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Abstract—We facilitate trusted cross-blockchain state proofs
by implementing a chain-relay that validates block headers
from proof-of-work blockchains. While current approaches
require proof sizes linear to the amount of blocks the state
was built on, trusted intermediaries, or economic assump-
tions, we propose the utilization of off-chain computations
through zkSNARKs to provide a cryptographically secure
and highly scalable sidechain mechanism. Multiple block
headers are included in batches and verified off-chain, while
preserving light client support. Only the validity of the off-
chain computation is verified on-chain, creating a sidechain
mechanism that requires constant verification costs and
releases the target ledger from processing and storing every
single block header of the source blockchain. We provide a
prototypical implementation that facilitates the verification
of 504 Bitcoin headers in a single proof on Ethereum using
the ZoKrates framework. Hereby, the verification costs are
reduced by a factor of 187 compared to current approaches
such as BTC Relay.

Index Terms—DLTs, Blockchain interoperability, Sidechains,
Chain-Relays, Zero-Knowledge Proofs

1. Introduction

With the advent of blockchains, a plethora of de-
centralized applications (DApps) has evolved that require
different guarantees with regards to key properties like
security, throughput, and privacy. Consequently, multiple
new blockchain platforms and networks have emerged,
targeting application-specific needs.

Bitcoin, for example, pursues a conservative strat-
egy for attaining high-security financial transactions in
a distributed setting by restricting its instruction set [1],
whereas, Ethereum provides a Turing complete virtual ma-
chine executing (almost) arbitrarily complex transaction
logic [2]. Yet, these blockchains exist in isolation and
transactions are bound to a single ledger. For instance,
smart contracts in an Ethereum network interact with
each other for executing logic in libraries, retrieving state
information, or modifying their state, but never interact
with components outside the hosting ledger [3].

To enable this kind of interoperability, different ap-
proaches have been proposed [4]: The most simple ap-
proach is to introduce a trusted intermediary that facilitates
information exchange and mediates between blockchains.
Such trusted intermediaries are commonly referred to

as Oracles and multiple forms with different properties
have been proposed [5]. However, they usually rely on
strong economic assumptions or trusted entities. These
trust assumptions can be weakened for specific scenarios,
e.g., atomic cross-chain currency exchange through hash-
locks. Yet, such techniques are not capable of establishing
a generic link between blockchains.

As a third approach, which neither relies on trusted in-
termediaries nor use-case specific techniques, relays have
been proposed to incorporate another blockchain’s state
or events [6]. Here, the consensus rules of the source
blockchain are validated on the target ledger. Concretely,
a source chain’s block headers are submitted to the tar-
get blockchain, which independently verifies the header-
chain’s correctness. Due to this on-chain verification, ar-
bitrary parties can submit headers without requiring any
trust.

External users, as well as other smart contracts, can
utilize the thereby established header-chain to perform
Simplified Payment Verifications (SPVs), i.e., prove inclu-
sion of transactions in a block through Merkle-proofs [7].
Initially introduced as the foundation of light clients,
which only store block headers instead of maintaining all
past transactions [1], the concept is utilized to prove that a
transaction occurred in a source ledger to a target ledger.

Current implementations of chain relays such as BTC
relay [8] permit submitting single blocks of Proof-of-Work
(PoW) blockchains to a smart contract, which in turn
validates its compliance to the defined consensus rules
of the source chain.

BTC relay incentivizes participants to submit Bitcoin
headers to an Ethereum smart contract by permitting
them to set a fee that has to be paid every time proofs
are constructed from the submitted header. However, the
overhead for submitting an up-to-date block header grows
continuously with the gap to the latest submitted block, as
all intermediate blocks have to be submitted first to enable
header-chain verification. Due to this fact, the BTC relay
contract has stalled for more than one million blocks at
the time of writing, corresponding to more than 20 months
since the last block has been submitted. Catching up to the
head of the Bitcoin blockchain would require more than
one million transactions accounting to about 194,000 gas
each1, a burden economically rational participants are not

1. Exemplary transaction ID of a Bitcoin header submission in
BTC relay: 0xe21099d8fd1252281389fc888f23f98e60db22ecb5c149ad
6fda6dccdf110b50



willing to take.
We address this issue by proposing and implement-

ing a batch-aggregating zero-knowledge proof–based relay
system for PoW blockchains. Instead of having to verify
each header of a source ledger, our system allows a target
ledger to validate a chain of block-headers in batch. Cru-
cially, our design upholds the ability for SPV for blocks in
such batches. Only a single block header of a batch is per-
sisted on the target ledger, minimizing the storage costs.
As the consensus validation is performed completely off-
chain, only the verification of a zero-knowledge proof has
to be performed on the target ledger which leads to a
further cost reduction.

