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Abstract—This paper introduces a new cryptographic primi-
tive called a private resource allocator (PRA) that can be used
to allocate resources (e.g., network bandwidth, CPUs) to a set
of clients without revealing to the clients whether any other
clients received resources. We give several constructions of PRAs
that provide guarantees ranging from information-theoretic to
differential privacy. PRAs are useful in preventing a new class
of attacks that we call allocation-based side-channel attacks.
These attacks can be used, for example, to break the privacy
guarantees of anonymous messaging systems that were designed
specifically to defend against side-channel and traffic analysis
attacks. Our implementation of PRAs in Alpenhorn, which is a
recent anonymous messaging system, shows that PRAs increase
the network resources required to start a conversation by up
to 16× (can be made as low as 4× in some cases), but add no
overhead once the conversation has been established.

I. INTRODUCTION

Building systems that avoid unintentional information leak-
age is challenging since every action or operation—innocuous
as it may be—can reveal sensitive information. This is
especially true in the wake of numerous side-channel attacks
that exploit unexpected properties of a system’s design, im-
plementation, or hardware. These attacks can be based on
analog signals such as the machine’s power consumption [50],
sound produced [36], photonic emissions from switching
transistors [72], temperature [43], and electromagnetic radiation
emanated [4, 82], that arise as a result of the system performing
some sensitive operation. Or they may be digital and monitor
the timing of operations [51], memory access patterns [38],
the contention arising from shared resources (e.g., caches [47],
execution ports in simultaneous multithreading [19]), and the
variability of network traffic [70].

In the above cases, information is exposed as a result of a
process in the system consuming a resource (e.g., sending a
network packet, populating the cache, executing a conditional
branch instruction). We can think of these side channels as
consumption-based. In this paper, we are concerned with side
channels that exist during the allocation of the resource to
a process, and that are observable regardless of whether the
process ultimately consumes the resource. As a result, these
allocation-based side channels can sometimes be exploited
by attackers in systems that have been explicitly designed
to avoid consumption-based side channels (systems that pad
all requests, regularize network traffic and memory accesses,
have constant time implementations, clear caches after every
operation, etc.). To prevent allocation-based side channels we
propose a new primitive called a private resource allocator
(PRA) that guarantees that the mechanism by which the system
allocates resources to processes leaks no information.

At a high level, allocation-based side channels exist because
a system’s resource allocator—which includes cluster man-
agers [1], network rate limiters [58], storage controllers [76],
data center resource managers [7], flow coordinators [67], lock
managers [42], etc.—can leak information about how many
(and which) other processes are requesting service through the
allocation itself. As a simple example, a process that receives
only a fraction of the resources available from an allocator that
is work conserving (i.e., that allocates as many resources as
possible) can infer that other processes must have requested
the same resources concurrently. These observations can be
made even if the other processes do not use their allocated
resources at all.

While the information disclosed by allocations might seem
harmless at first glance, these allocation-based side channels can
be used as building blocks for more serious attacks. As a mo-
tivating example, we show that allocation-based side channels
can be combined with traffic analysis attacks [5, 26, 27, 48, 49,
59, 66, 70, 77] to violate the guarantees of existing bidirectional
anonymous messaging systems (often called metadata-private
messengers or MPMs) [6, 10, 52, 53, 55, 56, 78, 81]. This
is significant because MPMs are designed precisely to avoid
side-channel attacks. In particular, Angel et al. [9] show that
these systems are secure only if none of the contacts with
whom a user communicates are compromised by an adversary;
otherwise, compromised contacts can learn information about
the user’s other conversations. We expand on Angel et al.’s
observation in Section II, and show that it is an instance of an
allocation-based side-channel attack.

To prevent allocation-based side channels, we introduce
private variants of resource allocators (PRAs) that can assign
resources to processes without leaking to any processes
which or how many other processes received any units of
the resource. We formalize the properties of PRAs (§III),
and propose several constructions that guarantee information-
theoretic, computational, and differential privacy under different
settings (§IV-A–IV-C). We also discuss how privacy interacts
with classic properties of resource allocation. For example,
we show that privacy implies population monotonicity (§V).
Finally, we prove an impossibility result (§III-B): there does
not exist a PRA when the number of concurrent requesting
processes is not bounded ahead of time. As a result, PRAs
must assume a polynomial bound on the number of requesting
processes (and this bound might leak).

To showcase the benefits and costs of using PRAs, we
integrate our constructions into Alpenhorn [57], which is a
system that manages conversations in MPMs. The result is the
first MPM system that is secure in the presence of compromised
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friends. Interestingly, our implementation efforts reveal that
naively introducing PRAs into MPMs would cripple these
systems’ functionality. For example, it would force clients to
abruptly end ongoing conversations, and would prevent honest
clients from ever starting conversations. To mitigate these issues,
we propose several techniques tailored to MPMs (§VI).

Our evaluation of Alpenhorn shows that PRAs lead to
conversations taking 16× longer to get started (or alternatively
consuming 16× more network resources), though this number
can be reduced to 4× by prioritizing certain users. However,
once conversations have started, PRAs incur no additional
overhead. While we admit that such delayed start (or bandwidth
increase) further hinders the usability of MPMs, compromised
friends are enough of a real threat to justify our proposal.

In summary, the contributions of this work are:
• The notion of Private Resource Allocators (PRA) that

assign resources to processes without leaking how many or
to which processes resources are allocated.

• An impossibility theorem that precisely captures under
what circumstances privacy cannot be achieved.

• Several PRA constructions under varying assumptions.
• A study of how privacy impacts other allocation properties.
• The integration of PRAs into an MPM to avoid leaking

information to compromised friends, and the corresponding
experimental evaluation.
Finally, we believe that PRAs have applications beyond

MPMs, and open up exciting theoretical and practical ques-
tions (§IX). We hope that the framework we present in the
following sections serves as a good basis.

II. CASE STUDY: METADATA-PRIVATE MESSENGERS

In the past few years, there has been a flurry of work on
messaging systems that hide not just the content of messages
but also the metadata that is associated with those messages [6,
8, 10, 24, 53, 55, 56, 78, 81, 83]. These systems guarantee some
variant of relationship (or third-party) unobservability [68], in
which all information (including the sender, recipient, time of
day, frequency of communication, etc.) is kept hidden from
anyone not directly involved in the communication. A key
driver for these systems is the observation that metadata is itself
sensitive and can be used—and in fact has been used [22, 71]—
to infer the content or at least the context of conversations for
a variety of purposes [73]. For example, a service provider
could infer that a user has some health condition if the user
often communicates with health professionals. Other inferable
information typically considered sensitive includes religion,
race, sexual orientation, and employment status [61].

In these metadata-private messengers (MPMs), a pair of
users are considered friends only if they have a shared secret.
Users can determine which of their acquaintances are part of the
system using a contact discovery protocol [16, 20, 60], and can
then exchange the secret needed to become friends with these
acquaintances through an out-of-band channel (e.g., in person
at a conference or coffee shop), or with an in-band add-friend
protocol [57]. A pair of friends can then initiate a session. This

Add friend to contact list

Dial a friend in contact list

Converse with friend

Establish a shared secret

Send message starting on round r

Agree on session key and round r

Protocol Objective

Discover friends Learn identifier or public key

FIG. 1—MPM systems consist of four protocols: friend discovery,
add-friend, dialing, and conversation. Users can only converse once
they are in an active session (agree on a session key and round).

is done with a dialing protocol [6, 52, 57] whereby one user
“cold calls” another user and notifies them of their intention to
start a conversation. The analogous situation in the non-private
setting is a dialing call on a VoIP or video chat service like
Skype. Creating a session boils down to agreeing on a time or
round to start the conversation, and generating a key that will
be used to encrypt all messages in the session (derived from
the shared secret and the chosen round).

Once a session between two friends has been established,
the participants can exchange messages using a conversation
protocol (this is the protocol that actually differentiates most
MPM systems). In all proposed conversation protocols, com-
munication occurs in discrete rounds—which is why part of
creating a session involves identifying the round on which to
start the conversation—during which a user sends and receives
up to k messages. One can think of each of these k messages as
being placed in a different channel. To guarantee no metadata
leaks, users are forced to send and receive a message on
each channel in every round, even when the user is idle and
has nothing to send or receive (otherwise observers could
determine when a user is not communicating). We summarize
these protocols in Figure 1.

The above highlights a tension between performance and
network costs experienced by all MPM systems. Longer rounds
increase the delay between two consecutive messages but
reduce the network overhead when a user is idle (due to fewer
dummy messages). Having more channels improves throughput
(more concurrent conversations per round or more messages
per conversation) but at the cost of higher network overhead
when the user is idle. Given that users are idle a large fraction
of the time, most MPMs choose long round duration (tens of
seconds) and a small number of channels (typically k = 1).

While these tradeoffs have long been understood, the impact
of the number of communication channels on privacy has
received less attention. We discuss this next.

A. Channel allocation can leak information

Prior works on MPMs have shown that the proposed contact
discovery, add-friend, dialing, and conversation protocols are
secure and leak little information (negligible or bounded) on
their own, but surprisingly, none had carefully looked at their
composition. Indeed, recent work by Angel et al. [9] shows that
existing dialing and communication protocols do not actually
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compose in the presence of compromised friends. The reason
is that the number of communication channels (k) is usually
smaller than the number of friends that could dial the user at
any one time. As a result, when a user is dialed by n friends
asking to start a conversation at the same time, the user must
determine an allocation of the n friends to the k channels.

As one would expect, when n > k, not all of the n dialing
requests can be allocated onto the k available channels since
each channel can only support one conversation (for example, a
user in Skype can only accept one incoming call at a time since
k = 1). If this allocation is not done carefully—defining what
“carefully” means formally is the subject of Section III—a user’s
friends can learn information through dialing. In particular, a
caller who dials and receives a busy signal or no response at
all for a round r can infer that the callee has agreed to chat
with other users during round r.1 For the more general case of
k > 1, an attacker controlling k callers can dial the user and
observe whether all calls are answered or not; an attacker may
even conduct a binary search over multiple rounds to learn the
exact number of ongoing conversations.

