
Secure k-ish Nearest Neighbors Classifier

Hayim Shaul1, Dan Feldman2, and Daniela Rus1

1 CSAIL MIT, Cambridge, MA, USA. {hayim,rus}@csail.mit.edu
2 University of Haifa, Haifa, Israel. {dannyf}@csail.mit.edu

Abstract. The k-nearest neighbors (kNN) classifier predicts a class of a
query, q, by taking the majority class of its k neighbors in an existing
(already classified) database, S. In secure kNN, q and S are owned by
two different parties and q is classified without sharing data. In this work
we present a classifier based on kNN, that is more efficient to implement
with homomorphic encryption (HE). The efficiency of our classifier comes
from a relaxation we make to consider κ nearest neighbors for κ ≈ k with
probability that increases as the statistical distance between Gaussian
and the distribution of the distances from q to S decreases. We call our
classifier k-ish Nearest Neighbors (k-ish NN). For the implementation we
introduce double-blinded coin-toss where the bias and output of the toss
are encrypted. We use it to approximate the average and variance of the
distances from q to S in a scalable circuit whose depth is independent
of |S|. We believe these to be of independent interest. We implemented
our classifier in an open source library based on HElib and tested it on
a breast tumor database. Our classifier has accuracy and running time
comparable to current state of the art (non-HE) MPC solution that have
better running time but worse communication complexity. It also has
communication complexity similar to naive HE implementation that have
worse running time.

1 Introduction

A key task in machine learning is to classify an object based on a database of
previously classified objects. For example, with a database of tumors, each of
them classified as malignant or benign, we wish to classify a new tumor based
on the pre-classified database. Classification algorithms have been long studied.
For example, k nearest neighbor (kNN) classifier [5], where a classification of a
new tumor is done by considering the k nearest neighbors (i.e. the most similar
tumors, for some notion of similarity). The decision is then taken to be the
majority class of those neighbors.

In some cases, we wish to perform the classification without sharing the
database or the query. In our example, the database may be owned by a hospital
while the query is done by a clinic. Here, sharing the database is prohibited by
regulations (e.g. HIPAA [4]) and sharing the query may expose the hospital and
the clinic to liabilities and regulations.

In secure multi-party computation (MPC), several parties compute an out-
put without sharing their input. Solutions such as that by Beaver [2] have the

2 Hayim Shaul, Dan Feldman, and Daniela Rus

disadvantage of having a large communication complexity. Specifically it is propor-
tional to the running time of the computation. Recently, secure-MPC techniques
have been proposed based on homomorphic encryption (HE) (see Brakerski et
al. [3]) that makes it possible to compute a polynomial over encrypted messages
(ciphertexts). Using HE, the communication complexity becomes proportional to
the size of the input and output. In our example, the clinic encrypts its query
with HE and sends the encrypted query to the hospital. The polynomial the
hospital applies is evaluated to output a ciphertext that can be decrypted, (only)
by the clinic, to get the classification of the query. See Figure 1.

Client Server

neighbors
Find k nearest

Encrypt
q

s1, . . . , sn

Find maximum
JclassqKDecryptclassq

count classes

JqK, pk

Fig. 1. A HE-based protocol for Secure k-nearest neighbors classifier. (i) A client has a
pair (sk, pk) and a query q. The client encrypts the query JqK = Encpk(q) and sends
JqK and pk to the server. (ii) The Server securely finds the k neighbors of JqK from
s1, . . . , sn. (iii) The Server securely counts the classes among the k nearest neighbors.
Since these are counted with HE the result is also encrypted. (iv) The server finds the
class with the maximal count and set it to JclassqK, the class of q. (iv) The server sends
the ciphertext JclassqK to the client. (v) The client decrypts classq = Decsk(JclassqK).

The downside of using HE is the efficiency of evaluating polynomials. Although
generic recipes exist that formulate any algorithm as a polynomial of its input,
in practice the polynomials generated by these recipes have poor performance.
The main reason for the poor performance is the lack of comparison operators.
Since comparisons leak information that can be used to break the encryption,
under HE we can only have a polynomial whose output is encrypted and equals
1 if the comparison holds and 0 otherwise. The second reason is an artifact of
homomorphic encryption schemes: the overhead of evaluating a single operation
grows with the degree of the evaluated polynomial. For many “interesting” prob-
lems it is a challenge to construct a polynomial that can be efficiently evaluated
with HE.

In this paper we consider the secure classification problem. We propose a new
classifier which we call k-ish nearest neighbors. In this new classifier the server
considers κ nearest neighbors to the query where κ ≈ k with some probability.

Secure k-ish Nearest Neighbors Classifier 3

Relaxing the number of neighbors significantly improves the time performance of
our classifier while having a small impact on the accuracy performance. Specifi-
cally, the time to compute our classifier on real breast cancer database dropped
from months (estimated) to less than an hour, while the accuracy (measured by
F1 score) decreased from 96% to 94%, while using 27GB of RAM. See details in
Section 9.

The solution we introduce in this paper assumes the distances of the database
to the query are statistically close to Gaussian distribution. Although sounding
too limiting, we argue (and show empirically) otherwise. We show that many
times the distribution of distances is statistically close enough to Gaussian. In
future work, we intend to remove this assumption.

The efficiency of our solution comes from two new non-deterministic primitives
that we introduce in this paper:

– a new approach to efficiently compute an approximation of 1/m
∑n
i=1 f(JxiK),

where n,m are integers, f is an increasing invertible function and Jx1K, Jx2K, . . .
are ciphertexts.

– a double-blinded coin-tossing algorithm, where the output and the bias of
the coin are encrypted.

We believe these two primitives are of independent interest and can be used in
other algorithms as well

We built a system written in C++ and using HElib [9] to securely classify
breast tumor as benign or malignant using k-ish NN classifier. Our code is given
in [18]. Our classifier used the Wisconsin Diagnostic Breast Cancer Data Set [6],
classified a query in less than an hour with 94% accuracy. This significantly
improves over naive running times and makes secure classifications with HE a
solution that is practical enough to be implemented. We also tested our classifier
with car evaluation database [7] and compared it to the state of the art MPC
solution shown by Elmehdwi et al. [8].

2 Related Work

Previous work on secure kNN either had infeasible running time or had a large
communication complexity. For example, Wong et al. [20] considered a distance
recoverable encryption to have the server encrypt S. The user encrypts q and a
management system computes and compares the distances. However, this scheme
leaks information to an attacker knowing some of the points in S (see Xiao et
al. [21]), in addition some data leaks to the management system. Hu et al. [11]
proposed a scheme to traverse an R-tree where a homomorphic encryption scheme
is used to compute distances and choose the next node in the traversing of the
R-tree. However, this scheme is vulnerable if the attacker knows some of the
points in S (see Xiao et al. [21]). In addition, the communication complexity is
proportional to the height of the R-tree. Elmehdwi et al. [8] proposed a scheme
that is, to the best of our knowledge, the first to guarantee the privacy of data
as well as that of the query. However, this scheme requires the client to stay

4 Hayim Shaul, Dan Feldman, and Daniela Rus

active throughout the protocol (or delegate that work to a trusted server). This
is a requirement not all users are able to follow. In addition, the communication
overhead of this scheme is very high (proportional to the size of the database).
To recap, previous works suffered either from access pattern leakage or from high
communication complexity and high number of protocol rounds or the existence
of two non-colluding servers.

3 Preliminaries

For an integerm we denote [m] = {1, . . . ,m}. We use JmsgK to denote a ciphertext
that decrypts to the value msg.

The ring Zp is the set {0, . . . , p− 1} equipped with + and · done modulo p.
If p is prime then Zp is a field. We denote by dxc, where x ∈ R, the rounding of
x to the nearest integer.

A database of Zdp points of size n is the tuple S = (s1, . . . , sn), where
s1, . . . , sn ∈ Zdp. We denote by class(si) ∈ [c] the class of si. Let S = (s1, . . . , sn)
be a database of Zdp points of size n and let q ∈ Zdp. The distance distribution is
the distribution of the random variable x = dist(si, q), where i← [n] is drawn
uniformly. We denote the distance distribution by DS,q.

The statistical distance between two discrete probability distribution X and
Y over the finite set, Zp, denoted SD(X,Y), is defined as

SD(X,Y) = max
u∈Zp

|Pr[x = u]− Pr[y = u]| ,

where x ∼ X and y ∼ Y. The cumulative distribution function (CDF) of a
distribution X is defined as CDFX(α) = Pr[x < α | x ∼ X].

The F1 Score (also called Dice coefficient or Sorensen coefficient) is a measure
of similarity of two sets. It is given by F1(A,B) = 2 |A∩B||A|+|B| , where A and B are
sets. In the context of classifiers, the F1 score is used to measure the accuracy
of a classifier by repeating the following for each class j ∈ [c]: take Aj to be the
set of samples classified as j and Bj be the set of samples whose class is j and
compute F1(Aj , Bj). The F1 score of the classifier is the weighted average over
all F1(Aj , Bj).

3.1 Polynomial Interpolation

For a prime p and a function f : [0, p] 7→ [0, p], we define the polynomial
Pf,p : Zp 7→ Zp, where Pf,p(x) = df(x)c for all x ∈ Zp. When p is known from
the context we simply write Pf .

An explicit description of Pf,p can be given by the interpolation

Pf,p(x) =
p−1∑
i=0

(
df(i)c

∏
j 6=i

(x− j)(i− j)−1

)
.

Secure k-ish Nearest Neighbors Classifier 5

Rearranging the above we can write

Pf,p(x) =
p−1∑
i=0

αix
i

for appropriate coefficients α0, . . . , αp−1 that depend on f . In this paper we use
several polynomial interpolations:

– P√·(x) = d
√
xc.

– P(·)2/p(x) = x2/p.
– P(·=0)(x) = 1 if x = 0 and 0 otherwise.
– P(
√

(·)+p(x) =
√
x+ p.

