as all the ZK-proofs are sound (and the simulator extracts the right values). The first and the second experiment are computationally close as long as the Paillier cryptosystem is semantically secure. Finally, the second and the third experiment are identical (in a perfect sense).

Dealing w/ Adaptive Party Corruptions. To show that our protocol achieves security against adaptive party corruption, it is enough to argue that experiments 2 & 3 terminate. Assuming CDR and strong-RSA, our analysis yields that both experiments terminate in time quasi-proportional to the number of parties, and the environment forges signatures in the third experiment, in contradiction with the presumed security of plain ECDSA. Consequently, under suitable cryptographic assumptions, unless the environment corrupts all parties simultaneously in-between key-refresh phases, our scheme is unforgeable.

Overall UC-Security of our Protocol. From the above, it follows that if the ECDSA signature scheme is existentially unforgeable, then the online variant of our protocol UC-realizes the ideal signature functionality. Similarly, if ECDSA is enhanced existentially unforgeable, then the offline variant of our protocol UC-realizes the ideal signature functionality.

We remind the reader that existential unforgeability is defined via a game where a prospective forger is given access to a signing oracle allowing the attacker to sign (arbitrary) messages of his own choosing. The attacker wins the game if he manages to generate a valid signature for a previously unsigned message. We define an enhanced variant of the unforgeability game where the data of the signature that is independent of the message (i.e. g^{k-1}, henceforth referred to as the signature’s nonce) can be queried by the attacker before producing a message to be signed; that way the attacker can potentially choose messages for the signing oracle that are correlated with the random nonce, which may be useful towards generating a forgery.

Evidence for Enhanced Unforgeability. To support our assumption that ECDSA is enhanced existentially unforgeable, we show that it holds in the following idealized model:

1. In the random oracle model, as long as not too-many nonces are queried in advance, and standard (non-enhanced) ECDSA is existentially unforgeable.

2. In the random oracle and generic group model, unconditionally.\(^7\)

Both of the above are shown via reduction. For Item 1, the reduction simulates the random oracle and attempts to guess the messages the adversary is going to request signatures for; this is why not too-many nonces may be queried in advance, since the guessing probability decreases (super) exponentially. For Item 2, the reduction simulates the group as if it were a free-group generated by two base-points G and X (corresponding to the group-generator and ECDSA public key, respectively). Since the simulated (free) group is indistinguishable from a generic group, it follows that any forgery exploits a weakness in the hash-function, which we rule out by assumption.

\(^7\)To be more precise, we show that any generic forger finds x, y such that $\mathcal{H}(x)/\mathcal{H}(y) = e$, for a random $e \leftarrow \mathbb{F}_q$, where \mathcal{H} denotes the hash-function. We conjecture that the latter is hard also for the actual implementation of ECDSA involving SHA.
1.2.6 Non-Interactive Zero-Knowledge

Our protocol makes extensive use of Non-Interactive Zero-Knowledge (NIZK) via the standard technique of compiling three-move zero-knowledge protocols (also known as Σ-protocols) with the Fiat-Shamir transform (FS), i.e. the Verifier’s messages are computed by the Prover himself by invoking a predetermined hash function.

In the random-oracle model, the Fiat-Shamir transform gives rise to NIZK proof-systems. Furthermore, because we completely avoid the need for “online extraction” (c.f. Section 1.2.5), our use of the Fiat-Shamir transform does not interfere with universal compositability, and our protocol is UC as described.

We conclude the overview of our techniques by presenting a vanilla version of the (interactive) zero-knowledge technique we employ. The technique is somewhat standard [3, 7, 8, 30, 46]; we spell it out here for convenience. However, the analysis is somewhat complicated, and it is not crucial for understanding our threshold signature protocol. Thus the present section may be skipped, if so desired.

Paillier & Strong-RSA. We recall that Paillier ciphertexts have the form $C = (1 + N)^x r^N \mod N^2$, where N denotes the public key, $x \in \mathbb{Z}_N$ the plaintext, and r is a random element of \mathbb{Z}_N^*. We further recall the strong-RSA assumption: for an RSA modulus N of unknown factorization, for uniformly random $y \in \mathbb{Z}_N$, it is infeasible to find (x, e) such that $e > 1$ and $x^e = y \mod N$. Finally, before we describe the zero-knowledge technique, we (informally) define ring-Pedersen commitments.\(^8\)

Definition 1.2 (Ring-Pedersen – Informal). Let N be an RSA modulus and let $s, t \in \mathbb{Z}_N^*$ be non-trivial quadratic residues. A ring-Pedersen commitment of $m \in \mathbb{Z}_N$ with public parameters (N, s, t) is computed as $C = s^m t^\rho \mod N$ where $\rho \leftarrow \mathbb{Z}_N$.

Vanilla ZK Range-Proof. Consider the following relation:

$$R = \{(C_0, N_0, C_1, N_1, s, t; \alpha, \beta, \gamma) \mid C_0 = (1 + N_0)^\alpha r^{N_0} \mod N_0^2 \land C_1 = s^\alpha t^\beta \mod N_1 \land \alpha \in \pm 2^\ell\}.$$

In words, the Prover must show that the Paillier plaintext of C_0 is equal to the hidden value in the ring-Pedersen commitment C_1, and that it lies in the range $\pm 2^\ell = [-2^\ell, +2^\ell]$ where $2^\ell \ll N_0, N_1$. It is assumed that the Paillier modulus N_0 was generated by the Prover and the ring-Pedersen parameters (N_1, s, t) were generated by the Verifier. We further assume that N_0 and N_1 were generated as products of suitable\(^9\) primes and that s and t are non-trivial quadratic residues in \mathbb{Z}_N^*. This assumption does not incur loss of generality, since in the actual protocol we instruct the parties to prove in zero-knowledge that all the parameters were generated correctly.\(^10\)

We now turn to the description of the ZK-proof for the relation R under its interactive variant (the actual proof is compiled to be non-interactive using the Fiat-Shamir transform). We perform a Schnorr-type proof as follows: the Prover encrypts a random value γ as $D_0 = (1 + N_0)^\gamma \rho^{N_0} \mod N_0^2$ for suitable random ρ, computes a ring-Pedersen commitment $D_1 = s^\gamma t^\delta \mod N_1$ to γ for suitable random δ, and sends (D_0, D_1) to the Verifier. The Verifier then replies with a challenge $e \leftarrow \pm 2^\ell$ and the Prover solves the challenge by sending $z_1 = \gamma + e\alpha$. The Verifier accepts only if z_1 is in a suitable range and passes two equality checks (one for the encryption and one for the commitment). Intuitively, the Prover cannot fool the Verifier because “the only way” for the Prover to cheat is knowing the order of \mathbb{Z}_N^*, which was secretly generated by the Verifier and therefore would violate the strong-RSA assumption. In more detail:

1. The Prover computes $D_0 = (1 + N_0)^\gamma \rho^{N_0} \mod N_0^2$ and $D_1 = s^\gamma t^\delta \mod N_1$, for random elements $\gamma \leftarrow \pm 2^\ell + \epsilon$, $\delta \leftarrow \pm N_1 \cdot 2^\ell$ and $\rho \leftarrow \mathbb{Z}_N^*$, and sends (D_0, D_1) to the Verifier.

2. The Verifier replies with $e \leftarrow \pm 2^\ell$.

3. The Prover computes

$$\begin{align*}
z_1 & = \gamma + e\alpha \\
z_2 & = \delta + e\beta \\
w & = \rho \cdot r^e \mod N_0
\end{align*}$$

and sends (z_1, z_2) to the Verifier.

\(^8\)We use the prefix "ring" to distinguish between "group" Pedersen commitments which reside in groups of known order.

\(^9\) N_0 and N_1 should be bi-primes obtained as products of safe primes.

\(^10\) In reality, for efficiency reasons, we prove much weaker statements that are sufficient for our purposes.
• Verification: Accept if the $z_1 \in \pm 2^{t+\varepsilon}$ and $(1 + N_0)^z w^N = C_0' \cdot D_0 \mod N_0^2$ and $s^{z_1} t^{z_2} = C_1' \cdot D_1 \mod N_1$.

We remark that there is a discrepancy between the range-check of z_1 and the desired range by a (multiplicative factor) of 2^t, referred to as the slackness-parameter; this is a feature of the proof since the range of α is only guaranteed within that slackness-parameter. We now turn to the analysis of the ZK-proof (completeness, honest verifier zero-knowledge & soundness).

It is straightforward to show that the above protocol satisfies completeness and (honest-verifier) zero-knowledge with some statistical error. The hard task is showing soundness [8, 30, 46]. Following the standard honest verifier zero-knowledge & soundness, only guaranteed within that slackness-parameter. We now turn to the analysis of the ZK-proof (completeness, honest verifier zero-knowledge & soundness).

Removing the Computational Assumption in the ZK-Proof. We point out that there is a somewhat standard way [3, 4, 7] to tweak the above ZK-proof to obtain an unconditional extractor (that does not rely on strong-RSA or any other hardness assumption), at the expense of higher communication costs.\(^{13}\) Consider the relation

$$R = \{(C_0, N_0; \alpha, r) \mid C_0 = (1 + N_0)^{\alpha} r N_0 \mod N_0^2 \land \alpha \in \pm 2^t\}.$$

Notice that it’s the same as the previous relation except that we got rid of the ring-Pedersen commitment. Then, by removing D_1 and z_2 from the protocol above, and restricting $e \leftrightarrow \{0, 1\}$ (instead of $\pm 2^t$), we obtain a zero-knowledge proof of knowledge with unconditional extraction and soundness error $1/2$. Using the same notation as before, notice that the new protocol guarantees that Δ_e divides Δ_z, since $\Delta_e \in \{-1, 1\}$, and thus divisibility is guaranteed without any hardness assumption. On the downside, a malicious Prover may always cheat with probability $1/2$ and thus the protocol must be repeated to achieve satisfactory soundness. Since the protocol involves Paillier operations, this would incur a rather expensive (super-logarithmic) blowup factor of the proof size.

1.2.7 Extension to \(t\)-out-of-\(n\) Access Structure

In this work we mainly focus on \(n\)-out-of-\(n\) multi-party signing, and do not explicitly consider the more general \(t\)-out-of-\(n\) threshold signing for \(t < n\). Such a protocol can be derived almost immediately from our protocol herein for the online variant using Shamir secret-sharing, with relevant changes to the protocol’s components, similarly to Gennaro and Goldfeder [31].

The same technique can also be applied for the non-interactive variant, but special care must be taken regarding the preprocessed data that the parties store in memory. Specifically, each distinct set of “authorized” parties (of size at least \(t\)) should generate fresh independent preprocessed data. A party taking part in different authorized sets must not use the same preprocessed data between the sets. We stress that signing two distinct messages using dependant shared preprocessed data can enable an attack revealing the private key.

\(^{11}\)Parameter t is not completely random in \mathbb{Z}_{N_1} since it’s a quadratic residue, but this does not affect the analysis.

\(^{12}\)The argument is more subtle because we need to show that Δ_e cannot divide both values simultaneously (see Section 4.1).

\(^{13}\)A similar trick in a different context appears in Lindell [42], from Boudot [3] and Brickell et al. [4]
1.3 Additional Related Work

Threshold ECDSA. All recent protocols for threshold ECDSA follow (variants) of the blueprint described in Section 1.2.1 where the parties locally generate shares $k_1^* \ldots k_n^*$ of k [45, 28] or $k^{-1} [31, 21]$ and then jointly compute $r = g^{k-1}_{x-axis}$ and shares of $k(m + rx)$ via a pairwise-multiplication protocol in combination with the masking technique described at the beginning of the present section. Furthermore, all protocols take a somewhat optimistic approach, where the correctness of the computed values in the multiplication is verified only after the computation takes place; this is the main source of the round-complexity cost.

Security-wise, as mentioned previously, Gennaro and Goldfeder [31] show that their protocol satisfies a game-based definition of security (i.e. unforgeability of their protocol) under standard assumptions (DDH, CDR, strong-RSA, ECDSA). The protocol of Castagnos et al. [21] follows the same template, except that it replaces Paillier with an encryption scheme based on class groups [20]. Specifically, they show that their scheme is unforgeable assuming DDH and additional assumptions on class groups of imaginary quadratic fields, specifically hard subgroup membership, low-order assumption and strong root.\footnote{These assumptions may be viewed as analogues of CDR & strong-RSA for class groups.}

Lindell et al. [45] and Doerner et al. [28] show secure-function evaluation of the ECDSA functionality and prove that their respective protocols UC-realize said functionality in a hybrid model with ideal commitment and zero-knowledge, assuming DDH. However, as pointed out by the authors themselves, the practical subroutines they recommend to replace the ideal calls do not preserve Universal Composability (even in the ROM). We stress that our protocol satisfies Universal Composability as is (albeit in the Random Oracle model).

Concurrent Work. We discuss the contemporaneous works of Damgård et al. [24] and Gągol and Straszak [37]. In [24], the authors consider threshold ECDSA in the honest-majority setting and they design a protocol based on the earlier honest-majority protocol of Gennaro et al. [32]. The authors show that their protocol is UC-secure with abort and they also show how to bootstrap their protocol to achieve fairness. The authors also mention a non-interactive variant of their protocol by pre-processing all-but-one of the rounds, however no security analysis is provided for the latter.

In [37], motivated by the application of MPC wallets with large number of signers, the authors design a protocol based on [45] that also supports robustness in the form of identifiable abort by augmenting the protocol with additional ZK-proofs, and they show that their protocol is secure in a hybrid model with ideal commitments and zero-knowledge in the standalone (non-UC) setting. We stress that neither [24], nor [37] support proactive refreshment of the keys, and these protocols are not known to provide traditional threshold security against an adversary that corrupts parties adaptively as the system progresses.

Alternatives to Non-Interactive Signing. Recently there have been alternative proposals to achieve MPC signing with compatibility for offline devices (cold wallets), by building on top of the MPC system rather than incorporating such a capability within the MPC system [43, 44]. In more detail, [43, 44] have two types of trustees: singing trustees and decrypting trustees. The signing trustees are instructed to (jointly) compute an encrypted signature that is later forwarded to the decrypting trustees who jointly decrypt the ciphertext and obtain the signature. While the communication between the signers and the decryptors is indeed only unidirectional, the overall process of signature generation is still slowed down by potentially significant interaction. Furthermore, as soon as all signers are corrupted they can generate signatures on their own, without the participation of any of the decryptors.

Bootstrapping authentication for proactive security. Kondi et al. [40] consider the case where some signatories remain offline during a proactive refreshment phase, and furthermore do not have reliable authenticated communication with the other signatories when they get back online. (Indeed, in the context of cryptocurrency custody, it may be desirable for offline “cold” wallets to participate in the refreshment at their own pace, which, in turn, may open the door to attacks.) They show how such a late signatory can regain authenticated communication with the reset of the system by way of using the blockchain itself as an means to authenticate the public keys of the other signatories. This solution can be seen as a way to use the blockchain as a way to implement the persistent threshold signature scheme in the Canetti et al. [15] solution.
2 Preliminaries

Notation. Throughout the paper \mathbb{G} denotes a group of prime order q, and \mathbb{F}_q the finite field with q elements. We let \mathbb{Z}, \mathbb{N} denote the set of integers and natural number, respectively. We use sans-serif letters ($\text{enc}, \text{dec}, \ldots$) or calligraphic ($\mathcal{S}, \mathcal{A}, \ldots$) to denote algorithms. Secret values are always denoted with lower case letters (p, q, \ldots) and public values are usually denoted with upper case letters (A, B, N, \ldots). Furthermore, for a tuple of both public and secret values, e.g. an RSA modulus and its factors (N, p, q), we use a semi-colon to differentiate public from secret values (so we write $(N; p, q)$ instead of (N, p, q)). For $t \in \mathbb{Z}_N$, we write $(t) = \{t^k \mod N \mid k \in \mathbb{Z}\}$ for the multiplicative group generated by t. For $\ell \in \mathbb{Z}$, we let $\pm \ell$ denote the interval of integers $\{-|\ell|, \ldots, 0, \ldots, |\ell|\}$. We write $x \leftarrow X$ for sampling x uniformly from a set X (or according to the distribution X). Finally, let gcd : $\mathbb{N}^2 \to \mathbb{N}$ and $\phi : \mathbb{N} \to \mathbb{N}$ denote the gcd operation and Euler’s phi function, respectively.

2.1 Definitions

Definition 2.1. We say that $N \in \mathbb{N}$ is a Paillier-Blum integer iff $\gcd(N, \phi(N)) = 1$ and $N = pq$ where p, q are primes such that $p \equiv 3 \mod 4$.

Definition 2.2 (Paillier Encryption). Define the Paillier cryptosystem as the three tuple $(\text{gen}, \text{enc}, \text{dec})$ below.

1. Let $(N; p, q) \leftarrow \text{gen}(1^k)$ where p and q are $\kappa/2$-long primes and $N = pq$. Write $\text{pk} = N$ and $\text{sk} = (p, q)$.
2. For $m \in \mathbb{Z}_N$, let $\text{enc}_{\text{pk}}(m; \rho) = (1 + N)^m \cdot \rho^N \mod N^2$, where $\rho \leftarrow \mathbb{Z}_N^*$.
3. For $c \in \mathbb{Z}_{N^2}$, letting $\mu = (N)^{-1} \mod N$,
 \[\text{dec}_{\text{sk}}(c) = \left(\frac{[c(N) \mod N^2] - 1}{N}\right) \cdot \mu \mod N.\]

Definition 2.3 (ECDSA). Let (\mathbb{G}, g, q) denote the group-generator-order tuple associated with a given curve. We recall that elements in \mathbb{G} are represented as pairs (a_x, a_y), where the a_x and a_y are referred to as the projection of a on the x-axis and y-axis respectively, denoted $a_x = a|_{x\text{-axis}}$ and $a_y = a|_{y\text{-axis}}$, respectively. The security parameter below is implicitly set to $\kappa = \log(q)$.

Parameters: Group-generator-order tuple (\mathbb{G}, q, g) and hash function $\mathcal{H} : \mathcal{M} \to \mathbb{F}_q$.

1. $(X; x) \leftarrow \text{gen}(\mathbb{G}, q, g)$ such that $x \leftarrow \mathbb{F}_q$ and $X = g^x$.
2. For $\text{msg} \in \mathcal{M}$, let $\text{sign}_x(\text{msg}; k) = (r, k(m + rx)) \in \mathbb{F}^2_q$, where $k \leftarrow \mathbb{F}_q$ and $m = \mathcal{H}(\text{msg})$ and $r = g^{k^{-1}|x\text{-axis}} \mod q$.
3. For $(r, \sigma) \in \mathbb{F}^2_q$, define $\text{vrfy}_X(r, \sigma) = 1$ if $r = (g^m \cdot X^r)^{\sigma^{-1}}|_{x\text{-axis}} \mod q$.

