Near-optimal Polynomial for Modulus Reduction Using L2-norm for Approximate Homomorphic Encryption

Yongwoo Lee, Joonwoo Lee, Young-Sik Kim, and Jong-Seon No, Fellow, IEEE

Abstract—Since Cheon et al. introduced an approximate homomorphic encryption scheme for complex numbers called Cheon-Kim-Kim-Song (CKKS) scheme, it has been widely used and applied in real-life situations, such as privacy-preserving machine learning. The polynomial approximation of a modulus reduction is the most difficult part of the bootstrapping for the CKKS scheme. In this paper, we cast the problem of finding an approximate polynomial for a modulus reduction into an L2-norm minimization problem. As a result, we find an approximate polynomial for the modulus reduction without using the sine function, which is the upper bound for the approximation of the modulus reduction. With the proposed method, we can reduce the degree of the polynomial required for an approximate modulus reduction, while also reducing the error compared with the recent result reported by Han et al. (CT-RSA'20). Consequently, we can achieve a low-error approximation, such that the maximum error is less than 2^{-20}, and the level parameter size and computation overhead could be fixed regardless of circuit depth. However, in general, the bootstrapping of FHE schemes requires considerable amount of computation.

Bootstrapping for CKKS scheme was first proposed by Cheon et al. [2]. Subsequently, several studies have been conducted to improve bootstrapping for CKKS schemes [4], [3], [6] and they commonly perform modulus reduction homomorphically by approximating it to a scaled sine function. The CKKS scheme is promising and used widely; however, as most deep learning methods require operations of significant depth, the improvement of bootstrapping is crucial. Homomorphic evaluation of the modulus reduction is the key part of the bootstrapping of the CKKS scheme. As only arithmetic operations can be evaluated homomorphically and modulus reduction is not an arithmetic operation, a polynomial approximation for modulus reduction is required.

In most bootstrapping methods studied so far, the scaled sine function (or shifted to the cosine function) is deemed to be an approximation of the modulus reduction [2], [3], [4]. Thus, a polynomial approximation for the scaled sine function is used to evaluate the modulus reduction homomorphically. In [2], the sine function was approximated by Taylor expansion of an exponential function using $e^{i\theta} = \cos \theta + i \sin \theta$ and the double angle formula $e^{2i\theta} = (e^{i\theta})^2$. The Chebyshev interpolation method improves the polynomial approximation of the sine function [3]. Based on the fact that the size of message is significantly less than the ciphertext modulus, better nodes for Chebyshev interpolation was selected and the approximation was refined [4].

In this paper, instead of approximating the sine function, we propose to cast the problem of finding approximate polynomials for a modulus reduction into the L2-norm minimization problem for which an optimal solution can be directly computed. An approximation by the minimax polynomial for the modulus reduction is desirable; however, the shape of the modulus reduction function makes it difficult to find the minimax polynomial. Thus, instead, we propose a discretized optimization method that can be solved efficiently with a unique solution. Through the solution of the modified dis-
cretized problem, we can reduce the degree of the approximate polynomial for the modulus reduction while achieving a low margin of error. Consequently, operations required for the homomorphic modulus reduction are reduced compared with the best-known method [4] where the double angle formula is excluded.

When conventional methods are used, the sine function dominates the approximation error; in other words, the approximation error cannot be less than the difference between the sine function and modulus reduction. Therefore, the message size is limited to \(m < q^{2/3} \), and thus plaintext precision is also limited, where \(q \) denotes a value of the ciphertext modulus. However, the proposed method does not use the sine function, and thus we can obtain a precise approximate polynomial or utilize a message that is larger in size. For example, when \(m/q < 2^{-10} \), the proposed method finds an approximate polynomial with a maximum error of less than \(2^{-40} \) with only a circuit depth of 7, whereas the best-known modified Chebyshev interpolation method cannot because the error saturates to \(2^{-27} \). Therefore, the proposed method is essential for applications that require precise calculations. Moreover, accurate approximate polynomials for modulus reductions of larger messages can be found. For example, we achieve \(2^{-20} \) error for \(m/q \approx 2^{-6} \) with only a depth of 7, whereas conventional methods cannot be used with the message \(m/q \approx 2^{-6} \) because the error saturates to \(2^{-15} \).

This means that a user can handle a large, accurate number and the selection of parameters for CKKS scheme can be expanded using the proposed method. Thus, the proposed method using the L2-norm minimization makes it possible to expanded using the proposed method. Thus, the proposed method provides less level loss during bootstrapping and the selection of parameters for CKKS scheme can be

When a set is used instead of a distribution, it means that \(x \) is sampled uniformly at random from among the set elements.

