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Abstract. We prove a lower bound on the communication complexity
of perfect maliciously secure multiparty computation, in the standard
model with n = 3t + 1 parties of which t are corrupted. We show that
for any n and all large enough g ∈ N there exists a Boolean circuit
C with g gates, where any perfectly secure protocol implementing C
must communicate Ω(ng) bits. The results easily extends to constructing
similar circuits over any fixed finite field. Our results also extend to the
case where the threshold t is suboptimal. Namely if n = 3t+s the bound
is Ω(ng/s), which corresponds to known optimizations via packed secret-
sharing. Using known techniques, we also show an upper bound that
matches the lower bound up to a constant factor (existing upper bounds
are a factor lgn off for Boolean circuits).

1 Introduction

In secure multiparty computation (MPC) a set of n parties compute an agreed
function on inputs held privately by the parties. The goal is that the intended
result is the only new information released and is correct, even if t of the parties
are corrupted by an adversary.

In this paper we focus on unconditional security where even an unbounded
adversary learns nothing he should not, and we ask what is the minimal amount
of communication one needs to compute a function securely. To be clear, we
will only consider functions where the size of the output is much shorter than
the input, so we avoid trivial cases where the communication is large, simply
because the parties need to receive a large output. Note that one can always
compute the function without security by just sending the inputs to one party
and let her compute the function, so the question to consider is: compared to
the size of the inputs, what overhead in communication (if any) is required for a
secure protocol? Note that a different and probably much harder question is if, in
general, the communication must be larger than the circuit size of the function.

These questions only seem interesting for unconditional security: for compu-
tational security we can use homomorphic encryption to compute any function
securely with only a small overhead over the input size.

There is a lot of prior work on lower bounding the communication required
in interactive protocols, and we survey some of this below. However, the most
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relevant existing work for us is [DLN19] which considers exactly the questions
we ask here for the case of honest majority, n = 2t+1, and passive (semi-honest)
security. They show that a factor n overhead over the input size is required for
some functions. The result extends to the case of suboptimal threshold where
n = 2t+ s, and then the overhead becomes n/s.

Note that this result leaves open one important case, namely lower bounds
for protocols that achieve perfect malicious security. It is well known that this
can be done if and only if t < n/3 and the result from [DLN19] has nothing to
say about this case: to apply it, one would need to set s to be Θ(n) and then
the lower bound becomes trivial. Thus the open question we consider is: can we
show lower bounds for perfect malicious security in the case where n = 3t+ 1?

1.1 Our results

In this paper, we prove lower bounds for the model with n parties of which t are
actively and statically corrupted. The network is synchronous, and we assume
that the adversary can learn the length of any message sent (in accordance with
the standard ideal functionality modeling secure channels which always leaks
the message length). We consider perfect and maliciously secure protocols with
static corruption in the model where n = 3t+1. We require that protocols are UC
secure and have a standard 2-phase structure where the inputs are committed
in the first phase, before the output is computed in the second phase. All known
perfectly secure protocols have this structure, which is natural since malicious
security requires that corrupt parties cannot choose their inputs as a function
of the honest parties’ inputs. So, nothing can be known about the output when
a corrupt party chooses its input. Thus the only restriction we require is that
there must be some explicitly defined point in the protocol where all inputs have
been committed to. We assume UC security mainly for simplicity of exposition,
we can actually make do with significantly weaker assumptions, this is detailed
in Section 2.5.

As mentioned, any function can be computed insecurely by sending the inputs
to one party and let her compute the function. This takes communication O(S)
where S is the input size (recall that we assume that the overall size of the
output is smaller than S). What we show is now that for all n and any sufficiently
large S, there exists a function f with input size S such that any protocol that
evaluates f securely must communicate Ω(nS) bits. So this answers the above
open question.

Even more is true: we are able to construct functions f as we just claimed
such that they can be evaluated by circuits of size O(S). This means we also
get the following result: for any n and all large enough g ∈ N there exists a
Boolean circuit C with g gates, where any protocol that evaluates C securely
must communicate Ω(ng) bits. The result easily extends to constructing similar
circuits over any fixed finite field.