2.2 NP-relations

Schnorr. For parameters (\mathbb{G}, g) consisting of element g in group \mathbb{G}, the following relation verifies that the prover knows the exponent of the group-element X. For PUB$_0$ of the form (\mathbb{G}, g), define
\[R_{\text{sch}} = \{(\text{PUB}_0, X; x) \mid X = g^x\}.\]

Paillier Encryption in Range. For Paillier public key N_0, the following relation verifies that the plaintext value of Paillier ciphertext C is in a desired range \mathcal{I}. Define
\[R_{\text{enc}} = \{(N_0, I, C; x, \rho) \mid x \in \mathcal{I} \land C = (1 + N_0)^x \rho^{N_0} \in \mathbb{Z}_{N_2}^*\}.\]

Group Element vs Paillier Encryption in Range. For parameters (\mathbb{G}, N) consisting of group \mathbb{G} and Paillier-Blum Modulus N, the following relation verifies that the discrete logarithm of X base g is equal to the plaintext value of C and is in range \mathcal{I}. For PUB$_1$ of the form (\mathbb{G}, N), define
\[R_{\text{log}} = \{(\text{PUB}_1, I, C, X, g; x, \rho) \mid x \in \mathcal{I} \land C = (1 + N)^x \rho^N \in \mathbb{Z}_{N^2}^* \land X = g^x\}.\]
Paillier Affine Operation with Group Commitment in Range. For parameters \((G, g, N_0, N_1)\) consisting of element \(g\) and in group \(G\) and Paillier public keys \(N_0, N_1\), the following relation verifies that a Paillier ciphertext \(C \in \mathbb{Z}_{N_0^2}^*\) was obtained as an affine-like transformation on \(C_0\) such that the multiplicative coefficient (i.e. \(\varepsilon\)) is equal to the exponent of \(X \in G\) in the range \(\mathcal{I}\), and the additive coefficient (i.e. \(\delta\)) is equal to the plaintext-value of \(Y \in \mathbb{Z}_{N_1}\), and resides in the the range \(\mathcal{J}\). For \(\text{PUB}_2\) of the form \((G, g, N_0, N_1)\), define \(R_{\text{aff-g}}\) to be all tuples \((\text{PUB}_2, \mathcal{I}, \mathcal{J}, C, C_0, Y; \varepsilon, \delta, r, \rho)\) such that

\[
(\varepsilon, \delta) \in \mathcal{I} \times \mathcal{J} \land C = C_0^\varepsilon \cdot (1 + N_0)^\delta N_0^r \in \mathbb{Z}_{N_0^2}^* \land Y = (1 + N_1)^\delta \rho N_1 \in \mathbb{Z}_{N_1^2}^* \land X = g^\varepsilon \in G
\]

Paillier Affine Operation with Paillier Commitment in Range. This is a variant of the previous relation, the only difference is that now \(\varepsilon\) is equal to the plaintext-value of \(X \in \mathbb{G}\) (rather than the exponent of \(X \in \mathbb{G}\), as before). For \(\text{PUB}_3\) of the form \((N_0, N_1)\), define \(R_{\text{aff-p}}\) to be all tuples \((\text{PUB}_3, \mathcal{I}, \mathcal{J}, C, C_0, Y; \varepsilon, \delta, r, \rho, \mu)\) such that

\[
(\varepsilon, \delta) \in \mathcal{I} \times \mathcal{J} \land C = C_0^\varepsilon \cdot (1 + N_0)^\delta N_0^r \in \mathbb{Z}_{N_0^2}^* \land Y = (1 + N_1)^\delta \rho N_1 \in \mathbb{Z}_{N_1^2}^* \land X = (1 + N_1)^\varepsilon \mu N_1 \in \mathbb{Z}_{N_1^2}^*
\]

2.2.1 Auxiliary Relations

Paillier-Blum Modulus. The following relation verifies that a modulus \(N\) is coprime with \(\phi(N)\) and is the product of exactly two suitable odd primes, where \(\phi(\cdot)\) is the Euler function.

\[
R_{\text{mod}} = \{(N; p, q) \mid \text{PRIMES } \ni p, q \equiv 3 \mod 4 \land N = pq \land \gcd(N, \phi(N)) = 1\}
\]

Ring-Pedersen Parameters. The following relation verifies that an element \(s \in \mathbb{Z}_N^*\) belongs to the (multiplicative) group generated by \(t \in \mathbb{Z}_N\).

\[
R_{\text{prm}} = \{(N, s; t; \lambda) \mid s = t^\lambda \mod N\}
\]

No Small Factor Modulus. For parameter \(\ell\), the following relation verifies that a modulus \(N\) can be factored into two numbers greater than \(2^\ell\).

\[
R_{\text{fac}} = \{(\ell, N; p, q) \mid N = pq \land p, q > 2^\ell\}
\]

Remark 2.4. In what follows, to alleviate notation when no confusion arises, we omit writing the public parameters described by \(\text{PUB}_*\).

2.3 Sigma-Protocols

In this section we define zero-knowledge protocols with focus on interactive three-move protocols, known as \(\Sigma\)-protocols. In Section 2.3.1, we compile these protocols using the random oracle via the Fiat-Shamir heuristic to generate (non-interactive) proofs. We define two notions of \(\Sigma\)-protocols. The first one is “non-extractable” zero-knowledge with standard soundness, i.e. for relation \(R\) and \(x\) such that there does not exist \(w\) satisfying \((x, w) \in R\), the probability that a cheating Prover convinces the Verifier that \(x\) satisfies the relation is negligible. The second definition augments the soundness property to enable extraction from two suitable accepting transcripts; the latter property is known as special soundness.

Definition 2.5. A \(\Sigma\)-protocol \(\Pi\) for relation \(R\) is a tuple \((P_1, P_2, V_1, V_2)\) of PPT algorithms such that

- \(P_1\) takes input \(\kappa = |x|\) and random input \(\tau\) and outputs \(A\), and \(V_1\) outputs its random input \(e\).
- \(P_2\) takes input \((x, w, \tau, e)\) and outputs \(z\), and \(V_2\) takes input \((x, A, e, z)\) and (deterministically) outputs a bit \(b\).

Security properties:

- **Completeness.** If \((x, w) \in R\) then with overwhelming probability over the choice of \(e \leftarrow V_1\) (as a function of \(|x|\)), for every \(A \leftarrow P_1(\tau)\) and \(z \leftarrow P_2(x, w, \tau, e)\), it holds that \(V_2(x, A, e, z) = 1\).
– **Soundness.** If \(x \) is false with respect to \(R \) (i.e. \((x, w) \notin R \) for all \(w \)), then for any PPT algorithm \(P^* \) and every \(A \), the following holds with overwhelming probability over \(e \leftarrow V_1 \) (as a function of \(\kappa \)): If \(z \leftarrow P^*(x, A, e) \) then \(V_2(x, A, e, z) = 0 \).

– **HVZK.** There exists a simulator \(S \) such that \((A, e, z) \leftarrow S(x) \) it holds and \(V_2(x, A, e, z) = 1 \) for every \(x \), with overwhelming probability over the random coins of \(S \). Furthermore, the following distributions are statistically indistinguishable. For \((x, w) \in R \):

\[
\begin{align*}
* & (A, e, z) \text{ where } e \leftarrow V_1 \text{ and } A \leftarrow P_1(x, w, \tau), \text{ and } z = P_2(x, w, \tau, e). \\
* & (A, e, z) \text{ where } e \leftarrow V_1 \text{ and } (A, z) \leftarrow S(x, e).
\end{align*}
\]

We use \(\Sigma \)-protos to prove that the Paillier-Blum modulus is well-formed \((R_{\text{mod}}) \) and that the ring-Pedersen Parameters are suitable \((R_{\text{prm}}) \). We denote these \(\Sigma \)-protocols \(\Pi^{\text{mod}} \) and \(\Pi^{\text{prm}} \), respectively (c.f. Sections 4.3 and 4.4). Note that for \(\Pi^{\text{mod}} \) the first message \(A \) is empty, so we can assume that \(A \) is some constant default string.

Definition 2.6. A \(\Sigma \)-protocol \(\Pi_\sigma \) with setup \(\sigma \) and special soundness for relation \(R \) is a tuple \((\Sigma, P_1, P_2, V_1, V_2) \) of PPT algorithms satisfying the same functionalities and security properties of the \(\Sigma \)-protocol definition (w/o setup and special soundness), with the following changes:

1. Setup algorithm \(S \) initially generates \(\sigma \) which is a common input to all other algorithms.
2. Soundness property is replaced with:

 – **Special Soundness.** There exists an efficient extractor \(E \) such that for any \(x \) and \(P^* \) the following holds with overwhelming probability (over the choice of \(\sigma \leftarrow S \)): If \((A, e, z), (A, e', z') \leftarrow P^*(x, w, \sigma) \) such that \(V_2(x, A, e, z) = V_2(x, A, e', z') = 1 \) and \(e \neq e' \), then for \(w' \leftarrow E(x, A, e, e', z, z') \) it holds that \((x, w') \in R \).

We remark that the Schnorr proof of knowledge (c.f. Appendix B.1) is a \(\Sigma \)-protocol with special soundness that does not take any setup parameter, and we denote the protocol \(\Pi^{\text{sch}} \) (note \(\sigma \) is omitted). By contrast, our protocols for \(R_{\text{enc}}, R_{\text{log}}, R_{\text{aff-g}} \) and \(R_{\text{aff-p}} \) (i.e. the range proofs) require a setup parameter in the form of an RSA modulus \(N \) and ring-Pedersen parameters \(s, t \in \mathbb{Z}_N \) (c.f. Sections 4.1 and 4.2 and appendices B.2 and B.3), and we denote the respective protocols as \(\Pi_{\text{enc}}, \Pi_{\text{log}}, \Pi_{\text{aff-g}} \) and \(\Pi_{\text{aff-p}} \), respectively. However, our threshold signature protocol does not assume any trusted setup, and in reality the setup parameter is generated by the parties themselves (a different one for each party). We expand on this point next.

Generating the Setup Parameter for the Range Proofs. Looking ahead to the security analysis of our threshold signature protocol, we stress that although the above definition prescribes a trusted setup for \(\sigma = (N, s, t) \), in actuality the setup parameter is generated by the Verifier (the intended recipient of the proof) and is accompanied by a ZK-proof that \(N \) is well formed (using \(\Pi^{\text{mod}} \) and the compiler below) and that \(s, t \in \mathbb{Z}_N \) are suitable (using \(\Pi^{\text{prm}} \) and the compiler below). In particular, the Prover generates distinct proofs (one for each Verifier using its personal \(\sigma \)) to prove the same statement \(x \) to multiple verifying parties.

Notation 2.7. In the sequel, we incorporate the setup parameter \(\sigma \) in the protocol description, and we write \(\Pi_\sigma^j \) for the corresponding protocol using \(P_j \)'s setup parameter (acting as the Verifier), for \(* \in \{\text{enc}, \text{log}, \text{aff-g}, \text{aff-p}\} \), and we omit mentioning the “trusted” algorithm \(S \).

2.3.1 ZK-Module

Next, we present how to compile the protocols above using a random oracle via the Fiat-Shamir heuristic. Namely, to generate a proof, the Prover computes the challenge \(e \) by querying the oracle on a suitable input, which incorporates the theorem and the first message. Then, the Prover completes the transcript by computing the last message with respect to \(e \) and communicates the entire transcript as the proof. Later, the Verifier accepts the proof if it is a valid transcript of the underlying \(\Sigma \)-protocol and \(e \) is well-formed (verified by querying the oracle as the Prover should have).

Formally, we define the compiler via the ZK-Module from Figure 2. Notice that on top of the standard prove/verify operations, the ZK-module contains a commit operation for generating the first message \(A \leftarrow P_1 \),
of the ZK-Proof. This will be useful for the signature protocol later, and specifically for the security analysis that requires extraction, because we force the adversary to commit to the first message of the (future) proof. The properties of completeness, zero-knowledge, soundness and special soundness are analogously defined for the resulting proof system.

Notation 2.8. Sometimes we omit writing the randomness τ in the tuple $(\text{prove}, \Pi, \text{aux}, x; w, \tau)$, indicating that fresh randomness is sampled.

3 Protocol

Our ECDSA protocol consists of four phases; one phase for generating the (shared) key which is run once (Figure 5), one phase to refresh the secret key-shares and to generate the auxiliary information required for signing (i.e. Paillier keys & ring-Pedersen parameters – Figure 6), one to preprocess signatures before the messages are known (Figure 7), and, finally, one for computing signature-shares once the messages are known (Figure 8).

We present two variants for our protocol; one for online signing (Figure 3) and one for non-interactive signing (Figure 4). The two protocols are different only in how the aforementioned components are combined. Namely, for the online variant, the parties are instructed to run (sequentially) the presigning and signing phases every time a new signature is requested for some message known to all parties. For the offline variant, the presigning phase is run ahead of time, before the message is known. Finally, for both protocols, the key generation is executed upon activation, and the auxiliary info and key-refresh phase is executed according to the key-refresh schedule.

Remark 3.1. Our protocol is parametrized by a hash function H, which is invoked to obtain a hash-values in domains of different length (e.g the finite field with q elements or an ℓ-size stream of bits). Formally, this is captured by introducing multiple hash functions of varying length. However, to alleviate notation, we simply write H for each (separate) hash function.

3.1 Key Generation

Next, we describe the key-generation phase. At its core, the key-generation consists of each party $P_i \in P$ sampling $x_i \gets \mathbb{F}_q$ and sending the public-key share $X_i = g^{x_i}$ to all other parties, together with a Schnorr proof of knowledge of the exponent. The public key is then set to $X = \prod_j X_j$. For malicious security, we instruct the parties to commit (using the oracle) to their public-key share X_i as well as the first message A_i of the Schnorr proof. Thus, the adversary cannot influence the distribution of the private-key by choosing an X as a function of the honest parties’ public key shares, and the adversary is committed to the first message of the Schnorr proof (i.e. A_i), which will be used to extract the witness later in the reduction.
Key-Generation: Upon activation on input \((\text{keygen}, \text{ssid}, i)\) from \(P_i\), do:
1. Run the key generation phase from Figure 5 and obtain \((\text{srid}, X, x_i)\).
2. Run the auxiliary info. phase from Figure 6 on input \((\text{aux-info}, \text{ssid}, \text{srid}, X, i)\) and do:
 - When obtaining output \((X, N, s, t)\) and \((x_i, p_i, q_i)\), set \(\text{sid} = (\text{ssid}, \text{srid}, X, N, s, t)\) and standby.

Signing: On input \((\text{sign}, \text{sid}, \ell, i, \text{msg})\) from \(P_i\), do:
1. Run the pre-signing phase from Figure 7 on input \((\text{pre-sign}, \text{sid}, 0, i)\).
2. Set \(m = H(\text{msg})\) and run the signing phase from Figure 8 on input \((\text{sign}, \text{sid}, 0, i, m)\).
 - When obtaining output standby.

Key-Refresh: On input \((\text{key-refresh}, \text{ssid}, \text{srid}, X, i)\) from \(P_i\),
1. Run the auxiliary info. phase from Figure 6 on input \((\text{aux-info}, \text{ssid}, \text{srid}, X, i)\).
2. Upon obtaining output \((X, N, s, t)\) and \((x_i, p_i, q_i)\), do:
 - Erase all pre-signing and auxiliary info of the form \((\text{ssid}, \ldots)\).
 - Reset \(\text{sid} = (\text{ssid}, \text{srid}, X, N, s, t)\) and standby.

Figure 3: Threshold ECDSA: Online Signing

Key-Generation: Same as in Figure 3.

Pre-Signing: On input \((\text{pre-sign}, \text{sid}, L, i)\) from \(P_i\), do:
1. Erase all pre-signing data \((\text{ssid}, \ldots)\).
2. Run the pre-signing phase from Figure 7 concurrently on inputs \((\text{pre-sign}, \text{sid}, 1, i), \ldots, \text{pre-sign}, \text{sid}, L, i)\).
 - When obtaining output standby.

Signing: On input \((\text{sign}, \text{sid}, \ell, i, \text{msg})\) from \(P_i\), do:
 Set \(m = H(\text{msg})\) and run the signing phase from Figure 8 on input \((\text{sign}, \text{sid}, \ell, i, m)\).
 - When obtaining output standby.

Key-Refresh: Same as in Figure 3.

Figure 4: Threshold ECDSA: Non-Interactive Signing
At a very high-level, the auxiliary info. and key-refresh phase proceeds as follows. Each party's Paillier modulus N_i obtained as a product of safe-primes, as well as ring-Pedersen parameters (s_i, t_i). Then, party \mathcal{P}_i samples a secret sharing (x_1^i, \ldots, x_n^i) of $0 \in \mathbb{F}_q$, computes $Y_i = (X_1^i = g^{x_1^i}, \ldots, X_n^i = g^{x_n^i})$, and broadcasts Y_i, N_i, s_i, t_i to all. After receiving all the relevant values, party \mathcal{P}_i encrypts each x_k^i under \mathcal{P}_k's Paillier public key N_k (including his own) and obtains ciphertexts C_k^i, for all k, which he sends to all parties (the reasoning is explained below). Then, each \mathcal{P}_i refreshes to a new private key-shares $x_i^* = x_i + \sum_j x_j^i \mod q$, updates public key-shares of all parties $X_j = X_j \cdot \prod_i X_i^j$, and stores new $(N_1, s_1, t_1), \ldots, (N_n, s_n, t_n)$. For malicious security, the aforementioned process is augmented with the following ZKP's:

(a) N_i is a Paillier-Blum Modulus and it does not admit small factors.

(b) N_i can be factored into two factors no larger than $\sqrt{N_i} \cdot 2^{c+\varepsilon}$.

Remark 3.2. We observe that the protocol instructs the parties to (verifiably) broadcast some of their messages (as opposed to messages which are “sent to all”, where equality verification is not required). For non-unanimous halting [36], this can be achieved in a point-to-point network using echo-broadcasting with one extra round of communication.

FIGURE 5 (ECDSA Key-Generation)

Round 1.

Upon activation on input $(\text{keygen}, ssid, i)$ from \mathcal{P}_i, interpret $ssid = (\ldots, G, q, g, P)$, and do:

- Sample $x_i \leftarrow \mathbb{F}_q$ and set $X_i = g^{x_i}$.
- Sample $\text{sr}id_i \leftarrow \{0, 1\}^k$ and compute $(A_i, \tau) \leftarrow \mathcal{M}(\text{com}, \Pi^{\text{ech}})$.
- Sample $u_i \leftarrow \{0, 1\}^k$ and set $V_i = H(ssid, i, \text{sr}id_i, X_i, A_i, u_i)$.

Broadcast ($ssid, i, V_i$).

Round 2.

When obtaining ($ssid, j, V_j$) from all \mathcal{P}_j, send ($ssid, i, \text{sr}id_i, X_i, A_i, u_i$) to all.

Round 3.

1. Upon receiving ($ssid, j, \text{sr}id_j, X_j, A_j, u_j$) from \mathcal{P}_j, do:
 - Verify $H(ssid, j, \text{sr}id_j, X_j, A_j, u_j) = V_j$.
2. When obtaining the above from all \mathcal{P}_j, do:
 - Set $\text{sr}id_i = \oplus_j \text{sr}id_j$.
 - Compute $\psi_i = \mathcal{M}(\text{prove}, \Pi^{\text{ech}}, (ssid, i, \text{sr}id), X_j; x_i, \tau)$.
 - Send ($ ssid, i, \psi_i $) to all \mathcal{P}_j.

Output.

1. Upon receiving ($ ssid, j, \psi_j $) from \mathcal{P}_j, interpret $\psi_j = (\hat{A}_j, \ldots)$, and do:
 - Verify $\hat{A}_j = A_j$.
 - Verify $\mathcal{M}(\text{vrfy}, \Pi^{\text{ech}}, (ssid, j, \text{sr}id), X_j, \psi_j) = 1$.
2. When passing above verification from all \mathcal{P}_j, output $X = \prod_j X_j$.

Errors. When failing a verification step or receiving a complaint from any other $\mathcal{P}_j \in \mathcal{P}$, report a complaint and halt.

Stored State. Store the following: $\text{sr}id, X = (X_1, \ldots, X_n)$ and x_i.

Figure 5: ECDSA Key-Generation

3.2 Key-Refresh & Auxiliary Information

At a very high-level, the auxiliary info. and key-refresh phase proceeds as follows. Each party \mathcal{P}_i samples a Paillier modulus N_i obtained as a product of safe-primes, as well as ring-Pedersen parameters (s_i, t_i). Then, \mathcal{P}_i samples a secret sharing (x_1^i, \ldots, x_n^i) of $0 \in \mathbb{F}_q$, computes $Y_i = (X_1^i = g^{x_1^i}, \ldots, X_n^i = g^{x_n^i})$, and broadcasts Y_i, N_i, s_i, t_i to all. After receiving all the relevant values, party \mathcal{P}_i encrypts each x_k^i under \mathcal{P}_k’s Paillier public key N_k (including his own) and obtains ciphertexts C_k^i, for all k, which he sends to all parties (the reasoning is explained below). Then, each \mathcal{P}_i refreshes to a new private key-shares $x_i^* = x_i + \sum_j x_j^i \mod q$, updates public key-shares of all parties $X_j = X_j \cdot \prod_i X_i^j$, and stores new $(N_1, s_1, t_1), \ldots, (N_n, s_n, t_n)$. For malicious security, the aforementioned process is augmented with the following ZKP’s:

(a) N_i is a Paillier-Blum Modulus and it does not admit small factors.

(b) N_i can be factored into two factors no larger than $\sqrt{N_i} \cdot 2^{c+\varepsilon}$.

20
We give a high-level overview of the pre-signing phase (Figure 7). Recall that at the end of the aux-info. phase, we point that our simulator extracts the Paillier keys of the malicious parties in Item (a) and we can thus extract all the secret values from the ciphertexts \(\{C^{k}_{i}\}_{i,k} \) without issue. The steps described above are interleaved to obtain the two-round protocol from Figure 6.

Remark 3.3. For a more efficient key-refresh (which incurs an additional round of communication) we refer the reader to the protocol of Canetti et al. [19].

3.3 Pre-Signing

We give a high-level overview of the pre-signing phase (Figure 7). Recall that at the end of the aux-info. phase, each party \(\mathcal{P}_i \) has a Paillier encryption scheme \((\text{enc}, \text{dec})\) with public key \(N_i\), as well as ring-Pedersen parameters \(s_i, t_i \in \mathbb{Z}_{N_i}^\ast\). Further recall that a ECDSA signature has the form \((r = g^{k^{-1}} \mod m, \sigma = k(m + rx)) \) where \(\mathcal{P}_i \) has an additive share \(x_i \) of \(x \).

