
Composite Algorithm: A new algorithm to search for monic 

irreducible polynomials over extended Galois Field GF(p
q
). 

 

Sankhanil Dey
1
, Amlan Chakrabarti

2
 and Ranjan Ghosh

3
, 

Department of Radio Physics and Electronics, University of Calcutta, 

92 A P C Road, Kolkata-700009
1,3

. 

and 

A K Choudhury School of Information Technology, University of Calcutta, 

Sector-III, JD-2 block, Salt Lake City, Kolkata-700098
2
. 

 

Email of the Corresponding Author: sankhanil12009@gmail.com or sdrpe_rs@caluniv.ac.in. 

 

Abstract. Irreducible polynomials (IPs) have many applications in the field of computer science and information 

technology. Algorithms in artificial intelligence and substitution boxes in cryptographic ciphers are some evident 

example of such important applications. But till now the study is mostly limited to the binary Galois field GF(2
q
) 

where 2 is the modulus and q is the extension of the said Galois field. Some works are there to generate IPs over 

some non-binary Galois field GF(p
q
) where p is the prime modulus and p>2 but the maximum value of p is not more 

than 13 and the maximum value of extension q is not more than 4. In this paper a new algorithm to search for monic 

irreducible polynomials over extended Galois field GF(p
q
) entitled as “ Composite Algorithm” is introduced to 

computer scientists. Here all possible set of two monic elemental polynomials (EPs)[1] one with highest degree ≤ q-

1/2 (for odd value of q) and ≤ q/2 (for even value of q) is multiplied over the  Galois field GF(p
q
) to one with highest 

degree ≥ q-1/2 (for odd value of q) and ≥ q/2 (for even value of q). All resultant monic polynomials are then divided 

over the Galois field GF(p
q
) by a monic basic polynomial (BP)[1]. If for all resultant polynomials the residue is 1 for 

a monic BP then the monic BP is termed as monic IP. The time complexity of the said algorithm is prove to be the 

best among existing such algorithms and efficient of all among them. 
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1. Introduction. IPs over extended Galois fields finds many applications in the modern computer science and 

information technology. One evident application of the monic IP over Galois field GF(2
8
) is the 8-bit substitution 

box of the Advance Encryption Standard or AES [2][3]. The substitution box of AES constitutes of 2
8
 or 64 

elements with decimal value 0 to 63 together [2][3]. There are many other applications of IPs over extended Galois 

fields in modern computer arithmetic and computer applications. Computer algorithm for the generation of monic 

IPs over the Galois field GF(p
q
) for large value of the prime modulus p and the extension q is till now is an unbroken 

stepping stone in computer science. An algorithm to generate monic reducible polynomials or RPs over the Galois 

field GF(p
q
) [1] through multiplication of monic elemental polynomials or EPs over the Galois field GF(p

q
) is 

already mentioned in [4]. The list of monic IPs over the Galois field GF(p
q
) is extracted from the list of all the monic 

BPs over the Galois field GF(p
q
) by the cancellation of all monic RPs over the Galois field GF(p

q
) from the list of 

monic BPs over the Galois field GF(p
q
) leaving behind the monic IPs over the Galois field GF(p

q
) [4][5]. The 

multiplication of two monic polynomials over the Galois field GF(p
q
) must be according to the multiplication 

algorithm defined in [6]. 

  Here a new multiplication algorithm is introduced to multiply two monic EPs over the Galois field GF(p
q
). 

The procedure is same as decimal multiplication but the each digit in product must be modulated with prime 

modulus p to obtain the result. The multiplicand and multiplier are two GFNs of the two monic EPs over the Galois 

field GF(p
q
). The generation of the GFNs [1] is described in section 2.1 and the procedure and the algorithm is 

described in section 2.2. 
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  In the procedure to subtract two Galois field polynomials over the Galois field GF(p
q
) generate the 

GFNs [1] of the two said polynomials and subtract each corresponding digit of the GFN with small decimal 

equivalent (DE) from the GFN with large DE and modulate the result with p to obtain the corresponding subtracted 

digit. If the subtracted digit is negative then add p as borrow to the next position of the GFN with small decimal 

equivalent (DE). If two GFNs have unequal numbers of digits then pad the GFN with small decimal equivalent (DE) 

with 0s in left.  A brief description of the procedure of the subtraction of the two Galois field polynomials over the 

Galois field GF(p
q
) and the algorithm for the procedure is detailed in section 2.3.  