We emphasize that our result only talks about functions with linear size
circuits, so this leaves open the question of overhead over the circuit size when
the circuit is much bigger than the inputs. However, there is still something we
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can say about this general question. Note that the general MPC protocols we
know are not, strictly speaking, protocols. Rather, they are protocol compilers
that take a circuit C as input, and produce a protocol for computing C securely.
Our results do imply that any such compiler must produce a protocol with large
communication overhead over the circuit size when applied to circuits in the
family we build. Now, if this overhead would no longer be present when applying
the compiler to other circuits, it would mean that it was able to exploit in some
non-trivial way the structure of the circuit it is given. Doing this would require
protocol compilers of a completely different nature than the ones we know, which
do “the same thing” to any circuit they are given.

Our results extend to the case where the threshold t is suboptimal. Namely, if
n = 3t+s, then the lower bound is O(ng/s) and this shows that the improvement
in communication that we know we can get using so-called packed secret sharing,
is the best we can achieve.

We also show an upper bound that matches the lower bound up to a constant
factor for all values of t < n/3. This is motivated by the fact that the existing
upper bound from [GLS19] is a factor lg n off for Boolean circuits. We do this by
exploiting recent results by Cascudo et al. [CCXY18] on so-called reverse multi-
plication friendly embeddings. Other than establishing the exact communication
complexity for this particular class of functions, it also shows that our result is
the best possible general lower bound we can have.

On the technical side, what we show are actually lower bounds on the entropy
of the messages sent on the network when the inputs have certain distributions.
This then implies similar bounds in general on the average number of bits to
send: an adversary who corrupts no one still learns the lengths of messages,
and must not be able to distinguish between different distributions of inputs.
Hence message lengths cannot change significantly when we change the inputs,
otherwise the protocol is insecure.

To show our results, we start from a lower bound for the communication
complexity of a specific function for the case of 4 parties and 1 maliciously
corrupt player. We then “lift” this result to the multiparty case. This high-level
strategy is similar the one used in [DLN19], however our proof for the 4-party
case as well as the concrete lifting technique are very different from what was
done in [DLN19]. In fact it is easy to see that new techniques are necessary to
achieve our result. Namely, in our case where t < n/3, [DLN19] only gives a
trivial result, as mentioned above. Nevertheless [DLN19] is known to be optimal
for passive security, even in the case of suboptimal threshold. This means that
there is no way to use their proof for our question, one must somehow exploit
the fact that the considered protocols are assumed to be maliciously secure.

1.2 Related Work

Prior work on lower bounding communication in interactive protocols includes
[Kus92, FY92, CK93, FKN94, KM97, KR94, BSPV99, GR03] (and see [DPP14]
for an overview of these results). The previous work most relevant to us is
[DPP14]. They consider a special model with three parties where only two have
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input and only the third party gets output, and consider perfect secure proto-
cols. This paper was the first to show an explicit example of a function where
the communication for a (passive and perfectly) secure protocol must be larger
than the input.

Later, in [DNOR16], a lower bound was shown on the number of messages
that must be sent to compute a certain class of functions with statistical security.
When the corruption threshold t is Θ(n), their bound is Ω(n2). This of course
implies that Ω(n2) bits must be sent. However, we are interested in how the
communication complexity relates to the input and circuit size of the function,
so once the input size becomes larger than n2 the bound from [DNOR16] is not
interesting in our context.

In [DNPR16], lower bounds on communication were shown that grow with the
circuit size. However, these bounds only hold for a particular class of protocols
known as gate-by-gate protocols, and we are interested in lower bounds with no
restrictions on the protocol.

2 Lower Bounds

In this section we prove that there is an n-party function describable by a circuit
with g gates such that each party needs to communicate at least Ω(g) bits. We
show this using a series of lemmas that bound the entropy on the communication.
We first show the special case for four parties, and then ”lift” this to the general
case with n parties.

Let P1, . . .Pn be parties connected by pairwise secure channels. We denote by
I the input size (in bits) of each party, and O the output size. For simplicity we
assume all parties receive the same output, and denote by f : {0, 1}nI → {0, 1}O
the function to compute. We allow f to be probabilistic.

We will consider protocols that implement the standard ideal functionality
Ff for computing f securely, namely the one that receives input from all parties,
and once all inputs have been contributed, it computes the function and sends
the output to all parties.