B. Chebyshev Interpolation

The Chebyshev interpolation is a well-known polynomial interpolation method that uses the Chebyshev polynomials as a basis of the interpolation polynomial. The Chebyshev polynomial of the first kind, in short, the Chebyshev polynomial is defined by the recursive relation [22]

\[
T_0(x) = 1 \\
T_1(x) = x \\
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).
\]

The Chebyshev polynomial of degree \(n \) has \(n \) distinct roots in the interval \([-1,1]\) and all its extrema are also in \([-1,1]\). Moreover, \(\frac{1}{\sqrt{n+1}}T_n(x) \) is the polynomial, whose maximal absolute value is minimal among monic polynomials of degree \(n \) and the absolute value is \(\frac{1}{\sqrt{n+1}} \). In addition to the above, the Chebyshev polynomial has good properties for the basis of an interpolation polynomial.

In Chebyshev interpolation, the \(n \)-th degree polynomial \(p_n(x) \) is represented as a sum of the Chebyshev polynomials in the form

\[
p_n(x) = \sum_{i=0}^{n} c_i T_i(x).
\]

\(p_n(x) \) is an approximate polynomial for \(f(x) \) by interpolating \(n+1 \) points \(\{x_0, x_1, \ldots, x_n\} \), where

\[
c_i = \frac{2}{n+1} \sum_{k=0}^{n} f(x_k) T_i(x_k).
\]

Selecting points \(\{x_0, x_1, \ldots, x_n\} \) is key for a good approximation.

C. CKKS Scheme

This section briefly introduces the CKKS scheme [1]. For a positive integer \(M \), let \(\Phi_M(X) \) be the \(M \)-th cyclotomic polynomial of degree \(N \), where \(M \) is a power of two, \(M = 2N, \Phi_M(X) = X^N + 1 \). Let \(\mathcal{R} = \mathbb{Z}/\langle \Phi_M(X) \rangle \) be the ring of integers of a number field \(\mathbb{Q}/\langle \Phi_M(X) \rangle \) and we write \(\mathcal{R}_q = \mathcal{R}/q \mathcal{R} \).

The CKKS scheme [1] and its residual number system (RNS) variants [5], [4] provide homomorphic operations on real number data with an error. This is done by canonical embedding and its inverse. Recall that canonical embedding \(\sigma \) of \(a \in \mathbb{Q}/\langle \Phi_M(X) \rangle \) into \(\mathcal{C}^N \) is the vector of the evaluation values \(a \) at the roots of \(\Phi_M(X) \). Let \(\pi \) denote a natural projection from \(\mathbb{H} = \{ (z_1, \ldots, z_M) : z_j = \overline{z_j} \} \) to \(\mathcal{C}^{N/2} \), where \(\mathbb{Z}_M^* \) is the multiplicative group of integer modulo \(M \). The encoding \(\langle \mathcal{C}^{N/2} \rightarrow \mathcal{R} \rangle \) and decoding are given as below.

- **Encode** \(z; \Delta \): For an \((N/2) \)-dimensional vector \(z \), the encoding procedure returns

\[
m(X) = \sigma^{-1} \left([\Delta \cdot \pi^{-1}(z)]_{\sigma(\mathcal{R})} \right) \in \mathcal{R},
\]

where \(\Delta \) is the scaling factor and \([\pi^{-1}(z)]_{\sigma(\mathcal{R})} \) denotes the discretization of \(\pi^{-1}(z) \) into an element of \(\sigma(\mathcal{R}) \).
\[\text{Dcd}(m; \Delta). \] For an input polynomial \(m(X) \in \mathcal{R} \), output a vector \(\pi(z) \) such that its entry of index \(j \) is given as
\[z_j = \left[\Delta^{-1} \cdot m(\zeta_M^j) \right] \quad \text{for } j \in T, \] where \(\zeta_M \) is the \(M \)-th root of unity and \(T \) is a multiplicative subgroup of \(\mathbb{Z}_M^\times \) satisfying \(\mathbb{Z}_M^\times /T = \{ \pm 1 \} \).

The L-infinity norm of \(\sigma(a) \) for \(a \in \mathcal{R} \) is called the canonical embedding norm of \(a \), denoted by \(\| a \|_{\infty} = \| \sigma(a) \|_{\infty} \). Refer [1] for the property of the canonical embedding norm.

Adopting notations in [7], [1], we define three distributions as follows. For real \(\gamma > 0 \), \(DG(\gamma^2) \) denotes the distribution of vectors in \(\mathbb{Z}^N \), whose entries are sampled independently from the discrete Gaussian distribution of variance \(\gamma^2 \). \(HWT(h) \) is the set of signed binary vectors in \(\{0, \pm 1\}^N \) with Hamming weight \(h \) and \(ZO(\rho) \) denote the distribution of vectors from \(\{0, \pm 1\}^N \) with probability \(\rho/2 \) for each of \(\pm 1 \) and a probability of being zero \(1 - \rho \). Suppose we have ciphertexts of level \(l \) for \(0 < l \leq L \), where level \(l \) means the maximum number of possible multiplications before bootstrapping. For convenience, we fix a base \(p > 0 \) and a modulus \(q \) and let \(q_t = p^t \cdot q \). The base integer \(p \) is a base for scaling, \(\Delta \).