The saving grace is that information that leaks is observed
only by a user’s dialing friends, as opposed to all users in
the system or third-party observers (since friendship is a
precondition for dialing). However, friends’ accounts can be
compromised by an adversary, and users could be tricked
into befriending malicious parties. In fact, not only is this
possible, it is actually a common occurrence: prior surveys
of user behavior on online social networks show that users
are very willing to accept friend requests from strangers [69].
Furthermore, given recent massive leaks of personal data—3
billion accounts by Yahoo in 2013 [54]; 43 million accounts
by Equifax in 2017 [34]; 87 million users by Facebook in
2018 [74] and an additional 549 million records in 2019 [80]—
there is significant material for attackers to conduct social
engineering and other attacks. Worse yet, many of these attacks
can easily be automated [15].

B. Traffic analysis makes things worse

The previous section describes how an attacker, via com-
promised friends, can learn whether a user is busy or not in
some round r (or get some confidence on this) by conducting
an allocation-based side channel attack. While such leakage
is minor on its own, it can be composed with traffic analysis
techniques such as intersection [70] and disclosure [5] attacks
(and their statistical variants [25]).

As a very simple example, imagine an adversary that can
compromise the friends of multiple users and can use those
compromised friends to determine which users are (likely)
active in a given round r. The adversary can then reduce
the set of possible sender-recipient pairs by ignoring all the
idle users (more sophisticated observations can also be made
by targeting particular users). The adversary can then repeat

1A lack of response does not always mean that a user is busy with others; the
user could be asleep. However, existing MPMs accept requests automatically.
Even if the user were involved, information would still leak and predicating
correctness on behavior that is hard to characterize is undesirable.

the attack for other rounds r′, r′′, etc. With each additional
round, the adversary can construct intersections of active users
and shrink the set of possible sender-recipient pairs under the
assumption that conversations span multiple rounds.

In short, the described allocation-based side-channel attack
makes existing MPM systems vulnerable to traffic analysis. In
the next section we formally model the leakage of information
that results from allocating dialing friends to a limited number
of channels. In Sections IV-A–IV-C we then give several
constructions of allocators that can be used by MPM systems
to establish sessions without leaking information.

III. PRIVATE RESOURCE ALLOCATORS (PRAS)

The allocation-based side-channel attack described in the
prior section essentially follows a pigeonhole-type argument
whereby there are more friends than there are channels. This
same idea applies to other situations. For example, whenever
there is a limited number of CPU cores and many threads,
the way in which threads are scheduled onto cores leaks
information to the threads. Specifically, a thread that was
not scheduled could infer that other threads were, even if
the scheduled threads perform no operations and consume
no resources. In this section we formalize this problem more
generally and describe desirable security definitions.

We begin with the notion of a private resource allocator,
which is an algorithm that assigns a limited number of resources
to a set of processes that wish to use those resources. Privacy
means that the outcome of the allocator does not reveal to any
processes whether there were other processes concurrently
requesting the same resource. Note that private allocators
are concerned only with the information that leaks from the
allocation itself; information that leaks from the use of the
resource is an orthogonal concern.

In more detail, a resource allocator RA is an algorithm that
takes as input a resource of capacity k, and a set of processes
P from a universe of processes M (P ⊆ M). RA outputs the set
of processes U ⊆ P that should be given a unit of the resource,
such that |U| ≤ k. There are two desirable properties for an
RA, informally given below.

• Privacy: it is hard for an adversary controlling a set of
processes Pmal ⊆ P to determine whether there are other
processes (i.e., Pmal = P or Pmal ⊂ P) from observing the
allocations of processes in Pmal.

• Liveness: for all sets of processes P, occasionally at least
one process in P receives a unit of the resource.

The liveness property is the weakest definition of progress
needed for RAs to be useful, and helps to rule out an RA that
achieves privacy by never allocating resources.

A. Formal definition

Notation. We use poly(λ) and negl(λ) to mean a polynomial
and negligible function2 of λ’s unary representation (1λ). We

2A function f : N → R is negligible if for all positive polynomials poly, there
exists an integer c such that for all integers x greater than c, |f (x)| < 1/poly(x).
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symbol description
C and A Challenger and adversary in the security game resp.

b and b′ Challenger’s coin flip and adversary’s guess resp.

k Amount of available resource

M Universe of processes

P Processes requesting service concurrently (⊆ M)

Phon Honest processes in P (not controlled by A)

Pmal Malicious processes in P (controlled by A)

U Allocation (⊆ P) of size at most k

λ Security parameter

βx poly(λ) bound on variable x

FIG. 2—Summary of terms used in the security game, lemmas, and
proofs, and their corresponding meaning.

use βx to mean a poly(λ) bound on variable x. Upper case
letters denote sets of processes. Figure 2 summarizes all terms.

Security game. We define privacy with a game played between
an adversary A and a challenger C. The game is parameterized
by a resource allocator RA and a security parameter λ. RA
takes as input a set of processes P from the universe of all
processes M, a resource capacity k that is poly(λ), and λ. RA
outputs a set of processes U ⊆ P, such that |U| ≤ k.
1) A is given oracle access to RA, and can issue an arbitrary

number of queries to RA with arbitrary inputs P and k. For
each query, A can observe the result U ← RA(P, k,λ).

2) A picks a positive integer k and two disjoint sets of
processes Phon, Pmal ⊆ M and sends them to C. Here Phon

represents the set of processes requesting a resource that
are honest and are not compromised by the adversary. Pmal

represents the set of processes requesting a resource that
are compromised by the adversary.

3) C samples a random bit b uniformly in {0, 1}.
4) C sets P← Pmal if b = 0 and P← Pmal ∪ Phon if b = 1.
5) C calls RA(P, k,λ) to obtain U ⊆ P where |U| ≤ k.
6) C returns Umal = U ∩ Pmal to A.
7) A outputs its guess b′, and wins the game if b = b′.

In summary, the adversary’s goal is to determine if the
challenger requested resources for the honest processes or not.

Definition 1 (Information-theoretic privacy). An allocator RA
is IT-private if in the security game, for all algorithms A,
Pr[b = b′] = 1/2, where the probability is over the random
coins of C and RA.

Definition 2 (Computational privacy). An allocator RA is C-
private if in the security game given parameter λ, for all
probabilistic polynomial-time algorithms A, the advantage of
A is negligible: |Pr[b = b′] − 1/2| ≤ negl(λ), where the
probability is over the random coins of C and RA.

Definition 3 (Liveness). An allocator RA guarantees liveness
if given parameter λ, any non-empty set of processes P, and
positive resource capacity k, Pr[RA(P, k,λ) ̸= ∅] ≥ 1/poly(λ).

The proposed liveness definition (Def. 3) is very weak. It
simply states that the allocator must occasionally output at least
one process. Notably, it says nothing about processes being
allocated resources with equal likelihood, or that every process
is eventually serviced (it allows starvation). Nevertheless, this
weak definition is sufficient to separate trivial from non-trivial
allocators; we discuss several other properties such as fairness
and resource monotonicity in Section V. To compare the
efficiency of non-trivial allocators, however, we need a stronger
notion that we call the allocator’s utilization.

Definition 4 (Utilization). The utilization of a resource alloca-
tor RA is the fraction of requests serviced by RA compared to
the number of requests that would have been serviced by a non-
private allocator. Formally, given a set of processes P, capacity
k, and parameter λ, RA’s utilization is E(U)/min(|P|, k), where
E(U) is the expected number of output processes of RA(P, k,λ).

B. Prior allocators fail

Before describing our constructions we discuss why straight-
forward resource allocators fail to achieve privacy.

FIFO allocator. A FIFO allocator simply allocates resources to
the first k processes. This is the type of allocator currently used
by MPM systems to assign dialing friends to channels (§II-A),
and is also commonly found in cluster job schedulers (e.g.,
Spark [84]). This allocator provides no privacy. To see why,
suppose that both Phon and Pmal are ordered sets, where the
order stems from the identity of the process. The adversary
can interleave the identity of processes in Phon and Pmal so
that the FIFO allocator’s output is k processes in Pmal when
b = 0, and k/2 processes in Pmal when b = 1.

Uniform allocator. Another common allocator is one that
picks k of the processes at random. At first glance this might
appear to provide privacy since processes are being chosen
uniformly. Nevertheless, this allocator leaks a lot of information.
In particular, when b = 0 the adversary expects k of its
processes to be allocated (since P = Pmal), whereas when b = 1,
fewer than k of the malicious processes are likely to be allocated.
More formally, let X be the random variable describing the
cardinality of the set returned to A, namely |U∩Pmal|. Suppose
|Pmal| = |Phon| = k. Then Pr[X < k | b = 0] = 0 and
Pr[X < k | b = 1] = 1− (k! · k!)/(2k)! ≥ 1/2. As a result, A
can distinguish between b = 0 and b = 1 with non-negligible
advantage by simply counting the elements in U ∩ Pmal.

Uniform allocator with variable-sized output. One of the
issues with the prior allocator is that the size of the output
reveals too much. We could consider a simple fix that selects
an output size s uniformly from the range [0, k], and allocates
s processes at random. But this is also not secure.

Let |Pmal| = |Phon| = k, and let X be the random variable
representing the cardinality of the set returned to A. We show
that the probability that X = k is lower when b = 1. Observe
that Pr[X = k | b = 0] = 1

k+1 , whereas Pr[X = k | b = 1] =

(k! · k!)/((k + 1)(2k)!) < 1
k+1 for all k ≥ 1. Furthermore,

when k ≥ 1, (k! · k!)/((k + 1)(2k)!) ≤ 1/2. Therefore, 1
k+1 −
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allocator leakage utilization assumptions
• setup phase

SRA (§IV-A) None |P|
βM

• |M| ≤ βM

• p ∈ M identifiable

RRA (§IV-B) None |P|
βP

• |P| ≤ βP

DPRA (§IV-C) 1/g(λ) |P|
|P|+h(λ)βhon

• |Phon| ≤ βhon

FIG. 3—Comparison of privacy guarantees, utilization, and assump-
tions of different PRAs. DPRA makes the weakest assumptions since
Phon ⊆ P ⊆ M and is the only one that tolerates an arbitrary number
of malicious processes. g and h are polynomial functions that control
the tradeoff between utilization and privacy (§IV-C).

(k! · k!)/((k + 1)(2k)!) ≥ 1
k+1 · [1− 1/2] = 1

2(k+1) , which is
non-negligible. As a result, A can distinguish b = 0 and b = 1
with non-negligible advantage.

