
Random Integer Lattice Generation via HNF ?

Gengran Hu1, Lin You2, Liqin Hu2, and Hui Wang2

1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, China;
State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, 100093, China
grhu@hdu.edu.cn

2 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, China
mryoulin@gmail.com, huliqin@hdu.edu.cn, h.wang@hdu.edu.cn

Abstract. Lattices used in cryptography are integer lattices. Defining
and generating a ”random integer lattice” are interesting topics. A gen-
eration algorithm for random integer lattice can be used to serve as a
random input of all the lattice algorithms. In this paper, we recall the
definition of random integer lattice given by G.Hu et al. and present an
improved generation algorithm for it via Hermite Normal Form. It can
be proved that with probability ≥ 0.99, this algorithm outputs an n-dim
random integer lattice within O(n2) operations.

Keywords: random integer lattice, Hermite Normal Form, generation algorithm

1 Introduction

Lattices are discrete subgroups in Rn. Since M.Ajtai’s discovery of the average-
case/worst-case connection in lattice problems [1], lattice-based cryptography
has attracted much attention [2, 10, 11, 20]. Up to now, lattice-based crypto-
graphic schemes have been considered to be a promising alternative to more
traditional ones based on the factoring and discrete logarithm problems since
lattice-based schemes have yet not to be broken by efficient quantum algorithms[22].
Lattice algorithms like LLL[13] and BKZ[4, 14] are commonly used in analyz-
ing these lattice-based schemes’ security. The lattices used in cryptography and
lattice algorithms are integer lattices(discrete subgroups of Zn). Thus the
problem of suitably defining and generating a random integer lattice is a mean-
ingful topic. In [18], P.Q. Nguyen found that for dimension up to 50, LLL almost
outputs the shortest lattice vector, while in theory LLL’s output is just an ap-
proximately short vector. Once we are able to generate random integer lattice,
such an generation algorithm can be used to serve as a random input for all
lattice algorithms to obtain their output qualities on the average.

In [1], M.Ajtai defined a family of ”random integer lattice” in terms of worst-
case to average-case connection and shows how to generate one from this lattice

? This work was supported in part by the National Natural Science Foundation of
China (No.61602143, No.61602144, No.61772166) and in part by the Key Program
of the Nature Science Foundation of Zhejiang province of China (No.LZ17F020002).

2 Gengran Hu, Lin You, Liqin Hu, Hui Wang

family. For uniform A ∈ Zn×mq , the lattice family is defined to be Λ⊥(A) =
{Ax ∈ Zm : Ax = 0 ∈ Znq }. In [18], P.Q. Nguyen gave a definition of ”random
integer lattice” via Hermite Norm Form(HNF). For large prime number P , this
random integer lattice is defined to be uniformly chosen from the set of n × n
Hermite Normal Forms with hnn = P , hin ∈ [0, P) and hii = 1 for i < n. This
definition directly gives the lattice basis but the lattice determinant P needs to
be a prime.

In [17], G.Maze studied the probabilistic distribution of random HNF with
special diagonal structure, where the randomness is from ”natural density”. In
[21], G.Hu et al. introduced a different definition of randomness, in which the
definition ”random integer lattice” means the lattice’s HNF is chosen uniformly
from the all n×n HNFs with determinant upper bounded by a large number M .
In the same paper [21], G.Hu et al. also presented a complete random integer
lattice generation algorithm. In this algorithm, the first step is to generate a
determinant. To make the final output be uniform, it is necessary to compute
the total number of HNFs with fixed determinant N . Since the total number can
be figured out only in the case that the factorization of N is known, a subroutine
to factor integers is necessary in this algorithm. While in this paper, we improved
this algorithm with the help of diagonal elements’ distribution in random HNF.
This improved algorithm first generates the diagonal elements h11, · · · , hn−1,n−1
without computing the total number of HNFs with fixed determinant, then it
uses the reverse sampling method to generate the final diagonal element hnn.
Thus the factorization subroutine is no longer needed in this improved one,
making it a more efficient algorithm.

