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Abstract. Indistinguishability against adaptive chosen-ciphertext at-
tacks (IND-CCAZ2) is usually considered the most desirable security
notion for classical encryption. In this work, we investigate its adaptation
in the quantum world, when an adversary can perform superposition
queries. The security of quantum-secure classical encryption has first
been studied by Boneh and Zhandry (CRYPTO’13), but they restricted
the adversary to classical challenge queries, which makes the indistin-
guishability only hold for classical messages (IND-qCCA2). We extend
their work by giving the first security notions for fully quantum indistin-
guishability under quantum adaptive chosen-ciphertext attacks, where the
indistinguishability holds for superposition of plaintexts (qIND-qCCA2).

1 Introduction

Recent advances in quantum computing show the possible emergence of new kinds
of attacks due to quantum adversaries. The first type of attacks would be due to
adversaries owning a quantum computer and using it to break computational
assumptions (thus attacking classical cryptographic cryptosystems). This has
been made possible by the invention of quantum algorithms that solve factoring
and discrete logarithm problems in polynomial time [Sho99] and consequently,
break the security of many classical public-key encryption schemes based on these
assumptions. This threat has led to the emergence of so-called post-quantum
cryptography, based on arguably quantum-resistant assumptions. But this change
of assumptions may not be sufficient, and symmetric cryptosystems may also be
impacted, in case we allow a quantum adversary, not only to perform computation
on a quantum computer it may own, but also to carry out a second type of
attacks, by interacting with the target in superposition. Quantum algorithms
for unstructured search [Gro96] or period finding [Sim94] could then be applied
to attack classical constructions using superposition queries [DFNS14,KLLN16].
Cryptosystems secure against this type of attacks would be called quantum secure.

As we approach the quantum era, it thus becomes necessary to construct
new public-key cryptosystems based on quantum-resistant assumptions, and to
investigate the security of both symmetric and public-key cryptosystems against



an attacker allowed to interact with honest parties using quantum communica-
tion. Recently, there has been towards this goal extensive research works that
consider this scenario of quantum superposition attacks for different classical
cryptographic constructions such as random oracles, pseudorandom functions, en-
cryption and signature schemes [BDF*11,Zhal2,BZ13b,BZ13a,GHS16,AMRS20]
and give corresponding new security definitions. Furthermore, this new field of
research is also motivated by the existence of concrete attacks against classical
constructions using superposition queries (e.g., see [DFNS14, KLLN16] and their
follow up works). In this paper, we continue this line of work and focus on the
security for classical encryption schemes against quantum adversaries allowed to
make quantum encryption and decryption queries.

1.1 Defining Security for Encryption Against Quantum Adversaries

Classical Security Notions. Indistinguishability-based security definitions are
modeled as a game between a challenger and an adversary A. In the Find-
Then-Guess style (see Appendix A.3 for the Real-or-Random style), the game
starts with a first learning phase (with access to some oracles), followed by a
challenge phase where A sends a challenge query (two messages g and 1 to be
encrypted) and receives a challenge ciphertext (encryption of x;). Afterwards, a
second learning phase follows, and finally, .4 outputs a solution (its guess for the
bit b). The security reduction consists in constructing a new adversary which
simulates A and solves some hard underlying problem. The learning phases
define the type of attacks: chosen-plaintext attacks (CPA) if the adversary has
access to an encryption oracle in both learning phases, and chosen-ciphertext
attacks (CCA) in case it also has access to a decryption oracle in the learning
phases (non-adaptive or CCA1 if it is restricted to the first learning phase, and
adaptive or CCA2 otherwise).

Indistinguishability against adaptive chosen-ciphertext attack (IND-CCA2)
is usually considered the most desirable security notion for encryption. In the
CCA2 games, the adversary is restricted not to ask for decryption of the challenge
ciphertext, otherwise, this would lead to a trivial guess of the bit b. It is the role
of the challenger to ensure that the adversary obeys this rule, which intrinsically
requires the ability to copy, store and compare classical strings.

Quantum Attacks on Encryption. With recent advances in quantum com-
puting, a quantum adversary may become a tangible threat in not so long.
Switching to post-quantum computational assumptions is a beginning but may
not be enough in case the adversary gains quantum access to honest parties and
protocols. Consider for instance the well-known construction of CCA2 secure
encryption schemes from lossy trapdoor functions [PWO08]: if the construction
is instantiated with lattice-based problems, it is arguably post-quantum secure.
But we show later that, the insecurity may arise from the use of a one-time pad
inside the construction (see Section 4.2). Furthermore, [DFNS14,KLLN16] and
their follow up works show that the security of several classical constructions can
be compromised if the adversary can perform superposition attacks.



Boneh-Zhandry’s Security Notions [BZ13b]. Boneh and Zhandry propose
the first definition of IND-CCA for both symmetric and public-key encryption
schemes against quantum adversaries allowed to make quantum encryption and
decryption queries. But they show that the natural translation of the classical
Find-then-Guess paradigm to the quantum setting is unachievable, even for IND-
CPA security (see Section 1.4). To overcome this impossibility, they resort to
considering quantum queries during the learning phases only, and classical queries
during the challenge phase. In addition to looking artificial, this inconsistency
between the learning phases and the challenge phase may lead to a cryptographic
construction that fulfills this security notion (IND-qCPA or IND-qCCA) while
being subject to an attack.

For instance, in [ATTU16], the authors verify IND-qCPA security of XTS
mode of operation (with quantum learning queries and classical challenge queries).
They design a block cipher such that an encryption scheme in XTS mode,
instantiated with that block cipher, can be attacked during the learning phase
using quantum learning queries. However, this attack cannot be used to violate
the IND-qCPA security definition. The explanation for this inconsistency is that
this attack cannot be implemented in the challenge phase due to the classical
restriction imposed on the adversary. This example supports our claim that
the inconsistency between the learning phases and the challenge phase can be
problematic and should be overcome.

IND-CCA2 Security Notions. To date, defining the CCA2 security with
quantum challenge queries remains unsolved. In [GHS16], the authors address
the inconsistency described above for the case of symmetric encryption, but only
for IND-CPA, and leave as an open problem the IND-CCA definitions.

The main obstacle is to define how the challenger should reply to the quantum
decryption queries after the adversary has made the quantum challenge queries.
When the challenge queries are classical, they can be stored and later the challenger
can return L if the adversary submits one of them as a decryption query. Although
it is trivial and inherent to store the challenge ciphertext in the classical setting,
it is highly non-trivial to store ciphertexts in the quantum world, due to a number
of technical obstacles, all of which can be traced to quantum no-cloning and the
destructiveness of quantum measurements.

Since we now consider the adversary’s challenge queries as quantum states, it
may be tempting to think that the approaches from the literature on quantum
encryption (that is, the problem of encrypting quantum data) would work here.
The notorious “recording barrier” that we face in this work has arisen previously
in the literature on quantum encryption. In particular, devising the notions of
quantum ciphertext indistinguishability under adaptive chosen-ciphertext attack
and quantum authenticated encryption [AGM18] requires circumventing similar
obstacles. However, [AGM18] defines IND-CCA2 security for quantum encryption,
which inherently requires the users to have quantum computers, while in this
work, we focus on classical encryption that can be implemented on classical
computers and only needs to be secure against quantum adversaries. We show in
Section 1.4 that indeed the approach of [AGM18] would not help.



In this paper, we manage to overcome this recording barrier by using Zhandry’s
compressed oracle technique [Zhal9] (an overview is given in Section 1.2) and we
propose the first quantum version for IND-CCA security notion. We justify our
definitions in Section 1.3. Finally, in Section 1.4, we discuss our work compared
to previous work [BZ13b,GHS16,MS16] and we also briefly restate the approach
of [AGM18] and explain why it does not obliviously work in our setting,.

1.2  Our Approach

Towards resolution, we start from a recent groundbreaking technique that allows
for on-the-fly simulation of random oracles in the quantum setting: Zhandry’s
compressed oracles [Zhal9]. The goal of his work is to overcome the recording
barrier, by allowing the reduction to record information about the adversary’s
queries, which is a key feature of many classical ROM proofs.

Zhandry’s key observations are threefold. First, instead of considering a
random function h being chosen beforehand, one can purify the adversary’s
mixed state by putting h in uniform superposition ), |h). This observation
is a technicality that allows us to fulfill the two next points. Then, the next
observation is that, by doing the queries in the Fourier basis, the data will be
written to the oracle’s registers instead of writing to the opposite direction. This
enables the simulator to get some information about the adversary’s queries.
Finally, the last and most important one is that the simulator needs to be ready
to forget some point it simulated previously, by performing a particular test on
the database after answering the query. In particular, Zhandry defines a test
computation that maps |[+) — |+) [1) and |@) — |$) |0) for any |¢) orthogonal to
|[+), where |+) = > _ |z) is the uniform superposition state. The “test-and-forget”
procedure can be implemented by first performing the query in the Fourier basis
and then doing the test operation on the output registers (of the simulator). This
test determines whether the adversary has any information from the oracle at
some input. If not, that pair will be removed from the database so that the
adversary cannot detect that it is interacting with a simulated oracle.

This technique has been extended from random oracles to lazy-sampling
of non-uniform random functions in [CMSZ19]. The intuition is almost the
same, except that now one starts from the all-zero state, performs an efficient
sampling operation that computes the function f(z) according to some non-
uniform distribution — it is the quantum Fourier transform (QFT) operation in
the uniform setting. One then performs the query in the Fourier basis, transforms
back to the computational basis and applies the “test-and-forget” operation
(which is defined similarly as in the uniform setting). For this to work, the two
important requirements are that: i) the sampling operation must be efficient; ii)
the function distribution must be independent for every input.

To define security for encryption, we choose the real-or-random paradigm
to work with. This is because partially, the real-or-random paradigm does not
suffer from Boneh-Zhandry’s impossibility (discussion below). Furthermore, it is
actually possible to define quantum chosen-ciphertext security for this paradigm
using the quantum lazy-sampling technique we just described. In what follows,
let us focus on the random world of the paradigm. For each challenge query in the



random world, the challenger applies a random function to the plaintext registers
before encrypting, all aforementioned requirements are met: the encryption of
each submitted plaintext is actually an encryption of another uniformly random
plaintext, and since the encryption algorithm is efficient, the sampling operation
can also be efficiently constructed.

The above idea gives us a reasonable way to define adaptive chosen ciphertext
security against quantum challenge queries: by instantiating the encryption oracle
with this lazy-sampling technique, we are able to keep track of the information
needed to formulate the CCA2 notions, namely the challenge queries the adversary
has made, and the challenge ciphertexts it has received. However, applying
Zhandry’s framework directly to our setting does not work, and more efforts are
needed. For example, one main difference is that in our setting, when making
queries to the random oracle, there is no response register (from the adversary).
In Zhandry’s framework, this response register is essential for the technique, as
the “test-and-forget” procedure works based on the value of this register. Another
problem is how to implement the oracle with an one-shot call to the encryption
algorithm: this is necessary when defining “one-time” security, or when doing
security reductions. We refer the reader to Section 3 for technical details.

1.3 Our Contributions

New Notions of Quantum Indistinguishability and Their Achievability.
We define novel security notions for encryption in both the symmetric (Definition 2
in Section 4) and public-key settings (Definition 3 in Section 5). Our main
contribution is to propose the first definitions for adaptive chosen ciphertext
security that support fully quantum indistinguishability, resolving an outstanding
open problem posed by Gagliardoni et al. [GHS16]. Furthermore, to justify our
formalization, we show that our notions

— are achievable (see Theorem 3 and Theorem 6);

— are all closed under composition (see Theorem 1 and Theorem 4);

— are strictly stronger than previous notions with classical challenge queries
(see Theorem 2 and Theorem 11). In particular, this shows the quantum
(in)security of various symmetric encryption schemes including stream cipher
and some block cipher modes of operation such as CFB, OFB, CTR. This
even extends to authenticated encryption, in which some most widely used
encryption modes like GCM are also resulting in an insecure scheme.

— (when restricted to classical challenge queries) are equivalent to Boneh-
Zhandry’s notions [BZ13b].

In this work, we adopt the Real-or-Random security definition (see Ap-
pendix A.3 for classical definitions). Informally, in the real game, the adversary
has no restrictions on the use of the decryption oracle Dec. Only in the random
game, the challenge encryption oracle is implemented as a compressed oracle: it
applies a random function h' to the plaintext register before doing the encryption.

! We note that previous works ([MS16,CETU21]) use random permutations instead
of random functions in the random world. It is arguable which security definition
is the right adaptation of the classical Real-or-Random security definition to the



For each decryption query, the challenger looks for the query’s basis state in the
database (in superposition) and if found, it reasonably guesses that the adversary
is trying to decrypt the challenge ciphertext, and so it returns the adversary’s
original message (which is what is stored in the database). Otherwise, it decrypts
normally. Intuitively, the security is established by the distinguishing probability
of the adversary between whether its message is encrypted with Enc or Enco h.
We then provide constructions satisfying these security notions in Section 4.3
and Section 5.2. For the symmetric-key setting, our construction follows the
classical Encrypt-then-Mac paradigm, in which we use a pseudorandom function
in the role of the MAC scheme (see Theorem 3). Concerning the public-key
setting, we propose a compiler that lifts any secure encryption scheme in the
sense of [BZ13b] to an encryption scheme secure in the sense of our notions in
Section 5.2 (Theorem 6). The compiler follows the classical hybrid encryption
paradigm, where we encrypt the message with a one-time symmetric encryption
which can be constructed from pseudorandom functions, and then encrypt the
symmetric key with a secure public-key scheme (in the sense of [BZ13b]).

New Notions of Quantum Non-Malleability. We initiate the study of def-
initions of non-malleability for classical public-key encryption in the quantum
world. This notion, first introduced by Dolev, Dwork and Naor [DDNO00], is
the strongest integrity-like notion that is achievable using public-key encryption
only. The goal of the adversary, given a ciphertext y, is not to learn some-
thing about its plaintext x, but rather to output a different ciphertext y’ such
that its plaintext z’ is “meaningfully related” to z. In the classical setting,
the notion of non-malleability has been formalized using different definitional
approaches: the indistinguishability-based approach [BDPR98,BS06,PsV07] and
the simulation-based approach [DDN00,BS06,PsV07]. In the scope of this pa-
per, we give indistinguishability-based definitions (Definition 4) and leave the
simulation-based approach, as well as their full characterization as a future work.
We show that our notions are closed under composition (Theorem 5) and we give
the relations between indistinguishability and non-malleability notions (Figure 2).

