
A Survey on Neural Trojans
Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina Jacobsen,

Daniel Xing, and Ankur Srivastava
University of Maryland, College Park

Abstract
Neural networks have become increasingly prevalent in many

real-world applications including security critical ones. Due
to the high hardware requirement and time consumption to
train high-performance neural network models, users often
outsource training to a machine-learning-as-a-service (MLaaS)
provider. This puts the integrity of the trained model at risk.
In 2017, Liu et al. found that, by mixing the training data with
a few malicious samples of a certain trigger pattern, hidden
functionality can be embedded in the trained network which
can be evoked by the trigger pattern [33]. We refer to this kind
of hidden malicious functionality as neural Trojans. In this
paper, we survey a myriad of neural Trojan attack and defense
techniques that have been proposed over the last few years.
In a neural Trojan insertion attack, the attacker can be the

MLaaS provider itself or a third party capable of adding or tam-
pering with training data. In most research on attacks, the at-
tacker selects the Trojan’s functionality and a set of input pat-
terns that will trigger the Trojan. Training data poisoning is
the most common way to make the neural network acquire
the Trojan functionality. Trojan embedding methods that mod-
ify the training algorithm or directly interfere with the neural
network’s execution at the binary level have also been stud-
ied. Defense techniques include detecting neural Trojans in the
model and/or Trojan trigger patterns, erasing the Trojan’s func-
tionality from the neural network model, and bypassing the
Trojan. It was also shown that carefully crafted neural Trojans
can be used to mitigate other types of attacks. We systematize
the above attack and defense approaches in this paper.
1 Introduction

While neural networks demonstrate exceptional capabilities
in various tasks of machine learning nowadays, they are also
becoming larger and deeper. As a result, the requirement of
hardware, time, and data to train a network also increases dra-
matically. Under this scenario, machine-learning-as-a-service
(MLaaS) becomes an increasingly popular business model. How-
ever, the training process in MLaaS is not transparent and may
embed neural Trojans, i.e. hidden malicious functionalities, into
the neural network. Many research papers have demonstrated
the severity of this attack [4, 11–13, 17, 19, 26–28, 30, 32, 33, 39,
40, 43, 51, 52]. The effect of neural Trojans in the neural net-
work’s deployment is illustrated in Fig. 1. If the input is benign
(i.e. without the Trojan trigger pattern), the Trojan will not be
activated and the network will work normally. However, if the
Trojan trigger exists in the image, the network will malfunction
and exhibit the attacker’s intended functionality.
Both neural Trojan attacks (i.e. to inject Trojan’s malicious

functionality into neural networks) and countermeasures have
been widely studied. The most popular way to inject Trojans is
training data poisoning [17, 24, 32, 33], where a small amount of
malicious training samples are mixed with the normal training
data. These malicious data are sometimes carefully crafted in or-
der to make the infected network highly sensitive to the Trojan
triggers while maintaining normal behavior in all other cases.
This differs Trojan attacks from conventional poisoning attacks

Input sample
Compromised neural

network
Output

Correct
functionality

Attacker’s
intended
functionality

Figure 1: In the deployment of a Trojan-infected neural
network, an input sample with the Trojan trigger pattern
will cause the network to malfunction and exhibit the at-
tacker’s intended functionality.
against machine learning models where the attacker tries to de-
grade the trained model’s performance with a small amount of
addedmalicious training data. Other Trojan injection techniques
have also been studied. Such techniques include modifying the
training algorithms for a small subset of neurons based on the
Trojan’s functionality and the trigger pattern [12, 13] and flip-
ping or rewriting certain bits in the neural network’s binary
code[27, 30].

The stealthiness of neural Trojans makes them very difficult
to defend against. Many defense methods focused on detecting
Trojan triggers from the input sample [2, 3, 7, 9, 10, 16, 22, 25,
35, 47, 48]. Other works have proposed restoring compromised
neural network [21, 29, 46, 53] and reconstructing input samples
to bypass neural Trojans [14, 33, 45].