Roadmap. The remainder of the paper is organized as follows. In Section
2, we give some preliminaries needed. In Section 3, we recall the definition of
random integer lattice given by G.Hu et al. and discuss the distribution of all
the elements in random integer lattice’s HNF. For the next section, we present
our improved algorithm to generate random integer lattice via HNF. Finally, we
give our conclusion in Section 5.

2 Preliminaries

We denote by Z the integer ring and R the real number field. We use GLn(Z)
to denote the general linear group over Z. For convenience, we denote the set of
all the n× n nonsingular integer matrices by GLn(R) ∩ Zn×n.

2.1 Lattice and HNF

Given a matrix B = (bij) ∈ Rn×m with rank n, the lattice L(B) spanned by the
rows of B is

L(B) = {xB =

n∑
i=1

xibi|xi ∈ Z},

Random Integer Lattice Generation via HNF 3

where bi is the i-th row of B. We call m the dimension of L(B) and n its rank.
The determinant of L(B), say det(L(B)), is defined as

√
det(BTB). It is easy

to see when B is full-rank (n = m), its determinant becomes |det(B)|.
Two lattices L(B1) and L(B2) are exactly the same when there exists a

matrix U ∈ GLn(Z) s.t. B1 = UB2. Lattices used in cryptography are usually
”integer lattices” whose basis matrices are over Z instead of R. Thus the space
of all full-rank integer lattices is actually (GLn(R) ∩ Zn×n)/GLn(Z).

Hermite Normal Form(HNF) is a useful tool to study integer matrices:

Definition 1. A square nonsingular integer matrix H ∈ Zn×n is in Hermite
Normal Form(HNF) if
• H is upper triangular, i.e., hij = 0 for all i > j.
• All diagonal elements are positive, i.e., hii > 0 for all i.
• All non diagonal elements are reduced modulo the corresponding diagonal

element at the same column, i.e., 0 ≤ hij < hjj for all i < j.

And there exists a famous result for HNF[5]:

Theorem 1. For every A ∈ GLn(R)∩Zn×n, there exists a unique n×n matrix
B ∈ Sn,Z(HNF) of the form B = UA with U ∈ GLn(Z).

By this theorem, an integer lattice corresponds to its unique HNF, implying
that generating an integer lattice is actually equivalent to generating a HNF.

3 Random integer lattice

3.1 Definition

In this part we refer to [21] to recall some results related to random integer
lattice.

First, for M,N ∈ Z+,

H≤n (M) , {H is n-dim HNF|det(H) ≤M},

Hn(N) , {H is n-dim HNF|det(H) = N}.
Gruber [9] counted the size of |Hn(N)|:
Theorem 2. If N has prime decomposition N = pr11 . . . prtt , then

|Hn(N)| =
t∏
i=1

n−1∏
j=1

pri+ji − 1

pji − 1
.

And there exists an asymptotic estimation for |H≤n (M)| in [21]:

Theorem 3. For large positive integer M ,

|H≤n (M)| =
∏n
s=2 ζ(s)

n
Mn +O(Mn−1 logM).

H is called an n-dim random nonsingular HNF if for large integer M > 0, H is
chosen from H≤n (M) uniformly, and the lattice L(H) generated by such H is
called an random integer lattice.

4 Gengran Hu, Lin You, Liqin Hu, Hui Wang

3.2 Diagonal Distribution

In [21], G.Hu et al. studied the expectation and variance of every entry and the
probability distribution of every diagonal entry:

Theorem 4. Let H = (hij) be an n-dim random nonsingular HNF with deter-
minant bounded by M > 0 and t be an integer in [1, n − 1], given an increas-
ing subset {i1, · · · , it} of {1, · · · , n} and its increasing complementary subset
{j1, · · · , jn−t}, for positive integers b1 · · · bt, when M → +∞, we have

P (hik,ik = bk for all k) =

{
0 (it = n)∏n−t−1

k=1 ζ(n+1−jk)∏n
s=2 ζ(s)

∏t
l=1 b

il−n−1
l (it < n)

(1)

If we take t = 1, a one-element set T = {i}(i ∈ [1, n − 1]) and positive
integers b, then the increasing complementary subset of T in {1, 2, · · · , n} is
{1, · · · , i−1, i+1, · · · , n}. We apply the above theorem and obtain the following
corollary:

Corollary 1. Let H = (hij) be an n-dim random nonsingular HNF with deter-
minant bounded by M > 0, then for i ∈ [1, n − 1] and positive integer b, when
M → +∞, we have

P (hii = b) =
1

ζ(n+ 1− i) · bn+1−i . (2)

We denote this distribution of hii by D(n, i).