Completeness of Bit Encryption. In the classical setting, we know that one-
bit encryption schemes are necessary and sufficient to build many-bit encryption
schemes [Ms09]. We show that the same result also holds in the quantum setting
in Section 6. Unfortunately, if the adversary is allowed to send quantum challenge
queries, classical constructions do not hold anymore. For example, the results
for classical CPA and CCA1 security follows from bit-by-bit encryption, but the
same constructions fail in the quantum setting. In order to obtain this result in
the quantum setting, we construct quantum-secure many-bit encryption from
quantum-secure bit encryption based on our feasibility theorems (Theorem 3
and Theorem 6), armed with known results in literature.

quantum setting. However, the two notions are equivalent if the message space has
size superpolynomial. This is because in this case, random functions and random
permutations are indistinguishable.



1.4 Related Work and Discussion

This line of work on defining security for encryption in the quantum world
started by Boneh and Zhandry in [BZ13b]. They show that quantizing the
notion of classical “left-or-right” indistinguishability is unachievable, even for
chosen-plaintext security. In more details, the adversary sends two input-message
registers for the challenge phase:

Z Ag,21,y |1’0,$1, y> = Z Nzo 21,y ‘x07x17y @ Enc(xb» .
Z0,%1,Y Z0,T1,Y

For any classical encryption scheme, the adversary can perform an efficient
attack which allows it to get the bit b with overwhelming probability. Follow-
up works [GHS16,MS16,GKS20] manage to bypass this impossibility and give
security definitions that allow the adversary to send quantum challenge queries.
These works use different approaches, we give a discussion on these approaches
and relate them to ours below.

On the query models. In [CETU21], all possible qIND-qCPA security notions
for symmetric-key encryption have been studied. It was proven that “real-or-
random” in the standard oracle model and “left-or-right” in the minimal oracle
model are among the strongest ones we could achieve, and at the same time, the
two notions are provably incomparable?3. We believe that the standard oracle
model is a more realistic query model, and thus security notions defined in this
model might be a better one, for several reasons:

— In the symmetric-key setting, [GHS16] shows that with the decryption oracle,
minimal oracles can be efficiently simulated by standard oracles. However, we
stress that in general, unlike the symmetric setting, in the public-key setting,
the requirement of having the decryption key simultaneously with the public
key is unrealistic in most of the cases. The encryption machine should not
hold the secret key for practical use. Thus, defining security for public-key
encryption in the minimal oracle model is not possible in general.

— Implementing queries in the minimal oracle model is only applicable to
injective functions, which definitely does not include decryption. Thus, one
still needs the standard oracle model to define chosen-ciphertext security:
the minimal oracle model for encryption queries, and the standard oracle
model for the decryption queries. This type of notions is not consistent in
our opinion.

— The standard oracle model captures the quantum fault attacks while the
minimal oracle model does not (see [GHS16]).

— Oracles implemented in the minimal oracle model require extra quantum com-
putation. That is, the challenger has to use its secret information/randomness

2 In the standard oracle model, the query is implemented as |z,y) — |z,y @ f(z)). In
the minimal oracle model, the query is implemented as |z) — |f(z)).

3 We note that in [CETU21], instead of “real-or-random” (as we are considering here),
they consider “real-or-permuted” notion. However, their results translate directly
to “real-or-random” notions, and also to the public-key setting (using the hybrid
encryption approach).



twice in the computation (once for encryption and once for recovering the
message). In the standard oracle model, the second computation is not
needed. (We note that in our notion, in the real game, the challenger imple-
ments the encryption oracle straightforwardly in the standard oracle model
and does not need any extra computation.) This might limit some quantum
attacks. For example, consider the smartcard frozen attacks [GHS16], here
if the adversary wants to make an encryption query in superposition, it is
arguably better to “use” the standard oracle model, as the minimal oracle
model requires a longer coherent time of the device, otherwise, the attacks
might not work at all.

One might also ask whether the adversary can only prepare one message
register per challenge query in the “real-or-random” notion is somehow limiting.
[CETU21] shows that that the currently known way to have 2 message registers
per challenge query (as in the “left-or-right” paradigm) seems to be to consider
the minimal oracle model if one wants to achieve a strong notion. Combining
with Boneh-Zhandry’s impossibility on defining “left-or-right” security in the
standard model [BZ13b], our notions might be the best we can hope for.

Semantic Security in the Quantum World. In the classical setting, semantic
security [GM84], the computational complexity analogue to perfect security, is
considered as the strongest possible security notion and is shown to be equivalent
to all indistinguishability notion. Semantic security formulates that whatever
can be efficiently computed (represented by a target function farget(-)) from the
ciphertext and additional partial information about the plaintext (represented
by a function f.(+)) can be efficiently computed given only the length of the
plaintext and the same partial information. Quantum semantic security was first
studied in [GHS16]. Albeit with some restrictions on the adversary, this notion
is equivalent to the “left-or-right” indistinguishability notion in the minimal
oracle model. However, we note that this equivalence does not imply that this
“left-or-right” indistinguishability notion in the minimal oracle model is the
strongest one, as we explained above (essentially, this follows from the results
given in [CETU21]).

In the following, we show that a natural translation of semantic security
to the quantum setting in the standard oracle model is unachievable. The
impossibility follows essentially from the nature of the standard oracle model,
in which each query is modeled as |z, y) — |z,y @ f(z)). The crucial point here
is that the adversary receives in the challenge phase not only the ciphertext
but also the plaintext, that is (a superposition of) |,y @ Enc(x)). This allows
the adversary to output any value fiqrge:(2) for some target function fiarget(-)-
In the simulation, the simulator receives no encryption, but only the auxiliary
state a on |z, y), computed by some quantum circuit C,,, on the plaintext state.
We note that since the quantum circuit Cy,, is given by the adversary, Cyyz
does not necessarily preserve the input registers |z) (for example, take Cyyy a
quantum circuit tracing out the input registers and outputting a constant). As
such, the simulator has no information on the plaintext, while the adversary does.
Thus there is no simulator that can simulate the adversary efficiently. This gives



us some hints that defining a generic quantum semantic security might not be
possible.

Quantum Encryption Approaches [AGM18]. On a high level, an adver-
sary A has negligible probability in distinguishing between two experiments:
in the real one, it has access to encryption and decryption oracles with no re-
strictions, whereas in the random one, the challenge encryption oracle replaces
A’s queried plaintexts by random ones (half of a maximally-entangled state),
and the decryption oracle answers with the originally queried plaintexts if the
adversary asked for decryption of a challenge ciphertext (which can be done by
first decrypting the ciphertext and applying a measurement on the entangled
state), otherwise it answers normally. It is tempting to say that this approach
resolves the problem of defining chosen-ciphertext security for the symmetric-key
setting in the minimal oracle model. However, as explained above, the minimal
oracle model does not support decryption queries, and it is not clear if this ap-
proach is compatible with the standard oracle model. In the context of standard
oracles, this approach does not work unfortunately. The adversary can then use
the same strategy to detect the random experiment’s simulation: it prepares a
maximally-entangled state [¢7)y ., and uses half of it (the registers X) as the
challenge plaintext, and keeps X’. After receiving the challenge ciphertext, it
measures the plaintext registers and X', and trivially distinguishes whether it
is in the random experiment. We note that this attack cannot be performed
without relaying, that is the plaintext registers X need to be available to A after
the challenge encryption. However, non-relaying is indistinguishable from being
traced out the plaintext registers (from A’s perspective). This inherently reduces
to a definition with classical challenge queries, which defeats our goals?.

Related Work. The real-or-random approach that we use here was first proposed
by Mossayebi and Schack in [MS16] (in which they call “real-or-permuted”) for
defining quantum security for symmetric encryption. However, their security
definition (and a subsequent work of Carstens et al. [CETU21]) use random
permutations for the random world instead of random functions as in ours.
Furthermore, they have not overcome the main obstacle in defining notions for
adaptive chosen-ciphertext security, that is, how the challenger can check if a
quantum decryption query submitted by the adversary is not “related” to the
challenge queries. Instead, in their definition, the adversary is imposed by a
restriction that it cannot submit such decryption queries, which cannot be verified
by the challenger. Without being able to verify that the adversary follows the
restriction, the definition is not useful because the adversary can trivially break
security without the challenger being aware of it. In our paper, we explicitly
show how to impose this restriction on the adversary, and present a meaningful
quantum counterpart of chosen-ciphertext security.

Chosen-plaintext security for symmetric-key encryption with quantum chal-
lenge queries was first defined in [GHS16] in the minimal oracle model. Gagliar-
doni, Kramer, and Struck [GKS20] extend the results from [GHS16] to the

4 A similar discussion also appeared in [GHS16].
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public-key scenario, also using the minimal oracle model. They show that the
minimal oracle for encryption can be implemented with the knowledge of the
randomness for so-called “recoverable encryption schemes”. Recall that in general,
one would need both the standard encryption oracle and decryption oracle to
efficiently implement a minimal encryption oracle.

Their notions and ours are inherently incomparable due to the difference in
how we model quantum oracles access (see our discussion above). We leave the
problem of unifying these security notions for future study.
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2 Preliminaries

2.1 Notations

Let A € N be the security parameter. The notation negl(\) denotes any function
f such that f(\) = A~ When sampling uniformly at random a value a
from a set U, we employ the notation a & U. When sampling a value a
from a probabilistic algorithm A4, we employ the notation a < A. For a € N|
[a] = {x € N |z < a} will denote the closed integer interval with endpoints 0 and
a. Let |-| denote either the length of a string, or the cardinal of a finite set, or
the absolute value. By PPT we mean a polynomial-time non-uniform family of
probabilistic circuits, and by QPT we mean a polynomial-time non-uniform family
of quantum circuits. Let d, ., denote the Kronecker delta function of = and z’.

2.2  Quantum Computing

For notation and conventions regarding quantum information, we refer the reader
to [NC11]. We recall a few basics here. We let |¢) denote an arbitrary pure
quantum state, let |z) denote an element of the standard (computational) basis.
A mixed state will be denoted by lowercase Greek letters, e.g., p. We let |+)
denote the uniform superposition, that is [+) =Y _|z).

A pure state |¢) can be manipulated by performing a unitary transformation U
to the state |¢), which we denote U |¢). The identity on a n-bit quantum system
is denoted Z,,. Given two quantum systems A, B, with corresponding Hilbert
spaces Ha, Hp, let |¢) = |¢o, #1) be a state of the joint system. We write U |¢)
to denote that we act with U on register A, and with identity Z on register B, and
we write U4P to denote that we act with U on both registers A, B simultaneously,
that is U4P = U4 @ UP.

Quantum Computations. Let ) be a n-bit quantum system over Z, for
some integer g. The Quantum Fourier Transform (QFT) performs the following
operation efficiently:
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1
QFT|a) = —= S Wiy,
ye{0, 1}

where w, = exp(%), and x -y denotes the dot product. In this paper, we usually
consider ¢ = 2, so that wy = (—1).

Given a function f : X — ), we model a quantum-accessible oracle O for f as
a unitary transformation Oy acting on three registers X,Y, Z with the property
that Oy : |z,y,0) — |z,y & f(x),0), where & is some involutive group operation
(so-called quantum query model). Given an algorithm A, we sometimes write
y + A91:02(z) for the event that a quantum adversary A takes z as input,
makes quantum queries to 01, O,, ..., and finally outputs y.

2.3 Cryptosystems and Notions of Security

Here we briefly recall standard notations of classical cryptosystems [Gol04], see
Appendix A for complete definitions.

Symmetric-key Encryption. A symmetric-key cryptosystem SE consists of
three PPT algorithms S€ = (IC, SymEnc, SymDec).

The standard correctness requirement is that for any key k < K(), any random
coin r of SymEnc and any x € X, we have SymDec, (SymEnc, (z;7)) = . We
sometimes omit the randomness r in SymEnc.

Public-key Encryption. A public-key cryptosystem & consists of three PPT
algorithms £ = (KeyGen, Enc, Dec).

The following correctness definition is taken from [HHK17]. We call a public-
key encryption scheme & §-correct if

: <
E |max Pr [ Decox (Encp(a; 7)) # 2 ]| <4,

where the expectation is taken over (pk, sk) < KeyGen(\).

Game-based Definitions. Previously, quantum indistinguishability for adaptive
chosen-ciphertext security has been defined in the work of Boneh and Zhandry
[BZ13b]. At a high level, their notions allow quantum encryption and decryption
queries, but require challenge queries to be classical. Regarding the attack
models, the following security notions are then defined: IND-qCPA, IND-qCCAL,
IND-qCCA2. We briefly recall their definitions in Appendix A.

3 How to Record Encryption Queries in the Random World?

The starting point towards our goal of defining indistinguishability-based security
notions for encryption is to explain how the challenger should reply to quantum
decryption queries in the second learning phase after the adversary has made the
quantum encryption queries in the challenge phase. This implies explaining how
it could record these quantum challenge queries. In this section, we show how
this can be done in the random world.

3.1 Ciphertext Decomposition

For simplicity, let we denote the encryption algorithm as a function f that takes
as input a plaintext z € X, a randomness r € R and outputs a ciphertext



12

y < f(z;r) € Y. We also assume that the domain of f is X = {0,1}™, its range
is Y = {0,1}", and the randomness space R = {0,1}*. We make a convention
that f(L) = 0, where L denotes some symbol outside the domain X and the
range ). We define ciphertext decomposition as follows.

Definition 1. For a function f, for all messages v € X, we write y := (y1]|y2) +
f(z;7) and define:

— Message-independent: 3, is message-independent if for all randomness r,
there exists a function g such that y; := g(r). In other words, the message-
independent component of the ciphertext can be computed solely from the
randomness r, independent of the message x. Furthermore, we require that
0< |y1] < [yl.

— Message-dependent: y, is message-dependent if for all randomness 7, there
exists no function g such that yo := g(r). In other words, the message-
dependent component of the ciphertext can not be computed solely from the
randomness r. Furthermore, we require that 1 < |ya| < |y|.

We will also write f = fo 0 f1, where fi acts only on the randomness, and fo
acts on both the randomness and the plaintext.

Remark 1. Our definition above can be defined for any encryption scheme, with-
out losing of generality. Furthermore, it also does not exclude some artificial
encryption scheme such that the encryption is deterministic when the plaintext x
is some special value (for example, the secret key), that is, there exists a function
g such that ys = g(x).

Remark 2. The definition of ciphertext decomposition is merely served as a
technical step towards constructing the compressed encryption oracle in the
random world in subsequent sections. We note that in an actual proof of security of
an encryption scheme, one usually needs not to pay attention to this decomposition
definition.

3.2 Oracle Variations

Here, we describe some oracle variations which will be used later in subsequent
sections, the so-called standard oracle and Fourier oracle. These oracles and their
equivalence are proven in much of literature on quantum-accessible oracles (e.g.,
see [KKVB02,Zhal9,CMSZ19]).