For comparison, we also recall that the gist of the G&G protocol [31]. The parties (jointly) compute a random point \(g^{k^{-1}} \) together with local additive shares \(k_i, \chi_i \) of \(k \) and \(k \cdot x \), respectively. Further recall that \(g^{k^{-1}} \) is obtained from \((g')^{d^{-1}} \), for some jointly computed random value \(\delta = k \gamma \), where \(\gamma \) is a (hidden) jointly generated mask for \(k \). In more detail, the protocol proceeds as follows:

1. Each party \(\mathcal{P}_i \) generates local shares \(k_i \) and \(\gamma_i \), computes Paillier encryptions \(K_i = \text{enc}_i(k_i) \) and \(G_i = \text{enc}_i(\gamma_i) \), under \(\mathcal{P}_i \)'s key, and broadcasts \((K_i, G_i)\).

2. For each \(j \neq i \), party \(\mathcal{P}_i \) samples \(\beta_{i,j} \) and \(\beta_{i,j} = \mathcal{J}_r \) and computes \(D_{j,i} = \text{enc}_i(\gamma_i \cdot k_j - \beta_{i,j}) \) and \(\hat{D}_{j,i} = \text{enc}_j(x_i, k_j - \beta_{i,j}) \) using the homomorphic properties of Paillier. Furthermore, \(\mathcal{P}_i \) encrypts \(F_{j,i} = \text{enc}_i(\beta_{i,j}) \), \(\hat{F}_{j,i} = \text{enc}_i(\beta_{i,j}) \), sets \(\Gamma_i = g^{\gamma_i} \), and sends \((D_{j,i}, \hat{D}_{j,i}, F_{j,i}, \hat{F}_{j,i}) \) to all parties.

3. Each \(\mathcal{P}_i \) decrypts (and reduces modulo \(q \)) \(\alpha_{i,j} = \text{dec}_i(D_{i,j}) \) and \(\hat{\alpha}_{i,j} = \text{dec}_i(\hat{D}_{i,j}) \). and computes \(\delta_i = \gamma_i \cdot k_i + \sum_{j \neq i} \alpha_{i,j} + \beta_{i,j} \mod q \), \(\chi_i = x_i \cdot k_i + \sum_{j \neq i} \hat{\alpha}_{i,j} + \hat{\beta}_{i,j} \mod q \). Finally, \(\mathcal{P}_i \) sets \(\Gamma = \prod_j \Gamma_j \), \(\Delta_i = \Gamma^{k_i} \), and sends \(\delta_i, \Delta_i \) to all parties.

When obtaining all \(\delta_i \)'s, party \(\mathcal{P}_i \) sets \(\delta = \sum_j \delta_j \mod q \) and verifies that \(g^\delta = \prod_j \Delta_j \). If no inconsistencies are detected, \(\mathcal{P}_i \) sets \(R = g^{\delta^{-1}} \) and stores \((R, k_i, \chi_i)\). For malicious security, the aforementioned process is augmented with the following ZK-proofs:

(a) The plaintext of \(K_i \) lies in range \(\mathcal{I}_e \).

(b) The ciphertext \(D_{j,i} \) was obtained as an affine-like operation on \(K_j \) where the multiplicative coefficient is equal to the hidden value of \(G_i \), and it lies in range \(\mathcal{I}_e \), and the additive coefficient is equal to hidden value of \(F_{j,i} \), and lies in range \(\mathcal{J}_e \).

(c) The ciphertext \(\hat{D}_{j,i} \) was obtained as an affine operation on \(K_j \) where the multiplicative coefficient is equal to the exponent of \(X_i \), and it lies in range \(\mathcal{I}_e \), and the additive coefficient is equal to hidden value of \(\hat{F}_{j,i} \), and it lies in range \(\mathcal{J}_e \).

(d) The exponent of \(\Gamma_i \) is equal to the plaintext-value of \(G_i \).

Looking ahead to the security analysis, in order to simulate the protocol, it is enough to extract the \(k \)'s, \(\gamma \)'s, and \(\beta \)'s of the adversary. Since the aforementioned values are encrypted under the malicious parties’ Paillier keys, and the Paillier keys were extracted in previous phase, we can extract the desired values without issue.

Preparing Multiple Signatures. To prepare \(L \) signatures, the parties follow the steps above \(L \) times concurrently. At the end of the presigning phase, each \(\mathcal{P}_i \) stores the tuples \(\{(l, R_l, k_{i,l}, \chi_{i,l})\}_{l \in [L]} \), and goes on standby.
FIGURE 6 (Auxiliary Info. & Key Refresh)

Round 1.

On input \((\text{aux-info}, \text{sid}, i)\) from \(P_i\), do:
- Sample two 4\(\kappa\)-bit long safe primes \((p_i, q_i)\). Set \(N_i = p_i q_i\).
- Sample \(x_i, \ldots, x_i^n \leftarrow F_q\) subject to \(\sum x_i = 0\). Set \(X_i = g^x_i, Y_i = (X_i^j)_j, x_i = (x_i^j)_j\).
- Sample \(r \leftarrow Z_{\phi(N_i)}, \lambda \leftarrow Z_{\phi(N_i)}\), set \(t_i = r^2 \pmod N_i \) and \(s_i = t_i^\lambda \pmod N_i\).
- Sample \(u_i \leftarrow \{0, 1\}^\kappa\) and compute \(V_i = H(\text{sid}, i, Y_i, u_i)\).
- Compute \(\psi_i = M(\text{prove}, \Pi^{\text{mod}}, (\text{sid}, i), N; (p_i, q_i))\).
- Compute \(\psi'_i = M(\text{prove}, \Pi^{\text{mod}}, (\text{sid}, i), N; (p_i, q_i))\).
- Compute \(\psi''_i = M(\text{prove}, \Pi^{\text{pm}}, (\text{sid}, i), (N_i, s_i, t_i); \lambda)\).

Broadcast \((\text{sid}, i, V_i, N_i, s_i, t_i, \psi_i, \psi'_i, \psi''_i)\).

Round 2.

1. Upon receiving \((\text{sid}, j, V_j, N_j, s_j, t_j, \psi_j, \psi'_j, \psi''_j)\) from \(P_j\), do:
 - Verify \(N_j \geq 2^{8\kappa}\).
 - Verify \(M(\text{vrfy}, \Pi^{\text{mod}}, (\text{sid}, j), N_j; \psi_j) = 1\).
 - Verify \(M(\text{vrfy}, \Pi^{\text{mod}}, (\text{sid}, j), N_j, \psi'_j) = 1\).
 - Verify \(M(\text{vrfy}, \Pi^{\text{pm}}, (\text{sid}, j), (N_j, s_j, t_j), \psi''_j) = 1\).

2. When passing above verification for all \(P_j\), do for every \(P_k\):
 - Sample \(\rho_k \leftarrow Z_{N_k}^*\), and set \(C_i^k = \text{enc}_k(x_i^k; \rho_k)\).
 - Compute \(\psi_{j,i,k} = M(\text{prove}, \Pi^{\text{pk}}, (\text{sid}, i), (t_i, C_i^k, X_i^k, g); (x_i^k, \rho_k))\) for every \(P_j\).
 - Compute \(\pi_{j,i} = M(\text{prove}, \Pi^{\text{pk}}, (\text{sid}, i), (\ell; N_i); (p_i, q_i))\) for every \(P_j\).

Send \((\text{sid}, i, Y_i, u_i, \pi_{j,i}, (\psi_{j,i,k}, C_{j}^{i,k}))\) to each \(P_j\).

Output.

1. Upon receiving \((\text{sid}, j, Y_j, u_j, \pi_{j,i}, (\psi_{j,i,k}, C_{j}^{i,k}))\) from \(P_j\), do:
 - Verify \(\prod X_i^k = \text{id}_G\).
 - Verify \(H(\text{sid}, j, Y_j, u_j) = V_j\) and \(M(\text{vrfy}, \Pi^{\text{pk}}, (\text{sid}, i), (\ell, N_i); \pi_{i,j}) = 1\).
 - Verify \(M(\text{vrfy}, \Pi^{\text{pk}}, (\text{sid}, j), (t_i, C_i^k, X_i^k, g); \psi_{i,j,k}) = 1\) for every \(k\).

2. When passing above verification for all \(P_j\), do:
 - Set \(x_i^* = x_i + \sum \text{dec}(C_i^k) \pmod q\).
 - Set \(X_i^* = X_i \cdot \prod X_i^k\) for every \(k\).

Output \((\text{sid}, i, X_i^* = (X_i^*)^j_k, N_i = (N_i)^j_j, s = (s_j)_j, t = (t_j)_j)\).

Errors. When failing a verification step or receiving a complaint from any other \(P_j \in P\), report a complaint and halt.

Stored State. Store \(x_i^*, p_i, q_i\).

Figure 6: Auxiliary Info. & Key Refresh
Recall that P_i's secret state contains x_i, p_i, q_i such that $X_i = g^{x_i}$ and $N_i = p_i q_i$.

Round 1.

On input (pre-sign, sid, ℓ, i) from \mathcal{P}_i, interpret $sid = (\ldots, q, g, \mathbf{P}, \mathbf{X}, \mathbf{N}, s, t)$, and do:

- Sample $k_i, \gamma_i \leftarrow \mathbb{F}_q, \rho_i, \nu_i \leftarrow \mathbb{Z}_N$ and set $G_i = \text{enc}_i(\gamma_i; \nu_i), K_i = \text{enc}_i(k_i; \rho_i)$.
- Compute $\psi_0^j = M(\text{prove}, \Pi^0_{\text{enc}}, (sid, i), (\mathcal{I}_t, K_i); (k_i, \rho_i))$ for every $j \neq i$.
- Broadcast (sid, i, K_i, G_i) and send (sid, i, ψ_0^j) to each \mathcal{P}_j.

Round 2.

1. Upon receiving $(sid, j, K_j, G_j, \psi_0^j)$ from \mathcal{P}_j, do:
 - Verify $M(\text{vrfy}, \Pi^0_{\text{enc}}, (sid, j), (\mathcal{I}_t, K_j), \psi_0^j) = 1$.
2. When passing above verification for all \mathcal{P}_j, set $\Gamma_i = g^{\gamma_i}$ and do:
 - For every $j \neq i$, sample $r_{i,j}, s_{i,j}, \hat{r}_{i,j}, \hat{s}_{i,j} \leftarrow \mathbb{Z}_N$, $\nu_{i,j} \leftarrow \mathbb{F}_q$ and compute:
 - $D_{i,j} = (\gamma_i \otimes K_j) \oplus \text{enc}_i(-\hat{\beta}_{i,j}, s_{i,j})$ and $F_{i,j} = \text{enc}_i(\hat{\beta}_{i,j}, r_{i,j})$.
 - $\psi_{i,j} = M(\text{prove}, \Pi^\text{aff}, (sid, i), (\mathcal{I}_t, \mathcal{J}_t, D_{i,j}, K_j, F_{i,j}, G_j); (\gamma_i, \hat{\beta}_{i,j}, s_{i,j}, r_{i,j}, \nu_i))$.
 - $\psi_{i,j}^j = M(\text{prove}, \Pi^\text{aff}, (sid, i), (\mathcal{I}_t, \mathcal{J}_t, D_{i,j}, K_j, F_{i,j}, X_j); (x_i, \hat{\beta}_{i,j}, \hat{s}_{i,j}, \hat{r}_{i,j}))$.
 - $\psi_{i,j}^\prime = M(\text{prove}, \Pi^\text{aff}, (sid, i), (\mathcal{I}_t, G_j, \Gamma_j, g); (\gamma_i, \nu_i))$.
 - Send $(sid, i, \Gamma_i, D_{i,j}, F_{i,j}, \hat{D}_{i,j}, \hat{F}_{i,j}, \psi_{i,j}, \psi_{i,j}^j, \psi_{i,j}^\prime)$ to each \mathcal{P}_j.

Round 3.

1. Upon receiving $(sid, j, \Gamma_i, D_{i,j}, F_{i,j}, \hat{D}_{i,j}, \hat{F}_{i,j}, \psi_{i,j}, \psi_{i,j}^j, \psi_{i,j}^\prime)$ from \mathcal{P}_j, do:
 - Verify $M(\text{vrfy}, \Pi^\text{aff}, (sid, j), (\mathcal{I}_t, \mathcal{J}_t, D_{i,j}, K_j, F_{i,j}, G_j), \psi_{i,j}) = 1$.
 - Verify $M(\text{vrfy}, \Pi^\text{aff}, (sid, j), (\mathcal{I}_t, \mathcal{J}_t, \hat{D}_{i,j}, K_j, \hat{F}_{i,j}, X_j), \psi_{i,j}) = 1$.
2. When passing above verification for all \mathcal{P}_j, set $\Gamma = \prod_j \Gamma_j$ and $\Delta_i = 1^{k_i}$, and do:
 - For every $j \neq i$, set $\alpha_{i,j} = \text{dec}_i(D_{i,j})$ and $\hat{\alpha}_{i,j} = \text{dec}_i(\hat{D}_{i,j})$ and
 \[
 \begin{align*}
 \delta_i &= \gamma_i k_i + \sum_{j \neq i} (\alpha_{i,j} + \hat{\beta}_{i,j}) \mod q, \\
 \chi_i &= x_i k_i + \sum_{j \neq i} (\hat{\alpha}_{i,j} + \hat{\beta}_{i,j}) \mod q.
 \end{align*}
 \]
 - For every $j \neq i$, compute $\psi_{i,j}'' = M(\text{prove}, \Pi^\text{aff}, (sid, i), (\mathcal{I}_t, K_i, \Delta_i, \Gamma_i); (k_i, \rho_i))$.
 - Send $(sid, i, \delta_i, \Delta_i, \psi_{i,j}'')$ to each \mathcal{P}_j.

 Erase all items in memory except for the stored state.

Output.

1. Upon receiving $(sid, j, \delta_j, \Delta_j, \psi_{i,j}'')$ from \mathcal{P}_j, do:
 - Verify $M(\text{vrfy}, \Pi^\text{aff}, (sid, j), (\mathcal{I}_t, K_j, \Delta_j, \Gamma_i), \psi_{i,j}'') = 1$.
2. When passing above verification for all \mathcal{P}_j, set $\delta = \sum j \delta_j$, and do:
 - Verify $\delta^j = \prod_j \Delta_j$.
 - Set $R = \Gamma^\delta_{\text{aff}}$ and output (sid, i, R, k_i, χ_i).

 Erase all items except the stored state.

Errors. When failing a verification step or receiving a complaint from any other $\mathcal{P}_j \in \mathcal{P}$, report a complaint and halt.

Stored State. Store $\mathbf{X}, \mathbf{N}, s, t$ and (x_i, p_i, q_i).

Figure 7: ECDSA Pre-Signing
3.4 Signing

Once the (hash of the) message m is known, on input $(\text{sign}, \ell, i, m)$ for the ℓ-th revealed point on the curve, the signing boils down to retrieving the relevant data and computing the right signature share. Namely, retrieve (ℓ, R, k, χ) compute $r = R|x$-axis and send $\sigma_i = km + r\chi \mod q$ to all. Erase the tuple (ℓ, R, k, χ). See Figure 8 for full details.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8.png}
\caption{(ECDSA Signing)}
\end{figure}

\begin{tabular}{|l|}
\hline
\textbf{Round 1.} \hline
On input $(\text{sign}, sid, \ell, i, m)$, if there is record of (sid, ℓ, R, k, χ), do:
- Set $r = R|x$-axis and $\sigma_i = km + r\chi$.
- Send (sid, i, σ_i) to all P_j.
- Erase (sid, ℓ, R, k, χ) from memory. \\
\textbf{Output.} \hline
Upon receiving (sid, j, σ_j) from all P_j, do:
- Set $\sigma = \sum_j \sigma_j$.
- Verify (r, σ) is a valid signature.
Output $(\text{signature}, sid, m, r, \sigma)$. \\
\textbf{Errors.} When failing a verification step or receiving a complaint from any other $P_j \in P$, report a complaint and halt. \\
\hline
\end{tabular}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8.png}
\caption{ECDSA Signing}
\end{figure}

4 Underlying Σ-Protocols

We present the Σ-protocols associated with the NP-relations of Section 2.2. The Schnorr ZK-PoK as well as two of the protocols that are very similar to the ones below are moved to Appendix B.

4.1 Paillier Encryption in Range ZK (Π^{enc})

In Figure 9 we give a Σ-protocol for tuples of the form $(I = \pm 2^\ell, C; k, r_0)$ satisfying relation R_{enc}. Namely, the Prover claims that he knows $k \in \pm 2^\ell$ such that $C = (1 + N_0)^k \cdot r_0^{N_0} \mod N_0^2$. Let (N, s, t) be an auxiliary set-up parameter for the proof, i.e. N is a suitable (safe bi-prime) Blum modulus and s and t are random squares in \mathbb{Z}_N^* (which implies $s \in \langle t \rangle$ with overwhelming probability).

\textit{Completeness.} The protocol may reject a valid statement only if $|\alpha| \geq 2^{\ell+\varepsilon} - q2^{\ell}$ which happens with probability at most $q/(2^\ell)$.

\textit{Honest Verifier Zero-Knowledge.} The simulator samples $z_1 \leftarrow \pm 2^{\ell+\varepsilon}, z_2 \leftarrow \mathbb{Z}_{N_0}^*, z_3 \leftarrow \pm \hat{N} \cdot 2^{\ell+\varepsilon}$, and $S \leftarrow \langle t \rangle$ by $S = t^\lambda \mod \hat{N}$ where $\lambda \leftarrow \pm 2^\ell \cdot \hat{N}$, and sets $A = (1 + N_0)^{z_1} \cdot \hat{N}^{z_3} \cdot (K^{-e} \mod N_0^2}$ and $C = s^{z_1} \cdot \hat{N}^{z_3} \cdot S^{-e} \mod \hat{N}$. We observe that the real and simulated distributions are $2 \cdot q2^{-\varepsilon} + 2^{-\ell} \approx 3q2^{-\varepsilon}$ statistically close (by choosing $\ell = \varepsilon$ as we do in the analysis). This follows from Facts D.6, D.7, which imply z_1, z_3 are (each) $q2^{-\varepsilon}$ close to the real distribution, and S is $2^{-\ell}$ close to the real distribution.
FIGURE 9 (Paillier Encryption in Range ZK – Π^{enc})

- **Setup**: Auxiliary RSA modulus N and Ring-Pedersen parameters $s, t \in \mathbb{Z}_N^*$.
- **Inputs**: Common input is (N_0, K).

The Prover has secret input (k, ρ) such that $k \in \pm 2^{\ell+\epsilon}$, and $K = (1 + N_0)^k \cdot \rho^{N_0} \mod N_0^2$.

1. **Proof of Claim 4.2.**

\[
\alpha \leftarrow \pm 2^{\ell+\epsilon} \quad \text{and} \quad \begin{cases}
\mu \leftarrow \pm 2^{\ell+\epsilon} \cdot \hat{N} \\
\tau \leftarrow Z_{N_0}^* \\
\gamma \leftarrow \pm 2^{\ell+\epsilon} \cdot \hat{N}
\end{cases}
\]

and computes \[
S = s^k t^{\mu} \mod \hat{N} \\
A = (1 + N_0)^{\alpha} \cdot r^{N_0} \mod N_0^2 \\
C = s^\gamma t^{\ell} \mod \hat{N}
\]

and sends (S, A, C) to the Verifier.

2. **Verifier replies with** $e \leftarrow \pm q$

3. **Prover sends** (z_1, z_2, z_3) to the Verifier, where

\[
\begin{cases}
z_1 = \alpha + ek \\
z_2 = \tau \cdot \rho^e \mod N_0 \\
z_3 = \gamma + e\mu
\end{cases}
\]

- **Equality Checks**: Let $(S, A, C, e, z_1, z_2, z_3)$ and $(S, A, C, e', z_1', z_2', z_3')$ denote two accepting transcripts and let $(\Delta_e, \Delta_{z_1}, \Delta_{z_2}, \Delta_{z_3})$ denote the relevant differences and assume that $\Delta_e \neq 0$ does not divide N_0. Notice that if Δ_e divides Δ_{z_1} and Δ_{z_3} (in the integers), then all the values can be extracted without issue as follows: k and μ are set to Δ_{z_1}/Δ_e and Δ_{z_3}/Δ_e. Finally, ρ can be extracted from the equality $(z_2/z_2')^{N_0} = ((1 + N_0)^{-k} \cdot K)^{\Delta_e} \mod N_0^2$ and Fact D.2. Therefore, it suffices to prove the claim below.