We assume an active adversary that is allowed to statically corrupt up to t
parties where 3t < n. To define security we use the universal composability (UC)
model by Canetti ([Can00]). We assume the reader is familiar with the model
and its definition of security:

Definition 1 (UC Security). A protocol π is said to securely realize a func-
tionality F with perfect malicious security if for any adversary A there exists a
simulator S such that π � A is perfectly indistinguishable from S � F.

Finally, we will consider two-phase protocols that can be split in two phases: we
call the first one the input phase and the second the computation phase. The idea
is that the inputs are committed in the first phase, before any information on
the output is revealed. This is defined more precisely in terms of the simulation:
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the split in phases must be such that when simulation of the input phase is over,
the functionality has received all the inputs, but has not sent the output yet1.

2.1 Lower Bound, Perfect Security, Four Parties

We start by considering a special case of active MPC with four parties P1, . . .P4.
The functionality first receives an input Xi ∈ {0, 1}I from each Pi. After having
received all four inputs it computes the result and sends the result to each party.
We denote by IPI,4 the function that chooses a random index i ∈R [0, 4I) and
outputs (i,Xi), where X = X1||X2||X3||X4 is the concatenation of the party
inputs. The function IPI,4 has the crucial property that the output distribution
changes whenever any party changes their input.

One consequence of this is the following lemma:

Lemma 1. Assume protocol π computes n-party probabilistic function f with
perfect security, and it is the case that for any x1, ..., xn and x′1 6= x1, the output
distribution of f(x1, ..., xn) is different from that of f(x′1, x2, ..., xn). Assume
further that P1 has input x1, is corrupt but plays honestly. Then the simulator
for π must always send x1 as input to the functionality for f on behalf of P1.

Proof. If all players are honest and have inputs x1, ..., xn, then by perfect security
the output distribution must be that of f(x1, ..., xn). If instead P1 is corrupt but
plays honestly, the protocol does exactly the same as if all players are honest
so the output distribution is still that of f(x1, ..., xn). Hence, when simulating
this case, the simulator must send x1 to the functionality, otherwise the output
distribution generated in the simulation will be incorrect, by assumption in the
lemma. ut

Before continuing, we define some terminology: suppose we are given a player
P that takes part in a protocol π, and let t be a transcript, that is, the ordered
set of all messages sent and received during an execution of the protocol. Now,
sampling random coins consistent with t means to sample uniformly a random
tape r that could have been used to create t if P had done the protocol honestly.
In other words, r has the property that if P starts π with random tape r and
receives in each round the messages specified in t, he would send the messages
specified in t in each round. Of course, such a sampling is not always efficient,
but remember that we consider perfectly secure protocols that must be robust
against unbounded adversaries.

Theorem 1. In any two-phase protocol that implements FIPI,4
with perfect ma-

licious security, P4 must use average communication Ω(I).

Proof. Consider a protocol π that computes the function with perfect security.
We will consider the messages sent in π as random variables as follows: fix

1 Note that UC simulation is always straight-line, so it makes to talk about the point
where simulation of a phase is over.
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the inputs of P2,P3 and P4 to arbitrary values x2, x3, x4, and let the input of
P1 be chosen uniformly. Assume π is executed such that all parties follow the
protocol. Now, we let Ti for i = 1, 2, 3, 4 be the random variable that represents
concatenation of all messages sent to and from Pi in the execution of the input
phase.

Since the communication pattern must not depend on the inputs, it suffices
to show that H(T4) ≥ H(X1). We first show this follows from the following two
equations:

H(X1 | T2) = H(X1) (1)

H(X1 | T2, T4) = 0 (2)

To see this, we apply the chain rule for Shannon entropy:

H(T4) ≥ H(T4 | T2) + H(X1 | T2, T4) = H(X1, T4 | T2) ≥ H(X1 | T2) = H(X1)

We now show each claim separately:

1. Perfect malicious security implies there is a simulator for a corrupt P2 that
plays honestly. The messages created by the simulation are distributed ex-
actly as in a real execution. However, while simulating the input phase, the
simulator does not have access to the output, and hence has no information
on X1. It follows that H(X1 | T2) = H(X1).