Standard oracles. For any function f with domain X = {0,1}™ and range
Y ={0,1}", the standard oracle for f is a unitary defined as

StdOF Y " auy |2, ) xy = D ay |2,y @ f(2)) xy -

x,Y T,y

The standard oracle can also be implemented in the truth table form: for each
query, the oracle’s internal state consists of n2™-qubit F' registers containing
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the truth table of the function. For short, we write |f(0)]|...||f(2™ — 1)) as | D).
Then, StdO; performs the following map (on the adversary’s basis states):

StdOy |z,Y) xy @ |D)p = |2,y ® D(2)) xy |D) g
=2,y @ f(2) xy 1D)p

The equivalence of these two oracle variations follows directly from the fact
that for each query, if we trace out the oracle’s internal registers, the mixed state
of the adversary in both cases will be identical.

Fourier oracles. The Fourier oracle model FourierO, while technically provides
a different interface to the adversary, can be mapped to the standard oracle by
QFT operations. The initial state of FourierOy is

1 E-F
QFT" D), = e EE:(—l) |E)p -

On the basis states, the Fourier oracle FourierO is defined as follows.

FourierOy |z, 2) vy ® ED\E)

1
A=

1 ,
Z(_l)E Pz, Z)xy |[E® Pryz)p-
E

/2n2771

—

where P, , is the point function that outputs z on x and 0 everywhere else.
Intuitively, with the Fourier oracle, instead of adding data from the oracle’s
registers to the adversary’s registers, it adds in the opposite direction.

Lemma 1 ([KKVBO02,Zhal9]). For any adversary A making queries to
StdOy, let B be the adversary that is identical to A, except it performs the

Fourier transformation to the response registers before and after each query.
Then Pr[A307 () = 1] = Pr[BFeurierOs () = 1].

Proof. Each oracle can be constructed by an f-independent quantum circuit
containing just one copy of the other, that is

QFTY¥ 0 5tdO; o QFT™F = FourierOy,
QFT™ ¥ o FourierO; o QFTY ¥ = StdO;. 0

3.3 Recording Queries in the Random World

As we have explained in Section 1, to define chosen-ciphertext security, we follow
the real-or-random paradigm. In this section, we show how to process queries
and record them in the random world, in which before applying the encryption
algorithm f, the challenger chooses a random function h and applies it to the
plaintext registers. As such, we also denote the encryption procedure in the
random world as f o h. In what follows, we abuse the notation and write f o h
in the subscript of the oracle’s notation with this meaning: for each query, a
random function A is chosen uniformly by the oracle, so that A is not a pre-defined
function. We note that the function f is known to the adversary though.
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Single-query setting. We first start describing the oracle operations handling
a single query and describe the general case later.

Without loss of generality, we assume that the query’s response register Y
can be decomposed into two parts Y7, Ys, in which the first part corresponds to
the message-independent component, and the second part corresponds to the
message-dependent component. Let |Y7| :=ny and |Ya| := ny where ny + ng = n.

In the standard oracle model, the encryption oracle is implemented by first
sampling a randomness r, a function h : X — X uniformly at random, and then
applying the encryption algorithm f on the input (h(z);r). From the adversary’s
point of view, this is equivalent to h being in uniform superposition ), |h) and
performing the following map:

7, Y) xy @) g Z \h) g = Z 2,y @ f((h(2);7) xy M) R 1) - (1)
h h

Augmenting the joint system with a uniform superposition register H is a pu-
rification of the adversary’s mixed state, and tracing out H (i.e., projecting
onto the one-dimensional subspace spanned by |h)) recovers the original mixed
state. Moreover, this projection, which is outside of the adversary’s view, is
undetectable by any adversary A.

Using ciphertext decomposition definition, we can write Equation (1) as
follows.

1z, y1llY2) x v, v, ® WRZ |h) g HZ |z, (Y1lly2) ® fF(R(2);7)) xv,v, @ IT) R |P) 5
I I

= Z |z, y1 ® f1(1), y2 © fa(h(2)i7)) xv,y, @17V g 1R g -
h

We further note that, since the same randomness r is used for all “slots” in
superposition, fi(r) is also the same for all “slots”. In other words, fi(r) is just a
classical value, which can be computed independently from the adversary’s query.
As a result, only the message-dependent registers are needed for recording queries.
From now on to the rest of this section, we only consider the message-dependent
parts in the adversary’s response registers as well as the oracle’s registers. These
parts are denoted with index 2 in subscript (e.g., ya, 22, fa,...).

Now we describe our compressed encryption oracles. We first introduce some
local procedures acting on the oracle’s side, possibly controlled by the adversary’s
registers. Let Decomp, be the identity operator except for

Decomp,, | |r) |x) \/% Z ) \/% Z(—l)fz(u;r)'v [v) | = Ir)[L)0)[0),

ue{0,1}™

and

Decomp, (1} 1) 10}10) = 1) o) <= 3 fu) <= SU(=1) 0 o).

ue{0,1}™
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It is clear that Decomp,, is a unitary operator. Furthermore, applying it twice
results in the identity, thus Decomp,, is an involution.

Using the notion similar to the description of Zhandry’s compressed random
oracle in [Zhal9], we introduce the notion of a database D that is maintained
by the oracle as follows. A database D will be a collection of tuples (z, (z/,y)),
where (z, (2',y)) € D corresponds to D(z) = (2/,y). We say D(z) = L if there
is no such pair for an input z. For a database D with D(z) # L, we also write
D = {z,u,v} U D" where D'(z) = L. D consists of all the oracle’s registers,
except the randomness registers R. Decomp is then defined as the related unitary
acting on the joint quantum system as follows.

Decomp |z, z2) ® |r) | D) = |z, 22) ® Decomp,, |r) | D) .

Let Init be the procedure that samples a random r uniformly and initializes
a new register |r)|L,0,0). Let FourierQ’ be unitary defined on the adversary’s
basis states as:

FourierQ’ |z, 20) ® |r) | D)

= FourierQ’ |z, 20) ® |r) vl2 () | £ u, v} U D)

1 1
7 v 22D

u,v

1 1 .
S (=) R {0 @ 20} U D).
n2

= |z, 22) ®|r)

V2™ /2
Finally, we define the CFourierO,.p, oracle’:
CFourierO, oy, :== Decomp o FourierQ’ o Decomp o Init.

We state the following lemma:

Lemma 2. In the single-query setting, the compressed Fourier oracle CFourierQO o
acts on a basis state |z, z2) where v € X and zo € {0,1}™2, as follows.

— If 20 =0, then CFourierOy,op, |2, 22) — |z, 22) ® |r) |L,0,0).
— If 20 # 0, then CFourierO p,op |7, 22) = |@, 22) ® |}y 2,), where

1 o (u;r)-v
|G,20) = 1) WorEa ZZ(—l)h( |z w0 @ z)

Furthermore, for any adversary A making a single query to StdOy,qp, let B be
the adversary that is identical to A, except it performs the Hadamard trans-

formation H®™ to the response registers before and after the query. Then
Pr [AStdOf2oh () _ 1] = Pr [BCFourierszoh () — 1] .

5 . . . .

° For notation consistency, we use the same subscript in compressed oracles as for stan-
dard oracles. However, we note that there is no real function h in the implementation
of CFourierO and its variants.
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Proof. To prove the lemma, it is enough to show that CFourierO ¢, ., and FourierO ¢,
are perfectly indistinguishable.

We prove this through a sequence of games. In what follows, we ambiguously
denote QFT |fa(x;7)) by |n.) for each z € {0,1}™. We will also take y & L =
y,y - L = 0. When the adversary’s response register is |+) (which corresponds
to |0) in the Fourier basis), we can write, on the truth table of the oracle (for
both FourierOy,op, and StdOy,op,), the column with index « where x is the query’s
input as L.

Game G : In this game, the adversary interacts with the Fourier oracle FourierO s,

whose initial state is |r) ﬁ Son [(R(0), o) - -+ 1(R(2™ 1) i gam —1)))-

Game G : In this game, we represent the oracle in the form:
1 m m—
Ir) Noea 2 10, 2(0), o) [l - (2™ = 1, (2™, i am —1))) -

The update procedure for a query is then simply FourierQ’. G is identical to
Gy, since we have inserted the input points 0,...,2™ — 1 into the oracle’s state,
which is independent from the adversary’s state.

Game G5 : In this game, the oracle starts out as the “zero” database:
) [(L,0,0)[f -~ [I(L, 0,0)).

Then a query is implemented as Decomp'ToFou rierQ’ oDecomp’, where Decomp’ :=
®?=071 Decomp,. At the beginning, Decomp’ is applied to the “zero” database,

which maps it to the complete database

1
/2m2m

) D10, 5(0), muo)ll -+ (2™ = 1, h(27™ ) i am 1)) -
h
Then FourierQ’ is applied and the output state of G in this stage will be exactly

the output state of G;. Since Decomp/Jr is a unitary that only operates on the
oracle’s register, its applications is undetectable to the adversary. So G5 is
perfectly indistinguishable from Gj.

Game G35 : In this final game, we use the compressed oracle CFourierOy,op,. Let
x be the query’s input. We note that FourierO’ and Decomp,, commute for any
2’ # x. Thus, we can move the computation of Decomp,, to come after FourierQO’,
consequently, its applications cancel out. We then have:
Decomp’Jr o FourierQ’ o Decomp’(|z, z) @ |r) | D))
= Decomp! o FourierQ’ o Decomp,, (|2, z) ® |r) | D))
= Decomp' o FourierO’ o Decomp(|z, z) ® |r) | D)).

We are left with a database D whose support has at most 1 defined point after
the query in G5. The remaining > 2™ — 1 points are all (L, 0,0). So we may end
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up with a superposition of databases that have at most one defined point. We
then can move this defined point in the database to the first register (this is a
unitary operator and is undetectable to the adversary) and obtain a superposition
of databases that have a defined point only in the first register. Therefore we can
discard all but the first register, without affecting the adversary’s state. This
shows that G3 and G5 are identical. O

The compressed Fourier encryption oracle in the random world CFourierO o,
is straightforwardly obtained by running the message-independent function f;
on the randomness r, transforming it to the Fourier basis and then composing it
with CFourierOy,op. Formally, CFourierO . = (QFTF1 Ufff) o CFourierOy,op. We
then have

Lemma 3. For any adversary A making a single query to StdOy¢.p, let B be
the adversary that is identical to A, except it performs the Hadamard trans-
formation H®™ to the response registers before and after the query. Then

Pr [AstdOfoh() — 1] — Pr [BCFourierOfoh () = 1].

Compressed standard encryption oracles. By applying Hadamard to the
adversary’s response registers before and after the query, and to the oracle’s
register F' after the query, we also obtain the compressed standard encryp-
tion oracle CStOyo,. The oracle’s state after the query is (in superposition
of) |r, 2, u, f(u;r)). Formally, CStO o == QFTY ¥ o CFourierO o, o QFTY. By
applying the same argument as in Lemma 1 to CFourierO .5 and CStO 4o, and
combining with Lemma 3, the following lemma follows:

Lemma 4. CStOy.p and StdOyop, are perfectly indistinguishable. That is, for
any adversary A, we have that Pr[AS90sen () = 1] = Pr[A®Oser () = 1].

Many-query setting. We denote CStO;.p as the following oracle: for each
query, CStOoq invokes a new instance of CStO ¢y, with uniformly and indepen-
dently randomness r. Similarly, StdO .y denote the following oracle: for each
query, StdOy.py samples uniformly and independently a randomness r and a
random function A, and then answers that query using StdO ;. By the standard
hybrid argument, it is easy to verify that:

Lemma 5. CS5tOfoy and StdOop are perfectly indistinguishable, in the many-
query setting.

For each i-th query, its oracle’s database is |D;) = |x;, u;, f(ui;r;)). Overall,
the oracle’s database D will be a collection of many tuples (z, (z’,y)) where
(z,(2',y)) € D means f(z';r) =y and h(z) = 2’ for different random functions
h.

3.4 A Technical Observation

Notice that from the proof of Lemma 2 above, we implement this compressed
encryption oracle with at least two computations of fo (and so f) via two
applications of Decomp. However, as we will see in later sections, it is crucial for
our security reductions to simulate CFourierO .5, with only one computation of f,
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which allows us to “outsource” f computations to other oracles. We now give an
intuition why we can reduce many computations of f to one computation. Let’s
consider the following cases.

— The 25 registers are all-zero. Note that since the initial state of the oracle
database D is also all-zero, applying the first Decomp and then XORing the
adversary’s registers to the oracle’s (i.e., the application of FourierQ’) does
not change the database’s state. Finally, the second application of Decomp
brings it back to all-zero state, which can be discarded. At the end of this
step, D is empty. In this case, we see that we can skip FourierQ’, and two
applications of Decomp cancel out, leaving us no applications of f.

— The 2z, registers are not zero. By a similar argument, we have that the second
application of Decomp has no effects on the joint system, leaving us only one
application of f in the first application of Decomp.

We describe a quantum circuit in Figure 1, which applies a single computation
of fa (denoted as a unitary Uy, ), implementing our compressed encryption oracle
in the random world. Let Test be the unitary defined as Test|0) |b) — |0) |b)
and Test|¢) |b) — |¢)|b @ 1) for any |¢) orthogonal to [0"2) and b € {0,1}. A
concrete computation (given in Appendix B) reveals that this circuit outputs the
same quantum state as stated in Lemma 2.

|z)
|22) —
o Test Test
5 (10) —
= |11 S
‘o —{arrf
@
C. |r) Ut
z L[0) HQFT f———

Fig.1. A quantum circuit implementing our CFourierOy,., oracle. Depending on the
control bit b which is the output of Test, if b = 1, we apply Uy,, otherwise, we apply
the identity. The bit b will be discarded after the computation.

3.5 How to Answer Decryption Queries?

We now describe how to answer decryption queries in the random world using the
database constructed above. Generally, we will consider any d-correct encryption
scheme (see Definition in Section 2.3).

We will start with a technical lemma, in which the decryption will answer
“naively”, that is if the ciphertext is f(z’;7) for some 2, the decryption oracle is
expected to return z’, even if 2’ was the output of a random function. (Roughly
speaking, this decryption oracle mimics a standard decryption oracle with no
restrictions on the adversary.) We call this decryption oracle the naive decryption
oracle.

In the following, we abuse the notation and denote f~! as the decryption
algorithm. We then give the adversary access to a new oracle denoted ClnvO -1
(this is our naive decryption oracle) which acts on the database, instead of StdOf-1.
Given access to ClnvO-1, the bound on the distinguishing probability of the
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adversary when interacting with the compressed oracle CStOoy is stated in
Lemma 6.

We define a classical procedure Findlmage’ which takes as input a ciphertext
y € Y, and a database D. Then, it looks for a tuple (z, (z,y)) € D. If found, it
outputs (b = 1,w = z’), otherwise, it outputs (b = 0,w = 0). Notice that there
may be many tuples with the same y in D, but since an encryption scheme must
be injective (for decryption to work), these pairs must have the same z’.