Claim 4.1 (Fujisaki and Okamoto [30], MacKenzie and Reiter [46]). **Assuming** sRSA, **it holds that** $\Delta_e | \Delta_{z_1}$ and $\Delta_e | \Delta_{z_3}$ with probability at least $1 - \text{negl}(\kappa)$.

Define the predicate $\neg \text{extract} \equiv (\Delta_e \not| \Delta_{z_1}) \lor (\Delta_e \not| \Delta_{z_3})$. We show that if $\neg \text{extract}$ occurs with noticeable probability, then there is an algorithm S with black-box access to the Prover that can break sRSA with noticeable probability. More precisely, we show how to break sRSA as follows. The strong-RSA challenge is the second ring-Pedersen parameter t.

Claim 4.2. If $\Delta_e \not| (\lambda \Delta_{z_1} + \Delta_{z_3})$, then sRSA breaks.

Proof of Claim 4.2. Define $\delta = \langle \lambda \Delta_{z_1} + \Delta_{z_3} \rangle$ and let $\delta_e = \Delta_e / \delta$ and $\delta_2 = (\lambda \Delta_{z_1} + \Delta_{z_3} / \delta$. Notice that $(S^\delta t^{\nu_2})^{\delta_2} = t \mod \hat{N}$, where (ν_e, ν_2) are the Bézout coefficients of δ_2 and δ_e (i.e. $\nu_e \delta_e + \nu_2 \delta_2 = 1$),

\hat{N} is a random quadratic residue, and therefore computing non-trivial roots of t breaks sRSA, since t is a random quadratic residue.
since $S^δ_e = t^{δ_e}$. Deduce that the pair $(S^{α^e}, δ_e)$ is a successful response to the strong-RSA challenge, if $Δ_e \not\in \langle ωΔ_{z_1} + Δ_{z_2} \rangle$.

To conclude, we rule out (bound the probability) that $Δ_e \mid \lambda Δ_{z_1} + Δ_{z_2}$ and \negextract; it suffices to bound the probability that $(Δ_e \mid \lambda Δ_{z_1} + Δ_{z_2}) \wedge (Δ_e \not\in \langle Δ_{z_1} \rangle)$.

Write $λ = λ_0 + p_{0A}$, where $(p_0, q_0) = ((p-1)/(q-1))/2$. Since $Δ_e$ does not divide p_{0A} (because $(Δ_e, p_{0A}) = 1$ with overwhelming probability) we remark that, by Fact D.4, there exists a prime power $q^α$ such that $q^α \mid p_{0A}Δ_{z_1}$. $q^α + 1 \mid Δ_{z_2}$, and $Δ_e = (λ_0 Δ_{z_1} + Δ_{z_2}) + λ_1 p_{0A}Δ_{z_1} = 0 \mod q^α + 1$ and thus $λ_1$ is uniquely determined modulo q. On the other hand, conditioned on the Prover’s view, $λ_1$ has full entropy since $t^λ = t^{λ_0} \mod N$, since t is a quadratic residue modulo N, which means that, if $Δ_e \not\in \langle Δ_{z_1} \rangle$, then the probability that $Δ_e \mid \lambda Δ_{z_1} + Δ_{z_2}$ is at most $\frac{1}{n} + \text{negl} \leq \frac{1}{δ} + \text{negl}$ over the Prover’s coins, where the negligible term is of the form $(p + q) \cdot \text{polylog}(N)/N$. In conclusion, the probability that $Δ_e \not\in \langle Δ_{z_1} \rangle$ or $Δ_e \not\in \langle Δ_{z_2} \rangle$ is at most the probability of solving the RSA challenge divided by $(1/2 - \text{negl})$, which is negligible overall. In more detail,

\[
\text{Pr}[\neg \text{extract}] = \text{Pr}[Δ_e \mid (λ Δ_{z_1} + Δ_{z_2}) \wedge \neg \text{extract}] + \text{Pr}[Δ_e \not\in \langle Δ_{z_1} \rangle \wedge \neg \text{extract}] + \text{Pr}[\text{sRSA}]
\]

\[
\leq (1/2 + \text{negl}) \cdot \text{Pr}[\text{extract}] + \text{Pr}[\text{sRSA}]
\]

\[
\leq (1/2 + \text{negl}) \cdot \text{Pr}[\neg \text{extract}] + \text{Pr}[\text{sRSA}]
\]

\[
\]

\[

4.2 \text{ Paillier Operation with Group Commitment in Range ZK (Π^{aff-g})}

In Figure 10 we give a Σ-protocol for tuples of the form $(I = \pm 2^ε, J = \pm 2^ε, C, Y, X; x, y, k, r_0)$ satisfying relation R_{k, r_0}. Namely, the Prover claims that he knows $x \in \pm 2^ε$, $y \in \pm 2^ε$ in range corresponding to group-element $X = g^x$ (on the curve) and Paillier ciphertext $Y = \text{enc}_{N_λ}(y) \in \mathbb{Z}_{N^2_λ}$ and $C, D \in \mathbb{Z}_{N_λ}^2$, such that $D = C^x(1 + N_0)^{y} \cdot ρ^{N_0} \mod N_0$, for some $ρ \in \mathbb{Z}_{N_0}$. Let (N, s, t) be an auxiliary set-up parameter for the proof, i.e N is a suitable (safe bi-prime) Blum modulus and s and t are random squares in \mathbb{Z}_N^* (which implies $s \in (t)$ with overwhelming probability).

Completeness. The protocol may reject a valid statement only if $|α| \geq 2^{ε+ε} - q2^ε$ or $|β| \geq 2^{ε+ε} - q2^ε$, which happens with probability at most $q^2/2^{ε-1}$, by union bound.

Honest Verifier Zero-Knowledge. The simulator samples $z_1 \leftarrow \pm 2^{ε+ε}, z_2 \leftarrow \pm 2^{ε+ε}, z_3 \leftarrow \pm N \cdot 2^{ε+ε}, z_4 \leftarrow \pm N \cdot 2^{ε+ε}, w \leftarrow \mathbb{Z}_{N_0}$ and $(S, T, ε) \leftarrow (s, t)$ by $S = t^{α} \mod N, T = t^{β} \mod N \mod N_0, A = C^{z_1}(1 + N_0)^{z_2}w^{N_0} \cdot D^{−ε} \mod N_0$ and $B = g^{z_3}X^{−ε} \in G$ and $E = s^{z_1}t^{z_3} \cdot S^{−ε} \mod N$ and $F = s^{z_2}t^{z_4} \cdot S^{−ε} \mod N$. We observe that the real and simulated distributions are at most $4q \cdot 2^{−ε}$ far apart, by union bound and Facts D.6, D.7.

Soundness. The soundness property follows from special soundness (see below) and the and the fact that the set $\{(e, e' \in (±q)^2) \text{ s.t. } e - e' \text{ divides } N_1\}$ is negligibly small compared to $(±q)^2$ (since the divisors of N_1 are greater than $2^{ε} \approx q$).

Special Soundness. Let $(S, T, A, B, E, F, e, z_1, z_2, z_3, z_4, w, w_y)$ and $(S, T, A, B, E, F, e', z_1', z_2', z_3', z_4', w', w_y')$ denote two accepting transcripts such that $e \neq e'$ and let $Δ_e, Δ_{z_1}, Δ_{z_2}, Δ_{z_3}, Δ_{z_4}$ denote the relevant differences, and it is assumed that $Δ_e$ does not divide N_1. Similarly to the previous range proof, we show that $Δ_e$ divides (over the integers Z) each one of $Δ_{z_1}, Δ_{z_2}, Δ_{z_3}, Δ_{z_4}$ and all the secrets can be extracted without issue. Using the same argument as in the previous proof, we observe that the probability that $Δ_e$ does not divide $Δ_{z_1}$, or $Δ_{z_2}$ is at most $\Pr[\text{sRSA}] / (\frac{1}{2} - \text{negl})$ and the probability that $Δ_e$ does not divide $Δ_{z_2}$ or $Δ_{z_3}$ is at most $\Pr[\text{sRSA}] / (\frac{1}{2} - \text{negl})$. Therefore, by union bound, we conclude that

\[
\text{Pr}[\neg \text{extract}_1 \lor \neg \text{extract}_2] \leq 2 \cdot \Pr[\text{sRSA}] \cdot \left(\frac{1}{2} - \text{max}(\text{negl}_1, \text{negl}_2)\right)^{-1}
\]

where $\neg \text{extract}_j$ denotes the event $(Δ_e \not\in \langle Δ_{z_j} \lor Δ_e \not\in \langle Δ_{z_{j+2}} \rangle)$.

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
Figure 10: Paillier Affine Operation with Group Commitment in Range ZK – $\Pi^{\text{aff-g}}$

- **Setup:** Auxiliary Paillier Modulus \hat{N} and Ring-Pedersen parameters $s, t \in \mathbb{Z}_{\hat{N}}^*$.
- **Inputs:** Common input is $(G, g, N_0, N_1, C, D, Y, X)$ where $q = |G|$ and g is a generator of G.

The Prover has secret input (x, y, ρ, ρ_y) such that $x \in \pm 2^\ell$, $y \in \pm 2^{\ell'}$, $g^x = X$, $(1 + N_1)y \rho_y N_1^y = Y \mod N_1^2$, and $D = C^x(1 + N_0)^y \cdot \rho_N^N \mod N_0^2$.

1. Prover samples $\alpha \leftarrow \pm 2^\ell + \varepsilon$ and $\beta \leftarrow \pm 2^{\ell'} + \varepsilon$ and

\[
\begin{align*}
 r &\leftarrow Z_{N_0}, \quad \tau_y \leftarrow Z_{N_1} \\
 \gamma &\leftarrow \pm 2^\ell + \varepsilon \cdot \hat{N}, \quad m \leftarrow \pm 2^{\ell'} \cdot \hat{N} \\
 \delta &\leftarrow \pm 2^{\ell + \ell'} + \varepsilon \cdot \hat{N}, \quad \mu \leftarrow \pm 2^{\ell'} \cdot \hat{N}
\end{align*}
\]

and computes

\[
\begin{align*}
 A &= C^x \cdot (1 + N_0)^\beta \cdot r_{N_0} \mod N_0^2 \\
 B_x &= g^\alpha \in G \\
 B_y &= (1 + N_1)^\beta \cdot r_y N_1^y \mod N_1^2 \\
 E &= s^a t^\gamma, \quad S = s^x t^m \mod \hat{N} \\
 F &= s^\beta t^\delta, \quad T = s^y t^\mu \mod \hat{N}
\end{align*}
\]

and sends (S, T, A, B, E, F) to the Verifier.

2. Verifier replies with $e \leftarrow \pm q$.

3. Prover sends $(z_1, z_2, z_3, z_4, w, w_y)$ to the Verifier where

\[
\begin{align*}
 z_1 &= \alpha + cx \\
 z_2 &= \beta + cy \\
 z_3 &= \gamma + cm \\
 z_4 &= \delta + e\mu \\
 w &= r \cdot \rho^e \mod N_0 \\
 w_y &= r_y \cdot \rho_y^e \mod N_1
\end{align*}
\]

- **Equality Checks:**

\[
\begin{align*}
 (1 + N_0)^{z_1} w_{N_0} &= A \cdot D^e \mod N_0^2 \\
 g^{z_1} &= B_x \cdot X^e \in G \\
 (1 + N_1)^{z_2} w_{N_1} &= B_y \cdot Y^e \mod N_1^2 \\
 s^{z_1} t^{z_3} &= E \cdot S^e \mod \hat{N} \\
 s^{z_2} t^{z_4} &= F \cdot T^e \mod \hat{N}
\end{align*}
\]

- **Range Check:**

\[
\begin{align*}
 z_1 \in \pm 2^\ell + \varepsilon \\
 z_2 \in \pm 2^{\ell'} + \varepsilon
\end{align*}
\]

The proof guarantees that $x \in \pm 2^\ell + \varepsilon$ and $y \in \pm 2^{\ell'} + \varepsilon$.
4.3 Paillier-Blum Modulus ZK (Π^mod)

In Figure 11 we give a Σ-protocol for tuples $(N; p, q)$ satisfying relation R_{mod}. The Prover claims that N is a Paillier-Blum modulus, i.e. $\gcd(N, \phi(N)) = 1$ and $N = pq$ where p, q are primes satisfying $p, q \equiv 3 \mod 4$. The following protocol is a combination (and simplification) of van de Graaf and Peralta [52] and Goldberg et al. [34].

FIGURE 11 (Paillier-Blum Modulus ZK – Π^mod)

- **Inputs:** Common input is N. Prover has secret input (p, q) such that $N = pq$.
- 1. Prover samples a random $w \leftarrow \mathbb{Z}/N$ of Jacobi symbol -1 and sends it to the Verifier.
- 2. Verifier sends $\{y_i \leftarrow \mathbb{Z}/N\}_{i \in [m]}$
- 3. For every $i \in [m]$ set:
 - $x_i = \sqrt[4]{y_i}$ mod N, where $y_i = (-1)^{a_i}w^{b_i}y_i$ for unique $a_i, b_i \in \{0, 1\}$ such that x_i is well defined.
 - $z_i = y_i^{\frac{N-1}{2}} \mod N$

Send $\{(x_i, a_i, b_i), z_i\}_{i \in [m]}$ to the Verifier.

- **Verification:** Accept iff all of the following hold:
 - N is an odd composite number.
 - $z_i^N \equiv y_i \mod N$ for every $i \in [m]$.
 - $x_i^4 = (-1)^{a_i}w^{b_i}y_i \mod N$ and $a_i, b_i \in \{0, 1\}$ for every $i \in [m]$.

Figure 11: Paillier-Blum Modulus ZK – Π^mod

Completeness. Probability 1 by construction.

Soundness. We first observe that the probability that y_i admits an N-th root if $\langle N, \phi(N) \rangle \neq 1$ is at most $1/(N, \phi(N)) \leq 1/2$. Therefore, with probability 2^{-m}, it holds that $\langle N, \phi(N) \rangle = 1$, and, in particular, N is square-free. Next, if N is the product of more than 3 primes, the probability that $\{y_i, -y_i, wy_i, -wy_i\}$ contains a quadratic residue (which is necessary for being a quartic), for every i, is at most $(1/2)^m$, for any w.

On the other hand, if $N = pq$ and either q or $p \equiv 1 \mod 4$, then the probability that $\{y_i, -y_i, wy_i, -wy_i\}$ contains a quartic for every i is at most $(1/2)^{-m}$ for the following reason. Write $L: \mathbb{Z}/N^2 \rightarrow \mathbb{Z}/2$ such that $L(x) = (a, b)$ where a is the Legendre symbol of x with respect to p and b is the Legendre symbol of x with respect to q. For fixed w, the table below upper bounds the probability that $\{y_i, -y_i, wy_i, -wy_i\}$ contains a quartic depending on the value of $L(-1)$ and $L(w)$; in red is the probability that it contains a square, and in blue is the probability that a random square is also a quartic, since the set contains exactly one square in those cases.

<table>
<thead>
<tr>
<th>$\mathcal{L}(w)$ \ $\mathcal{L}(-1)$</th>
<th>(1, 1)</th>
<th>(-1, 1)</th>
<th>(1, -1)</th>
<th>(-1, -1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>1/4</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(-1, 1)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(1, -1)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(-1, -1)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

It follows that the probability that a square-free non-Blum modulus passes the above test is 2^{-m}, at most. Overall, the probability of accepting a wrong statement is at most 2^{-m+1}.

Honest Verifier Zero-Knowledge. Sample a random γ_i and set $z_i' = \gamma_i^4$, and $x_i = \gamma_i^N$ and $y_i = z_i'^N = x_i^4 \mod N$. Sample a random u with Jacobi symbol -1 and set $w = u^N \mod N$. Finally sample iid random bits $(a_i, b_i)_{i=1...m}$ and do:

- For each $i \in [m]$, set $y_i = (-1)^{a_i}w^{-b_i}y_i'$ and $z_i = (-1)^{a_i}u^{-b_i}z_i'$
- Output $[w, \{y_i\}_i, \{(x_i, a_i, b_i), z_i\}_i]$.

28
Knowing that \(-1\) is not a square modulo \(N\) with Jacobi symbol 1, the real and simulated distributions are identical.

4.3.1 Extraction of Paillier-Blum Modulus Factorization

We stress that the above protocol is zero-knowledge only for honest Verifiers, which we strongly exploit in the security analysis of our threshold signature protocol. Specifically, assuming the Prover solves all challenges successfully, if the Verifier sends \(y_i\)’s for which he secretly knows \(v_i\) such that \(v_i^2 = (-1)^{a_i}w^{b_i}y_i \mod N\), then, for some \(i\), the Verifier can deduce \(v_i’\) such that \(v_i’ \neq v_i \mod N\) and \(v_i'^2 = y_i \mod N\) with overwhelming probability. Thus, a malicious Verifier may efficiently deduce the factorization of \(N\) using the pair \((v_i, v_i')\) (c.f. Fact D.5).

We strongly exploit the above in the security analysis our protocol. Specifically, when the adversary queries the random oracle to obtain a challenge for the ZK-proof that his Paillier-Blum modulus is well formed, the simulator programs the oracle accordingly in order to extract the factorization of the modulus. Namely:

Extraction. Sample random \(\{v_i \leftarrow \mathbb{Z}_N\}_{i \in [m]}\) and iid bits \(\{(a_i, b_i)\}_{i \in [m]}\) and set \(y_i = (-1)^{a_i}w^{-b_i}v_i^2 \mod N\). Send \(\{y_i\}_i\) to the Prover. If \(N\) is a Paillier-Blum modulus, then \(-1\) is not a square modulo \(N\) with Jacobi symbol 1, and thus the \(y_i\)’s are truly random, as long as \(w\) has Jacobi symbol \(-1\).

Remark 4.3. We point out that the extraction technique will only work if \(N\) is a Paillier-Blum modulus. This is the main reason why in the auxiliary info phase, we instruct the parties to “prove it twice”. That way, we make sure that the modulus is Paillier-Blum, and then the simulator may accurately program the oracle to extract.

4.4 Ring-Pedersen Parameters ZK (\(\Pi^{\text{prm}}\))

The \(\Sigma\)-protocol of Figure 12 for the relation \(R_{\text{prm}}\) is a ZK-protocol for proving that \(s\) belongs to the multiplicative group generated by \(t\) modulo \(N\).

FIGURE 12 (Ring-Pedersen Parameters ZK – \(\Pi^{\text{prm}}\))

- **Inputs:** Common input is \((N, s, t)\). Prover has secret input \(\lambda\) such that \(s = t^\lambda \mod N\).
 1. Prover samples \(\{a_i \leftarrow \mathbb{Z}_{\phi(N)}\}_{i \in [m]}\) and sends \(A_i = t^{a_i} \mod N\) to the Verifier.
 2. Verifier replies with \(\{e_i \leftarrow \{0, 1\}\}_{i \in [m]}\)
 3. Prover sends \(\{z_i = a_i + e_i \lambda \mod \phi(N)\}_{i \in [m]}\) to the Verifier.

- **Verification:** Accept if \(t^{e_i} = A_i \cdot s^{e_i} \mod N\), for every \(i \in [m]\).

Completeness. Probability 1, by construction.

Soundness. Suppose that \(s \notin \langle t \rangle\). First observe that for any \(z \in \phi(N)\), it holds that \(s^{-1} \cdot t^z \notin \langle t \rangle\). Next notice that if \(A \notin \langle t \rangle\), then \(t^z \neq A \mod N\), for every \(z\). It follows that the adversary generates an accepting transcript if he can guess correctly all the challenges, which happens with probability \(2^{-m}\).

Zero-Knowledge. Sample \(\{z_i \leftarrow \pm N/2\}_{i \in [m]}\) and \(\{e_i \leftarrow \{0, 1\}\}_{i \in [m]}\) and set \(A_i = s^{-e_i} \cdot t^{z_i}\). The real and simulated distributions are statistically \(m \cdot (1 - \phi(N)/N)\)-close.

Finally the Pedersen parameters can be generated as follows; sample \(\tau \leftarrow \mathbb{Z}_N^*\) and \(\lambda \leftarrow \mathbb{Z}_{\phi(N)}\) and set \(t = \tau^2 \mod N\) and \(s = t^\lambda \mod N\).
4.4.1 On the Auxiliary RSA moduli and the ring-Pedersen Parameters

The auxiliary moduli always belong to the Verifier and must be sampled as safe bi-prime RSA moduli. Furthermore, the pair \((s,t)\) should consist of non-trivial quadratic residues in \(\mathbb{Z}_N\). In the actual setup, we sample \(\hat{N}\) as a Blum (safe-prime product) integer and \(s = \tau^{2^d} \mod \hat{N}\) and \(t = \tau^2 \mod N\) for a uniform \(\tau \leftarrow \mathbb{Z}_N\). During the auxiliary info phase, the (future) Verifier proves to the Prover that \(s \in \langle t \rangle\).