– P(
√

(·)p(x) = √xp.
– PisNegative(·)(x) = 1 if x > p/2 and 0 otherwise.

Comparing Two Ciphertexts. We also define a two variate function
isSmaller : Zp × Zp 7→ {0, 1}, where isSmaller(x, y) = 1 iff x < y. In this
paper we implement this two-variate function with a uni-variate polynomial
isNegative : Zp′ 7→ {0, 1}, where p′ > 2p and isNegative(z) = 1 iff z > p′/2. The
connection between these two polynomials is given by

isSmallerp(x, y) = isNegativep′(x− y).

Computing argmax. Using the isSmaller polynomial we construct the poly-
nomial ArgMaxc : Zcp 7→ [c], where ArgMax(C) = argmaxj C(j). Here we assume
c < p as will be the case in our work. For completeness we note that this can be
generalized to c ≥ p by returning a binary vector. We follow the ideas of C̨etin
et al. [14] and define

ArgMaxc(C) =
c∑
j=1

j ·
∏
i 6=j

isSmaller
(
C(i), C(j)

)
.

Clearly,
∏
i 6=j isSmaller

(
C(i), C(j)

)
= 1 when C(j) = maxi C(i) and is zero

otherwise. It follows that ArgMaxc(C) = argmaxi C.
Computing Distances. Our protocol can work with any implementation of

a distance function. In this paper we analyze our protocol and present experiments
with the `1 distance. We implement a polynomial dist`1(a, b) that evaluates to
‖a− b‖`1

where a = (a1, . . . , ad) and b = (b1, . . . , bd):

dist`1(a, b) =
d∑
1

(
1− 2isSmaller(ai, bi)

)
(ai − bi).

We observe that(
1− 2 · isSmaller(ai, bi)

)
=
{

1 if ai < bi

−1 otherwise.

and therefore
∑
i

(
1− 2 · isSmaller(ai, bi)

)
(ai − bi) =

∑
i |ai − bi| = dist`1(a, b).

6 Hayim Shaul, Dan Feldman, and Daniela Rus

Arithmetic Circuit vs. Polynomials. An arithmetic circuit (AC) is a directed
graph G = (V,E) where for each node v ∈ V we have indegree(v) ∈ {0, 2}, where
indegree(v) is the number of incoming edges of v. We also associate with each
v ∈ V a value, val(v) in the following manner:

If indegree(v) = 0 then we call v an input node and we associate it with a
constant or with an input variable and val(v) is set to that constant or variable.

If indegree(v) = 2 then we call v a gate and associate v with an Add operation
(an add-gate) or Mult operation (a mult-gate).

Denote by v1 and v2 the nodes connected to v through the incoming edges
and set val(v) := val(v1) + val(v2) if v is an add-gate or val(v) := val(v1) · val(v2)
if v is a mult-gate.

Arithmetic circuits and polynomials are closely related but do not have a
one-to-one correspondence. A polynomial can be realized by different circuits. For
example P(x) = (x+ 1)2 can be realized as (x+ 1) · (x+ 1) or by x · x+ 2 · x+ 1.
The first version has one mult-gate and one add-gate (here we take advantage
that x+ 1 needs to be calculated once), while the latter has 2 mult-gates and 2
add-gates.

Looking ahead, we are going to evaluate arithmetic circuits whose gates
are associated with HE operations (see below). We are therefore interested in
bounding two parameters of an arithmetic circuits, C:

– size(C) is the number of mult gates in C. This relates to the number of gates
needed to be evaluated hence directly affecting the running time.

– depth(C) is the maximal number of mult gates in a path in C.
(We discuss below why we consider only mult gates).

Paterson et al. [17] showed that a polynomial Pp(x) : Zp 7→ Zp can be realized
by an arithmetic circuit C where depth(C) = O(log p) and size(C) = O(√p).
Their construction can be extended to realize multivariate polynomials, however,
size of the resulting circuit grows exponentially with the number of variables.
For a n-variate polynomial, such as a polynomial that evaluates to the k nearest
neighbors, their construction has poor performance.

3.2 Homomorphic Encryption

Homomorphic encryption (HE) (see e.g. Brakerski et al. [3], see also a survey
by Halevi et al. [10]) is an asymmetric encryption scheme that also supports
+ and × operations on ciphertexts. More specifically, HE scheme is the tuple
E = (Gen,Enc,Dec,Add,Mult), where:

– Gen(1λ, p) gets a security parameter λ and an integer p and generates the
keys pk and sk.

– Encpk(m) gets a message m and outputs a ciphertext JmK.
– Decsk(JmK) gets a ciphertext JmK and outputs a message m′.
– Addpk(JaK, JbK) gets two ciphertexts JaK, JbK and outputs a ciphertext JcK.
– Multpk(JaK, JbK) gets two ciphertexts JaK, JbK and outputs a ciphertext d.

Secure k-ish Nearest Neighbors Classifier 7

Correctness is the requirement that m = m′, c = a + b mod p and d = a · b
mod p.

Abbreviated syntax. To make our algorithms and protocols more intuitive
we use J·Kpk to denote a ciphertext. When pk is clear from the context we use an
abbreviated syntax:

– JaK + JbK is short for Addpk(JaK, JbK).
– JaK · JbK is short for Multpk(JaK, JbK).
– JaK + b is short for Addpk(JaK, Encpk(b)).
– JaK · b is short for Multpk(JaK, Encpk(b)).

Given these operations any polynomial P(x1, . . .) can be realized as an arith-
metic circuit and computed on the ciphertexts Jx1K, For example, in a client-
server computation the client encrypts its data and sends it to the server to be
processed. The polynomial the server evaluates depends on its input and the
result is a ciphertext that is returned to the client. The client then decrypts the
output. The semantic security of homomorphic encryption guarantees the server
does not learn anything on the client’s data. Similarly, the client does not learn
anything from the server except for the output.

The cost of evaluating an arithmetic circuit, C, with HE is Time = overhead ·
size(C), where overhead is the time to evaluate one mult-gate and it varies
with the underlying implementation of the HE scheme. For example, for BGV
scheme [3] we have overhead = overhead(C) = O

((
depth(C)

)3)
.

3.3 Threat Model

The input of the server in our protocol is n points, s1, . . . , sn with their respective
classes. The input of the client is a query point q. The server outputs (sends to the
client) the encryption of the class of q as calculated based on the nearest neighbors
of q. The output of the client is the class of q. We consider an adversarial server
that is computationally-bounded and semi-honest, i.e. the adversary follows the
protocol but may try to learn additional information. An active malicious server
wanting to reply a wrong answer, can avoid the protocol altogether and reply
a random class. We show that the server does not learn anything on the query,
which stems from the semantic security of HE (see Section 8 for more details).
This does not change for an active malicious server. The client learns only the
classification of its query. We note that given the class of q, the client might infer
something on s1, . . . , sn and their classes (see e.g. Shokri et al. [19]), however,
learning the class of q in the minimum required output of the protocol.

4 Our Contributions

New “HE-friendly” classifier. In this paper we introduce a new classifier that
we call the k-ish nearest neighbor classifier and is a variation of the k nearest
neighbors classifier (see Definition 1).

8 Hayim Shaul, Dan Feldman, and Daniela Rus

Informally, this classifier considers κ ≈ k neighbors of a given query. This
relaxation allows us to implement this classifier with an arithmetic circuit with
low depth independent of the database size and has significantly better running
times than the naive HE implementation of kNN.

In this paper we implement a non-deterministic version where κ is the result of
a probabilistic process. The probability that κ ≈ k depends on SD

(
DS,q,N (µ, σ)

)
,

where µ = E(DS,q) and σ2 = V ar(DS,q). In future papers we intend to propose
implementations that do not have this dependency.

System and experiments for secure k-ish NN classifier. We imple-
mented our algorithms into a system that uses secure k-ish nearest neighbors
classifier. Our code based on HElib [9] is provided for the community to repro-
duce our experiments, to extend our results for real-world applications, and for
practitioners at industry or academy that wish to use these results for their future
papers or products.

A new approximation technique. Our low-depth implementation of the
k-ish NN, is due to a new approximation technique we introduce. We consider the
sum 1/m

∑n
1 f(JxiK), when m and n are integers, f is an increasing invertible

function and Jx1K, . . . , JxnK are ciphertexts. We show how this sum can be
approximated in a polynomial of degree independent of n. Specifically, our
implementation does not require a large ring size to evaluate correctly. In contrast,
previous techniques for computing similar sums (e.g. for computing average by
Naehrig et al. [15]), either generate large intermediate values or are realized with
a deep arithmetic circuit.

A novel technique for double-blinded coin tossing.Our non-deterministic
approximation relies on a new algorithm we call double-blinded coin toss. In a
double-blinded coin toss the bias of the toss is JxK/m, where JxK is a ciphertext
and m is a parameter. The output of the toss is also ciphertext. To the best of
our knowledge, this is the first efficient implementation of a coin toss where the
probability depends on a ciphertext. Since coin tossing is a basic primitive for
many random algorithms, we expect our implementation of coin tossing to have
a large impact on future research in HE.

5 Techniques Overview

We give an overview of our techniques that we used. We first describe the intuition
behind the k-ish NN and then we give a set of reductions from the k-ish NN
classifier to a double-blinded coin toss.

Replacing kNN with k-ish NN. Given a database S and a query q,
small changes in k have small impact on the output of the kNN classifier.
We therefore define the k-ish NN, where for a specified k the classifier may
consider k/2 < κ < 3k/2. With this relaxation, our implementation applies
non-deterministic algorithms (see below) to find k-ish nearest neighbors.

