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Abstract. In this work, we provide a compiler that transforms a single-input functional encryption
scheme for the class of polynomially bounded circuits into a multi-client functional encryption (MCFE)
scheme for the class of separable functions. An n-input function f is called separable if it can be described
as a list of polynomially bounded circuits f1, . . . , fn s.t. f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn) for all
x1, . . . , xn. Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et
al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption
(MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE
but for the less generic class of separable functions. Prior to our work, a long line of results has been
proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable
function. We also propose a modified version of the notion of decentralized MCFE introduced by Chotard
et al. [Asiacrypt 2018] that we call outsourceable multi-client functional encryption (OMCFE). Intuitively,
the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at
most n different entities, which will return decryption shares that can be combined (e.g., additively)
thus obtaining the output of the computation. This notion is especially useful in the case of a very
resource consuming decryption procedure, while the combine algorithm is non-time consuming. We
also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same
functionality class.
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1 Introduction

Compared to traditional public-key encryption, functional encryption (FE) [BSW11,O’N10] enables fine-
grained access control over encrypted data. In more detail, a FE scheme is equipped with a key generation
algorithm that allows the owner of a master secret key to generate a functional key skf associated with a
function f . Using such a functional key skf for the decryption of a ciphertext ct = Enc(sk, x) yields only f(x).
Roughly speaking, the security of a functional encryption scheme guarantees that no other information except
for f(x) is leaked. In the classical notion of FE, the decryption algorithm takes as input a single ciphertext and
a functional key for a single-input (one-variable) function. The more general notion of Multi-Input Functional
Encryption (MIFE) [GGG+14] allows the evaluation of an n-input function on n encrypted inputs. In more
detail, the decryption algorithm takes as an input n ciphertexts Enc(sk, x1), . . . ,Enc(sk, xn) and a functional
key for an n-input function f ′ and outputs f ′(x1, . . . , xn).

In this work we consider an even stronger notion than MIFE called multi-client functional encryption
(MCFE) [GGG+14]. In the MCFE setting, each ciphertext Enc(ski, xi) is encrypted using a different secret key
ski. Moreover, an arbitrary set of secret keys I = {ski1 , . . . , skim} can be leaked to the adversary. Intuitively,
the notion of MCFE, says that the adversary cannot learn more about the ciphertexts generated using the
disclosed keys than what it can learn by evaluating f ′. Note that the adversary in this case can evaluate
f ′ using any input that it chooses with respect to the positions i1, . . . , im. In general, we can distinguish
between two types of MCFE schemes: labeled and unlabeled [ABKW19,ACF+18]. In the labeled case every
ciphertext is encrypted under a label `. A valid decryption requries that the input ciphertexts have been
encrypted under the same label (otherwise the decryption procedure generates an invalid output). Our results
are proven secure under the stronger notion of security with labels, which also allows the adversary to
obtain multiple ciphertexts under the same label. This additional security requirement has been considered
since [CDG+18b,ABKW19].

In this work we focus on MCFE for a specific functionality class called separable functions [MS08,MAS06].
A separable function is an efficiently computable function f that can be separated into a list of efficiently
computable functions f1, . . . , fn s.t. f(x1, . . . , xn) = f1(x1)+ · · ·+fn(xn) for all x1, . . . , xn, with xi contained
in the domain of f i. This is not restricted to addition but to any group operation, therefore also multiplication
(i.e., f(x1, . . . , xn) = f1(x1) · . . . · fn(xn) for all x1, . . . , xn, with xi contained in the domain of f i). Separable
functions are used in many real-world applications, and a MCFE scheme, covering such a functionality class,
would enable privacy in these scenarios. For example, consider the problem of counting a specific word w in n
different files, provided by n different parties, that contain sensitive information. In more detail, assume that
we have n parties and each party Pi owns a file which is encrypted using a FE scheme under the secret key ski.
Consider now an entity Pw that receives all the encrypted files and wants to count the number of times that
the word w occurs in all these files. In addition, Pw receives a functional key skfw for the separable function
fw = f1

w, . . . , f
n
w , where each function f iw simply counts the number of occurrences of the word w in a file.

Given all the encrypted files and skfw , Pw can compute the number of occurrences of w over all the encrypted
files. In addition, even if Pw manages to obtain some of the encryption keys, the content of the files remains
partially hidden.3 A second scenario where a MCFE scheme can be useful is the aggregation of SQL-queries.
In this context, it would be possible to do the computation of sums, counting, and averages over multiple
(n) encrypted tables held by different authorities. As already mentioned in [MS08] separable functions have
several applications in sensor and peer-to-peer networks, where different functions are computed over the data
of the different sensors (or resp. peers) and only the sum of evaluations should be learned by the decryptor,
but nothing about the individual results of the sensors (resp. peers).

Decentralized MCFE. Both, the notions of MIFE and MCFE, assume the existence of a central trusted
authority that generates and distributes the secret and functional keys. This is undesirable in some scenarios,
given that an adversarial trusted authority can compromise the security of the MCFE scheme (note that the
trusted authority can generate any functional key, hence also the functional key for the identity function). To
3 For example in the worst case, where the adversary has all but the key skj , it should be able to compute the number
of times that the word w appears in the i-th file, but nothing more than that.
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remove the need for a trusted authority, Chotard et al. [CDG+18a] introduced the notion of decentralized
multi-client functional encryption (DMCFE), where the generation of the secret keys and the functional keys
happens in a decentralized way. In this work, we consider DMCFE for the case of separable functions.

1.1 Our Contribution

In this paper we investigate the feasibility of constructing MCFE for separable functions starting from any
general-purpose FE scheme. In more detail, we provide a compiler that takes as input any secret-key FE
scheme and outputs a MCFE scheme for separable functions that is selectively secure4 and supports an a
priori bounded (but still polynomial) number of encryption and an unbounded number of n-input functional
key queries (where n is polynomially related to the security parameter). We show how to extend the above
scheme to the case of adaptive security5 (where the adversary can request an a priori bounded number of
encryptions and functional keys at any time). We now state our theorems informally.

Theorem 1 (informal). Assuming the existence of any selective secure secret-key FE scheme that supports an
a priori bounded number of encryption queries and an unbounded number of functional key queries, then there
exists a selective secure MCFE scheme for separable functions that supports a bounded number of encryption
queries and an unbounded number of functional key queries.
Theorem 2 (informal). Assuming the existence of any adaptive secure secret-key FE scheme that supports
an a priori bounded number of encryption and functional key queries, then there exists an adaptive secure
MCFE scheme for separable functions that supports a bounded number of encryption queries and functional
key queries.

We prove our constructions for the so-called pos+ security notion [ABG19,CDG+18b]. In a pos+ security
game an adversary is required to ask a left-or-right query under a specific label in either every or none
position. A second notion called any security [ABG19,CDG+18b] allows the adversary to ask a left-or-right
encryption query on as many positions as it wants without any restrictions. To achieve the notion of any
security, we make use of a slightly modified version of a black-box compiler presented in [ABG19] which
amplifies any pos+ secure MCFE scheme into an any secure MCFE scheme.

In the next step, we discuss how to modify our constructions in order to obtain a DMCFE scheme for
separable functions and prove the following theorem.

Theorem 3 (informal). Assuming the existence of any selective (adaptive) secure secret-key FE scheme that
supports an a priori bounded number of encryptions queries (and a bounded number of functional key queries),
then there exists a selective (adaptive) secure DMCFE scheme for separable functions that supports a bounded
number of encryption queries (and a bounded number of functional key queries).

Outsourceable MCFE. As an additional contribution, we introduce a new notion called outsourceable multi-
client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to outsource the
load of the decryption procedure among n different entities. In more detail, let f be the n-input separable
function that we want to evaluate, then the key-generation algorithm of an OMCFE scheme generates n
partial functional keys skf,1, . . . , skf,n (one for each input-slot of f), instead of generating one functional key
skf for f . Each of the functional keys skf,i can be applied on a ciphertext cti,` (a ciphertext under label `
that contains the i-th input of the function) to obtain a decryption share ϕi,`. An evaluator that obtains all
the n share (one for each input slot), can compute the final output by running a combine algorithm taking
the shares as an input.
4 We actually mean static-selective, i.e. the adversary has to submit all its message and corruption queries at the
beginning of the game.

5 We consider adaptive-adaptive security, which means that the adversary is allowed to query all the oracles, i.e.
message and corruption oracles, throughout the whole game.
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This notion becomes important in the case where the combine algorithm is significantly more efficient
than the partial decryption procedure. More formally, we require that the computational complexity of the
combine algorithm is independent from the computational complexity of the function f .

Coming back to the word count example, it is possible to give skfiw and an encryption of the i’th part
of a huge file, to an entity Pi (for each i ∈ [n]) and let Pi generate the decryption share by executing the
decryption procedure. In this way, an evaluator Pw would receive the decryption shares from P1, . . . , Pn,
and execute the (light) combine algorithm to obtain the final output of the computation. The word count
example can also be seen as a special case of a class of problems that can be parallelized using the MapReduce
paradigm [DG08]. This parallelization paradigm consists of a map phase which divides the problem into
sub-problems and a reduce phase which parallelizes the aggregation of the partial solutions. It is easy to see
that if the reduce phase consists of addition/multiplication operations then our OMCFE scheme could be
particularly useful to implement a layer of privacy on top of this parallelization paradigm.

The security definition of this notion is almost identical to the security definition of MCFE. They mainly
differ in their correctness definition (since the key generation algorithm and the decryption algorithm are
different). We show how to obtain an OMCFE for the class of separable functions. In particular, we have the
following informal theorem.

Theorem 4 (informal). Assuming the existence of any selective (adaptive) secure secret-key FE scheme that
supports an a priori bounded number of encryptions queries (and a bounded number of functional key queries),
then there exists a selective (adaptive) secure OMCFE scheme for separable functions that supports a bounded
number of encryption queries (and a bounded number of functional key queries).

Instantiations. Our constructions can be instantiated from various assumptions. There exists a general-
purpose secret-key FE scheme from indistinguishability obfuscation or multilinear maps [BKS18]. We can
obtain our adaptive secure MCFE scheme (and the decentralized one) from learning with errors [GKP+13],
one-way functions or low-depth pseudorandom generators [GVW12]. In more detail, as already mentioned
in [BKS18], based on the results of Ananth et al. [ABSV15] and Brakerski et al. [BS18], it is possible
to generically obtain a function-hiding scheme by relying on any selectively secure and message-private
functional encryption scheme.6 This implies that function-hiding schemes for any number of encryption and
key-generation queries can be based on indistinguishability obfuscation [GGH+13,Wat15], differing-input
obfuscation [BCP14,ABG+13], and multilinear maps [GGHZ16]. Besides this, it is possible to construct
function-hiding schemes for a polynomially bounded number, denoted by q, of encryption and key-generation
queries by relying on the Learning with Errors (LWE) assumption (where the length of ciphertexts grows
with q and with a bound on the depth of allowed functions) [GKP+13], or on pseudorandom generators
computable by small-depth circuits (where the length of ciphertexts grows with q and with an upper bound
on the circuit size of the functions) [GVW12], and based on one-way functions (for q = 1) [GVW12].

1.2 Overview of our Techniques

Our Compiler. We present a compiler that transforms any selectively secure single-input FE scheme FE
into a selectively secure MCFE scheme MCFE for the class of n-input separable functions. We provide an
incremental description of how our compiler works.

In the setup procedure of MCFE we execute n times the setup of FE thus obtaining n master secret keys
msk1, . . . ,mskn. We define the i’th secret key for MCFE as ski := mski for i = 1, . . . , n, whereas the master
secret key of MCFE is represented by all the secret keys {sk1, . . . , skn}. To encrypt a message xi for the position
i we simply run the encryption algorithm of FE using the secret key ski and the message xi thus obtaining
the ciphertext cti. To generate a functional key for a separable function f := {f1, . . . , fn} the key generation
algorithm randomly samples a secret sharing of 0: r1 + · · ·+ rn = 0 (we refer to this values as r-values) and
6 In the informal theorems above we actually require the underlying functional encryption scheme to be function-hiding,
but since this property comes for free from any selectively secure and message-private functional encryption scheme,
we do not state it specifically.
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runs, using the master secret key mski (which corresponds to ski) of FE the key generation algorithms for FE
to generate a functional key skfiri for f iri . The function f iri takes as an input xi and outputs f i(xi) + ri. The
output of the key generation algorithm is then represented by {skf1

r1
, . . . , skfnrn }. The decryption algorithm

of MCFE, on input the ciphertext ct := {ct1, . . . , ctn} and the functional keys {skf1
r1
, . . . , skfnrn } runs the

decryption algorithm for FE on input skfiri and cti thus obtaining ϕi for i = 1, . . . , n. The output of the
decryption procedure is then given by ϕ1 + · · ·+ ϕn which is equal to f(x1, . . . , xn) due to the property of f
and the way the values r1, . . . , rn are sampled. Intuitively, the security of this scheme comes from the fact
that a functional key skfiri for FE hides the description of the function, hence it hides the value ri. The fact
that the value ri is protected allows us to argue that ϕi encrypts the partial output f i(xi) (that the adversary
is not supposed to see). Indeed, ϕi can be seen as the one-time pad encryption of f i(xi) using the key ri.

We show that for the class of separable functions the described one-time pad encryption is sufficient
for several encryption queries. This is possible by exploiting the fact that the security game for functional
encryption requires that f(x0

1, . . . , x
0
n) = f(x1

1, . . . , x
1
n) for all the challenge queries (x0

i , x
1
i ) and all the

functional key queries f . This means, in the case of separable functions, that
∑
i∈[n] f

i(x0
i ) =

∑
i∈[n] f

i(x1
i ),

which is equivalent to f i∗(x0
i∗)− f i

∗(x1
i∗) =

∑
i∈[n]\{i∗} f

i(x1
i )− f i(x0

i ). This restriction enforces the security
of the information-theoretic encryption under many queries (we show this using a simple reduction).

To extend our scheme to the labeled setting, we start by considering a technique from the work of Abdalla
et al. [ABG19]7, that allows multiple parties to generate a secret sharing of 0 non-interactively by agreeing
on a set (of size n) of pseudo-random function (PRF) keys for every of the n parties during the setup.

In more detail, the master secret key is augmented with n2 PRF keys {Ki,j}i,j∈[n]. To generate a functional
key, as before we generate a functional key for each single input FE instance. But this time, for each i ∈ [n]
we generate the key skfiKi for the function f iKi where Ki := {Ki,j}j∈[n]\{i}. The function f iKi takes as an input
(xi, `), where ` represents the label, and outputs f i(xi) + tif,`, where tif,` =

∑
j 6=i(−1)j<iPRFKi,j (f, `). The

output of the key generation algorithm is then represented by {skf1
Ki
, . . . , skfnKi}. The way in which each

functional key evaluates the PRF guarantees that for each i the sum of the values ti,` for a fixed f and a
fixed ` is 0.

We refer to Section 4.1 for more details. The adaptive q-message q-function bounded MCFE scheme works
in a similar way, the main differences are regarding the size of the ciphertext and the size of the functional
keys. For the selective scheme only the size of the functional keys depends on q, whereas in the adaptive
scheme also the ciphtertexts grow with q. The details for this proof can be found in Section 4.2.

Decentralized Multi-Client Functional Encryption. In a DMCFE scheme, as introduced in [CDG+18a],
the key-generation phase is decentralized in the sense that each secret key owner should be able to compute a
partial functional key for a function f , such that the combination of all these partial functional keys allows the
generation of a valid functional key for f . Additionally, it is assumed that the setup procedure is a protocol
between the different parties that allows for the generation of the different secret keys. This results in a
completely decentralized setup that does not require a trusted authority. The MCFE scheme presented above
is easily translatable into the decentralized setting.

Outsourceable Multi-Client Functional Encryption. We show how to obtain, with minor modifications
to the presented compiler, an OMCFE scheme. The proof works, as already mentioned in the previous sections,
by relying on the fact that the values ϕi,` do not reveal any information on the encrypted messages.

Remark 1.1. Without loss of generality, in the remainder of this paper, we only refer to the case of additive
separability. However, our compiler also works for the case of multiplicative separability. To achieve multi-
plicative separability all the additive operators need to be replaced by its multiplicative counterparts (i.e.
addition with multiplication and subtraction with division). Also the group we need to operate in needs to be
changed from an additive group to a multiplicative group, e.g. from Zp to Z∗p
7 This technique has previously been used in [CC09] to remove the central authority in the context of multi-authority
attribute based encryption and in [KDK11] in the context of privacy-friendly aggregation.
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Number
of Inputs Functions Setting Assumptions

[BKS16] Constant Generic MIFE SK Single-Input FE

[KS17] log(λ)δ
0 < δ < 1 Generic MIFE SK Single-Input FE

[ACF+18] poly(λ) Inner-Product (D)MCFE
(no labels)

SK Single-Input FE
for Inner-Product

[ABG19] poly(λ) Inner-Product (D)MCFE PK Single-Input FE
for Inner-Product

This
work poly(λ) Separable

Functions (D)MCFE SK Single-Input FE

Table 1: Comparison with the most relevant compilers. λ: the security parameter, SK: secret key, PK: public
key.