The CKKS scheme is defined with the following key generation, encryption, decryption, and corresponding homomorphic operations.

- **KeyGen(\(\lambda^2 \))**.
 - Given the security parameter \(\lambda \), we choose \(M \) as a power of two, an integer \(h \), an integer \(P \), a real value \(\gamma \), and a maximum ciphertext modulus \(Q \), such that \(Q \geq q_t \).
 - Sample following:
 \[s \leftarrow HWT(h), a \leftarrow R_{q_h}, e \leftarrow DG(\gamma^2). \]
 Set the secret key and the public key as
 \[sk := (1, s), pk := (b, a) \in R_{q_h^2}, \]
 respectively, where
 \[b = -as + e \pmod{q_l}. \]

- **KSGen(s)**.
 Sample \(a' \leftarrow R_{Pq_h} \) and \(e' \leftarrow DG(\gamma^2) \). Output the switching key
 \[swk := (b', a') \in R_{Pq_h^2}^2, \]
 where \(b' = -a's + e' + Ps' \pmod{Pq_h} \).
 - Set the evaluation key as \(evk := \text{KSGen}(s^2) \).

- **Encpk(m)**.
 Sample \(v \leftarrow ZO(0.5) \) and \(e_0, e_1 \leftarrow DG(\gamma^2) \).
 Output \(c = v \cdot pk + (m + e_0, e_1) \pmod{q} \).

- **Decsk(c)**.
 Output \(\hat{m} = (c, sk) \).

- **Add(c_1, c_2)**.
 For \(c_1, c_2 \in R_{q_h^2} \), output
 \[c_{add} = c_1 + c_2 \pmod{q}. \]

- **Multevk(c_1, c_2)**.
 For \(c_1 = (b_1, a_1), c_2 = (b_2, a_2) \in R_{q_h^2} \), let
 \[(d_0, d_1, d_2) := (b_1b_2, a_1b_2 + a_2b_1, a_1a_2) \pmod{q}. \]
 Output
 \[c_{mult} = (d_0, d_1) + [P^{-1} \cdot d_2 \cdot evk] \pmod{q}. \]

- **RSLt-to-t’(c)**.
 For \(c \in R_{q_t^2} \), output
 \[c' = \left[\frac{q_{t'}}{q_t} c \right] \pmod{q_{t'}}. \]

- **KSswk(c)**.
 For \(c = (c_0, c_1) \in R_{q_h^2} \), output
 \[c' = (c_0, 0) + [P^{-1} \cdot c_1 \cdot swk] \pmod{q_t}. \]

In addition to the operations above, key switching techniques are used to provide various operations, such as a complex conjugate and rotations.

There are computationally more efficient variants of the CKKS scheme, namely the full-RNS variant of CKKS [5], [4] and the basic operations supported therein are similar. Hence, it is worth noting that the following methods in this paper aim for the CKKS scheme and all its variants.

D. Bootstrapping for CKKS Scheme

There are several studies for bootstrapping for CKKS scheme [2], [3], [4]. The bootstrapping consists of four steps: **ModRAISE**, **COEFFToSLOT**, **EVALMOD**, and **SLOTToCOEFF**.

1) **Modulus Raising**: **ModRAISE** is the procedure to change the modulus of a ciphertext to a greater value. Let \(ct \) be the ciphertext satisfying \(m(X) = [(ct, sk_h)]_q \). It can be seen that \(t(X) = (ct, sk) \pmod{N+1} \) is of the form \(t(X) = qI(X) + m(X) \) for \(I(X) \in \mathcal{R} \) with a bound \(\| I(X) \|_\infty < K \), where \(K \) is bounded by \(O(\sqrt{h}) \). The following procedure aims to compute the remainder of the coefficient of \(t(X) \), say \(t \), divided by \(q \cdot t \) \pmod{q} homomorphically. As the modulus reduction is not an arithmetic operation, the crucial point is to find a polynomial approximating it. We can control the size of the message, and thus we ensure \(m < q \cdot t \) \pmod{q} for small \(e \).

2) **Putting Polynomial Coefficients in Plaintext Slots**: Approximate homomorphic operations are performed in plaintext slots. Thus, in order to deal with \(t(X) \), we have to put polynomial coefficients in plaintext slots. In **COEFFToSLOT** step, the **Ecd** is performed homomorphically using matrix multiplication [2] or, FFT-like operations using relationships of roots of unity or a hybrid method of both [3]. Then, we have two ciphertexts encrypting \(z'_0 = (t_0, \ldots, t_{q-1}) \) and \(z'_1 = (t_{q}, \ldots, t_{N-1}) \) (or combined using imaginary e.g., \((t_0 + i \cdot t_1, \ldots, t_{N-1} + i \cdot t_N) \)).