2. Suppose for the sake of contradiction that X1 is not determined by T2, T4.
This means there must exist (at least) two different executions of the input
phase where P1 has different inputs, but the messages seen by P2,P4 are
the same. More formally, there exist sets of values of (T1, T2, T3, T4), say
(t1, t2, t3, t4) and (t′1, t2, t

′
3, t4) both with non-zero probability where the first

case can occur with X1 = x1 and the second with X1 = x′1, where x1 6= x′1.
Now consider the following two attacks on π:
(a) P3 is corrupt, but plays honestly in the input phase. If at the end of

the input phase P3 obtains transcript T3 = t3, she will pretend that she
saw T3 = t′3 instead. She samples random coins r′3 consistent with t′3
and complete the protocol honestly, assuming that her view of the input
phase was (x3, r

′
3, t
′
3).

(b) P1 is corrupt but plays honestly in the input phase. If P1 received input
x′1 and at the end of the input phase P1 obtains transcript T1 = t′1,
she will pretend that she had x1 as input and saw T1 = t1 instead. She
samples random coins r1 consistent with t1 and completes the protocol
honestly assuming her view of the input phase was (x1, r1, t1).

We can now observe that when the real protocol executes in the first scenario,
with non-zero probability, it is the case that P1 has input x1 and transcripts
t1, t2, t3 and t4 were produced in the input phase. Likewise in the second
scenario it may happen that P1 received input x′1 and transcripts t′1, t2, t

′
3

and t4 were produced in the input phase.
Assuming these events, we see that the protocol execution after the input
phase will be the same in the two scenarios: in both cases the players will
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do the last part of the protocol honestly starting from views (x1, r1, t1),
(x2, r2, t2), (x3, r

′
1, t
′
1), (x4, r4, t4), where all random coins are uniform, given

the corresponding transcript. Since these views are identically distributed in
the two cases the same output distribution D is generated in both cases.
Now consider the simulation of the two attacks. Note that the ideal func-
tionality always computes the output from x1, x2, x3, x4 in the first case,
and from x′1, x2, x3, x4 in the second, by Lemma 1. Since x1 6= x′1, the two
resulting output distributions D1 and D2 are different.
However, we have just seen that the real protocol may sometimes generate
output distribution D under both the first and the second attack. Perfect
security now implies that D1 = D = D2, a contradiction. ut

2.2 Lower Bound, Perfect Security, n parties, Maximal Threshold

We now show that the bound generalizes to multiple parties. Let n = 3t+ 1 and
denote the parties by P1,1, . . .P1,t,P2,1, . . .P2,t,P3,1, . . .P3,t,P4. Define by IPI,n

the following functionality: each party first provides an I-bit input. When all
inputs have been received they are collected in X, a random index i is chosen
and (i,Xi) outputted. This function has the following property: if any party
changes their input, the output distribution will also change.

Lemma 2. IPI,n can be computed by a circuit C with O(nI) gates.

Proof. Let S = nI be input size and assume for simplicity that S = 2k is an
exact power of two. We assume the circuit takes O(lgS) random bits which we
will denote by r. We proceed using induction in k:

– Base-case k = 0: the circuit simply outputs its input bit. This is clearly
uniform in the input.

– Induction k > 0: we may split the input into two 2k−1 sized halves X0,
and X1. By induction there are circuits C0, C1 each with O(2k−1) gates
computing X0,X1, let y0, y1 be the output gates. It suffices to combine
C0, C1 using a constant number of gates. We now construct the circuit y =
(y0 ∧ rk) ∨ (y1 ∧ rk): this takes at most four gates which is clearly constant.
In addition both C0, C1 choose their elements uniformly at random: if rk is
indeed a random bit then y is also uniform.

The result now follows since t = Θ(n). ut

Lemma 3. Any two-phase protocol that realizes IPI,n with perfect malicious
security must have total average communication Ω(ntI).

Proof. Consider any party P. We may group the remaining 3t parties arbitrarily
into 3 groups, each consisting of t parties to produce a functionality equivalent
to IPtI,4 where P plays the role of P4. Corrupting any party in IPtI,4 corrupts at
most t parties in IPI,n. By Theorem 1, P must communicate at least Ω(tI) bits.
We can apply this argument to each of the 3t+ 1 parties and add their resulting
communications. It should be noted that this counts every bit twice: once at the
sender, and once at the receiver, however this has no effect on the asymptotic
complexity. We conclude the total average communication is Ω(ntI) bits. ut

7



Theorem 2. There is a (familiy of) Boolean circuit(s) C with g gates such that
any two-phase n-party protocol computes C with perfect malicious security must
use total communication Ω(ng).