To demonstrate viability of our proposed system de-
sign, we provide and evaluate a prototypical implementa-
tion which establishes a bridge from Bitcoin to Ethereum.
We use the ZoKrates framework [9] to prove validity of
batches of Bitcoin block headers in an off-chain compu-
tation through zkSNARKs. An Ethereum smart contract
confirms the correctness of the resulting proof and stores
the target block header. Light clients can utilize SPV
on verified block-header batches. While the prototypical
implementation targets the realization of a bridge from
Bitcoin to Ethereum, our design is applicable to any
source blockchain that utilizes PoW consensus and any
target blockchain that supports zkSNARK verification.

2. Background

In this section, we first present the general princi-
pals of sidechains and their applications. Thereafter, the
concept of off-chain computations using zkSNARKs is
introduced, as it lays the foundation for zkRelay.

2.1. Sidechains

The term sidechain was first coined by Back et al. [6]
in 2014 and refers to the transfer of assets between distinct
distributed ledgers without requiring any trusted third
party, according to their definition. Today, the term is used
for various forms of interoperability between distributed
ledgers [10]. The most prominent technique to enable
sidechains is chain relays [4]. Here, the target ledger repli-
cates the consensus mechanism of the source blockchain
in order to incorporate events that took place on the
source ledger. Similar to light clients that participate in
the source blockchain’s network, the target blockchain
validates the adherence of submitted block headers to
consensus rules. Generally, this comprises the hash-chain
of block-headers and their timely order. In addition, proof-
of-work blockchains verify that the submitted block hash
fulfills an invariant that directly depends on the current
difficulty.

With XCLAIM [11], a mechanism for exchanging
assets based on chain-relays has been proposed. The
protocol permits creating assets on a target ledger that
are backed by a cryptocurrency that is hosted on another
ledger. XCLAIM utilizes an enhanced version of BTC Re-
lay. Yet, it does not provide any batching mechanisms and
therefore suffers from similar scalability and availability
issues like the original BTC Relay implementation. As the
underlying relay mechanism is exchangeable, the protocol
benefits from the concepts proposed in this paper.

Sidechain mechanisms do not only facilitate token
exchanges but permit accessing the state and events of
other blockchains. For instance, it enables the migration
of smart contracts in case a better-suited host blockchain
emerges for the given use case [3]. Chain-relays permit
proving the validity of migrated smart contracts by sub-
mitting a Merkle proof attesting the state’s validity.

2.2. Verifiable Off-chain Computations

Verifiable off-chain computations were introduced
in [12] as an approach to address blockchain’s scalability
and privacy limitations by executing computations on
blockchain-external resources and verifying that execu-
tion’s correctness on the blockchain in zero-knowledge.
Verifiable computation schemes [13]—and in particular
zero-knowledge succinct arguments of knowledge (zk-
SNARKs) [14]—are a particularly efficient and secure
option to implement this idea, but inherently complex in
their programming abstraction and application.

ZoKrates [9] addresses this problem by providing a
high-level programming language for off-chain computa-
tions and a set of tools for off-chain execution and on-
chain verification. When specifying a ZoKrates program,
the developer explicitly decides which inputs should later
become public or remain hidden. Hiding inputs becomes
possible due to the employed proving scheme’s zero-
knowledge property.

Figure 1 shows ZoKrates’ two core processes, initial-
ization and off-chain computation:
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Figure 1: ZoKrates Initialization and Off-chain Computa-
tion Processes.

2.2.1. Initialization. Before off-chain computations can
be executed, the initialization process needs to be com-
pleted. For a compiled ZoKrates program 1 , an initial
setup is performed to generate a program-specific key
pair, which consists of proving- and verification key 2 .
This process can either be executed by one trusted party
or as a multi-party computation (MPC) within a group
of mutually distrusting peers. The MPC-based approach
relaxes the trust assumption to the existence of at least one
honest participant [15]. In step 3 , a Verification Smart
Contract is derived from the verification key, which is
deployed to a blockchain.

2.2.2. Off-chain Computation. After the successful com-
pletion of the initialization, off-chain computations can be
run and verified: In a first step 1 , a compiled program



is executed for a given set of inputs, which generates an
execution trace, also referred to as witness. A proof that
attests the correct execution of the program for the given
set of inputs is generated in step 2 by combining the
witness with the proving key generated in the initialization
process. This proof is then submitted to the blockchain to
verify the off-chain computation’s correctness by checking
the proof in step 3 .