We define the unitary operation ClnvO¢-1 for the inverse queries which maps
the basis state |y, z) ® | D) to:

Up-1ly,2) @ D) = |y, 2@ ' (y)) ® D) if Findimage'(y, D) = (0,0),
ly, z ® w) @ | D) if Findlmage'(y, D) = (1, w).

This unitary is implemented by a single call to f~!, controlled by the output
bit b of Findlmage’ recorded in some ancilla registersS.

Lemma 6. For any (unbounded) oracle algorithm A, and any §-correct encryp-
tion scheme:

‘Pr [AStclofoH,Stdof,1 ()= 1} —Pr [ACStofoH,clnvof,1 ()= 1” <O(q-9),
where q; is the number of inverse queries.

Proof. We prove this lemma through a sequence of games.

Game Gy: This is the game where A interacts with the standard oracles StdOfo g
and StdO-1.

Game G: This is identical to Gg, except that now the oracle StdO oy is sim-
ulated using the compressed oracle CStOy.r. Notice that StdO ;-1 operation
does not touch the database registers, thus it commutes with any CStO . oper-
ation. Since CStOyop is equivalent to the standard oracle StdO¢op, A cannot
distinguish G; and Gj.

Game G3: This is identical to (i1, except that now the oracle StdO ;-1 is replaced

by the oracle ClnvO 1.

Let |¥) be the joint system state of the adversary and the oracle before
making any inverse query. Denote A = StdO;-1 — ClnvO;-:. For each query
ly, z) to the inverse oracle, we consider the registers y, z, D. We now examine
three cases.

(a) Let D be such that y ¢ D, that is, Findlmage(y, D) = (0,0). Let P; be
the projection onto the registers y, D such that y ¢ D. In this case, the
inverse oracle in both games applies the unitary mapping |y, z) ® |D) —
ly, 2 ® f~'(y)) ® |D). Thus, AP, |¥) = 0.

5 The oracle first computes Findlmage’, records the output in some ancilla register,
performs the CNOT operation controlled on the output and finally un-compute
Findlmage’'.
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(b) Let D be such that y € D, that is, Findlmage(y, D) = (1,w). Let P, be the
projection onto the registers y, D such that y € D and f~!(y) = w. In this
case, we also have AP, |¥) = 0.

(c) Let D be such that y € D. Let Ps be the projection onto the registers
y, D such that y € D but f~!(y) # w. Thus |[Ps|¥)|” is the probability
of measuring y, D and get y € D such that f~1(y = f(z)) # x for some
pre-image  of y. In this case, we have ||AP; |¥)||* < 4, by the definition
that the encryption scheme is é-correct.

. 2 (%)
Notice that P+ P+ P = Z. Therefore, we have || A |¥)||> = HZ?:I AP; |\I/>H <

E?Zl |AP; |0)||* < 8, where (x) uses triangle inequality. Then the same holds
true for any mixed state since any mixed state is in the convex hull of pure states.
If A makes at most ¢; inverse queries, the trace distance of the mixed state of the
adversary in games G5 and G is at most O(g; - ¢). This completes the proof. [

Now we describe our actual decryption oracle in the random world. Instead of
using Findlmage’ which returns (1,2’), we use an identical Findlmage except that
it returns (b = 1,w = x) when (z, (2’,y)) € D. The oracle ClnvO;-: is redefined
using Findlmage as follows. It maps the basis state |y, z) ® |D) to:

Us-rly.2) ® D) = |y, 2@ f~'(y)) ®|D)  if Findlmage(y, D) = (0,0),
ly, z ® w) @ | D) if Findlmage(y, D) = (1, w).

3.6 Notation

From now on to the rest of the paper, we will use the following notation:

— O to denote the standard encryption and decryption oracles StdO (which
are distinguished by subscript, e.g., Osymenc for encryption and Osympec for
decryption) in the real world.

— R to denote the compressed encryption and decryption oracles (which are
distinguished by subscript, e.g., Rsymenc for encryption and Rsympec for
decryption) in the random world. In particular, the encryption one will be
implemented using CStO, and the decryption one using ClnvO.

4 Quantum-Secure Symmetric Encryption

4.1 Definitions of Security

In this section, we use the compressed oracle technique defined above to define
quantum real-or-random indistinguishability security notions.

High-Level View. During the learning phases, A has access to the encryption
standard oracle Osymenc, . In the CCA case, it also has access to Osympec, in the
first learning phase. We describe informally how we handle the challenge phase
and the decryption queries in the second learning phase. The goal is to mimic
the (purely) classical CCA security game (see Appendix A.3) in which: A gives a
challenge plaintext and receives either encryption of it or encryption of a random
message; during the second learning phase, if A makes a decryption query on the
challenge ciphertext, it is given back the challenge plaintext in both games.
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In the real-world (b = 1), the adversary has no restrictions on the use of the
decryption oracle (in particular, A can freely decrypt the challenge ciphertext —
getting back the challenge plaintext, as in the classical case), so that the encryption
oracle is simply implemented as the standard encryption oracle Osymenc, and the
decryption oracle as the standard decryption oracle Osympec, -

In the random-world (b = 0), the challenger implements the challenge encryp-
tion oracle using a compressed encryption oracle Rsymenc,, and the decryption
oracle in the second phase Rsympec, as described in Section 3.5. As in the real-
world, this decryption oracle always returns the original plaintext (x) if the query
is a challenge one, using the database. Otherwise, it just decrypts normally.

Definitions. Formally, denote A = (A1, A2). In both games, A; outputs an
internal state |®) after the first phase (i.e., the first learning phase), which will be
given to A in the second phase (including the challenge and the second learning
phase). We define a “real-or-random” oracle RR allowing A5 to make quantum
challenge queries. For learning queries, Az has access to Osymenc, and potentially
a decryption oracle DEC defined as follows.

RR(b) _ OSymEnck ifb=1, ,Dgc(b) _
RSymEnck ifb=0,

OSymDeck itb= 1;
Reymbee, if b= 0.

Definition 2 (Indistinguishability notions for symmetric encryption
(qIND-qCPA, qIND-qCCA1, gIND-qCCA2)).

Let S€ = (K, SymEnc, SymDec) be a symmetric encryption scheme and let A =
(A1, A2) be a quantum adversary. For qatk € [qcpa, gecal, geca2], we define the
following game, where the oracles O1, Oy are defined according to qatk:

Experiment ExptZe©?*~*(\, A):  qatk Oracle O; Oracle Oy

10 k&K qcpa (%] (%]
O 'mEnc, 70
2: D) A SymEncy »O1 ) qceal OsymDec, (%)
RR(b),OsymEncs O geea  Osympec DEC(b)
3 b/<—A2 (5)O8ymEncy 2(|<I)>) Y X

4: returnd’

We define A’s advantage by
AdVITEE (M) = [Pr [Exptz T (0, 4) = 1] = Pr [Bxprgz 0 (0, 4) = 1]
We say SE is secure in the sense of qIND-qATK if A being QPT implies that

Adv%?&qatk()\) is negligible.

Equivalence with Boneh-Zhandry’s Notions. To justify our notions, we
show that when restricting our definitions to classical challenge queries, they are
equivalent to Boneh-Zhandry’s notions (IND-qATK). If we denote our restricted
notions by IND-qATK’, a scheme S& is IND-qATK' secure iff it is IND-qATK secure.

Indeed, because the challenge queries are classical, the simulator can store the
challenge plaintexts and the challenge ciphertexts. Any simulator that returns L
if the adversary submits a challenge ciphertext in the sense of IND-qATK can
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be turned to a simulator that returns the original plaintext = in the sense of
IND-qATK', and vice versa. More precisely, we have that:

AdvELR(A) < 2 AdVIESET (1), and AdvpEET (A) < AdvELE(N).
This is the standard argument (see [BDJRI7]), we omit the details.

Single-message Versus Many-message Security. We have presented defi-
nitions which allow the adversary to make ¢(\)-many challenge queries to the
real-or-random oracle. A scheme satisfying the definitions in the case when
q(A) = 1 is said to be single-message secure. The question of whether single-
message security implies many-message security is the question of composability
of the definitions, which is answered affirmatively below.

Theorem 1. A symmetric encryption scheme SE is many-message qIND-qATK
secure iff it is single-message qIND-qATK secure.

The proof follows the classical hybrid argument; we give it in Appendix C.1.
4.2 A Separation Example

We show that upgrading from classical challenge queries to quantum chal-
lenge queries gives the adversary more power. In particular, we show that the
IND-qCCA2 secure symmetric encryption scheme given by Boneh and Zhandry
[BZ13b] is insecure once the adversary can make even a single quantum challenge
query in the sense of chosen plaintext security (qIND-qCPA). Our attack can
be considered as an impossibility to achieve quantum indistinguishability for
encryption schemes which follow the stream cipher-like paradigm (such as stream
ciphers, block cipher modes of operation including CFB, OFB, CTR, or even
some most widely used modes like GCM for authenticated encryptions).

Theorem 2. Under the assumption that quantum-secure pseudorandom func-
tions exist, there is an encryption scheme SE which is IND-qCCA2 secure, but
qIND-qCPA insecure.

Proof. We recall Boneh-Zhandry construction as follows.

Construction 1 ([BZ13b]). Let F and G be quantum-secure pseudorandom
functions. We construct the following encryption SE = (SymEnc, SymDec) where:

SymEnc, |, () : SymDecy i, (rllealez) :

1: & o1

=

T4 c1® F(ky,T)

2: ¢+ F(k,,7)Bx 2: ¢+ Gk, (r,z))
3: ¢+ G(ky, (r,z)) 3: if ca # ¢y then
4: return r|ci|lca 4: return L

5: returnx

Lemma 7 ([BZ13b, Theorem 4.10]). The encryption scheme SE in Con-
struction 1 is IND-qCCA2 secure.
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To show the qIND-qCPA insecurity of this scheme, we establish the following
quantum computation. Let Ugtp be the unitary implementing the one-time pad
encryption, but using the same classical randomness r (which is uniformly chosen
beforehand) in superposition. For fixed zg, 21 € {0,1}™, we prepare the following
state:

1 m
Y1) = 7 (lzo) + |1)) [0™) .

Applying Ugtp yields:
|¢2 \/» Z |xba Tp 2 T>
be{0,1}

Then we apply a Hadamard transform to 2m qubits in all the registers. This
yields the state:

2m+1 xb u Ty ®1)-v
|ths) = 2 Yoo« ) D (=)EI )
b wue{0,1}m ve{0,1}m™

_2mo1 . .
= 2 2 Z6“'(10@11),1)'(1’0@1’1)(_1)3:0 u®B(zo®r)-v |U,U> )

u,v

If we measure |13), with probability 1, we get a random pair (u,v) such that
u-(ggo@xl)zv~(xo@x1). (2)

If we apply a random function h to the first registers x; of |¢)1) before applying
Uotp and then un-compute it, we get the following state:

|1/J2 \[ Z ‘l’b, xb >
be{0,1}
Continue with the Hadamard transform as above yields:

|,¢)3> _ 2m 1

D Sutroman)v-(h(o)@h(e) (1) 7 EEEITI [y )

u,v

Measuring |145) yields a random pair (u,v) such that u - (zo @ x1) = v - (h(zg) @
h(z1)) where h(x;) are random m-bit strings. Thus, Equation (2) satisfies with
probability at most % It is now easy to see that:

Lemma 8. S& is qIND-qCPA insecure.

Proof. In the challenge phase, the adversary A chooses two fixed messages =g, -1,
and prepares the following state as its challenge:

= 25 1) 0 00 [+)g
b

The challenge ciphertext state will be:
|tho) = \[leb ) ples © Fky,r))p [+) if b=0,

or
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1) = % ; |z) 1) g [P(2) & F(ky, 7)) p [+) g i b= 1.

Since r is a classical value, A can discard two registers R and G, which are separate
from the others. A then applies the Fourier sampling (i.e., Hadamard transform
followed by a measurement as described above), and outputs 1 if Equation (2) is

satisfied, otherwise it outputs 0. We have Pr {Exptf’s?d'qcm_l(/\, A) = 1} =1and

Pr {Exptggd‘qcm_o(/\,/l) =1| < 3, thus Advﬁyf‘gqcm(/\) > 1 which is certainly

not negligible. O

4.3 Feasibility of Quantum CCA2 Security

The classical Encrypt-then-MAC paradigm [BN08] shows that an IND-CPA secure
symmetric encryption scheme can be made IND-CCA2 secure if combined with
an EUF-CMA MAC scheme. However, it is not obvious how to prove security
in the quantum setting, as the reduction algorithm has no way to tell which
ciphertexts the adversary received as the result of an encryption query in the
learning phases, and no way to decrypt the ciphertexts if it has received them.
To remedy these problems, we choose a specific type of MAC scheme in the
construction (that is, any quantum-secure PRF) and leave the general security
proof as an open question. The encryption scheme can be instantiated with any
qIND-qCPA encryption scheme. In the proof, we simulate the MAC with random
oracle and use Zhandry’s compressed oracles technique to efficiently check if the
adversary has seen a particular ciphertext as a result of an encryption query, and
to decrypt in this case. Due to space limitations, the proof of Theorem 3 is given
in Appendix C.4.

Construction 2. Let S€ = (Ksg, SymEnc, SymDec) be a symmetric encryption
scheme and qPRF = {qPRF, }xen be a family of quantum-secure pseudorandom
functions. A composition of base schemes SE and qPRF is the symmetric en-
cryption scheme SE' = (K', SymEnc’, SymDec’) whose constituent algorithms are
defined as follows.

K'(N) : SymEnc’k1”k2 (x): SymDec’k1”k2 (c]7):

1k & Ksel) 1: ¢« SymEnc, () 1: < SymDec, (c)

2: k, & {0,1}* 2: 7« qPRFk,(c||z) 2: if qPRF, (c[|z) # 7 then
3: returnk, ||k, 3: returnc| T 3 return L

4: return x

Theorem 3. Let SE be an qIND-qCPA secure symmetric encryption scheme.
Let qPRF be a family of quantum-secure pseudorandom functions. Then the
encryption scheme SE' defined in Construction 2 is qIND-qCCA2 secure.

Remark 3. As shown in [Zhal2], quantum-secure PRFs can be constructed from
quantum-secure one-way functions. In addition, [GHS16,CETU21] shows how to
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construct qIND-qCPA secure encryption schemes from quantum-secure pseudo-
random permutations.

5 Quantum-Secure Public-key Encryption

5.1 Definitions of Security

Indistinguishability Security. The indistinguishability notions can be defined
analogously to the ones given in Section 4. We define a real-or-random oracle
allowing quantum queries and the decryption oracle in the second learning phase
as follows.

Opec,, ifb=1,
RDec,, if b=0.