Allocator from a secret distribution. The drawback of
the prior allocator is that the adversary knows the expected
distribution under b = 0 and b = 1 for its choice of Phon, Pmal,
and k. Suppose instead that the allocator has access to a secret
distribution not known to the adversary. The allocator then
uses the approach above (allocator with variable-sized output)
with the secret distribution instead of a uniform distribution.
This is also not secure; the proof is in Appendix A.

The intuition for the above result is that the perturbation
introduced by steps 4 and 6 of the security game cannot be
masked without additional assumptions. To formalize this, we
present the following impossibility result that states that without
a bound on the number of processes, an allocator cannot
simultaneously achieve privacy and our weak definition of
liveness. We focus on IT-privacy since C-privacy considers a
PPT adversary; by definition, the size of the sets of processes
that such an adversary can create is bounded by a polynomial.

Theorem 1 (Impossibility result). There does not exist a
resource allocator RA that achieves IT-privacy (Def. 1) and
Liveness (Def. 3) when k is poly(λ) and |P| is not poly(λ).

The proof is given in Appendix B.

IV. ALLOCATOR CONSTRUCTIONS

Given the impossibility result in the prior section, we propose
several allocators that guarantee liveness and some variant of
privacy under different assumptions. As a bare minimum, all
constructions assume a poly(λ) bound, βhon, on |Phon|. In the
context of MPM systems, this basically means that a user never
receives more than a polynomial number of dial requests by
honest users asking to start a conversation in the same round—
which is an assumption that is easy to satisfy in practice. We
note that none of our allocators can hide βhon from an adversary,
so it is best thought of as a public parameter. We summarize
the properties of our constructions in Figure 3.

A. Slot-based resource allocator

We now discuss a simple slot-based resource allocator. It
guarantees information-theoretic privacy and liveness under
the assumption that the size of the universe of processes (|M|)
has a bound βM that is poly(λ). The key idea is to map each
process p ∈ M to a unique “allocation slot” (so there are at
most βM total slots), and grant resources to processes only if
they request them during their allocated slots. The chosen slots
are determined by a random λ-bit integer r.

Slot-based resource allocator SRA:
• Pre-condition (setup): ∀p ∈ M, slot(p) ∈ [0, |M|)
• Inputs: P, k,λ
• r ←R [0, 2λ)
• U ← ∅
• ∀p ∈ P, i ∈ [0, k), if slot(p) ≡ r + i mod |M|, add p to U
• Output: U

Lemma 1. SRA guarantees IT-privacy (Def. 1).

Proof. Observe that a process p ∈ P is added to U when
r ≤ slot(p) < (r + k) mod |M|, which occurs independently
of b. In particular, if we let Ep be the event that a process p ∈ P
is added to U, then Pr[Ep|b = 0] = Pr[Ep|b = 1] = k/|M|.
Since an adversary cannot observe differences in Pr[Ep] when
P = Pmal versus P = Pmal ∪ Phon, privacy is preserved.

Lemma 2. SRA guarantees Liveness (Def. 3) if |M| ≤ βM .

Proof. SRA outputs at least one process when there is a p ∈ P
such that r ≤ slot(p) < (r + k) mod |M|. For a given r, this
occurs with probability ≥ k/|M|.

SRA achieves our desired goals. It guarantees privacy and
liveness, and achieves a utilization (Def. 4) of |P|

|M| whenever
k ≤ |P|. But it also has several limitations. First, it assumes
that the cardinality of the universe of processes (|M|) is known
in advance, and that it can be bounded by βM . Second, it
assumes a preprocessing phase in which each process in M is
assigned a slot. Finally, it assumes that each individual process
is identifiable since SRA must be able to compute slot(p) for
every process p ∈ P.

Unfortunately, these limitations are problematic for many
applications. For instance, consider an MPM system (§II). M
represents the set of friends for a user (not just the ones dialing),
so it could be large. Furthermore, users cannot add new friends
without leaking information since this would change M (and
therefore the periodicity of allocations), which the adversary
can detect. As a result, users must bound the maximum set
of friends that they will ever have (βM), use this bound in the
allocator (instead of |M|), and achieve a utilization of |P|

βM
.

B. Randomized resource allocator

In this section we show how to relax most of the assumptions
that SRA makes while achieving better utilization. In particular,
we construct a randomized resource allocator RRA that guaran-
tees privacy and liveness under the assumption that there is a
poly(λ) bound, βP, for the number of simultaneous processes
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requesting a resource (|P|). RRA does not need a setup phase,
and does not require uniquely identifying processes in M. More
importantly, RRA achieves both requirements even when the
universe of processes (M) is unbounded. These relaxations are
crucial since they make RRA applicable to situations in which
processes are created dynamically.

At a high level, RRA works by padding the set of processes
(P) with enough dummy processes to reach the upper bound
(βP). RRA then randomly permutes the padded set and outputs
the first k entries (removing any dummies from the allocation).
If the permutation is truly random, this allocator guarantees
information-theoretic privacy since P is always padded to βP

elements regardless of the challenger’s coin flip (b). However,
it requires a source of more than βP random bits, which might
be too much in some scenarios. One way to address this is
to generate the random permutations on the fly [18], which
requires only O(k log(βP)) random bits. Alternatively, we can
simply assume that the adversary is computationally bounded
and allow a negligible leakage of information by making the
permutation pseudorandom instead.

Randomized resource allocator RRA:
• Inputs: P, k,λ
• Q← set of dummy processes of size βP − |P|
• π ← random or pseudorandom permutation of P ∪ Q
• U ← first k entries in π

• Output: U ∩ P

Lemma 3. RRA guarantees IT-privacy (Def. 1) if |P| ≤ βp

and the permutation is truly random.

Proof. Let Ep be the event that a process p is added to U. Then,
for all p ∈ P, Pr[Ep] = k/βP. Since Pr[Ep] remains constant
for all sets of processes P, an adversary has no advantage to
distinguish between P = Pmal and P = Pmal ∪ Phon.

Lemma 4. RRA guarantees C-privacy (Def. 2) against all
probabilistic polynomial-time (PPT) adversaries if |P| ≤ βP.

Proof. We use a simple hybrid argument. Consider the variant
of RRA that uses a random permutation instead of a PRP.
Lemma 3 shows the adversary has no advantage to distinguish
between b = 0 and b = 1. A PPT adversary distinguishes
between the above RRA variant and one that uses a PRP (with
security parameter λ) with negl(λ) advantage.

Lemma 5. RRA guarantees Liveness (Def. 3) if |P| ≤ βP.

Proof. RRA outputs at least one process if there exists a p ∈ P
in the first k elements of π. This follows a hypergeometric
distribution since we sample k out of βP processes without
replacement, and processes in P are considered a “success”.
The probability of at least one success is therefore:

k∑
i=1

(|P|
i

)( |Q|
k−i

)(
βP
k

) ≥ 1/βP

which is non-negligible.

RRA achieves privacy, liveness, and a utilization (Def. 4) of
|P|/βP when k ≤ |P|, which is a factor of βM/βP improvement
over SRA. However, it still requires a bound on the number of
concurrent processes (P). In the context of an MPM system, this
requirement essentially asks the user to pick a bound (e.g., βP =
20), and assume that the adversary will not compromise more
than, say, 18 of their friends, while simultaneously receiving
fewer than 3 calls from honest friends. Otherwise, the adversary
could simply flood the user with malicious calls and infer, via
an allocation-based side channel, that the user is talking to at
least one honest friend (§II). Although one could come up with
values of βP that are large enough to hold in practice (e.g.,
users in social media have on average hundreds of friends [79],
so βP = 100 might suffice), this only works in applications
where the adversary cannot commandeer an arbitrary number
of processes via a sybil attack [30]. In such cases, there might
not be a useful bound (e.g., βP = 280 certainly holds in practice,
but results in essentially 0 utilization).

The above limitation is fundamental and follows from our
impossibility result. In the next section, however, we show
that if one can tolerate a weaker privacy guarantee, there exist
allocators that require only a poly(λ) bound, βhon, on |Phon|.
The number of malicious processes (|Pmal|), and therefore the
number of total concurrent processes (|P|), can be unbounded.

C. Differentially private resource allocator
In this section we relax the privacy guarantees of PRAs and

require only that the leakage be at most inverse polynomial in
λ, rather than negligible. We define this guarantee in terms of
(ε, δ)-differential privacy [31].

Definition 5 (Differential privacy). An allocator RA is (ϵ, δ)-
differentially private [31] if in the security game of Section III,
given parameter λ, for all algorithms A and for all Umal:

Pr[C(b) returns Umal] ≤ eε · Pr[C(b̄) returns Umal] + δ

where Umal is the set of processes returned from C to A in
Step 6 of the security game, and C(b) means an instance of C
where the random bit is b; similarly for C(b̄) where b̄ = 1− b.
The probability is over the random coins of C and RA.

We show that if there is a poly(λ) bound, βhon, for the
number of honest processes (|Phon|), then there is an RA
that achieves (ε, δ)-differential privacy and Liveness (Def. 3).
Before introducing our construction, we discuss a subtle
property of allocators that we have ignored thus far: symmetry.

Definition 6 (Symmetry). An allocator is symmetric if it does
not take into account the features, identities, or ordering of
processes when allocating resources. This is an adaptation of
symmetry in games [21, 35], in which the payoff of a player
depends only on the strategy it uses, and not on the player’s
identity. Concretely, given an ordered set of processes P where
the only difference between processes is their position in P, RA
is symmetric if Pr[RA(P, k,λ) = p] = Pr[RA(π(P), k,λ) = p],
for all p and all permutations π. This argument extends to
other identifying features (process id, permissions, time that a
process is created, how many times a process has retried, etc.).
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For example, the (non-private) uniform allocator of Sec-
tion III-B and the private RRA (§IV-B) are symmetric: they
allocate resources without inspecting processes. On the other
hand, the (non-private) FIFO allocator of Section III-B and
the private SRA (§IV-A) are not symmetric; FIFO takes into
account the ordering of processes, and SRA requires computing
the function slot on each process. While symmetry places some
limits on what an allocator can do, in Section V-A we show
that many features (e.g., heterogeneous demands, priorities)
can still be implemented.