In this paper, we survey the attack and defense strategies re-
lated to neural Trojans in order to give readers a comprehensive
view of this field. The categories of attack and defense methods
are outlined in Fig. 2.
2 Neural Trojan Attacks
In the last 3 years, many Trojan embedding attack methods

have been proposed. These attacks can be broadly classified into
training data poisoning-based attacks, training algorithm-based
attacks, and binary-level attacks. In the rest of this section, we
summarize the works in each category.
2.1 Training Data Poisoning
Neural Trojans can be embedded in the neural networks

when the networks are trained with a compromised dataset
[17, 24, 32, 33]. This process typically involves the encoding of
malicious functionality within the weights of the network. One
or more specific input patterns can trigger/activate the Trojan
and produce the output behavior which was desired by the at-
tacker but which may be undesired or harmful for the original
user. An example of such a scenario is a face recognition sys-
tem to enter a building where the attacker tries to impersonate
another person to gain unauthorized entry.

Network
specifications

Neural network user Untrusted MLaaS provider

Training
data

Poisoning
data

Compromised
training algo.

Bit-level
manipulations

Neural network user

Trojan-infected
Neural Network

Network
verification

Network
restoration

Test
data
with

Trojan
trigger

Trojan trigger
detection

Trojan
bypass

Correct
functionality

Figure 2: The categories of attack and defense techniques

General countermeasures such as Trojan detection and re-
moval were also discussed in [17, 33]. Although most Trojan at-
tacks focus on deep convolutional networks, Yang et al. extended
neural Trojan attacks to long-short-term-memory (LSTM) and
recurrent networks [51]. A weaker threat model was consid-
ered in [11] where the attacker does not have knowledge of the
victim model, doesn’t have access to the training data, and can
only inject a limited number of poisoned samples. It focuses
on targeted attacks, only creating backdoor instances without
affecting the performance of the system so as to evade detection.
Evaluation shows that with a single instance as the backdoor
key, only 5 samples of it need to be added to a huge training
set; whereas when a pattern is the key, 50 poisoned samples
are enough. Here “key” refers either to a malicious new input
pattern added to the training set, or malicious features inserted
into existing input patterns of the training set.
2.1.1 Hiding Trojan Triggers Although most Trojan insertion
techniques use a certain pattern, it is desirable to make these
patterns indistinguishable when mixed with legitimate data in
order to evade human inspection. Barni et al. [4] proposed a
Trojan insertion approach where the label of the poisoned data
is not tampered with. The advantage is that, upon inspection,
the poisoned samples would not be detected merely on the basis
of an accompanying poisoned label. To perform the attack, a
target class t is chosen and a fraction of training data samples
belonging to t is poisoned by adding a backdoor signal v . After
the NN is trained on the training set which is contaminated
with some poisoned samples of class t , some test samples not
belonging to class t and corrupted with signal v end up being
classified as t . Thus, the network learns that the presence of v
in a sample is an indicator of the sample belonging to class t .

Liao et al. designed static and adaptive Trojan insertion tech-
niques. In their work, the indistinguishability of Trojan trigger
examples is attained by a magnitude constraint on the pertur-
bations to craft such examples [28]. Li et al. generalized this ap-
proach and demonstrated the trade-off between the effectiveness
and stealth of Trojans [26]. They also developed an optimiza-
tion algorithm involving L2 and L0 regularization to distribute
the trigger throughout the victim image. Saha et al. proposed
to hide the Trojan triggers by not using the poisoned data in
training at all. Instead, they took a fine-tune approach in the
training process. The backdoor trigger samples are given the
correct label and only used at test time. These samples are vi-
sually indistinguishable from legitimate data but bear certain
features that will trigger the Trojan [40].
2.2 Altering Training Algorithms