Okne,, ifb=1,

RR(b) =
®) {RE if b=0,

DEC(b) = {
Definition 3 (qIND-qCPA, qIND-qCCA1, qIND-qCCA2).
Let & = (KeyGen, Enc,Dec) be a public-key encryption scheme and let A =

(A1, Az) be a quantum adversary. For qatk € [qcpa, gecal, geca2], we define the
following game, where the oracles O1, Oy are defined according to qatk:

Experiment Expt?”d'qatk_b(/\,A): gatk Oracle O Oracle O,

1: (pk,sk) < KeyGen(\) gepa 1%} &
20 |®) « AT (pk) gecal  Opecy, @
30 b AFROO2 (o)) qeca2  Obecy, DEC(b)

4: return b’
We define A’s advantage by
Advgli}réd—qatk()\) — ’PI‘ {Exptqgind—qatk—l()\7A) _ 1} — Pr {Exptqu‘nd—qatk—O()\’A) _ 1} ‘ .

We say £ is secure in the sense of qIND-qATK if A being QPT implies that
Ad"%zd_qatk()\) is negligible.

Similarly as in Section 4, our definitions, restricted to classical challenge
queries, are equivalent to Boneh-Zhandry’s notions (IND-qATK). Furthermore,
the following theorem shows that our notions are closed under composition.

Theorem 4. An encryption scheme & is many-message qIND-qATK secure iff it
is single-message qIND-qATK secure.

The proof is similar to that of Theorem 1; we give it in Appendix C.1.
We also show a separation construction in Appendix C.3 showing that our
notions are strictly stronger than Boneh-Zhandry’s notions.

Non-Malleability Security. Intuitively, the classical definitions [BDPR98,BS06]
involve having an adversary play a challenge-response game. In the challenge
phase, the adversary is given an encryption y of a message x it produced itself.
It must then output a vector of ciphertexts y (whose components can be y - in
this case, the decryption returns L) called adversarial ciphertexts, together with
an arbitrary string. The security definitions require that the distribution of the
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adversary’s output and the decryptions of the adversarial ciphertexts is indistin-
guishable from the distribution when the adversary receives an encryption of some
random message 7 instead of . The non-malleability property can be established
by saying that when an encryption of x given to the adversary is replaced with
an encryption of a random Z, even the contents of encryption messages that the
adversary sends cannot change in any computationally noticeable way.

A closer look at the adversarial ciphertexts distribution gives us different
classical definitions, which leads to different composability properties. As pointed
out by Pass, shelat and Vaikuntanathan [PsV07], indistinguishability-based defi-
nitions of encryption may or may not compose in the context of non-malleability,
depending on how we treat an “invalid adversary” that outputs invalid ciphertexts
as part of its adversarial output. In the quantum setting, the adversary can
output a superposition of adversarial ciphertexts, which might include invalid
ciphertexts, even if it is “hard” to generate invalid ciphertexts. This leaves
us no choice but to incorporate invalid adversaries into the definitions. The
definitions given here are syntactically close to the classical definitions of [BS06,
Definition 4.1].

Definition 4 (QNME-qCPA, gNME-qCCA1, gNME-qCCA2).

Let £ = (KeyGen, Enc, Dec) be an public-key encryption scheme and let A =
(Ay, Az, A3) be a quantum adversary. For qatk € [qcpa, gecal, geca2) and r € N,
we define the following game, where the oracles O1, Q2 are defined according to
qatk:

Experiment Exptgm”e'qatk_b(/\,A): gatk Oracle O Oracle O,
1: (pk,sk) «+ KeyGen(}) qcpa %] %)
20 1) < AT (pk) gecal — Obecy, @
31 |Wa) = Zy’zay,z ly,2) |py.z) < A?R(b)’OQ(‘\pl)) gcca2  Opecy, DEC(b)
where |y| = |z| =7

41 |Us) < Rpecy |V2)
5.0 b AT2(|03))

6: returnd’

We define A’s advantage by
AdV%?e_qatk(A) — ‘PI [ExptgnmE—qatkfl()vA) _ 1} — Pr [Exptg‘nme—qatkfo()\“A) _ 1} ‘ '

We say £ is secure in the sense of qNME-qATK if A being QPT implies that
Adv%?e_qatk()\) is negligible.

The following theorem shows that our notions are closed under composition.

Theorem 5. An encryption scheme & is many-message qNME-qATK secure iff
it is single-message qNME-qATK secure.
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The proof is similar to that of Theorem 4; we omit the details.

Relating Indistinguishability and Non-Malleability. A full characterization
of fully-quantum indistinguishability and non-malleability notions is summarized
in Figure 2. These results are identical as in the classical setting [BDPR98]|. We
use slightly modified constructions of [BDPR9S8]: the attacks carry in the classical
manner, only the security proofs need to be adapted (see Appendix C.2).

gNME | O O <€ O
qlND| O O O
qCPA qCCA1l qCCA2

Fig.2. An arrow is an implication. There is a path from A to B if and only if A
implies B. The bold arrows represent non-trivial separations we actually prove in
Appendix C.2.

5.2 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2

We present a compiler transforming IND-qATK security to qIND-qATK security.
Our compiler follows the classical hybrid encryption paradigm. The message is
encrypted under a random symmetric key each time, and the key is encrypted
by the public-key encryption scheme. Since the same randomness is used for
each query in superposition, we can use the same random symmetric key in
superposition each time. This means that the adversary never has quantum
access to the encryption algorithm of the public-key scheme, only the symmetric
encryption needs to be secure against quantum queries, which we know how to
construct from one-way functions (Theorem 3).

Construction 3. Let & = (KeyGen, Enc, Dec) be a public-key encryption scheme
which is IND-qATK secure and §-correct. Let SE = (SymEnc, SymDec) be a one-
time qIND-qATK secure symmetric-key encryption scheme. We construct a new
public-key encryption scheme &' = (KeyGen',Enc’, Dec’) as follows.

KeyGen'()\) : Enc'pi(2) : Dec’ sk (cq|e2) :

1: (pk,sk) & KeyGen N 1: k& K() 1: k< Decx(c1)

2: return (pk,sk) 2: ¢ < Encp(k) 2: 1z < SymDec,(c2)
3: ¢ + SymEnc, () 3: returnx

4: return ci|ce

Remark 4. In this construction, we make no extra assumptions. We know that the
existence of IND-qATK secure encryption implies the existence of quantum-secure
one-way functions. IND-qATK secure public-key encryption can be constructed
based on quantum-resistant assumptions (e.g., Learning With Errors) [BZ13b].
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We give the security proof for adaptive chosen-ciphertext security in Ap-
pendix C.5, the other cases can be treated similarly.

Theorem 6. The encryption scheme &' defined in Construction 3 is qIND-qCCA2
secure, if £ is IND-qCCA2 secure, and SE is one-time qIND-qCCA2 secure. In
particular, for any QPT adversary A, there exist QPT adversaries B,C such that

AdVYE 1% (X) < O(gq - 8) + 2+ Advige 19 (\) + Advd5E 1% (N,
where qq s the number of decryption queries in the second phase.

6 Bit Encryption Is Complete

In this section, we summarize our result for a fundamental question: is bit
encryption in the quantum world complete as in the classical world? We will
show that the answer is affirmative, and give a construction for string encryption
from bit encryption. We note that the question is not trivial even for simpler
cases of CPA and CCA1 security. In the classical setting, under CPA and CCA1
attacks, a secure bit encryption scheme can be applied bit-by-bit to construct
a secure many-bit encryption scheme. However, the same construction fails in
the quantum setting. This result for the symmetric-key setting was observed
in [BBCT20,CETU21]. Indeed, the same attack is also applicable to the public-
key setting. For completeness, we describe the attack in Appendix D.
As an application of our Theorem 3 and Theorem 6, we can show that:

Theorem 7. Many-bit qIND-{qCPA,qCCA1,qCCA2}-secure encryption schemes
exist if and only if 1-bit qIND-{qCPA, qCCA1, qCCA2}-secure encryption scheme
exists.

Proof (Sketch). We give a sketch of the proof for the claim below.

For the symmetric-key encryption. From our Theorem 3, we conclude that
if we can construct many-bit qCPA-secure encryption from 1-bit qCPA-secure
encryption, then we are done. The steps to achieve this goal are as follows.

— Many-bit qCPA-secure encryption can be constructed from quantum-secure
pseudorandom permutations (qPRPs) [CETU21, Theorem 44]. We note that
the construction given in [CETU21, Theorem 44] is prove to be secure with
respect to real-or-permuted security, but the proof also holds for real-or-
random security which is used in our notions.

— qPRPs can be constructed from quantum-secure pseudorandom functions
qPRFs [Zhal6] (which uses function to permutation converters), or [HI19]
(which uses the four-round Luby-Rackoff construction).

— gPRFs with one input bit implies gPRFs with many input bit (for example,
via the GGM construction [Zhal2]).

— The existence of one input bit qPRFs is implied by our assumptions that 1-bit
encryption scheme exists: the existence of encryption implies the existence of
quantum-secure one-way functions, and quantum-secure one-way functions
implies quantum-secure pseudorandom number generators [HILL99], which
in turn gives us one input bit qPRFs [Zhal2].
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For the public-key encryption. From our lifting theorem Theorem 6, we know
that if we can construct many-bit encryption from 1-bit encryption for public-
key schemes which only need to be secure against classical challenge queries,
armed with the results in the symmetric-key setting, we are also done. For
IND-qCPA, IND-qCCA1 security (with classical challenge queries), this follows
directly from the bit-by-bit construction. For IND-qCCA2 security, it is not
difficult to adapt the classical security proof of [HLW12] to the quantum setting.
In particular, the construction and proof in [HLW12] involve defining detectable-
CCA2 security and some “bad events” when the adversary submits a decryption
query. Fortunately, all these notions are defined relatively to the adversary’s
challenge queries which are classical. Thus they can be defined similarly for the
IND-qCCA2 security and the proof carries through. O
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Supplementary Material

A Security Definitions
A.1 Pseudorandom Functions

Definition 5. A quantum-secure pseudorandom function (qQPRF) is a family of
efficient classical functions qPRF : {0,1}* x {0,1}™ — {0,1}" such that the
following holds. For any polynomially bounded m = m(\) and n = n()), and
any QPT adversary A, A cannot distinguish qPRF(-) for a random k & {0,1}*
from a truly random function H : {0,1}™ — {0,1}"™. That is, there exists a
negligible negl(\) such that

Pr [APRFk<'>(A) — 1|k <o, 1}A} —Pr [AH(‘)(A) - 1} ‘ < negl(\).

A.2 Pseudorandom Permutations

Definition 6. A (strongly) quantum-secure pseudorandom permutation (QPRP)
is a family of efficient classical function pairs qPRP : {0, 1}* x {0,1}™ — {0,1}™
and qPRP™ : {0,1}* x {0,1}™ — {0,1}™ such that the following holds. First,
for every key k and m € N, the functions qPRP and qPRP™" are inverses of each
other. That is, qPRP,Zl(qPRPk(z)) =x for any k,x,m. This implies that qPRP
is a permutation.

Second, for any polynomially bounded m = m(\), and any QPT adversary A,

A cannot distinguish qPRP.(-) for a random k & {0,1}* from a truly random
permutation P : {0,1}™ — {0,1}™. That is, there exists a negligible negl(\)
such that

‘Pr [AqPRPM')»qPRPF(')(A) —1|k< {0, 1}%] —Pr [AP<'%P’1<'>(A) - 1} ‘ < negl()).

A.3 Symmetric-key Encryption

A symmetric-key cryptosystem SE = (K, SymEnc, SymDec) consists of three PPT
algorithms.

e K() is a probabilistic key generation algorithm which takes no input and
outputs a secret key k.

e SymEnc,(z;7) is a probabilistic encryption algorithm which takes as input
a secret key k, a plaintext € X (where X is some fixed message space),
samples a random coin on each invocation r € R (where R is the randomness
space), and outputs a ciphertext y. We sometimes omit the random coin and
write SymEnc, ().

e SymDec, (y) is a deterministic decryption algorithm which takes as input a
secret key k and a ciphertext y, and outputs a message € X U { L}, where
1 is a distinguished symbol indicating decryption failure.
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Security Definitions. For the completeness, we give here a modified version of
the Real-or-Random security definition in the classical setting. In this notion,
the security game starts with a first learning phase, followed by a challenge phase
where A sends a challenge query (a message x to encrypt) and receives a challenge
ciphertext, which is encryption of either z if b = 1 or some random message z’
if b = 0. Note that encrypting a random message z’ is equivalent to applying a
random function h to x and then encrypting h(x). Afterward, a second learning
phase follows, and finally, A outputs a solution (its guess for the bit b).

In the standard IND-CCA2 security definition, the decryption oracle in the
second learning phase would return L if the query is a challenge ciphertext
(in both games). However, this is completely equivalent to return the original
plaintext (which was sent to the challenge oracle by the adversary) in both games.
We note that the challenger can do that in the classical setting, as it could keep
both the challenge plaintext and the challenge ciphertext. We formalize this
modified notion below.

We let the string atk be instantiated by any of the formal symbols cpa, ccal, cca2,
while ATK is the corresponding formal symbol from CPA, CCA1l, CCA2. When we
say O; = @ where ¢ € {1,2}, we mean O; is the function which, on any input,
returns L. For a random function h, h° is identity, and A' := h.

Definition 7 (Real-or-Random IND-CPA, IND-CCA1, IND-CCA2).

Let S€ = (K, SymEnc, SymDec) be a symmetric encryption scheme and let A =
(A1, As) be a classical adversary. Let F is the family of all functions over X. For
atk € [epa, ccal, cca2], we define the following game, where the oracles Oq, Oq
are defined according to atk:

Experiment Exptgngd'“tkfb()\,A): atk Oracle O7  Oracle O,

1: k(ilC() cpa %) &

OsymEncy »O1

2: (x,state) « A, ) ccal SymDec,(+) o
3. BEF cca2  SymDec,(-)  SymDec,(:)
4: y* — OSymEnck(hlib(m))

OSymEnck ,02

5: b« A, (y", state)

6: returnd’

Here, SymDec; (y) returns x if y = y*, otherwise it decrypts normally.
We define A’s advantage by

Advf})‘fg'gtk(/\) = ‘Pr [Expt?gd'atk_l()\,A) = 1} —Pr [Exptg"gd'“tk_o(/\,A) = 1} ’ .

We say SE is secure in the sense of IND-ATK if A being PPT implies that
Adv%‘fggtk()\) is negligible.

Next, we give the definition (in the Find-then-Guess style) in the quantum
setting, proposed by Boneh and Zhandry. In the following, we let the string qatk
be instantiated by any of the formal symbols gcpa, geccal, geca2, while ATK is the
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corresponding formal symbol from qCPA, qCCA1,qCCA2. When we say O; = &
where i € {1,2}, we mean O; is the function which, on any input, returns L.

Definition 8 (IND-qCPA, IND-qCCA1,IND-qCCA2 [BZ13Db]).