1.3 Related Work

Multi-Input/Client Functional Encryption. Since the introduction of multi-input and multi-client functional
encryption [GGG+14] several contributions have been made to provide constructions in these areas. In this
work we follow the notation of [GKL+13], which means that we denote a scheme with a single encryption
key that can be used to generate ciphertexts for every position as a MIFE scheme and a scheme where
every position is associated with its own encryption key as multi-client functional encryption scheme. One of
the main techniques that have been proposed to construct MIFE schemes are “liftings” from single-input
functional encryption into the multi-input setting. The first foundational work that presents such a “lifting” in
the secret-key setting is the work of Brakerski et al. [BKS16]. In this work, the authors manage to transform
a single-input selectively secure functional encryption scheme into an adaptive function-hiding multi-input
functional encryption scheme which supports a constant number of inputs. In [KS17] the authors, among other
results, improve the result of [BKS16] by obtaining a MIFE scheme that supports functions with 2t = (log λ)δ
inputs, where 0 < δ < 1. Both of these transformations require a single-input functional encryption scheme
for the class of polynomially bounded circuits as an input. The schemes that cover the class of polynomially
bounded circuits can be divided into two categories. The first category is only able to handle a bounded
number of plaintexts (a so called message-bounded scheme) and (or) a bounded number of functional keys,
whereas the second class is able to handle an unbounded number of queries and functional keys. A construction
that falls into the first category is given by Gorbunov, Vaikuntanathan and Wee [GVW12]. Their construction
relies only on the existence of one-way functions. A second construction in this category has been proposed
by Goldwasser et al. [GKP+13] and it is based on the Learning with Errors (LWE) assumption.

In the case of unbounded message security most of the known constructions are based on less standard
assumptions like indistinguishable obfuscation [BGJS15,Wat15,GGH+13], multilinear maps [GGHZ16] and
differing-input obfuscation [ABG+13,BCP14]. All of the mentioned schemes are also covering the functionality
class of polynomially bounded circuits.

Beside the class of polynomially bounded circuits, it is also possible to construct multi-input functional
encryption schemes for more specific functionality classes, like inner-products. The first multi-input functional
encryption scheme for inner-product functions has been provided by Abdalla et al. [AGRW17]. The construction
they present relies on pairings. A follow up work [ACF+18] proposes a compiler that takes as input a single-
input functional encryption scheme that fulfills some special properties and outputs a MIFE scheme for
inner-product functions. This construction does not require pairings and can be instantiated using DDH,
Paillier or LWE. It turns out that the construction of Abdalla et al. [ACF+18] also fulfills the stronger notion
of multi-client functional encryption (without labels) which has been proven in [ABKW19]. In the case of
multi-client functional encryption, it can be distinguished between two cases, the labeled and the unlabeled
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case. Labels enforce an additional restriction on the decryption procedure. Namely, it is only possible to
decrypt tuples of ciphertexts that are encrypted under the same label, otherwise the decryption procedure
outputs an invalid value. The first labeled scheme for the inner-product functionality has been proposed
in [CDG+18a]; its security is proven based on DDH in the random oracle model. Following, Abdalla et
al. [ABG19] and Libert and Titiu [LT19] show how to construct multi-client functional encryption with labels
in the standard model. In more detail, Abdalla et al. [ABG19] present a compiler that lifts a single-input
public key functional encryption scheme, which can be instantiated using MDDH, DCR or LWE, into a
MCFE scheme with labels. Whereas, Libert and Titiu [LT19] show how to directly construct a MCFE scheme
with labels based on LWE. More recently, Abdalla et al. [ABM+20] show how to construct a MCFE scheme
with labels in the random oracle model based on MDDH, DCR or LWE, which extends the results of Chotard
et al. [CDG+18a]. In Table 1 we provide a short comparison between the most relevant compilers that turn a
single-input FE scheme into a MIFE or MCFE scheme.

Decentralization. The notion of DMCFE has been introduced in the work of Chotard et al. [CDG+18a] in
the context of inner product functional encryption. In their work, the authors also present a construction
based on the symmetric external Diffie-Hellman assumption in the random oracle model that achieves
security in the DMCFE setting. Since then, several compilers for inner product functional encryption have
been proposed [ABKW19,ABG19,CDG+18b] that turn a MCFE scheme into a DMCFE scheme. In the
works [ABKW19,ABG19] the authors present decentralization compilers that purely rely on information
theoretic arguments in the standard model and in the work of Chotard et al. [CDG+18b] the authors present
a compiler based on either the CDH assumption in the random oracle model or the DDH assumption in the
standard model. The standard notion of DMCFE [CDG+18a], with and without labels [ABKW19], has the
main limitation that it is not possible to let parties join or leave adaptively after the setup procedure has
been executed. This problems has been first considered in the work of Agrawal et al. [ACF+20], where the
authors propose the notion of Ad Hoc Multi-Input Functional Encryption. In this setting every user generates
its own public and secret key. Functional key shares are generated with respect to the public keys of other
parties. Combining all the functional keys of the specified subset of parties yields the full functional key. This
notion allows every party to join the system adaptively and to decide during the key generation which parties’
data can be used in the decryption. The authors show how to realize this notion by bootstrapping standard
MIFE to ad hoc MIFE without relying on additional assumptions. They also present a direct construction of
an ad hoc MIFE for the inner product functionality based on the LWE assumption. In both constructions
malicious security is achieved in the common reference string (CRS) model. The high level idea of these
constructions is to combine standard MIFE and two-round secure multi-party computation. Another work
that considers the above mentioned limitation is the work of Chotard et al. [CDSG+20]. In their work, the
authors introduce the notion of dynamic decentralized MCFE, which generalizes the notion of ad-hoc MIFE.
The notion of dynamic DMCFE does not require a specified group of users for the generation of a functional
key. Additionally, their notion also considers labels, to prevent certain mix and match attacks and leaks less
information about the underlying plaintexts. The authors present a dynamic DMCFE scheme for the inner
product functionality from standard assumptions in the random oracle model.

2 Preliminaries

Notation.We denote the security parameter with λ ∈ N. A randomized algorithm A is running in probabilistic
polynomial time (PPT) if there exists a polynomial p(·) such that for every input x the running time of A(x)
is bounded by p(|x|). We call a function negl : N → R+ negligible if for every positive polynomial p(λ) a
λ0 ∈ N exists, such that for all λ > λ0 : ε(λ) < 1/p(λ). We denote by [n] the set {1, . . . , n} for n ∈ N. We use
“=” to check equality of two different elements (i.e. a = b then...) and “:=” as the assigning operator (e.g.
to assign to a the value of b we write a := b). A randomized assignment is denoted with a ← A, where A
is a randomized algorithm and the randomness used by A is not explicit. If the randomness is explicit we
write a := A(x; r) where x is the input and r is the randomness. We denote the winning probability of an
adversary A in a game or experiment G as WinG

A(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken
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over the random coins of G and A. We define the distinguishing advantage between games G0 and G1 of an
adversary A in the following way: AdvG

A(λ, n) =
∣∣WinG0

A (λ, n)−WinG1
A (λ, n)

∣∣. The notation (−1)j<i denotes
−1 if j < i and 1 otherwise.

2.1 Secret-Key Functional Encryption

In this section, we define the notion of secret-key functional encryption (SK-FE) [BS15]. They are an adaption
of the notion from [BSW11,O’N10].

Definition 2.1 (Secret-Key Functional Encryption). Let F = {Fλ}λ∈N be a collection of function
families (indexed by λ), where every f ∈ Fλ is a polynomial time function f : Xλ → Yλ. A secret-key functional
encryption scheme (SK-FE) for the function family Fλ is a tuple of four algorithms FE = (Setup,KeyGen,
Enc,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ and generates a master secret
key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fλ, and outputs a functional
key skf .

Enc(msk, x): Takes as input the master secret key msk, a message x ∈ Xλ to encrypt, and outputs a ciphertext
ct.

Dec(skf , ct): Takes as input a functional key skf and a ciphertext ct and outputs a value y ∈ Yλ.

A scheme FE is correct, if for all λ ∈ N, msk← Setup(1λ), f ∈ Fλ, x ∈ Xλ, when skf ← KeyGen(msk, f), we
have

Pr [Dec(skf ,Enc(msk, x)) = f(x)] = 1 .

We define the security of a SK-FE scheme using a left-or-right oracle. We distinguish between selective
and adaptive submission of the encryption challenges. We consider a function-hiding secure SK-FE scheme,
which, intuitively, means that the SK-FE scheme guarantees privacy for both, the description of the functions
and the encrypted messages. We will recall now the formal definition.

Definition 2.2 (Function-Hiding of SK-FE). Let FE be an SK-FE scheme, F = {Fλ}λ∈N a collection
of function families indexed by λ. For xx ∈ {sel, ad} and β ∈ {0, 1}, we define the experiment xx-FHFE

β in
Fig. 1, where the oracles are defined as:

Left-or-Right oracle QLeftRight(x0, x1): Outputs ct← Enc(msk, xβ,j) on a query (x0, x1). We denote by
QLeftRight the set containing the queries (x0, x1).

Key generation oracle QKeyG(f0, f1): Outputs skf ← KeyGen(msk, fβ) on a query (f0, f1). We denote
by Qf the queries of the form QKeyG(·, ·).

and where Condition (*) holds if all the following condition holds:

– For every query (f0, f1) to QKeyG, and every query (x0, x1) ∈ QLeftRight, we require that:

f0(x0) = f1(x1) .

We define the advantage of an adversary A for xx ∈ {sel, ad} in the following way:

Advxx-FH
FE,A (λ) = |Pr[xx-FHFE

0 (λ,A) = 1]− Pr[xx-FHFE
1 (λ,A) = 1]| .

A secret-key functional encryption scheme FE is xx-FH secure, if for any polynomial-time adversary
A, there exists a negligible function negl such that: Advxx-FH

FE,A (λ) ≤ negl(λ). In addition, we call a scheme
q-message bounded, if |QLeftRight| < q and q-message-and-key bounded, if |QLeftRight| < q and |Qf | < q, with
q = poly(λ).
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sel-FHFE
β (λ,A)

QLeftRight ← A(1λ)
msk← Setup(1λ)
ctj ← QLeftRight(xj,0, xj,1),

for all (xj,0, xj,1) ∈ QLeftRight

α← AQKeyG(·,·)({ctj}j∈[QEnc])
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

ad-FHFE
β (λ,A)

msk← Setup(1λ)
α← AQLeftRight(·,·),QKeyG(·,·)(1λ)
Output: α if Condition (*) is

satisfied, or a uniform
bit otherwise

Fig. 1: Function-Hiding Games for SK-FE

2.2 Multi-Client Functional Encryption

Now, we introduce multi-client functional encryption (MCFE) as in [GGG+14, ABKW19,ABG19]. In a
multi-client functional encryption scheme, every client can encrypt its own input (corresponding to a slot)
and the evaluation of a functional key is executed over the ciphertexts of all the clients.

Definition 2.3 (Multi-Client Functional Encryption). Let F = {Fλ}λ∈N be a collection of function
families (indexed by λ), where every f ∈ Fλ is a polynomial time function f : Xλ,1 × · · · × Xλ,n → Yλ. Let
Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client functional encryption scheme (MCFE) for the
function family Fλ supporting n users, is a tuple of four algorithms MCFE = (Setup,KeyGen,Enc,Dec):

Setup(1λ, n): Takes as input a unary representation of the security parameter λ, and the number of parties n
and generates n secret keys {ski}i∈[n], and a master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fλ, and outputs a functional
key skf .

Enc(ski, xi, `): Takes as input a secret key ski, a message xi ∈ Xλ,i to encrypt, a label ` ∈ Labels, and outputs
a ciphertext cti,`.

Dec(skf , ct1,`, . . . , ctn,`): Takes as input a functional key skf and n ciphertexts under the same label ` and
outputs a value y ∈ Yλ.

A scheme MCFE is correct, if for all λ, n ∈ N, ({ski}i∈[n],msk) ← Setup(1λ, n), f ∈ Fλ, xi ∈ Xλ,i, when
skf ← KeyGen(msk, f), we have

Pr [Dec(skf ,Enc(sk1, x1, `), . . . ,Enc(skn, xn, `)) = f(x1, . . . , xn)] = 1 .

A scheme can either be without labels, in this case Labels = {⊥} or with labels/labeled, where Labels =
{0, 1}∗. In this work, we only consider schemes that are labeled, i.e. Labels = {0, 1}∗. Where the latter case
implies the former.

The security definition is the initial definition of Goldwasser et al. [GGG+14] (more specifically [GKL+13]),
whereas we also allow the adversary to determine under which label it wants to query the left-or-right
oracle and, in addition, we give the adversary access to an encryption oracle. Besides this, we also allow
the adversary to query a single label several times. This security definition has initially been considered
in [CDG+18b,ABG19]. As also noted in [ABKW19,ABG19] the security model of multi-client functional
encryption is similar to the security model of standard multi-input functional encryption, whereas in the
latter only a single master secret key msk is used to generate encryptions for every slot i. In comparison to
the standard multi-input functional encryption model, we also consider static and adaptive corruption of
the different slots and selective and adaptive left-or-right and encryption oracle queries in the multi-client
case. In more detail, in the selective case the adversary is required to ask all his left-or-right, encryption
and corruption queries in the beginning of the game. In the adaptive case, the adversary is allowed to ask
left-or-right, encryption and corruption queries throughout the whole game.
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Definition 2.4 (Security of MCFE). Let MCFE be an MCFE scheme, F = {Fλ}λ∈N a collection of
function families indexed by λ and Labels a label set. For xx ∈ {sel, ad}, yy ∈ {pos+, any} and β ∈ {0, 1}, we
define the experiment sel-yy-INDMCFE

β in Fig. 2 and ad-yy-INDMCFE
β in Fig. 3, where the oracles are defined

as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote by CS the set of corrupted
slots at the end of the experiment.

Left-or-Right oracle QLeftRight(i, x0
i , x

1
i , `): Outputs cti,` ← Enc(ski, xβi , `) on a query (i, x0

i , x
1
i , `). We

denote the queries of the form QLeftRight(i, ·, ·, `) by Qi,` and the set of queried labels by QL.
Encryption oracle QEnc(i, xi, `) Outputs cti,` ← Enc(ski, xi, `) on a query (i, xi, `). We denote the queries

of the form QEnc(i, ·, `) by Q′i,` and the set of queried labels by QL′.
Key generation oracle QKeyG(f): Outputs skf ← KeyGen(msk, f) on a query f . We denote by Qf the

queries of the form QKeyG(·).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0
i , x

1
i , `), x0

i = x1
i .

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i, x0
i , x

1
i , `) or QEnc(i, xi, `)}i∈[n]\CS , for

any family of inputs {xi ∈ Xλ,i}i∈CS , we define x0
i = x1

i = xi for any slot i ∈ CS and any slot queried to
QEnc(i, xi, `), and we require that for any query QKeyG(f):

f(x0) = f(x1) where xb = (xb1, . . . , xbn) for b ∈ {0, 1} .

– When yy = pos+: If there exists a slot i ∈ [n] and a ` ∈ Labels, such that |Qi,`| > 0, then for any
slot k ∈ [n] \ CS, |Qk,`| > 0. In other words, for any label, either the adversary makes no left-or-right
encryption query or makes at least one left-or-right encryption query for each slot i ∈ [n] \ CS.

– When yy = any: there is no restriction in the left-or-right queries of the adversary.

sel-yy-INDMCFE
β (λ, n,A)

(CS, {Qi,`}i∈[n],`∈QL, {Q′i,`}i∈[n],`∈QL′)← A(1λ, n)
({ski}i∈[n],msk)← Setup(1λ, n)
ctji,` ← QLeftRight(i, xj,0i , xj,1i , `), for all (xj,0i , xj,1i ) ∈ Qi,`,

for all i ∈ [n] and ` ∈ QL.
ct′ji,` ← QEnc(i, xji , `), for all x

j
i ∈ Q′i,`, for all i ∈ [n]

and ` ∈ QL′.
α← AQKeyG(·)({ski}i∈CS , {ctji,`}i∈[n],`∈QL,j∈[|Qi,`|],

{ct′ji,`}i∈[n],`∈QL′,j∈[|Q′
i,`
|])

Output: α if Condition (*) is satisfied, or a uniform bit
otherwise

Fig. 2: Selective Security Games for MCFE

We define the advantage of an adversary A for xx ∈ {sel, ad}, yy ∈ {pos+, any} in the following way:

Advxx-yy-IND
MCFE,A (λ, n) = |Pr[xx-yy-INDMCFE

0 (λ, n,A) = 1]− Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]| .