Reducing k-ish NN to computing moments. For the distance (discrete)
distribution DS,q, denote µ = E(DS,q) and σ2 = V ar(DS,q) and consider the
set T = {si |dist(si, q) < T}, where T = µ + Φ−1(k/n)σ and Φ is the CDF of

Secure k-ish Nearest Neighbors Classifier 9

N (0, 1). For the case DS,q = N (µ, σ) we have |T | = k, otherwise the difference∣∣∣|T | − k∣∣∣ can be expressed as a function of SD
(
DS,q,N (µ, σ)

)
.

For distance distribution that are statistically close to Gaussian it remains to
show how µ and σ can be efficiently computed. We remark that µ = 1

n

∑
dist(si, q)

and σ =
√
µ2 − 1

n

∑(
dist(si, q)

)2, so it remains to show how the first two
moments 1

n

∑
dist(si, q) and 1

n

∑(
dist(si, q)

)2 can be efficiently computed.
Reducing computing moments to double-blinded coin-toss. We show

how to compute 1
n

∑
f(xi) for an increasing invertible function f . For an average

take f(xi) = xi and for the second moment take f(xi) = x2
i . Observe that

1
n

∑
f(xi) =

∑ f(xi)
n is approximated by

∑
ai, where

ai =
{

1 With probability f(xi)/n
0 otherwise.

Thus we reduced the problem to coin-toss with bias f(xi)
n (recall that x1, . . . , xn

are given as a ciphertexts).
Reducing double-blind coin-toss to isSmaller polynomial. We show

how to implement a double-blind coin-toss with the isSmaller polynomial. Given
a ciphertext JxiK and a parameter n, we wish to toss a coin with bias f(xi)

n .
To do that, uniformly draw a random value r ← {0, . . . , n} and observe that
Pr[r < f(xi)] = Pr[f−1(r) < xi] = f(xi)/n, when f is strictly increasing. We
therefore implement the coin-toss as isSmaller(f−1(r), xi).

Since coin tossing is a basic primitive for many random algorithms, we expect
our implementation of coin tossing to have a large impact on future research in
HE.

6 Protocol and Algorithms

In this section we describe the k-ish nearest neighbors protocol. We describe it
from top to down, starting with the k-ish nearest neighbors protocol.

6.1 k-ish Nearest Neighbors

The intuition behind our new classifier is that the classification of kNN does not
change “significantly” when k changes “a little”. Figure 2 (left) shows how the
accuracy changes with k. We therefore relax kNN into k-ish NN, where given a
parameter k the classifier considers κ ≈ k.

Definition 1 (k-ish Nearest Neighbors Classification). Given a database
S = (s1, . . . , sn), a parameter 0 ≤ k ≤ n and a query q, the k-ish Nearest
Neighbors classifier sets the class of q to be the majority of classes of κ of its
nearest neighbors, where f1(k) < κ < f2(k).

The protocol in this paper will have k/2 < κ < 3k/2 with probability that
depends on the distance distribution.

10 Hayim Shaul, Dan Feldman, and Daniela Rus

6.2 k-ish NN Classifier Protocol
We give here a high-level description of our protocol.

The protocol has two parties a client and a server. They share common
parameters: a HE scheme E , the security parameter λ and integers p, d and c. The
input of the server is a database S = (s1, . . . , sn) with their respective classes
class(1), . . . , class(n), where si ∈ Zdp, and class(i) ∈ [c] is the class of si. The
input of the client is a query q ∈ Zdp.

The output of the client is classq ∈ [c], which is the majority class of κ
neighbors of q, where k/2 < κ < 3k/2 with high probability. The server sends
JclassqK to the client and has no further output.

Our solution starts by computing the set of distances xi = dist(si, q). Then it
computes a threshold T := µ∗ + Φ−1(k/n)σ∗, where µ∗ ≈ E(DS,q) and (σ∗)2 ≈
V ar(DS,q) (see below how µ∗ and σ∗ are computed). With high probability
we have k/2 < | {si | xi < T} | < 3k/2. Comparing x1, . . . , xn to T is done in
parallel, which keeps the depth of the circuit low. The result of the comparison
is used to count the number of neighbors of different classes.

To compute µ∗ and σ∗ we use the identities µ = 1/n
∑
xi and σ =

√
µ2 − 1/n

∑
x2
i ,

and approximate 1/n
∑
xi and 1/n

∑
x2
i with an algorithm we describe in Sec-

tion 6.3.
Reducing ring size. In the naive implementation, we have a lower bound

of Ω(p2) for the ring size. That is because x1, . . . , xn = O(p) and we have the
intermediate values (µ∗)2, µ2 = O(p2). Since the size and depth of polynomial
interpolations we use depend on the ring size we are motivated to keep the ring
size small. To do that we use a representation we call base-p representation.
Definition 2 (base-p representation). For p ∈ N and v ∈

{
0, . . . , p2 − 1

}
base-p representation of v is low(v) = v mod p and high(v) = bv/pc.
We then assign

low(µ∗2) := 1/n
∑

x2
i mod p

high(µ∗2) := 1
np

∑
x2
i

where the modulo is done implicitly by the circuit. Similarly, we assign
low
(
(µ∗)2) := µ∗ · µ∗ mod p,

high
(
(µ∗)2) := µ∗ · µ∗/p,

where the modulo is done implicitly by arithmetic circuit. We then assign

σ∗ =



√
low
(
(µ∗)2

)
− low

(
(µ∗2)

)
if high

(
(µ∗)2)− high(µ∗2) = 0,√

low
(
(µ∗)2

)
− low

(
(µ∗2)

)
+ p

if high
(
(µ∗)2)− high(µ∗2) = 1,√(

high
(
(µ∗)2

)
− high(µ∗2)

)
p

otherwise.

Secure k-ish Nearest Neighbors Classifier 11

In Lemma 1 we prove that σ∗ ≈
√

(µ∗)2 − µ∗2.
We next give a detailed description of our protocol.

Protocol 1: k-ish Nearest Neighbor Classifier
Shared Input: integers p, d, c > 1.
Client Input: a point q ∈ Zdp and a security

parameter λ.
Server Input: integers k < n,

points s1, . . . , sn ∈ Zdp.
A matrix M ∈ {0, 1}n×c, s.t.
M(i, j) = 1 iff the class(si) = j.

Client Output: classq ∈ [c], the majority class
of κ nearest neighbors of q where
k/2 < κ < 3k/2 with high prob.

1 Client performs:
2 Generate keys (sk, pk) := Gen(1λ, p)
3 JqK := Encpk(q)
4 Send (pk, JqK) to the server
5 Server performs:
6 for each i ∈ 1, . . . , n do
7 JxiK := computeDist(JqK, si)
8 Jµ∗K := approximate 1

n

∑
JxiK

9
(
Jlow

(
(µ∗)2)K, Jhigh

(
(µ∗)2)K) := base-p rep. of (µ∗)2

10
(
Jlow(µ∗2)K, Jhigh(µ∗2)K

)
:= base-p rep. of 1

n

∑
JxiK2

11 Jσ∗K := approximate
√

(µ∗)2 − µ∗2
12 JT ∗K := Jµ∗K + dΦ−1(k

n
)cJσ∗K

13 JCK := (0, . . . , 0)
14 for each c ∈ 1, . . . , j do
15 JC(j)K :=

∑n

i=1 isSmaller(JxiK, J(T ∗)K) ·M(i, j)
16 JclassqK := ArgMaxc(JCK)
17 Send JclassqK to the client
18 Client performs:
19 classq := Decsk(JclassqK)

Protocol Code Explained. Protocol 1 follows the high level description
given above. As a first step the client generates a key pair (sk, pk), encrypts q
and sends (pk, JqK) to the Server (Line 2-4).

The server computes the distances, x1, . . . , xn (Line 7), where computeDist(si, q)
computes the distance between si and q.

The server then computes an approximation of the average, µ∗ ≈ 1/n
∑
xi,

(Line 8) by calling ProbabilisticAverage (Algorithm 2).

12 Hayim Shaul, Dan Feldman, and Daniela Rus

In Line 10 the sever computes the base-p representation of the approximation
of the second moment, µ∗2 = 1/n

∑
x2
i .

Jlow(µ∗2)K := approximate 1
n

∑
JxiK2 mod p

Jhigh(µ∗2)K := approximate 1
np

∑
JxiK2 mod p.

The approximations are done by calling ProbabilisticAverage and setting f(x) =
x2 andm = n andm = np respectively (see Section 6.3 for details on ProbabilisticAverage
parameters). We remind that the modulo operation is performed implicitly by
the HE operations.

Then in Line 9 the server computes the base-p representation of (µ∗)2. It sets:

Jlow
(
(µ∗)2)K := Jµ∗K · Jµ∗K mod p

Jhigh
(
(µ∗)2)K := P(·)2/p(µ∗)

Next the server computes σ∗ in Line 11 where the square root is done with P√·
and P√(·)+/p. In Line 12 a threshold T ∗ is computed. Since k and n are known
Φ−1(k/n) can be computed without homomorphic operations.

In Line 15 the server counts for each class j the number of nearest neigh-
bors of that class. This is done by summing isSmaller(JxiK, J(T ∗)K) ·M(i, j) for
i = 1, . . . , n. Since isSmaller(JxiK, J(T ∗)K) = 1 iff xi < T ∗ and M(i, j) = 1 iff
class(i) = j the sum in Line 15 adds up to the number of neighbors having class
j, for each class j ∈ [c].

The server applies the ArgMaxc polynomial in Line 16 to find the index of
the maximum of JC(1)K,. . . , JC(c)K. The index of the maximum is the majority
class of the κ nearest neighbors of q which is assigned to classq. Then it sends
classq to the client who can decrypt it and get the classification of q.

Theorem 1. Let k, p, d, c ∈ N and S = (s1, . . . , sn) ∈ Zdp, where class(i) ∈ [c]
is a class associated with si, also let q ∈ Zdp such that SD

(
DS,q,N (µ, σ)

)
= s,

where (µ, σ) are the average and standard deviation of DS,q. Then:
(i) The client’s output in KNearestNeighbors is classq which is the majority class
of κ nearest neighbors of q in S, where

Pr[|k − κ| > δk] < 2 exp
(
−O

(
δk(σ2 + µ2)

µ+ Φ−1(k/n)σ

))

+2 exp
(
−O

(
µδ2k2σ

µs+ σ2s

))
.