Let S€ = (K, SymEnc, SymDec) be a symmetric encryption scheme and let A =
(A1, A2) be a quantum adversary. For qatk € [qcpa, gecal, qeca2], we define the
following game, where the oracles O1, Oy are defined according to qatk:

Experiment Exptas “** (X, A):  gatk Oracle O;  Oracle Oy

1: k& K() gepa 1) 1)

OSymEnck ,O1

2 |zo,@1)|6) & A () aecal  SymDec,() @

3: if |zo| # |z1| then return 0 geca2  SymDec,()  SymDec,(-) with - # y”

4: y* <~ OSymEnck (-’rb)

Omncao *
50 0 AT () [9))

6: returnd’

We define A’s advantage by
AL (V) = [Pr [Bxptge T (8, A) = 1] = Pr[Expegd 0 (0, 4) = 1]

We say SE is secure in the sense of IND-qATK if A being QPT implies that

Advfzds_gatk()\) is negligible.

A.4 Public-key Encryption

A public-key cryptosystem & = (KeyGen, Enc, Dec) consists of three PPT algo-
rithms.

e KeyGen(\) is a probabilistic key generation algorithm which takes as input
the security parameter A and outputs a pair (pk, sk) of matching public and
secret keys.

e Encye(z;7) is a probabilistic encryption algorithm which takes as input a
public key pk, a plaintext € X (where X is some fixed message space),
samples a random coin on each invocation r € R (where R is the randomness
space), and outputs a ciphertext y. We sometimes omit the random coin and
write Encpk(z).

e Decg(y) is a deterministic decryption algorithm which takes as input a secret
key sk and a ciphertext y, and outputs a message x € X U {L}, where L is
a distinguished symbol indicating decryption failure.

Security Definitions. Similar to the symmetric setting, we first give a Real-
or-Random security definition for public-key encryption in the classical setting,
then Boneh-Zhandry’s definitions. For any subset D of the ciphertext space C,

—D
we define the “punctured” decryption oracle Decg (y) which returns Decg(y) if
y ¢ D, else it returns L.



35

Definition 9 (Real-or-Random IND-CPA,IND-CCAL, IND-CCA2).

Let £ = (KeyGen, Enc, Dec) be an public-key encryption scheme and let A =
(A1, As) be a classical adversary. Let F is the family of all functions over X. For
atk € [cpa, ccal, cca], we define the following game, where the oracles O1, s
are defined according to atk:

Experiment Expt@**=0(\  A):  atk Oracle O; Oracle O,

1: (pk,sk) < KeyGen()) cpa %) <
Encpkaol (A) ccal Decsk(') %]

o
2: (z,state) < A,
cca2  Dece(+) Decg(-)

3: h&F
15 Y O (@)

OFnc, 02,
5: b A, P (y*,state)

6: returnd’

Here, Decl, (y) returns z if y = y*, otherwise it decrypts normally.
We define A’s advantage by

Adv%’f{atk()\) = ’Pr [Expt?d'atk_l()\, A) = 1] —Pr [Exptfg"d'“tk_o()\, A) = 1} ’ .
We say £ is secure in the sense of IND-ATK if A being PPT implies that Adv%‘é’“tk N
is negligible.

Definition 10 (IND-qCPA, IND-qCCA1,IND-qCCA2 [BZ13b]).

Let £ = (KeyGen, Enc,Dec) be an public-key encryption scheme and let A =
(A1, Az) be a quantum adversary. For qatk € [qcpa, gecal, geca2], we define the
following game, where the oracles O1, Oy are defined according to qatk:

Experiment Expté"d'qatkfb()\,A): gatk Oracle O; Oracle O,

1: (pk,sk) < KeyGen()) gepa %) 1]
20 |zo, 1) |@) «+ AT (pk) gecal — Decsk(r) @

. ——D
31 if [zo| # [z1]| thenreturn0  4ecq2  Deca(:)  Decg(-) with D = {y*}
4: y" « Encee(zp)

50 b A (ly") 19)

6: return b’

We define A’s advantage by

AdvE1 (V) =

Pr [Exptigmz'qatk_l()\7 A) = 1} —Pr [Expt?d_q“tk_o()\, A) = 1] ‘ .

We say & is secure in the sense of IND-qATK if A being QPT implies that
Adv%‘é—qatk()\) is negligible.



36

A.5 Compressed Random Oracles

For more details on the description of the compressed random oracle, we refer
the reader to [Zhal9,DFMS21]. In this section, we give some technical lemmas
that are used in our security proofs.

We denote ® = ®,cx®, be the compressed random oracle registers, which
corresponds to its database. The state space of D, is generated with vectors |y)
for y € Y U {L}. The initial state of © register is ®,ex |L). For a fixed relation
R C X x Y, I'g is the maximum number of y’s that fulfill the relation R where
the maximum is taken over all x € X:

I'r = max |{y € Y|(z,y) € R}|.
reX
We define a projector I3 that checks if the register D, contains a value y #.1

such that (z,y) € R:
Mo, = Y [9)ulo,
y:(z,y)ER

Let I:I%l =TIp, — 15 . We define the measurement M to be the set of projectors
{Ex}mGXU{J_} where

2= Q% , @1% forze X and B =7 ¥7. (3)

' <x

Informally, the measurement M checks for the smallest = for which ©, contains
a value y #.1 such that (z,y) € R. If no register ®, contains a value y #L such
that (z,y) € R, the outcome of M is L. We define a purified measurement Mg p
corresponding to M that XORs the outcome of the measurement to an ancillary
register:
Mop |¢,2)5p — Z ol T)p.
reXU{Ll}

The following lemma states that the compressed random oracle and Mg p almost
commute if I'g is small proportional to the size of ).

Lemma 9 (Theorem 3.1 in [DFMS21]). For any relation R and T'r defined
above, the commutator [CStO, Mg p] is bounded as follows:

|[CStO, Mo p]|| < 8-27"/2,/2TR.

B Additional Details on Quantum Oracles

We give a detailed computation for the quantum circuit (given in Figure 1). The
intermediate states of the circuit are depicted in Figure 3.

Let us follow the states through this circuit. We denote the oracle registers
as D, DX, DY D® DYz (in the order from top to bottom), in which D2 corre-
sponds to the message-dependent one. The Test operation writes its output to
D?, which acts as a control bit for later computations. The input state is

o) =[x, 22) @ 10) po | L) px |0} v |r) pr |0) ps - (4)
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Fig. 3. Quantum circuit for CFourierOy,.n oracle.

Now let us first consider the case |z3) = |0). We have

[¥1) = |2, 22) ©[0) po [-L) px [0) pu [7) pr [0) pys -

In this case, since the control bit is 0, all the controlled operations (except the
last one) are just identity. For the last operation, since |22) = |0), it does not
change the value of the register DY?, that is

[Y7) = |2, 22) @ 10) p [L) px [0) pur |7} pr [0) v - ()

Now we consider the case |z2) is orthogonal to |0). The input state is still
the same as of Equation (4). We have

Y1) = |7, 22) ® ‘1>Db |L>DX |O>DU |7“>DR |0>DY2 )
[P2) = |2, 22) ® ‘1>Db |Z) px |0>DU |0>DR |0>DY2 )
1
[hs) =[x, 22) ® [1) pu @) px ﬁ Z [u) pu [0) pys -

ue{0,1}™

Next, the function fs is evaluated using Uy, acting on DY, DE DY2_ giving

) = le.2) @ s o) px <= 3w o)) v,

ue{0,1}™

After the application of QFT on the register DY?, we have

) = e 22)0l1 ) fehps <= 30 g = 3 (17 o),

ue{0,1}m ve{0,1}n2

The second application of Test would un-compute it and return D® back to 0,
thus we have

1 1 .
o) =12 22)®l0) e ladpx —o D fudpw o= Do (DB ),

ue{0,1}™ ve{0,1}n2
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Finally, we have

[¥7) = |z, 22)®|0) py |x) DXF Z

ue{0, 1}m

— Y (U e ),
2m ve{0,1}m2
(6)
In both cases, at the end of the computation, we can discard the register D°.
From Equation (5) and Equation (6), we obtain the same state as stated in

Lemma 2.
C Missing Proofs

C.1 Composability of Our Definitions
Symmetric-key Encryption.

Proof (of Theorem 1). The forward implication follows directly.

For the reverse direction, we use the standard hybrid argument that uses
an adversary A = (A;,As) with advantage € to construct a new adversary
B = (B1, By) which breaks the single-message security with advantage ¢/¢>.

Define a sequence of games Go, ..., G, in which B runs A and returns A’s
output as follows: For any game G,

1. B; simulates A’s i — 1 first challenge queries as learning queries, that is, B
just forwards A’s directly to its encryption oracle.

2. B uses A’s i-th challenge query as its challenge query.

3. For all A’s other challenge queries, Bs treats them as encryption queries in
the random world. In particular, it implements the encryption oracle for
A using the compressed oracle Rsymenc, except that it queries to its own
encryption oracle as a learning query during the oracle implementation. We
note that this is possible as explained in Section 3.3.

In the case of CCA2 security, Ba needs to be able to record A’s (i +1,...,q)-
th challenge queries, since it needs to simulate the decryption correctly. This
is done by using our recording technique as described. By also uses a slightly
different decryption oracle in the random world in the second phase as follows.
Let Rgympec be the decryption oracle of B in the random world in the second
phase, D be its database for the challenge query, and Rsympec be Bz simulated
decryption oracle for A. Then

Remon .2y D) — d Rémoeely:2) D) if Findimagel(y. D) = (0.0")
SymDec |Y5 " \ly, zew) D) if Findlmage(y, D) = (1, w).

This oracle can be implemented identically as described in Section 3.5, except
that instead of applying f~!, it sends a decryption query on the vy, z registers to

/
SymDec*

Note that Gy = Expt&2®9** =1 (x| A) and G, = ExptZe 1=\ A). Be-
cause A is able to distinguish Exptqmd'q‘mc ! from Exptqmd'qatk O there exists
some g € [1,q] such that A distinguishes G, from G441 with advantage at least
e/q. B can guess g correctly with probabﬂity 1/q, thus B’s overall advantage in

breaking the single-message security is €/¢2. O
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Public-key Encryption.

Proof (of Theorem 4). The forward implication follows directly. For the reverse
direction, we use the standard hybrid argument that uses an adversary A =
(A1, A2) with advantage ¢ to construct a new adversary B = (Bi, Bz) which
breaks the single-message security with advantage £/q°.

Define a sequence of games Go, ..., G, in which B runs A and returns A’s
output as follows: For any game Gj,

1. B; simulates A’s ¢ — 1 first challenge queries on its own, as in the experiment
Ex tqind—qatk—l
pte .
2. B uses A’s i-th challenge query as its challenge query.
3. B, simulates all A’s other challenge queries on its own using the compressed

encryption oracle, as in the experiment Expt;'ff'"d'qatk_o7 obtaining a database

D.

In the case of CCA2 security, Bs uses a slightly different decryption oracle in the
second phase as follows. Let R,’Decsk be the decryption oracle of By and Rpec be
By simulated decryption oracle for A. Then

(Rbee. ly,2)) D) if Findlmage(y, D) = (0,0™),

— Decqx
Roecly, 2} 1D) {|y, z @ w)|D) if Findlmage(y, D) = (1, w).

Note that Gy = Expt&™™9** =1 (X A) and G, = ExptZ"9*=9(\ A). Be-
cause A is able to distinguish Exptqgmd'qatkf1 from Exptqgmd'qatkfo, there exists
some g € [1,q] such that A distinguishes G, from G,y with advantage at least
g/q. B can guess g correctly with probability 1/q, thus B’s overall advantage in
breaking the single-message security is €/¢2. O

C.2 Relating Indistinguishability and Non-Malleability

Theorem 8 (qIND-qCCA1 = gNME-qCPA). If there exists an encryption
scheme & that is qIND-qCCAL1 secure, then there exists an encryption scheme &’
that is qIND-qCCA1 secure but gqNME-qCPA insecure.

Proof. Assume there exists some qIND-qCCA1 secure encryption scheme £ =
(KeyGen, Enc, Dec). The new encryption scheme & = (KeyGen’,Enc’, Dec’) is
defined as follows.

KeyGen’ () : Enc, () : Dec’, (y||b) :
1: (pk,sk) & KeyGen(A)  1: b<{0,1} 1:  + Deca()
2: return (pk,sk) 2: y < Encu(z) 2: returnz

3: return y||b

Claim 8.1. &' is gNME-qCPA insecure.

Proof Sketch. The scheme is malleable because given a ciphertext y||b of a plain-
text x, it is trivial to create another ciphertext of x by just outputting y||b. O
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Claim 8.2. £ is qIND-qCCAL1 secure.

Proof Sketch. Tt is easy to see that any adversary A against £ can be used to
construct an adversary B that attacks £ as follows. B runs A using its own oracle
01, and uses A’s challenge queries as its own challenge queries. Whenever B
receives a challenge ciphertext, it samples a random bit b and appends it to the
challenge ciphertext before forwarding it to \A. B outputs whatever 4 outputs.
One can verify that Advg g(A) = Adv4 e/ (N). Thus, the security of £ follows
from the security of £. O

O

Theorem 9 (qNME-qCPA = qIND-qCCAl). If there exists an encryption
scheme &€ that is QNME-qCPA secure, then there exists an encryption scheme &’
that is gNME-qCPA secure but qIND-qCCA1 insecure.

Proof. Assume there exists some qNME-qCPA secure encryption scheme & =
(KeyGen, Enc, Dec). Fix a family qPRF = {qPRF, : {0,1}* — {0,1}*} of
quantum-secure pseudorandom functions. The new encryption scheme &' =
(KeyGen', Enc’, Dec’) is defined as follows.

KeyGen'()) : Enc;k(x) : Declsk”k(bHy) :

1: (pk,sk) & KeyGen (M) 1: y < Encp(x) 1: ifb=0:

2: k{01 2: returnOfy  2:  return Decu(y)

3: sk’ < sk|k 3: else if y = qPRF(0):
4: return (pk,sk’) 4:  return sk

5: else return qPRF,(y)

Claim 9.1. &' is qIND-qCCAL1 insecure.

Proof Sketch. The adversary queries Dec;k”k(') at 1||0 to get v = qPRF,(0), and
then queries it at the point 1|jv to get sk. At this point, the adversary can
obviously break the security of £’. O

Claim 9.2. &' is qNME-qCPA secure.
Proof. Fix A and A. We prove security through a sequence of games.
Game Gg: This is the standard attack game.

Game G;: Replace qPRF with a truly random function H.
Since qPRF is a quantum-secure pseudorandom function, A cannot distinguish
G1 from Gy, except with negligible probability.

Game G5: This is identical to G;. The only change is to the decryption al-
gorithm, in which instead of returning sk when y = H(0), it returns H(H(0))
which is a random value independent from the secret key sk.