A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for any polynomial-time
adversary A, there exists a negligible function negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).
In addition, we call a scheme q-message bounded, if

∑
i∈[n](

∑
`∈QL |Qi,`| +

∑
`∈QL′ |Q′i,`|) < q and

q-message-and-key bounded, if
∑
i∈[n](

∑
`∈QL |Qi,`|+

∑
`∈QL′ |Q′i,`|) < q and |Qf | < q, with q = poly(λ).
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ad-yy-INDMCFE
β (λ, n,A)

({ski}i∈[n],msk)← Setup(1λ, n)
α← AQCor(·),QKeyG(·),QEnc(·,·,·),QLeftRight(·,·,·,·)(1λ)
Output: α if Condition (*) is satisfied, or

a uniform bit otherwise

Fig. 3: Adaptive Security Games for MCFE

We omit n when it is clear from the context. We also often omit A as a parameter of experiments or
games when it is clear from the context.

Multi-input functional encryption (MIFE) and functional encryption (FE) are special cases of MCFE.
MIFE is the same as MCFE without corruption, and FE is the special case of n = 1 (in which case, MIFE
and MCFE coincide as there is no non-trivial corruption). In the case of single-input functional encryption,
we only consider the two security definitions of sel-FH and ad-FH. For simplicity, in the notion of MCFE
security, we denote by sel the case of static corruption, and selective left-or-right and encryption queries. By
ad we denote the case in which all three, corruption, left-or-right and encryption queries, are adaptive.

We recap the notion of 1-label security as introduced by Abdalla et al. [ABG19]. Additionally, we also
recap their lemma that a 1-label security scheme is also a “many label” secure scheme. We use this result to
make the security proofs in the rest of the paper easier.

Definition 2.5 (IND-1-label Security). Let MCFE be an MCFE scheme, F = {Fλ}λ∈N a collection of
function families indexed by λ and Labels a label set. For yy ∈ {pos+, any} and β ∈ {0, 1}, we define the
experiment ad-yy-INDMCFE

β as in Fig. 3, where the oracles are defined as in Definition 2.4, except:

Left-or-Right oracle QLeftRight(i, x0
i , x

1
i , `): Outputs cti,` ← Enc(ski, xβi , `) on a query (i, x0

i , x
1
i , `). We

denote the queries of the form QLeftRight(i, ·, ·, `) by Qi,` and the set of queried labels by QL. This oracle
can be queried at most on one label. Further queries with distinct labels will be ignored.

Encryption oracle QEnc(i, xi, `) Outputs cti,` ← Enc(ski, xi, `) on a query (i, xi, `). We denote the queries
of the form QEnc(i, ·, `) by Q′i,` and the set of queried labels by QL′. If this oracle is queried on the same
label that is queried to QLeftRight, the game ends and return 0.

and where Condition (*) is defined as in Definition 2.4.
We define the advantage of an adversary A for xx ∈ {sel, ad}, yy ∈ {pos+, any} in the following way:

Advxx-yy-IND-1-label
MCFE,A (λ, n) = |Pr[xx-yy-IND-1-labelMCFE

0 (λ, n,A) = 1]−Pr[xx-yy-IND-1-labelMCFE
1 (λ, n,A) = 1]| .

A multi-client functional encryption scheme MCFE is xx-yy-IND-1-label secure, if for any polynomial-time
adversary A, there exists a negligible function negl such that: Advxx-yy-IND-1-label

MCFE,A (λ, n) ≤ negl(λ).
In addition, we call a scheme q-message bounded, if

∑
i∈[n](

∑
`∈QL |Qi,`| +

∑
`∈QL′ |Q′i,`|) < q and

q-message-and-key bounded, if
∑
i∈[n](

∑
`∈QL |Qi,`|+

∑
`∈QL′ |Q′i,`|) < q and |Qf | < q, with q = poly(λ).

Lemma 2.6 (From one to many labels). Let MCFE be an MCFE scheme that is ad-yy-IND-1-label
secure, for yy ∈ {pos+, any}, then it is also secure against PPT adversaries that query QLeftRight on many
distinct labels (ad-yy-IND-1-label). Namely, for any PPT adversary A, there exists a PPT adversary B such
that:

Advad-yy-IND
MCFE,A (λ, n) ≤ qEnc · Advad-yy-IND

MCFE,B (λ, n),

where Advad-yy-IND
MCFE,B (λ, n) denotes the advantage of B against an experiment defined as above, except QLeftRight

can be queried on at most one label and QEnc must not be queried on that label. By qEnc we denote the number
of distinct labels queried by A to QLeftRight in the original security game.
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2.3 Security Compiler

As already mentioned in previous works [ABG19,ABKW19,AGRW17,ACF+18,CDG+18b] there exist two
different types of security, namely pos+ and any security. In the case of pos+, the adversary is forced to ask a
left-or-right query for every slot i ∈ [n]. The any security definition does not enforce any requirements on the
slots that are asked to the left-or-right oracle by the adversary. Multi-client functional encryption schemes do
not usually directly fulfill the notion of any security, since it is possible to ask left-or-right oracle queries in a
few slots, such that Condition (*) cannot be evaluated, but the adversary is able to use its queries and its
(partial) functional keys to distinguish if the left or right challenge message has been encrypted. Since these
types of attacks are not possible in the setting of pos+ security, a common approach is to construct a MCFE
schemes that is pos+ secure and then a compiler [ABKW19,ABG19,CDG+18b] is applied to achieve the
desired notion of any security. In this paper we follow the same approach.

In the recent work [ABG19], an additional encryption oracle, besides the left-or-right oracle, has been
considered. As already mentioned in [ABG19, Remark 2.3], the security definition without the encryption
oracle QEnc, as defined in [ABKW19,CDG+18a], is only equivalent to the security notion with the encryption
oracle in the case of any security but not in the case of pos+ security. If we want to simulate the encryption
oracle in the case of pos+ security, we would simulate it by asking the message the adversary queries in
both positions to the left or right oracle, but since pos+ enforces the reduction to ask a message in all
the remaining positions it might not be possible to find such a message. Therefore the definition with the
additional encryption oracle is slightly stronger.

Now, we recap the recent “pos+” to “any” security compiler as introduced in [ABG19] w.r.t. a decentralized
MCFE scheme that follows the definition of [ABG19] We now provide a proof sketch that shows that the result
also holds in the case of a selectively secure (key and) message bounded multi-client functional encryption
scheme.

Setup′(1λ, n) :
{ski}i∈[n] ← Setup(1λ, n)
For i, j ∈ [n] :

ki,j ← GenSE(1λ)
sk′i := (ski, {ki,j , kj,i}j∈[n])
Return {sk′i}i∈[n]

Enc(sk′i, xi, `) :
Parse sk′i := (ski, {ki,j , kj,i}j∈[n])
cti ← Enc(ski, xi, `)
For all j ∈ [n] :

ki,j(`) := PRFki,j (`)
Ki(`) :=

⊕
j∈[n] ki,j(`)

ct′i ← EncSE(Ki(`), cti)
ct′′i := (ct′i, {kj,i(`)}j∈[n])
Return ct′′i

KeyGenShare′(sk′i, f) :
Parse sk′i := (ski, {ki,j , kj,i}j∈[n])
Return sk′i,f ← KeyGenShare′(ski, f)

KeyGenComb′({sk′i,f}i∈[n]) :
skf := KeyGenComb({sk′i,f}i∈[n])

Dec′(skf , ct′′1 , . . . , ct′′n)
Parse {ct′′i := (ct′i, {kj,i(`)}j∈[n])}i∈[n]

For i ∈ [n]
Ki =

⊕
j∈[n] ki,j(`)

cti := DecSE(Ki(`), ct′i)
Return Dec(skf , ct1, . . . , ctn)

Fig. 4: Compiler from an xx-pos+-IND-secure DMCFE scheme, DMCFE, into an xx-any-IND-secure DMCFE
scheme, DMCFE′.
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Theorem 2.7. Let DMCFE = (Setup,KeyGenShare,KeyGenComb,Enc,Dec) be an xx-pos+-IND-secure (key
and) message bounded DMCFE scheme for a family of functions F . Let SE = (GenSE,EncSE,DecSE) be an
IND-CPA secure symmetric key encryption scheme and let PRF be a IND secure pseudorandom function.
Then the DMCFE scheme DMCFE′ = (Setup′,KeyGenShare′,KeyGenComb′,Enc′,Dec′) described in Fig. 4 is
(key and) message bounded xx-any-IND secure.

Proof (Sketch). The proof uses the xx-pos+-IND security of the scheme DMCFE for the case where all honest
slots are queried to QLeftRight(·, ·, ·, `?), for a single label `?, and the security of the PRF together with the
IND-CPA security of SE for the case where all honest slots are queried to QLeftRight(·, ·, ·, `?).

We define the game G?β as the ad-pos+-INDDMCFE′
β (λ, n,A) game, except that the game guesses uniformly

random an honest slot i? ← {0, . . . , n}, where i? = 0 means that all honest slots are queried, that is not
going to be queried to QLeftRight(·, ·, ·, `?). In the case that the guess i? is unsuccessful, G?β outputs 0. This
guessing is not necessary in the case of selective security. In the case of selective security, we can just pick an
honest slot, since the honest slots are directly disclosed by the adversary in the beginning of the game.

If i? = 0, we are in the case of pos+ and therefore, we can directly reduce the security to the security of
DMCFE.

To prove the security for all i? ∈ [n], we use the fact that if there is a left-or-right oracle query
QLeftRight(i, xj,0i , xj,1i ) with xj,0i 6= xj,1i , then the slot cannot be corrupted anymore after Condition (*)
of Definition 5.2. Such a slot and the corresponding query is called explicitly honest.

We define hybrid games G?0.ρ for all ρ ∈ {0, . . . , n} as G?0 except that every explicitly honest query
QLeftRight(i, xj,0i , xj,1i , `?) is answered by Enc′(sk′i, x

j,1
i , `?) for i ≤ ρ and by Enc′(ski, xj,0i , `?) for i > ρ. It

follows that G?0,0 = G?0 and G?0.n = G?1. We note that, again, in the case of selective security all the honest
slots are known from the beginning and therefore we directly know how to answer which slots.

To go from hybrid G?0.ρ−1 to G?0.ρ, we distinguish between two different cases. First, slot ρ is never queried
on an explicitly honest slot, in this case the two games are the same by definition. Otherwise, we rely on the
security of the PRF to make the key kρ,i?(`?) uniformly random. This switch is possible, since we know the
slots i? and ρ. If the guess i? is correct, the key kρ,i?(`?) only appears in the output of QLeftRight(ρ, ·, ·, `?).
This results in the fact that we have a uniformly random key Kρ(`?), which allows us to rely on the IND-
CPA security of the the symmetric encryption scheme, since GenSE just generates a random element as the
encryption key, and change the encryptions of xj,0i in G?0.ρ−1 to encryptions of xj,1i in G?0.ρ. Afterwards, we
switch back the key kρ,i? from uniformly random to pseudorandom by relying on the security of the PRF an
additional time.

Applying this reduction for all the n different slots and all the queried labels yields the theorem. ut

For more details on this proof, we refer to [ABG19].

2.4 Separable Functions

In this work, we focus on the class of additive separable functions. We recap the definition of a separable
function and the corresponding functionality:

Definition 2.8 (Separable Functions [MAS06]). A function f : Xλ,1 × · · · × Xλ,n → Yλ, is called
separable, if there exists a function f i : Xλ,i → Yλ for all i ∈ [n], such that

f(x1, . . . , xn) =
∑
i∈[n]

f i(xi), with xi ∈ Xλ,i for all i ∈ [n] .

Functionality Class. We define the functionality class for separable functions as F sep
n := {f(x1, . . . , xn) =

f1(x1) + · · ·+ fn(xn), with f i : Xλ,i → Yλ}.
In this work, we consider the class of separable functions over the group Zp. Since the separability of a

function f is not necessarily unique, we require the adversary to submit its functional key generation query
as a set of the separated functions {f i}i∈[n].
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2.5 Pseudorandom Functions

In this section, we recap the definition of a pseudorandom function (PRF) as in [GGM86].

Definition 2.9 (Pseudorandom Function). Let PRF : K × V → W be a deterministic polynomial-time
algorithm, with key space K = {0, 1}λ, domain V and range W. For β ∈ {0, 1}, we define the experiment
INDPRF

β in Fig. 5, where the oracle OPRF is defined as:

OPRF(`) =
{

PRFK(`) if β = 0
RF(`) if β = 1

.

with RF(`) denoting a random function. We define the advantage of an adversary A in the following way:

AdvIND
PRF,A(λ) = |Pr[INDPRF

0 (λ,A)]− Pr[INDPRF
1 (λ,A)]| .

A pseudorandom function PRF is secure, if for any polynomial-time adversary A, there exists a negligible
function negl such that: AdvIND

PRF,A(λ) ≤ negl(λ).

INDPRF
β (λ,A)

K← K
α← AOPRF(·)(1λ)
Output: α

Fig. 5: Security Games for PRF

3 Symmetric Encryption and One-Time Pad Extension

In this section, we recap some definitions regarding symmetric encryption. This consists of the security
definition and the one-time pad. We start by formally defining symmetric encryption.

Definition 3.1 (Symmetric Encryption). A symmetric encryption scheme (SE) for the key space K and
the message spaceM is a couple of algorithms SE = (Enc,Dec):

Enc(K,m): Takes as input the symmetric key K, a message m ∈M to encrypt, and outputs a ciphertext ct.
Dec(K, ct): Takes as input the symmetric key K and a ciphertext ct and outputs a message or ⊥ if decryption

fails.

A scheme SE is correct, if for all λ ∈ N, K← K, m ∈M, we have

Pr [Dec(K,Enc(K,m)) = m] = 1 .

Before formally introducing the one-time pad, we recap the security definition for a symmetric encryption
scheme.

Definition 3.2 (IND-CPA Security of SE). Let SE = (Enc,Dec) be an SE scheme, for the message
spaceM. We define the experiment IND-CPASE

β in Fig. 6, where the oracle is defined as:

Left-or-Right oracle QLeftRight(mj,0,mj,1): Outputs ctj = Enc(K,mj,β) on a query (mj,0,mj,1). We de-
note by QLeftRight the set containing the queries (m0,m1).
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We define the advantage of an adversary A in the following way:

AdvIND-CPA
SE,A (λ) = |Pr[IND-CPASE

0 (λ,A) = 1]− Pr[IND-CPASE
1 (λ) = 1]| .

A symmetric encryption scheme SE is called IND-CPA secure, if for any PPT adversary A it holds that
AdvIND-CPA

SE,A (λ) ≤ negl(λ).
Additionally, we define the advantage

AdvPERF-IND
SE,A (λ) = |Pr[IND-CPASE

0 (λ,A) = 1]− Pr[IND-CPASE
1 (λ) = 1]| ,

where we require that the QLeftRight oracle in the IND-CPA game is only queried once.
A symmetric encryption scheme SE is called perfectly (one-time) secure, if for any adversary A it holds

that AdvPERF-IND
SE,A (λ) = 0.

IND-CPASE
β (λ,A)

K← K
α← AQLeftRight(·,·)(1λ)
Output: α

Fig. 6: IND-CPA Security Game for a symmetric encryption scheme

One-Time Pad. Now, we recap a specific symmetric encryption scheme, the one-time pad.

Enc(K,m ∈M) :
ct := m+ K
Return ct
Dec(K, ct) :
m := ct− K
Return m

Fig. 7: The One-Time Pad.

It has been proven in [Sha01] that the one-time pad is perfectly secure under the XOR operation. An
adaption of this proof to finite groups is straightforward and can be found for example in [Wic15].

Theorem 3.3 (One-Time Pad). The scheme SE = (Enc,Dec) defined in Fig. 7 is perfectly (one-time)
secure. Namely, for any A it holds that AdvPERF-IND

SE,A = 0.

After introducing the one time pad and recapping that it fulfills perfect security, we introduce a new
notion called conditional perfect security.

Definition 3.4 (Conditional Perfect Security of SE). Let SE = (Enc,Dec) be an SE scheme, for the
message spaceM. We define the experiment CON-PERF-INDSE

β in Fig. 8, where the oracle is defined as:

Left-or-Right oracle QLeftRight(mj,0,mj,1): Outputs ctj = Enc(K,mj,β) on a query (mj,0,mj,1). We de-
note by QLeftRight the set containing the queries (m0,m1).
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CON-PERF-INDSE
β (λ,A)

K← K
α← AQLeftRight(·,·)(1λ)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

Fig. 8: Conditional Perfect Security Game

and where Condition (*) holds if for all couple of queries (mj,0,mj,1), (mk,0,mk,1) ∈ QLeftRight we have that

mj,0 −mj,1 = mk,0 −mk,1 .

We define the advantage of an adversary A in the following way:

AdvCON-PERF-IND
SE,A (λ) = |Pr[CON-PERF-INDSE

0 (λ,A) = 1]− Pr[CON-PERF-INDSE
1 (λ) = 1]| .