Due to the use of state-of-the-art zkSNARK schemes,
this proof is of small constant size. Its verification com-
plexity is independent of the complexity of the off-chain
program and linear in the number of public inputs and
outputs.

3. SNARK-based Chain-Relay

The objective of chain-relays is to enable the target
ledger (LT ) to interpret events that have occurred on
the source ledger (LS) in a verifiable manner without
requiring any intermediaries or strong trust assumptions.
Current solutions such as BTC Relay incur costs linear
in the number of blocks contained in LS . Implemented
incentive mechanisms have shown to be inadequate, as
the required investment for keeping the relay up-to-date
exceeded the expected profits.

We propose the utilization of off-chain computations
using zkSNARKs to facilitate the submission of validated
batches of block headers. As a result, the relay’s costs do
not grow linearly with the number of block headers but
are constant for any batch size.

In the following, we first present how off-chain com-
putations can be used to construct a zkSNARK-based
chain relay that permits submitting proofs for single block
headers. Thereafter, the concept is extended to permit
batching multiple block headers and submitting only a
subset of headers to LT . Then, we introduce a mecha-
nism to ensure that SPVs can be performed for all block
headers.

3.1. Single Block Header Validation

In order to decrease the on-chain complexity of val-
idating a block header’s correctness according to the
consensus rules of LS , we construct a provable off-chain
program that takes a block header as input and returns a
boolean value indicating its validity. Conceptually, zkRe-
lay acts as a light client; it does not validate transactions
included in blocks, but relies on the assumption, that
forging valid header-chains is economically infeasible [1].
Due to the probabilistic PoW consensus, zkRelay has to
cope with missing finality and fork handling. Furthermore,
each block header has to satisfy a PoW requirement,
which is defined through its computed target difficulty. In
the following, we tackle each of the tasks of a light client
through off-chain computations based on zkSNARKs.

zkRelay enables any user to perform off-chain vali-
dations of block headers without requiring any trust or
permissions.

At the beginning of the process, a LS client is queried
to retrieve the header chain up to the target header HX

S ,
where X corresponds to the header’s block height, as
illustrated in Figure 2. The off-chain validation program
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Figure 2: zkRelay Workflow.

checks the PoW of the header and returns a boolean value
that indicates the validity of the block header. Based on
the outcome, a proof is generated attesting the correctness
of the off-chain computation. The proof size is linear in
the number of public input parameters and outputs and
constant otherwise.

Fork handling. The generated proof is submitted to
a relay contract on LT that first validates the proof’s
correctness using the formerly computed verification key.
In addition, it verifies the correctness of the hash chain.
The relay contract stores the genesis block G of LS . Only
blocks that build on top of G sequentially are considered
valid. As valid blocks are not necessarily part of LS but
could depict a fork, block headers that build on top of
the most recent valid block header are accepted but may
be challenged. We underline that every accepted block
header is valid by the consensus rules of LS , as it has
been validated during the off-chain computation, which in
turn has been verified within the relay contract. However,
the currently accepted main chain can be challenged and
replaced in case there is a header chain that contains more
cumulative PoW in LS . Multiple challenging forks may
exist simultaneously, and a fork replaces the main chain
iff it contains more cumulative work than the current main
chain.

Difficulty adjustment. Most PoW-based blockchains
adjust the target difficulty after a fixed amount of blocks to
achieve relatively constant mining rates, depending on the
total hash power in the network. The hash value of a block
header has to be smaller than a target value that is inferred
from the calculated difficulty. An epoch E is defined
through the number of blocks L for which a calculated
difficulty is valid. While zkRelay validates the PoW of
headers within the off-chain program, the computation is
isolated and has no information about the difficulty that is
applied in its epoch. However, the target is encoded within
the block header in Proof-of-Work blockchains. The off-
chain-program extracts the target value and utilizes it
during the validation process. To prevent attackers from
submitting block headers that encode invalid target values
which cannot be detected within the off-chain compu-
tation, the relay contract verifies its correctness before
accepting a proof in step 3 , Figure 2. If HX

S lies within
the epoch (i.e. X mod L 6= 0), the target must be equal
to the encoded target in HX−1

S . Otherwise, it is calculated
from the former target and the time delta between the first
and the last block of the preceding epoch.