Games G and G2 proceed identically unless A successfully outputs H(H(0))
with a single query. To bound the distinguishing probability, we invoke the
following lemma.
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Lemma 10 ([Unrl5, Theorem 6.6]). Let A be any quantum oracle algorithm
making a single query to a random function H, with r inputs in the query. Then

Pr [z — H(H(0)) : H <& ({0,1} — {0,1}%), 2 + AH()} < 2720 0(p).

This probability is negligible for polynomially-bounded r (number of inputs
per query, which corresponds to the number of adversarial ciphertexts in a qNME
security game).

Finally, we design an adversary B = (B1, Ba, B3) attacking £ in the gNME-qCPA
sense from the adversary A = (A;, Az, A3) in this last game. B runs A as its
subroutine and simulates a random oracle H itself. B; and Bs output whatever
A1 and Ajz output, respectively. The algorithm By is defined as follows. Bs
receives a vector (in superposition) of adversarial ciphertexts from A,.

— If the basis state is |1||y, z, ¢y, ), then it maps this basis state to |Enc(H (y)), z, 1||#,
by allocating new ancilla registers (with proper padding), computing Enc(H (y))
and then swapping these newly created registers with the y registers. The y
registers are now included in the auxiliary registers |¢;, ).

— Otherwise, it keeps the basis state the same, re-organizes the state to

[y, 2) [0llpy.2)-

By then outputs the resulting state as its adversarial ciphertexts.

Let D be the database of B’s challenge queries. Consider By’s adversarial
ciphertexts state, let Dup be the event that this state has a non-negligible
weight on ciphertexts Enc(H (y)) such that Enc(H(y)) € D. The simulation is
indistinguishable if this happens with negligible probability. To see that, imagine
that in the real-world experiment, A3 would receive exactly H(y). The only
difference is in the random-world experiment: Enc(H (y)) € D means that H(y)
is a random message obtained by apply a random function h. Az would receive
a pre-image of h(H (y)) (by the definition of the gNME decryption oracle), which
is different from H (y) with overwhelming probability. This is only detectable if
Dup happens with non-negligible probability.

Indeed, we show that Pr[Dup] must be negligible, otherwise it would violate
the security of £ even in the qIND-qCPA. This is a standard argument, we omit
the details. The security of £ now follows by the security of £. O

O

Theorem 10 (qNME-qCCA1 £ gNME-qCCA2). If there exists an encryption
scheme & that is gNME-qCCA1 secure, then there exists an encryption scheme
&’ that is gNME-qCCAL secure but qNME-qCCA2 insecure.

Proof. Assume there exists some qNME-qCCA1 secure encryption scheme £ =
(KeyGen, Enc, Dec). Fix a family qPRF = {qPRF,} of quantum-secure pseudoran-
dom functions. The new encryption scheme £’ = (KeyGen', Enc’, Dec’) is defined
as follows.

Y,z
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KeyGen'()) : Enc;k(x) : Dec;ka(bHsz) :

1: (pk7sk)<i KeyGen () 1: y < Encx(x) 1: ifb=0A2=0:
2: k& {01 2: return 0/y||0 return Decg(y)
elseif b=1:
return qPRF,(y)
5: elseif b=2Az=qPRF.(y):

3: sk’ + sk|k

4: return (pk,sk’)

= W N

6: return Decqsk(y)

7: else return L

Claim 10.1. &' is gNME-qCCA?2 insecure.

Proof Sketch. Let 0|ly]|0 be the classical challenge ciphertext. The adversary
first queries Dec’ska(-) at 1]|y||0 (which is not the challenge ciphertext) to get
v = qPRF,(y), and then queries it at the point 2||y||lv to get the decryption of
y, which is exactly the decryption of the challenge ciphertext. This helps the
adversary to break the indistinguishability in the sense of gNME-qCCA2. O

Claim 10.2. &' is gNME-qCCA1 secure.

Proof. The proof is similar to that of Claim 9.2: first the pseudorandom function
gqPREF is replaced by a truly random function H, and for any decryption query of
the form 2||y||z, we return L where y is the challenge ciphertext.

The extra step is that we need to consider the case in which the adversary
happens to query to the random function involving the challenge ciphertext.
However, such event is unlikely since otherwise the scheme £ would not be secure
even in the sense of qIND-qCCAl. We formally prove the security through a
sequence of games. Fix A and A.

Game Gg: This is the standard attack game.

Game G1: Replace qPRF with a truly random function H.
Since qPRF is a quantum-secure pseudorandom function, A cannot distinguish
G from Gy, except with negligible probability.

Game G5: This is identical to G, except that now we will consider the encryption
oracle and the decryption oracle where the random function H is involved as
being implemented in the compressed oracle. Since these are equivalent to the
standard oracles, these changes do not affect the adversary’s success probability.
We have Pr[Gz] = Pr[G1].

Game G3: This is identical to Go. Let D be the database of the challenge
queries. The only change is to the decryption algorithm which is used in the last
phase after the adversary has output its adversarial ciphertexts: if the ciphertext
is 2||ly||H (y) where y € D (in the form of 0||y||0), then it returns L.

The intuition is that the adversary cannot make such a query (i.e., to put a
non-negligible weight on inputs 2||y||H (y) where y € D), except with negligible
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probability. Thus, the change is undetectable by the adversary. We formally
bound the distinguishing probability between G2 and G5 by considering the two
following events.

— Let ForgeOffline be the event that 4; (in the first phase) has a non-negligible
query weight on inputs containing some y € D in its queries to H. A result of
Zhandry [Zhal9, Lemma 5] shows that the success probability of a quantum
adversary in an standard oracle game is close to its success probability in
the corresponding compressed oracle game.

Lemma 11 ([Zhal9, Lemma 5]). Let p be the probability that an ad-
versary making queries to a random oracle H : {0,1}™ « {0,1}" and
outputting a tuple (a,b,c) such that |a] = |b| = k and H(a;) = b; for each
i € [k]. Let R be a collection of such tuples. Now consider running the
adversary with the compressed oracle, and we measure the database D af-
ter the adversary procedures its output. Let p’ be the probability that there
exists a tuple (a’,b’, ') € R such that D(a}) = b, for each i € [k]. Then
VP S VP A+ E/2n
We now show that if ForgeOffline happens with non-negligible probability, we
could design an adversary B that break £ in the sense of qIND-qCCAL.
e In the first stage, B implements a compressed random oracle and provides
a simulation of the decryption oracle of A using its decryption oracle.
Let D is the database kept by B.

e When A outputs its challenge, B measures its database D and gets many
pairs D = {(y, H(y))}. B then submits these y values to its decryption
oracle, which are legitimately counted as decryption in the first phase,
and gets back their plaintexts z. Only at this point, B outputs A’s
challenge as its challenge. After receiving back the challenge ciphertexts,
B measures its challenge query, and checks if there is any value in D¥. If
it does then it outputs a bit b depending on whether their plaintexts are
the same, otherwise it decides by flipping a coin. Observe that the success
of B is exponentially close to one half the probability of ForgeOffline (by
Lemma 11 and the standard argument).

Thus, we have Pr[ForgeOffline] must be negligible.

— Let ForgeOnline be the event that the adversary correctly computes H(H (y))
for some y € D using only a single query to H in the last phase. By a similar
argument to Lemma 10, we have that Pr[ForgeOnline] is negligible.

Therefore, we have that

|Pr[G3] — Pr[G2]| < Pr[ForgeOffline] + Pr|[ForgeOnline],

which is negligible.

Finally, we construct an adversary B = (By, By, B3) that attacks £ in the
sense of qNME-qCCA1 from any adversary A = (A1, A2, A3) of this last game.
This can be argued analogously to the argument in Claim 9.2. We omit the
details. O

O
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C.3 A Separation Example for Public-key Encryption

Here we show a separation example of our setting from the classical challenge
queries setting of [BZ13b]. The idea is to install a backdoor that only a quantum
adversary can use, by doing some quantum computation. We need to ensure
that the backdoor is useless even if the adversary has quantum access to the
decryption oracle in the learning phases. Our construction follows the hybrid
encryption paradigm combining a CCA2-secure public-key encryption and a one-
time CCA2-secure symmetric encryption. The attack is similar in spirit to that
for symmetric encryption.

Theorem 11. If there exists an encryption scheme £ which is IND-qCCA2 secure
against QPT adversaries, then there exists an encryption scheme £ which is also
IND-qCCA2 secure, but qIND-qCPA insecure.

Proof. Assume there exists some IND-qCCA2 secure encryption scheme & =
(KeyGen, Enc, Dec). Let H = {hy }1 be a family of pairwise independent hash func-
tions with the key space K. The new encryption scheme & = (KeyGen’, Enc’, Dec’)
is defined as follows.

KeyGen'(\) : Enc'pi(z) : Dec’ o (c1]calo) :

1: (pk,sk) £ KeyGen () 10 rE X kEK 1: 7|k + Dece(c1)

2: return (pk, sk) 2: ¢ + Encu(r||k) 2: if hi(c2) # o then
3 Co+—xDr 3 return L
4: 0« hg(e) 4: Tx—C2®r
5: return cil|cz|o 5: return x

The proof is completed by establishing that £ is IND-qCCA2 secure but
vulnerable to a qIND-qCPA attack.

Lemma 12. & is IND-qCCA2 secure.

Proof. Fix the adversary A and A. For the purpose of this separation, it is
sufficient to assume that &£ is perfectly correct. We prove security through a
sequence of games. Let Pr[G;] be the probability the adversary wins game G;.

Game Gg: This is the standard attack game. Let the challenge ciphertext be
(cf,c5,0%), and K* = (r*,k*) be the randomness used during the encryption
process. Then, the decryption oracle in the second phase can be written as

—D
Dec (-) with Do = {(c}, ¢}, 0%)}.

Game G;: This is identical to Gy, except that whenever a ciphertext (c7,-,-) €
Dy is submitted to the decryption oracle in the second phase, the decryption
oracle does not apply Decg(c}), but instead uses K* produced in the challenge
phase to perform steps 2 — 5.

This change is just conceptual, since we assume that £ is perfectly correct.
Thus, Pr[G1] = Pr[Gy].
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Game Gj: This is identical to G, but now the challenger computes c¢f by
encrypting a completely random value K™ = (r™, k™) instead of K*. That is,
¢f = Encpe(rT||kT), but ¢5 =2 @ r* and 0* = hy-(c3).

Notice that in games G and G, the ciphertext ¢} need not be submitted
for decryption. We show how to turn any distinguisher A of games G; and Gs
into an adversary A’ against the security of the underlying scheme £: A’ runs A
using its oracles to answer A, outputs (K*, KT) as its challenge pair. Finally,
A’ outputs whatever A outputs. It is easy to see that we have:

|Pr[G2] — Pr[Gq]] < Adv%{i—ggcoaz()\).

—D
Game G3: We further modify G2 and now change the oracle Dec O() to be

Dec ' (1) with Dy = {(c}, -, -)}. In other words, it rejects any ciphertext (c1, c2,0)
such that ¢; = cf.

Let Forge be the event that some ciphertext is rejected in game G35, but would
not have been rejected in the game G5. Since games G5 and Gj are identical
until event Forge, we have |Pr[G3] — Pr[G2]| < Pr[Forge].

Notice that in the construction of £, the use of pairwise independent hash
functions acts as a one-time secure message authentication code, thus Pr[Forge] =
0.

In this final game, the component ¢35 is one-time padded of the message
xp using a random string r* chosen uniformly and independently of all other
variables, including b. Thus, Pr{G3] = 0.

By the security of the underlying building blocks, we have the security of
g O

Lemma 13. & is qIND-qCPA insecure.

Proof. In the challenge phase, the adversary A chooses two fixed messages xg, x1,
and prepares the following state as its challenge:

1
=7 xp) [+) 10) [+) -
%) ﬁzb:| o) [+) 10} [+)
The challenge ciphertext state will be:
1
lho) = —= Y |ap) [4+) [zp @ 7Y |+) if b=0,
23

or

1 e
[P1) = 7 zb: |zo) |+) [h(zp) @ 7) |+) if b=1.

A then applies the Fourier sampling (as described in Section 4.2) and breaks the
security of £ with non-negligible probability. O

O
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C.4 Security of Encrypt-then-PRF

Proof of Theorem 3. We proceed using hybrid games. Let A be a QPT adversary.

For any game Gingex, we denote by Pr[Gindex] = |Pr[Gindex(A) =1 | b = 1] — Pr[Gingex(A) = 1| b= 0]|.
Also, by event Gindex(A), we mean the output of the experiments (defined as in

Definition 2) in game Gindex when interacting with A.

Game Gy: This is the standard attack game. In what follows, let k := ky||ko + K'().

Game G1: This is identical to Gy, except that we use, in the role of qPRF,_, a
random function H. (Imagine that the reduction has oracle access to H and uses
it in the role of qPRFkZ, notice that the key ko is chosen uniformly at random and
hidden from .A.) By security of gPRF, we have that |Pr[G1] — Pr[Go]| < negl()).

Game G5: This is identical to Gy, except that now we consider H as being
implemented in Zhandry’s compressed standard random oracle.

We give a description of how this compressed random oracle is implemented. A
query to the compressed random oracle is in (superposition of) the form |c||x) |y2)
where the second register is the second part of the adversary’s response registers.
Furthermore, since the compressed oracle for the encryption makes only one
black-box call to the unitary implementing the encryption algorithm for each
challenge query, there is also only a single call to the compressed random oracle
for each challenge query.

Let E denote the database of this compressed random oracle. In more details,
E will be a collection of (¢||x, T) pairs. For a pair (¢, 7) such that there is a pair
(c||lz,T) € E, we call w =z an associated input of (c,T).

Since the compressed random oracle is equivalent to the standard random
oracle, this does not affect the adversary’s success probability. We have that
PI’[GQ] = PI[Gl]

Game G3: This is identical to Ga, except now we make the following modification
to the decryption oracle in the random world.

In the following, we take the notation as in Lemma 9. We define the relation
R to be the set of all (x,7) such that 2 = SymDec(c) A H(c||z) = 7. Since
SymEnc has perfect correctness, for each c there is only one decryption z, and
thus [pr = 1. Given the relation RY, the projectors X% for z € X and X}
are defined as in Lemma 9. Now the measurement M := {¥%},cxuqL) checks
whether there exists a pair in the database E satisfying the relation R;' or not.
(Note that there is at most one pair satisfying the relation for each c.) Let Mg p
be the following purified measurement corresponding to M:

M% ply,2) = Z Yelyplzox)p,
zeXU{L}

where F is the registers of the database E and P is some ancilla registers. We
define the unitary Mg p that operates on the ciphertext, the registers £ and P
as:

Mg.plellm) [y, 2) g p = lelT) ©ME ply, 2) g p -

Note that Mg p is an evolution.
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The modification is as follows. For each decryption query, if Findlmagep,
returns (0, 0) the decryption oracle in the random world ngmDec/k first applies
the unitary Mg p with the ancilla register P initialized to 0. Then it executes
SymDec',. Finally it applies Mg p again.

o 1 D) {15 SO M DIE) )
ly, z @ w) | D) | E) if Findlmagep (y, D)
We show that Mg p and Sym Dec'k almost commute to show the indistin-
guishability of these two hybrids. By Lemma 9, we have that Mz_p and SymDec’,
almost commute, that is they are distinguishable to the adversary with probability
at most 8v/2 - 2_%7 where /¢ is the output’s length of qPRF, which is polynomial
in the security parameter. This shows that |Pr[Gs] — Pr[G2]| < negl()\).