4 Generate Random Integer Lattice via HNF

In this section we present our random integer lattice generation algorithm via
HNF. Firstly, we introduce the inverse sampling method in probability theory
to generate all the diagonal elements. Then we generate all the non-diagonal
elements accordingly.

4.1 Inverse Sampling Method

Given a distribution D over some ordered set A, we can use inverse sampling
method to generate a random variable according to the distribution D. We
present the two versions of inverse sampling method: continuous-ISM and discrete-
ISM.

Theorem 5. (continuous-ISM) For distribution D over interval [a, b] with cu-
mulative distribution function FX(x), choose a random y uniformly from [0, 1]
and compute z s.t. F (z) = y, then the resulting variable Z has distribution D.

Random Integer Lattice Generation via HNF 5

Proof. Our goal is to prove Z has FX as its cumulative distribution function.
Namely, for any x ∈ [a, b], we have to prove P (Z ≤ x) = FX(x). Since F is a
monotonically increasing function, we have

P (Z ≤ x) = P (FZ(z) ≤ FX(x)) = P (y ≤ FX(x)) = FX(x)

where the second equality comes from F (z) = y and the last one is a direct
result of y′s uniformity in [0, 1]. Thus the cumulative distribution function of Z
is actually FX , which completes the proof.

Theorem 6. (discrete-ISM) For distribution D over finite ordered set A =
{ak}nk=1 ⊆ Z with corresponding density fk = P (X = ak), choose a random

number y uniformly from [0, 1] and compute the minimum j s.t.
∑j
k=1 fk ≥ y,

then we let Z = aj and Z will have distribution D.

Proof. For any aj ∈ A, we need to prove P (Z = aj) = fj . Since j is the minimum

value s.t.
∑j
k=1 fk ≥ y, we know that

∑j−1
k=1 fk < y. Then we have

P (Z = aj) = P (

j∑
k=1

fi ≥ y,
j−1∑
k=1

fi < y)

= P (

j∑
k=1

fk ≥ y)− P (

j−1∑
k=1

fk ≥ y))

=

j∑
k=1

fk −
j−1∑
k=1

fk (since y is uniform in [0, 1])

= fj

which completes the proof.

4.2 Generate Random Integer Lattice via HNF

From Section 2.2, we can generate a random integer lattice by equivalently gen-
erating a random nonsingular HNF. To begin with, we generate the first n − 1
diagonal elements h11, h22, · · · , hn−1,n−1. Then we generate the last diagonal el-
ement hnn. Finally, all the non-diagonal elements are generated and we output
the matrix H as a lattice basis for our random integer lattice.

Generate h11, h22, · · · , hn−1,n−1 From Corollary 1, we know that for n-dim
nonsingular HNF, when i ∈ [1, n− 1], the distribution of hii is

D(n, i) : P (X = x) =
1

ζ(n+ 1− i)
· x−(n+1−i) (x = 1, 2 . . .).

So we generate these diagonal elements h11, h22, · · · , hn−1,n−1 according to D(n, i)
by discrete-ISM(Theorem 6).

6 Gengran Hu, Lin You, Liqin Hu, Hui Wang

For i ∈ [1, n− 1], we choose y uniformly random from [0, 1] and increasingly

iterate ji starting from 1 until it satisfies 1
ζ(n+1−i)

∑ji
k=1 k

−(n+1−i) ≥ y. Then we

set hii = ji. By Theorem 6, each diagonal hii has distribution D(n, i) as what
we need.