Let KNearestNeighbors denote the arithmetic circuit evaluated by the server
in Protocol 1 and isSmaller and computeDist denote the arithmetic circuits com-
paring ciphertexts and computing the distance between two points, respectively.
(ii) depth(KNearestNeighbors) = O(depth(computeDist)+log p+log c·depth(isSmaller)),
and

Secure k-ish Nearest Neighbors Classifier 13

(iii) size(KNearestNeighbors) = O
(
n·size(computeDist)+√p+n·size(isSmaller)

)
,

where isSmaller is an arithmetic circuit comparing two ciphertexts, and computeDist
is an arithmetic circuit computing the distance between two vectors.

The proof of this theorem is given in Section 7.3. In the next subsection we
describe how µ and µ2 are computed efficiently in arithmetic circuit model.

Increasing Probability that κ ≈ k. Since our protocol includes non-
deterministic elements it may choose κ that is too different than k with some
probability. The protocol can be repeated several times such that with sufficiently
high probability in the majority of times we have κ ≈ k.

Extension to multiple database owners. Protocol 1 describes a protocol
between a client and a server, however, it can be extended to a protocol where
the database is distributed among multiple data owners. The evaluation of the
arithmetic circuit can then be carried collaboratively or by a designated party.

Extension to other distributions. Protocol 1 assumes the distribution
of the distance distribution, DS,q, is statistically close to Gaussian. To extend
Protocol 1 to another distribution X, the protocol needs to compute the inverse
of the cumulative distribution function, CDF−1

X (k/n), for any 0 < k/n < 1.
The probability of failure will then depend on maxCDF ′X(T), which intuitively
bounds the change in number of nearest neighbors as T changes.

6.3 Algorithm for Computing 1/m
∑n

i=1 f(JdiK)

In this section we show how to efficiently approximate sums of the form 1
m

∑n
1 f(JxiK),

where n and m are integers, f is an increasing invertible function and x1, . . . , xn
are ciphertexts.

Algorithm 2: ProbabilisticAverage(Jx1K, . . . , JxnK)
Parameters: Integers, p, n,m > 0, an increasing

invertible function f : [0, p− 1] 7→ [0,m].
Input: x1, . . . , xn ∈ Zp.
Output: A number x∗ ∈ Zp such that

Pr[|χ− x∗| > δ] < 2e−2nδ2
,

where χ = d1/m
∑

f(xi)c mod p.

1 for i ∈ 1, . . . , n do
2 JaiK := toss a double-blinded coin with bias f(xi)

m

3 Jx∗K :=
∑n

i=1JaiK
4 return Jx∗K

Algorithm Overview. In Line 2 the algorithm tosses n coins with probabil-
ities f(x1)

m , . . . , f(xn)
m . The coins are tossed double-blinded, which means the bias

of each coin is a ciphertext, and the output of the toss is also a ciphertext. See

14 Hayim Shaul, Dan Feldman, and Daniela Rus

Algorithm 3 to see an implementation of double-blinded coin-toss. The algorithm
then returns the sum of the coin tosses,

∑
ai, as an estimation to 1

m

∑
f(xi).

Theorem 2. For any p,m, n ∈ N and f : [0, p − 1] 7→ [0,m] an increasing
invertible function Algorithm 2 describes an arithmetic circuit whose input is n
integers d1, . . . , dn ∈ Zp and output is χ∗ such that,
(i) Pr (|χ∗ − χ| > δχ) < 2 exp(−χδ

2

3), where χ = 1
m

∑
f(x),

(ii) depth(ProbabilisticAverage) = O(depth(isSmaller)),
(iii) size(ProbabilisticAverage) = O(n · size(isSmaller)),
where isSmaller is an arithmetic circuit comparing two ciphertexts.

The full proof is given in Section 7.3. The intuition is to observe that χ∗
is a sum of Bernoulli random variables and the bound follows from Chernoff
inequality. Since each random variable is obtained by independently applying
isSmaller we get that the depth and size of ProbabilisticAverage is as specified.

6.4 Double Blinded Coin Toss

Algorithm 3: CoinToss(JxK)
Parameters: Two integers p ∈ N, m ∈ R and an

increasing invertible function
f : [0, p− 1] 7→ [0,m]

Input: A number JxK, s.t. x ∈ Zp.
Output: A bit JbK, such that Pr[b = 1] = f(x)/m.

1 Draw r ← [0,m]
2 r′ := df−1(r)e
3 return isSmaller(JxK, r′)

Algorithm Overview. The CoinToss algorithm uniformly draws a random
value r (in plaintext) from [0,m] (Line 1). Since r is not encrypted, and f is
increasing and invertible, it is easy to compute df−1(r)e (Line 2). The algorithm
then returns isSmaller(x, r′) which returns 1 with probability f(x)/m.

CoinToss as an Arithmetic Circuit. Algorithm 3 draws a number r from
the range [0,m] and computes f−1(r), which are operations that are not defined
in an arithmetic circuit. To realize CoinToss as an arithmetic circuit we think
of a family of circuits: CoinTossr for r ∈ [0,m]. An instantiation of CoinToss is
then made by drawing r ← [0,m] and taking CoinTossr.

The proofs of correctness and the size and depth bounds of the arithmetic
circuit implementing Algorithm 3 are given in Section 7.1.

Secure k-ish Nearest Neighbors Classifier 15

7 Analysis

In this section we prove the correctness and efficiency of our algorithms. Unlike
the algorithms that were presented top-down, reducing one problem to another
simpler problem, we give the proofs bottom up as analyzing the efficiency of one
algorithm builds upon the efficiency of the simpler algorithm.

7.1 Analyzing Double Blinded Coin Toss

In this section we prove the correctness and the bounds of the CoinToss algorithm
given in Section 6.4.

Theorem 3. For p ∈ N, m ∈ R and an increasing invertible function f :
[0, p − 1] 7→ [0,m] Algorithm 3 gets an encrypted input JxK and outputs an
encrypted bit JbK such that
(i) Pr[b = 1] = f(x)/m.
(ii) depth(CoinToss) = O(isSmaller), and
(iii) size(CoinToss) = O(isSmaller), where isSmaller is a circuit that compares a
ciphertext to a plaintext: isSmaller(JxK, y) = 1 if x < y and 0 otherwise.

Proof. Correctness. Since f is increasing and invertible

Pr[f(x) < r] = Pr[x < f−1(r)] = Pr[x < df−1(r)e].

The last equation is true since since x is integer.
Since we pick r uniformly from [0,m] we get Pr[f(x) < r] = f(x)/m.
Depth and Size. After choosing CoinTossr by randomly picking r, that circuit

embeds isSmaller and the bound on the size and depth are immediate.

The isSmaller function may be implemented differently, depending on the
data representation. In this paper, we use a polynomial interpolation to com-
pute isSmaller and therefore, depth(isSmaller) = O(log p) and size(isSmaller) =
O(√p). We summarize it in the following corollary:

Corollary 1. Let 0 ≤ x < p be an integer, r ← [0,m] randomly drawn, f : [0, p−
1] 7→ [0,m] an increasing invertible function and isSmallerp : Zp × Zp 7→ {0, 1}
a polynomial as defined in Section 3.1 then the isSmallerp(df−1(r)e, x) circuit
realizes the CoinTossr(x) functionality with bias f(x)

m and has depth O(log p) and
size O(√p).

7.2 Analysis of ProbabilisticAverage

We now prove the correctness and depth and size bounds of Algorithm 2.

Theorem 4. Let p,m ∈ N, x1, . . . , xn ∈ {0, . . . , p− 1} and f : [0, p−1] 7→ [0,m]
be an increasing and invertible function. Denote χ = 1/m

∑n
1 f(xi) mod p then:

(i) ProbabilisticAverage returns x∗ such that Pr[|x∗ − χ| > δχ] < 2 exp(−χδ
2

3).
(ii) depth(ProbabilisticAverage) = O(depth(isSmaller)).
(iii) size(ProbabilisticAverage) = O(n · size(isSmaller)).

16 Hayim Shaul, Dan Feldman, and Daniela Rus

Proof. Correctness. We start by proving that ProbabilisticAverage return x∗ such
that Pr[|x∗ − χ| > δχ] < 2 exp(−χδ

2

3). From Theorem 3 we have

ai =
{

1 with probability f(xi)
m

0 otherwise.

Since ai are independent Bernoulli random variables, it follows that E(
∑
ai) =

1
m

∑
f(xi) = χ and by Chernof we have: Pr (

∑
ai > (1 + δ)χ) < exp(−χδ

2

3)
and Pr (

∑
ai < (1− δ)χ) < exp(−χδ

2

2), from which it immediately follows that
Pr (|

∑
ai − χ| > δχ) < 2 exp(−χδ

2

3).
Depth and Size. We analyze the depth and size of the arithmetic circuit that

implements ProbabilisticAverage. Since all coin tosses are done in parallel the
multiplicative depth is depth(ProbabilisticAverage) = depth(CoinToss) and the
size is size(ProbabilisticAverage) = O(n · depth(CoinToss)).

7.3 Analysis of KNearestNeighbors

In this subsection we prove the correctness and bounds of the KNearestNeighbors
protocol.

Theorem 1. Let k, p, d, c ∈ N and S = (s1, . . . , sn) ∈ Zdp, where class(i) ∈ [c]
is a class associated with si, also let q ∈ Zdp such that SD

(
DS,q,N (µ, σ)

)
= s,

where (µ, σ) are the average and standard deviation of DS,q. Then:
(i) The client’s output in KNearestNeighbors is classq which is the majority class
of κ nearest neighbors of q in S, where

Pr[|k − κ| > δk] < 2 exp
(
−O

(
δk(σ2 + µ2)

µ+ Φ−1(k/n)σ

))

+2 exp
(
−O

(
µδ2k2σ

µs+ σ2s

))
.