A symmetric encryption scheme SE is called conditional perfectly secure, if for any adversary A it holds
that AdvCON-PERF-IND

SE,A (λ) = 0.

Now, we show that the one-time pad also achieves conditional perfect security.

Lemma 3.5. Let SE = (Enc,Dec) be the perfectly secure one-time pad, then SE = (Enc,Dec) is also condi-
tional perfectly secure. Namely, for any adversay A, there exists an adversary B such that

AdvCON-PERF-IND
SE,A (λ) = AdvPERF-IND

SE,B (λ)

Proof. We build an adversary B that simulates the CON-PERF-INDSE
β game to A, when interacting with

the PERF-INDSE
β experiment.

When A submits its first encryption query (m1,0,m1,1) to B, B forwards it to its experiment, receives ct1 as
an answer and sends ct1 to A. For every further query (mj,0,mj,1) that A asks, B computes cj := mj,1−m1,1

and sends ctj := ct1 + cj as a reply to A.
To complete the proof, we show that ctj corresponds to an encryption of mj,β . This results in a perfect

simulation and therefore the theorem follows.
In the first step, B receives ct1 = m1,β + K from its experiment. For all the following queries made by A,

it holds that mj,1 −mj,0 = m1,1 −m1,0. Therefore we can write the two different queries mj,0 and mj,1 as
follows:

mj,0 = m1,0 +mj,1 −m1,1

mj,1 = m1,1 +mj,0 −m1,0

For the message mj,1, we can also write mj,1 = m1,1 + mj,1 − m1,1 through zero addition. By setting
cj = mj,1 −m1,1 and calculation ct1 + cj , we get an encryption of ctj and therefore the theorem follows. ut

4 Multi-Client Functional Encryption for Separable Functions

In this section, we present our compiler, described in Fig. 9, that turns a single-input functional encryption
scheme for class F sep

1 into a multi-client functional encryption scheme MCFE with labels Labels for the class
of separable functions F sep

n , by relying on a PRF instantiated with the keyspace K := {0, 1}λ, the domain
V := Labels and the range W := Yλ, where Yλ is the range of the functions f ∈ F sep

n .
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The construction works in the following way: In the setup procedure, n different instances of the single-
input functional encryption scheme {mski}i∈[n] and shared keys Ki,j (shared between slot i and j) for all
i, j ∈ [n], i 6= j, with Ki,j = Kj,i are generated. These keys are used as PRF keys in the functional keys. The
setup procedure outputs a master secret key msk containing all the different master secret keys from the
different single-input instances and a secret key ski := (mski, {Ki,j}j∈[n]\{i}) for every slot i ∈ [n].

To generate the ciphertext cti,` for position i, the encryption algorithm for the single-input scheme is
evaluated using mski, taking a message xi and a label ` as an input.

The key generation procedure, takes as inputs the master secret key msk and a function f ∈ F sep
n separated

into the functions f1, . . . , fn with f i ∈ F sep
1 for all i ∈ [n]. To generate the functional key, a functional key

skfiKi,f for the function f iKi,f is generated for every single-input instance i ∈ [n]. The function f iKi,f takes as
input a message xi and a label ` and outputs the addition of the message xi together with a masking value
tif,`, i.e. f iKi,f (xi, `) = f i(xi) + tif,`, this masking value is generated on the fly using the PRF keys taking the
function f and the label ` as an input. The functional key skf is defined as the set of all the functional keys
generated by the single-input instances {skfiKi,f }i∈[n].

Setupmc(1λ, n) :
mski ← Setupsi(1λ), for all i ∈ [n]
For i ∈ [n], j > i:
Ki,j = Kj,i ← {0, 1}λ

Ki := {Ki,j}j∈[n]\{i}

msk := ({mski}i∈[n], {Ki}i∈[n])
ski := (mski,Ki)
Return ({ski}i∈[n],msk)
Encmc(ski, xi, `) :
Parse ski := (mski,Ki)
cti,` ← Encsi(mski, (xi, ⊥ , `))
Return cti,`

KeyGenmc(msk, {f i}i∈[n]) :
Parse msk := ({mski}i∈[n], {Ki}i∈[n])
skfiKi,f ← KeyGensi(mski, f iKi,f ),

with f iKi,f as defined in Fig. 10a Fig. 10b .
Return skf := {skfiKi,f }i∈[n]

Decmc(skf , {cti,`}i∈[n]) :
Parse skf := {skfiKi,f }i∈[n]

Decsi(skfiKi,f , cti,`) = f i(xi) + tif,`
Return

∑
i∈[n] f

i(xi) + tif,`

Fig. 9: The generic construction of q-message bounded sel-pos+-IND-secure MCFE and q-message-and-key
bounded ad-pos+-IND-secure MCFE multi-client functional encryption from single-input functional encryp-
tion. We note that “⊥” denotes a slot of size q.

f iKi,f (x, `) :
Parse Ki := {Ki,j}j∈[n]\{i}

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

Output: f i(x) + tif,`

(a) Selective Security

f iKi,f (x,⊥, `) :
Parse Ki := {Ki,j}j∈[n]\{i}

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

Output: f i(x) + tif,`

(b) Adaptive Security

Fig. 10: Description of the function that is used for the key generation under the different security definitions.

To decrypt a set of ciphertexts {cti,`}i∈[n] using a decryption key skf = {skfiKi,f }i∈[n], the decryptions of
all the instances are generated and the final output is computed by adding up all of the decryptions. In more
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detail, Dec(skfiKi,f , cti,`) = f i(xi) + tif,` is computed for all i ∈ [n] and the final output f(x1, . . . , xn) is equal
to
∑
i∈[n] f

i(xi) + tif,`.
The output of the decryption of a single-input instance, i.e. f i(xi) + tif,` ensures that it is not possible to

combine ciphertexts encrypted under different labels or functional keys generated in different key generation
procedures. If one of the ciphertexts in the decryption procedure is generated under a different label
or a different partial functional key has been used the decryption procedure will not output the correct
f(x1, . . . , xn).

Correctness. The correctness of the multi-client scheme follows from the correctness of the single input
scheme and the fact that

∑
i∈[n] t

i
f,` = 0. Let us consider in more detail the decryption of the correctly

generated ciphertexts ct1,`, . . . , ctn,` under a correctly generated functional key skf = {skfiKi,f }i∈[n]. Due
to the correctness of the single-input scheme it holds that f i(xi) + tif,` = Decsi(skfiKi,f , cti,`) and together
with the properties of the tif,` values it follows that

∑
i∈[n] f

i(xi) + tif,` =
∑
i∈[n] f

i(xi). Together with the
separability property of the function

∑
i∈[n] f

i(xi) = f(x1, . . . , xn) correctness follows.

4.1 Selective Security

To prove the selective security of the proposed construction, we proceed via a hybrid argument. We start by
encoding all the function evaluations of the left submitted challenges, i.e. f i(x0

i ) + tif,` inside the functional
keys8 and switch from encryptions of (x0

i , `) to encryptions of (x1
i , `).9 In the next hybrid, we replace the

PRF evaluations with random function evaluations between a selected honest party i∗ and all the remaining
honest parties i ∈ HS \ i∗ such that the padding values tif,` are randomly generated. Since, after this step,
all the random values are part of the functional key, we can rely on an information theoretic argument and
change the values encoded in the functional key from f i(x0

i ) + tif,` to f i(x1
i ) + tif,`. In the next hybrid, we

replace the random function evaluations back to pseudorandom function evaluations. In the last hybrid, we
generate the functional key as described in the construction which concludes the security proof. We present
the formal security proof:

Theorem 4.1 (q-message sel-pos+-IND-security of MCFE). Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be
a q-message bounded sel-FH-secure single-input functional encryption scheme for the functionality class F sep

1 ,
and PRF an IND secure pseudorandom function, then the MCFE scheme MCFE = (Setupmc,KeyGenmc,Encmc,
Decmc) described in Fig. 9 is a q-message bounded sel-pos+-IND-secure for the functionality class F sep

n .
Namely, for any PPT adversary A, there exists PPT adversaries B and B′ such that:

Advsel-pos+-IND
MCFE,A (λ) ≤ 2n · Advsel-FH

FE,B (λ) + 2(n− 1) · AdvIND
PRF,B′(λ) .

Proof. The arguments used for the generation of the values ti,` are based on the proof in [ABG19] and
we recap those parts here adapted to our construction. For the case with only one honest (non-corrupted)
position, we can rely directly on the sel-FH security of the underlying single-input functional encryption
scheme FE.

Namely, we build a PPT adversary B such that Advsel-pos+-IND
MCFE,A (λ, n) ≤ Advsel-pos+-FH

FE,B (λ). After B has
received {Qi,`}i∈[n],`∈QL, {Q′i,`}i∈[n],`∈QL′ and CS from A, it generates mski ← Setupsi(1λ) for all i ∈ [n] \ i∗,
where i∗ denotes the honest slot, and samples Ki,j for all i < j ∈ [n]. Finally B sets ski := (mski,Ki)
8 This encoding results in a functional key size that polynomially depends on the number of challenge and encryption
queries. The security of our construction can therefore only been shown if the number of challenge and encryption
queries is bounded such that the desired programming is possible.

9 For our compiler to work, it is required that the underlying single-input functional encryption scheme allows for
the desired programmability of the functional keys. Therefore every functional encryption scheme which allows for
the desired programming can be used in our compiler and not only functional encryption schemes for a general
functionality class, as stated in the formal theorem.
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with Ki := {Ki,j}j∈[n]\{i} and sends {ski}i∈[n]\{i∗} to A. It must hold for the queries {Qi,`}i∈[n],`∈QL, i.e.
{(i, xj,0i , xj,1i , `)}i∈[n],`∈QL,j∈[|Qi,`|], of A that xj,0i = xj,1i for all i ∈ [n]\{i∗} and j ∈ [|Qi,`|]. This results in the
fact that f iKi,f (xj,0i , `) = f iKi,f (xj,1i , `) in every slot i ∈ [n] \ {i∗} and for all queries j ∈ [|Qi,`|], which implies
that f i∗Ki∗ ,f (xj,0i∗ , `) = f i

∗

Ki∗ ,f (xj,1i∗ , `). The left-or-right queries {Qi,`}i∈[n]\i∗,`∈QL can directly be answered by
B, it submits {((xj,0i∗ , `), (x

j,1
i∗ , `))}`∈QL,j∈[|Qi,`|] for all ` ∈ QL computed by B, as its own left-or-right queries

to the experiment. It receives {ctji∗,`}`∈QL,j∈[|Qi,`|] as an answer and sends {ctji,`}i∈[n],`∈QL,j∈[|Qi,`|] as a reply
to A.

For the submitted queries {Q′i,`}i∈[n],`∈QL′ , i.e. {(i, xji , `)}i∈[n],`∈QL′,j∈|Q′
i,`
|, to the encryption oracle QEnc,

we distinguish between two different cases. In the case that A asks for an encryption for all positions i 6= i∗,
B computes ctji,` ← Encsi(mski, (xji , `)) for all j ∈ [|Q′i,`|] and ` ∈ QL′. If A queries QEnc for the position
i∗, i.e. it queries (i∗, xj , `), B queries its own left-or-right encryption oracle on ((i∗, xj , `), (i∗, xj , `)) for all
j ∈ [|Q′i,`|] and ` ∈ QL′. Finally, B sends the answer {ctji,`}i∈[n],`∈QL′,j∈[|Q′

i,`
|] to A.

Whenever A asks a key generation query QKeyG({f i}i∈[n]), B generates skfiKi,f ← KeyGen(mski, f iKi,f ) for
all i ∈ [n] \ {i∗}. For the functional key skfi∗Ki∗ ,f

, B queries its own key generation oracle on (f i∗Ki∗ ,f , f
i∗

Ki∗ ,f ).
Finally it sends skf := {skfiKi,f }i∈[n] as a reply to A.

This results in the fact that Advsel-pos+-IND
MCFE,A (λ, n) ≤ Advsel-FH

FE,B (λ).
For the cases with more than one honest position, we use a hybrid argument with the games defined

in Fig. 11. Note that G0 corresponds to the game sel-pos+-INDMCFE
0 (λ, n,A), and G5 corresponds to the

game sel-pos+-INDMCFE
1 (λ, n,A). This results in:

Advsel-pos+-IND
MCFE,A (λ, n) = |WinG0

A (λ, n)−WinG5
A (λ, n)| .

We describe the different intermediate games in more detail:

Game G1: We replace the encryptions of (xj,0i , `) with the encryptions of (xj,1i , `) for all (xj,0i , xj,1i ) ∈ Qi,`, all
` ∈ QL and all i ∈ [n] in the left-or-right oracle. We also replace the functional key skf := {skfiKi,f }i∈[n]

(see Fig. 10a for the function description) with skf := {skfiQi,Yi }i∈[n] (see Fig. 13 for the function

description). The hardcoded values yj,f
i

i,` ∈ Yi are generated using the queries (xj,0i , xj,1i ) ∈ Qi,` and by
computing the masking values tif,`, i.e. y

j,fi

i,` := f i(xj,0i ) + tif,`. The same holds for the hardcoded values
y′j,f

i

i,` ∈ Yi. They are generated using the queries xji ∈ Q′i,` and by computing the masking values tif,`, i.e.
y′j,f

i

i,` := f i(xji ) + tif,`. The transition from G0 to G1 is achieved using a hybrid argument with a sequence
of games G0.k, for k ∈ [n]. As already described in Fig. 11, it holds that G0 = G0.0 and G1 = G0.n. This
results in

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤
n∑
k=1
|WinG0.k−1

A (λ, n)−WinG0.k
A (λ, n)| ,

for any PPT adversary A. The transition from G0.k−1 to G0.k is justified by the function-hiding of FE.
Namely, in Lemma 4.3, we exhibit a PPT adversary Bk for all k ∈ [n] such that:

|WinG0.k−1
A (λ, n)−WinG0.k

A (λ, n)| ≤ Advsel-FH
FE,Bk (λ) .

Combining both of the statements and noticing that a PPT adversary B0 can be obtained by picking
i ∈ [n] and running Bi, we can justify the transition from G0 to G1. Namely, in Lemma 4.2, we exhibit a
PPT adversary B0 such that:

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤ n · Advsel-FH
FE,B0

(λ) .

Game G2: We replace the PRF evaluation for the computation of the masking values tif,` in the functional
keys skf for the non-corrupted positions i ∈ [n] \ CS with random function evaluations. In more detail,
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we switch from the PRF generated values PRFKi1,is (f, `) to RFs(f, `), for all s ∈ {2, . . . , h}, where the
set of honest users is denoted as HS := {i1, . . . , ih}, h ≤ n denotes the number of honest users, and RF
denotes a random function (see Fig. 12 for more details). The transition from G1 to G2 is justified by the
security of the PRF. Namely, in Lemma 4.4, we exhibit a PPT adversary B1 such that:

|WinG1
A (λ, n)−WinG2

A (λ, n)| ≤ (h− 1) · AdvIND
PRF,B1

(λ) .

Game G3: We change the generation of all the values yj,f
i

i,` ∈ Yi, which are computed using the queries
(xj,0i , xj,1i ) ∈ Qi,` and the masking values tif,`. We change the generation from yj,f

i

i,` := f i(xj,0i ) + tif,` to
yj,f

i

i,` := f i(xj,1i ) + tif,`. The transition from G2 to G3 is justified by an information theoretic argument
and happens for all i ∈ [n]. In more detail, we prove the transition by relying on the conditioned perfect
security of several instances of the one-time pad as shown in Lemma 3.5. Namely, in Lemma 4.5, we show
that

|WinG2
A (λ, n)−WinG3

A (λ, n)| = 0 ,

for all adversaries A.

Game G4: We replace the random function evaluations for the computation of the masking values tif,` in
the functional keys skf for the non-corrupted positions i ∈ [n] \ CS with PRF evaluations. The transition
from G3 to G4 is almost symmetric to the transition from G1 to G2, justified by the security of the PRF.
Namely, it can be proven as in Lemma 4.4 that there exists a PPT adversary B2 such that:

|WinG3
A (λ, n)−WinG4

A (λ, n)| ≤ (h− 1) · AdvIND
PRF,B2

(λ) .

We defer to the proof of Lemma 4.4 for further details.

Game G5: This game is identical to sel-pos+-INDMCFE
1 (λ, n,A). We replace the functional key skf :=

{skfiQi,Yi}i∈[n] (see Fig. 13 for the function description) with skf := {skfiKi,f }i∈[n] (see Fig. 10a for the
function description). The transition from G4 to G5 is almost symmetric to the transition from G0 to
G1, justified by the function-hiding of FE applied on every slot i ∈ [n]. Namely, it can be proven as in
Lemma 4.5 that there exists a PPT adversary B3 such that:

|WinG4
A (λ, n)−WinG5

A (λ, n)| ≤ n · Advsel-FH
FE,B3

(λ) .

We defer to the proof of Lemma 4.5 for further details.