3) **Evaluation of the Approximated Modulus Reduction**: At this stage, the elements of each slot are considered from the viewpoint of single instruction multiple data, in other words, \(t = qI + m \) refers to an element in a slot. In the **EVALMOD** step, an approximated evaluation of \([t]_q \) is performed. At first, Cheon et al. approximated \([t]_q \approx \frac{q}{2\pi} \sin \left(\frac{2\pi t}{q} \right) \) in [2]. The error bound for the approximation of the sine function is given as
\[
\left| m - \frac{q}{2\pi} \sin \left(\frac{2\pi m}{q} \right) \right| \leq \frac{q}{2\pi} \cdot \frac{1}{3!} \left(\frac{2\pi|m|}{q} \right)^3.
\]
where \(t = qI + m \). Then, a Taylor series expansion of the exponent and the double angle formula were adopted as the approximate polynomial of the sine function.

After that, the method of improving polynomial approximation using Chebyshev interpolation proposed in [3] was used. By selecting optimized nodes for a Chebyshev interpolation, Han et al. significantly improved the performance of the approximation in [4]. However, in both approaches, the sine function is used, and thus there is still an upper bound for the approximation error.

4. Switching Back to the Coefficient Representation: SLOT-TO-COEFF is the inverse operation of COEFF-TO-SLOT.

III. NEAR-OPTIMAL POLYNOMIAL FOR MODULUS REDUCTION

As mentioned in Section II-D, the key part of bootstrapping of CKKS scheme is the homomorphic evaluation of the modulus reduction. In [2], the modulus reduction is approximated by the sine function and the approximate polynomial for the sine function is homomorphically evaluated using a Taylor approximation and the double angle formula. Moreover, with optimized nodes for the Chebyshev interpolation, the polynomial approximation is significantly improved [4].

By scaling the modulus reduction function by \(\frac{1}{T} \), we define \([t][q] = t - k \) for \(t \in I_k \), where \(I_k = [k - \epsilon, k + \epsilon] \) and \(k \) is an integer \(|k| < K \). Here, \(\epsilon \) denotes the rate of the maximum coefficient of the message polynomial and the ciphertext modulus, that is, \(\frac{|m|}{T} < \epsilon \). The domain of [t][q] is given by \(\bigcup_{k=-K+1}^{K-1} I_k \). In other words, \(q \cdot \left[\frac{t}{q} \right] \approx m \) for \(t = q \cdot I + m \).

A. Approximate Polynomial using L2-norm optimization

Here, we propose how to find an approximate polynomial \(p_o(t) \) of \([t][q]\) without using an intermediate approximation, such as a sine or cosine function. The proposed method uses the well-known least-squares estimation or L2-norm optimization. The objective is to find a set of coefficients \(c = (c_0, c_1, \ldots, c_n) \) to minimize \(\| [t][q] - p(t) \|_\infty \), where a polynomial of degree \(n \) is defined by \(p(t) = \sum_{i=0}^{n} c_i \cdot t^i \). Such a polynomial is referred to as the minimax polynomial. It is worth noting that \(p(t) \) is equivalent to the inner product of \(c \) and \(T = (1, t^1, \ldots, t^n) \).

Here, \(t_i \)'s are sampled uniformly at intervals of \(\delta \ll \epsilon \) in each \(I_k \), namely, \(k - \epsilon, k - \epsilon + \delta, \ldots, k + \epsilon - \delta, k + \epsilon \). There are \(\frac{2\delta}{\epsilon} + 1 \) samples in \(I_k \), and thus we have \(N_{tot} = (2K-1)\frac{2\delta}{\epsilon} + 1 \) samples. With \(N_{tot} \) samples of \(t_i \), one can build a vector of the powers of \(t_i \), that is, \(T_i = (1, t_i, t_i^2, \ldots, t_i^n) \) for \(1 \leq i \leq N_{tot} \).

The object function to be minimized is given as

\[
\max_\text{max} \| [t][q] - p(t_i) \|_\infty
= \| ([t][q] - p(t_0), \ldots, [t][q] - p(t_{N_{tot}})) \|_\infty
= \| y - T \cdot c \|_\infty,
\]

where \(T \) is an \(N_{tot} \times (n + 1) \) matrix such that \(T[i, j] = t_i^j \) and \(y \) is a vector such that \(y[i] = [t][q] \).

Instead of the L-infinity norm, we replace the above objective function by a loss function using the L2-norm. Then, the optimal solution for L2-norm minimization can be efficiently computed. Let \(L_c \) denote the L2-norm with the coefficient \(c \). Then, we can find \(c \) that minimizes the following

\[
L_c = \| y - T \cdot c \|_2^2
= (y - T \cdot c)^T (y - T \cdot c).
\]

Unfortunately, the entries of \(T \) become considerably big or small values close to zero, as the degree of the polynomial, \(n \), is high.