Let KNearestNeighbors denote the arithmetic circuit evaluated by the server
in Protocol 1 and isSmaller and computeDist denote the arithmetic circuits com-
paring ciphertexts and computing the distance between two points, respectively.
(ii) depth(KNearestNeighbors) = O(depth(computeDist)+log p+log c·depth(isSmaller)),
and
(iii) size(KNearestNeighbors) = O

(
n·size(computeDist)+√p+n·size(isSmaller)

)
,

where isSmaller is an arithmetic circuit comparing two ciphertexts, and computeDist
is an arithmetic circuit computing the distance between two vectors.

Proof. Correctness. For lack of space we give the proof of correctness in Ap-
pendix B. In a nutshell, the proof follows these steps:

– Use Theorem 4 to prove µ∗ ≈ µ and µ∗2 ≈ µ2 (with high probability),
where µ and µ2 are the first two moments of DS,q and µ∗ and µ∗2 are the
approximations calculated using ProbabilisticAverage.

Secure k-ish Nearest Neighbors Classifier 17

– Prove σ∗ ≈ σ (with high probability), where σ =
√
µ2 − µ2 and σ∗ is the

approximation calculated by KNearestNeighbors.
– Prove T ∗ ≈ T (with high probability), where T = µ + Φ−1(k/n)σ and
T ∗ = µ∗ + Φ−1(k/n)σ∗ as calculated by KNearestNeighbors.

– Prove |{xi |xi < T ∗}| ≈ |{xi |xi < T}| (with high probability), where DS,q
is statistically close to N (µ, σ).

Depth and Size. The protocol consists of 7 steps:

1. Compute distances x1, . . . , xn.
2. Compute µ∗ and µ∗2.
3. Compute (µ∗)2

4. Compute σ∗.
5. Compute T ∗.
6. Compute C(0),. . . , C(c).
7. Compute classq.

Step 1 is done by instantiating n computeDist sub-circuits in parallel; Step 2 is
done by instantiating O(1) ProbabilisticAverage sub-circuits in parallel; Steps 3-
5 are done by instantiating O(1) polynomials in parallel; Step 6 is done by
instantiating O(n) isSmaller sub-circuits in parallel, and Step 7 is done by
instantiating the ArgMaxc polynomial. Summing it all up we get that

depth(KNearestNeighbors) = O
(
depth(computeDist)

+ log p+ log c · depth(isSmaller)
)
,

and

size(KNearestNeighbors) = O
(
n · size(computeDist)

+√p+ n · size(isSmaller)
)
.

Plugging in our implementations of isSmaller and computeDist we get this
corollary.

Corollary 2. Protocol 1 can be implemented with

depth(KNearestNeighbors) = O(log p log c),

and
size(KNearestNeighbors) = O(n · √p).

8 Security Analysis

In this section we discuss the correctness of the output and the privacy of the
inputs in the presence of dishonest adversaries.

Informally, the security guarantee is that the client and the server do not
learn anything beyond what is explicitly revealed by the protocol (the “leakage

18 Hayim Shaul, Dan Feldman, and Daniela Rus

profile”), i.e. the shared parameters and in the client’s case its output. In addition
the leakage profile includes meta-data such as the time the query was made, the
time it took the server to compute and respond, and the addresses of the client
and the server.

We consider two types of adversaries, a semi-honest (a.k.a. curious but honest)
adversary that follows the protocol but tries to infer additional information to
what is stated above and a malicious adversary that does not follow the protocol.
In both cases we assume the adversaries are computationally bounded.

Semi-honest Server. We prove that a semi-honest server does not learn
anything from the query (except for the leakage profile). That stems from the
semantic security of HE.

Theorem 5. Assuming the underlying encryption E is semantically secure, the
secure k-ish NN classifier protocol (Protocol 1) securely realizes the k-ish NN
functionality (as defined above) against an semi-honest adversary controlling the
server.

The proof shows that the view of a server with a real query is computationally
indistinguishable from a view of a server in a simulator on a "dummy" query,
therefore concluding the server cannot learn anything on the content of the query
q.

Proof. To prove the protocol is secure against a semi-honest adversarial server
we construct a simulator S whose output, when given only the server’s input and
output (1λ, E , p, d, c, k, n, S, class), is computationally indistinguishable from an
adversarial server’s view in the protocol.

The simulator operates as follows: (i) Generates a dummy query q′; (ii)
Executes the k-ish NN classifier protocol on simulated client’s input q′ (the
simulator plays the roles of both parties); (iii) Outputs the sequence of messages
received by the simulated server in the k-ish NN classifier protocol. The simulator’s
output S(. . .) = S(1λ, E , p, d, c, k, n, S, class) is therefore:

S(. . .) = (pk′, Jq′Kpk′ , Jclass′qKpk′),

where pk′ was generated by Gen(1λ, p), Jq′Kpk′ was generated by Enc(. . .) and
Jclass′qKpk′ was generated by Eval(. . .).

We show that the simulator’s output is computationally indistinguishable
from the view of the server (assuming E is semantically secure). The view of the
server consists of its received messages:

view(A) = (pk, JqKpk, JclassqKpk),

where pk was generated by Gen(1λ, p) and JqKpk was generated by Enc(. . .) and
JclassqKpk was generated by Eval(. . .).

Observe that the simulator’s output and the server’s view are identically
distributed, as they are sampled from the same distribution. Furthermore, the
server’s view is computationally indistinguishable from the real view by the multi-
messages IND-CPA security for the HE scheme E . Put together, we conclude

Secure k-ish Nearest Neighbors Classifier 19

that the simulator’s output is computationally indistinguishable from the server’s
view S(. . .) ≡c view(A).

Malicious Server. Since the protocol involves a single round (the client
sends a query and receives a reply) Theorem 5 holds even if the server is malicious.
That is, the server cannot distinguish between JqKpk and Jq′Kpk′ (the simulated
query) even if it does not follow the protocol. With a malicious server, however,
there is no guarantee on the correctness of the output. In the extreme case, the
server can avoid the protocol and reply a random class.

Semi-honest and Malicious Client. The view of the client includes only
the class of its query since that is the only message it receives, view(client) = classq.
From classq the client may infer something on S (e.g. the majority class of the
neighbors of q) however, we note that learning classq is the minimum necessary
since it is the output required by the problem definition.

9 Experimental Results

We implemented Protocol 1 and built two systems. The first system, motivated
in Section 1, securely classifies breast tumors. The second system, motivated
by Elmehdwi et al. [8], securely evaluates cars by classifying them into one of 4
classes. In this section we describe the details of these systems, our experimental
results and a comparison to the results of Elmehdwi et al. [8].

Each of our system has two parties: the server (holding the database S) and a
client wishing to classify a query q, where the server classified q without learning
anything on its content. We measured the time to compute the classification and
the accuracy of our classifier. The accuracy is expressed in terms of F1 score
which quantifies the overlap between the predicted classes of points and their
real classes.

We implemented our system using HElib [9] for HE operations and ran the
server part on a standard server. Since HElib works over an integer ring we scaled
and rounded the data and the query to an integer grid.

9.1 The Data

We tested our classifier with a database of 569 tumor samples and with a database
of 1728 car samples. We next describe the two databases.

Tumor Data. The breast tumor database [6] contains 569 tumor points, of
which 357 are benign and 212 malignant. Each tumor is characterized by 30
features given as real numbers in floating point, such as the tumor diameter, the
length of the circumference, etc. An insecure kNN classifier was already suggested
for this database (e.g. [13]).

Since we expect the protocol to perform worse in higher dimensions we reduced
the dimensionality by applying linear discriminant analysis (LDA) and projecting
the database onto subspaces of 2,3 and 5 dimensions. This is a preprocessing
step the server can apply on the database in clear-text before answering client

20 Hayim Shaul, Dan Feldman, and Daniela Rus

queries. Also, (even when using HE) a 30-dimensional encrypted query can easily
be projected onto a lower dimensional space. We used the projections onto those
subspaces in our experiments to compare how the performance varies with the
dimension. The distribution of the points on the 2D plane can be seen in Figure 2
(right).

Fig. 2. Right: The 569 points in the database, representing breast tumors samples
classified as benign (green) and malignant (red) after applying LDA and projecting
them onto the plane. Left: The F1 score of a kNN classifier as it changes as a function
of k. The F1 score was calculated on a database of 569 tumors in plaintext in floating
point arithmetics.

Since HElib encodes integer numbers from the range {0, . . . , p− 1} for some p
that is determined during key generation we scaled the data points and rounded
them to the d dimensional grid [g]d, for some g and for d = 2, 3, 5. The choice
of g affects the accuracy as well as the running time of our protocol. We tested
our protocol with 20 < g < 300. The relation between g, d and p is given by
p > 2gd > 2dist(s, q), for any s ∈ S and q ∈ [g]d.

Car Evaluation Data. To compare with the solution by Elmehdwi et al. [8]
we used the car evaluation database from the UCI KDD archive [7]. The database
contains 1728 points with 6 attributes: buying price, maintenance price, door
number, passenger number, size of luggage boot and safety score. The buying
price and the maintenance price are given as the categories: “low”, “medium”,
“high” and “very high”. The door number is given as “2”,“3”,“4” or “5+”. The
passenger number is given as “2”,“3” or “more”. The safety score and the luggage
boot were given as a category with 3 options: “low”, “medium” and “high” for
the first and “small”, “medium” and “big” for the latter. The cars are classified
into 4 classes: “unacceptable”, “acceptable”, “good” and “very good” with 1210,
384, 69 and 65 cars respectively.