 In the procedure to divide two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] 

of the two said polynomials at first. Division over the Galois field GF(p
q
) procedure is same as decimal division but 

there are some important modifications in this division procedure. The product of divisor and each digit of quotient 

are subtracted from the same number of digits from the most significant bit of the dividend to obtain the residue and 

the subtraction is made by the procedure defined in section 2.3. The total division procedure and algorithm two 

Galois field polynomials over the Galois field GF(p
q
) is described in sec 2.4. 

 Now to generate the DEs of all the monic IPs over the Galois field GF(p
q
) through composite algorithm 

here all possible set of two monic elemental polynomials (EPs)[1] one with highest degree ≤ q-1/2 (for odd value of 

q) and ≤ q/2 (for even value of q) is multiplied over the  Galois field GF(p
q
) to one with highest degree ≥ q-1/2 (for 

odd value of q) and ≥ q/2 (for even value of q). All resultant monic polynomials are then divided over the Galois 

field GF(p
q
) by a monic basic polynomial (BP)[1]. If for all resultant polynomials the residue is 1 for a monic BP 

then the monic BP is termed as monic IP. The procedure and the algorithm for the said algorithm is described in 

section 3. 

The conclusion and acknowledgement of the paper is given in section 4 and section 5 respectively. 

2. Related algorithms to generate monic IPs over the Galois field GF(p
q
) through Composite Algorithm. 

The generation of the GFN is described in subsection 2.1. The procedure and algorithm for the multiplication over 

the Galois field GF(p
q
) of the two GFNs over the said Galois field is illustrated in section 2.2. The procedure and 

algorithm for the subtraction and division over the Galois field GF(p
q
) is described in subsection 2.3 and 2.4 

respectively. 

2.1. Generation of the GFNs from the Galois field polynomials over the  Galois field GF(p
q
). 

Coefficient of each degree term of a polynomial are arranged sequentially from highest to lowest degree in a 

decreasing sequence of degree terms (Coefficient of highest degree term is in MSB and coefficient of lowest degree 

term is in LSB) to obtain Galois Field Numbers (GFNs) for polynomials over the Galois fields GF(p
q
) where p is the 

prime modulus and q is the extension of the said Galois field. There are two special types of GFNs. Binary Coded 

Numbers or BCN for polynomials over the Galois field GF(2
q
) and Finite Field Numbers (FFNs) for polynomials 

over finite field GF(p
q
) where p is non-prime. Examples of some GFNs, BCNs and FFNs are given in table.1, table.2 

and table.3 respectively below and the description of the said tables are also given below. 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 14406 6x
4
 60000 

2 14407 6x
4
+1 60001 

3 2443 x
4
+6x 10060 

4 2414 x
4
+x+6 10016 

Table.1. GFNs of four Galois field polynomials over the Galois field GF(7
4
). 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 16 x
4
 10000 

2 17 x
4
+1 10001 

3 18 x
4
+x 10010 

4 19 x
4
+x+1 10011 

5 20 x
4
+x

2
 10100 



6 21 x
4
+x

2
+1 10101 

7 22 x
4
+x

2
+x 10110 

8 23 x
4
+x

2
+x+1 10111 

9 24 x
4
+x

3
 11000 

A 25 x
4
+x

3
+1 11001 

B 26 x
4
+x

3
+x 11010 

C 27 x
4
+x

3
+x+1 11011 

D 28 x
4
+x

3
+x

2
 11100 

E 29 x
4
+x

3
+x

2
+1 11101 

F 30 x
4
+x

3
+x

2
+x 11110 

G 31 x
4
+x

3
+x

2
+x+1 11111 

Table.2. BCNs of 16 Galois field polynomials over the Galois field GF(2
4
). 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 768 3x
4
 30000 

2 770 3x
4
+2 30002 

3 264 x
4
+2x 10020 

4 267 x
4
+2x+3 10023  

Table.3. FFNs of four Galois field polynomials over the Galois field GF(4
4
). 