Thus, we utilize the Chebyshev polynomials as the basis of the polynomial instead of the power basis. In other words, we redefine the \(N_{tot} \times (n + 1) \) matrix \(T \) with entries \(T[i, j] = T_j \left(\frac{t}{K} \right) \). As \(t_i \in \bigcup_{k=-K+1}^{K-1} I_k \), we have \(|\frac{t}{K}| < 1 \). Hence, the entries of \(T \) are well-distributed in \([-1, 1]\) rather than considerably big values or small values around 0.

Then, the optimal coefficient vector \(c^* \) is given as

\[
c^* = \arg \min_c L_c.
\]

As the loss is a convex function, the optimum solution \(c^* \) lies at the gradient zero. The gradient of the loss function \(L_c \) is given by

\[
\nabla L_c = -2y^T T + 2c^* T^T T.
\]

Setting the gradient to zero produces the optimum coefficient, as follows:

\[
\nabla L_c = 0
\implies c^* = (T^T T)^{-1} T^T y.
\]

To sum up, the modulus reduction function can be approximated by

\[
[t][q] \approx p_o(t) = \sum_{i=0}^{n} c^*[i] \cdot T_i \left(\frac{t}{K} \right),
\]

where \(t \in \bigcup_{k=-K+1}^{K-1} I_k \).

1) Maximum Error of Samples and the Approximation Error:

Theorem 1. The approximation error is bounded by the multiplication of the maximum error of the sampled points and \(O(1 + \frac{n}{N_{tot}}) \).

Proof. For \(t \in I_k \), let us define the approximation error as the absolute value of following

\[
E(t) = (t - k) - p_o(t).
\]

Note that \(E(t) \) is a polynomial for the domain \(t \in I_k \). Denote \(E(t) = \sum_j c_j x^j \). We have optimized \(|E(t_i)| \) for discrete points \(t_i \)'s.
Consider $|E(t)|$ for t in small intervals of $[t_i, t_i + \delta]$. Then, we have $|E(t)| \leq |E(t_i)| + |E(t) - E(t_i)|$ and $|E(t) - E(t_i)|$ is bounded as follows
\[|E(t) - E(t_i)| = \left| \sum_j \delta_j \left((t_i + \Delta t)^j - t_i^j \right) \right| \approx \left| \sum_j \delta_j t_i^j \left(\frac{\Delta t}{t_i} \right)^j \right| \leq \left| \frac{\Delta t}{t_i} \right| \cdot \left| \sum_j \delta_j t_i^j \right| = O(n \frac{1}{N_{\text{tot}}}|E(t_i)|), \]
where $\Delta t = t - t_i$ for $t \in [t_i, t_i + \delta]$. As $\Delta t < \delta << t_i$, the linear approximation $(1 + \frac{\Delta t}{t_i})^j \approx (1 + j \frac{\Delta t}{t_i})$ is applied. Moreover, we have $\frac{\Delta t}{t_i} \leq \frac{\delta}{\epsilon} = O\left(\frac{1}{N_{\text{tot}}}\right)$, where $t_i > \epsilon$. Otherwise, at least we can always make $\frac{\Delta t}{t_i} < 1$.

Hence, we conclude that
\[\max_{t \in \cup_{k=-K+1}^{K-1} t_k} \{ |[t]_q - p_o(t)| \} = \max_i \{ |[t_i]_q - p_o(t_i)| \} \cdot \mathcal{O}(1 + \frac{n}{N_{\text{tot}}}). \]

In summary, with fine sampling, the maximum error of the sampled points is close to the global maximum of approximation error. Moreover, as the domain of the object function is in the real numbers with errors in the CKKS scheme, it is reasonable to handle the sampled values.

2) L2-norm Instead of L-infinity Norm: Clearly, we can bound the L-infinity norm by the L2-norm:
\[\frac{1}{\sqrt{N_{\text{tot}}}} \|x\|_2 \leq \|x\|_\infty \leq \|x\|_2. \]

Thus, minimizing the L2-norm reduces the L-infinity norm. As it is not a tight bound, we have room for optimization using a higher norm. However, the solution of L2-norm is clear and can be computed effortlessly. It is difficult to find the minimax polynomial of the modulus reduction function; however, through the L2-norm optimization problem, it is possible to find a near-optimal solution of the minimax polynomial in a considerably efficient manner without iteration. The next section shows that it is possible to find polynomials with less errors than with the currently best-known methods.