9.2 The System

We implemented the protocols and algorithms in this paper in C++. We used
HElib library [9] for an implementation for HE based on BGV [3], including its
usage of SIMD (Single Instruction Multiple Data) technique. The source of our
system is open under the MIT license and can be found in [18]. The hardware in
our tests was a single off-the-shelf server with 16 2.2 GHz Intel Xeon E5-2630

Secure k-ish Nearest Neighbors Classifier 21

cores. These cores are common in standard laptops and servers. The server also
had 62GB RAM, although our code used much less than that. All the experiments
we made use a security key of 80 bits. This settings is standard and can be easily
changed by the client.

9.3 The Experiment

Accuracy. To test the accuracy of Protocol 1 we used leave-one-out cross
validation: for each point in the database, we removed it from the database and
then used the smaller database for classification. Iterating over all points we
computed the F1 score. We also tried leave-f -out cross validation, i.e. removing
f additional random points (for various values of f). This did not change the
results by much.

To classify we used k = 13 which for the tumor database of 568 points
sets Φ−1(13/568) ≈ 2 and for the car evaluation database of 1728 points sets
Φ−1(13/1728) ≈ 2.5. We calculated the F1 score by repeating this for each of
the points in the database. To test the effect of different grid sizes we scaled
each database to grids between [20]d to [300]d, where d = 2, 3, 5 for the tumor
database and d = 6 for the car evaluation database. The results are summarized
in Figure 3 for the tumor databases and in Figure 4 for the cars database.

Fig. 3. The F1 score for the tumor database as a function of the grid size. The x axis
is the size of an edge in the grid, e.g. x = 100 means a [100]d grid. The red dashed line
is the baseline F1 score of the kNN classifier ran on the same database in plaintext in
floating point arithmetics. The lines in blue, yellow an green are for the graphs for the
database projected on 2d, 3d and 5d, respectively.

Time and RAM. The time to complete the KNearestNeighbors protocol com-
prises of 3 parts:

– Client Time is the time to execute the client steps of the protocol: (i)
generating a key, (ii) encrypting a query and (iii) decrypting the reply.

– Communication Time is the total time to transmit messages between the
client and the server.

22 Hayim Shaul, Dan Feldman, and Daniela Rus

Fig. 4. The F1 score for the 6d cars database (the solid line) as a function of the grid
size. The x axis is the size of an edge in the grid, e.g. x = 100 means a [100]d grid. The
red dashed line is the baseline F1 score of the kNN classifier ran on the same database
in plaintext in floating point arithmetics.

– Server Time is the time it takes the server to evaluate the arithmetic circuit
of the protocol.

In our experiments, we measured the server time, i.e. the time it took the
server to evaluate the gates of the arithmetic circuit. The time we measured was
the time passed between receiving the encrypted query and sending the encrypted
class of the query. In some HE schemes the time to evaluate a single gate in a
circuit depends on the depth of the entire circuit. Specifically, in the scheme we
used (see below) the overhead to compute a single gate is Õ

(
depth(AC)3), where

depth(AC) is the depth of the circuit.
We measured how the size of the grid affects the running time. We measured

the server time to classify a query on the tumor databases on dimensions d = 2, 3, 5,
as explained above. The results are summarized in Figure 5 for the tumor database
and in Figure 6 for the car evaluation database. The RAM requirements are
summarized in Figure 7 for the tumor database and in Figure 8 for the car
evaluation database.

9.4 Results and Discussion

k-ish NN vs. kNN. In Figure 2 (left) we show how the choice of k changes the
accuracy of kNN. The graph shows the F1 score (y axis) of running kNN on the
data with different values of k (x axis). The graph shows that for 5 ≤ k ≤ 20 the
decrease in F1 score is small, from 0.979 to 0.968. For 20 ≤ k ≤ 375 the F1 score
decreases almost linearly from 0.968 to 0.874. For larger values, 375 < k the F1
score drops rapidly because the kNN classifier considers too many neighbors. In
the extreme case, for k = 569 the classifier considers all data points as neighbors
thus classifying all queries as benign.

Different Distributions. To test our classifier on various data distributions
we ran experiments on the tumor database and on the car database. These two
databases have different distributions. The tumor database has 569 points in

Secure k-ish Nearest Neighbors Classifier 23

Fig. 5. The time (in minutes) to compute the k-ish NN on a 16-CPU server as a
function of the grid-size to which data was scaled and rounded to. The x axis is the
size of an edge in the grid, e.g. x = 100 means a [100]d grid. The lines in blue, yellow
and red are for the database projected on 2d, 3d and 5d, respectively.

Fig. 6. The time (in minutes) to compute the k-ish NN on the 6d car evaluation
database on a 16-CPU server as a function of the grid-size to which data was scaled
and rounded to. The x axis is the size of an edge in the grid, e.g. x = 100 means a
[100]6 grid.

two clusters: the dense benign cluster and a less dense malignant cluster. See
Figure 2 (right). The car evaluation database has 1728 points for each of the
43 · 33 possible options of a car’s features. The points in this case are evenly
distributed in that hypercube. Figure 9 (above) shows 2 histograms of distances
from random query points to the points in the tumor database and Figure 9
(below) shows 2 histograms of distances from random query points to the points
in the cars database. We show the F1 scores for the k-NN classifier as a function
of the grid size. We also include the F1 score of the kNN classifier as a baseline to
compare to. The scores for tumor database are given in Figure 3 and the scores
for the car evaluation databases are given in Figure 4. In both cases the F1 score
of the secure k-ish NN increased with the grid size (see more about this below)
and it converged to a value a little lower than the score of the kNN: 0.91 vs. 0.97
in the tumor database and 0.86 vs. 0.91 in the car database.

24 Hayim Shaul, Dan Feldman, and Daniela Rus

Fig. 7. The RAM (in GB) to compute the k-ish NN on the 6d car evaluation database
on a 16-CPU server as a function of the grid-size to which data was scaled and rounded
to. The x axis is the size of an edge in the grid, e.g. x = 100 means a [100]d grid. The
lines in blue, yellow and red are for the database projected on 2d, 3d and 5d, respectively.

Fig. 8. The RAM (in GB) to compute the k-ish NN on a 16-CPU server as a function
of the grid-size to which data was scaled and rounded to. The x axis is the size of an
edge in the grid, e.g. x = 100 means a [100]6 grid. The lines in blue, yellow and red are
for the database projected on 2d, 3d and 5d, respectively.

Grid Size and Dimensionality. The effects of the grid size are shown in
Figure 5, 6, 3 and 4. In Figure 3 we show how the accuracy, measured by F1
score, changes with the grid size on the tumor database. For d-dimensional data
(where d = 2, 3, 5) the x-value of g means each point was scaled (and rounded) to
a point in the d-dimensional grid [g]d. As a baseline (shown in dashed red line)
we used the F1 score of a kNN classifier.

The F1 scores of k-ish NN for d = 2, 3, 5 are given in blue, yellow and
green lines, respectively. The accuracy increases with the grid size and also
with the dimensionality. For example, in 2d scaled to a 100 × 100 grid, the
F1 score was 0.943, and in 5d scaled to a [40]5 grid, the F1 score was 0.938.
This follows from our analysis. The success probability of ProbabilisticAverage
is Pr (|µ∗ − µ| > δµ) < 2exp(−µδ

2

3), which improves as the average distance µ

Secure k-ish Nearest Neighbors Classifier 25

Fig. 9. Above: two histograms of distances from two random points on the plane to
the 2D points in the tumor database scaled and rounded to a 100×100 grid. Below: two
histograms of distances from two random points to the points in the database scaled
and rounded to the [140]6 hypercube.

grows. For fixed database and query we have µ = O(gd). The success probability
of ProbabilisticAverage affects the success probability of KNearestNeighbors. In
the example above, 40 · 5 = 100 · 2.

In Figure 5 we show the server times on the tumor database for different
grid sizes and for d = 2, 3, 5 given in blue, yellow and green, respectively. For
example, for a 2d database scaled to a 160× 160 grid, the running time was 50
minutes, and for a 5d database scaled to a [60]5 grid, the running time was 60
minutes. This follows from our analysis: we need p > 2gd > 2dist(s, q), where
s ∈ S ⊆ [g]d and q ∈ [g]d. Since depth(AC) = O(log(p)) and size(AC) = O(√p)
we get, Time = Õ(log3(dg)

√
dg).

Database Size. The server time of our protocol is linear in, n = |S|. See
Figure 10. This is easily explained since the depth of the arithmetic circuit does
not depend on n and the number of gates is linear in n.

Scaling. Our protocol scales linearly with the number of cores since com-
puting µ, µ2, C(1), . . . , C(c) and the distances, x1, . . . , xn are embarrassingly
parallelizable.

Rounds Comm. (Ctxt) HE ops HE depth Needs non-colluding servers
Elmehdwi et al. [8] O(log p(c + k logn)) O(log p(nk + c) + cd) O((k log p + d)n log p) NA∗ Yes
Naive 1 d O((n2 + c2)√p) O(log p log(nc)) No
This Work 1 d O(n√p) O(log p log c) No
∗ Not applicable to Elmehdwi et al.

Table 1. Comparing our protocol with the protocol by Elmehdwi et al.[8] and the naive solutions,
where n is the database size, c is the number of classes, k is the number of neighbors to consider
and p is the plaintext modulo. The columns: (1) Number of rounds the protocol makes, (2) number
of ciphertexts transmitted, (3) number of HE operations, (4) depth of HE circuit and (5) whether
the protocol requires two non-colluding servers.

26 Hayim Shaul, Dan Feldman, and Daniela Rus

Fig. 10. The server time on a 16-CPU server as a function of the database size, n, as
computed on the tumor database on a grid of size [100]d, for d = 2.