Game G,4: This is identical to G3, except we change how decryption queries are
answered in the random world when Findlmage, returns (0,0). In this case, the
oracle first applies Mg p with the register P initialized to 0. Then, it XORs the
value of P to the response register. It finally applies Mg p again.

Mg pUME ply, z) | D) |E)  if Findlmagep(y, D) = (0,0),
Rsymbec, 14 2) [D) | E) = ) - P B
ly, z @ w) | D) |E) if Findlmagep, (y, D) = (1, w),

where Uy is defined as

v,z @) D) [E)g lo)p i # L.

The only difference between G4 and G3 is the definition of Rsympec,, and
that the adversary can distinguish between the two hybrids if and only if it sends
a query in which y € E\ D or y ¢ D U E with non-negligible weight. This is
because if y € D then in both hybrids, the original plaintext x was returned.
(i) We first consider the case in which y € E'\ D. First, we notice that for

challenge queries, the challenger only queries the compressed random oracle

H if it can record the query (see Figure 1). Thus, if y € EF\ D, in G,

SymDec’ is used to answer the queries, while in G4, Mg p is used to answer

the queries. However, Sym Dec’ and Mg, p return the same output in this

case.

(ii) Consider the case in which y ¢ D U E. The query is answered with L in
G4 and using SymDec’, in G3. If SymDec/, returns x # L, then the two
hybrids are distinguishable. However, this means that the adversary must be
able to procedure a ciphertext c||7 ¢ E such that SymDec’,(c||7) # L. Since
the underlying encryption scheme SE never outputs L, it means that the
adversary was able to produce a pair (¢||Z,7) € E such that H(¢||Z) = 7. Let
Forge be the event that at least one of the decryption queries in the random
world contains some pairs (g = ¢||7) with overall non-negligible weight such
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that H(¢||Z) = 7 ¢ E. A could distinguish the two games if and only if
Pr[Forge] is non-negligible. We invoke the following lemma on compressed
random oracles:

Lemma 14 ([Zhal9, Lemma 5]). Let p be the probability that an adver-
sary making queries to a random oracle H : {0,1}™ + {0,1}" and outputting
a tuple (a,b,c) such that |a| = |b] = k and H(a;) = b; for each i € [k].
Let R be a collection of such tuples. Now consider running the adversary
with the compressed oracle, and we measure the database E after the adver-
sary procedures its output. Let p' be the probability that there exists a tuple
(a’,b’, ') € R such that E(a}) = b} for eachi € [k]. Then \/p < /D' ++/k/2™.

Basically, the lemma says that the output of the adversary when making
queries to a random oracle is identical to the one obtained by measuring
the compressed database, except with negligible probability. We construct
a QPT adversary C from A that breaks Lemma 14 if Forge happens with
non-negligible probability. Assume that the adversary A makes at most
g queries to the random oracle (by making queries to the encryption and
decryption oracle). C runs A as its subroutine, and randomly measures one of
A’s decryption queries in the second phase. C would then obtain a pair that
PrfForee] * Since the
obtained pair is not in F, the probability p’ is 0. If Pr[Forge] isqnon-negligible,
p is also non-negligible. This breaks the bound given in Lemma 14.

is not in F with probability p in Lemma 14 such that p =

Overall, the two hybrids are identical except for the last case in which y ¢ DUE.
However, in this case, the two hybrids are distinguishable with at most negligible
probability. This shows that: [Pr[G4] — Pr[Gs]| < negl(X).

Game G5: We define a procedure Findlmagey over the database E similar to
the one defined over D, except that it takes as input a pair ((¢,7), E), searches
over the database E and returns (1, w) where w is the associated input of (¢, 7)
if 7 € E and (0,0) otherwise. This hybrid is identical to G4, except that in the
random world, the decryption oracle in the second phase Rsympec’, is implemented
as follows.

ly,z@w)|D)|E) if  Findlmagep(y,D) =

ly,z@& L)|D)|E) if  Findlmagep(y, D) =

Reymbecr, [4: 2) [D) | E) = A Findlmage(y, E)
E)

(1, w),
(0,0)
= (0,0),
(0,0)
= (1,w").

ly.2 @ w') D) |E) it Findimage,(y, D) =
A Findlmageg(y,

By the correctness of SE', it must be the case that if Findimagey returns
(1,w"), Mg, p should have the same w’ in the register P. Similarly, if Findlmageg,
returns (0,0), Mg p should have L in P. Therefore, these two hybrids are
identical, that is Pr[G5] = Pr[G4].
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Game Gg: This is identical to G5, except that in the real world, the decryption
oracle in the second phase Osympec’, is implemented as follows.

08 o =) |E) = {|y, z®L)|E) if Findimagep(y, £) = (0.0).
x ly,z@w) |E) if Findlmageg(y, E) = (1, w).

We can consider intermediate hybrids that make similar changes as in Gs_g
for the real world. By the same argument (except that now we do not have the
database D in the real world, hence the arguments in G4 is simplified), we also
have that |Pr[Gs] — Pr[Gs]| < negl(\).

Note that from this hybrid, the decryption algorithm SymDec’ is no longer
needed.

Game G7: This is identical to Gg, except that in the random world, for each
challenge encryption query, instead of applying the random oracle H on cl||z’
(where ¢ = SymEnc, (') for some random z’ € X'), we apply H on c||z, where
x is the original plaintext. Formally, the challenge encryption oracle Rsymgnc’
implements the following mapping;:

[z, y1lly2) = [, (11 © O)ll(y2 @ H(cl|2))) @ |z, ', | H(c||x)) .,

where ¢ = SymEnc, (z') for some random z’ € X

We note that the implementation of this oracle is similar to its implementation
in Gg (as described in Figure 1), except that the unitary Uy, (corresponding to
the unitary of the encryption procedure) acts on four registers (including the
original plaintext register): instead of using c||z’ (for some random z’ where
¢ = SymEnc, (') as the input to the compressed random oracle H, we use c||x
(where x comes from the adversary’s input registers).

Precisely, the function fo in Figure 1 (which denotes the encryption algorithm)
is implemented (privately in the oracle’s side) as follows.

Uy, [2) la') [r) 0) = [z} [a”) |r) [el| H(clla")) for ¢ = SymEnc,, («s) in G,
and
Uy, |z) |2") |r) |0) = [z) [2) |r) |c]| H (c||z)) for ¢ = SymEncy (2;7) in G

The difference between G¢ and G7 is that in Gg, the adversary receives H(c||z')
for some random «’ while in G7, the adversary receives H(c|z) where z is its input
and c is an encryption of some random plaintext. Since H is a random oracle,
the two distributions are perfectly indistinguishable. Thus Pr[G7] = Pr[Gg].

Game Gg: This is identical to G7, except that we remove the uses of the database
D in the decryption oracle in the random world. In particular, the decryption
oracle in the random world Rsympec’ is implemented as follows:

ly,z@® L) |E) if Findlmageg(y, E) = (0,0),

Rs / 5 E) =
Symbect, [V 2) | E) {y,z@w} |E) if Findlmageg(y, E) = (1,w).
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The adversary can distinguish between the two hybrids if and only if it sends a
query in which y € D\ FE with non-negligible weight. This is because if y € DNE
then in both hybrids, the original plaintext x was returned. In the case of
y € D\ E, the query is answered with L in Gg and « # L in G7. However if the
adversary can obtain x # | in G7 for this case, it means that it has obtained a
pair (¢,7) such that 7 ¢ E and H(¢||Z) = 7 for some Z.

By a similar argument as in Item (ii), any distinguisher for these two hybrids
can be used to construct an adversary breaking the bound given in Lemma 14.
Thus, we also have that |Pr[Gg] — Pr[G7]| < negl(\).

We note that in this final hybrid, the database D is no longer needed. Further-
more, the advantage of A in this hybrid can be reduced to its advantage against
SE. To see that, we construct a QPT adversary B from A as follows: B runs
A as its subroutine. For each encryption or challenge query, B implements the
compressed random oracle for the MAC. It first sends the plaintext registers to
its challenger and receives back a ciphertext, it then tags the received ciphertext
and the plaintext registers with the MAC using its compressed random oracle
and forwards them to A.

Notice in this hybrid, B can always answer decryption queries, without needing
to query to SE decryption oracle, by using its own compressed random oracle’s
database. The advantage of B against S is exactly the advantage of A in this
hybrid, showing that Pr[Gg] < Adv%giéqcz’ “(\). Putting everything together, we
finish the proof of the theorem. O

C.5 From IND-qCCA2 to qIND-qCCA2

Proof (of Theorem 6). We prove this theorem using hybrid games. Since our
definitions are closed under composition, it is sufficient to prove for the single-
message security.

Let A be a QPT adversary. For any game Gindex, we denote by Pr[Gindex| ==
|Pr[Gindex(A) = 1| b=1] — Pr[Gindex(A) = 1| b= 0]|. Also, by event Gingex(A),
we mean the output of the experiments (defined as in Definition 3) in game Gindex
when interacting with A.

Game Gq: This is the standard attack game. Let k* denote the symmetric key
used during the encryption process within the oracle.

Game G;: Notice that the same symmetric key k* sampled during the encryp-
tion process within the challenger’s oracle is used for all classical states of the
superposition, the ciphertext state of the challenge query would be:

Z Qgy |2, y) = |Encee (k™)) Z Qgy |z, y ® SymEncy. (x3)) , (7)

z,y T,y

where x;, denotes the actual encrypted plaintext, depending on whether it is the
real-world (b = 1) or the random-world (b = 0) (but the key k* is independent of
b). Notice that the first component ¢; of the ciphertext is a classical value.
This game is identical to Gy, except that now the real-or-random oracle RR(b)
will store the first component ¢; of the challenge ciphertext in its local database
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D'. Since c; is classical, this action is undetectable. Thus, we have:
Pr [GQ] = PI‘[Gl] .

Game G5: We define Findlmage’ that takes as input a tuple ((c1,-), D’) and
returns 1 if ¢; € D’ and 0 otherwise. This is identical to Gy, except that in the
real world we change the decryption oracle Opec in the second phase to

9 , {y,z @ Dec’ sk (v)) | D) if Findlmage'(y, D) = 0,
ODec/ |y,Z> |D > = / . . / /
ly, z ® SymDec,. (¢c2)) |D’) if Findlmage'(y,D’) =1,
where Findlmage’ parses its input component y as y = (c1, ¢a).

Essentially, in the second phase of this game, the decryption oracle in the real
world does not apply algorithm Dec’ to obtain the symmetric key, but instead
just uses the key k* produced by the challenge encryption oracle, if the query
contains ¢; € D’. (Notice that the database D’ is classical.)

This change is slightly more than just conceptual, since KeyGen’ may generate
a bad key pair. Let DecFail be the event that Dec’sx(Enc’pi(z)) = 2’ # 2. This
event happens if and only if Decge(Encpi(k*)) # k*. Unless this event occurs, G
and G proceed identically. Since SE is perfectly correct (by definition), any
decryption failure of £ is a decryption failure of £. Thus £’ is also d-correct. We
thus have

|Pr[G2] — Pr[G;]| < Pr[DecFail] < O(qq-9),

where the last inequality follows from the definition of correctness.

Game G3: This is identical to G, except that in the real-or-random oracle, we
encrypt a complete random value kT in place of the symmetric key k*, that is
we compute ¢; = Encye(k™), but we still use k* for symmetric encryption and
decryption.

It is straightforward to see that any adversary A that distinguishes games
G5 from G5 can be turned to an adversary B attacking the underlying scheme &,
whose running time is essentially the same as that of A. To be more precise, we
can define two intermediate hybrids G5, and G371 = G35, in which this change
is applied to the real world in GG3 and then to the random world in G31. In
each hybrid, the adversary B just runs the adversary A, and uses (k*, k%) as
its challenge pair. Note that in two consecutive hybrids (G2 and Gs., G3,0 and
G3.1), the challenge ciphertext of B is ¢1, which is classical, as argued above,
and that B never query to the decryption oracle on the challenge ciphertext,
but instead uses k* to answer the query (if it is simulating the game in the real
world), and its compressed encryption oracle’s database (if it is simulating the
game in the random world). We have

|[Pr[G3] — Pr[Ga]| < 2- Advgfg—qccaz()\)'

Furthermore, notice the fact that in this final game, kT is independent of
the adversary’s view and b, we now turn any distinguisher A of this game to an
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adversary C that breaks the one-time security of S€. C runs A, when it receives
the challenge query from A, it first generates a random string k™ and encrypt it
with the public key pk to get ¢, and sends A’s challenge query directly to its
challenger. After receiving the answer back, C appends |¢;) to the result and
forwards it to A. In the second phase, for any decryption query, C removes the
first component from the ciphertext and forwards the query to its challenger.
By the security of S€ we have |[Pr[G3] — Pr[Ga]| < Advi"E7°*()).
Putting everything together, by the security of the underlying building blocks,
we have the security of £'. O

D Bit-by-bit Encryption Is Insecure

For this section, we denote the encryption function as f, since the attack applies
to both the symmetric-key and the public-key setting. Furthermore, we will show
a stronger version of the result, which is bit-by-bit encryption of a qIND-qCCA2-
secure scheme is insecure even in the sense of qIND-qCPA.

Theorem 12 ([BBC*™20,CETU21]). Bit-by-bit encryption of a gIND-qCCA2
is qIND-qCPA-insecure. It holds in both symmetric-key and public-key settings.

Proof. 1t is suffice to show the attack for 2-bit encryption. The adversary A
sends the following query as its challenge:

) = 10[[+) x [0l +)y -

Informally, the adversary inserts 0 to the first input register (the first qubit), and
+ to the second input register (the second qubit), and sets the response registers
to be |0]|+). The challenge ciphertext state will be:

[90) = [0][+) x [F(O)[|+)y if b =0,

and

1) = > 1oll2)x [(0lly) @ (f(hOa)lo) | f(AOl2)1))) if b= 1,

»,y€{0,1}

where h : {0,1}? — {0,1}? is a random function, and we write h(z)|o to denote
its first output bit, and h(z)|1 to denote its last output bit.

Measuring the second input register in the Hadamard basis in the case b =0
returns 0 with probability 1, while in the case b = 1, this register will be entangled
with the response registers with high probability due to the application of h.
Thus measuring the second input register in the Hadamard basis in the case b = 1
returns 0 with small probability only. O
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