Finality. After a block header has been appended to
the stored main chain in the relay contract, it becomes the
basis for validation of successively submitted headers and
can also be used for SPVs. In order to prevent constructing
SPV-proofs from a fork of LS , we define a security
parameter n that indicates the amount of blocks that have
to be appended to a given block before it is considered
final. Only block headers considered final may be used
for SPVs. The parameter is defined by external smart
contracts that reference the relay contract and depends on
the balance between up-to-date cross-chain references and
security for the given use case. SPV-proofs are either vali-
dated on-chain within a smart contract that references HX

S
in the relay contract or by a zero-knowledge proof veri-
fying a Merkle-proof. While the latter provides constant
proof sizes for a given Merkle tree height, the tree size is
fixed, which stems from the fact that zkSNARKs require
constant input sizes. As the amount of transactions stored
in a block highly fluctuates, the corresponding Merkle
tree is adjusted accordingly. To cope with this limitation,
multiple distinct off-chain programs are required, each
validating a single Merkle tree depth.

3.2. Epoch-based Block Header Validation

Performing off-chain validations of single blockchain
headers is particularly helpful in case it requires instruc-
tions which are not natively supported by the target chain.
In case of Bitcoin, the SHA-256 hash function is applied
to the header twice to verify it contains sufficient PoW.
As the SHA-256 hash function is a native opcode in the
Ethereum Virtual Machine (EVM), it requires relatively
small amounts of gas to execute [16]. Nonetheless, other
PoW-based blockchains like Litecoin or Ethereum require
more complex operations to verify block headers and
therefore constitute candidates for future implementations
of a zkSNARK-based chain-relay.

As chain-relays mimic the same mechanisms as the
source blockchain, block headers have to reference a
formerly submitted block. As a result, potentially large
amounts of intermediary headers need to be verified and
stored on the target ledger before the intended header can
be submitted. In Ethereum, storing data is the second most
expensive operation (after creating accounts) within smart
contracts to prevent bloating the state [16]. Chain-relays—
and smart contracts in general—should therefore avoid
storing intermediary data that is not required on-chain.

Off-chain programs that are verifiable through zk-
SNARKs offer functions that provide public and private
parameters. Private parameters are only needed during
off-chain computations and remain invisible during the
proof validation process. While this characteristic poses
promising privacy-related opportunities, we utilize it to
hide complexity to the target ledger in the proof validation
process by submitting batches of headers. We differen-
tiate between block headers that are passed as public
parameters and private intermediary block headers. While
all block headers of a batch are validated off-chain to
ensure only valid hash chains that include sufficient PoW
are submitted, only the last block header of a batch is
stored in the relay contract, as illustrated in Figure 3. The
relay contract remains unaware of private intermediary
block headers and neither stores them, nor requires any
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Figure 3: The first block of an epoch is the last block of
a zkRelay batch (N = L = 2016). Block headers shaded
in dark grey are public and visible and passed to the relay
contract. The last block of an epoch is persisted in the
relay contract. Block headers shaded in light grey are
intermediary blocks and initially not stored on the target
ledger.

information about them to validate the correctness of a
batch.

We define a batch BN as an ordered list of N block
headers HX..(X+N−1)

S . For demonstration purposes, we
first choose a batch size equal to the epoch length (N = L)
and thereafter abstract to arbitrary sizes of N . This ensures
that all necessary information is available to compute
the target difficulty within the off-chain program. When
validating single block headers, the difficulty computation
is performed within the relay contract, as the required time
stamps and target values are encoded in the headers that
are stored in the contract. However, this is not the case
when batching block headers off-chain, as only the last
header of a batch is stored in the relay contract. Due to
this fact, the target calculation is shifted to the off-chain
program, providing information about the given epoch and
further reducing overhead in the relay contract.

Intuitively, one may assume that a batch contains
exactly those block headers that belong to one epoch in
case their size is equal. Yet, as the off-chain program per-
forms an isolated computation, such a composition does
not comprise sufficient information to calculate the target
difficulty of an epoch. The target difficulty is computed
from the time delta ∆t between the first and last block of
an epoch, the prior difficulty and the target mining time
θ:

targetn =
∆t

θ × L
× targetn−1

A naive construction of headers that lie within a batch
would, therefore, miss the timestamps required to calcu-
late ∆t. Shifting the batch with an offset of one block
to the epoch permits to construct a proof that holds all
required information to calculate the correct target diffi-
culty, as depicted in Figure 3. To do so, in addition to
the headers that need to be validated, the last block of the
previous batch is submitted publicly. As it is public, it is
utilized by the relay contract to ensure the batch builds on
top of the current main chain. Furthermore, the timestamp
is extracted and used for the calculation of ∆t during the
off-chain validation process. In contrast to the single block
header validation, not only the PoW is verified off-chain,
but also the correctness of the previous block-header hash
as well as a constant difficulty up until the last block of
the batch.