Trojans can also be embedded into neural networks without
training data poisoning. Clements et al. [12] developed a novel

algorithm for inserting Trojans into a trained neural network
model by modification of the computing operations rather than
modifying the network weights by poisoning the training data.
This makes existing poisoning defence techniques incapable of
detecting the attack. The threat model assumes that the attacker
has access to the trained model which is maliciously modified
before deployment. The attack methodology selects a layer in
the network for the purpose of modification, the latter being
calculated using the gradient of the network output w.r.t. this
layer (the Jacobian). This gradient tells how the victim neuron’s
operation should change. With only a small fraction of neurons
tampered with, both targeted and untargeted versions of the at-
tack yield high success rate. The authors studied the practicality
of [12]’s attack in [13]. An adversary in the supply chain has the
capability to modify the neural network hardware to change its
predictions upon a certain trigger. Modifications to neurons can
be achieved by adding a MUX or altering internal structure of
certain operations. The paper also proposes defense strategies
such as adversarial training to improve robustness of model and
possibly combining it with hardware Trojan detection methods
(eg. side-channel based).
2.2.1 Trojan Insertion via Transfer Learning Gu et al. [19] were
the first to exploit transfer learning as a means of Trojan in-
sertion. In transfer learning, a new model (called the ‘student
model’) is obtained by fine-tuning a pre-trained model (‘teacher
model’) for another similar task. The network’s weights can be
tampered with during this process which may result in Trojan
insertion. Additionally, security vulnerabilities in online repos-
itories are scrutinized and it was found that an adversary can
compromise a benign model with a malicious transfer learning
process. Yao et al. proposed latent backdoor attack in transfer
learning where the student model takes all but the last layers
from the teacher model [52]. In this case, the infected teacher
model will have different latent representations (i.e. the second
last layer neuron values) from that of a clean model. They found
that latent backdoor embedded in the teacher model can be
transferred to active backdoor in the student model. In [43],
Tan and Shokri pointed out that backdoor detection schemes
mostly rely on the distribution difference between the latent
representations of clean and backdoor examples. They hence
propose to make the two latent representation distributions as
close as possible and evaded detection schemes proposed in
[9, 29, 33, 44].
2.2.2 Neural Trojans in Hardware In [27], Li et al. propose a
hardware-software framework for inserting Trojans into a neu-
ral network, where the attacker is assumed to be a third party
somewhere in the supply chain. The authors implement two
attacks: one to misclassify an input in one class as a member of a

target class and another to put a backdoor in the neural network
which will allow malicious training data to be added. The Trojan
circuitry is implemented in hardware, either as an add-tree or as
a multiply-accumulate structure. The software part of the Trojan
is inserted into a subnet (i.e. subset of weights) during training,
where the subnet will be trained for malicious purposes. The
Trojan weights are trained separately from the benign part of
the neural network. When the Trojan is activated, the circuitry
will cause partial adds to occur in the convolution operation,
since not all of the weights will be active. The authors look at
two different subnet architectures: (1) pixel parallelism, where
a subset of kernel weights are passed through the subnet, and
(2) input channel parallelism, where a subset of input channels
are passed through. In their experiments, the pixel parallelism
approach resulted in less accuracy degradation.
2.3 Binary-Level Attacks
Trojan attacks that involve manipulating the binary code of

neural networks have been investigated. These attacks often
embed malicious information in the bit representation of the
neural network weights.

Liu et al. [30] propose an attack called SIN2, for “stealth infec-
tion” of a neural network, using the same supply chain threat
model as described above. The Trojan in this case is any code
that can be executed on the runtime system; the result of the
attack is therefore not restricted to output misclassification. This
attack is somewhat analogous to digital steganography. Here,
the Trojan is embedded into the redundant space of the neural
network’s weight parameters. For example, the authors suc-
cessfully inserted a fork bomb into the neural network, thus
implementing a denial of service (DoS) attack when the Trojan
was triggered.