Construction. Recall from Section III that RA receives one of
two requests from C depending on the bit b that C samples. The
request is either Pmal or Pmal∪Phon. We can think of these sets
as two neighboring databases. Our concern is that the processes
in Pmal that are allocated the resource might convey too much
information about which of these two databases was given to
RA, and in turn reveal b. To characterize this leakage, we derive
the sensitivity of an RA that allocates resources uniformly.

Our key observation is that if RA is symmetric, then the only
useful information that the adversary gets is the number of
processes in Pmal that are allocated (i.e., |Umal|); the allocation
is independent of the particular processes in Pmal. If RA adds
no dummy processes and allocates resources uniformly, then
|Umal| = min(|Pmal|, k|Pmal|

|Pmal| ) when b = 0 and, in expectation,

min(|Pmal|, k|Pmal|
|Pmal|+|Phon| ) when b = 1. By observing |Umal|,

the adversary learns the denominator in these fractions; the
sensitivity of this denominator—and of RA—is |Phon| ≤ βhon.

To limit the leakage, we design an allocator that samples
noise from an appropriate distribution and adds dummies based
on the sampled noise. We discuss the Laplace distribution here,
but other distributions (e.g., Poisson) would also work. The
Laplace distribution (Lap) with location parameter µ and scale
parameter s has the probability density function:

Lap(x|µ, s) =
1
2s

exp
(
−|x− µ|

s

)
Let g(λ) and h(λ) be polynomial functions of the allocator’s

security parameter λ. These functions will control the tradeoff
between privacy and utilization: ε = 1/g(λ) bounds how much
information leaks (a larger value of g(λ) leads to better privacy
but worse utilization), and the ratio h(λ)/g(λ) (which impacts
δ) determines how often the bound holds (a larger ratio provides
a stronger guarantee, but leads to worse utilization). Given these
two functions, the allocator works as follows.

(ε, δ)-differentially private resource allocator DPRA:
• Inputs: P, k,λ
• µ← βhon · h(λ)
• s← βhon · g(λ)
• n← ⌈max(0, Lap(µ, s))⌉
• t← |P|+ n
• Q← set of dummy processes of size n
• π ← random permutation of P ∪ Q
• U ← first min(t, k) processes in π

• Output: U ∩ P

In short, the allocator receives a number of requests that is
either |Pmal| or |Pmal∪Phon|. It samples noise n from the Laplace
distribution, computes the noisy total number of processes
t = |P|+ n, and allocates min(t, k) uniformly at random.

Lemma 6. DPRA is (ε, δ)-differentially private (Def. 5) for
ε = 1

g(λ) and δ = 1
2 exp( 1−h(λ)

g(λ) ) if |Phon| ≤ βhon.

Proof strategy. The proof that DPRA is differentially private
uses some of the ideas from the proof for the Laplace
mechanism by Dwork et al. [31]. A learns the total number
of processes in Pmal that are allocated, call it tmal. We show
that when the noise (n) is sufficiently large, for all ℓ ∈ [0, k],
Pr[tmal = ℓ|b = 0] is within a factor eε of Pr[tmal = ℓ|b = 1].
We then show that the noise fails to be sufficiently large with
probability ≤ δ. We give the full proof in Appendix C.

Corollary 7. If |Phon| ≤ βhon, the leakage or privacy loss that
results from observing the output of DPRA is bounded by
1/g(λ) with probability at least 1− δ [32, Lemma 3.17].

In some cases, an adversary might interact with an allocator
multiple times, adapting Pmal in an attempt to learn more
information. We can reason about the leakage after i interactions
through differential privacy’s adaptive composition [33].

Lemma 8. DPRA is (ε′, iδ + δ′)-differentially private over i
interactions for δ′ > 0 and ε′ = ε

√
2i ln(1/δ′) + iε(eε − 1).

Proof. The proof follows from [33, Theorem III.3]. An optimal,
albeit more complex, bound also exists [44, Theorem 3.3].

Lemma 9. DPRA provides liveness (Def. 3) if |Phon| ≤ βhon.

Proof. The expected value of Lap is βhon · h(λ) ≤ poly2(λ).
As a result, the number of dummy processes added by DPRA
is polynomial on average; at least one process in P is allocated
a resource with inverse polynomial probability.

DPRA is efficient in expectation since with high probability,
n does not exceed a small multiple of βhon ·h(λ) (Lemma 9). To
bound DPRA’s worst-case time and space complexity, we can
truncate the Laplace distribution and bound n by exp(λ) without
much additional leakage. However, even if |P| ∈ poly(λ), the
noise (n), and thus the total number of processes (t) can all
be exp(λ). This would require DPRA to have access to exp(λ)
random bits to sample the dummy processes and to perform
the permutation; the running time and space complexity would
also be exponential. Fortunately, the generation of dummy
processes, the set union, and the permutation can all be avoided
(we introduced them only for simplicity). DPRA can compute
U directly from P, k, and t as follows.

1: function RANDOMALLOCATION(P, k, t)
2: U ← ∅
3: for i = 0 to min(t, k)− 1 do
4: r ←R [0, 1]
5: if r < |P|/(t − i) then
6: p← Sample uniformly from P without replacement
7: U = U ∪ {p}
8: return U
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Finally, sampling m elements from P without replace-
ment is equivalent to generating the first m elements of a
random permutation of P on the fly, which can be done
with O(m log |P|) random bits in O(m log |P|) time and O(m)
space [18]. The same optimization (avoiding dummy processes
and permutations) applies to RRA (§IV-B) as well.

V. EXTENSIONS AND OTHER ALLOCATOR PROPERTIES

In addition to privacy and liveness, we ask whether PRAs
satisfy other properties that are often considered in resource
allocation settings. We study a few of them, listed below:

• Resource monotonicity If the capacity of the allocator
increases, the probability of any of the requesting processes
to receive service should not decrease.

• Population monotonicity When a process stops requesting
service, the probability of any of the remaining processes
to receive service should not decrease.

• Envy-freeness. A process should not prefer the allocation
probability of another process. This is our working definition
of fairness, though the notion of preference is quite subtle,
as we explain later.

• Strategy-proofness. A process should not benefit by lying
about how many units of a resource it needs.

Before stating which allocators meet which properties, we
first describe a few generalizations to PRAs.

A. Weighted allocators

Our resource allocators are egalitarian and select which
processes to allocate uniformly from all requesting processes.
However, they can be extended to prioritize some processes
over others with the use of weights. Briefly, each process is
associated with a weight, and allocation is done in proportion
that weight: a request from a process with half of the weight
of a different process is picked up half as often. To implement
weighted allocators, the poly(λ) bound on the number of
process (e.g., βP in RRA) now represents the bound on the sum
of weights across all concurrent processes (normalized by the
lowest weight of any of the processes), rather than the number
of processes; padding is done by adding dummy processes
until the normalized sum of their weights adds to the bound.

All of our privacy and liveness arguments carry over
straightforwardly to this setting. The only caveat is that
processes can infer their own assigned weight over time; just
like the bounds, none of our allocators can keep this information
private. However, processes cannot infer the weight of other
processes beyond the trivial upper bound (i.e., the sum of the
weights of any potential set of concurrent processes is βP).

B. Non-binary demands

Thus far we have considered only allocators for processes
that demand a single unit of a resource. A natural extension
is to consider non-binary demands. For example, a client of a
cloud service might request 5 machines to run a task. These
demands could be indivisible (i.e., the process derives positive

utility only if it receives all of its demand), or divisible (i.e., the
process derives positive utility even if it receives a fraction of
its demand). We describe two potential modifications to PRAs
that handle the divisible demands case and achieve different
notions of fairness; we leave a construction of PRAs for the
indivisible demands case to future work.

Probability in proportion to demands. In the non-binary
setting, the input to the allocator is no longer just the set
of processes P, but also their corresponding demands D. A
desirable notion of fairness might be to allocate resources in
proportion to processes’ demands. For example, if process p1
demands 100 units, and p2 demands 2 units, an allocation of 50
units to p1 and 1 unit to p2 may be fair. Our PRAs can achieve
this type of fairness for integral units by treating each process
as a set of processes of binary demand (the cardinality of each
set is given by the corresponding non-binary demand). The
bounds are therefore based on the sum of processes’ demands
rather than the number of processes.

Probability independent of demands. Another possibility is
to allocate each unit of a resource to processes independently
of how many units they demand. For example, if p1 demands
100 units and p2 demands 1 unit, both processes are equally
likely to receive the first unit of the resource. If p2 does not
receive the first unit, both processes have an equal chance to
get the second unit, etc.

To achieve this definition with PRAs, we propose to change
the way that RRA and DPRA sample processes (i.e., Line 6 of
the RANDOMALLOCATION function given in Section IV-C).
Instead of sampling processes uniformly without replacement
and giving the chosen processes all of their demanded resources,
the allocator samples processes from P uniformly with infinite
replacement, and gives each sampled process one unit of the
resource on every iteration. The allocator then assigns to each
process pi the number of units sampled for pi at the end of the
algorithm or pi’s demand, whichever is lower. This mechanism
preserves the privacy of the allocation since it is equivalent to
hypothetically running a PRA with a resource of capacity 1
and the same set of binary-demand processes k times in a row.

A property of this definition is that the bounds on the number
of processes—βP in RRA (§IV-B) and βhon in DPRA (§IV-C)—
remain the same as in the binary-demand case (i.e., independent
of processes’ demands) since the allocator does not expose
the results of the intermediate k hypothetical runs. However,
the allocator assumes that processes have infinite demand
(and discards excess allocations at the end), which ensures
privacy but leads to worse utilization (based on the imbalance
of demands). A potentially less wasteful alternative is to do
the sampling with a bounded number of replacements (i.e., a
sampled process is not replaced if its demand has been met),
but we have not yet analyzed this case since it requires stateful
reasoning (it is a Markov process); to our knowledge sampling
with bounded replacement has not been previously studied.
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C. Additional properties met by PRAs

All of our PRAs meet the first three properties listed earlier,
and SRA and RRA also meet strategy-proofness; our proofs are
in Appendix D, but we highlight the most interesting results.

We observe that privacy is intimately related to population
monotonicity. This is most evident in DPRA, since its dif-
ferential privacy definition states that changes in the set of
processes have a bounded effect on the allocation. Indeed, we
prove in Appendix D that our strongest definition of privacy,
IT-privacy (Def. 1), implies population monotonicity.