The second issue which was implicitly addressed in the proofs above is how to sample uniform elements in \(\langle t \rangle\). The naive idea is to sample random elements in \(\phi(\hat{N})\) by sampling elements in \(\hat{N}\). However, if \(\hat{N}\) has small factors, then small values close to zero will have noticeably more weight than other values, modulo \(\phi(\hat{N})\).

To fix this issue, we instruct the Prover (and the simulator in the proof of zero-knowledge) to sample elements from \(\pm 2^\ell \cdot N\). That way, modulo \(\phi(\hat{N})\), the resulting distribution is \(\frac{1}{2^\ell}\)-far from the uniform distribution in \(\phi(N)\), by Fact D.7.

Choice of Moduli. With respect to our ECDSA protocol, for the \(\Pi^{enc}\) protocol, \(N_0\) is the Paillier modulus of the Prover and and \(\hat{N}\) is the Paillier modulus of the Verifier. And for the \(\Pi^{aff-g}\) protocol, \(N_0, \hat{N}\) are the Paillier modulus of the Verifier, which is “receiver” of the homomorphic evaluation, and \(N_1\) is the modulus of the Prover, which is the homomorphic “evaluator”. Consult the Pre-Signing protocol at Figure 7 for all details.

5 Security Analysis

In this section we show that our protocol UC-realizes a proactive ideal threshold signature functionality \(F_{tsig}\) from Figure 14). The present section presumes familiarity with the UC framework (see Appendix A for a brief overview). We adopt the random oracle model for our security analysis and we assume that all hash values (e.g. for the Fiat-Shamir Heuristic) are obtained by querying the random oracle, defined next.

5.1 Global Random Oracle

We use the formalism of Canetti et al. [18], Camenisch et al. [9] for incorporating the random oracle model within the UC framework. This formalism accounts for the fact that the random oracle is an abstraction of an actual public hash function that is used globally across the analyzed system and its environment. Specifically the random oracle is modeled as an ideal functionality that is globally accessible, both in the real system and also in the ideal system. Canetti et al. [18], Camenisch et al. [9] provide a number of alternative formulations for the functionality that represents the random oracle. Here we use the simplest (and most restrictive) formulation, called the strict random oracle.

The functionality takes inputs of arbitrary size and is parametrized by the output length \(h\). When queried on a new message \(m \in \{0,1\}^*\), the functionality returns a value uniformly chosen from \(\{0,1\}^h\). All future queries for \(m\) return the same value.

![Figure 13](The Global Random Oracle Functionality \(\mathcal{H}\))

Parameter: Output length \(h\).

- On input \((\text{query}, m)\) from machine \(X\), do:
 - If a tuple \((m, a)\) is stored, then output \((\text{answer}, a)\) to \(X\).
 - Else sample \(a \leftarrow \{0,1\}^h\) and store \((m, a)\).

 Output \((\text{answer}, a)\) to \(X\).

\footnote{If \(N\) has very small factors it’s not an issue. The more problematic range of parameters is (as a function of the security parameter \(\kappa\)) \(N = pq\) where \(q \sim \text{poly}(\kappa)\) and \(p \sim 2^\kappa / \text{poly}(\kappa)\).}

\footnote{The fact that our analysis works even with the strict formalization of the random oracle means that it would work with any of the other (more elaborate) variants discussed in Canetti et al. [18], Camenisch et al. [9].}
5.2 Ideal Threshold Signature Functionality

Next, we describe our ideal threshold signature functionality. The functionality is largely an adaptation of the (non-threshold) signature functionality from Canetti [11], with an important addition to account for proactive security. See Figure 14 for the formal description of the functionality.

High-Level Description. When activated by all parties, the functionality requests a public key \(X \) and a verification algorithm \(V \) from the ideal-world adversary \(S \). Then, when all parties invoke the functionality to obtain a signature for some message \(m \), the functionality requests a “signature” \(\sigma \) from \(S \) and records that \(\sigma \) is a valid signature for \(m \). Finally, when the functionality is asked to verify some signature \(\sigma \) for a message \(m \), the functionality either returns true/false if the pair \((m, \sigma)\) is recorded as valid/invalid, or it applies the verification algorithm \(V \) and returns its output.

Proactive Security. The functionality is augmented with a corrupt/decorrupt and key-refresh interface capturing proactive security as follows: (1) the adversary may register parties as corrupted throughout the (ideal) process, (2) the adversary may decide to decorrupt parties, and those parties are recorded as “quarantined”, and (3) if the key-refresh interface is activated, then the functionality erases all records of quarantined players. At any point in time, if the functionality records that all parties are corrupted/quarantined simultaneously, then the functionality effectively cedes control of the verification process to the adversary.

5.3 Security Claims

We show that our protocol UC-realizes functionality \(F_{\text{tsig}} \) from Figure 14. Our proof follows by contraposition; under suitable cryptographic assumptions, we show that if our protocol does not UC-realize functionality \(F_{\text{tsig}} \), then there exists a PPT algorithm that can distinguish Paillier ciphertexts or there exists a PPT existential forger for the standard/enhanced ECDSA algorithm, in contradiction with the presumed security of the Paillier cryptosystem and the ECDSA signature scheme, respectively.

Theorem 5.1. Assuming semantic security of the Paillier cryptosystem, strong-RSA assumption, and existential unforgeability of ECDSA, it holds that the protocol from Figure 3 UC-realizes functionality \(F_{\text{tsig}} \) from Figure 14.

Theorem 5.2. Assuming semantic security of the Paillier cryptosystem, strong-RSA assumption, and enhanced existential unforgeability of ECDSA, it holds that the protocol from Figure 4 UC-realizes functionality \(F_{\text{tsig}} \) from Figure 14 in the presence of the global random oracle functionality \(H \).

The rest of this section is dedicated to the analysis (simulators & proof) of Theorem 5.2. The analysis for Theorem 5.1 is essentially identical.

5.3.1 Proof of Theorem 5.2

Theorem 5.2 is a corollary of the following two lemmas.

Lemma 5.3. If the protocol from Figure 4 does not UC-realize functionality \(F_{\text{tsig}} \), then there exists an environment \(Z \) that can forge signatures for previously unsigned messages in an execution of the protocol from Figure 4.

Proof. The claim is immediate, since the ideal-process simulation is perfect (c.f. Section 5.4).

Lemma 5.4. The following holds assuming strong-RSA. If there exists an environment \(Z \) that can forge signatures for previously unsigned messages in an execution of the protocol from Figure 4, then there exists algorithms \(R_1 \) and \(R_2 \) with blackbox access to \(Z \) such that at least one of the items below is true.

1. \(R_1 \) wins the semantic security experiment for Paillier with probability noticeably greater than \(1/2 \).
2. \(R_2 \) wins the enhanced existential unforgeability experiment for (non-threshold) ECDSA with noticeable probability.
FIGURE 14 (Ideal Threshold Signature Functionality F_{sig})

Key-generation:
1. Upon receiving $(\text{keygen}, ssid)$ from some party P_i, interpret $ssid = (\ldots, P)$, where $P = (P_1, \ldots, P_n)$.
 - If $P_i \in P$, send to S and record $(\text{keygen}, ssid, P_i)$.
 - Otherwise ignore the message.
2. Once $(\text{keygen}, ssid, j)$ is recorded for all $P_j \in P$, send $(\text{pubkey}, ssid)$ to the adversary S and do:
 (a) Upon receiving $(\text{pubkey}, ssid, X, V)$ from S, record $(ssid, X, V)$.
 (b) Upon receiving $(\text{pubkey}, ssid)$ from $P_i \in P$, output $(\text{pubkey}, ssid, X)$ if it is recorded.
 Else ignore the message.

Signing:
1. Upon receiving $(\text{sign}, sid = (ssid, \ldots), m)$ from P_i, send to S and record (sign, sid, m, i).
2. Upon receiving $(\text{sign}, sid = (ssid, \ldots), m, j)$ from S, record (sign, sid, m, j) if P_j is corrupted.
 Else ignore the message.
3. Once (sign, sid, m, i) is recorded for all $P_i \in P$, send (sign, sid, m) to the adversary S and do:
 (a) Upon receiving $(\text{signature}, sid, m, \sigma)$ from S,
 - If the tuple $(sid, m, \sigma, 0)$ is recorded, output an error.
 - Else, record $(sid, m, \sigma, 1)$.
 (b) Upon receiving $(\text{signature}, sid, m)$ from $P_i \in P$:
 - If $(sid, m, \sigma, 1)$ is recorded, output $(\text{signature}, sid, m, \sigma)$ to P_i.
 - Else ignore the message.

Verification:
Upon receiving $(\text{sig-vrfy}, sid, m, \sigma, X)$ from a party Q, send the tuple $(\text{sig-vrfy}, sid, m, \sigma, X)$ to S and do:
 - If a tuple (m, σ, β') is recorded, then set $\beta = \beta'$.
 - Else, if m was never signed and not all parties in P are corrupted/quarantined, set $\beta = 0$. “Unforgeability”
 - Else, set $\beta = V(m, \sigma, X)$.
 Record (m, σ, β) and output $(\text{istrue}, sid, m, \sigma, \beta)$ to Q.

Key-Refresh:
Upon receiving key-refresh from $P_i \in P$, send key-refresh to S, and do:
 - If not all parties in P are corrupted/quarantined, erase all records of $(\text{quarantine}, \ldots)$.

Corruption/Decorruption:
1. Upon receiving $(\text{corrupt}, P_j)$ from S, record P_j is corrupted.
2. Upon receiving $(\text{decorrupt}, P_j)$ from S:
 - If not all parties are corrupted/quarantined do:
 - If there is record that P_j is corrupted, erase it and record $(\text{quarantine}, P_j)$.
 - Else do nothing.

Figure 14: Ideal Threshold Signature Functionality F_{sig}
Proof of Lemma 5.4. Let Z denote environment that can forge signatures for previously unsigned messages in an execution of the protocol from Figure 4, and let $T \in \text{poly}$ denote an upper bound on the number of times the auxiliary-info phase is ran before the forgery takes place. Let N^1, \ldots, N^T and (X, x) denote Paillier public keys and ECDSA key-pair respectively, sampled according to the specifications of the protocol, and let R_1 and R_2 denote the processes from Sections 5.4.1 and 5.4.2, respectively. Consider the following three experiments:

Experiment A. Run Z with R_1 on parameters (X, x) and $(N^k, c^k)_{k=1, \ldots, T}$ where $c^k = \text{enc}_{N^k}(1)$.

Experiment B. Run Z with R_1 on parameters (X, x) and $(N^k, c^k)_{k=1, \ldots, T}$ where $c^k = \text{enc}_{N^k}(0)$.

Experiment C. Run Z with R_2 on parameter X.

In words, process R_1, dubbed the Paillier-distinguisher, simulates an interaction of the honest parties with the environment as follows. In the key-generation phase, R_1 chooses the master-secret key x, and chooses the honest parties secret keys such that the master public key is equal to $X = g^x$ (this step requires rewinding the environment). Next, at the beginning of each key-refresh phase, R_1 chooses a random honest party P_b and proceeds as follows. For all honest parties except P_b, the simulation simply follows the instructions of the protocol. For P_b, the simulation chooses Paillier keys drawn from N^1, \ldots, N^T (viewed as a stack) and its messages are computed by (1) extracting the environments’ secrets and (2) using the homomorphic properties of the Paillier cryptosystem. To elaborate further on the latter, we highlight that R_1 takes as input a sequence of ciphertexts c^1, \ldots, c^T, because P_b’s ciphertexts under his own key, say N^b, are computed as transformations on c^j, rather than as fresh encryptions. Furthermore, all of P_b’s proofs are simulated using the relevant simulator and programming the oracle accordingly. Pre-signing and signing are simulated in a similar fashion.

Depending on the underlying plaintext value of c^j (either zero or one), the transcript of the interaction of R_1 with Z is either “true”, i.e. statistically close to the actual transcript of the real interaction between honest parties and environment, or is “fake” because all of the special party’s ciphertexts are encryptions of zero. Finally, we remark that the special party’s identity is rerandomized with every refresh-phase and the experiment is reset (by rewinding) to the last refresh, whenever the environment requests to corrupt the special party.

Claim 5.5. Assuming strong-RSA, if Z outputs a forgery in an execution of the protocol from Figure 4 in time τ with probability α, then Z outputs a forgery in experiment A in time $\tau \cdot n \log(n)$ with probability at least $\alpha^2 - \text{negl}(\kappa)$.

Claim 5.6. Assuming semantic security of the Paillier cryptosystem, if Z outputs a forgery in experiment A in time τ with probability α, then Z outputs a forgery in experiment B in time τ with probability at least $\alpha - \text{negl}(\kappa)$.

The second process R_2, dubbed the ECDSA-Forger, simulates the interaction of the environment with the honest parties using only the public key and an enhanced signing oracle for plain (non-threshold) ECDSA, and it does not take any auxiliary input. The simulation proceeds as follows. In the key-generation phase, R_2 chooses the honest parties’ public keys such that the master public key is equal to X (this step requires rewinding the environment). To be more precise, the simulator chooses values as prescribed for all-but-one of the honest parties, and assigns public key share $X_b = X \cdot \prod_{j \neq b} X_j$ for the randomly chosen special party. The remaining stages of the protocol are simulated in a similar fashion (by “compensating” for the unknown values using the special party) with the following important difference:

- The presigning simulation invokes the enhanced oracle to obtain a point on the curve for (future) signing.
- The signing simulation requests signatures from the oracle for points that were released earlier.

Finally, similarly to the Paillier distinguisher, we remark that the special party’s identity is rerandomized with every refresh-phase and the experiment is reset (by rewinding) to the last refresh, whenever the environment requests to corrupt the special party.

Claim 5.7. If Z outputs a forgery in experiment B in time τ with probability α, then Z outputs a forgery in experiment C in time τ with probability α.

\[\square\]
5.4 Simulators

UC Simulator. As mentioned in the introduction, the description of the ideal-process adversary is essentially trivial. Namely, the simulator samples all values for the honest parties as prescribed, and follows the instructions of the protocol, for every phase. In broad strokes:

1. At the end of the key generation phase, the simulator sends the obtained public key X together with the ECDSA verification algorithm to the functionality.

2. At the end of each signing phase for some message msg, the simulator sends the computed signature (r, σ) to the functionality.

3. When the environment decides to corrupt/decorrupt a certain party, the simulator forwards the request to the functionality.

5.4.1 Paillier Distinguisher (\mathcal{R}_1)

The Paillier distinguisher \mathcal{R}_1 is parametrized by T and Paillier public keys and ciphertexts N^1, \ldots, N^T and C^1, \ldots, C^T, and an ECDSA key-pair (X, x). Let ctr denote a counter variable initialized as $\text{ctr} = 0$. Let \mathcal{L} denote a list of query-answers that the simulator keeps in memory, initialized as an empty set. Algorithm \mathcal{R}_1 is defined by the following interaction with an environment \mathcal{Z}.

Oracle Calls.

Upon receiving $(\text{query}, m) = (\text{query}, ssid', srid', \ldots)$ from \mathcal{Z}, do:

1. If $(ssid', srid') \neq (ssid, srid)$ return $(\text{answer}, a = \mathcal{H}(m))$.

2. Else if $m = ([sid, j, \psi], N)$ such that $\mathcal{M}(\text{vrfy}, \Pi^{mod}, N, \psi) = 1$, then:
 - Program the oracle and extract p, q such that $N = pq$ (c.f. Section 4.3.1).
 - Add the relevant tuple to \mathcal{L}.

3. Else
 - (a) If $(m, a) \in \mathcal{L}$, return (answer, a).
 - (b) Else sample a uniformly at random, return (answer, a) and add (m, a) to \mathcal{L}.

Key-Generation.

The environment writes $(\text{keygen}, ssid = (\ldots, P), i)$ on the input tape of \mathcal{P}_i, for each \mathcal{P}_i and corrupts a strict subset of parties $C \subsetneq \mathcal{P}$. Invoke $S^1(ssid, C, \mathcal{L}, X)$ and obtain output and obtain output $b, L, srid, \{x_k\}_{k \neq b}$ and $X = (X_1, \ldots)$. Set $x_b = x - \sum_{j \neq b} x_j \mod q$.

Aux-Info.

The environment writes $(\text{aux-info}, sid, \ell, i)$ of \mathcal{P}_i and corrupts a strict subset of parties $C \subsetneq \mathcal{P}$. Increment $\text{ctr} = \text{ctr} + 1$ and set $\text{aux} = ((x_i)_{i \in C}, N^{\text{ctr}}, C^{\text{ctr}})$ invoke $S^2(ssid, L, C, \text{aux})$ and obtain output b and $\{N_j, s_j, t_j, (C^j_k)_{k \in \mathcal{P}}\}$ and $(p_i, q_i) \in H$. Reassign $\{x_j = x_j + \sum_b \text{dec}_j(C^j_k) \mod q\}_{k \neq b}$ and $x_b = x - \sum_{k \neq b} x_k \mod q$.

Presigning.

The environment writes $(\text{pre-sign}, sid, \ell, i)$ of \mathcal{P}_i and corrupts a strict subset of parties $C := C \cup C' \subsetneq \mathcal{P}$. Sample k_b and $\gamma_b \leftarrow F_q$ and set $x^b = (x_j)_{j \neq b}$ and $\text{aux} = (e^{\text{ctr}}, k_b, x_b, \gamma_b)$. Invoke $S^3(ssid, L, C, b, x^b, \text{aux})$ and obtain output $\{(sid, \ell, R, k_i, \chi_i)\}_{i \in C'}$.

Signing.

The environment writes $(\text{sign}, sid, \ell, m, i)$ of \mathcal{P}_i and corrupts a strict subset of parties $C := C \cup C' \subsetneq \mathcal{P}$.

1. Retrieve R and $\{(k_i, \chi_i)\}_{i \in C}$, set $r = R|_{x\text{-axis}}$.
2. Hand over $\{(sid, i, \sigma_i = k_i m + r \chi_i)\}_{i \in C}$.
Dynamic Corruptions.
- If Z corrupts $P_i \in H$, then reveal that party's (simulated) secret state.
- Else go back to (\ast) at the beginning of the last invocation of simulator S^2.
Erase all items added to L since then.

5.4.2 ECDSA Forger (R_2)

Our ECDSA forger R_2 is parametrized by a public key X, and is defined by the following interaction with an environment Z and an enhanced ECDSA signing oracle for public key X. Let L denote a list of query-answers that the simulator keeps in memory, initialized as empty.

Oracle Calls.

Upon receiving $(\text{query}, m) = (\text{query}, ssid', srid', \ldots)$ from Z, do:

1. If $(ssid', srid') \neq (ssid, srid)$ return $(\text{answer}, a = H(m))$.
2. Else if $m = [(sid, j, \psi), N]$ such that $M(vrfy, \Pi^\text{mod}, N, \psi) = 1$, then:
 - Program the oracle and extract p, q such that $N = pq$ (c.f. Section 4.3.1).
 - Add the relevant tuple to L.
3. Else
 (a) If $(m, a) \in L$, return (answer, a).
 (b) Else sample a uniformly at random, return (answer, a) and add (m, a) to L.

Key-Generation.

The environment writes $(\text{keygen}, ssid = (\ldots, P), i)$ on the input tape of P_i, for each P_i and corrupts a strict subset of parties $C \subsetneq P$. Invoke $S^1(ssid, C, L, X)$ and obtain output and obtain output b, L, $srid$, $\{x_k\}_{k \neq b}$ and $X = (X_1, \ldots)$.

Aux-Info.

The environment writes $(\text{aux-info}, sid = (ssid, srid, \ldots), i)$ of P_i and corrupts a strict subset of parties $C \subsetneq P$. Invoke $S^2(sid, L, C, aux)$ and obtain output b and $\{N_j, s_j, t_j, (C_j')_{j \in P}$ and $(p_i, q_i)_{i \notin C}$. Reassign $\{x_j = \sum_k \text{dec}_j(C_k')\}_{j \neq b}$ and $x_b = \perp$.

Presigning.

The environment writes $(\text{pre-sign}, sid, \ell, i)$ of P_i and corrupts a strict subset of parties $C := C \cup C' \subsetneq P$. Set $x^b = (x_j)_{j \neq b}$, and do:

(a) Call the ECDSA oracle to obtain a point $R \in G$. Sample $\delta \leftarrow \mathbb{Z}_q$ and set $\text{aux} = (R, \delta)$.
(b) Invoke $S^3(sid, L, C, b, x^b, \text{aux})$ and obtain output $(sid, \ell, \eta_0, \eta')$ and $(sid, \ell, R, k_i, \chi_i)_{i \in H}$.