3) Time Complexity for Finding c^*: Considering $N_{\text{tot}} > n$, the matrix inversion $(T^T T)^{-1}$ is the dominant computation. Hence, the time complexity is $\mathcal{O}(N_{\text{tot}}^{3.37})$ when the Coppersmith–Winograd algorithm is used. This is acceptable because c^* is pre-computed and stored as coefficients for the baby-step giant-step algorithm to be explained later or also, the Paterson–Stockmeyer algorithm in [3].

B. Efficient Homomorphic Evaluation of the Approximate Polynomial

The difference between the proposed and conventional methods in [4] are the coefficients of the approximate polynomial, which is more optimized with the same polynomial basis, the Chebyshev polynomial. Hence, the baby-step giant-step algorithm [4] and modified Paterson-Stockmeyer algorithm [3] can be applied for an efficient homomorphic evaluation of the proposed polynomial. Using Algorithm 1, we can evaluate $p_o(t)$ homomorphically with at most $2^l + 2^{m-l} + m - l - 3$ nonscalar multiplication while consuming m depth, where 2^m is greater than the degree n.

We revisit Algorithm 1, and the number of operations per step is given in Table I. When the Chebyshev polynomials are evaluated, $2T_n = 2T_{n-1} - T_{n-1}$ and $2T_{n+1} = 2T_n T_{n+1} - T_1$ are used and the multiplication of 2 can be replaced by an addition. Hence, one nonscalar multiplication and two additions are required.

In the baby-step, polynomials of degree $2^l - 1$ are evaluated and there are at most $2^m/2^l$ such polynomials. However, when $2^m > n + 1$, there are polynomials with all-zero coefficients. By ignoring them, there are $\lceil (n+1)/2^l \rceil$ polynomials with degree at most $2^l - 1$ in the baby-step. In other words, when 2^m and $n + 1$ differ, there are $2^{m-l} - \lceil (n+1)/2^l \rceil$ zero polynomials, that is, $0 \cdot T_0(t) + 0 \cdot T_1(t) + \cdots + 0 \cdot T_{l-1}(t)$, in Algorithm 1. Hence, we could ignore these zero polynomials and in the recursive structure, exactly $2^{m-l} - \lceil (n+1)/2^l \rceil$ nonscalar multiplications are ignored in the giant-step. Hence, taking $2^m > n \geq 2^{m-l}$, we have
\[N(n) = N(n - 2^{m-l}) + N(2^{m-l} - 1) + 1, \]
which yields
\[N(n) = \lceil (n+1)/2^l \rceil - 1, \]
where $N(k)$, $k \geq 2^l$, is the number of nonscalar multiplications in the giant-step and $N(k) = 0$ for $k < 2^l$. Thus, the number of nonscalar multiplications is given as
\[\lceil (n+1)/2^l \rceil - 1 + 2^l - 1 + m - l - 1. \]

As shown in Table I, the number of scalar multiplications is $(n+1) - \lceil (n+1)/2^l \rceil$ and the number of addition is $n + 2(2^l + m - l - 2)$. Note that the depth and number of nonscalar multiplications can be minimized when m is the smallest integer satisfying $2^m > n$ and $l \approx m/2$.

IV. COMPARISON AND IMPLEMENTATION

We conduct an experiment to compare the proposed method with previous work in [4], which, to our knowledge, is the best
current method. Maximum errors between $|t|_q$ and the approximate polynomials are numerically computed and compared. Note that we can analytically obtain the maximum error once the polynomial is known and that the approximate error is an absolute value of a polynomial. However, the numerically computed maximum error is sufficient as it is approximately equal to the real value and we are dealing with approximate arithmetic here. For example, we can see that the numerically computed maximum error for the polynomial is almost the same as the error bound presented in [4].

In Fig. 1, we plot the maximum error in log scale, $\log_2(\frac{|p_u(t) - p_o(t)|}{2})$, while fixing n and varying ε or fixing $\varepsilon = 2^{-7}, 2^{-10}$ and varying n. It is noteworthy that the proposed method gives an approximation (error below 2^{-21}) for a large ε ($= 2^{-7}$) with depth of 7, whereas the previous method cannot achieve this even when using polynomials of a higher degree. This is because the sine function is not a suitable approximation for the modulus reduction when ε is large. As the proposed method does not depend on the sine function, even large-sized messages that could not be handled by the previous method can be handled by low-degree polynomials in the proposed method.

A staircase shape is shown in Fig. 1(b), in other words, the maximum approximation errors are similar when the degrees are $2n - 1$ and $2n$. This is because the target of the approximation, the modulus reduction function $[t]_q$, is an odd function. The following proposition shows that the minimax polynomial for an odd function is an odd function.

Proposition 1. If $f(t)$ is an odd function, the best approximation among the polynomials of degree n is also odd.