SRA and RRA are trivially strategy-proof for binary demands
since processes have only two choices—to request or not
request the resource—and they derive positive utility only
if: (a) they receive the resource; or (b) they deny some other
process the resource (in some applications). Condition (b) is
nullified by IT-Privacy: the existence of other processes has no
impact on whether a process receives a resource (if it did, an
adversary could exploit it to win the security game with non-
zero advantage). Furthermore, if the resource cannot be traded
(i.e., a process cannot give its resource to another process)
and demands are binary, IT-privacy implies group strategy-
proofness [12], which captures the notion of collusion between
processes (as otherwise a set of processes controlled by the
adversary could impact the allocation and violate privacy).

For non-binary demands, PRAs that meet our definition of
allocation probabilities being in proportion to demands are not
strategy-proof: processes have an incentive to request as many
units of a resource as possible regardless of how many units
they actually need. On the other hand, allocators that meet
the definition of allocation probability being independent of
demands are strategy-proof since the allocator assumes that all
processes have infinite demand anyway.

VI. BUILDING PRIVATE DIALING PROTOCOLS

In Section II we show that the composition of existing dialing
protocols with conversation protocols in MPM systems leaks
information. In this section we show how to incorporate the
PRAs from Section III into dialing protocols [6, 52, 57]. As an
example, we pick Alpenhorn [57] since it has a simple dialing
scheme, and describe the modifications that we make.

A. Alpenhorn’s dialing protocol

As we mention in Section II, a precondition for dialing is
that both parties, caller and callee, have a shared secret. We
do not discuss the specifics of how the secret is exchanged
since they are orthogonal (for simplicity, assume the secret is
exchanged out of band). Alpenhorn’s dialing protocol achieves
three goals. First, it synchronizes the state of users with the
current state of the system so that clients can dial their friends.
Second, it establishes an ephemeral key for a session so that
all data and metadata corresponding to that session enjoys
forward secrecy: if the key is compromised, the adversary
does not learn the content or metadata of prior sessions. Last,
it sets a round on which to start communication. The actual
communication happens via an MPM’s conversation protocol.

Dialing service 

1 Synchronize

Send dial tokens2

Get dial tokens3

Round of a dial protocol

S1 S2 S3 S4

Keywheel for friend i

apply hash each round

FIG. 4—Overview of Alpenhorn’s dialing protocol [57]. Clients
deposit dial tokens for their friends into an untrusted dialing service
in rounds, and download all dial tokens sent at the end of a round.
Clients then locally determine which tokens were meant for them.
To derive dial tokens for a particular friend and round, clients use a
per-friend data structure called a keywheel (see text for details).

We discuss how Alpenhorn achieves these goals, and
summarize the steps in Figure 4.

Synchronizing state. Similarly to how conversation protocols
operate in rounds (as we briefly discuss in Section II),
dialing protocols also operate in rounds. However, the two
types of rounds are quantitatively and qualitatively different.
Quantitatively, dialing happens less frequently (e.g., once per
minute) whereas conversations happen often (e.g., every ten
seconds). Qualitatively, a round of dialing precedes several
rounds of conversation, and compromised friends can only
make observations at the granularity of dialing rounds.

To be able to dial other users, clients need to know the
current dialing round. Clients can do this by asking the dialing
service (which is typically an untrusted server or a network of
mix servers) for the current round. While the dialing service
could lie, it would only result in denial of service which none
of these systems aims to prevent anyway.

In addition to the current dialing round, clients in Alpenhorn
maintain a keywheel for each of their friends. A keywheel is
a hash chain where the first node in the chain corresponds to
the initial secret shared between a pair of users (we depict this
as “S1” in Figure 4) anchored to some round. Once a dialing
round advances, the client hashes the current node to obtain
the next node, which gives the shared secret to be used in the
new round. The client discards prior nodes to ensure forward
secrecy in case of a device compromise.

Generating a dial request. To dial a friend, a client synchro-
nizes their keywheel to obtain the shared secret for the current
dialing round, and then applies a second hash function to the
shared secret. This yields a dialing token, which the client
sends to the dialing service. This token leaks no information
about who is being dialed except to a recipient who knows
the corresponding shared secret. To prevent traffic analysis
attacks, the client sends a dialing token every dialing round,
even when it has no intention to dial anyone (in such case the
client creates a dummy dial token by hashing random data).

Receiving calls. A client fetches from the dialing service all
of the tokens sent in a given dialing round by all users (this
leads to quadratic communication costs for the server which
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is why dialing rounds happen infrequently)3. For each friend
f in a client’s list, the client synchronizes the keywheel for f ,
uses the second hash function to compute the expected dial
token, and looks to see if the corresponding value is one of the
tokens downloaded from the dialing service. If there is a match,
this signifies that f is interested in starting a conversation in
the next conversation round. To derive the session key for a
conversation with f , the client computes a third hash function
(different from the prior two) on the round secret.

Responding to a call. Observe that it is possible for a client
to receive many dial requests in the same dialing round. In
fact, a client can receive a dial request from every one of
their friends. The client is then responsible for picking which
of the calls to answer. A typical choice is to pick the first
k friends whose tokens matched, where k is the number of
channels of the conversation protocol (typically 1, though some
systems [8, 10] use larger values). Once the client chooses
which calls to answer, the client derives the appropriate session
keys and exchanges messages using the conversation protocol.

B. Incorporating private resource allocators

The allocation mechanism used by Alpenhorn to select which
calls to answer leaks information (it is the FIFO strawman of
Section III-B). We can instead replace it with a PRA like RRA
(§IV-B) to select which of the matching tokens (processes)
to allocate to the k channels of the conversation protocol
(resource). There is, however, one key issue with this proposal.
We are using the resource allocator only for the incoming calls.
But what about outgoing calls? Observe that each outgoing
call also consumes a communication channel. Specifically,
when a user dials another user, the caller commits to use the
conversation protocol for the next few conversation rounds
(until a new dial round). In contrast, the callee may choose
not accept the caller’s call. In other words, the caller uses up
a communication channel even if the recipient rejects the call.

Given the above, we study how outgoing calls impact the
allocation of channels for incoming calls.

Process outgoing calls first. We first consider an implemen-
tation in which the client subtracts each outgoing call from
the available channels (k) and then runs the PRA with the
remaining channels to select which incoming calls to answer.
This approach leaks information. The security game (§III)
chooses between two cases, one in which the adversary is
the only one dialing a user (P = Pmal), and one in which
honest users are also dialing the user (P = Pmal ∪ Phon). All
of our definitions of privacy require that the adversary cannot
distinguish between these two cases. However, with outgoing
calls there is another parameter that varies, namely the capacity
k; this variation is not captured by the security game.

To account for this additional variable, we ask whether an
adversary can distinguish the output of a resource allocator on
inputs P, k,λ (representing a universe in which the user is not
making any outgoing calls) and the output of the allocator on

3Alpenhorn reduces the constant terms using bloom filters [57].

inputs P, k′,λ, where k′ < k (representing a universe in which
the user is making at least one outgoing call). The answer is
yes. As a simple example, consider RRA (§IV-B). The output
from RRA(P, k = 1,λ) is very different from RRA(P, k = 0,λ)
when |Pmal| = βP and Phon = ∅. The former always outputs
one malicious process (since no padding is added and there are
no honest processes), whereas the latter never outputs anything.

Process incoming calls first. Another approach is to reverse
the order in which channels are allocated. To do so, one can
first run the resource allocator on the incoming calls, and then
use any remaining capacity for the outgoing calls. Since none
of our allocators achieve perfect utilization (Def. 4) anyway,
there is left over capacity for outgoing calls. This keeps k
constant, preventing the above attack.

While this approach preserves privacy and might be applica-
ble in other contexts, it cannot be applied to Alpenhorn. Recall
that users in Alpenhorn must send all of their dial tokens before
they receive a single incoming call (see Figure 4). Consequently,
the allocator cannot possibly execute before the user decides
which or how many outgoing dial requests to send.

Process calls independently. The above suggests that to
securely compose Alpenhorn with a conversation protocol
that operates in rounds (which is the case for existing MPM
systems), users should have dedicated channels. An implication
of this is that the conversation protocol must, at a bare
minimum, support two concurrent communication channels.
We give a concrete proposal below.

We assume that each user has k = in+out available channels
for the conversation protocol, for some in, out ≥ 1. The in
channels are dedicated for incoming calls; the out channels
are for outgoing calls. When a user receives a set of incoming
dial requests, it uses a PRA and passes in as the capacity.
Independently, the user can send up to out outgoing dial
requests each round (of course the user always sends out dialing
tokens to preserve privacy, using dummies if necessary). This
simple scheme preserves privacy since the capacity used in the
PRA is independent of outgoing calls.

C. Improving the fit

The previous section discusses how to incorporate a PRA into
an existing dialing protocol. However, it introduces usability
issues (beyond the ones that commonly plague this space).

Conversations breaking up. Conversations often exhibit
inertia: when two users are actively exchanging messages, they
are more likely to continue to exchange messages in the near
future. Meanwhile, our modifications to Alpenhorn (§VI-B)
force clients to break up their existing conversations at the
start of every dialing round, which is abrupt.

The rationale for ending existing conversations for each new
dialing round is that our PRAs expect the capacity to remain
constant across rounds (so users need to free those channels).
Below we discuss ways to partially address this issue.

First, clients could use an allocator that has inertia built in.
For example, our slot-based resource allocator SRA (§IV-A)
does not need the integer r to be random or secret to guarantee
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privacy. Consequently, if one sets r to be the current round,
SRA would assign k consecutive dialing rounds to the same
caller. This allows conversations to continue smoothly across
rounds. The drawback is that if a conversation ends quickly
(prior to the k rounds), the user is unable to allocate someone
else’s call to that channel for the remaining rounds.

Second, clients could transition a conversation that is
consuming an incoming channel during one dial round to
a conversation that consumes an outgoing channel the next
dial round. Intuitively, this is the moral equivalent of both
clients calling each other during the new round. Mechanistically,
clients simply send dummy dial requests (they do not dial each
other) which forces an outgoing channel to be committed to a
dummy conversation. Clients then synchronize their keywheels
to the new dialing round, derive the session key, and hijack
the channel allocated to the dummy conversation.