Signing.

The environment writes $(\text{sign}, sid, \ell, m, i)$ on the input tape of P_i and corrupts $C := C \cup C' \subsetneq P$.
- Retrieve $(sid, \ell, \eta_0, \eta')$ and $(sid, \ell, R, k_i, \chi_i)_{i \in H}$.
- Call the ECDSA oracle to sign m on point R to obtain signature (r, σ) and do:
 (a) For $P_i \in H$, compute σ_i as prescribed and hand over (sid, i, σ_i).
 (b) For P_b, set $\sigma_b = \sigma - mr_0 - r\eta'$ and hand over (sid, b, σ_b).

Dynamic Corruptions.

- If Z corrupts $P_i \in H$, then reveal that party’s (simulated) secret state.
- Else go back to (\ast) in round 2 of the auxiliary info simulator S^2.
Erase all items added to L since then.
5.5 Standalone Simulators

Notation 5.8. Write \(S^{\text{sch}}, S^{\text{mul}}, S^{\text{dec}}, S^{\text{log}}, S^{\text{enc}}, S^{\text{aff}} \) for the ZK-simulators of \(\Pi^{\text{sch}}, \Pi^{\text{mul}}, \Pi^{\text{dec}}, \Pi^{\text{log}}, \Pi^{\text{enc}}, \Pi^{\text{aff}} \).

5.5.1 Key-Generation Simulator (\(S^1 \))

The simulator \(S^1(\text{ssid}, C, L, X) \) takes input the session identifier \(\text{ssid} \), a list \(L \), a set of parties \(C \subseteq P \) and proceeds as follows.

Round 1.
- Initialize \(\text{ext} = 0 \).
- Sample \(\{V_i\}_{i \notin C} \) in the prescribed domain and send \((\text{ssid}, i, V_i) \) to \(Z \), for each \(P_i \notin C \).

Round 2.

(†) When obtaining \((\text{ssid}, j, V_j) \) for all \(P_j \in C \),
1. If \(\text{ext} = 0 \) compute all values as prescribed and hand over \(\{(\text{ssid}, i, srid_i, X_i, A_i, u_i)\}_{i \notin C} \) to \(Z \).
2. Else choose \(P_b \leftarrow P \setminus C \) uniformly at random and let \(H = P \setminus C \cup \{P_b\} \) and do:
 (a) For \(P_j \in H \), sample all items as prescribed and hand over \((\text{ssid}, i, srid_i, X_i, A_i, u_i) \) to \(Z \).
 (b) For special party \(P_b \), set \(X_b = X \cdot \prod_{j \neq b} X_j^{-1} \).
 Invoke ZK simulator \(\psi_b = (A_b, \ldots) \leftarrow S^{\text{sch}}(X_b, \ldots) \).
 Hand over \((\text{ssid}, b, srid_b, X_b, A_b, u_b) \) to \(Z \), where \((srid_b, u_b) \) are sampled as prescribed.
 Add the relevant tuples to \(L \).

Round 3.

When obtaining all tuples \((\text{ssid}, j, \text{srid}_j, X_j, A_j, u_j) \), for every \(P_j \in C \), add \(\{\psi_j\}_{j \in C} \) to \(E \) and do:
Set \(\text{srid} = \oplus_j \text{srid}_j \) and hand over \(\{(\text{ssid}, i, \psi_i)\}_{i \notin C} \) to \(Z \). Add the relevant tuples to \(L \).

Output.
1. If \(\text{ext} = 0 \), set \(\text{ext} = 1 \) and go back to (†) in round 2. Delete the pairs added to \(L \) since that point.
2. Else, extract \(\{x_j\}_{j \notin C} \).
Output \(b, L, \text{srid}, \{x_k\}_{k \neq b} \).

5.5.2 Auxiliary Info. & Key-Refresh Simulator (\(S^2 \))

The auxiliary info. simulator \(S^2(\text{sid}, L, C, \text{aux}) \) takes input \(\text{sid} = (\text{ssid}, \text{srid}, \ldots) \), a list \(L \), a set of parties \(C \subseteq P \), and auxiliary information \(\text{aux} = \bot \) or \(\text{aux} = (\{x_i\}_{i \notin C}, N^*, C) \).

Round 1.

(∗) Choose \(P_b \leftarrow P \setminus C \) uniformly at random and set \(H = P \setminus C \cup \{P_b\} \).
1. For each \(P_i \in C \), do:
 Sample all items as prescribed and hand over \((\text{sid}, i, N_i, s_i, t_i, V_i, \psi_i, \hat{\psi}_i, \psi'_i) \) to \(Z \).
2. For \(P_b \), do:
 (a) If \(\text{aux} = \bot \), sample \((N_b, p_b, q_b, s_b, t_b) \) as prescribed and \(V_b \) uniformly at random.
 (b) If \(\text{aux} \neq \bot \), set \(N_b = N^* \) and sample \((s_b, t_b) \) as prescribed and \(V_b \) uniformly at random.
 Invoke
 \[
 \begin{align*}
 \psi_b &\leftarrow S^{\text{mod}}(N_b, \ldots) \\
 \psi'_b &\leftarrow S^{\text{mod}}(N_b, \ldots) \\
 \hat{\psi}'_b &\leftarrow S^{\text{perm}}(s_b, t_b, \ldots)
 \end{align*}
 \]
 Hand over \((\text{sid}, b, N_b, s_b, t_b, V_b, \psi_b, \psi'_b, \hat{\psi}'_b) \) to \(Z \).
Add the relevant pairs for the corresponding oracle calls to L.

Round 2.

When obtaining all tuples $(sid, j, V_j, N_j, s_j, t_j, \psi_j, \psi'_j)$, for every $P_j \in C$, do:

For each $P_i \notin C$, do:

(a) If $aux \neq \bot$,

- Sample $\{x^k_i\}_{k \neq b}$ uniformly subject to $0 = \sum_k x^k_i$ and set $\{X^k_i = g^{x^k_i}\}_{k \neq b}$.
- Set $\{C^i_k = \text{enc}_k(x^k_i)\}_{k \neq b}$ and $C^i_b = C^{x^b_i} \cdot \text{enc}_b(0)$.
- Invoke the ZK-simulator $\{\psi_{j,i,b} \leftarrow S_j^{\text{log}}(C^i_b, g, X^b_i, \ldots)\}_{j \neq i}$ and $\{\pi_{j,b} \leftarrow S_j^{\text{loc}}(N_b, \ldots)\}_{j \neq b}$.
 Compute all other proofs as prescribed.

(b) If $aux = \bot$,

- Sample $\{x^k_i\}_{k \neq b}$ and set $\{X^k_i = g^{x^k_i}\}_{k \neq b}$ and $X^b_i = \text{id}_C \cdot g^{-\sum_{k \neq b} x^k_i}$.
- Set $\{C^i_k = \text{enc}_k(x^k_i)\}_{k \neq b}$ and $C^i_b = \text{enc}_b(0)$.
- Invoke $\{\psi_{j,i,b} \leftarrow S_j^{\text{log}}(C^i_b, X^b_i, \ldots)\}_{j \neq i}$, compute all other proofs as prescribed.

Sample u as prescribed and hand over the tuple $(sid, i, Y_i, u, \pi_{j,i} (\psi_{j,i,k}, C^i_k))$ for each $j \in P$.

Add the relevant tuples to L.

Output.

Output $\{N_j, s_j, t_j, (C^i_k)_{k \in P}\}$ and $(p_j, q_j)_{j \notin P}$, where p_b, q_b are defined only if $aux = \bot$.

5.5.3 Pre-Signing Simulator (S^3)

The pre-signing simulator $S^3(sid, L, C, b, x^b, aux)$ takes inputs $\text{inputs } (sid = (\ldots, P, X, N, s, t))$, a list L and a set of parties $C \subseteq P$, an index b and $x^b = (x_j)_{j \neq b}$ such that $P_b \notin C$ and $g^{x_j} = X_j$ for $j \neq b$, and auxiliary information $aux = (R, \delta)$ or $aux = (c, x_b, b_b, \gamma_b)$.

Round 1.

1. For $P_i \in H$, compute all items as prescribed and hand over $(sid, i, K_i, G_i, \psi^0_{j,i})$ to Z.
2. For P_b, sample set

$$K_b = \begin{cases}
 c^{k_b} \cdot \text{enc}_b(0) & \text{if } aux \neq \bot \\
 \text{enc}_b(0) & \text{otherwise}
\end{cases}$$

$$G_b = \begin{cases}
 c^{\gamma_b} \cdot \text{enc}_b(0) & \text{if } aux \neq \bot \\
 \text{enc}_b(0) & \text{otherwise}
\end{cases}$$

Invoke the ZK-simulators $\psi^0_{j,b} \leftarrow S_j^{\text{enc}}(K_b, \ldots)$.

Hand over $(sid, b, K_b, G_b, \psi^0_{j,b})$ to Z and add the relevant tuples to L.

Round 2.

- Upon receiving $(sid, j, K_j, G_j, \ldots)$ retrieve (k_j, γ_j)
- When obtaining all relevant tuples, do:

 1. For $P_i \in H$, send the tuple $(sid, i, \Gamma_i, D_{j,i}, F_{j,i}, \tilde{D}_{j,i}, \tilde{F}_{j,i}, \psi_{j,i}, \psi'_{j,i})$ to Z, for each $j \neq i$, where all values are computed as prescribed.
2. For p_b, sample $\{ (\alpha_{\ell,b}, \hat{\alpha}_{\ell,b} \leftarrow \mathcal{J}^2 \} \ell \neq b$ and set $\hat{D}_{\ell,b} = \text{enc}_\ell(\hat{\alpha}_{\ell,b})$ and $D_{\ell,b} = \text{enc}_j(\alpha_{\ell,b})$, and

$$
\begin{align*}
\hat{F}_{b, \ell} &= \begin{cases}
\epsilon_{\ell,b} \cdot \text{enc}_b(0) & \text{if } x_b \neq \perp \\
\text{enc}_b(0) & \text{otherwise}
\end{cases} \\
F_{b, \ell} &= \begin{cases}
\epsilon_{\ell,b} \cdot \text{enc}_b(0) & \text{if } \gamma_b \neq \perp \\
\text{enc}_b(0) & \text{otherwise}
\end{cases} \\
\Gamma_b &= \begin{cases}
g_{\gamma_b} & \text{if } \gamma_b \neq \perp \\
R^\delta \cdot g^{-\sum_{i \neq b} \gamma_i} & \text{otherwise}
\end{cases}
\end{align*}
$$

Then, for each $j \neq b$, invoke the ZK-simulator

$$
\begin{align*}
\psi_{j,b} &\leftarrow \mathcal{S}_{j, \text{aff}}(D_{j,b}, K_j, \ldots) \\
\tilde{\psi}_{j,b} &\leftarrow \mathcal{S}_{j, \text{aff}}(\hat{D}_{j,b}, K_j, \ldots) \\
\tilde{\psi}''_{j,b} &\leftarrow \mathcal{S}_{j, \text{log}}(\Gamma_b, g, G_b, \ldots)
\end{align*}
$$

Hand over the tuple $(\text{sid}, b, \Gamma_b, D_{j,b}, F_{j,b}, \hat{D}_{j,b}, \tilde{\psi}_{j,b}, \tilde{\psi}'_{j,b}, \tilde{\psi}''_{j,b})$, for each $j \neq b$.

Add the relevant pairs for the corresponding oracle calls to L.

Round 3. Upon receiving all $(\text{sid}, j, \Gamma_j, D_{i,j}, F_{i,j}, \hat{D}_{i,j}, \tilde{\psi}_{i,j}, \tilde{\psi}'_{i,j}, \tilde{\psi}''_{i,j})$ for $j \neq i$, do:

1. If $\text{aux} = (R, \delta)$, Set $\Delta_b = g^\delta \cdot \prod_{j \neq b} \Gamma_j$ and set

$$
\begin{align*}
\eta^0 &= \sum_{j \neq b} k_j \\
\eta^1 &= \sum_{j \neq b} k_j x_j + \sum_{j \neq b} \hat{\alpha}_{j,b} + \hat{\beta}_{j,b} \\
\delta_b &= \delta - \sum_{j \neq b} \alpha_{j,b} + \beta_{j,b} + \sum_{i,j \neq b} k_i \gamma_j
\end{align*}
$$

Invoke ZK-simulator $\psi''_{j,b} \leftarrow \mathcal{S}_{j, \text{log}}(\Delta_b, \Gamma, K_b, \ldots)$, for $j \neq b$.

Hand over $\{(\text{sid}, i, \delta_i, \Delta_i, \psi''_{i,j})\}_{j \neq i}$ to Z, where $\{\delta_i, \Delta_i, \psi''_{i,j}\}_{i \in H}$ are computed as prescribed.

2. Else, retrieve $\{\alpha_{j,k}, \beta_{j,k}\}_{j,k}$, and set

$$
\begin{align*}
\chi_b &= k_b x_b + \sum_{j \neq b} (k_b x_j - \hat{\beta}_{j,b}) + (k_j x_b - \hat{\alpha}_{j,b}) \\
\delta_b &= k_b \gamma_b + \sum_{j \neq b} (k_b \gamma_j - \beta_{j,b}) + (k_j \gamma_b - \alpha_{j,b})
\end{align*}
$$

Invoke ZK-simulator $\psi''_{j,b} \leftarrow \mathcal{S}_{j, \text{log}}(\Delta_b, \Gamma, K_b, \ldots)$, for $j \neq b$.

Hand over $\{(\text{sid}, i, \delta_i, \Delta_i, \psi''_{i,j})\}_{j \neq i}$ to Z, where $\{\delta_i, \Delta_i, \psi''_{i,j}\}_{i \in H}$ are computed as prescribed.

Output. Upon receiving all $(\text{sid}, j, \delta_j, \Delta_j, \psi''_{j,i})$ for $j \neq i$, do:

1. If $\text{aux} = (R, \delta)$, output $(\text{sid}, \eta^0, \eta^1)$ and $(\text{sid}, \ell, R, k_i, \chi_i)_{i \in H}$.
2. Else, set $R = \Gamma(\sum_{j} \delta_j)^{-1}$ and output $(\text{sid}, \ell, R, k_i, \chi_i)_{i \in C}$.

Acknowledgements

A previous iteration of this paper contained a security bound for enhanced unforgeability in the GGM which was inaccurate (c.f. Appendix E). We thank Victor Shoup for pointing it out and for further discussion on enhanced unforgeability.
References

A Overview of the UC Model

We present a brief overview of the Universally Composable (UC) security framework [12]; see the full details there. In the rest of this section we provide a quick reminder of the framework.

Recall that a definition of security within the UC framework consists of two main components: First, one needs to specify the real model, namely the model of computation that represents the actual execution environment, the capabilities of the entities executing the protocol, and the capabilities of the attackers under consideration. Next, one needs to specify the ideal functionality, namely the expected behavior of the system, as a function of the various inputs provided to the system (both legitimate and adversarial ones) and the information gathered by the adversary. Crucially, “expected behavior” pertains both to correctness properties regarding desired outputs, and also to secrecy properties regarding internal values that should not be observable from the outside.

The UC framework also provides with a basic formal model for representing a system of communicating computational element, as well as way to express protocols, or distributed programs. It also formalizes the general concept of protocol UC-realizing an ideal functionality F, with the interpretation that from the point of view of any external entity, interacting with the protocol π is no worse than interacting with the ideal functionality F. The framework also allows for a general security-preserving composition theorem that, essentially, guarantees that any composite protocol ρ that was designed with the use of F as an idealized component, will continue to preserve all its security properties even when the (potentially many) instances of F are replaced by instances of π.

The model for executing protocol an n-party protocol π. For the purpose of modeling the protocols in this work, we consider a system that consists of the following $n + 2$ machines, where each machine is a computing element (say, an interactive Turing machine) with a specified program and identity. First, we have n machines with program π and identities P_1, \ldots, P_n. Next, we have a machine A representing the adversary an a machine Z representing the environment. All machines are initialized on a security parameter κ and are polynomial in κ. The environment Z is activated first, with an external input z. Z activates the parties, chooses their input and reads their output. A can corrupt parties and instruct them to leak information to A and to perform arbitrary instructions. Z and A communicate freely throughout the computation. The real process terminates when the environment terminates. Let $\text{REAL}_{\pi,A,Z}(1^\kappa, z)$ denote the environment’s output in the above process.

Communication between machines over a network is modeled by way of subroutine-machines that represent the behavior of the actual communication network under consideration. In this work we assume for simplicity that the parties are connected via an authenticated-but-lossy broadcast channel. This is modeled as follows: The parties, P_1, \ldots, P_n, all have a channel machine, C, as subroutine. when party P_i inputs a message m to C, C records (P_i, m), and reports (P_i, m) to A. When some other party P_j queries C for new messages, C informs A of the query, waits for A to determine a subset s of all the messages that were sent so far and not yet delivered to P_j, and returns this subset to P_j.

Ideal Process. the ideal process is identical to the real process, with the exception that now the machines P_1, \ldots, P_n do not run π. Instead, they all forward all their inputs to a subroutine machine, called the ideal functionality F. Functionality F then processes all the inputs locally and returns outputs to P_1, \ldots, P_n. Let $\text{IDEAL}_{F,S,Z}(1^\kappa, z)$ denote the environment’s output in the above process.

Definition A.1. We say that π UC-realizes F if for every real adversary A, there exists an ideal adversary S such that for every environment Z it holds that

$$\{\text{REAL}_{\pi,A,Z}(1^\kappa, z)\}_{z \in \{0,1\}^*, \kappa \in \mathbb{N}} \equiv \{\text{IDEAL}_{F,S,Z}(1^\kappa, z)\}_{z \in \{0,1\}^*, \kappa \in \mathbb{N}}.$$

The Adversarial Model. The adversary can corrupt parties adaptively throughout the computation. Once corrupted, the party reports all its internal state to the adversary, and from now on follows the instructions of the adversary. We also allow the adversary to leave, or decorrupt parties. A decorrupted party resumes

\[19\] Specifically, [12, Section 2 in Version of 2020] presents a self-contained account of a simplified variant of the framework. This variant fully suffices for the purpose of representing and analysing the protocols in this work.
executing the original protocol and is no longer reporting its state to the adversary. Still, the adversary knows
the full internal state of the decorrupted party at the moment of decorruption.

We note that this adversarial model is more realistic than the “static” variant where the identity of the
corrupted parties is determined in advance and never changes.

Handling global functionalities. As mentioned above, the basic model of executing some protocol π only
involves the parties of a single instance of π, in addition to Z and A. This restriction greatly simplifies the
analysis, but sometimes it is important to be able to formalize the concept of a protocol π that UC-realizes an
ideal functionality F in the presence of G, where G is some global construct that exists irrespective of π or F.
(For instance, G can be a reference string or a PKI. In our setting we will model a cryptographic hash function
as a global random oracle H. This way, we can guarantee that the analysis captures even cases where the
same hash function is used not only in the analyzed protocol but also in other parts of the system.) For this
purpose we slightly augment the model of computation, to include G in both the ideal and the real models.

In [17] it is shown how to augment the model of protocol execution of the general UC framework to
incorporate global functionalities. However in our case, namely for the basic model of [12, Section 2], it
is possible to capture UC with global functionalities within the plain UC framework. Specifically, having π
UC-realize ideal functionality F in the presence of global functionality G is represented by having the protocol
$[\pi, G]$ UC-realize the protocol $[F, G]$ within the plain UC framework. Here $[\pi, G]$ is the $n + 1$-party protocol
where machines P_1, \ldots, P_n run π, and the remaining machine runs G. Protocol $[F, G]$ is defined analogously,
namely it is the $n + 2$-party protocol where the first $n + 1$ machines execute the ideal protocol for F, and the
remaining machine runs G.

44
B More Sigma Protocols

B.1 Schnorr PoK (Π^{sch})

Figure 15 is a Σ-protocol for $(X; x)$ in the relation R_{sch}.

FIGURE 15 (Schnorr PoK – Π^{sch})

- **Inputs:** Common input is (G, q, g, X) where $q = |G|$ and g is generators of \mathbb{G}.
 - The Prover has secret input x such that $g^x = X$.
 1. Prover samples $\alpha \leftarrow \mathbb{F}_q$ and sends $A = g^\alpha$ to the verifier.
 2. Verifier replies with $e \leftarrow \mathbb{F}_q$.
 3. Prover sends $z = \alpha + ex \mod q$ to the verifier.
- **Verification:** Verifier checks that $g^z = A \cdot X^e$.

Figure 15: Schnorr PoK – Π^{sch}

B.2 Group Element vs Paillier Encryption in Range ZK (Π^{log})

Figure 16 is a Σ-protocol for the relation R_{log}.