Generate hnn After generating the first n − 1 diagonal elements hii, we set
Dn−1 :=

∏n−1
i=1 hii. Since the determinant upper bound is M , the last diagonal

element hnn should be in [1, b M
Dn−1

c]. We point out that Dn−1 is a small number

with high probability, thus b M
Dn−1

c is still large enough for us to obtain a similar

result for hnn. For fixed first n− 1 diagonal elements h11, · · · , hn−1,n−1 and the
last diagonal element hnn = N , we know that the exact number of such HNFs is
Nn−1·

∏n−1
i=1 h

i−1
ii . Thus, for random nonsingular HNF with determinant bounded

by M , on the condition that
∏n−1
i=1 hii = Dn−1, the distribution of hnn is the

following

D̃(n,M,Dn−1) :P (X = x)

=
1∑bM/Dn−1c

k=1 kn−1
· xn−1

=
1

1
nb

M
Dn−1

cn +O(b M
Dn−1

cn−1)
· xn−1 (x = 1, 2 . . . , b M

Dn−1
c).

Moreover, the corresponding cumulative distribution function is

FX(x) = P (X ≤ x)

=
1

1
nb

M
Dn−1

cn +O(b M
Dn−1

cn−1)
·
x∑
k=1

kn−1

=
1
nx

n +O(xn−1)
1
nb

M
Dn−1

cn +O(b M
Dn−1

cn−1)
(x = 1, 2 . . . , b M

Dn−1
c).

(3)

Since b M
Dn−1

c is still super large, we know

FX(x) ≈ xn/n

bM/Dn−1cn/n
= (

x

bM/Dn−1c
)n

is a pretty good estimation for FX(x).

In fact, let D̃(n,M,Dn−1) defined as above and D̃0(n,M,Dn−1) be the dis-
tribution defined by cumulative distribution function GX(x) = (x

bM/Dn−1c)
n, we

have the following theorem.

Theorem 7. For M,Dn−1 > 0, the statistical distance between D̃(n,M,Dn−1)

and D̃0(n,M,Dn−1) is at most n ·O(Dn−1

M).

Random Integer Lattice Generation via HNF 7

Proof. According to 3, the cumulative distribution function of D̃(n,M,Dn−1) is

FX(x) =
1
nx

n+O(xn−1)
1
n b

M
Dn−1

cn+O(b M
Dn−1

cn−1)
, since D̃0(n,M,Dn−1)’s cumulative distribu-

tion function is GX(x) = (x
bM/Dn−1c)

n, denote b M
Dn−1

c by M̃ , then x ≤ M̃ and

for every x ∈ [1, M̃], we have

|FX(x)−GX(x)|

=|
1
nx

n +O(xn−1)
1
nM̃

n +O(M̃n−1)
− (

x

M̃
)n|

=| x
n + n ·O(xn−1)

M̃n + n ·O(M̃n−1)
− (

x

M̃
)n|

=| (x
n + n ·O(xn−1))M̃n − (M̃n + n ·O(M̃n−1))xn

M̃2n + n ·O(M̃2n−1)
|

=|n ·O(xn−1)M̃n − n ·O(M̃n−1)xn

M̃2n + n ·O(M̃2n−1)
|

=|n ·O(M̃n−1)M̃n − n ·O(M̃n−1)M̃n

M̃2n + n ·O(M̃2n−1)
|(since x ≤ M̃)

=| n ·O(M̃2n−1)

M̃2n + n ·O(M̃2n−1)
|

=|
n ·O(1

M̃
)

1 + n ·O(1
M̃

)
| = n ·O(

1

M̃
) = n ·O(

Dn−1

M
)

which implies that the statistical distance D̃(n,M,Dn−1) and D̃0(n,M,Dn−1)

is bounded by n ·O(Dn−1

M).

Since bM/Dn−1c is still super large, we can generate hnn according to
D̃0(n,M,Dn−1)(close to D̃(n,M,Dn−1)) by continuous-ISM(Theorem 5).

We choose y uniformly random from [0, 1] and compute z ∈ R+ s.t.

(
z

bM/Dn−1c
)n = y.

Then we set hnn = bze; By Theorem 6 and Theorem 7, the diagonal hnn has
distribution D̃0(n,M,Dn−1), which is close enough to D̃(n,M,Dn−1).