Note that this transition can leak information. A compro-
mised friend who is engaged in a long-term conversation with
a target user could learn if the target has transitioned other
conversations from incoming to outgoing channels (or is dialing
other users) by observing whether a conversation ended abruptly
across dialing rounds. Ultimately, outgoing channels are a finite
resource and transitioning calls makes this resource observable
to an attacker. Nevertheless, this is not quite rearranging the
deck chairs on the Titanic; the requirements to conduct this
attack are high: the attacker needs to be in a conversation with
the target that spans multiple dialing rounds, and convince the
target to transition the conversation into an outgoing channel.

Lack of priorities. In many cases, users may want to prioritize
the calls of certain friends (e.g., close acquaintances over
someone the user met briefly during their travel abroad). This
is possible with the use of our weighted allocators (§V-A).
Users can give their close friends higher weights, and these
friends’ calls will be more likely to be accepted. A drawback
of this proposal is that callers can infer their assigned weight
based on how often their calls get through, which could lead
to awkward situations (e.g., a user’s parents may be sad to
learn that their child has assigned them a low priority!).

Lack of classes. Taking the idea of priorities a step further,
mobile carriers used to offer free text messaging within certain
groups (“family members” or “top friends”). We can generalize
the idea of incoming and outgoing channels to dedicate
channels to particular sets of users. For example, there could
be a family-incoming channel with its corresponding PRA.
This channel is used to chat with only family members, and
hence one can make strong assumptions about the bound on the
number of concurrent callers—allowing for better utilization.

VII. IMPLEMENTATION AND EVALUATION

We have implemented our allocators (including the weighted
variants of Section V-A) on top of Alpenhorn’s codebase [2] in
about 600 lines of Go, and also in a standalone library written
in Rust. In Alpenhorn, we modify the scanBloomFilter
function, which downloads a bloom filter representing the
dialing tokens from the dialing service. This function then
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FIG. 5—Mean utilization of PRAs over 1M rounds as we vary βhon.
The error bars represent the standard deviation. We fix βM = 2, 000
and make βp = 10βhon (the assumption modeled here is that 10%
of the potential concurrent processes are honest). The number of
concurrent processes that request service in a given round follows a
Poisson distribution with a rate of 50 requests/round (but we bound
this by βP). SRA and RRA guarantee IT-Privacy, and DPRA ensures
(ε, δ)-differential privacy for ε = ln(2) and δ = 10−4.

tests, for each of a user’s friends, whether the friend sent a
dialing token. If so, it executes the client’s ReceivedCall
handler (a client-specific callback function that acts on the
call) with the appropriate session key. Our modification instead
collects all of the matching tokens, runs the PRA to select
at most k of these tokens, and then calls the ReceivedCall
handler with the corresponding session keys.

A. Evaluation questions

None of our allocators are expensive in terms of memory or
computation. Even when allocating resources to 1M processes,
their 95-percentile runtimes are 4.2µs, 10.8µs, and 6.9µs
for SRA, RRA, DPRA respectively. The real impact of these
allocators is the reduction in utilization (compared to a non-
private variant). We therefore focus on three main questions:
1) How does the utilization of different allocators compare

as their corresponding bounds vary?
2) What is the concrete tradeoff between utilization and

leakage for the differentially private allocator?
3) How much latency do allocators introduce before friends

can start a conversation in Alpenhorn?
We answer these questions in the context of the following

experimental setup. We perform all of our measurements on
Azure D3v2 instances (2.4 GHz Intel Xeon E5-2673 v3, 14
GB RAM) running Ubuntu Linux 18.04-LTS. We use Rust
version 1.41 with the criterion benchmarking library [3], and
Go version 1.12.5 for compiling and running Alpenhorn.

B. Utilization of different allocators

We start by asking how different allocators compare in
terms of utilization. Since the parameter space here is vast
and utilization depends on the particular choice of parameters,
we mostly highlight the general trends. We set the maximum
number of processes to βM = 2, 000, and assume that 10% of
processes requesting service at any given time are honest (i.e.,
βP = 10βhon). This setting is not unreasonable if we assume
that sybil attacks [30] are not possible. If, however, sybil
attacks are possible in the target application, then comparing
the utilization of our allocators is a moot point: only DPRA
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FIG. 6—Mean utilization of DPRA with 1M rounds as we vary the
bounds (βhon) and the security parameter (λ) for a resource of capacity
k = 10. Here, g(λ) = λ and h(λ) = 3λ. The number of processes
requesting service (|P|) is fixed to 100.

can guarantee privacy in the presence of an unbounded number
of malicious processes.

To measure utilization (Definition 4), we have processes
request resources following a Poisson distribution with a rate
of 50 requests/round; this determines the value of |P|, which
we truncate at βP. We then depict the mean utilization over
1M rounds as we vary βhon (which impacts the value of βP as
explained above) in Figure 5.

Results. SRA achieves low utilization across the board since
it is inversely proportional to βM and does not depend on βhon

(the utilization is much lower at βhon = 1 only because of the
truncation of |P| to ≤ 10). RRA, on the other hand, achieves
perfect utilization when βhon is small. This is simply because
|P| = βP with high probability (again, due to the way we are
setting and truncating |P|); in such case RRA adds no dummy
processes. For larger values of βhon, the difference between βP

and |P| increases, leading to a reduction in utilization.
As we expect, DPRA’s utilization is inversely proportional

to βhon. What is somewhat surprising about this experiment is
that DPRA achieves worse utilization than RRA, even though
it provides weaker guarantees. However, this is explained by
DPRA making a weaker assumption. One could view this
difference as the cost of working in a “permissionless” setting.

C. Utilization versus privacy for DPRA

In the previous section we compare the utilization of DPRA
to other allocators for a particular value of ε, δ, and βhon.
Here we examine how λ can impact utilization for a variety of
bounds by conducting the same experiment but varying λ and
βhon. We arbitrarily set g(λ) = λ and h(λ) = 3λ, which yields
ε = 1/λ and δ = 1

2 exp( 1−3λ
λ ). The results are in Figure 6.

We find that for high values of λ, the utilization is well below
10% regardless of βhon, which is too high a price to stomach—
especially since RRA leaks no information and achieves better
utilization. As a result, DPRA appears useful only in cases
where moderate leakage is acceptable (high values of ε and
δ), or when there is no other choice (when there are sybils, or
when the application is new and a bound cannot be predicted).

To answer whether a given ε and δ are a good choice in terms
of privacy and utilization, we can reason about it analytically
using the expressions in the last row of Figure 3. However, it
is also useful to visualize how DPRA works. To do this, we
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(b) DPRA with ε = 0.10 and δ = 0.027
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(c) DPRA with ε = ln(2) and δ = 10−4
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FIG. 7—Histogram of malicious processes allocated by DPRA for
different values of ε and δ (Figures a–c) and RRA (Figure d) after
100K iterations. In b = 0, the allocators are called with Pmal; in
b = 1, the allocators are given Pmal ∪ Phon. Differences between
the two lines represents the leakage. Here βhon = 10, βP = 100,
k = 10, |Phon| ∈R [0, 10], and |Pmal| = 100− |Phon|. The parameters
in Figure (c) are those used by Vuvuzela [81] and Alpenhorn [57].
To achieve ϵ = ln(2) and δ = 10−4, we set g(λ) = λ/10 ln(2) and
h(λ) = 1.328λ for λ = 10.

run 100K iterations of the security game (§III) and measure
how the resulting allocations differ based on the challenger’s
choice of b and the value of ε and δ. We also conduct this
experiment with RRA (with βP = 100) for comparison. The
results are depicted in Figure 7.

If an allocator has negligible leakage, the two lines (b = 0
and b = 1) should be roughly equivalent (this is indeed the
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FIG. 8—Average number of rounds required to establish a session in
Alpenhorn when the recipient is using a PRA with a varying number
of incoming channels (“in” in the terminology of Section VI-B).
βP = 100, βhon = 10, ε = ln(2), δ = 10−4.

case with RRA). Since DPRA is leaky, there are observable
differences, even to the naked eye (e.g., Figure a and c). We
also observe a few trends. If we fix g(λ) = λ and h(λ) = 3λ
in DPRA (Figure 7a and b), as λ doubles (from Figure a to b),
the frequency of values concentrates more around the mean,
and the mean shifts closer to 0. Indeed, for λ = 1000 (not
depicted), the majority of the mass is clustered around 0 and
1. RRA is heavily concentrated around tmal = 10 because our
setting of |P| = βP guarantees perfect utilization (cf. §VII-B),
and roughly 90% of the chosen processes are malicious (so
they count towards tmal). For other values of βP, the lines would
concentrate around k|Pmal|

βP
.

D. Conversation start latency in Alpenhorn

To evaluate our modified version of Alpenhorn, we choose
privacy parameters that are at least as good as those in the
original Alpenhorn evaluation [57] (ε = ln(2) and δ = 10−4,
see Figure 7 for details on the polynomial functions that
we use), and pick bounds based on a previous study of
Facebook’s social graph [79]4. We set the maximum number
of friends (βM) to 5,000, the maximum number of concurrent
dialing friends (βP) to 100, and the maximum number of
concurrent honest dialing friends (βhon) to 20. We think these
numbers are reasonable for MPMs: if dialing rounds are on
the order of a minute, the likelihood of a user receiving a call
from 21 different uncompromised friends while the adversary
simultaneously compromises at least 80 of the users’ friends is
relatively low. Of course, the adversary could exploit software
or hardware vulnerabilities in clients’ end devices to invalidate
this assumption, but crucially, MPM systems are at least not
vulnerable to sybils (dialing requires a pre-shared secret).

We quantify the disruption of PRAs in Alpenhorn by
measuring how many dialing rounds it takes a particular
caller to establish a session with a friend as a function of
the allocator’s capacity (in). The baseline for comparison is
the original Alpenhorn system which uses the FIFO allocator
described in Section III-B. Our experiment first samples a
number of concurrent callers following a Poisson distribution
with an average rate of in processes/round. We set the average

4While Facebook is different from a messaging app, Facebook Messenger
relies on users’ Facebook contacts and has over 1.3 billion monthly users [23].
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FIG. 9—Average number of rounds required to establish a session in
Alpenhorn when the recipient is using a weighted PRA (§VI-C) and
the caller has a priority 5× higher than all other users. βP = 100,
βhon = 10, ε = ln(2), and δ = 10−4.

rate to in because we expect that as the system becomes
more popular and users start demanding more concurrent
conversations, the default per-round capacity of the system
will be increased. We emphasize that this choice only helps
the baseline: the number of callers (|P|) has no impact on the
probability of a particular process being chosen in SRA or RRA,
and has only a bounded impact in DPRA. In contrast, the value
of |P| has a significant impact on when a process (e.g., the
last process) is chosen in the FIFO allocator (lower is better).