Proof. Let P_m denote the subspace of the polynomial function of a degree of at most m and $f_m(t)$ denote the unique element of P_m that is closest to $f(t)$ in the supreme norm. We define $p(t) \in P_m$ by $p(t) = \frac{1}{2}(f_m(t) - f_m(-t))$. Then, for all u in the domain of $f(t)$, we have

$$|f(u) - p(u)| = \left|f(u) - \frac{1}{2}(f_m(u) - f_m(-u))\right|$$

$$\leq \frac{1}{2}|f(u) - f_m(u)| + \frac{1}{2}|f(u) + f_m(-u)|$$

$$= \frac{1}{2}|f(u) - f_m(u)| + \frac{1}{2}|f(-u) - f_m(-u)|$$

$$\leq \sup_t |f(t) - f_m(t)|.$$
that the increasing the degree of the polynomial does not lower the approximation degree to some extent when using the previous methods. A comparison of the minimum degrees necessary to achieve the desired error bounds is given in Table III. For $\epsilon = 2^{-6}$, it is shown that the proposed method achieves an approximation error of less than 2^{-30} with only a depth of 7. When a polynomial $p_{\cos}(t)$ approximates a sine or cosine function as in [2], [3], [4], the approximate error is bounded by the sine function. In other words, it is bounded by

$$\max_t |t|_q - p_{\cos}(t) | \geq \max_{m \in |-eq, eq|} \left| m - \frac{1}{2\pi} \sin(2\pi m/q) \right|$$

$$\approx \frac{1}{2\pi} \frac{1}{3!} \left(\frac{2\pi|m|}{q} \right)^3,$$

which is small when $\frac{|m|}{q}$ is small. However, as $\frac{|m|}{q}$ increases, the bound increases in the third order. For $\epsilon = 2^{-10}, 2^{-9}, 2^{-8},$ and 2^{-7}, the bounds are given as $2^{-27}, 2^{-24}, 2^{-21},$ and 2^{-18}. Table III shows that the approximation error of a polynomial found by the method in [4] is above those bounds. Therefore, for applications that require a more accurate approximation than this range, the proposed method should be used.

The proposed method is implemented in SageMath 9.0. It requires 1.01 s in average on Intel Core i7-6700k (4.0 GHz) to find the optimal coefficients with 32 samples for each I_k, the degree $n = 73$, and $\epsilon = 2^{-10}$. Note that most of the results in Table II, III, and Fig. 1 are driven by 32 samples for each I_k. This implies that massive samples are not required for good approximations. Instead, with only ~ 300 samples (depends on the degree of polynomial), the proposed method surpasses the best-known method [4].

V. REDUCTION OF LEVEL LOSS IN BOOTSTRAPPING

By using the proposed method, better parameters which reduces the level loss during the bootstrapping can be selected. As discussed in the previous section, the proposed method finds more accurate approximate polynomial for relatively large ϵ than the previous best method. This section explains how such property leads to better parameters.

We will make use of the following lemmas from [1], [2] for noise estimation.

Lemma 2 ([1], Lemma 2). Let $c' \leftarrow R_{S_{I^4}}(c)$ for a ciphertext $c \in R_{q^4}$. Then $\langle c', sk \rangle = \frac{q^4}{q^6} \langle c, sk \rangle + e \pmod{q^4}$ for some $e \in R$ satisfying $\|e\|_{\infty} \leq B_{rs}$ for $B_{rs} = \sqrt{N/3} \cdot (3 + 8\sqrt{R})$.

Lemma 3 ([2], Lemma 4). Let $c \in R_{q^2}$ be a ciphertext with respect to a secret key $sk' = (1, s')$ and let $swk \leftarrow KSGen_{sk}(s')$. Then $c' \leftarrow KS_{swk}(c)$ satisfies $\langle c', sk \rangle = \langle c, sk' \rangle + e_{sk} \pmod{q}$ for some $e_{sk} \in R$ with $\|e_{sk}\|_{\infty} \leq P^{-1} \cdot q \cdot B_{sk} + B_{rs}$ for $B_{sk} = 8\sigma N/\sqrt{3}$.

Table II

<table>
<thead>
<tr>
<th>Methods</th>
<th>Degree</th>
<th>Max err (log$_2$)</th>
<th>Nonscalar multiplication</th>
<th>Scalar multiplication</th>
<th>Addition</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed polynomial</td>
<td>73</td>
<td>-27.18</td>
<td>17 (PS alg.)</td>
<td>68</td>
<td>109</td>
<td>7</td>
</tr>
<tr>
<td>(L2-norm min.)</td>
<td>75</td>
<td>-27.78</td>
<td>17 (PS alg.)</td>
<td>68</td>
<td>109</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>-35.91</td>
<td>20 (PS alg.)</td>
<td>113</td>
<td>160</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>-40.10</td>
<td>24 (BSGS***)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4] (Modified Chebyshev)</td>
<td>71</td>
<td>-26.42</td>
<td>17 (PS alg.)</td>
<td>68</td>
<td>109</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>-27.28</td>
<td>20 (PS alg.)</td>
<td>113</td>
<td>160</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>127</td>
<td>-27.28</td>
<td>24 (BSGS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] (Chebyshev interpolation)</td>
<td>119</td>
<td>-</td>
<td>20 (PS alg.)</td>
<td>113</td>
<td>160</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:

- PS alg.: Paterson-Stockmeyer algorithm.
- **BSGS:** Baby-step giant-step algorithm.