Description of Table.1, Table.2, and Table.3: 

Table.1: Examples of four GFNs over the Galois field GF(7
4
) are given in row 1 through 4 of Table.1. DEs 

of the polynomials, the polynomials itself and the respective GFNs are given in column 1, 2 and 3 of the 

respective rows.  

Table.2: Examples of four BCNs over the Galois field GF(2
4
) are given in row 1 through 16 of Table.2. 

DEs of the polynomials, the polynomials itself and the respective BCNs are given in column 1, 2 and 3 of 

the respective rows. 

Table.3: Examples of four FFNs over the Galois field GF(4
4
) are given in row 1 through 4 of Table.3. DEs 

of the polynomials, the polynomials itself and the respective FFNs are given in column 1, 2 and 3 of the 

respective rows. 

2.2 Procedure and the algorithm for multiplication of the two BCNs over the Galois field GF(p
q
). 

Here a new multiplication algorithm is introduced to multiply two monic EPs over the Galois field GF(p
q
). The 

procedure is same as decimal multiplication but the each digit in product must be modulated with prime modulus p 

to obtain the result. The multiplicand and multiplier are two GFNs of the two monic EPs over the Galois field 

GF(p
q
). The procedure is introduced in subsection 2.2.1 and subsection 2.2 is dedicated to algorithm of the said 

procedure.  

2.2.1 Procedure. Let us consider two EPs over Galois field GF(2
4
), multiplication of those two EPs over Galois 

field GF(2
4
) must construct a BP. Two EPs over Galois field GF(2

4
) are, 

EPs BCNs or GFNs 

x 0010 

x
3
+1 1001 

Polynomial multiplication of concerned two EPs over Galois field GF(2
4
): x.(x

3
+1) = x

4
+x (BCN = 10010). 

Now, by BCNs 

A. 1
st
 number.   0010 

B. 2
nd

 number.  1001 

     0010 

           0000 

         0000 

                 0010 

Product.   0-0-1-0-0-1-0   



         %-%-%-%-%  

                       2-2-2-2-2  

          -------------- 

                       1-0-0-1-0   

Product BP =  BCN or GFN = 10010 = polynomial =   x
4
+x = Decimal Equivalent = 18. 

 

2.2.2 Algorithm. 

The algorithm of multiplication of two polynomials over the Galois field GF(2
4
) is given as follows, 

Start. 

Step 0. Let us take DE of two polynomials A and B over Galois field GF(2
4
). 

Step 1. Convert two numbers into two BCNs, BCN(A) and BCN(B). 

Step 2. Multiply BCN(A) and BCN(B) with decimal multiplication to obtain product P(A×B). 

Step 4. Modulate each digit of product with 2 two obtain product BCN of P(A×B). 

Stop. 

2.3 Procedure and the algorithm for subtraction of the two BCNs over the Galois field GF(p
q
). 

To subtract two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials and subtract each corresponding digit of the GFN with small decimal equivalent (DE) from the GFN 

with large DE and modulate the result with p to obtain the corresponding subtracted digit. If the subtracted digit is 

negative then add p as borrow to the next position GFN with small decimal equivalent (DE) and modulate with p. If 

two GFNs have unequal numbers of digits then pad the GFN with small decimal equivalent (DE) with 0s in left.  A 

brief description of the procedure of the subtraction of the two Galois field polynomials over the Galois field GF(p
q
) 

is given in subsection 2.3.1 and the algorithm for the procedure is detailed in section 2.3.2. 

2.3.1 Procedure:  

To subtract two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials and subtract each corresponding digit of the GFN with small decimal equivalent (DE) from the GFN 

with large DE and modulate the result with p to obtain the corresponding subtracted digit. If the subtracted digit is 

negative then add p as borrow to the next position GFN with small decimal equivalent (DE) and modulate with p. If 

two GFNs have unequal numbers of digits then pad the GFN with small decimal equivalent (DE) with 0s in left.  

Example for two BCNs and two GFNs are given below, 

Key Definitions. 

Basic polynomials (BPs) over Galois field GF(2
4
).  Polynomials over the Galois field GF(2

4
) with highest degree 4 

are termed as BPs over Galois field GF(2
4
). 