3.3. Simplified Payment Verification for Interme-
diary Headers

The aggregation of block headers into batches facil-
itates efficient off-chain validations to release LT from
storing every single header of LS in the relay contract.
While intermediary headers are initially not stored on
LS , users may intend to create SPVs from them to proof
the occurrence of transactions, states or events. zkRelay
enables users to submit intermediary blocks to the relay
contract retrospectively by utilizing a Merkle tree that is
built over all headers included in a batch. For this purpose,
the off-chain program does not only verify the correctness
of the headers within a batch but also includes them in a
unique Merkle tree. Each leaf node in the tree corresponds
to a block header’s hash. The root of the resulting Merkle
tree is returned by the off-chain program together with the
results from the header and difficulty validation and stored
in the corresponding relay contract. While the intermedi-
ary block headers of a batch are not stored in the relay
contract, the Merkle root enables participants to submit a
Merkle proof for any intermediary header of a batch. As
the header has already been validated off-chain and the
Merkle proof ensures its inclusion in a stored batch, no
further proofs or batch submissions are required to include
intermediary headers. We underline that the computed
Merkle tree is independent of any Merkle tree natively
used by LS or LT and only responsible for facilitating the
trusted submission of intermediary blocks from validated
batches.

Constructing a binary tree for N = 2016 results in
a tree height of dlog2 2016e = 11. Thus, a respective
Merkle proof requires eleven nodes in addition to the
target block header. In order to minimize the computa-
tional overhead on-chain, the proof is computed off-chain
within a dedicated ZoKrates program. The Merkle tree is
calculated based on Pedersen hashes that employ embed-
ded elliptic curves and can be proven efficiently within
ZoKrates programs. In contrast, the application of SHA-
256 is computationally expensive using zkSNARKs, as
modulus operations require a large number of constraints
in the underlying constraint system.

3.4. Flexible Batch Sizes for Block Header Vali-
dation

The header validation concept introduced in Sec-
tion 3.2 facilitates the submission of batches with equal
size to the epoch length of LS . After a batch has been
submitted, users are enabled to submit Merkle-proofs to
the relay contract in order to include intermediary blocks
from which SPVs can be performed. However, two im-
portant challenges remain:

• Large batch sizes prevent the submission of SPVs
from recent block headers. For instance, Bitcoin’s
current mining time of 10 minutes per block and
an epoch size of 2016 results in an epoch duration
of 14 days. Therefore, users would have to wait
for two weeks before being able to utilize zkRelay.

• Compiling an off-chain program, constructing a
witness, and particularly computing a respective
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Figure 4: Different batch sizes require distinct verification
methods. Relay contracts verifying specific sizes may
reference relay contracts of higher order. Block headers
shaded in dark gray indicate public parameters.

proof requires large amounts of RAM, as demon-
strated in Section 5. Thus, the complexity of the
off-chain computation needs to be reduced to en-
sure practicality of zkRelay on end-user hardware.

To mitigate the obstacles introduced by large batch
sizes, we introduce a concept for flexible batch sizes in
addition to Merkle-proof submissions. The mechanisms
are interoperable and may thus be applied in conjunction.

As single off-chain programs are not capable of han-
dling variable batch sizes, we introduce multiple off-
chain programs, each handling a distinct batch size. The
ZoKrates setup phase is executed for each batch size,
resulting in distinct proving and verification keys for each
size. There are two options to verify the correctness of
batches of different size. (i) A distinct verification method
is embedded into a single contract for each batch size.
Hereby, the complexity is kept low, as all batches are
submitted to a single contract that handles references
between distinct batch sizes. This approach, however,
implies a fixed set of batch sizes that cannot be modified
once the relay contract has been deployed to the target
ledger. (ii) Deploying a single relay contract for each
batch size provides more flexibility to participants, as
novel contracts can be added retrospectively. Therefore,
we utilize the second approach in the following, enabling
users to utilize batch sizes according to their requirements,
as illustrated in Figure 4. Every relay contract maintains a
set of other relay contracts that may be referenced during a
batch submission. Assuming, for example, that a batch of
two block headers is submitted, it could build on top of a
batch four headers that is stored in a separate contract.
Hereby, the computational complexity is decreased for
smaller batch sizes, which facilitates cheap submission of
recent block headers.

However, applying smaller batch sizes prevents the
off-chain computation from calculating a correct tar-
get difficulty in case a new epoch is entered. There-
fore, the first block header of the corresponding epoch
(HX−(X mod N)

S ) is passed as a public parameter to the
off-chain program. Furthermore, an additional output vari-
able is introduced that indicates the validity of the en-
coded target difficulty. As short-circuit evaluation is not
supported in off-chain programs, the target value is com-
puted for every submitted batch. Thus, the target value is
computed even if the batch does not include a transition
between epochs. In this case, the value is invalid as the
elapsed time within an epoch is smaller than expected



in most cases. To tackle this issue, the relay contract first
calculates whether the submitted batch exceeds the current
epoch and only in that case utilizes the program’s corre-
sponding output. Each batch size should be constructed
in a form that satisfies the requirement of storing the first
block of an epoch as the last block of a batch. The relay
contract is verifies that the correct first block of an epoch
has been submitted to the off-chain program.