Fig. 1. Maximum value of the error $\log_2(|\|t\|_p - p(t)|)$ for the proposed method and previous method ($K = 12$).

Table II: Comparison of Approximate Polynomial Performance of Various Methods ($K = 12$ and $\epsilon = 2^{-10}$)
A sufficiently large scaling factor $\Delta_{bs} = O(q)$ is multiplied during the CoeffToSlot step in order to keep the precision of values in slots. Note that Δ_{bs} differs from the scaling factor of the message Δ. From Lemma 3, the total error in the CoeffToSlot step is $O(B_{\tau x})$ when a sufficiently large P is chosen [1].

In the EvalMod step, each component of the corresponding plaintext slot contains $t_j + e_j$ for some small error e_j such that $|e_j| \leq O(B_{\tau x})$. An approximate polynomial $p_o(t_j)$ is evaluated with scaling factor Δ_{bs}, and thus the approximate error is given as

$$
\Delta_{bs} \left[t_j \right]_q - p_o \left(t_j + e_j \right)_q = \Delta_{bs} \left[t_j \right]_q - \left[t_j + e_j \right]_q
+ \Delta_{bs} \left[e_j \right]_q - p_o \left(t_j \right)_q.
$$

In order to bound the error in the EvalMod step to $O(B_{\tau x})$, it should be guaranteed that

$$
\max \left| t \right|_q - p_o(t) < \frac{|e_j|}{q}.
$$

When the error in the EvalMod step is bounded to $O(B_{\tau x})$, we have the error bound after the SlotToCoeff step as $O(\sqrt[N]{N} \cdot B_{\tau x})$ [2].

Note that from Lemma 2, the error in bootstrapping is independent of the scaling factor of message Δ and bounded to $O(N \sqrt{h})$. Thus, the plaintext precision is proportional to $\log \Delta$, where Δ determines $|m|$. Combining (1) and (2), q is restricted to be greater than $O(m^{3/2})$ in all the methods proposed so far [2], [3], [4]. Considering that a scaling factor $\Delta_{bs} = O(q)$ is used in the bootstrapping, the level consumption is given as $O(m^{3/2})$. Thus, the previous methods do not scale well for applications that require accurate computations.

However, by using the proposed method, the upper bound from (1) does not exist. Hence, the level loss in bootstrapping is roughly proportional to $O(m)$ rather than $O(m^{3/2})$. This is one of the advantages of the proposed method and it overcomes the limitations of the existing methods. The more precise calculations are required, the greater the gain we have.

Various factors such as the number of slots affect plaintext precision. Hence, the plaintext precision is obtained using the numerical methods, and it can be used to determine the parameters as in [2], [3]. Using the proposed method, relatively small q can be used, and thus in some cases, it may leave more levels after bootstrapping.

VI. Concluding Remarks

In this work, we determined the near-optimal approximate polynomial of a modulus reduction function for bootstrapping of the CKKS scheme. We cast the problem of finding approximate polynomials for a modulus reduction into an L2-norm minimization problem for which the solution can be directly found without intermediates, such as a sine function. As the approximation error in the proposed method is not subject to the sine function, it approximates the modulus reduction better than the best-known method [4]. Using the Chebyshev polynomials as a basis, we achieved a lower approximation error even with a lower degree compared with the best-known method. Moreover, the proposed polynomial can utilize the baby-step giant-step algorithm [4] and Paterson-Stockmeyer algorithm [3]. We re-investigated the number of nonscalar multiplications, scalar multiplications, and additions needed for the baby-step giant-step algorithm, and showed that the proposed polynomial reduces the required number of operations for the homomorphic approximate modulus reduction.

By casting the problem into a simple L2-norm optimization problem, we free the approximation problem from the sine function. The proposed method can offer a bootstrapping with fewer errors, particularly when a large scaling factor is selected. Thus, one can say that the choice of parameters has been expanded. Most importantly, the proposed method is essential for applications that require accurate approximation because the approximation error cannot be lowered when previous methods are used. In contrast, as the proposed method does not have such lower bound, a better parameter can be selected. Consequently, the bootstrapping consumes less levels when the proposed method is used.

We proposed loose upper and lower bounds, which were far from the numerical result. The challenge of a tighter bound or a better method for finding the minimax polynomial can be addressed in future work. In [4], the number of operations is reduced by using the double angle formula of the cosine function, but it is challenging to apply to the proposed method. A double angle formula-like approach for the proposed method also requires further study.
REFERENCES