We then label one caller c ∈ P at random as a distinguished
caller, and have all callers dial the callee; whenever a caller’s
call is picked up, we remove that caller from P. Finally, we
measure how many rounds it takes for c’s call to be answered
and repeat this experiment 100 times. The results for the
baseline, RRA, and DPRA are given in Figure 8. We do not
depict SRA since it requires over 10× more rounds.

When there is a single incoming channel available (in = 1),
it takes c on average 102 rounds to establish a connection with
RRA and 271 rounds for DPRA; it takes the baseline roughly
1.5 rounds since the number of processes is very small. For
in = 5, which is reasonable in a setting in which rounds are
infrequent, c must wait for about 20 and 52 rounds, for RRA
and DPRA respectively.

Given this high delay, we ask whether prioritization (§VI-C)
can provide some relief. We perform the same experiment
but assume that the caller c is classified as a high priority
friend (5× higher weight). Indeed, prioritization cuts down the
average session start proportional to the caller’s weight. For
in = 5, the average session start is 4.4 rounds in RRA versus
1.2 rounds in the baseline (a 3.6× latency hit).

Alternate tradeoffs. It takes callers in our modified Alpenhorn
16× longer than the baseline to establish a connection with
their friends (when in = 5 and there is no prioritization). If
rounds are long (minutes or tens of minutes), this dramatically
hinders usability. An alternative is to trade other resources for
latency: clients can increase the number of conversations they
can handle by 16× (paying a corresponding network cost due
to dummy messages) to regain the lower latency. Equivalently,
the system can decrease the dialing round duration (again, at a
CPU and network cost increase for all clients and the service).
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VIII. RELATED WORK

Several prior works study privacy in resource allocation
mechanisms, including matchings and auctions [11, 13, 17, 40,
63, 65, 75, 85], but the definition of privacy, the setting, and
the guarantees are different from those studied in this work;
the proposed solutions would not prevent allocation-based side
channels. Beaude et al. [13] allow clients to jointly compute
an allocation without revealing their demands to each other
via secure multiparty computation. Zhang and Li [85] design
a type of searchable encryption that allows an IoT gateway to
forward tasks coming from IoT devices (e.g., smart fridges) to
the appropriate fog or cloud computing node without learning
anything about the tasks. Similarly, other works [17, 40, 63,
65, 75] study how to compute auctions while hiding clients’
bids. Unlike PRAs, the goal of all of these works is to hide
the inputs from the allocator or some auditor (or to replace
the allocator with a multi-party protocol), and not to hide the
existence of clients.

The work of Hsu et al. [41] is related to DPRA (§IV-C). They
show how to compute matchings and allocations that guarantee
joint-differential privacy [46] and hide the preferences of an
agent from other agents. However, their setting, techniques,
and assumptions are different. We highlight a few of these
differences: (1) their mechanism has a notion of price, and
converges when agents stop bidding for additional resources
because the price is too high for them to derive utility. In
our setting, processes do not have a budget and there is no
notion of prices. (2) Their scheme assumes that the allocator’s
capacity is at least logarithmic in the number of agents. (3)
Their setting does not distinguish between honest or malicious
agents, so the sensitivity is based on all agents’ demands. In
the presence of sybils (which as we show in Section VII is
the only setting that makes sense for DPRA), assumption (2)
cannot be met, and (3) leads to unbounded sensitivity.

IX. DISCUSSION AND FUTURE WORK

We introduce private resource allocators (PRA) to deal with
allocation-based side-channel attacks, and evaluate them on
an existing metadata-private messenger. While PRAs might be
useful in other contexts, we emphasize that their guarantees
are limited to hiding which processes received resources from
the allocation itself. Processes could learn this information
through other means (this is not an issue in MPM systems
since by design they hide all other metadata). For example,
even if one uses a PRA to allocate threads to a fixed set of
CPUs, the allocated threads could learn whether other CPUs
were allocated by observing cache contention, changes to the
filesystem state, etc.

Other applications in which allocation-based side channels
could play a role are those in which processes ask for
permission to consume a resource before doing so. One example
is FastPass [67], which is a low-latency data center architecture
in which VMs first ask a centralized arbiter for permission and
instructions on how to send a packet to ensure that their packets
will not contribute to queue build up in the network. Similarly,
Pulsar [7] works in two phases: cloud hypervisors ask for

resources (network, storage, middleboxes) for their VMs to a
centralized controller via a small dedicated channel before the
VMs can use the shared data center resources. While the use
of the shared resources is vulnerable to consumption-based
side channels, the request for resources and the corresponding
allocation might be vulnerable to allocation-based side channels.
Indeed, we believe that systems that make a distinction between
the data plane and control plane are good targets to study for
potential allocation-based side channels.

Enhancements to PRAs. Note that PRAs naturally use re-
sources to compute allocations: they execute CPU instructions,
sample randomness, access memory, etc. As a result, even
though the allocation itself might reveal no information, the
way in which PRAs compute that allocation is subject to
standard consumption-based side-channel attacks (e.g., timing
attacks). For example, a process might infer how many other
processes there are based on how long it took the PRA to
compute the allocation. It is therefore desirable to ensure that
PRA implementations are constant time and take into account
the details of the hardware on which they run. To illustrate
how critical this is, observe that DPRA (§IV-C) samples
noise from the Laplace distribution assuming infinite precision.
However, real hardware has finite precision and rounding effects
for floating point numbers that violates differential privacy
unless additional safeguards are used [28, 62]. Beyond these
enhancements, we consider two other future directions.

Private multi-resource allocators. In some settings there is
a need to allocate multiple types of resources to clients with
heterogeneous demands. For example, suppose there are three
resources R1, R2, R3 (each with its own capacity). Client c1
wants two units of R1 and one unit of R2, and client c2 wants
one unit of R1 and three units of R3. How can we allocate
resources to clients without leaking information and ensuring
different definitions of fairness [14, 29, 37, 39, 45, 64]? A naive
approach of using a PRA for each resource independently is
neither fair (for any of the proposed fairness definitions) nor
optimal in terms of utilization.

Private distributed resource allocators. Many allocators
operate in a distributed setting. For example, the transmission
control protocol (TCP) allocates network capacity fairly on a
per-flow basis without a central allocator. Can we distribute
the logic of our PRAs while still guaranteeing privacy and
liveness with minimal or no coordination?
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APPENDIX

A. Secret distribution allocator is insecure

Section III-B describes an allocator that chooses which
processes to service based on a secret distribution that is not
known to the adversary. We prove that this allocator does not
guarantee C-privacy (Definition 2) and Liveness (Definition 3).

Proof. Suppose that A sets Pmal = {pi} and |Phon| ≥ k. The
allocator then picks s ∈ [0, k] and U ← RA(P, k,λ) from a
secret distribution not known to A. Assume for purposes of
contradiction that RA satisfies C-Privacy and Liveness.

A key observation is that Pr[pi ∈ U|b = 0 ∧ s > 0] = 1,
since s processes in Pmal will be allocated a resource when
b = 0. However, Pr[pi ∈ U|b = 1 ∧ s > 0] = xi. Since RA
guarantees C-Privacy, Pr[s > 0] · (1− xi) is negligible for any
choice of Pmal = {pi}.

Claim 10. Pr[s > 0] = 1/poly(λ).
This follows from the fact that RA guarantees Liveness (Def-

inition 3), and so it must allocate resources to s > 0 processes
with non-negligible probability.

By Claim 10 and C-Privacy, (1− xi) must then be negligible
since Pr[s > 0] · (1− xi) = (1− xi)/poly(λ) = negl(λ).

Observe that since (1 − xi) is negligible for every choice
of Pmal = {pi}, this implies that every process is allocated
a resource with probability close to 1 when b = 1, which
contradicts the capacity of RA since |P| > k. Therefore, the
difference in conditional probabilities Pr[s > 0] · (1− xi) must
be non-negligible for some choice of Pmal = {pi}, which
contradicts that RA satisfies C-Privacy. Furthermore, finding one
such pi is efficient as there are only |P| = poly(λ) elements.

B. Proof of impossibility result

Theorem 1 (Impossibility result). There does not exist a
resource allocator RA that achieves both IT-privacy (Def. 1) and
Liveness (Def. 3) when k is poly(λ) and |P| is superpoly(λ)
(i.e., |P| ∈ ω(λc) for all constants c).

Proof. We start with two simple claims.

Claim 11. If |P| = superpoly(λ), then an overwhelming
fraction of the p ∈ P have Pr[p ∈ RA(P, k,λ)] ≤ negl(λ).
This follows from a simple pigeonhole argument: there are a
super-polynomial number of processes requesting service, and
at most a polynomial number of them can have a non-negligible
probability mass.

Claim 12. If RA guarantees liveness, then in the security
game, the conditional probability Pr[p ∈ U|b = 0 ∧ Pmal =
{p}] must be non-negligible. This follows since for all RA, if
P = {p}, RA(P, k,λ) must output U = {p} with non-negligible
probability (recall liveness holds for any set P, including the
set with only one process). Therefore, in the security game
when b = 0, the call to RA(Pmal, k,λ) must return {p} with
non-negligible probability.

We now prove Theorem 1 by contradiction. Suppose that an
allocator RA achieves both liveness and privacy when |P| =

superpoly(λ). Let X be a set with a super-polynomial number of
processes. By Claim 11, RA allocates an overwhelming fraction
of the p ∈ X with negligible probability, so the adversary
can identify one such process. The adversary can then set
Pmal = {p} and Phon = X − {p}. This satisfies the condition
of Claim 12, so we have that Pr[p ∈ U|b = 0] ≥ 1/poly(λ).
Finally, when b = 1, the challenger passes P = Pmal ∪ Phon

as input to RA. Notice that P = X, so by Claim 11, Pr[p ∈
U|b = 1] ≤ negl(λ). As a result, the advantage of the adversary
is inversely polynomial, which contradicts the claim that RA
guarantees IT-privacy.