Generate hij(i 6= j) This part is relatively easier. For i, j = 1, . . . , n, let hij
be chosen from [0, hjj) uniform randomly if i < j and let hij = 0 if i > j.

Correctness By the discussion above, for large enough M > 0, the distribution
of the diagonal h11, · · · , hnn generated by this algorithm are close enough to its
distribution as random nonsingular HNF. For i < j ∈ [1, n], since a random
nonsingular HNF’s hij is uniform in [0, hjj) and hij is generated in the same
way, we know the output of this algorithm is also close enough to a real random
nonsingular HNF, which implies the correctness of this algorithm.

8 Gengran Hu, Lin You, Liqin Hu, Hui Wang

4.3 Algorithm 1: Generate Random Integer Lattice

Algorithm 1 Random Integer Lattice Generation

Input: Dimension n, large integer M
Output: n-dim random integer lattice L with det(L) ≤M

Step 1: Generate h11, · · · , hn−1,n−1

D0 = 1
for i = 1 to n− 1 do
ji = 1
si = 1
choose yi ∈ [0, 1] uniformly
while si < ζ(n+ 1− i) · yi do
ji = ji + 1
si = si + j

−(n+1−i)
i

end while
Di = Di−1 · ji
set hii = ji

end for
Step 2: Generate hnn

choose y ∈ [0, 1] uniformly
z = y1/n

z = z · b M
Dn−1

c
set hnn = bze
Step 3: Generate hij(i 6= j)
for j = 1 to n do

for i = 1 to j − 1 do
choose hij ∈ [0,hjj) uniformly

end for
for i = j + 1 to n do

set hij = 0
end for

end for
Step 4: Set H = (hij) and output L(H)

4.4 Time Complexity of Algorithm 1

Now we analyze the time complexity of Algorithm 1. Obviously, the most time-

consuming part of Algorithm 1 is the floating-point operations si = si+j
−(n+1−i)
i

inside the while iteration for each i in step 1. Denote the number of computing

si = si + j
−(n+1−i)
i in the i-th while iteration by T (i). Notice that

P (hii = 1) =
1

ζ(n+ 1− i)
,

since ζ(s) converges to 1 quite fast as s grows, the majority of hii will be set to
1. In fact, by numerical results, we have following result:

Random Integer Lattice Generation via HNF 9

Fact 1: For any integer n ≥ 10,

1∏n
s=10 ζ(s)

≥ 0.999.

By this fact, for i ≤ n− 10, all the hii is very likely to be set to 1, implying that
T (1), T (2), · · · , T (n − 10) = 0 with probability ≥ 0.999. Then we consider the
T (n − 9), T (n − 8), · · · , T (n − 1). If we set the probability bound for each T (i)
to be 0.999, then by accurate numerical results, we have the following table:

T(i) upper bound

T (n− 9) 0
T (n− 8) 1
T (n− 7) 1
T (n− 6) 1
T (n− 5) 2
T (n− 4) 3
T (n− 3) 6
T (n− 2) 19
T (n− 1) 607

Thus we have the following theorem:

Theorem 8. The number of floating-point operations performed in Algorithm 1
is bounded by 1300 with probability ≥ 0.99.

Proof. By the above table,
∑n−1
i=n−9 T (i) is bounded by 640 with probability

≥ 0.9999. Since T (1), T (2), · · · , T (n − 10) = 0 with probability ≥ 0.999, we

know
∑n−1
i=1 T (i) is bounded by 640 with probability ≥ 0.99910 ≥ 0.99. Notice

that each si = si + j
−(n+1−i)
i needs two floating-point operations and it also

needs another 4 floating-point operations to generate hnn in Step 2, thus with
probability ≥ 0.99, the total number of floating-point operations performed in
Algorithm 1 is bounded by 640 ·2+4 = 1284 < 1300, which completes the proof.

Remark 1. We point out that the accuracy of floating-point affects the actual
running time of Algorithm 1. By experiments, 150 bit is a suitable option.

It is not hard to see that in Algorithm 1, besides the floating-point opera-
tions, the rest part of step 1, step 2, step 3 takes O(n2), O(1), O(n2) operations
respectively. Combining this with Theorem 8, we have the following result:

Theorem 9. Algorithm 1 outputs a random integer lattice within O(n2) opera-
tions with probability ≥ 0.99.