FIGURE 16 (Knowledge of Exponent vs Paillier Encryption – Π^{log})

- **Setup:** Auxiliary safe bi-prime \hat{N} and Ring-Pedersen parameters $s, t \in \mathbb{Z}_{\mathcal{N}}^\ast$.
- **Inputs:** Common input is (G, q, N_0, C, X, g).
 - The Prover has secret input (x, ρ) such that $x \in \pm 2^\ell$, and $C = (1 + N_0)^x \cdot \rho^{N_0} \mod N_0^2$ and $X = g^x \in \mathbb{G}$.
 1. Prover samples $\alpha \leftarrow \pm 2^{\ell + \varepsilon}$ and $\mu \leftarrow \pm 2^\ell \cdot \hat{N}$.
 2. Verifier replies with $c \leftarrow \pm q$.
 3. Prover sends (S, A, Y, D) to the verifier, where

 $z_1 = \alpha + ex \mod \hat{N}$

 $z_2 = r \cdot \rho^e \mod N_0$.

 $z_3 = \gamma + c\mu$

 - **Equality Checks:**

 $(1 + N_0)^{z_1} \cdot z_2^{N_0} = A \cdot C^e \mod N_0^2$

 $g^{z_1} = Y \cdot X^e \in \mathbb{G}$

 $s^{z_1} t^{z_3} = D \cdot S^e \mod \hat{N}$
 - **Range Check:**

 $z_1 \in \pm 2^{\ell + \varepsilon}$

 The proof guarantees that $x \in \pm 2^{\ell + \varepsilon}$.

Figure 16: Knowledge of Exponent vs Paillier Encryption – Π^{log}
B.3 Paillier Operation with Paillier Commitment ZK

Figure 17 is a Σ-protocol for the relation $R_{\text{aff-p}}$.

FIGURE 17 (Paillier Affine Operation with Paillier Commitment ZK-Proof – $\Pi_{\text{aff-p}}$)

- **Setup:** Auxiliary safe bi-prime \bar{N} and Ring-Pedersen parameters $s, t \in \mathbb{Z}_N^*$.
- **Inputs:** Common input is (N_0, N_1, D, C, X, Y) where $q = |G|$ and g a generator G.

The Prover has secret input $(x, y, \rho, \rho_x, \rho_y)$ such that $x \in \pm 2^\ell$, $y \in \pm 2^\ell$, $(1 + N_1)^s \rho_x^{N_1} = X$ and $(1 + N_1)^y \rho_y^{N_1} = Y$ and $D = C^e (1 + N_0)^y \cdot \rho_N \mod N_0^2$.

1. Prover samples $\alpha \leftarrow \pm 2^{\ell+e}$ and $\beta \leftarrow \pm 2^{\ell+e}$ and sends $(A, B_x, B_y, E, S, F, T)$ to the verifier.

2. Verifier replies with $\epsilon \leftarrow \pm q$.

3. Prover sends $(z_1, z_2, z_3, z_4, w, w_x, w_y)$ to the verifier where

\[
\begin{align*}
z_1 &= \alpha + \epsilon x, \\
z_2 &= \beta + \epsilon y, \\
z_3 &= \gamma + \epsilon m, \\
z_4 &= \delta + \epsilon \mu, \\
w &= r \cdot \rho^2 \mod N_0, \\
w_x &= r_x \cdot \rho_x^2 \mod N_1, \\
w_y &= r_y \cdot \rho_y^2 \mod N_1.
\end{align*}
\]

- **Equality Checks:**

\[
\begin{align*}
C^\epsilon (1 + N_0)^z w^{N_0} &= A \cdot D^\epsilon \mod N_0^2, \\
(1 + N_1)^z w_x^{N_1} &= B_x \cdot X^\epsilon \mod N_1^2, \\
(1 + N_1)^z w_y^{N_1} &= B_y \cdot Y^\epsilon \mod N_1^2, \\
s^{z_1} f^3 &= E \cdot S^\epsilon \mod \bar{N}, \\
s^{z_2} f^4 &= F \cdot T^\epsilon \mod \bar{N}.
\end{align*}
\]

- **Range Check:**

\[
\begin{align*}
z_1 &\in \pm 2^{\ell+e} \\
z_2 &\in \pm 2^{\ell+e}
\end{align*}
\]

The proof guarantees that $x \in \pm 2^{\ell+e}$ and $y \in \pm 2^{\ell+e}$.

Figure 17: Paillier Affine Operation with Paillier Commitment ZK-Proof – $\Pi_{\text{aff-p}}$
B.4 No Small Factor Proof (Π^{fac})

Figure 18 is a Σ-protocol for the relation R_{fac}.

FIGURE 18 (No Small Factor Proof)

- **Setup:** Auxiliary safe bi-prime \hat{N} and Ring-Pedersen parameters $s, t \in \mathbb{Z}_{\hat{N}}$.
- **Inputs:** Common input RSA modulus N_0. The Prover has secret input (p, q) such that $p, q < \pm \sqrt{N_0} \cdot 2^\ell$.

1. **Prover samples**

 \begin{align*}
 \alpha, \beta &\leftarrow \pm 2^{\ell+\varepsilon} \cdot \sqrt{N_0} \\
 \mu, \nu &\leftarrow \pm 2^{\ell} \cdot N_0 \cdot \hat{N}
 \end{align*}

 and computes

 \begin{align*}
 P &= s^\mu q^\nu \mod \hat{N} \\
 Q &= s^\nu q^\mu \mod \hat{N} \\
 A &= s^\alpha t^\rho \mod \hat{N} \\
 B &= s^\beta t^\rho \mod \hat{N} \\
 T &= Q^\rho \mod \hat{N}
 \end{align*}

 and sends (P, Q, A, B, T, ρ) to the verifier.

2. **Verifier replies with** $e \leftarrow \pm q$

3. **Prover sets**

 \begin{align*}
 \hat{\rho} &= \rho - \nu p \\
 (z_1, z_2, u, v) &\leftarrow (\alpha + ep, \beta + eq, x + e\mu, y + ev, r + e\hat{\rho})
 \end{align*}

 Equality Checks: Verifier set $R = s^N t^\rho$ and checks

 \begin{align*}
 s^{z_1} t^{u_1} &= A \cdot P^e \mod \hat{N} \\
 s^{z_2} t^{u_2} &= B \cdot Q^e \mod \hat{N} \\
 Q^{z_1} t^v &= T \cdot R^e \mod \hat{N}
 \end{align*}

 Range Check:

 \begin{align*}
 z_1, z_2 &\in \pm \sqrt{N_0} \cdot 2^{\ell+\varepsilon}
 \end{align*}

 The proof guarantees that each $p, q > 2^\ell$ (assuming $2^{2\ell+\varepsilon} \approx \sqrt{N_0}$).

Figure 18: No Small Factor Proof

Special Soundness. Analogously to the previous range proofs, the extractor can get $p, q, \mu, \nu, \hat{\rho}$ to decommit P & Q and $Q^\rho t^\hat{\rho} = s^{z_1} t^{u_1} p^{\hat{\rho}} = s^{N_0} t^\rho$. Notice that if $N_0 \neq pq$, then the binding property of Pedersen is broken which, in turn, breaks strong RSA.

HVZK. Sample $P, Q \leftarrow (t)$. Sample $z_1, z_2 \leftarrow \pm 2^{\ell+\varepsilon} \cdot \sqrt{N_0}$ and $w_1, w_2 \leftarrow \pm 2^{\ell+\varepsilon} \cdot \hat{N}$ and $v \leftarrow 2^{\ell+\varepsilon} \cdot N_0 \cdot \hat{N}$ and $\rho \leftarrow 2^{\ell} \cdot N_0 \cdot \hat{N}$. Finally, sample e and set A, B and T accordingly.
C Complexity Benchmarks

We provide computation and communication cost-analysis of our protocol’s components in Table 1, mostly derived from the cost-analysis of each of our NIZKs, presented in Table 2. In Tables 3 and 4 we show concrete values for the Pre-Signing and Aux Info. & Key Refresh, over all rounds (but not including communication time) for Bitcoin’s EC secp256k1 (and corresponding parameters); our implementation (written in C) ran on an Ubuntu Desktop with an Intel Quad-Core i7-7600 CPU @ 2.80GHz – without any optimization.

<table>
<thead>
<tr>
<th>Component</th>
<th>Rounds</th>
<th>Computation</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Generation</td>
<td>3</td>
<td>$(2 + 2n)G$</td>
<td>4</td>
</tr>
<tr>
<td>Aux Info. & Key Refresh</td>
<td>2</td>
<td>$(n + 2n^2)G + (400 + 321n + 3n^2)N + (n + 2n^2)N^2$</td>
<td>3865 + 16n + 55n^2</td>
</tr>
<tr>
<td>Pre-Signing</td>
<td>3</td>
<td>$(4 + 9n)G + 57nN + (2 + 32n)N^2$</td>
<td>35 + 444n</td>
</tr>
<tr>
<td>Signing</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Costs for each of the n parties, over all rounds. G, N, N^2 denote computing exponentiation in the EC group G and rings Z_N, Z_N^2, respectively. Communication corresponds to the amount of EC elements transmitted (with Z_N and Z_N^2 elements counted as respective 8, 16 EC elements to achieve required security). Hash (random oracle) invocations are insignificant, so were omitted from computational costs, but were counted as a single EC element for communication (which is in line with practice).

<table>
<thead>
<tr>
<th>ZK-Proof</th>
<th>Computation (Prover)</th>
<th>Computation (Verifier)</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π_{sch}</td>
<td>1G</td>
<td>2G</td>
<td>2</td>
</tr>
<tr>
<td>Π_{enc}</td>
<td>5N + 1N^2</td>
<td>3N + 2N^2</td>
<td>54</td>
</tr>
<tr>
<td>Π_{log}</td>
<td>1G + 5N + 1N^2</td>
<td>2G + 3N + 2N^2</td>
<td>55</td>
</tr>
<tr>
<td>Π_{RF-g}</td>
<td>1G + 10N + 3N^2</td>
<td>2G + 6N + 5N^2</td>
<td>112</td>
</tr>
<tr>
<td>Π_{RF-p}</td>
<td>11N + 4N^2</td>
<td>6N + 7N^2</td>
<td>136</td>
</tr>
<tr>
<td>Π_{mod}</td>
<td>160N</td>
<td>80N</td>
<td>1280</td>
</tr>
<tr>
<td>Π_{prm}</td>
<td>80N</td>
<td>160N</td>
<td>1280</td>
</tr>
</tbody>
</table>

Table 2: To ensure 80-bit statistical security and 128-bit computational security, we chose m = 80 in the Π_{mod} and Π_{prm}. In the remaining ZK-Range-Proofs, ℓ, ℓ’, ε are respectively 1, 5, 2 factor of the Elliptic Curve element bit-length (e.g. for the Bitcoin curve secp256k1, ℓ = 256, ℓ’ = 1280, ε = 512).

<table>
<thead>
<tr>
<th>n</th>
<th>AI&KR</th>
<th>Pre-Signing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2228</td>
<td>801</td>
</tr>
<tr>
<td>3</td>
<td>3032</td>
<td>1183</td>
</tr>
<tr>
<td>4</td>
<td>3896</td>
<td>1566</td>
</tr>
<tr>
<td>5</td>
<td>4820</td>
<td>1949</td>
</tr>
<tr>
<td>6</td>
<td>5804</td>
<td>2332</td>
</tr>
<tr>
<td>7</td>
<td>6848</td>
<td>2715</td>
</tr>
<tr>
<td>8</td>
<td>7952</td>
<td>3098</td>
</tr>
<tr>
<td>9</td>
<td>9116</td>
<td>3864</td>
</tr>
</tbody>
</table>

Table 3: Computation, in milliseconds

<table>
<thead>
<tr>
<th>n</th>
<th>AI&KR</th>
<th>Pre-Signing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>133</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>143</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>172</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>192</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>216</td>
<td>102</td>
</tr>
<tr>
<td>8</td>
<td>243</td>
<td>116</td>
</tr>
<tr>
<td>9</td>
<td>274</td>
<td>131</td>
</tr>
</tbody>
</table>

Table 4: Communication, in kilobytes
D Number Theory & Probability Facts

Fact D.1. Suppose that \(\lambda^N = x^k \mod M \) such that \(x \in \mathbb{Z}_M^* \). Then \(\lambda \in \mathbb{Z}_M^* \).

Proof. There exists \(y \in \mathbb{Z}_M^* \) such that \(xy = 1 \mod M \). Therefore \(\lambda \cdot (\lambda^{N-1} \cdot y^k) = \lambda^N \cdot y^k = x^k y^k = 1 \mod M \).

Fact D.2. Suppose that \(\lambda^N = x^k \mod M \), where \(k \) and \(N \) are coprime and \(x \in \mathbb{Z}_M^* \). Then, there exists \(y \in \mathbb{Z}_M^* \) such that \(y^k = \lambda \mod M \).

Proof. Since \(k \) and \(N \) are coprime, there exists \(u,v \in \mathbb{Z} \) such that \(ku + Nv = 1 \). Thus \(\lambda^{ku+Nv} = \lambda \) and consequently \((\lambda^u \cdot x^v)^k = \lambda^{ku} \cdot (\lambda^u)^v = \lambda \mod M \). For the penultimate equality, we apply Fact D.1 and we remark that \(\lambda^u \) and \(x^v \) are well defined in \(\mathbb{Z}_M^* \).

Remark D.3. We stress that computing a \(k \)-th root of \(\lambda \) in \(\mathbb{Z}_M^* \) can be done efficiently via repeated application of Euclid’s extended algorithm and exponentiation modulo \(M \), i.e. computing the Bézout coefficients \((u,v) \), as well as \(\lambda^u \mod M \) and \(x^v \mod M \).

Fact D.4. Let \(a,c \in \mathbb{Z} \) such that \(c \not| a \). There exists a prime power \(p^d \) such that \(p^{d-1} | a \), \(p^d \not| a \) and \(p^d | c \).

Proof. Any prime factor that divides \(c \) but not \(a \) will do (taking \(d = 1 \)). If no such \(p \) exists, i.e. if every prime factor of \(c \) divides \(a \), let \(p_1, \ldots, p_n \) denote the prime factors of \(a \), and write \(a = \prod_{i=1}^{n} p_i^{d_i} \) and \(c = \prod_{i=1}^{n} p_i^{d'_i} \) (maybe some \(d'_i = 0 \)). If \(d'_i < d_i \), for every \(i \), then \(c \not| a \). Therefore, there exists \(i \) such that \(d'_i > d_i \), and thus \((p,d) = (p_i, d_i + 1) \) will do.

Fact D.5. Let \(N = pq \) be the product of two odd primes and let \(x, y, z \in \mathbb{Z}_N^* \) such that \(x^2 = y^2 = z \mod N \) and \(x \neq y \mod N \). Then \(\gcd(x - y, N) \in \{p,q\} \).

Proof. Let \(u, v \) denote the Bézout coefficients of the extended Euclid’s algorithm such that \(up + vq = 1 \) and notice that \(\gcd(p,v) = \gcd(q,u) = 1 \). By Chinese remainder theorem, since \(x \not\equiv y \mod n \), it follows that \(x - y = 2cuq \mod N \) or \(x + y = 2cvp \mod N \) for unique element \(c \in \mathbb{Z}_p^* \) or \(c \in \mathbb{Z}_q^* \), respectively. In either case, the claim follows.

Fact D.6. Define i.i.d. random variables \(a,b \) chosen uniformly at random from \(\pm R \), and let \(\delta \in \pm K \). It holds that \(\text{SD}(a,\delta+b) \leq K/R \).

Fact D.7. Let \(N \) be the product of exactly two arbitrary primes \(p \) and \(q \). Let \(a \gets \mathbb{Z}_N \) and \(b \gets \mathbb{Z}_{\phi(N)} \). It holds that \(\text{SD}(a \mod \phi(N),b) \leq 1/\ell \).

Proof. Let \(Q = \ell \cdot N / \phi(N) \) observe that \(\text{SD}(a \mod \phi(N),b) \leq \Pr[a \geq Q \cdot \phi(N)] \). Thus, \(\Pr[a \geq Q \cdot \phi(N)] \leq \Pr[a \geq \ell \cdot N - \phi(N)] = \phi(N)/(\ell \cdot N) \leq 1/\ell \).

49
E Assumptions

Definition E.1 (Semantic Security). We say that the encryption scheme \((\text{gen}, \text{enc}, \text{dec})\) is semantically secure if there exists a negligible function \(\nu(\cdot)\) such that for every \(\mathcal{A}\) it holds that \(\Pr[\text{PaillierSec}(\mathcal{A}, 1^\kappa) = 1] \leq 1/2 + \nu(\kappa)\).

Definition E.2 (Existential Unforgeability). We say that a signature scheme \((\text{gen}, \text{sign}, \text{vrfy})\) is existentially unforgeable if there exists a negligible function \(\nu(\cdot)\) such that for every \(\mathcal{A}\) and every \(n \in \text{poly}\) it holds that \(\Pr[\text{ExUnf}(\mathcal{A}, n, 1^\kappa) = 1] \leq \nu(\kappa)\).

Definition E.3 (Strong-RSA). We say that strong-RSA is hard if there exists a negligible function \(\nu(\cdot)\) such that for every \(\mathcal{A}\) it holds that \(\Pr[\text{sRSA}(\mathcal{A}, 1^\kappa) = 1] \leq \nu(\kappa)\).

\[\text{Figure 19: Semantic Security Experiment PaillierSec}(\mathcal{A}, 1^\kappa)\]

1. Generate a key pair \((pk, sk) \leftarrow \text{gen}(1^\kappa)\)
2. \(\mathcal{A}\) chooses \(m_0, m_1 \in M\) on input \((1^\kappa, pk)\).
3. Compute \(c = \text{enc}_\mathcal{A}(m_0)\) for \(b \leftarrow \{0, 1\}\).
4. \(\mathcal{A}\) outputs \(b'\) on input \((1^\kappa, pk, m_0, m_1, c)\).
 - **Output**: \(\text{PaillierSec}(\mathcal{A}, 1^\kappa) = 1\) if \(b = b'\) and 0 otherwise.

\[\text{Figure 20: Existential Unforgeability Experiment ExUnf}(\mathcal{A}, \mathcal{H}, n, 1^\kappa)\]

1. Generate a key pair \((pk, sk) \leftarrow \text{gen}(1^\kappa)\) and let \((m_0, \sigma_0) = (\emptyset, \emptyset)\).
2. For \(i = 1 \ldots n(\kappa)\)
 - Choose \(m_i \leftarrow \mathcal{A}^\mathcal{H}(1^\kappa, pk, m_0, \sigma_0, \ldots, m_{i-1}, \sigma_{i-1})\)
 - Compute \(\sigma_i = \text{sign}_\mathcal{A}(m_i)\).
3. \(\mathcal{A}^\mathcal{H}\) outputs \((m, \sigma)\) on input \((1^\kappa, pk, m_0, \sigma_0, \ldots, m_{n(\kappa)}, \sigma_{n(\kappa)})\).
 - **Output**: \(\text{ExUnf}(\mathcal{A}, \mathcal{H}, n, 1^\kappa) = 1\) if \(\text{vrfy}_\mathcal{A}(m, \sigma) = 1\) and \(m \notin \{m_1, \ldots, m_{n(\kappa)}\}\) and 0 otherwise.

Figure 21: Strong-RSA Experiment \(\text{sRSA}(\mathcal{A}, 1^\kappa)\)

1. Generate an RSA modulus \(N \leftarrow \mathcal{N}(1^\kappa)\).
2. Sample \(c \leftarrow \mathbb{Z}_N\).
3. \(\mathcal{A}\) outputs \((m, c)\) on input \((1^\kappa, N, m)\).
 - **Output**: \(\text{sRSA}(\mathcal{A}, 1^\kappa) = 1\) if \(e > 1\) and \(m^e = c \mod N\), and 0 otherwise.