Putting everything together, we obtain the theorem. ut
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Game ctji,` skf
justification/

remark

G0 Encsi(mski, (xj,0i , `)) KeyGensi(mski, f iKi,f )

G0.k

Encsi(mski, ( xj,1i , `)),
for i ≤ k

Encsi(mski, (xj,0i , `)),
for i > k

If i ≤ k
For all ` ∈ QL, (xj,0i , xj,1i ) ∈ Qi,`
tif,` := Gen(Ki, i, f, `)
yj,f

i

i,` := f i(xj,0i ) + tif,`

For all ` ∈ QL′, xji ∈ Q′i,`
tif,` := Gen(Ki, i, f, `)
y′j,f

i

i,` := f i(xji ) + tif,`

Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|],
{y′j,f

i

i,` }`∈QL′,j∈[|Q′
i,`
|]}

If i ≤ k:
KeyGensi(mski, f iQi,Yi)

If i > k:
KeyGensi(mski, f iKi,f )

Function-Hiding
of FE

G1 Encsi(mski, ( xj,1i , `))

For all ` ∈ QL, (xj,0i , xj,1i ) ∈ Qi,`
tif,` := Gen(Ki, i, f, `)
yj,f

i

i,` := f i(xj,0i ) + tif,`

For all ` ∈ QL′, xji ∈ Q′i,`
tif,` := Gen(Ki, i, f, `)
y′j,f

i

i,` := f i(xji ) + tif,`

Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|],
{y′j,f

i

i,` }`∈QL′,j∈[|Q′
i,`
|]}

KeyGensi(mski, f iQi,Yi)

G2 = G1.n

Fig. 11a: Description of the games G0 to G1 for the proof of selective security. The procedure Gen, for the
generation of the tags, is defined in Fig. 12.
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Game ctji,` skf
justification/

remark

G2 Encsi(mski, (xj,1i , `))

For all ` ∈ QL, (xj,0i , xj,1i ) ∈ Qi,`
tif,` := Gen′(Ki, i, f, `)

yj,f
i

i,` := f i(xj,0i ) + tif,`

For all ` ∈ QL′, xji ∈ Q′i,`
tif,` := Gen′(Ki, i, f, `)

y′j,f
i

i,` := f i(xji ) + tif,`

Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|],
{y′j,f

i

i,` }`∈QL′,j∈[|Q′
i,`
|]}

KeyGensi(mski, f iQi,Yi)

PRF

G3 Encsi(mski, (xj,1i , `))

For all ` ∈ QL, (xj,0i , xj,1i ) ∈ Qi,`
tif,` := Gen′(Ki, i, f, `)

yj,f
i

i,` := f i(xj,1i ) + tif,`

For all ` ∈ QL′, xji ∈ Q′i,`
tif,` := Gen′(Ki, i, f, `)
y′j,f

i

i,` := f i(xji ) + tif,`

Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|],
{y′j,f

i

i,` }`∈QL′,j∈[|Q′
i,`
|]}

KeyGensi(mski, f iQi,Yi)

inf. theoretic

Fig. 11b: Description of the games G2 to G3 for the proof of selective security. The procedure Gen′, for the
generation of the tags, is defined in Fig. 12.
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Game ctji,` skf
justification/

remark

G4 Encsi(mski, (xj,1i , `))

For all ` ∈ QL, (xj,0i , xj,1i ) ∈ Qi,`
tif,` := Gen(Ki, i, f, `)

yj,f
i

i,` := f i(xj,1i ) + tif,`

For all ` ∈ QL′, xji ∈ Q′i,`
tif,` := Gen(Ki, i, f, `)

y′j,f
i

i,` := f i(xji ) + tif,`

Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|],
{y′j,f

i

i,` }`∈QL′,j∈[|Q′
i,`
|]}

KeyGensi(mski, f iQi,Yi)

PRF

G4.k Encsi(mski, (xj,1i , `))

If i > k

For all ` ∈ QL, (xj,0i , xj,1i ) ∈ Qi,`
tif,` := Gen(Ki, i, f, `)
yj,f

i

i,` := f i(xj,0i ) + tif,`

For all ` ∈ QL′, xji ∈ Q′i,`
tif,` := Gen(Ki, i, f, `)
y′j,f

i

i,` := f i(xji ) + tif,`

Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|],
{y′j,f

i

i,` }`∈QL′,j∈[|Q′
i,`
|]}

If i ≤ k:
KeyGensi(mski, f iKi,f )

If i > k:
KeyGensi(mski, f iQi,Yi)

Function-Hiding
of FE

G5 Encsi(mski, (xj,1i , `)) KeyGensi(mski, f iKi,f ) G5 = G4.n

Fig. 11c: Description of the games G4 to G5 for the proof of selective security. The procedure Gen, for the
generation of the tags, is defined in Fig. 12.
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Gen(Ki, i, f, `)
Parse Ki := {Ki,j}j∈[n]\{i}

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

Return tif,`

Gen′(Ki, i, f, `)
Parse Ki := {Ki,j}j∈[n]\{i}

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

If i ∈ HS := {i1, . . . , ih}, then:
• If i = i1,

tif,` :=
∑
j∈CS(−1)j<iPRFKi,j (f, `)

+
∑h
s=2 RFs(f, `)

• If i = is, for s ∈ {2, . . . , h}
tif,` :=

∑
j∈[n]\{i1,is}(−1)j<iPRFKi,j (f, `)

−RFs(f, `)
Return tif,`

Fig. 12: Generation of the tags in the selective security case.

f iQi,Yi(x, `) :
Parse Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′} and

Yi := {{yj,f
i

i,` }`∈QL,j∈[|Qi,`|], {y
′j,fi
i,` }`∈QL′,j∈[|Q′

i,`
|]}

If x = xj,1i with (·, xj,1i ) ∈ Qi,`
Output: yj,f

i

i,`

If x ∈ Q′i,`
Output: y′j,f

i

i,`

Fig. 13: Description of the function that is used in the reduction for the selective security reduction.

Lemma 4.2 (Transition from G0 to G1). For any PPT adversary A, there exists a PPT adversary B′
such that

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤ n · Advsel-FH
FE,B′ (λ) .

Proof. To prove that G0 is indistinguishable from G1 we need to apply a hybrid argument over the n slots,
using the function-hiding of the single-input functional encryption scheme.

Using the definition of the games in Fig. 11 and the triangle inequality, we can see that

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤
n∑
k=1
|WinG0.k−1

A (λ, n)−WinG0.k
A (λ, n)| ,

where G0 corresponds to game G0.0 and whereas G1 is identical to game G0.n.
Now, we can bound the difference between each consecutive pair of games for every k ∈ [n].

Lemma 4.3. For every k ∈ [n], there exists a PPT adversary Bk against the sel-FH property of the single-
input scheme FE such that

|WinG0.k−1
A (λ, n)−WinG0.k

A (λ, n)| ≤ Advsel-FH
FE,Bk (λ) .
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Proof. We build an adversary Bk that simulates G0.k−1+β to A when interacting with the underlying sel-FHFE
β

experiment.
In the beginning of the reduction, Bk receives CS, {Qi,`}i∈[n],`∈QL and {Q′i,`}i∈[n],`∈QL′ from A and

sets Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}. If k ∈ CS, the adversary Bk directly outputs α ← {0, 1}. This is
due to the fact that the games G0.k−1 and G0.k are identical in this case, which results in an advantage
equal to 0 and Lemma 4.3 trivially holds. If k /∈ CS, Bk generates mski ← Setupsi(1λ) for all i ∈ [n] \ {k},
samples Ki,j = Kj,i ← {0, 1}λ for all i < j ∈ [n], and sets ski := (mski,Ki), with Ki = {Ki,j}j∈[n]\{i} for all
i ∈ [n] \ {k}.

To answer the left-or-right queries, Bk computes the ciphertexts ctji,` ← Encsi(mski, (xj,1i , `)) for all
(xj,0i , xj,1i ) ∈ Qi,`, ` ∈ QL with i < k and i ∈ HS and ctji,` ← Encsi(mski, (xj,0i , `)) for all (xj,0i , xj,1i ) ∈ Qi,`, ` ∈
QL with i > k or i ∈ CS. To compute ctjk,` ← Encsi(mskk, xj,βk , `), Bk submits the set {((xj,0k , `), (xj,1k , `))}`∈QL,j∈[|Qi,`|]

as its own left-or-right queries to the experiment. It receives {ctjk,`}`∈QL,j∈[|Qi,`|] as an answer to its queries.
The adversary Bk behaves similar to answer the encryption oracle queries. If i = k, Bk submits the left-or-

right query ((xjk, `), (x
j
k, `)) for all xjk ∈ Q′k,` for all ` ∈ QL′ to its own left-or-right oracle and receives ct′jk,` as

an answer. For i < k and i ∈ HS, Bk uses its master secret key mski and computes ct′ji,` ← Enc(mski, (xji , `))
for all xji ∈ Q′i,` for all ` ∈ QL′ and for i > k and i ∈ CS, Bk uses its master secret key mski and computes
ct′ji,` ← Enc(mski, (xji , `)) for all xji ∈ Q′i,` for all ` ∈ QL′.

As an answer to the queries asked byA in the beginning of the game, Bk sends ({ski}i∈CS , {ctji,`}i∈[n],`∈QL,j∈[|Qi,`|],

{ct′ji,`}i∈[n],`∈QL′,j∈[|Q′
i,`
|]) to A.

Whenever the adversaryA asks a key generation query QKeyG({f i}i∈[n]), Bk generates tif,` := Gen(Ki, i, f, `)
for all i ∈ [k]\CS, ` ∈ QL and computes yj,f

i

i,` := f i(xj,0i )+tif,` for all (xj,0i , xj,1i ) ∈ Qi,`, ` ∈ QL with i ∈ [k]\CS.
Additionally, Bk generates tif,` := Gen(Ki, i, f, `) for all i ∈ [k] \ CS, ` ∈ QL′ and computes y′j,f

i

i,` := f i(xji ) +
ti,` + ri for all xji ∈ Q′i,`, ` ∈ QL′ with i ∈ [k] \ CS. Bk sets Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|], {y
′j,fi
i,` }`∈QL′,j∈[|Q′

i,`
|]}

for all i ∈ [k] \ CS and computes skfiQi,Yi ← KeyGensi(mski, f iQi,Yi) for the slots i < k with i ∈ HS
and skfiKi,f ← KeyGensi(mski, f iKi,f ) for i > k or i ∈ CS. To generate skfk , Bk queries its own key gen-
eration oracle QKeyG on (fkKk,f , f

k
Qk,Yk), this query fulfills the functional restriction, i.e. it holds that

fkKk,f (xj,0k , `) = fkQk,Yk(xj,0k , `) for all (xj,0k , ·) ∈ Qk,` for all ` ∈ QL. Bk receives skfk as an answer, sets
skf := {skfiQi,Yi }i∈[k−1]\CS ∪ {skfk} ∪ {skfiKi,f }i∈({k+1,...,n}∪CS) and sends skf to A.

This covers the simulation of the game G0.k−1+β . Finally, Bk outputs the same bit β′ returned by A. Thus,
we obtain the lemma. ut

The proof of the lemma follows by noticing that the adversary B′′ in the lemma statement can be obtained
by picking k ∈ [n] and running Bk. ut

Lemma 4.4 (Transition from G1 to G2). For any PPT adversary A, there exists a PPT adversary B′′
such that

|WinG1
A (λ, n)−WinG2

A (λ, n)| ≤ (h− 1) · AdvIND
PRF,B′′(λ, n) ,

where h ≤ n denotes the number of honest users.

Proof. This proof works mainly as described in [ABG19].
For all the honest positions i, j ∈ HS, we can replace the PRF PRF with a random function RF. This is

due to the fact that the keys Ki,j (with i, j ∈ HS) are totally hidden from the adversary A. We can show
that it is sufficient for the transition of game G0 to G1 to rely on the security of the PRF in h− 1 chosen
slots. In more detail, we write the ordered set HS := {i1, . . . , ih}, with i1 < i2 < · · · < ih. For all keys of the
form Ki1,j with j ∈ HS \ {i1} we rely on the security of the PRF.

The adversary B′′ works as follows. After receiving CS and the challenge messages {Qi,`}i∈[n],`∈QL and
{Q′i,`}i∈[n],`∈QL′ from A, it samples mski ← Setupsi(1λ) for all i ∈ [n] and sets msk := {mski}i∈[n]. In the
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next step, B′ samples Ki,j = Kj,i ← {0, 1}λ, for all i ∈ [n] \ {i1} and j > i. The secret keys for the corrupted
positions i ∈ CS are defined as ski := (mski,Ki) with Ki := {Ki,j}j∈[n]\{i}. After B′ has set the secret keys
for the corrupted positions, it sends them to A. B′ answers the queries to QLeftRight(i, xj,0i , xj,1i , `) and
QEnc(i, xji , `) using mski for all i ∈ [n].

The generation of the masking values tif,` for the honest position, used in the key generation, depends on
the queried slot. For the first honest slot i1, B′ computes

tif,` :=
∑
j∈CS

(−1)j<i1PRFKi1,j (f, `) +
h∑
s=2

RFs(f, `) .

For all the other honest slots, B′ computes

tif,` :=
∑

j∈[n]\{is,i1}

(−1)j<isPRFKis,j (f, `) +
h∑
s=2

RFs(f, `) ,

and uses it to answer the key generation queries asked to QKeyG.
In this experiment, the adversary B′′ is interacting with h− 1 instances of the INDPRF

β (λ,B′′) experiment.
With many instances we mean that the adversary is querying many different experiments but in all of these
experiments the reply is either the random function evaluation or the pseudorandom functions evaluation.
It can be shown via a simple hybrid argument that the many instances experiment follows from a single
instance experiment. ut

Lemma 4.5 (Transition from G2 to G3). For any adversary A it holds that

|WinG2
A (λ, n)−WinG3

A (λ, n)| = 0 .

Proof. We build a PPT adversary B′′′ that simulates G2+β to A, when interacting with (|HS|−1) · |QL| · |Qf |
instances of the one-time pad in the CON-PERF-INDβ experiment, as proven in Lemma 3.5. With many-
instances we mean that encryption oracle of the one-time pad can be queried several times, but always the
same position (left or right) is encrypted. In more detail, a new key tif,` is chosen for every position i ∈ HS
but one, for every label ` ∈ QL and for every function f ∈ Qf .

In the beginning of the reduction, B′′′ receives CS, {Qi,`}i∈[n],`∈QL and {Q′i,`}i∈[n],`∈QL′ from A and
sets Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′}. Then B′′′ generates mski ← Setupsi(1λ) for all i ∈ [n], samples
Ki,j = Kj,i ← {0, 1}λ for all i < j ∈ [n], with i ∈ CS and sets ski := (mski,Ki) with Ki := {Ki,j}j∈[n]\{i} for
i ∈ CS.

To answer the left-or-right queries, B′′′ proceeds differently corresponding to the queried position i. For
all (xj,0i , xj,1i ) ∈ Qi,` for all ` ∈ QL, B′′′ computes the ciphertexts ctji,` ← Encsi(mski, (xj,1i , `)) if i ∈ HS and
it computes the ciphertext ctji,` ← Encsi(mski, (xj,0i , `)) for i ∈ CS.

To answer the encryption oracle queries xji ∈ Q′i,` for all ` ∈ QL′, B′′′ uses its master secret key mski to
compute ct′ji,` ← Enc(mski, (xji , `)) for all i ∈ [n].

As an answer to the queries asked byA in the beginning of the game, B′′′ sends ({ski}i∈CS , {ctji,`}i∈[n],`∈QL,j∈[|Qi,`|],

{ct′ji,`}i∈[n],`∈QL′,j∈[|Q′
i,`
|]) to A.

Whenever the adversary A asks a key generation query QKeyG({f i}i∈[n]), B′′′ queries the underlying one-
time pad for all the honest slots except one, i.e. for all i ∈ HS \{k}. In more detail, B′′′ queries the underlying
one-time pad with (f i(xj,0i ), f i(xj,1i )) for all i ∈ HS\{k}, all (xj,0i , xj,1i ) ∈ Qi,` and all ` ∈ QL. B′′′ also queries
the underlying one-time pad with (f i(xji ), f i(x

j
i )) for all i ∈ HS \ {k}, all xji ∈ Q′i,` and all ` ∈ QL′. To prove

that this query made by B′′′ is valid, in the sense of the CON-PERF-INDβ game, we need to show that for
all i ∈ HS \ {k}, all (xj,0i , xj,1i ) ∈ Qi,` and all ` ∈ QL it holds that f i(x1,1

i )− f i(x1,0
i ) = f i(xj,1i )− f i(xj,0i ).