5 Conclusion

In this paper, we present an improved algorithm for generating random integer
lattice and discuss its time complexity. We prove that with probability ≥ 0.99,

10 Gengran Hu, Lin You, Liqin Hu, Hui Wang

this algorithm outputs an n-dim random integer lattice within O(n2) operations.
We point out that there is still space for the improvement of our algorithm and
leave it as an open problem.

Acknowledgement. We thank Dr. Yanbin Pan for his wonderful suggestions
about this paper and we thank the anonymous referees for putting forward their
excellent advice on how to improve the presentation of this paper.

Bibliography

[1] M. Ajtai. Gennerating hard instances of lattice problems. In: STOC 1996,
pp. 99-108. ACM Press, New York, 1996.

[2] M. Ajtai, C. Dwork. A public-key cryptosystem with worst-case/average-
case equivalence, In: STOC 1997, pp. 284-293. ACM Press, New York, 1997.

[3] T. M. Apostol. Introduction to analytical number theory, Undergraduates
Texts in Mathematics, Springer, 1976.

[4] Yuanmi Chen, Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Esti-
mates. In: Asiacrypt 2011, LNCS, vol. 7073, pp. 1-20, volume 7073, Springer,
Heidelberg, 2011.

[5] H. Cohen. A Course in Computational Algebraic Number Theory, Graduate
Texts in Mathematics, Vol.138, Springer, 1993.

[6] P. D. Domich. Residual Hermite normal form computations, ACM Trans.
Math. Software 15(3), 275-286, 1989.

[7] P. D. Domich, R. Kannan, L. E. Trotter. Hermite normal form computation
using modulo determinant arithmetic, Mathematics of Operations Research
12(1), 50-59, 1987.

[8] M. A. Frumkin. Complexity question in number theory, J. Soviet Math.,
29(29), 1502-1517, 1985.

[9] B. Gruber. Alternative formulae for the number of sublattices, Acta Cryst.
A53, 807-808, 1997.

[10] C. Gentry, C. Peikert, V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In: STOC 2008, pp. 197-206. ACM Press,
New York, 2008.

[11] J. Hoffstein , J. Pipher, J. H. Silverman. NTRU: A Ring-Based Public Key
Cryptosystem, In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267-
288. Springer, Heidelberg, 1998.

[12] M. S. Hung, W. O. Rom. An application of the Hermite normal form in
integer programming. Linear Algebra and its Applications 140, 163-179,
1990.

[13] A. K. Lenstra, H. W. Jr. Lenstra, L. Lovasz. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4): 513-534, 1982.

[14] C. P. Schnorr, M. Euchner. Lattice basis reduction: improved practical al-
gorithms and solving subset sum problems. Mathematical Programming 66,
181-199, 1994.

[15] D. Micciancio. Improving lattice based cryptosystems using the Hermite
normal form. In Cryptography and Lattices Conference 2001, LNCS,
Springer-Verlag, 2001.

[16] D. Micciancio, B. Warinschi. A linear space algorithm for computing the
Hermite normal form. In ISSAC 2001, 231-236, 2001.

[17] G. Maze. Natural density distribution of Hermite normal forms of integer
matrices, Journal of Number Theory, Vol.131, 2398-2408, 2011.

12 Gengran Hu, Lin You, Liqin Hu, Hui Wang

[18] P.Q. Nguyen, D. Stehle. LLL on the average. In ANTS 2006. LNCS, vol.
4076, pp. 238C256. Springer, Heidelberg, 2006.

[19] C. Pernet, W. Stein. Fast computation of Hermite normal forms of random
integer matrices, Journal of Number Theory, Vol.130, 1675-1683, 2010.

[20] O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography, In: STOC 2005, pp. 84-93. ACM Press, New York, 2005.

[21] Gengran Hu, Yanbin Pan, Renzhang Liu, Yuyun Chen. On Random Non-
singular Hermite Normal Form, Journal of Number Theory, vol.164, pp.
66-86, 2016.

[22] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484-
1509, 1997.