Every relay contract references relay contracts of
higher order to prevent offsets resulting in batch sub-
missions surpassing an epoch boundary. For example, a
participant may submit a batch of size four starting from
genesis block G. Based on this batch, any participant
could submit a batch of size N = L = 2016. As a
result, the latter batch would store H2020

S instead of the
required H2016

S that corresponds to the first block of the
subsequent epoch. Enforcing a top-down approach pre-
vents such threats while maintaining sufficient flexibility
to participants.

4. Implementation

The implementation of zkRelay is separated into three
components. While the off-chain program is implemented
using the ZoKrates framework, the relay contract is a So-
lidity smart contract that targets the Ethereum blockchain.
Lastly, a Python pipeline enables retrieving block headers
from a Bitcoin client, computing corresponding witnesses
and proofs using ZoKrates, and submitting proofs to the
relay contract. zkRelay is available on GitHub2 under an
open-source license.

Before submitting block headers to the off-chain pro-
gram, the raw input has to be preprocessed, as variables
in ZoKrates are restricted to a field size of 16 bytes [9].
Because the size of Bitcoin headers is 80 bytes [17], each
header is split into five 16 byte long integer values before
being passed as a parameter. The off-chain program ap-
plies two SHA-256 hashes to the header and compares the
result to the encoded target value. The target value must
remain constant within an epoch. Otherwise, the correct
calculation of the target value is validated by computing
it from the timestamps of the first and last block of an
epoch. Due to Bitcoin’s encoding of the target to four
bytes, some precision is lost in comparison to its former
32-byte value. In ZoKrates programs, floor functions that
permit compensating for imprecision are computationally
inefficient. Therefore, a target is considered valid if it is
equal up to the last digit of its encoded value. Furthermore,
the standard encoding for Bitcoin headers is little-endian.
Therefore, headers are passed in little-endian to calcu-
late valid hashes during PoW calculations, while static
functions convert header contents to big-endian for further
processing.

Based on the verification keys that are generated dur-
ing the setup-phase, ZoKrates generates a Solidity smart
contract that verifies the correct program execution for
submitted proofs. To maintain a clear separation between
zkSNARK verification and relay logic, a second smart
contract is implemented that stores all successfully sub-
mitted Bitcoin headers. Every time a batch of block head-
ers is submitted, the zkSNARK verification contract is

2. https://github.com/informartin/zkRelay

called. Only if the program execution is deemed valid, fur-
ther processing takes place in the relay contract. Regular
batch submissions have to build on top of the current main
chain stored in the contract. Any former submission can
be challenged by any participant. After a challenging fork
has been successfully submitted, either further batches are
submitted that build on top of the fork, or a settlement
function is called that compares the cumulative difficulty
of the current main chain and the target fork. In case the
fork comprises more cumulative difficulty than the main
chain, all parallel headers are deleted and substituted by
the fork.

The relay contract is equivalent for each batch size
in all but two aspects: First, the batch size is stored in
a constant value and used for guaranteeing the correct
calculation of an epoch’s target difficulty. Second, each
relay contract maintains a distinct zkSNARK verification
contract to ensure submitted proofs have been computed
correctly for the given batch size.

5. Evaluation

We evaluate the implementation of zkRelay based on
three categories: performance, memory requirements, and
on-chain execution costs. We show that the computation
time and memory requirements depend on the program’s
batch size, while the on-chain execution costs remain con-
stant for any batch size. Seven programs have been created
to evaluate the scalability of the presented approach, each
serving a distinct batch size. The number of block headers
in a batch is selected so that it satisfies the requirements
specified in Section 3.2, i.e., L mod N = 0.

The off-chain benchmarks were performed on a Dell
PowerEdge R540 server equipped with an Intel Xeon
Silver 4112 CPU clocked at 2.60 GHZ on four cores,
128 GB RAM clocked at 2666 MHz and an SSD. In the
workflow of zkRelay, we distinguish between those steps
performed to submit batches and the one-time setup for a
given batch size.