C. DPRA guarantees differential privacy

We prove that DPRA (§IV-C) is (ε, δ)-differentially private
(Def. 5) for ε = 1

g(λ) and δ = 1
2 exp( 1−h(λ)

g(λ) ) if |Phon| ≤ βhon.
To simplify the notation, let β = βhon. Let f (S) = |S| be a

function that computes the cardinality of a set. Let P be the
set of processes as a function of the challenger’s bit b:

P(b) =

{
Pmal if b = 0
Pmal ∪ Phon if b = 1

It is helpful to think of P(0) as a database with one row and
entry Pmal, and P(1) as a database with two rows and entries
Pmal and Phon. Accordingly, f (P(b)) is a function that sums
the entries in all rows of the databases. Since we are given
that |Phon| ≤ β, the ℓ1-sensitivity of f (·) is bounded by β.

To begin, let us analyze the first half of DPRA. Assume the
algorithm finishes after sampling the noise n, and the output is
t (i.e., we are ignoring choosing the processes for now). Also,
we will ignore the ceiling operator when computing n, since
post-processing a differentially private function by rounding
it up keeps it differentially private [32, Proposition 2.1]. So
in what follows, n and therefore t are both real numbers. Call
this algorithm M:

Algorithm M:
• Inputs: P(b), k

• n← max(0, Lap(µ, s))

• Output: t← |P(b)|+ n

where µ and s are the location and scale parameters of the
Laplace distribution (in DPRA they are functions of λ and β,
but we will keep them abstract for now).

Theorem 2. M is (ε, δ)-differentially private for ε = β/s
and δ =

∫ β

−∞ Lap(w|µ,β/ε)dw. Specifically, for any subset of
values L in the range, [f (P(0)),∞) of M:

Pr[M(P(0), k) ∈ L] ≤ eε · Pr[M(P(1), k) ∈ L] + δ

and

Pr[M(P(1), k) ∈ L] ≤ eε · Pr[M(P(0), k) ∈ L]

Proof. Let x = f (P(0)), y = f (P(1)).
We partition L into two sets: L1 = L ∩ [y,∞) and L2 =

L− L1 = L ∩ [x, y).
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Let dP(b),k(·) be the probability density function for M’s
output when the sampled bit is b. For ease of notation, we will
denote this function by db(·).

For any particular value ℓ ∈ L1, we show that d0(ℓ) ≤
eε · d1(ℓ) and d1(ℓ) ≤ eε · d0(ℓ). Integrating each of these
inequalities over the values in L1, we get

Pr[M(P(0), k) ∈ L1] ≤ eε · Pr[M(P(1), k) ∈ L1]

and

Pr[M(P(1), k) ∈ L1] ≤ eε · Pr[M(P(0), k) ∈ L1]

Values in L1 are easy to handle because M can produce these
values regardless of whether the bit b is 0 or 1 and we are
able to bound pointwise the ratio of the probability densities
of producing each of these values because we choose a large
enough scale parameter.

Values in L2 can only be output by M if b = 0, and if such
values are output, information about bit b would be leaked.
Because we choose a large enough location parameter, we can
show that Pr[M(P(0), k) ∈ [x, y)] ≤ δ.

The theorem follows by combining these two cases. We first
deal with L1.

Lemma 13. For any set L1 ⊆ [y,∞): Pr[M(P(b), k) ∈ L1] ≤
eε · Pr[M(P(b̄), k) ∈ L1]

Proof. Recall the Laplace distribution with s = β/ε:

Lap(ℓ|µ,β/ε) =
ε

2β
· exp(

−ε|ℓ− µ|
β

)

For all ℓ ∈ L1 we have that:

d0(ℓ) = Lap(ℓ|µ+ x,
β

ε
)

=
ε

2β
· exp(−ε|ℓ− (µ+ x)|

β
)

d1(ℓ) = Lap(ℓ|µ+ y,
β

ε
)

=
ε

2β
· exp(−ε|ℓ− (µ+ y)|

β
)

It follows that for all ℓ ∈ L1:

d0(ℓ)

d1(ℓ)
=

exp(− ε|ℓ−(µ+x)|
β )

exp(− ε|ℓ−(µ+y)|
β )

= exp(
−ε|ℓ− (µ+ x)|+ ε|ℓ− (µ+ y)|

β
)

= exp(
ε(|ℓ− (µ+ y)| − |ℓ− (µ+ x)|)

β
)

≤ exp(
ε|x− y|

β
) by triangle ineq.

≤ exp(ε) by def. of ℓ1 sensitivity

A similar calculation bounds the ratio d1(ℓ)
d0(ℓ)

.

We now prove that Pr[M(P(0), k) ∈ [x, y)] ≤ δ.

Lemma 14. Pr[M(P(0), k) ≤ y] ≤ δ.

Proof.

Pr[M(P(0), k) ≤ y] = Pr[x + n ≤ y]

≤ Pr[x + n ≤ x + β] since y− x ≤ β

= Pr[n ≤ β]

= Pr[Lap(µ, s) ≤ β]

=

∫ β

−∞
Lap(w|µ, s)dw

=

∫ β

−∞
Lap(w|µ,β/ε)dw

= δ

Finally, we can prove the theorem. For any set L:

Pr[M(P(b), k) ∈ L] = Pr[M(P(b), k) ∈ L2]

+ Pr[M(P(b), k) ∈ L1]

≤ δ + Pr[M(P(b), k) ∈ L1]

≤ δ + eε Pr[M(P(b̄), k) ∈ L1]

≤ δ + eε Pr[M(P(b̄), k) ∈ L]

The above shows M is (ε, δ)-differentially private. Note that:

δ =

∫ β

−∞
Lap(w|µ,β/ε)dw =

{
1
2 exp( ε(β−µ)

β ) if β < µ

1− 1
2 exp( ε(µ−β)

β ) if β ≥ µ

If we set µ = β ·h(λ) for h(λ) > 1, and s = β ·g(λ), this gives
us the desired values of ε = 1

g(λ) and δ = 1
2 · exp( 1−h(λ)

g(λ) ).
We now show that the rest of DPRA (the uniform selection

of processes), remains (ε, δ)-differentially private.
Let X be a random variable denoting the number of processes

in Pmal that get the allocation. Since the adversary only learns
which processes in Pmal were allocated the resource, from his
point of view dummy processes and processes in Phon are
indistinguishable. Thus for each value ℓ ∈ [0, k],

Pr[X = ℓ |M(P(b), k) = t ∧ b = 0] = Pr[X =
ℓ |M(P(b), k) = t ∧ b = 1]. Combined with the inequalities
governing the probabilities that M outputs each value of t for
b = 0 and b = 1 respectively, we have that Pr[X = ℓ | b =
0] ≤ eε Pr[X = ℓ | b = 1] + δ and similarly with the values of
b exchanged. Thus the distribution of the number of malicious
processes allocated are very close for b = 0 and b = 1.

Finally, since our allocator is symmetric (§IV-C), the actual
identity of the malicious processes allocated does not reveal
any more information about b than this number.

D. Proofs of other allocation properties

Lemma 15. Any resource allocator that achieves IT-Privacy
satisfies population monotonicity.

Proof. We prove the contrapositive. If RA fails to achieve
population monotonicity, then there exists two processes pi and
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pj such that when pj stops requesting allocation, the probability
that RA allocates pi a resource decreases. An adversary A
can thus construct P in the security game such that pi ∈ Pmal

and Phon = {pj}. As a result, Pr[pi ∈ Umal|b = 0] < Pr[pi ∈
Umal|b = 1] and RA fails to satisfy IT-Privacy.

Lemma 16. SRA and RRA satisfy population monotonicity.
This follows from the fact that SRA and RRA are IT-Private.

Lemma 17. DPRA satisfies population monotonicity.

Proof. Observe that the probability a given process pi is
allocated a resource is Pr[pi ∈ U] = min(t, k)/t where t is
drawn from |P|+n and n is the noise sampled from the Laplace
distribution. As a process pj stops requesting service, we have
t = (|P|−1)+n. Since min(t, k)/t ≤ min(t−1, k)/(t−1), this
implies Pr[pi ∈ U] is strictly increasing as |P| decreases.

Lemma 18. SRA satisfies resource monotonicity.

Proof. When SRA’s capacity increases from k to k + c (with
c positive), the allocator can accommodate c more processes.
With |M| fixed, this implies the probability of a process getting
allocated a resource is increased by c / |M|.

Lemma 19. RRA satisfies resource monotonicity.

Proof. When RRA’s capacity increases from k to k + c (with
c positive), the allocator can accommodate at most c more
processes. With βp fixed, this implies the probability of a
process getting allocated a resource is increased by c / βp.

Lemma 20. DPRA satisfies resource monotonicity.

Proof. When DPRA’s capacity increases from k to k+c (with c
positive), the allocator is able to accommodate at most c more
processes. Although the capacity of the allocator is increasing,
the distribution Lap(βhon/ε) remains constant. Recall that the
probability a given process pi is allocated a resource is Pr[pi ∈
U] = min(t, k) / t where t is drawn from |P|+ n and n is the
noise sampled from the Laplace distribution. Since min(t, k)
≤ min(t, k + c) for all t, k, we have that Pr[pi ∈ U] is strictly
increasing as k increases.

Lemma 21. SRA satisfies envy-freeness.

Proof. SRA assigns every process pi ∈ M a unique allocation
slot in [0, |M|), giving each process a constant k/|M| probability
of being allocated a resource for a uniformly random r ∈ N≥0.
Since Pr[pi ∈ U] = Pr[pj ∈ U] for all pi, pj ∈ M, it follows
that SRA satisfies envy-freeness.

Lemma 22. RRA satisfies envy-freeness.

Proof. RRA pads up to βP each round with dummy processes,
so that each process pi ∈ P has probability 1/βP of being
allocated a resource. Since Pr[pi ∈ U] = Pr[pj ∈ U] for all
pi, pj ∈ M, it follows that RRA satisfies envy-freeness.

Lemma 23. DPRA satisfies envy-freeness.

Proof. DPRA samples k random processes from P∪U where U
consists of dummy processes added by sampling the distribution

Lap(βhon, ε). Assuming |P| > k, for all p ∈ P it follows that
Pr[p ∈ U] = k/(|P|+ |U|). Since Pr[pi ∈ U] = Pr[pj ∈ U] for
all pi, pj ∈ M, it follows that DPRA satisfies envy-freeness.
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