Elemental polynomials (EPs) over Galois field GF(2
4
).  Polynomials over Galois field GF(2

4
) with highest degree 

less than 4 are termed as EPs over Galois field GF(2
4
). 

Binary Coded Numbers (BCNs) or Galois field Numbers (GFNs) over Galois field GF(2
4
). If it is considered 

that coefficient of highest degree term of the concerned polynomial is the MSB of the number and coefficient of 

lowest degree term of the concerned polynomial is the LSB of the number and other coefficients of highest degree to 

lowest degree term are arranged sequentially from MSB to LSB in the number then the number constructed with 

coefficients of the concerned polynomial is termed as BCN or which is also a GFN over Galois field GF(2
4
). 

Subtraction of two BCNs over Galois field GF(2
4
): 

Two EPs over Galois field GF(2
4
) are, 

EPs BCNs or GFNs 

x 0010 

x
3
+1 1001 

 

Now,  

BCN(x) < BCN(x
3
+1). If we subtract BCN(x) from BCN(x

3
+1) we get, subtract in decimal each digit of 

BCN(x) from BCN(x
3
+1) and modulate the result with 2 when result is negative add borrow 1 to next position 

of the BCN(x) and modulate with 2. 

A. 1-0-0-1 



B. 0-0-1-0 

Difference.   0-1-1-1 

 

2.3.2 Algorithm: 

The algorithm is given below,   

Start. 

Step 1: The four bits of the 1
st
 BCN or BCN(x

3
+1) with greater value of DE are stored at bcn_large.bit0, 

bcn_large.bit1, bcn_large.bit2, bcn_large.bit3 from MSB to LSB respectively and The four bits of the 2
nd

  BCN or 

BCN(x) with smaller value of DE are stored at bcn_small.bit0, bcn_small.bit1, bcn_small.bit2, bcn_small.bit3 from 

MSB to LSB respectively. 

Step 2: The subtraction is started from LSB. 

Step 3: bcn_small.bit3 is subtracted from bcn_large.bit3 and the obtained digit is modulated with 2. If the result is 

negative then add borrow 1 to the bcn_small.bit2 and subtract it from bcn_large.bit2 and modulate the obtained digit 

with 2 to obtain the 2
nd

 subtracted digit of the difference. The procedure is going on till the subtraction of 

bcn_small.bit0 from bcn_large.bit0. 

Step 4: The obtained four corresponding digits are stored in diff.bit0, diff.bit1, diff.bit2 and diff.bit3 respectively. 

Stop. 

2.4 Procedure and the algorithm for division of the two BCNs over the Galois field GF(p
q
). 

To divide two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials at first. Division over the Galois field GF(p
q
) procedure is same as decimal division but there are some 

important modifications in this division procedure. The product of divisor and each digit of quotient are subtracted 

from the same number of digits from most significant bit of the dividend to obtain the residue and the subtraction is 

made by the procedure defined in section 2.3. The total division procedure is given in subsection 2.4.1 and the 

algorithm to divide two Galois field polynomials over the Galois field GF(2
4
) is described in subsection 2.4.2. 

2.4.1 Procedure. 

In division of the two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials at first. Division over the Galois field GF(p
q
) procedure is same as decimal division but there are some 

important modifications in this division procedure. The product of divisor and each digit of quotient are subtracted 

from the same number of digits from most significant bit of the dividend to obtain the residue and the subtraction is 

made by the procedure defined in section 3.2. The procedure for the two GFNs more specifically for the two BCNs 

is as follows, 

Two Polynomials over the Galois field GF(2
4
) are, 

Polynomials BCNs or GFNs 

x 0010 

x
3
+1 1001 

 

Now,  

BCN(x) < BCN(x
3
+1). The division of the BCN(x

3
+1) by BCN(x) would result as follows, 

          10)1001(100 

 10 

 000 

   00 

                 01 

                 00 

                    1 

In this division the division is similar to decimal division but the subtraction is according to subtraction of two 

BCNs over Galois field GF(2
4
). 

 



 

 

 

2.4.2 Algorithm. 

The algorithm for the division of the two BCNs over the Galois field GF(2
4
) is given below, 

Start. 

Step 0. Let us take the DEs of the two polynomials A and B over Galois field GF(2
4
). 