5.1. Batch Verification and Submission

Every time a batch is submitted to zkRelay, the cor-
responding off-chain program is executed and a proof is
generated. We observe that time and memory required for
computing the program’s result and proof scale linearly
to the number of block headers in the respective batch,
as illustrated in Figures 5a and 5b. While the off-chain
computation takes about 4.38 minutes for a batch of
504 blocks, the respective proof generation requires about
26.61 minutes. The most memory intensive operation in
the entire workflow of zkRelay is proof generation. For
instance, computing the proof for a batch size of 504 block
headers requires about 104.33 GB of RAM. The relatively
large memory requirements constitute a potential obstacle
for end-users during proof generation. However, in case
user hardware provides insufficient memory for computing
large batch proofs, the batch size can be reduced to adjust
memory requirements. For example, a single 504 header
batch is substitutable by eight batches of size 63. In
this case, the proof generation reserves only 13.10 GB of
RAM. As every proof submission implies gas costs on
the target ledger, users should choose the largest possible
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Figure 5: Runtime measurements of Batch Verification and Proof Generation.

batch size that is supported by their hardware and smaller
than the target block header.

After a batch has been validated off-chain and a re-
spective proof has been generated, the proof is submitted
to the zkRelay contract. We measure the gas costs for
proof validation and header storage based on the Ethereum
blockchain with the Istanbul fork enabled. This fork re-
duced the gas costs for elliptic curve operations and,
therefore, also reduces the validation costs for zkRelay.
The submission of a Batch requires 522,865 gas including
proof validation and storage of the target block’s header
and hash. The proof validation accounts for 351,226 gas of
the total transaction costs. We underline that the transac-
tion costs remain constant for any batch size, as they only
depend on the number of public parameters in the off-
chain program. As outlined in Section 1, the submission
of a single block header requires about 194,000 gas using
BTC Relay. Therefore, zkRelay is more efficient than BTC
Relay for any batch of size N ≥ 3. The submission of 504
single headers accounts for 97,776,000 gas when using
BTC Relay and is thus more expensive a factor of 187
compared to zkRelay.

5.2. One-time Setup

Compilation, setup and contract generation are per-
formed only once for each batch size. We observe that the
compilation and setup time scale linearly with the number
of headers in the corresponding batch. For instance, the
compilation of the zkRelay program verifying 504 Bitcoin
headers takes about 30.39 minutes, while the setup-phased
needs about 99.21 minutes. In addition, we observe that
the number of constraints generated from the ZoKrates
program scales equivalently and adds up to 43,331,225
constraints in case of the 504 Bitcoin header program (not
illustrated for clarity reasons).

Our measurements show that the required memory
constitutes a potential obstacle for average devices. While
the reserved RAM also scales linearly with the number of
block headers in a batch, compiling the program verifying
504 headers calls for about 80.50 GB of RAM. However,
as the compilation is required only once, participants do
not need to perform the compilation. Furthermore, com-
piling the respective program verifying 63 blocks reserves

only 10.13 GB of RAM, constituting a feasible task for
consumer hardware.

6. Related Work

Multiple sidechaining approaches have been proposed,
performing the validation process in smart contracts, in
off-chain computations, or by constructing proofs that are
included in the source ledger. In the following, we discuss
three prominent mechanisms for Sidechains and provide
a brief overview of their characteristics in Table 1.

6.1. BTC Relay

In order to enable a one-way peg from Bitcoin towards
Ethereum, participants upload Bitcoin block headers to a
smart contract that validates the compliance with Bitcoin’s
consensus rules [8]. Therefore, the submitted block header
is only accepted and stored within the contract if it refer-
ences a block header that has been successfully submitted
before. BTC relay utilizes an incentive mechanism to
compensate participants’ gas costs for submitting block
headers. However, the requirement of submitting every
single intermediary header implies high overhead that is
not compensated adequately. Consequently, utilizing BTC
Relay becomes increasingly infeasible as gaps develop
over time.

6.2. Dogethereum

In contrast to Bitcoin, the Dogecoin blockchain does
not rely on SHA-256 for creating PoW [1], but on the
memory-hard Scrypt algorithm to prevent the utilization
of Application-Specific Integrated Circuits (ASICs) [18].
As executing Scrypt within a smart contract is infeasible,
Teutsch et al. [19] have proposed Dogethereum, which
enables off-chain validation of Dogecoin’s PoW using
Bulletproofs.