E.1 Enhanced Existential Unforgeability of ECDSA

E.1.1 O(1)-Enhanced Forgeries

Lemma E.4. If ECDSA is existentially unforgeable, then there exists a negligible function \(\nu\) such that for any PPTM \(\mathcal{A}\), for every \(T \in \text{poly}(\kappa)\) and \(S \in O(1)\) it holds that \(\Pr[\text{EnhancedECDSA}(\mathcal{A}, S, T, \kappa) = 1] \in \nu(\kappa)\).
FIGURE 22 (ECDSA Multi-Enhanced Experiment EnhancedECDSA(\(A, \mathcal{H}, S, T, 1^\kappa\)))

0. Choose a group-order-generator tuple \((\mathbb{G}, q, g) \leftarrow \text{gen}(1^\kappa)\).
1. Generate a key-pair \((x \leftarrow \mathbb{F}_q, X = g^x)\) and let \((R_0, m_0, \sigma_0) = (\emptyset, \emptyset, \emptyset)\).
2. For \(i = 1 \ldots T\)
 - Sample \(R_i = \{R_{i,j} = g^{k_{i,j}} \leftarrow \mathbb{G}\}_{j \leq S}\).
 - For \(j = 1 \ldots S\)
 (a) Choose \(m_{i,j} \leftarrow A^H(\mathbb{G}, g, R_0, m_0, \sigma_0, \ldots, R_{i-1}, m_{i-1}, \sigma_{i-1}, R_i, m_{i,j}, \sigma_{i,j})\)
 (b) Compute \(\sigma_{i,j} = \text{sign}_x(m_{i,j}; k_{i,j})\).
 Set \(m_i = \{m_{i,j}\}_j\) and \(\sigma_i = \{\sigma_{i,j}\}_j\).
3. \(A^H\) outputs \((m, \sigma)\) on input \((\mathbb{G}, g, R_0, m_0, \sigma_0, \ldots, R_T, m_T, \sigma_T)\).
 - Output: EnhancedECDSA(\(A, \mathcal{H}, T, \mathbb{G}\)) = 1 if \(\text{vrfy}_X(m, \sigma) = 1\) and \(m \notin \{m_{i,j}\}_{i,j}\) and 0 otherwise.

Figure 22: ECDSA Multi-Enhanced Experiment EnhancedECDSA(\(A, \mathcal{H}, S, T, 1^\kappa\))

Proof. Let \(Q \in \text{poly}\) denote the number of oracle queries that the adversary makes in between each signature query. We show that any adversary that wins the experiment above with noticeable probability \(p\) yields an efficient adversary that forges signatures with the same probability in the (plain) ECDSA experiment and complexity most \(T \cdot Q^S \log(Q) \in \text{poly}\) queries. Define process \(R\) with black-box access to \(A\) as follows: choose \(Q\) messages uniformly at random denoted \(\{m'_i\}_{i \in [Q]}\). Then choose \(I^* \subseteq [Q]\) of size \(S\) uniformly at random and invoke the (plain) ECDSA oracle on \(m'_{i^*}\), for every \(i^* \in I^*\). Write \((R_{i^*}, M_{i^*} = \mathcal{H}(m'_{i^*}), \sigma_{i^*})\) for the signature. Next do:

1. Hand over \(\{R_{i^*}\}_{i^* \in I^*}\) to \(A\)
2. For \(i = 1 \ldots Q\), each time \(A\) queries the oracle on \(m_i\), hand over \((\text{answer}, M_i = \mathcal{H}(m'_i))\).
3. When \(A\) queries the ECDSA oracle on \(m_{j^*}\), do
 - If \(j^* \neq i^*\) rewind the adversary and repeat.
 - Else hand over \(\sigma\).

Observe that \(\Pr[\forall i^*, i^* = j^*] = \frac{1}{(\frac{Q}{S})^S} \in O(1/Q^S)\) and that the reduction will guess every \(j^*\) with probability close to 1 after \(Q^S \cdot \log(Q)\) tries.

E.1.2 Multi-Enhanced Forgeries: Preliminaries

Brief overview of the Generic Group Model. Let \((\mathbb{G}, q, g)\) denote a group-order-generator tuple and let \(G \subset \{0,1\}^*\) denote an arbitrary set of size \(q\). The generic group model is defined via a random bijective map \(\mu : \mathbb{G} \rightarrow G\) and a group-oracle \(\mathcal{O} : G \times G \rightarrow G\) such that \(\mu(gh) = \mathcal{O}(\mu(g), \mu(h))\), for every \(g, h \in \mathbb{G}\). In group-theoretic jargon, \((G, \ast)\) is isomorphic to \((\mathbb{G}, \cdot)\) via the group-isomorphism \(\mu\), letting \(\ast : G \times G \rightarrow G\) such that \(G \ast H = \mathcal{O}(G, H)\).

EC-specific abstraction. We further assume that there exists an efficient 2-to-1 map \(\tau : G \rightarrow F_q\) such that \(\tau(H) = \tau(H^{-1})\). We further assume that this map is efficiently invertible \(\tau^{-1} : F_q \rightarrow \{\{G, H\} \text{ s.t. } G, H \in G\} \cup \{\bot\}\) such that

\[
\tau^{-1} : x \mapsto \begin{cases} \{H, H^{-1}\} & \text{if } \exists H \text{ s.t. } \tau(H) = x \\ \bot & \text{otherwise} \end{cases}
\]
Notation E.5. Define π such that $\pi(X) = \emptyset$ and $\pi(X_1, \ldots, X_\ell) = (X_1, X_2, X_1 X_2) \parallel \pi(X_1 X_2, X_3, \ldots, X_\ell)$, for every $X, X_1, \ldots, X_\ell \in G$. Furthermore, for $X \in G$ and $k \in \mathbb{F}_q$ let $(k_i)_{i \leq q_0}$ denote the binary representation of k and define

$$(X^k) = \begin{cases} (X, X, X^2, \ldots, X^{k/2}, X^{k/2}, X^k) & \text{if } k \text{ is a power of } 2 \\ (\id_G, X, X) \parallel (X^{k_1}, X^k) \parallel \ldots \parallel (X^{k_{q_0/2}}, X^{k_{q_0/2}}) \parallel \pi(X^{k_0}, \ldots, X^{k_{q_0/2}}) & \text{otherwise} \end{cases},$$

where $q_0 = \lceil \log q \rceil$.

Figure 23 (ECDSA Experiment in Generic Group w/ Enhanced Signing Oracle)

- **Group Oracle O:**
 - On input (X, Y), return $Z = X \ast Y$.
 - Set $Q = Q \parallel (X, Y, Z)$.

- **Signing oracle S^O:**
 - On input `pubkey`, sample $G \leftarrow G$ and $x \leftarrow \mathbb{F}_q$ and return $(G, H = G^x)$.
 - On input `pnt-request`, sample $k \leftarrow \mathbb{F}_q$, return $R = G^{k^{-1}}$, add R to R and record (R, k).
 - On input `(sign, msg, R)`, if $R \in R$ retrieve (R, k) and do:
 1. Return $\sigma = k(m + rx)$, for $r = \tau(R)$ and $m = H(\text{msg})$.
 2. Set $Q = Q \parallel (G^{m/\sigma}) \parallel (H^{r/\sigma}) \parallel (G^{m/\sigma}, H^{r/\sigma}, R)$.
 3. Remove R from R and add $(R, \text{msg, } \sigma)$ to S.

Figure 23: ECDSA Experiment in Generic Group w/ Enhanced Signing Oracle

Let A denote an algorithm interacting with O, S^O in the experiment described in Figure 23. Consider the tuple of all oracle calls $Q = (Q_1, \ldots, Q_\ell) = (X_1, Y_1, Z_1, \ldots, X_\ell, Y_\ell, Z_\ell)$, where each pair (X_i, Y_i) denotes the input to O and Z_i denotes the output.

Definition E.6. We say that $Q_i \in \{X_j, Y_j\}$ is independent if $(Q_i, \ldots) \notin S$ and $Q_i \notin \{Q_k, Q_k^{-1}\}$, for every $k < i$.

Lemma E.7 (Brown [5, 6]). The following holds with all but negligible probability for every efficient algorithm A interacting with O. Let $B_1 \ldots B_\ell$ denote the independent elements of Q and let $Q \in Q$. Suppose that A outputs two sequences $(\alpha_1, \ldots, \alpha_\ell)$ and $(\alpha_1', \ldots, \alpha_\ell')$ such that

$$Q = \prod_{k \leq \ell} B_k^{\alpha_k} = \prod_{k \leq \ell} B_k^{\alpha_k'}.$$

Then, with probability $1 - 1/\text{poly}(q)$ it holds that $\alpha_i \equiv \alpha'_i \mod q$, for every $i \in [\ell]$. Furthermore, if $Q = Z_j$, then $\alpha_1, \ldots, \alpha_\ell$ are efficiently computable from $(X_i, Y_i, Z_i)_{i < j}$, the set S, and random oracle H.

E.1.3 Multi-Enhanced Forgeries: Proof

E.1.4 Multi-Enhanced Forgeries: Proof

Theorem E.8. Let A be an algorithm in the generic group experiment with enhanced signing oracle making ℓ queries to the random oracle. If A outputs a forgery with probability α, then there exists B making at most ℓ queries to the random oracle such that

$$\Pr_{e \leftarrow \mathbb{F}_q} [(x, y) \leftarrow B(e) \ s.t. \ H(x)/H(y) = e] \geq \alpha/t^2 - 1/\text{poly}(q),$$

where t is an upper bound on the total number of queries to the group and signing oracle.
The above theorem follows from the claim below by straightforward averaging argument.

Claim E.9. Let \(A \) be an algorithm in the generic group experiment with enhanced signing oracle making \(\ell \) queries to the random oracle. If \(A \) outputs a forgery with probability \(\alpha \), then there exists \(B \) making at most \(\ell \) queries to the random oracle such that

\[
\Pr_{e_1, \ldots, e_\ell \in \mathbb{F}_q}[\langle x, y \rangle \leftarrow B(e_1, \ldots, e_\ell) : \exists i \text{ s.t. } \mathcal{H}(x)/\mathcal{H}(y) = e_i] \geq \alpha/t - 1/	ext{poly}(q)
\]

where \(t \) is an upper bound on the total number of queries to the group and signing oracle.

Proof. Using the notation above, for a tuple of query calls \(Q = (Q_1, \ldots) \) and signed points \(S \), let \(\phi: G \rightarrow (\mathbb{F}_q)^* \) denote the (efficient) function that maps group-elements to their representation with respect to the independent points of \(Q \). Namely \(\phi(Q_i) = \prod_k B_k^a_k \) as (uniquely except with negligible probability) determined by \((Q_j)_{j<i} \) and \(S \). Consider the reduction from Figure 24 and let \(A \) denote a generic forger. In the end of the experiment, assume \(A \) outputs \(x \in \{0,1\}^* \) and \((F,\psi)\) such that \(F = G^\mathcal{H}(x)/\psi \ast H^\mathcal{F}/\psi \) and \((\ldots,x,\ldots) \notin S \). We begin by showing that in the following cases (depending on \(F \)), the transcript of the reduction yields a “collision” \((x,y)\) in the random oracle of the form \(\mathcal{H}(x)/\mathcal{H}(y) = e \) for \(e \leftarrow \mathbb{F}_q \).

Case 1. \(F \) was returned to the adversary in Item 2 of the group operation simulation. Using the notation from Figure 24, it holds that \(F = G^\sigma H^\beta = G^{\mathcal{H}(x)/\psi} H^f/\psi \) for \(f = \alpha^{-1} \mathcal{H}(y) e \beta \). Consequently \(f/\psi = \beta \) and \(\mathcal{H}(x)/\psi = \alpha \) and we deduce that \(\mathcal{H}(x)/\mathcal{H}(y) = (\alpha \psi) \cdot (f^{-1} \alpha^{-1} e \beta) = e \cdot (\beta \psi f^{-1}) = e \).

Case 2. \(F \) was returned to the adversary in Item 3 of the group operation simulation, and, for \((R, y, \sigma) \in S \), it holds that \(F = G^\sigma H^\beta R^\gamma \) and \(\alpha r - \beta m = 0 \). Using the notation from Figure 24, it holds that \(F = G^\sigma H^\beta R^\gamma \) for \(\tau(F) = e \cdot r \) and \(r = \tau(R) \). Next, retrieve \((R, y, \sigma)\) from \(S \) such that \(R = G^\mathcal{H}(w)/\sigma \ast H^\mathcal{R}/\sigma \) and deduce that \(F = G^{\alpha + \gamma m/\sigma} H^{\beta + \gamma r/\sigma} \). Deduce that \(\beta/r + \gamma/\sigma = f/\psi = \frac{\gamma}{\sigma} \), and, since \(\alpha = m \beta/r \), observe that \(m (\beta/r + \gamma/\sigma) = \chi/\psi \) which implies that \(e = \chi/m = \mathcal{H}(x)/\mathcal{H}(y) \).

Case 3. \(F \) was chosen by the simulator in Item 1 of the signing operation simulation. It holds that \(F = G^\sigma H^\beta R^\gamma = G^{\alpha + \gamma m/\sigma} H^{\beta + \gamma r/\sigma} = G^{\mathcal{H}(x)/\psi} H^f/\psi \) for \(\sigma \) set as prescribed in Item 1 of the signing operation simulation i.e.

\[
\sigma = \gamma (wr f^{-1} - m) \cdot (\alpha - w f^{-1} \beta)^{-1}
\]

Therefore, letting \(\chi = \mathcal{H}(x) \), since \(\chi/\psi = \alpha + \gamma m/\sigma \) and \(f/\psi = \beta + \gamma r/\sigma \), it follows that

\[
\chi (\beta + \gamma r/\sigma) = f (\alpha + \gamma m/\sigma) \iff f \alpha - \chi \beta = \frac{\gamma}{\sigma} (\chi r - m f) \iff f \alpha - \chi \beta = \frac{\gamma}{\sigma} (\chi r - m f) \iff
\]

\[
(f \alpha - \chi \beta)(\chi r - m f)^{-1} = (w r f^{-1} - m)^{-1} (\alpha - w f^{-1} \beta) \iff
\]

\[
(w - \chi)(r \alpha - \beta m) = 0
\]

which implies \(\mathcal{H}(x)/\mathcal{H}(y) = e \) for \(w = \mathcal{H}(y) e \) since \(r \alpha - \beta m \neq 0 \).

Simulation Indistinguishability. Next we show that if the adversary forges in the real world, then the adversary outputs a forgery in Figure 24. It is enough to argue that the (simulated) points and signatures satisfy the same distribution as in the real world (when \(A \) interacts with a “real” group and signing oracle).

Notice that, when simulating the group-oracle, all the points are simply random uniform elements in \(G \) (since \(R \leftarrow \tau^{-1}(r) \) for \(r \leftarrow \mathbb{F}_q \)). The nontrivial part is to show that the signatures are well-distributed. In the real world, \(\sigma = k(\mathcal{H}(x) + r x) \) for a random \(k \), so the signatures are simply uniform elements in \(\mathbb{F}_q \) (since in the GGM elements \(k \) and \(r = \tau(R) \) are independent). We show that the signatures are (almost) uniform elements in Figure 24 by showing that the map \(w \mapsto \gamma (w r \xi^{-1} - m) \cdot (\alpha - w \xi^{-1} \beta)^{-1} \) is injective when \(\gamma \xi \neq 0 \).
and \(r\alpha - m\beta \neq 0 \). So, for \(u, v \in \mathbb{F}_q \), if
\[
\gamma (ur\zeta^{-1} - m) \cdot (\alpha - u\zeta^{-1}\beta)^{-1} = \gamma (vr\zeta^{-1} - m) \cdot (\alpha - v\zeta^{-1}\beta)^{-1} \quad \Leftrightarrow \quad (1)
\]
\[
(ur\zeta^{-1} - m) \cdot (\alpha - v\zeta^{-1}\beta) = (vr\zeta^{-1} - m) \cdot (\alpha - u\zeta^{-1}\beta) \quad \Leftrightarrow \quad (2)
\]
\[
ur\alpha + mv\beta = vr\alpha + mu\beta \quad \Leftrightarrow \quad (3)
\]
\[
(u - v)(r\alpha - m\beta) = 0 \quad (4)
\]
Therefore, for random \(w \), the (simulated) signature is uniform over \(\mathbb{F}_q \setminus \{\alpha\zeta\beta^{-1}\} \). By Lemma E.7, we conclude that if \(\mathcal{A} \) outputs a forgery in the real world, then \(\mathcal{A} \) outputs a forgery in Figure 24 with probability \(1 - 1/\text{poly}(q) \).

Putting everything together. We conclude by calculating the probability that the transcript contains a “collision” in the random oracle of the form \(\mathcal{H}(x)/\mathcal{H}(y) = e \). Let \((F, x, \psi)\) denote \(\mathcal{A} \)'s forgery. If \(F \) was returned to \(\mathcal{A} \) in Item 2 of the group operation simulation (case 1), then clearly the transcript yields a suitable collision. The other two cases are slightly more complicated because the reduction is required to guess the attempted forgery. For instance, in Item 3 of the group-operation simulation (case 2), the reduction picks a random (presigning) point \(R \) hoping that \((F, x, \psi)\) together with \((R, \text{msg}, \sigma) \in S\) will result in a “collision”. Similarly, in Item 1 of the signing-operation simulation (case 3), the reduction chooses a random \(Z \) hoping that \(F = Z \).

In more detail, assume that \(F \) was first calculated of the form \(G^\alpha H^\beta \prod_i R_i^{\gamma_i} \) and deduce the following about \(F = G^\alpha H^\beta R^{\gamma} \) where \(R \) denotes the last point to be signed on \(m = \mathcal{H}(\text{msg}) \) among \(\{R_i\}_i \). If \(\alpha r + \beta' m = 0 \), then \(R \) was chosen by the reduction in Item 3 of the group operation with probability at least \(1/t \) (since \(t \) is an upper bound on the number of group-queries), or, if \(\alpha r + \beta' m \neq 0 \), then \(F \) was chosen by the reduction in Item 1 of the signing operation with probability at least \(1/t \) (since \(t \) is an upper bound on the number of presigning-queries).

In summary, it holds that the transcript contains a suitable collision with probability \(\alpha/t - \frac{1}{\text{poly}(q)} \).\[\square\]
FIGURE 24 (Reduction in Generic Group w/ Enhanced Signing Oracle)

- Input: \(e_1, \ldots, e_t \in \mathbb{Z}_q \) and \(\lambda \in \mathbb{N} \) and PPTM \(A \).
 - Initialize: \(\text{ctr} = 1 \).

- Group operation simulation:
 - On input \((X, Y)\) from \(A \) to the group-oracle, do:
 1. If \(\phi(Z) = \phi(X * Y) \) for some \(Z \in Q \), return \(Z \).
 2. Else If \(\phi(X * Y) = G^\alpha H^\beta \) for \(\alpha, \beta \neq 0 \) do:
 (a) Sample \(y \leftarrow \mathbb{F}_q \) and set \(w = e_{\text{ct}} \cdot \mathcal{H}(y) \) and \(Z \leftarrow \tau^{-1}(\alpha^{-1}w^\beta) \).
 If \(\tau^{-1}(\alpha^{-1}w^\beta) = \bot \), repeat the above step. Otherwise, increment \(\text{ctr} \) and carry on.
 (b) Return \(Z \).
 3. Else if \(\phi(X * Y) = G^\alpha H^\beta \prod_{i \leq \ell} R_i^{\gamma_i} \) for \(R_i \in R \) and \(\gamma_i \neq 0 \) do:
 (a) Choose \(i \leftarrow [\ell] \) and set \(Z \leftarrow \tau^{-1}(e_{\text{ct}} \cdot r_i) \), for \(r_i = \tau(R_i) \).
 If \(\tau^{-1}(e_{\text{ct}} \cdot r_i) = \bot \), repeat the above step. Otherwise, increment \(\text{ctr} \) and carry on.
 (b) Return \(Z \).
 4. Else return \(Z \leftarrow G \).

- Signing operation simulation:
 - On input \(\text{pubkey} \) from \(A \) to the signing-oracle, return \((G, H) \leftarrow G^2\).
 - On input \(\text{pnt-request} \) from \(A \) to the signing-oracle, return \(R \leftarrow G \), and add \(R \) to \(R \).
 - On input \((\text{sign}, \text{msg}, R)\) from \(A \) to the signing-oracle, if \(R \in R \) set \(m = \mathcal{H}(\text{msg}) \) and \(r = \tau(R) \), and do:
 1. Choose \(Z \leftarrow Q \) such that \(\phi(Z) = G^m H^r R^\gamma \), for \(\gamma \neq 0 \) and \(\beta m - r \alpha \neq 0 \).
 (a) Sample \(y \) and set \(w = e_{\text{ct}} \cdot \mathcal{H}(y) \) and \(\sigma = \gamma (\alpha w \zeta^{-1} m) \cdot (\alpha - w \zeta^{-1} \beta)^{-1} \), for \(\zeta = \tau(Z) \).
 Increment \(\text{ctr} \).
 (b) If no such \(Z \) exists set \(\sigma \leftarrow \mathbb{F}_q \).
 2. Return \(\sigma \) and remove \(R \) from \(R \), and add \((R, \text{msg}, \sigma)\) to \(S \).

Set \(Q = Q \parallel (G^m/\sigma) \parallel (H^r/\sigma) \parallel (G^m/\sigma, H^r/\sigma, R) \).

Figure 24: Reduction in Generic Group w/ Enhanced Signing Oracle