This follows immediately from the fact that a left-or-right query needs to be asked in every position and
the fact that f(xj,01 , . . . , xj,0n ) = f(xj,11 , . . . , xj,1n ) for all i ∈ [n], all (xj,0i , xj,1i ) ∈ Qi,` and all ` ∈ QL, which
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is equivalent to
∑
i∈[n] f

i(xj,0i ) =
∑
i∈[n] f

i(xj,1i ) in the case of separable functions. In more detail, we
consider the case in which a left-or-right query has been asked in every position at least once and another
left-or-right query, (xj,0i∗ , x

j,1
i∗ ), is made for the slot i∗. For the function evaluation of this query, it must

hold that
∑
i∈[n]\{i∗} f

i(x1,0
i ) + f i

∗(xj,0i∗ ) =
∑
i∈[n]\{i∗} f

i(x1,1
i ) + f i

∗(xj,1i∗ ), which results in f i
∗(xj,1i∗ ) −

f i
∗(xj,0i∗ ) =

∑
i∈[n]\{i∗} f

i(x1,0
i )−

∑
i∈[n]\{i∗} f

i(x1,1
i ), since this holds for all j ∈ [|Qi,`|] it directly follows that

f i
∗(x1,1

i∗ )− f i∗(x1,0
i∗ ) = f i

∗(xj,1i∗ )− f i∗(xj,0i∗ ) for all (xj,0i∗ , x
j,1
i∗ ) ∈ Qi∗,` for all ` ∈ QL. After showing that the

condition of the CON-PERF-INDβ game is fulfilled, we show that B′′′ perfectly simulates the key generation.
After B′′′ received the replies yj,f

i

i,` of its queries (f i(xj,0i ), f i(xj,1i )) for all i ∈ HS \ {k}, all (xj,0i , xj,1i ) ∈ Qi,`
and all ` ∈ QL, it computes ejf,` := f(xj,01 , . . . , xj,0n ) = f(xj,11 , . . . , xj,1n ) for all j ∈ [|Qi,`|] and sets yj,f

i

k,` :=
ejf,` − (

∑
i∈[n]\{k} y

j,fi

i,` ) for all j ∈ [|Qi,`|]. B′′′ sets Yi := {{yj,f
i

i,` }`∈QL,j∈[|Qi,`|], {y
′j,fi
i,` }`∈QL′,j∈[|Q′

i,`
|]}. In the

final step, B′′′ generates skfiQi,Yi ← KeyGen(mski, f iQi,Yi) for all i ∈ HS and skfiri ← KeyGen(mski, f iri) for all
i ∈ CS, sets skf := {skfiQi,Yi}i∈HS ∪ {skfiri }i∈CS and sends skf to A.

This shows the perfect simulation of G2+β . Finally, B′′′ outputs the same bit β′ returned by A. Thus, we
obtain the lemma. ut

4.2 Adaptive Security

To prove the adaptive security of our construction, we face two main problems that do not occur in the case of
selective security: First, we do not know all the honest slots in advance and therefore cannot directly replace
the honest pseudorandom function evaluations with random function evaluations. The second problem is that
we cannot encode all the function evaluations inside the functional keys since we do not know all the message
queries in advance.

We overcome the first problem using a proof technique borrowed from [ABG19]. We define an explicitly
honest slots (as in [ABG19]) as slots where the first left-or-right oracle query to a specific label `? happens for
different messages x0

i and x1
i , i.e. x

1,0
i 6= x1,1

i . Notice that if a slot i is disclosed as explicitly honest it cannot
be corrupted afterwards anymore and we can replace the pseudorandomness in this slot with real randomness
(i.e. by relying on the security of the PRF). To know which slots are going to be explicitly honest, we will
guess, at a very high level, the number of corrupted slots and the index of the first and the last slots that
will be corrupted. This results only in a polynomial loss in the reduction instead of an exponential loss. To
solve the second issue, we make use of the ⊥ slot in the different encryptions. In more detail, we create a list
that contains all the functions that have already been queried to the key generation oracle and whenever
the adversary queries the left-or-right oracle or the encryption oracle on a new challenge, we place all the
function evaluations for every previous queried functions inside the ⊥ position of the ciphertext. Combining
this with the approach from the selective security proof, we ensure that the function evaluation happens
correctly no matter if the encryption or left-or-right oracle query happened before or after a functional key
query. Since the ciphertext also contains function evaluations, we need to replace them together with function
evaluations contained inside the functional key. This happens with the same information theoretic argument
as in the selective security case extended to the ciphertexts. The formal proof is described below.

Theorem 4.6 (q-message-and-key ad-pos+-IND-security of MCFE). Let FE = (Setupsi,KeyGensi,Encsi,
Decsi) be a q-message-and-key bounded ad-FH-secure single-input functional encryption scheme for the func-
tionality class F sep

1 , and PRF an IND secure pseudorandom function, then the MCFE scheme MCFE
described in Fig. 9 is a q-message-and-key bounded ad-pos+-IND-secure functional encryption scheme for
the functionality class F sep

n . Namely, for any PPT adversary A, there exists PPT adversaries B and B′ such
that:

Advad-pos+-IND
MCFE,A (λ) ≤ 4n(n+ 1)qEnc · Advad-FH

FE,B (λ) + 2(n+ 1)n(n− 1)2qEnc · AdvIND
PRF,B′(λ) ,

where qEnc denotes the number of distinct labels queried to QLeftRight.
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Proof. Due to Lemma 2.6, we can assume that the adversary A only queries QLeftRight on one label `?, that
is not queried to QEnc it is sufficient to show that:

Advad-pos+-IND-1-label
MCFE,A (λ) ≤ 4n(n+ 1) · Advad-FH

FE,B (λ) + 2(n+ 1)n(n− 1)2 · AdvIND
PRF,B′(λ).

The arguments used for the generation of the values tif,` is based on the proof in [ABG19] and we recap those
parts here adapted to our construction.

We denote by Qi,` the encryption queries of the form (xj,0i , xj,1i , `) made for position i and by Qi,f the
key queries of the form (f i, f) made for every position i ∈ [n].

For the case with only one explicitly honest position, we proceed in the same way as for the selective
security case, with a direct reduction to the underlying adaptive secure single input functional encryption
scheme.

As in Abdalla et al. [ABG19], we consider a slot i as explicitly honest if the first left-or-right oracle query
for the label `?, i.e. QLeftRight(i, x1,0

i , x1,1
i , `?), that has been made for this slot contains two challenges such

that x1,0
i 6= x1,1

i . For the slots that are not explicitly honest, i.e. it holds for the first query that x1,0
i = x1,1

i , it
must hold that for all further queries j in this slot that f i(xj,0i ) = f i(xj,1i ) (a detailed reasoning why this
holds can be found in the proof of Lemma 4.11) and therefore the security of such a slot i can be directly
reduced to the security of the underlying functional encryption scheme.

For the cases with more than one honest position, we use a hybrid argument with the games defined in
Fig. 14. This results in:

Advad-pos+-IND
MCFE,A (λ, n) = |WinG?0

A (λ, n)−WinG?5
A (λ, n)| .

We describe the different intermediate games in more detail:

Game G?0 The game is the same as the ad-pos+-IND-1-label0 game, but with the difference that the
number of explicitly honest slots is guessed in advance. This happens by choosing a uniformly random
κ? ← {0, . . . , n}. This guess is necessary since the honest slots are not known in advance as in the selective
case. The game behaves exactly as the ad-pos+-IND-1-label0 game, except that it outputs 0 and ignores
A’s output in the case that the guess κ? was incorrect. Since the guess is correct with probability 1

n+1 ,
we have

WinG?0
A (λ, n) = 1

(n+ 1) ·Winad-pos+-IND-1-label0(λ, n).

Game G?1: We replace the encryptions of (xj,0i ,⊥, `?) with the encryptions of (xj,1i , Zi, `
?) for all (xj,0i , xj,1i ) ∈

Qi,`? and all i ∈ [n] in the left-or-right oracle. The hardcoded values zj,f
i

i,`? ∈ Zi are generated using
the values (f i, f) ∈ Qi,f , the queries (xj,0i , xj,1i ) ∈ Qi,`? and by computing the masking values tif,`? ,
i.e. zj,f

i

i,`? := f i(xj,0i ) + tif,`? . We also replace the functional key skf := {skfiKi,f }i∈[n] (see Fig. 10b for
the function description) with skf := {skfiKi,f,QYi}i∈[n] (see Fig. 16 for the function description). The

hardcoded values yj,f
i

i,`? ∈ QYi are generated using the queries (xj,0i , xj,1i ) ∈ Qi,`? and by computing the
masking values tif,`? , i.e. y

j,fi

i,`? := f i(xj,0i ) + tif,`? . The transition from G?0 to G?1 is achieved using a hybrid
argument with sequence G?0.k, for k ∈ [n]. As already described in Fig. 14, it holds that G?0 = G?0.0 and
G?1 = G?0.n. This results in

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤
n∑
k=1
|WinG?0.k−1

A (λ, n)−WinG?0.k
A (λ, n)| ,

for any PPT adversary A. The transition from G?0.k−1 to G?0.k is justified by the function-hiding of FE.
Namely, in Lemma 4.8, we exhibit a PPT adversary Bk for all k ∈ [n] such that:

|WinG?0.k−1
A (λ, n)−WinG?0.k

A (λ, n)| ≤ Advad-FH
FE,Bk (λ) .
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combining both of the statements and noticing that a PPT adversary B0 can be obtained by picking
i ∈ [n] and running B′i, we can justify the transition from G?0 to G?1. Namely, in Lemma 4.7, we exhibit a
PPT adversary B0 such that:

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤ n · Advad-FH
FE,B0

(λ) .

Game G?2: We change the distribution of the tif,`? values, for the case κ? ≥ 2. For these, the tif,`? vector gets
computed as usual, but a share of a perfect κ? out of κ? secret sharing is added. This game is similar to
the game G1 from Fig. 11 for the proof of Theorem 4.1. Similarly to Lemma 4.4, we justify this transition
using the security of the PRF with the crucial difference that corruptions happen adaptive here. Therefore,
the reduction does not know the set of honest slot in advance. Since guessing the entire set of explicitly
honest slot would incur an exponential security loss, we gradually introduce the shares. Starting with 2
out of 2 perfect secret sharing, then 3 out of 3 until we reach the the κ? out of κ? secret sharing among all
the queried slots. This gradual introduction happens via a hybrid argument that is described in Fig. 17.
To go from one hybrid to another, we only require to guess a pair of slot (i, j) (namely the first and the
last slot to be revealed) to use the security of the PRF on the key Ki,j . Namely, in Lemma 4.9, we show
that there exists a PPT adversary B1 such that:

|WinG?1
A (λ, n)−WinG?2

A (λ, n)| ≤ n(n− 1)2 · AdvIND
PRF,B1

(λ, n) .

Game G?3: We change the generation of all the values yj,f
i

i,`? ∈ Yi and z
j,fi

i,`? ∈ Zi, which are computed using the
queries Qi,`? and Qi,f and the masking values tif,`? . We change the generation from yj,f

i

i,`? := f i(xj,0i )+ tif,`?
to yj,f

i

i,`? := f i(xj,1i ) + tif,`? and from zj,f
i

i,`? := f i(xj,0i ) + tif,`? to zj,f
i

i,`? := f i(xj,1i ) + tif,`? . The transition from
G?2 to G?3 is justified by an information theoretic argument and happens for all i ∈ [n]. In more detail, we
prove the transition by relying on the conditioned perfect security of several instances of the one-time
pad as shown in Lemma 3.5. Namely, in Lemma 4.11, we show that

|WinG?2
A (λ, n)−WinG?3

A (λ, n)| = 0 ,

for all adversaries A.
Game G?4: We change the distribution of the tif,`? values back to the PRF evaluations without additional

shares. As in G?3 we do this gradually. The transition from G?3 to G?4 is almost symmetric to the transition
from G?1 to G?2, justified by the security of the PRF. Namely, it can be proven as in Lemma 4.9 that there
exists a PPT adversary B2 such that:

|WinG?3
A (λ, n)−WinG?4

A (λ, n)| ≤ n(n− 1)2 · Adv-IND
PRF,B2

(λ, n) .

We defer to the proof of Lemma 4.9 for further details.
Game G?5: We replace the encryptions of (xj,1i , Zi, `

?) with the encryptions of (xj,1i ,⊥, `?) for all (xj,0i , xj,1i ) ∈
Qi,`? and all i ∈ [n] in the left-or-right oracle. We also replace the functional key skf := {skfiKi,f,QYi}i∈[n]

(see Fig. 10b for the function description) with skf := {skfiKi,f }i∈[n] (see Fig. 16 for the function description).
The transition from G?4 to G?5 is almost symmetric to the transition from G?0 to G?1, justified by the
function-hiding of FE applied on every slot i ∈ [n]. Namely, it can be proven as in Lemma 4.7 that there
exists a PPT adversary B3 such that:

|WinG?4
A (λ, n)−WinG?5

A (λ, n)| ≤ n · Advad-FH
FE,B3

(λ) .

We defer to the proof of Lemma 4.7 for further details.
Since G?5 is exactly as the game ad-pos+-IND-1-labelMCFE

1 (λ, n,A) except the guess κ? ← {0, . . . , n}, we
have

WinG?5
A (λ, n) = 1

(n+ 1) ·Winad-pos+-IND-1-label1(λ, n).
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Putting everything together, we obtain the theorem. ut
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Game ctji,`? skf
justification/

remark

G?0 Encsi(mski, (xj,0i ,⊥, `?)) KeyGensi(mski, f iKi,f )

G?0.k

If i ≤ k
Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f
tif,`? := Gen(Ki, i, f, `?)
zj,f

i

i,`? := f i(xj,0i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, ( xj,1i , Zi , `
?)),

for i ≤ k
Encsi(mski, (xj,0i ,⊥, `?)),

for i > k

If i ≤ k
Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?
tif,`? := Gen(Ki, i, f, `?)
yj,f

i

i,`? := f i(xj,0i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,`? }j∈[|Qi,`? |]}

If i ≤ k:
KeyGensi(mski, f iKi,f,QYi)

If i > k:
KeyGensi(mski, f iKi,f )

Function-Hiding
of FE

G?1

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f
tif,`? := Gen(Ki, i, f, `?)
zj,f

i

i,`? := f i(xj,0i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, ( xj,1i , Zi , `
?))

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?
tif,`? := Gen(Ki, i, f, `?)
yj,f

i

i,`? := f i(xj,0i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,` }j∈[|Qi,`? |]}

KeyGensi(mski, f iKi,f,QYi)

G?1 = G?0.n

G?1.k

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f

tif,`? := Gen′′k,`?(Ki, i, f, `?)

zj,f
i

i,`? := f i(xj,0i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, (xj,1i , Zi, `
?))

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?

tif,`? := Gen′′k,`?(Ki, i, f, `?)

yj,f
i

i,`? := f i(xj,0i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,`? }j∈[|Qi,`? |]}

KeyGensi(mski, f iKi,f,QYi)

PRF
(see Fig. 17)

G?2

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f

tif,`? := Gen′′`?(Ki, i, f, `?)

zj,f
i

i,`? := f i(xj,0i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, (xj,1i , Zi, `
?))

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?

tif,`? := Gen′′`?(Ki, i, f, `?)

yj,f
i

i,`? := f i(xj,0i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,`? }j∈[|Qi,`? |]}

KeyGensi(mski, f iKi,f,QYi)

G?2 = G?1.n

Fig. 14a: Description of the games G?0 to G?2 for the proof of adaptive security. The procedures Gen and Gen′′`?
are defined in Fig. 15 and Gen′′k,`? is defined in Fig. 17. All of the procedure specify the generation of the tags.
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Game ctji,`? skf
justification/

remark

G?3

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f
tif,`? := Gen′′`?(Ki, i, f, `?)

zj,f
i

i,`? := f i(xj,1i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, (xj,1i , Zi, `
?))

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?
tif,`? := Gen′′`?(Ki, i, f, `?)

yj,f
i

i,`? := f i(xj,1i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,`? }j∈[|Qi,`? |]}

KeyGensi(mski, f iKi,f,QYi)

inf. theoretic

G?3.k

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f

tif,`? := Gen′′n−k,`?(Ki, i, f, `?)

zj,f
i

i,`? := f i(xj,1i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, (xj,1i , Zi, `
?))

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?

tif,`? := Gen′′n−k,`?(Ki, i, f, `?)

yj,f
i

i,`? := f i(xj,1i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,`? }j∈[|Qi,`? |]}

KeyGensi(mski, f iKi,f,QYi)

PRF
(see Fig. 17)

G?4

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f

tif,`? := Gen(Ki, i, f, `?)

zj,f
i

i,`? := f i(xj,1i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, (xj,1i , Zi, `
?))

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?

tif,`? := Gen(Ki, i, f, `?)

yj,f
i

i,`? := f i(xj,1i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,` }j∈[|Qi,`? |]}

KeyGensi(mski, f iKi,f,QYi)

G?4 = G?3.n

G?4.k

If i > k

Add (xj,0i , xj,1i ) to Qi,`?
For all (f i, f) ∈ Qi,f
tif,`? := Gen(Ki, i, f, `?)
zj,f

i

i,`? := f i(xj,1i ) + tif,`?

Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

Encsi(mski, (xj,1i , ⊥ , `?)),
for i ≤ k

Encsi(mski, (xj,1i , Zi, `
?)),

for i > k

If i > k

Add (f i, f) to Qi,f
For all (xj,0i , xj,1i ) ∈ Qi,`?
tif,`? := Gen(Ki, i, f, `?)
yj,f

i

i,`? := f i(xj,1i ) + tif,`?

QYi := {Qi,`? , {yj,f
i

i,` }j∈[|Qi,`? |]}

If i ≤ k:
KeyGensi(mski, f iKi,f )

If i > k:
KeyGensi(mski, f iKi,f,QYi)

Function-Hiding
of FE

G?5 Encsi(mski, (xj,1i , ⊥ , `?)) KeyGensi(mski, f iKi,f ) G?5 = G?4.n

Fig. 14b: Description of the games G?3 to G?5 for the proof of adaptive security. The procedures Gen and Gen′′`?
are defined in Fig. 15 and Gen′′n−k,`? is defined in Fig. 17. All of the procedure specify the generation of the
tags.
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Gen(Ki, i, f, `)
Parse Ki := {Ki,j}j∈[n]\{i}

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

Return tif,`

Gen′′`?(Ki, i, f, `)
Parse Ki := {Ki,j}j∈[n]\{i}

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

We denote by {i1, . . . , iκ} the set of explicitly
honest slots in the order they are revealed.
If i ∈ {i1, . . . , iκ} and ` = `?, then:
• If i = i1

tif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `)

+
∑κ?

s=2 u
s
f,`?

• If i = is, for s ∈ {2, . . . , κ?}
tif,` :=

∑
j 6=i(−1)j<iPRFKi,j (f, `)

−usf,`?
Return tif,`

Fig. 15: Generation of the tags in the adaptive security case.

f iKi,f,QYi(x, Zi, `) :

Parse QYi := {Qi,`? , {yj,f
i

i,`? }j∈[Q`? ]}
If ` = `? and x = xj,1i with (·, xj,1i ) ∈ Qi,`?

Parse Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f

If yj,f
i

i,`? is defined
Return yj,f

i

i,`?

Return zj,f
i

i,`?

Else
tif,` :=

∑
j 6=i(−1)j<iPRFKi,j (f, `)

Return f i(x) + tif,`

Fig. 16: Description of the function that is used in the reduction for the adaptive security.
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G?1.k for k ∈ {0, . . . , n} :
κ? ← {0, . . . , n}, for all s ∈ {2, . . . , κ?} and all
possible number q of functions f10, sample usf,`? ← Yλ
({ski}i∈[n],msk)← Setup′(1λ, n)
α← AQCor(·),QKeyG(·),QEnc(·,·,·),QLeftRight(·,·,·,·)(1λ)
Output α if Condition (*) is satisfied AND the guesses κ? is correct, or
0 otherwise.

Gen′′k,`?(Ki, i, f, `):
Parse Ki := {Ki,j}j∈[n]\{i}

vif,` :=
∑
j 6=i(−1)j<iPRFKi,j (f, `).

We denote by {i1, . . . , iκ} the set of explicitly honest slots in the order they are
revealed (i1 is the first honest slot, i2 the second, . . . ), and we set θ := min(κ?, k).
If θ ≥ 2 and ` = `? then do the following:

– If i = i1, then tif,` := vif,` +
∑θ
s=2 u

s
f,`?

– If i = is, for s ∈ {2, . . . , θ}, then tif,` := vif,` − usf,`?
– If i = is, for s ∈ {θ + 1, . . . , κ?}, then tif,` := vif,`
– If i = is, for s > κ?, that means k > κ?, the guess was incorrect.
Ends the game and outputs 0.

Else, then tif,` := vif,`.

Return tif,`

Fig. 17: Games for the proof of Lemma 4.9. The guess κ? is correct if it equals the size of the set of explicitly
honest slots.

Lemma 4.7 (Transition from G?0 to G?1). For any PPT adversary A, there exists a PPT adversary B′
such that

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤ n · Advad-FH
FE,B′ (λ) .

Proof. To prove that G?1 is indistinguishable from G?0 we need to apply a hybrid argument over the n slots,
using the function-hiding of the single-input functional encryption scheme.

Using the definition of the games in Fig. 14 and the triangular inequality, we can see that

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤
n∑
k=1
|WinG?0.k−1

A (λ, n)−WinG?0.k
A (λ, n)| ,

where G?0 corresponds to game G?0.0 and where G?1 is identical to game G?0.n.
Now, we can bound the difference between each consecutive pair of games for every k ∈ [n].

Lemma 4.8. For every k ∈ [n], there exists a PPT adversary Bk against the ad-FH property of the single-
input scheme FE such that

|WinG?0.k−1
A (λ, n)−WinG?0.k

A (λ, n)| ≤ Advad-FH
FE,Bk (λ) .

10 It is also possible to sample the shares for the different f ’s whenever a new f is queried to the generation procedure.
For a better presentation, we sample them here at the beginning of the game.
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Proof. We build an adversary Bk that simulates G?0.k−1+β to A when interacting with the underlying ad-FHFE
β

experiment.
We denote by EHS the set of explicitly honest slots and by RS the set of remaining slots. Before answering

any oracle queries, the adversary Bk initializes the lists Qi,`? for all i ∈ [n] and the list Qi,f for all i ∈ [n].
Afterwards, Bk generates mski ← Setupsi(1λ) for all i ∈ [n] \ {k}, samples Ki,j = Kj,i ← {0, 1}λ for all
i ∈ [n], i < j and sets ski := (mski,Ki) with Ki := {Ki,j}j∈[n]\{i}.

For every corruption query QCor(i) with i 6= k, Bk sends ski to A. If a corruption query is asked for k,
the adversary Bk directly outputs α ← {0, 1}. This is due to the fact that the games G?0.k−1 and G?0.k are
identical in this case, which results in an advantage equal to 0 and Lemma 4.8 trivially holds. The same
happens in the case that k is not an explicitly honest slot.

Whenever A asks a left-or-right query (i, xj,0i , xj,1i , `?), Bk adds (xj,0i , xj,1i ) to the list Qi,`? and computes
tif,`? := Gen(Ki, i, f, `?). To generate the final ciphertext Bk proceeds different corresponding to the different
positions i. For i < k and i ∈ EHS, Bk computes zj,f

i

i,`? := f i(xj,0i ) + tif,`? for all (f i, f) ∈ Qi,f , sets Zi :=
{zj,f

i

i,`? }(fi,·)∈Qi,f and computes ctji,`? ← Encsi(ski, (xj,1i , Zi, `
?)). For i = k, Bk computes zj,f

i

i,`? := fk(xj,0k )+tkf,`?
for all (fk, f) ∈ Qk,f , sets Zk := {zj,f

i

i,`? }(fi,·)∈Qi,f and submits ((xj,0k ,⊥, `?), (xj,1k , Zk, `
?)) to its own left-or-

right oracle and receives the ciphertext ctjk,`? ← Encsi(mskk, (xj,βk , Zβ , `?)) (with Z0 = ⊥, Z1 = Zk) as an
answer. For i > k and i ∈ RS, Bk computes ctji,`? ← Encsi(ski, (xj,1i ,⊥, `?)). Finally Bk sends ctji,`? as a reply
to A.

To answer an encryption query (i, xji , `) asked by A, the adversary Bk proceeds different corresponding
to the different positions i. For i 6= k, Bk computes ct′ji,` ← Encsi(ski, (xji ,⊥, `)). For i = k, Bk submits
((xjk,⊥, `), (x

j
k,⊥, `)) to its own left-or-right oracle and receives the ciphertext ct′jk,` ← Encsi(mskk, (xjk,⊥, `))

as an answer.
Whenever the adversary A asks a key generation query QKeyG({f i}i∈[n]), Bk adds (f i, f) to the list Qi,f .

For all the left-or-right oracle queries (xj,0i , xj,1i ) ∈ Qi,`? , Bk generates tif,`? := Gen(Ki, i, f, `?) for all i ∈ [k]\RS
and computes yj,f

i

i,`? := f i(xj,0i ) + tif,`? for all j ∈ [|Q?` |]. Bk sets QYi := {Qi,`?{yj,f
i

i,`? }j∈[|Q?
`
|]} and computes

skfiQYi ← KeyGensi(mski, f iKi,f,QYi) for the slots i < k with i ∈ EHS and skfiKi,f ← KeyGensi(mski, f iKi,f ) for
i > k or i ∈ RS. To generate skfk , Bk queries its own key generation oracle QKeyG on (fkKk,f , f

k
Kk,f,QYk),

this query fulfills the functional restriction, i.e. it holds that fkKk,f (xj,0k , `?) = fkKk,f,QYk(xj,0k , `?) for all
(xj,0k , ·) ∈ Qk,`? as well as all the encryption queries under different labels than `?. Bk receives skfk as an
answer, sets skf := {skfiQYi}i∈[k−1]\RS ∪ {skfk} ∪ {skfiKi,f }i∈({k+1,...,n}∪RS) and sends skf to A.

This covers the simulation of the game G?0.k−1+β . Finally, Bk outputs the same bit β′ returned by A. Thus,
we obtain the lemma. ut

The proof of the lemma follows by noticing that the adversary B′ in the lemma statement can be obtained by
picking k ∈ [n] and running Bk. ut

Lemma 4.9 (Transition from G?1 to G?2). For any PPT adversary A, there exists a PPT adversary B′′
such that

|WinG?1
A (λ, n)−WinG?2

A (λ, n)| ≤ n(n− 1)2 · AdvIND
PRF,B′′(λ) .

Proof. To prove that G?2 is indistinguishable from G?1 we need to apply a hybrid argument over the explicitly
honest users by relying on the security of the PRF.

Using the definition of the games in Figs. 14 and 17 and the triangular inequality, we can see that

|WinG?1
A (λ, n)−WinG?2

A (λ, n)| ≤
n∑
k=2
|WinG?1.k−1

A (λ, n)−WinG?1.k
A (λ, n)| ,

where G?1 corresponds to game G?1.0 (and G?1.1) and whereas G?2 is identical to game G?1.n. Since G?1.0 = G?1.1,
we do not need to analyze the transition between these two games.

Now, we can bound the difference between each consecutive pair of games for every k ∈ {2, . . . , n}.
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Lemma 4.10. For every k ∈ {2, . . . , n}, there exists a PPT adversary B′k against the IND property of PRF
such that

|WinG?1.k−1
A (λ, n)−WinG?1.k

A (λ, n)| ≤ n(n− 1) · AdvIND
PRF,B′

k
(λ) .

Proof. This proof works mainly as described in [ABG19].
We build an adversary B′k that simulates G?1.k−1+β for k ∈ {2, . . . , n} to A when interacting with the

underlying INDPRF
β experiment.

If κ? < 2, the games G?1.k−1 and G?1.k are the same. Therefore, we only consider the case where κ? ≥ 2.
The adversary B′k starts by guessing the first and k’th honest slots i? and j?, by sampling random

i?, j? ← [n], with i? < j?. Whenever A asks a left-or-right or key generation query, B′k generates the value
tif,`? , if required, as described in Fig. 17 for every explicitly honest slot in the order they are revealed. Since
B′k guessed the first and k’th explicitly honest slot, it knows how to answer the queries for every explicitly
honest slot that is revealed in between. If it turns out that the guess of B′k is incorrect, the simulation ends
and returns 0. If the guess turns out to be correct, we can rely on the indistinguishability of the PRF on the
key Ki?,j? and a random function evaluation RF(f, `?). Then we argue that RF(f, `?) is identically distributed
to RF(f, `?) + usf,`? and therefore, since the former distribution corresponds to G?1.k−1 and the latter game
G?1.k, the computational indistinguishability between G?1.k and G?1.k−1 follows. We analyze the advantage
of this transition in more detail. The guessing of the two honest slots happens with probability 2

n(n−1) ,

which results in a security loss of n(n−1)
2 , i.e. 2

n(n−1) · |WinG?1.k−1
A (λ, n) −WinG?1.k

A (λ, n)| ≤ AdvIND
PRF,B′

k
(λ) ⇔

|WinG?1.k−1
A (λ, n)−WinG?1.k

A (λ, n)| ≤ n(n−1)
2 ·AdvIND

PRF,B′
k
(λ). Finally, we switch RF(f, `?) back to PRFKi?,j? (f, `?)

using the security of the PRF on the key Ki?,j? a second time. This results in the advantage described in the
lemma.

For every corruption query QCor(i), B′k just returns ski. ut
ut

Lemma 4.11 (Transition from G?2 to G?3). For any adversary A it holds that

|WinG?2
A (λ, n)−WinG?3

A (λ, n)| = 0 .

Proof. We build a PPT adversary B′′′ that simulates G?2+β to A, when interacting with (|EHS| − 1) · |Qf |
instances of the one-time pad in the CON-PERF-INDβ experiment, as proven in Lemma 3.5. With many-
instances we mean that encryption oracle of the one-time pad can be queried several times, but always the
same position (left or right) is encrypted. In more detail, a new key tif,`? is chosen for every position i ∈ [n]
and for every function f ∈ Qf .

We denote by EHS the set of explicitly honest slots and by RS the set of remaining slots. Before answering
any oracle queries, the adversary B′′′ initializes the lists Qi,`? for all i ∈ [n] and the list Qi,f for all i ∈ [n].
Afterwards, B′′′ generates mski ← Setupsi(1λ) for all i ∈ [n], samples Ki,j = Kj,i ← {0, 1}λ for all i ∈ [n], i < j
and sets ski := (mski,Ki) with Ki := {Ki,j}j∈[n]\{i} for all i ∈ [n].

For every corruption query QCor(i) asked by A, B′′′ sends ski to A.
Whenever the adversary A asks a key generation query QKeyG({f i}i∈[n]), B′′′ adds (f i, f) to Qi,f .

Afterwards, B′′′ queries the underlying one-time pad for the explicitly honest slots i ∈ EHS unequal to the
κ?’th explicitly honest slot. In more detail, B′′′ queries the underlying one-time pad with (f i(xj,0i ), f i(xj,1i ))
for all (xj,0i , xj,1i ) ∈ Qi,`? . To prove that this query made by B′′′ is valid, in the sense of the CON-PERF-INDβ
game, we need to show that for all (xj,0i , xj,1i ) ∈ Qi,`? it holds that f i(x1,1

i )− f i(x1,0
i ) = f i(xj,1i )− f i(xj,0i ).

This follows immediately from the fact that a left-or-right query needs to be asked in every position,
and the fact that f(xj,01 , . . . , xj,0n ) = f(xj,11 , . . . , xj,1n ) for all (xj,0i , xj,1i ) ∈ Qi,`? , which is equivalent to∑
i∈[n] f

i(xj,0i ) =
∑
i∈[n] f

i(xj,0i ) in the case of separable functions. In more detail, we consider the case in which
a left-or-right query has been asked in every position at least once and another left-or-right query, (xj,0i∗ , x

j,1
i∗ ),

is made for the slot i∗. For the function evaluation of this query, it must hold that
∑
i∈[n]\{i∗} f

i(x1,0
i ) +

f i
∗(xj,0i∗ ) =

∑
i∈[n]\{i∗} f

i(x1,1
i ) + f i

∗(xj,1i∗ ), which results in f i
∗(xj,1i∗ ) − f i∗(xj,0i∗ ) =

∑
i∈[n]\{i∗} f

i(x1,0
i ) −

35



∑
i∈[n]\{i∗} f

i(x1,1
i ), since this holds for all j ∈ [|Q?` |] it directly follows that f i∗(x1,1

i∗ )−f i∗(x1,0
i∗ ) = f i

∗(xj,1i∗ )−
f i
∗(xj,0i∗ ) for all (xj,0i , xj,1i ) ∈ Qi,`? . After showing that the condition of the CON-PERF-INDβ game is

fulfilled, we show that B′′′ perfectly simulates the key generation. After B′′′ received the replies yj,f
i

i,`? of
its queries (f i(xj,0i ), f i(xj,1i )) for all i ∈ EHS \ {κ?} and all (xj,0i , xj,1i ) ∈ Qi,`? and, if left-or-right oracle
queries have already been submitted for all of the κ? explicitly honest slots under the label `?, it computes
ejf,`? := f(xj,01 , . . . , xj,0n ) = f(xj,11 , . . . , xj,1n ) for all j ∈ [|Q?` |] and sets yj,f

κ?

κ?,`? := ejf,`? − (
∑
i∈[n]\{κ?} y

j,fi

i,`? +∑
i∈[n]\{κ?} z

j,fi

i,`? ) for all j ∈ [|Q?` |]. B′′′ sets QYi := {Qi,`? , {yj,f
i

i,`? }j∈[|Q?
`
|]}. In the final step, B′′′ generates

skfiQYi ← KeyGen(mski, f iKi,f,QYi) for all i ∈ EHS and skfiKi,f ← KeyGen(mski, f iKi,f ) for all i ∈ RS, sets
skf := {skfiQYi}i∈EHS ∪ {skfiKi,f }i∈RS and sends skf to A.