While the implemented mechanism facilitates batching
multiple blocks for validation, the proof size of bul-
letproofs scales logarithmically with the computation’s
complexity [20] (cf. Section 2.2). Therefore, instead
of verifying the proof on-chain, Truebit [21] is used to



BTC Relay Dogethereum NIPoPoW zkRelay

Source Ledger Bitcoin Dogecoin No Implementation Bitcoin
On-chain Computational Complexity O(n) O(1) O(logn) O(1)

Block Validation On-Chain Bulletpoof NIPoPoW zkSNARK
Computation Validation Smart Contract Truebit Smart Contract (Proof) Smart Contract (Proof)

Economic Rationality Assumptions No Yes Yes No
Fork required No No Velvet Fork No

TABLE 1: Comparison of different Sidechain mechanisms

minimize verification costs. Truebit permits advertising
off-chain computations that are conducted by participants
to retrieve bounties. Challengers are incentivized to find
incorrect submissions and claim them on-chain. The chal-
lenged section of the computation is then validated on-
chain and the honest entity earns the escrowed reward.
Therefore, Truebit requires depositing a sufficient amount
of collateral to incentivize participants. The correct ex-
ecution requires constant monitoring of multiple distinct
entities. While Dogethereum also proposes a mechanism
of locking and unlocking assets to exchange them between
ledgers, we refer to [19] for further reading, as it exceeds
the focus of this work.

6.3. NIPoPoWs

Kiayias and Zindros [22] have proposed a sidechain-
ing mechanism that is based on Non-Interactive Proofs
of Proof-of-Works (NIPoPoWs) [23]. NIPoPoWs permit
constructing succinct proofs about predicates – or events
– from regular blockchains. The proof size scales polylog-
arithmically to the number of blocks that have been mined
at the time the event occurred [23]. However, the source
blockchain must support NIPoPoWs. In case no native
support exists, it can be added to a ledger through a velvet
fork [24]. Thus, miners do not have to be aware of the fork
and NIPoPoWs are implementable retrospectively. How-
ever, the source blockchain must support the proof mech-
anism. Furthermore, NIPoPoWs expect constant PoW dif-
ficulty and are therefore not applicable to blockchains
like Bitcoin that adjust the difficulty to achieve relatively
constant block mining rates [25]. Nevertheless, NIPoPoWs
provide promising sidechain mechanisms for Proof-of-
Stake (PoS)-based blockchains, as demonstrated by Gaži
et al. [26].

7. Discussion & Outlook

zkRelay enables the off-chain validation of batches
without requiring any economic assumptions or knowl-
edge about the relay on the source ledger. The proposed
approach is unique in its scalability and provably correct
execution, compared to current approaches, as outlined in
Table 1.

While the prototypical implementation of zkRelay
facilitates a chain-relay from Bitcoin to Ethereum, the
proposed concept is not limited to these blockchains. In
order to apply the approach to other ledgers, the consensus
mechanism of the source blockchain has to be repro-
duced by the off-chain program. In contrast to Bitcoin,
blockchain implementations such as Ethereum, Litecoin,
or Dogecoin implement a memory-hard PoW algorithm
to prevent the utilization of ASICs. The generation of

pseudo-random data sets implies novel challenges towards
off-chain computations using zkSNARKs. Future imple-
mentations of such algorithms may precompute expected
data sets and store their respective Merkle root within the
off-chain program. As a result, the proposed concept is
applicable to memory-hard algorithms, as only Merkle
proofs are required to verify the validity of a PoW so-
lution.

As a prerequisite for zkRelay, we assume a trusted
setup to be given. For a use case that leverages a public
blockchain, the setup should be performed by multiple
distinct entities and is safe as long as at least one honest
entity participated [15]. If a fixed set of users intends to
utilize zkRelay for a given use case, a specific instance
can be deployed by performing a trusted setup between all
these participants. While zero-knowledge proof methods
exist that do not require a trusted setup, e.g., Bullet-
proofs [20] or zkSTARKS [27], these approaches suffer
from larger proof sizes and higher verification complexity
which renders them impractical for our use case [14].

8. Conclusion

In this paper, we proposed zkRelay, a zkSNARK-
based chain-relay that facilitates sidechains in a verifiable
and scalable manner. The target blockchain is released
from validating and storing every single block header of
the source chain by shifting the validation process to an
off-chain program that is verifiable on-chain. A batching
mechanism enables users to submit a subset of block
headers to the target ledger, while intermediary headers
are processed and validated off-chain. This validation pro-
cess is cryptographically secure and does not require any
economic assumptions or game-theoretic considerations.

The prototypical implementation of zkRelay facilitates
a chain-relay between Bitcoin and Ethereum based on the
ZoKrates framework. Our evaluation shows that the gas
costs for submitting batches are constant for any batch
size. Users are enabled to flexibly choose the batch size
that best fits their requirements. In comparison to BTC
Relay, the presented approach requires only a fraction
of gas when submitting a batch of block headers. Thus,
zkRelay constitutes a promising solution to the liveness
issues of current blockchain relays.
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