F1 Time (sec.) Comm. (KB)
Elmehdwi et al. [8] 0.92 1,248 157,696
Naive 0.92 months† 111‡

This Work 0.87 13,282 111‡
† An estimation. Running with n = 10 and k = 5 took 18 hours.
‡ Amortized.

Table 2. Comparing our protocol with the protocol by Elmehdwi et al.[8] and the naive solutions
on a database of car evaluations, with n = 1728 and k = 13, c = 4 classes on a standard server with
6 cores. For Elmehdwi et al. we had dlog2 pe = 6, and in our protocol we had dlog2 pe = 9. The
columns: (1) F1 score, (2) execution time and (3) data transferred.

9.5 Comparison to Previous Work

We compared our protocol with the naive HE implementation (see Appendix A)
and with the solution by Elmehdwi et al. solution [8]. Table 1 compares the
bounds on number of rounds, number of ciphertexts transferred, number of
HE operations, the depth of the circuit (not applicable for Elmehdwi et al.)
and whether the protocol requires non-colluding servers. Table 2 summarizes a
comparison of the protocols running on the same data (cars dataset [7]), with
size n = |S| = 1728, dimensionality d = 6 and number of classes c = 4, on the
same server with 6 CPUs and on the same LAN. The protocol by Elmehdwi et
al. was implemented with Pallier cryptosystem [16] with log p = 1024, where p
is the plaintext ring size. The naive and our HE protocols were implemented
with BGV [3] with log p = 9. The table shows the F1 score, the time (in seconds)
to run a query and the size (in KB) of the communication. Since BGV packs
multiple messages in one ciphertext we could run 890 queries when transmitting
98,790KB, so we report here the amortized size for a single query.

Our protocol is significantly faster than the naive HE solution with a little
worse accuracy. With the given database and setting our solution is a little
less accurate and slower than the solution of Elmehdwi et al., however our
solution has better networking performance (rounds and transfer). The current

Secure k-ish Nearest Neighbors Classifier 27

experiments were made over a LAN with low latency, where the number of rounds
and the communication have a small effect on the protocol time. In real-world
scenarios communication is made over links they have non-negligible latency
which affects throughput (see e.g. John et al. [12]) and therefore has more effect
on the protocol time. In those scenarios the networking advantage of our protocol
is bigger. Another advantage of our solution is it does not assume the existence
of two non-colluding servers, unlike the solution by Elmehdwi et al.

We also note that since all protocols are embarrassingly parallelizable, the
running time can be decreased by adding CPUs to the system and therefore the
costs of each protocol is an interesting measure. For example, for the experiment
described in Table 2 the solution by Elmehdwi et al. needs 2 servers each with 6
CPUs for 1/3 hours with communication of 160MB, while our solution needs 1
server with 6 CPUs for 3.5 hours with communication of 0.1MB. For example, in
the Amazon cloud in north Virgina a t3.2xlarge server costs $0.3328 per hour and
transmitting 1 GB costs $0.09 [1]. In that case the solution by Elmehdwi et al.
would cost $0.236 while our solution would cost $1.164. Nevertheless, real-world
applications may have different needs and constraints (e.g., be bandwidth-limited),
which would reflect on these cost estimates. Furthermore, we remark that the
approach by Elmehdwi et al. assumes two non-colluding servers, which is not
always possible.

10 Conclusions

We presented a variation to kNN classifier which we call k-ish NN. In our new
classifier we relax the number of neighbors used to be approximately k. We show
that when the distribution of distances from a query, q, to the points in the
database, S, is statistically close to Gaussian the k-ish NN can be implemented as
an arithmetic circuit with low depth. Specifically the depth is independent of the
database size. The depth of a circuit has a large impact when it is evaluated with
HE operations. In that case, the low depth of our circuit significantly improves
the time performance. This suggests that our solution is a good candidate to
implement a secure classifier with HE.

We give a protocol that, classifies a query, q, given by a client with a database,
S, given by a server, using k-ish NN. It involves a single round, in which the
encryption of q is sent to the server who computes the (encrypted) classification.
The classification is then sent to the client, who can decrypt it.

The communication complexity of our protocol is proportional to the size
of the input and output of the client and is independent of the size of S. This
improves previous work that are not based on HE and whose communication
complexity is a function of |S|. This is also unlike the naive implementations with
HE which makes our protocol the best of both worlds - having low communication
complexity and low running time.

Our protocol’s efficiency comes from the relaxation on the number of neighbors,
which allows us to use a non-deterministic approach. We have shown how to
construct a double-blinded coin toss with bias f(JxK)

m where JxK is a ciphertext, f

28 Hayim Shaul, Dan Feldman, and Daniela Rus

is an increasing invertible function and m > f(JxK). We used double-blinded coin
tosses to efficiently approximate sums of the form 1

m

∑n
1 f(xi) without generating

large intermediate values, which allowed us to use a small plaintext modulo,
which made our polynomial interpolations more efficient.

We implemented a system to classify real breast tumor data with our classifier.
The system uses HElib as a HE implementation and runs on a standard server.
Our classifier has similar F1 score as plaintext kNN, while significantly faster
than naive HE implementations.

In future work we will use double-blinded coin toss to solve more machine learn-
ing problems such as training logistic regression model where the Sigmoid function
is approximated by a sum of coin tosses. We plan to use a non-deterministic
approach to solve other problems such as implementing a gradient descent. We
believe these techniques may be of independent interest to the community. We
will also improve our k-ish NN to correctly find k-ish nearest neighbors when the
distribution of distances is not statistically close to Gaussian.

11 Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 1526815 and 1723943. The work of the first author was supported
in part by Haifa Center for Cyber Law & Policy, BIU Cyber Center, Tel-Aviv
Cyber Center, all in conjunction with the Israel National Cyber Directorate; and
The Israel Science Foundation (grant No. 3380/19). The second author would
like to thank the Simons Institute for the Theory of Computing and the The
center for cyber, law and policy in the University of Haifa for partial funding this
research. The first author would like to thank Adi Akavia for helpful discussions.

References

1. Amazon. Ec2 instance pricing - amazon web services (aws).
https://aws.amazon.com/ec2/pricing/on-demand/.

2. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigen-
baum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–432, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

3. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS ’12, page 309–325, New York, NY,
USA, 2012. Association for Computing Machinery.

4. Centers for Medicare & Medicaid Services. The Health Insurance Portability and
Accountability Act of 1996 (HIPAA). Online at http://www.cms.hhs.gov/hipaa/,
1996.

5. T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory,
IEEE Transactions on, 13:21– 27, 1967.

6. D. Dua and C. Graff. UCI machine learning repository, breast cancer wisconsin
(diagnostic) dataset, 2017.

Secure k-ish Nearest Neighbors Classifier 29

7. D. Dua and C. Graff. UCI machine learning repository, car evaluation dataset,
2017.

8. Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure k-nearest neighbor query
over encrypted data in outsourced environments. In 2014 IEEE 30th International
Conference on Data Engineering, pages 664–675, March 2014.

9. S. Halevi. Helib - an implementation of homomorphic encryption.
https://github.com/shaih/HElib/, 2013.

10. S. Halevi and V. Shoup. Algorithms in helib. In 34rd Annual International
Cryptology Conference, CRYPTO 2014. Springer Verlag, 2014.

11. H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data
cloud through privacy homomorphism. In 2011 IEEE 27th International Conference
on Data Engineering, pages 601–612, April 2011.

12. S. N. John, R. Okonigene, and A. Adelakun. Impacts of latency on throughput of
a corporate computer network. In MSV, 2010.

13. kaggle.com. https://www.kaggle.com/uciml/breast-cancer-wisconsin-data.
14. G. S. C̨etin, Y. Doröz, B. Sunar, and E. Savas. Depth optimized efficient homo-

morphic sorting. In Proceedings of the 4th International Conference on Progress in
Cryptology – LATINCRYPT 2015 - Volume 9230, page 61–80, Berlin, Heidelberg,
2015. Springer-Verlag.

15. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW ’11, page 113–124, New York, NY, USA, 2011. Association for
Computing Machinery.

16. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages 223–238,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

17. M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 1973.

18. H. Shaul, D. Feldman, and D. Rus. Pp kish nn - an implementation of privacy
preserving k-ish nn classifier. https://github.com/HayimShaul/ppknn/, 2020.

19. R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 3–18, May 2017.

20. W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis. Secure knn computation
on encrypted databases. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, page 139–152, New York, NY,
USA, 2009. Association for Computing Machinery.

21. B. Yao, F. Li, and X. Xiao. Secure nearest neighbor revisited. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE), pages 733–744, April 2013.

A The Naive Implementation

In this section we describe the naive kNN implementation and its running time.
For a query q and a database S = (s1, . . . , sn) with their classes class(1), . . . , class(n)
the naive implementation follows these 3 steps:

– Compute distances xi = computeDist(si, q) for i = 1, 2 . . . , n.
– Sort x1, . . . , xn in increasing order xi1 , . . . , xin .
– Take the majority of class(i1), . . . , class(ik).

30 Hayim Shaul, Dan Feldman, and Daniela Rus

For the second step (sorting), we considered the work of C̨etin et al. [14] who
compared several sorting algorithms running with HE. The fastest algorithm
found by their papers was to compute n polynomials Pi(x1, . . . , xn), such that
Pi(. . .) evaluates to the i-th smallest value. In their papers they gave an explicit
description of Pi(. . .). In our case we consider only the k nearest neighbors and
therefore compute only P1, . . . ,Pk.

The time to evaluate Pi(x1, . . . , xn) was too high for our parameters, n = 569.
With smaller parameters, for example, n = 10 evaluating P1(x1, . . . , x10), . . . ,P5(x1, . . . , x10)
took 18 hours. Extrapolating to n = 569 gives a running times of several months,
which we were not able to run.