Step 1. Convert the two numbers into two BCNs, BCN(A) and BCN(B). 

Step 2. If (BCN(A)>BCN(B) then [avoid zero padding], 

Step 3. divide BCN(A) by BCN(B) with decimal division to obtain quotient D(A/B) and residue R(A/B) but the 

only difference is the subtraction used in division is according to subtraction of two BCNs over Galois field GF(2
4
). 

Stop. 

3. Composite Algorithm. 

The procedure of the algorithm is described in subsection 3.1. The algorithm for the Galois field GF(p
q
) is described 

in subsection 3.2. 

3.1 Procedure.  

Now to generate the DEs of all the monic IPs over the Galois field GF(p
q
) through composite algorithm here all 

possible set of two monic elemental polynomials (EPs)[1] one with highest degree ≤ q-1/2 (for odd value of q) and ≤ 

q/2 (for even value of q) is multiplied over the  Galois field GF(p
q
) to one with highest degree ≥ q-1/2 (for odd value 

of q) and ≥ q/2 (for even value of q). All resultant monic polynomials are then divided over the Galois field GF(p
q
) 

by a monic basic polynomial (BP)[1]. If for all resultant polynomials the residue is 1 for a monic BP then the monic 

BP is termed as monic IP.  

3.2 Algorithm for the Galois field GF(p
q
). 

Let us consider monic BPs, BP over extended Galois field GF(p
q
) with degree BPD €q and consider monic EPs, EP 

with degree EPD € {1,2,…..,(q-1)/2}. Since monic EPs with degree d and q-d can be the MIs of each other so the 

division is restricted to the aforesaid condition. Now let the total number of monic BPs over the Galois field GF(p
q
) 

have been p
q
 € n and monic EPs over the Galois field GF(p

q
) (p

q
-p) € n-p; 

 
Start. 

BP_Numbers: n; // Defining total numbers of monic BPs to be tested to be a 

monic IP. 

EP_Numbers: n-p; // Defining total numbers of monic EPs.  

For BP_index::1: n. // Accessing each monic BP. 

For EP_index::1: n-p. // Access to each monic EP. 

// Testing of Boundary Condition for a Monic BP to be a Monic IP 

If ((EP1×EP2) %(GF) (BP) == 1)  

Flag [EP_index]=1; 

  End If. 

End For (EP_index) // End of For loop EP_index. 

If (Flag [EP_index]==1) for all EPs 

BP= IP. // Declaration of a Monic BP to a Monic IP.  

       Else BP = RP. // Declaration of a Monic BP to a Monic RP.  

End For (BP_index.)  // End of For loop BP_index. 

Stop. 

Note: Time complexity of Composite Algorithm is O(n
2
). 

 

3.3 Comparison of time complexity of the given algorithm with Rabin’s Algorithms. 



The new composite algorithm to find the monic IPs over Galois field GF(p
q
) have a time complexity of O(n

2
). Since 

time complexity of Rabin’s algorithm and its modification depends upon the value of prime modulus p so it 

becomes slower for large value of p. Now in this algorithm the complexity depends upon the value of extension q so 

they are faster and eligible to find monic IPs for very large value of p as well as extension q. 

 

Algorithms 
Composite 

Algorithm 

Rabin’s 

Algorithm 

Rabin’s 

Algorithm(mod) 

Time Complexity O(n2) O(n4(log P)3) 0(n4(log p)2 + n3(log P)3) 

Table.4. Comparison of Time Complexity of the division algorithm with  

Rabin’s and Modified Rabin’s Algorithm. 

 

4. Conclusion. From the last few decades computer scientists try to break the untouched stone of the composite 

algorithm to reduce the time complexity of many algorithms in computer science and artificial intelligence. In this 

paper this stone is broken to find the large numbers of monic IPs over the extended Galois field GF(p
q
) where prime 

modulus p is very large with a very large value of extension q. The algorithm reduces the required time almost 100 

times rather than the previous algorithms and the excellence of the algorithm is also increased for 100 times than the 

previous ones. The time complexity analysis proves the previous statements true and the composite algorithm to be 

the best algorithm ever to find the large numbers of monic IPs over the extended Galois field GF(p
q
) where prime 

modulus p is very large with a very large value of extension q. 
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