Proof. Follows immediately from Lemmas 2 and 3 since t = Θ(n). ut

2.3 Lower Bound, Perfect Security, n parties, Submaximal
Threshold

In this section we consider the case where t is submaximal, i.e. n = 3t + s for
some integer s > 0.

Theorem 3. There is a Boolean circuit C with g gates such that any two-phase
n-party protocol that computes C with perfect malicious security where n = 3t+s
for some s > 0, and t is the number of corruptions, must use total communication
Ω(ng/s).

Proof. By Lemma 2 it suffices to show a total communication lower bound of
Ω(ntI/s). Consider any partition of the 2t+ s honest parties into sets of size s.
For simplicity assume s divides 2t+s so that any such partition consists of exactly
2t/s+1 sets. We may group each set of s honest parties into a single party which
we will call P4. The remaining 3t parties may be arbitrarily grouped together
into 3 groups of t parties each. This immediately gives a protocol for IPtI,4 where
Theorem 1 applies, meaning P4 must communicate Ω(tI). Since each set of k
honest parties are disjoint we may add their communications together to get the
total communication up to a constant factor. There are 2t/s+ 1 such sets giving
a total communication of (2t/s+ 1)Ω(tI) = Ω(ntI/s) = Ω(ng/s). ut

2.4 Lower Bound, Arithmetic Circuits

The argument presented in previous sections only considered Boolean circuits,
however the same argument applies to arithmetic circuits. Let F be a finite field
whose elements require κ bits to describe. The exact same line of reasoning ap-
plies with the difference that H(X1) = κI instead of H(X1) = I. This increases
the bounds by a factor of κ showing the following:

Theorem 4. There is an arithmetic circuit C with elements of size κ with g
gates such that any n-party protocol that securely computes C where n = 3t+ s
for some s > 0, and t is the number of corruptions, must use total communication
Ω(ngκ/s).

2.5 Weakening the assumptions

Instead of assuming UC security we can instead make do with much weaker as-
sumptions in order to show our lower bounds: What we can assume is a two-phase
protocol as defined before, but with much weaker demands on the simulator than
what we need for UC security, as we now sketch:
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– The protocol in question can be split in two phases: we call the first one the
input phase and the second the computation phase.

– The simulator first simulates the input phase and then the computation
phase. It may rewind the adversary during both phases, but once it has
started simulating the computation phase, it is not allowed to rewind back
to the input phase.

– Once the simulator starts simulating the computation phase, the function-
ality has received all the inputs, and the simulator may now ask for the
outputs (so this means it cannot ask for the output during the input phase).

It is not hard to see that our lower bound proofs go through, also in this model.

3 Upper Bounds

In this section we show various upper bounds and compare them to the corre-
sponding lower bounds. In most cases we are able to match the lower bounds up
to a constant factor, however there is a gap of O(lg n) in the case of ”unshaped”
Boolean circuits, resulting from the fact that we need > n evaluation points to
do secret sharing.

3.1 Upper Bound, Arithmetic Circuits

For arithmetic circuits over large fields the parties can secret share their inputs
and compute the circuit using Beaver triples. A recent protocol by [GLS19] gives
a protocol that is not dependent on the depth of the circuit being computed:

Theorem 5. If C is an arithmetic circuit with g gates over a field F with |F| >
n, and κ is the size of field element, then there is a perfect maliciously secure
protocol for computing C using O(ngκ+ n3κ) bits of communication.

This shows that our lower bound of Ω(ngκ) is tight wrt. the circuit size for
arithmetic circuits over fields of sufficient size. It also shows that our lower
bound is the best generic lower bound one can hope to prove.

3.2 Upper Bound, IPI,n

The protocol from [GLS19] is based on secret sharings and as a result requires
fields with a size greater than the number of players, i.e. it must be the case that
|F| > n. This is because n distinct evaluation points are needed for the secret
sharing. For smaller fields this is usually remedied by mapping elements into an
extension field K and performing the secret sharings there. This unfortunately
incurs an overhead of O(lg n) compared to our lower bound.