For every left-or-right query (i, xj,0i , xj,1i , `?) asked by A, B′′′ adds (xj,0i , xj,1i ) to the list Qi,`? . To generate
the final ciphertexts B′′′ proceeds different corresponding to the different positions i. For the explicitly
honest slots i ∈ EHS unequal to the κ?’th explicitly honest slot, B′′′ queries the underlying one-time pad.
In more detail, B′′′ queries the underlying one-time pad with (f i(xj,0i ), f i(xj,1i )) for all (f i, ·) ∈ Qi,f . These
queries are valid for the same reason as described in the key generation queries. After B′′′ received the
replies zj,f

i

i,`? of its queries (f i(xj,0i ), f i(xj,1i )), for all (f i, ·) ∈ Qi,f , it sets Zi := {zj,f
i

i,`? }(fi,·)∈Qi,f and generates
ctji,`? ← Encsi(ski, (xj,1i , Zi, `

?)) as a reply for A. For a left-or-right query for the κ?’th explicitly honest
slot, B′′′ computes e′jf,`? := f(xj,01 , . . . , xj,0n ) = f(xj,11 , . . . , xj,1n ) for all f ∈ Qf and all (xj,0i , xj,1i ) ∈ Qi,`? .11

Then, B′′′ sets zj,f
κ?

κ?,`? := e′jf,`? − (
∑
i∈[n]\{κ?} y

j,fi

i,`? +
∑
i∈[n]\{κ?} z

j,fi

i,`? ) for all fκ? ∈ Qκ?,f . Afterwards, B′′′ sets

Zκ? := {zj,f
κ?

κ?,`? }(fκ? ,·)∈Qκ?,f and generates ctjκ?,`? ← Encsi(skκ? , (xj,1κ? , Zκ? , `?)) and sends it as a reply to A.
For all the remaining slots i ∈ RS, B′′′ computes ctji,`? ← Encsi(ski, (xj,0i ,⊥, `)) as a reply for A.

To answer an encryption query (i, xji , `) asked by A, the adversary Bk computes ct′ji,` ← Encsi(ski, (xji ,⊥, `))
and sends ct′ji,` answer to A.

This shows the perfect simulation of G?2+β . Finally, B′′′ outputs the same bit β′ returned by A. Thus, we
obtain the lemma. ut

5 Decentralized Multi-Client Functional Encryption

5.1 Definition

Here, we recap the definition of decentralized multi-client functional encryption (DMCFE) as introduced
in [CDG+18a].

Definition 5.1 (Decentralized Multi-Client Functional Encryption). Let F = {Fλ}λ be a family
(indexed by λ) of sets Fλ of functions f : Xλ,1 × · · · × Xλ,n → Yλ. Let Labels = {0, 1}∗ or {⊥} be a set of
labels. A decentralized multi-client functional encryption scheme (DMCFE) for the function family F and the
label set Labels is a tuple of six algorithms DMCFE = (Setup,KeyGenShare,KeyGenComb,Enc,Dec):

Setup = (P1, . . . ,Pn): Is an interactive protocol between n PPT algorithms P1, . . . ,Pn, s.t. for all i ∈ [n] Pi
on input 1λ and interacting with Pj for all j ∈ [n] with i 6= j obtains the i-th secret key ski.

KeyGenShare(ski, f): Takes a secret key ski from position i and a function f ∈ Fλ, and outputs a partial
functional key ski,f .

KeyGenComb(sk1,f , . . . , skn,f ): Takes as input n partial functional decryption keys sk1,f , . . . , skn,f and outputs
the functional key skf .

Enc(ski, xi, `) is defined as for MCFE in Definition 2.3.
Dec(skf , ct1,`, . . . , ctn,`) is defined as for MCFE in Definition 2.3.

11 where x0,j
i = xj,1

i = 0 for all i ∈ RS
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A scheme DMCFE is correct, if for all λ, n ∈ N, {ski}i∈[n] are the output of Setup = (P1, . . . ,Pn) executed
between P1, . . . ,Pn, f ∈ Fλ, ` ∈ Labels, xi ∈ Xλ,i, when ski,f ← KeyGenShare(ski, f) for i ∈ [n], and
skf ← KeyGenComb(sk1,f , . . . , skn,f ), we have

Pr [Dec(skf ,Enc(sk1, x1, `), . . . ,Enc(skn, xn, `)) = f(x1, . . . , xn)] = 1 .

Definition 5.2 (Security of DMCFE). The xx-yy-IND security notion of DMCFE (xx ∈ {sel, ad} with
yy ∈ {pos+, any}) is similar to the notion of MCFE (Definition 2.4), except that the Setup is executed by
P1, . . . ,Pn and the adversary A can corrupt a subset of them, namely Pj1 , . . . ,Pjn s.t. ji ∈ CS. Moreover,
there is no msk and the key generation oracle is now defined as:

Key generation oracle QKeyG(f): Computes ski,f ← KeyGenShare(ski, f i) for all i ∈ [n] and outputs
{ski,f}i∈[n].

5.2 Construction

In this section, we describe the necessary modifications to turn the presented MCFE of Fig. 9 into a
decentralized MCFE scheme (DMCFE). In the decentralized setting, following Definition 5.1, the setup
algorithm Setup is an interactive protocol and the key generation algorithm KeyGen is separated into two
algorithms KeyGenShare and KeyGenComb. We decentralize the setup procedure by letting the parties execute
a multiparty computation protocol to generate the different PRF keys. In more detail, setup is executed
between a set of players P1, . . . ,Pn, (i.e., Pi is the i-th client of DMCFE scheme), where Π = (P1, . . . , Pn) is
a n-party MPC protocol [Yao86] that securely computes the function FK that on input the indexes 1, . . . , n
outputs for each index i the keys {Ki,j}j∈[n]\{i}. s.t. for all i < j ∈ [n]: Ki,j = Kj,i ← {0, 1}λ. In the setup
phase Pi executes the player Pi of Π to obtain the PRF keys. The KeyGenShare procedure simply executes the
key generation procedure of the single-input scheme for the function f iKi,f . The complete functional key skf
output by KeyGenComb contains of all the keys of the different single input instances, i.e. skf := {skfiKi,f }i∈[n].

We formally describe the algorithms Setup,KeyGenShare and KeyGenComb of our DMCFE scheme in Fig. 18.
The Enc and Dec algorithms are defined as for the MCFE scheme (Fig. 9).

Setupmc(1λ, n) :
For all i ∈ [n], Pi executes the following steps:

mski ← Setupsi(1λ)
Run Pi of Π to obtain PRF keys
for all j ∈ [n], j > i:
Ki,j = Kj,i ← {0, 1}λ

Ki := {Ki,j}j∈[n]\{i}

ski := (mski,Ki)
Return ski

KeyGenSharemc(ski, f i) :
Parse ski := (mski,Ki)
ski,f ← KeyGensi(mski, f iKi,f ),
with f iKi,f as defined in
Fig. 10a Fig. 10b
Return ski,f
KeyGenCombmc(sk1,f , . . . , skn,f ) :
skf := {ski,f}i∈[n]

Return skf

Fig. 18: The description of the Setup,KeyGenShare and KeyGenComb procedure for the generic construction
of a q-message bounded sel-DMCFE and q-message-and-key bounded ad-DMCFE decentralized multi-client
functional encryption from single-input functional encryption. The encryption procedure Enc and decryption
procedure Dec are defined as in Fig. 9.

Following the approach of Section 4.2 we also obtain a decentralized MCFE scheme DMCFE that is
ad-IND secure with a bounded number of message-and-functional key queries.
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Correctness. The correctness of DMCFE follows from the correctness of FE, and the completeness of Π. We
note that Dec(skf , ct1,`, . . . , ctn,`) outputs the value

∑
i∈[n] f

i(xi) + tif,` =
∑
i∈[n] f

i(xi), where the equality
follows from the fact that

∑
i∈[n] t

i
f,` = 0. This shows the correctness of the construction.

Theorem 5.3 (sel-pos+-IND security). Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message bounded
sel-FH-secure single-input functional encryption scheme for the functionality class F sep

1 , PRF an IND secure
pseudorandom function, and Π secure realizes function FK, then DMCFE described in Fig. 18 is q-message
bounded sel-pos+-IND-secure for the functionality class F sep

n .
Proof (Sketch). The security proof proceeds very similar to the one of Theorem 4.1, with the difference that
we consider an initial game G∗1 where we switch to the simulator SΠ of Π in order to simulate Pj1 , . . . ,Pjn
s.t. ji ∈ HS. The transition from G∗1 to G1 follows from the security of Π.

ut
Theorem 5.4 (ad-pos+-IND security). Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message-and-
key bounded ad-FH-secure single-input functional encryption scheme for the functionality class F sep

1 , PRF
an IND secure pseudorandom function and Π secure realizes function FK with security against adaptive
corruption, then the DMCFE scheme described in Fig. 9 is a q-message-and-key bounded ad-FH-secure for
the functionality class F sep

n .
The security proof proceeds very similar to the one of Theorem 4.6 with the argument described above.
Moreover correctness of DMCFE follows from the same arguments as the correctness of DMCFE.

Finally, we note that the compiler of Section 2.3 can be slightly modified in order to obtain the decen-
tralized schemes DMCFE′ and DMCFE′ , which are sel-any-IND and ad-any-IND secure. The algorithms
KeyGenShare′,KeyGenComb′,Enc′,Dec′ work as described in Fig. 4, whereas the algorithm Setup′ is defined as
an interactive algorithm in order to preserve the decentralized nature of the schemes DMCFE′ and DMCFE′ .
We notice that the algorithm Setup′ as described in Fig. 4 can be easily decentralized using the same
decentralization techniques as for DMCFE and DMCFE . In particular, let Π = (P1, . . . , Pn) be a n-party
MPC protocol [Yao86] that securely computes the function Fkey, which is defined as follows: On input a index
i, Fkey outputs the keys {ki,j , ki,j}j∈[n], where ki,j , ki,j ← {0, 1}λ. Formally, Setup′ is defined as follows:

Setup′ = (P1, . . . , Pn) :
ski ← Setup(1λ), for all i ∈ [n]
For all i ∈ [n]: Pi executes the following steps:

Run Pi of Π to obtain PRF keys for all j ∈ [n] :
ki,j and kj,i ← {0, 1}λ

sk′i := (ski, {ki,j , kj,i}j∈[n])
Return {sk′i}i∈[n]

Fig. 19: Description of the setup procedure Setup′ for the security compiler defined in Fig. 4.

Theorem 5.5. Let DMCFE = (Setup,KeyGenShare,KeyGenComb,Enc,Dec) be an xx-pos+-IND-secure (key
and) message bounded DMCFE scheme for a family of functions F , SE = (GenSE,EncSE,DecSE) an IND-CPA
secure symmetric key encryption scheme, Π secure realizes function Fkey (with security against adaptive
corruption), then the DMCFE scheme DMCFE′ = (Setup′,KeyGenShare′, KeyGenComb′,Enc′,Dec′) described
in Figs. 4 and 19 is (key and) message bounded xx-any-IND secure.
Proof (Sketch). The security proof proceeds very similar to the one of Theorem 4.1, but we consider an initial
(different) game Ḡ?0 where we switch to the simulator SΠ of Π in order to simulate Pj1 , . . . ,Pjn with ji ∈ HS.
The transition from Ḡ?0 to G?0 follows immediately from the security of Π. ut
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6 Outsourceable Multi-Client Functional Encryption

6.1 Definition

In addition to the definition of (decentralized) multi-client functional encryption, we present another definition
called outsourceable multi-client functional encryption (OMCFE). The notion of OMCFE makes it possible to
outsource the decryption procedure of the n different ciphertexts to at most n different entities. This notion
is especially useful in the case of a very resource consuming decryption procedure. The different ciphertexts
cti,` can be sent together with the corresponding partial functional key ski,f to the i-th entity. The partial
decryption procedure applied on cti,` using ski,f generates a decryption share si,`. Finally, the shares si,` for
every position i ∈ [n] can be used to reconstruct the final functional output f(x1, . . . , xn). We capture this
notion formally:

Definition 6.1 (Outsourceable Multi-Client Functional Encryption). Let F = {Fλ}λ∈N be a
collection of function families (indexed by λ), where every f ∈ Fλ is a polynomial time function f : Xλ,1 ×
· · · × Xλ,n → Yλ. Let Labels = {0, 1}∗ or {⊥} be a set of labels. A outsourceable multi-client functional
encryption scheme (OMCFE) for the function family Fλ supporting n users, is a tuple of four algorithms
OMCFE = (Setup,KeyGen,Enc,PartDec,DecComb):

Setup(1λ, n): Takes as input a unary representation of the security parameter λ and the number of parties n,
and generates n secret keys {ski}i∈[n] and a master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fλ, and outputs n functional
keys sk1,f , . . . skn,f .

Enc(ski, xi, `): Takes as input a secret key ski, a message xi ∈ Xλ,i to encrypt, a label ` ∈ Labels, and outputs
a ciphertext cti,`.

PartDec(ski,f , cti,`): Takes as input a functional key ski,f and a ciphertext cti,` and outputs a decryption
share si,` ∈ Yλ.

DecComb({si,`}i∈[n]) Takes as input n decryption shares {si,`}i∈[n] under the same label ` and outputs a
value y ∈ Yλ.

We require that the computational complexity of DecComb is independent from the computational complexity
of the function f , where f ∈ Fλ.

A scheme OMCFE is correct, if for all λ, n ∈ N, ({ski}i∈[n],msk)← Setup(1λ, n), f ∈ Fλ, xi ∈ Xλ,i, when
{ski,f}i∈[n] ← KeyGen(msk, f), we have

Pr[DecComb(PartDec(sk1,f ,Enc(sk1, x1, `)), . . . ,PartDec(skn,f ,Enc(skn, xn, `))) = f(x1, . . . , xn)] = 1 .

The security definition for this new notion is the same as for multi-client functional encryption (Defi-
nition 2.4). We remark that in [FT18] the authors describe a definition of distributed public key FE that
has a similar syntax as our definition of OMCFE. Our main goal is to provide a notion of MCFE with an
outsourceable decryption procedure, whereas Fan and Tang [FT18] try to construct a public-key functional
encryption scheme that achieves a notion of function-hiding. In particular, our definition does not require any
privacy w.r.t. the partial functional key.

Respectively, we can also define a decentralized version of OMCFE by decentralizing the key generation
procedure and the setup as in Definition 5.1. This adaption is straightforward and we omit it here.

6.2 Construction

In our OMCFE = (Setup,KeyGen,Enc,PartDec,DecComb) scheme the algorithms Setup,KeyGen, and Enc are
defined as for the MCFE scheme MCFE described in Fig. 9 and the algorithms PartDec and DecComb are
defined as follows:

We observe that DecComb satisfies the efficiency requirement stated in Definition 6.1 since it only consists
of a single addition of shares.
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PartDec(ski,f , cti,`) :
Return si,` = Decsi(ski,f , cti,`)
DecComb({si,`}i∈[n]) :
Return

∑
i∈[n] si,`

Fig. 20: Description of PartDec and DecComb.

Correctness. The correctness of the OMCFE scheme follows from the correctness of FE. We note that the
values si,` correspond to f i(xi) + tif,` for i ∈ [n], which in turns implies that DecComb({si,`}i∈[n]) outputs
the value

∑
i∈[n] si,` =

∑
i∈[n] f

i(xi) + tif,` =
∑
i∈[n] f

i(xi), where the equality follows from the fact that∑
i∈[n] t

i
f,` = 0. This shows the correctness of the construction.

Theorem 6.2. Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message bounded sel-FH-secure single-input
functional encryption scheme for the functionality class F sep

1 and PRF an IND secure pseudorandom function,
then the OMCFE scheme described above is q-message bounded ad-pos+-IND-secure scheme for the functionality
class F sep

n .

We notice that the proof of Theorem 4.6 can be carried out in the same way for Theorem 6.2 with the
only difference that the decryption phase is composed of the algorithms PartDec and DecComb.

Following the approach of Section 4.2 we also obtain an outsourceable MCFE scheme OMCFE that is
ad-pos+-IND-secure with a bounded number of message-and-key queries. In the adaptively secure scheme
OMCFE = (Setup,KeyGen,Enc,PartDec,DecComb) the algorithms Setup,KeyGen,Enc correspond to the ones
of the MCFE scheme MCFE as described in Fig. 9, whereas PartDec,DecComb are defined as described
in Fig. 20.

Theorem 6.3. Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message-and-key bounded ad-FH-secure single-
input functional encryption scheme for the functionality class F sep

1 and PRF an IND secure pseudorandom
function, then the OMCFE scheme described above is q-message-and-key bounded ad-pos+-IND-secure scheme
for the functionality class F sep

n .

The proof proceeds with the same arguments as the proof of Theorem 6.2.
We remark that we achieve sel-pos+-IND and ad-pos+-IND security for the schemes OMCFE and OMCFE
respectively.
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