B Proof of Correctness of KNearestNeighbors

In this section we prove the correctness of Protocol 1. We first prove that
σ∗ ≈ σ with high probability, where σ2 = V ar(DS,q) and σ∗ is the approximation
as computed by Protocol 1. Then we prove that T ∗ ≈ T , where T = µ +
Φ−1(k/n)σ and T ∗ is the approximation as computed by Protocol 1. Finally,
we prove that |{si |dist(si, q) < T ∗}| = κ ≈ k with probability that depends on
SD(DS,q,N (µ, σ)).

B.1 Proving σ∗ ≈ σ

Let µ = 1
n

∑
xi and µ2 = 1

n

∑
x2
i be the first two moments of DS,q, and

denote σ2 = V ar(DS,q) = µ2 − µ2. Also denote by µ∗ < p and µ∗2 < p2 the
approximations of µ and µ2 as computed by Protocol 1 using ProbabilisticAverage,
Denote σ† =

√
(µ∗)2 − µ∗2 and σ∗ be as computed by Protocol 1 from the base-p

representation of (µ∗)2 and µ2,

σ∗ =



if high((µ∗)2)− high(µ∗2) ≥ 2,√(
high((µ∗)2)− high(µ∗2)

)
p

if high((µ∗)2)− high(µ∗2) = 1,√
p+

(
low((µ∗)2)− low(µ∗2)

)√
low((µ∗)2)− low(µ∗2) otherwise.

Then,

Lemma 1.
σ†

1√
2
≤ σ∗ ≤ σ† 3√

2

Proof. When high((µ∗)2)− high(µ∗2) = 0 or high((µ∗)2)− high(µ∗2) = 1 we have
σ∗ = σ†. When high((µ∗)2)− high(µ∗2) > 2 we get σ† > 2p

1
2 ≤

(σ†)2 − p
(σ†)2 ≤ (σ∗)2

(σ†)2 ≤
(σ†)2 + p

(σ†)2 ≤ 3
2

Secure k-ish Nearest Neighbors Classifier 31

Therefore,
1√
2
σ† ≤ σ∗ ≤ 3√

2
σ†.

We thus proved that σ∗ as computed by Protocol 1 is a good approximation
for σ†. We now prove that σ† is a good approximation for σ with good probability.

Lemma 2. Let µ, µ2, σ and σ† be as above, then for any δ > 0

Pr[
∣∣σ† − σ∣∣ < δσ] < 2e−δO(σ2+ µ4

σ2+µ2 +µ)

.

Proof. Set δ′ = 2δ+ (4δ2−6δ)µ
2

µ2
, then Pr[µ2 > (1 + δ′)µ2] < exp(−µ2δ

′2

3). Since,
(1 + δ′)µ2 − (1− δ)2µ2 = (1 + 2δ)µ2 − (1 + 2δ)µ2, we have:

Pr
(
(σ†)2 > (1 + 2δ)σ2) < exp

(
−µ2δ

′2 + 6µδ2

3

)

= exp
(
−δO

(
σ2 + µ4

µ2
+ µ

))
.

Similarly, set δ′′ = δ − (δ2 + 3δ)µ
2

µ2
, then Pr[µ2 < (1− δ′′)µ2] < exp(−µ2δ

′′2

2).
Since, (1− δ′′)µ2 − (1 + δ)2µ2 = (1− δ)µ2 − (1− δ)µ2, we have:

Pr
[
(σ†)2 < (1− δ)σ2] < exp

(
−2µ2δ

′′2 + 3µδ2

6

)

= exp
(
−δO

(
σ2 + µ4

µ2
+ µ

))
.

Since
√

1 + 2δ < 1 + δ and
√

1− δ < 1− δ we get that

Pr[
∣∣σ† − σ∣∣ < δσ] < exp(−µ2δ

′2 + 6µδ2

3)

+ exp(−2µ2δ
′′2 + 3µδ2

6).

Putting it together with Lemma 1 we get,

Pr[|σ∗ − σ| < δσ] < 2e−δO(σ2+ µ4

σ2+µ2 +µ)

.

32 Hayim Shaul, Dan Feldman, and Daniela Rus

B.2 Proving T ∗ ≈ T

Denote by T = µ + Φ−1(kn)σ, where Φ is the CDF function of the standard
Gaussian distribution, and Φ−1 is its inverse. By definition, k = |{si |xi < T}|.
Also denote by T ∗ = µ∗ + Φ−1(kn)σ∗, as computed by Protocol 1. We next show
that T ∗ ≈ T with high probability.

Lemma 3.

Pr[|T ∗ − T | > δT] < 2 exp(−δO(σ2 + µ2)) + 2 exp(−µδ
2

3).

Proof. Recall that x1, . . . , xn ∈ {0, . . . , p} are the distances xi = dist(si, q) with
µ and σ as above. To simplify our proof we assume without loss of generality
that Φ−1(k/n) > 0. This happens when k > µ. In cases where k < µ we replace
x1, . . . , xn with (p − x1), . . . , (p − xn) and we replace k with n − k. By the
properties of Φ−1 we have Φ−1(n−kn) = −Φ−1(kn).

We therefore continue assuming Φ(k/n) > 0.
By definition

T ∗

T
= µ∗ + Φ−1(k/n)σ∗

µ+ Φ−1(k/n)σ .

Since µ, σ, Φ−1(k/n) ≥ 0

1− δ =
(1− δ)µ+ (1− δ)Φ−1(kn)σ

µ+ Φ−1(kn)σ

<
µ∗ + Φ−1(kn)σ∗

µ+ Φ−1(kn)σ
<

(1 + δ)µ+ (1 + δ)Φ−1(kn)σ
µ+ Φ−1(kn)σ

= 1 + δ

and therefore,

Pr[|T ∗ − T | > δT]
< Pr[|µ∗ − µ| > δµ] + Pr[|σ∗ − σ| > δσ]

= 2 exp(−δO(σ2µ2)) + 2 exp(−µδ
2

3).

We are now ready to prove the correctness of our protocol.

B.3 Proving κ ≈ k

Theorem 1. Let k, p, d, c ∈ N and S = (s1, . . . , sn) ∈ Zdp, where class(i) ∈ [c]
is a class associated with si, also let q ∈ Zdp such that SD

(
DS,q,N (µ, σ)

)
= s,

where (µ, σ) are the average and standard deviation of DS,q. Then:

Secure k-ish Nearest Neighbors Classifier 33

(i) The client’s output in KNearestNeighbors is classq which is the majority class
of κ nearest neighbors of q in S, where

Pr[|k − κ| > δk] < 2 exp
(
−O

(
δk(σ2 + µ2)

µ+ Φ−1(k/n)σ

))

+2 exp
(
−O

(
µδ2k2σ

µs+ σ2s

))
.

Let KNearestNeighbors denote the arithmetic circuit evaluated by the server
in Protocol 1 and isSmaller and computeDist denote the arithmetic circuits com-
paring ciphertexts and computing the distance between two points, respectively.
(ii) depth(KNearestNeighbors) = O(depth(computeDist)+log p+log c·depth(isSmaller)),
and
(iii) size(KNearestNeighbors) = O

(
n·size(computeDist)+√p+n·size(isSmaller)

)
,

where isSmaller is an arithmetic circuit comparing two ciphertexts, and computeDist
is an arithmetic circuit computing the distance between two vectors.

Proof (Proof of (i)). From the definition of the cumulative distribution function
(CDF) we have,

κ− k
n

= CDF (T ∗)− CDF (T).

Since DS,q is a discrete distribution it follows that

CDF (T ∗)− CDF (T) =
T∗∑
a=0

Pr[x = a]−
T∑
a=0

Pr[x = a]

Since Pr[|T ∗ − T | > δT] < 2 exp
(
− δO(σ2 + µ2)

)
+ 2 exp(−µδ

2

3) it follows with
the same probability

T∑
a=T (1−δ)

Pr[x = a] <

∣∣∣∣∣
T∗∑
a=0

Pr[x = a]−
T∑
a=0

Pr[x = a]

∣∣∣∣∣
<

T (1+δ)∑
a=T

Pr[x = a]

From the definition of the statistical distance d = SD
(
DS,q,N (µ, σ)

)
it follows

that for n ∼ N (µ, σ):

34 Hayim Shaul, Dan Feldman, and Daniela Rus

T (1+δ)∑
a=T

Pr[x = a] <
T (1+δ)∑
a=T

(Pr[n = a] + d)

=
T (1+δ)∑
a=0

Pr[n = a]−
T∑
a=0

Pr[n = a] + dδT

= Φ−1(T (1 + δ)− µ
σ

)− Φ−1(T − µ
σ

) + dδT

<

√
2πδT
σ

+ dδT

where the last inequality is true since (Φ−1)′(x) < 1√
2π and therefore Φ−1(a+b) <

Φ−1(a) + b√
2π . Similarly,

T∑
a=T (1−δ)

Pr[x = a] <
T∑

a=T (1−δ)

(Pr[n = a] + d)

=
T∑
a=0

Pr[n = a]−
T (1−δ)∑
a=0

Pr[n = a] + dδT

= Φ−1(T − µ
σ

)− Φ−1(T (1− δ)− µ
σ

) + dδT

<

√
2πδT
σ

+ dδT

where the last inequality is true since (Φ−1)′(x) < 1√
2π and therefore Φ−1(a+b) <

Φ−1(a) + b√
2π . Putting it all together we get that for any δ′ > 0

Pr[|κ− k| > δ′T (d+ 2
√
π

σ
)] < 2 exp(−δ′O(σ2 + µ2)) + 2 exp(−µ(δ′)2

3)

Substituting δ′ = δk

T (d+
√

2π
σ)

we get

Pr[|κ− k| > δk] < 2 exp
(
−O

(δk

µ+ Φ−1(k/n)σ (σ2 + µ4

σ2 + µ2 + µ)
))

+ 2 exp
(
−O

(µδ2k2σ

µs+ σ2s

))
We have therefore shown that κ ≈ k with high probability.

	Secure k-ish Nearest Neighbors Classifier