To remedy this for our specific function IPI,n we can use reverse multiplica-
tion friendly embeddings (RMFE) following the work of [CCXY18]. An RMFE
allows us to evaluate multiple small circuits in an extension field in parallel with
good amortization in the communication.
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Definition 2. Let F be a finite field. A k-RMFE scheme (φ, ψ) consists of two
F-linear mappings, φ : Fk → K, and ψ : K→ Fk where for any vectors a,b ∈ Fk

it holds that:

ψ(φ(a) · φ(b)) = a ∗ b

where ∗ is the coordinate-wise (Schur) product. This allows us to perform k
parallel multiplications in F using a single multiplication in K. Using an RMFE
scheme, [CCXY18] construct a protocol for Boolean circuits with an amortized
communication complexity of O(n) per multiplication gate:

Theorem 6. There is a secure n-party protocol for computing Ω(lg n) parallel
evaluations of a Boolean circuit with an amortized communication complexity of
O(n) per multiplication gate.

Proof. See [CCXY18]. ut

Theorem 7. There is a perfect maliciously secure protocol based on secret shar-
ing for computing IPI,n using O(n2I) bits of communication.

Proof. Let C be the circuit described in Lemma 2. Assume for simplicity that
nI = 2k and let u = Θ(k) be the the number of bits required to describe an
element in K. At a high level our strategy is to compose C into smaller circuits
for which we get good amortization. The resulting computation is then computed
without embeddings, in the hope that so much work was saved by parallelization
that the remaining computation is asymptotically small.

The protocol is parameterized by an integer i that denotes the depth at which
C is composed into smaller circuits: the parties first invoke the protocol from
[CCXY18] until all but the last i layers remain, and then ignore the output
reconstruction phase. At this point the parties have secret sharings of an ele-
ment w ∈ K that encodes all 2i wire values. The next step is extracting secret
shares of each wire value. To do so, the parties generate sharings of random bits
[r1], . . . [ru], encoding an element [r] for some random r ∈ K. To do this, each
party contributes a random bit [b] which are XORed together. To verify that the
parties actually input bits, a public opening of b2− b is produced and verified to
equal 0 (as the only roots are 0 and 1). Next the parties compute w−r and open
the result in public. The result is added to [r] to get a sharing [w]. Linearity of
the secret sharing implies the parties may apply ψ locally to get a secret sharing
of each wire value. Finally the parties invoke the protocol [DN07] on the shares
obtained on the rest of the circuit.

Let i = Θ(lg n) and let us analyze the communication complexity. It is clear
that the cost is dominated by the first phase since the remaining two steps do not
depend on I. It is also clear that the size of the circuit is Θ(nI) since there are
nI inputs. By Theorem 6 the complexity of the first phase is O(n) ·nI = O(n2I)
as we wanted to show. ut
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3.3 Upper Bound, Submaximal Threshold

Both of the previous upper bounds assumed a maximal threshold of n = 3t+ 1.
In this section we briefly consider the case of submaximal threshold, i.e. where
n = 3t + s for some s > 1. In this setting we can use packed secret sharing to
”pack together” s shares into a single element, allowing us to evaluate multiple
gates in parallel and saving a factor O(s) in communication. This matches the
submaximal lower bound shown in this paper up to a constant factor. This
shows that packed secret sharing is the best kind of optimization in terms of
communication one could hope to achieve.

4 Conclusion and Future Work

We have shown that any generic protocol for perfect maliciously secure MPC
must have a worst-case communication complexity linear in the number of play-
ers and the size of the circuit being computed. In particular, we constructed a
class of circuits over any fixed finite field for which any n-party protocol must
communicate Ω(ngκ) bits, where g is the size of the circuit being computed.

For arithmetic circuits over finite fields of sufficient size, we have seen that the
best known upper bound equals our lower bound up to a constant factor.

We showed that the particular class of circuits used in the lower bound can be
computed with a communication that equals the lower bound up to a constant
factor. We were able to do so because we could exploit the recursive structure
of the circuits to amortize some communication. It is unclear how to apply this
technique in general to “tall and skinny” Boolean circuits. As a consequence it
is unlikely there is generic protocol for Boolean circuits with a communication
complexity that equals our lower bound.

When the number of corruptions is submaximal, i.e. n = 3t+s for some s > 1
we showed that the lower bound is Ω(ng/s). This equals the communication
saved by the use of packed secret sharing which shows that packed secret sharing
is optimal in some sense.

The specific class of circuits we considered is linear in the size of the input.
The obvious open problem is whether the lower bound still applies when the
circuit is much larger than the input: is there a lower bound that grows with the
circuit size of the function being computed?
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