In contrast to the attacks above where the Trojan is inserted
during the training process, Rakin et al. [39] demonstrate a way
of inserting Trojans into a neural network to achieve misclassi-
fication without retraining. The attackers must know the neural
network’s architecture and parameters, but not necessarily the
training process. The authors’ “targeted bit Trojan” approach
involves flipping certain bits of the neural network’s weights.
To determine which bits need to be flipped, the last-layer neu-
rons with the most impact on the output for the targeted class
are found using a gradient ranking approach. The trigger is
then generated using a minimization optimization technique.
Then, the original weight matrix and the final optimized mali-
cious weight matrix are compared, providing the information
on which bits need to be flipped. The Trojan is put into action
by using a row-hammer attack to flip the targeted bits of the
weights in main memory. In one experiment, the authors were
able to achieve misclassification with only 85 bit flips.
2.4 Comparison with Other Attacks
Besides neural Trojans, other types of attacks on neural net-

works have also been studied. In this section, we provide a
taxonomy of these attacks and discuss their relationship with
neural Trojan attacks. These attacks can be broadly classified
into poisoning attacks and exploratory attacks.
2.4.1 Poisoning Attacks Most machine learning algorithms as-
sume the integrity of the training data. However, the integrity of
the training data could be corrupted. In a poisoning attack, the
attacker’s objective is to reduce the accuracy of the learned model.
This objective is what discriminates poisoning attacks from
Trojan attacks, since the latter’s objective is to inject hidden
malicious functionality without harming the overall accuracy of

the neural model, although training data poisoning is one way
to infect a neural model with Trojans.
In a poisoning attack, the attacker is aware of the training

algorithm but does not have control over the training process.
However, he/she is able to manipulate (add, remove, or change)
a small amount of the training samples. Biggio et al. proposed
the gradient ascend method in [6] to poison the training process
of support vector machines (SVM) which degraded the SVM’s
performance significantly. Mei et al. generalized this poisoning
approach [34]. They formulated a bi-level optimization problem
to obtain poisoned training samples that result in the largest
decrease in the accuracy of the learned model. Yang et al. also
proposed a poisoning attack on neural networks [50]. In their
approach, an autoencoder is trained to accelerate poisoned data
generation which substitutes time-consuming gradient calcula-
tions.
2.4.2 Exploratory Attacks In an exploratory attack, the attacker
looks for small perturbations of samples that leads to misclassi-
fication. There are different models about the attacker’s knowl-
edge: white-box model, i.e. the attacker has the exact knowledge
of the neural network and can use the network’s specifications
to craft adversarial samples [5, 18, 23, 38, 42, 49] and the black-
box model, i.e. the attacker has no knowledge about the network
and can only query the model as a black box [36, 37]. Many
white-box attacks craft adversarial examples using gradient-
based methods, such as the fast gradient sign method (FGSM)
[18] and Jacobian saliency map (JSM) method [38]. Black-box
attacks have been described in [36, 37], where a local substi-
tute NN is trained and used to find adversarial examples. This
is based on the transferrability of vulnerability to adversarial
samples among different machine learning models.
2.4.3 Neural Trojan’s Relevance to Existing Attacks As men-
tioned above, neural Trojans’ objective is to embed hidden func-
tionalities in neural networks which are hard to detect and
activated only by rare input patterns. Embedding Trojans al-
most does not affect the normal functionalities of the neural
network. In contrast, the poisoning attacks aim at degrading
the accuracy of the neural networks.

Exploratory attacks are carried out in the deployment of the
neural network while neural Trojans are injected during the
training phase. The triggers of neural Trojans are crafted from
a illegitimate distribution which is different from the legitimate
distribution. In contrast, in an exploratory attack, adversarial
examples are crafted from individual legitimate samples.
3 Defense Techniques

A variety of methods have been developed to defend against
neural Trojans. These techniques can be classified into four
categories: neural network verification, Trojan trigger detection,
compromised neural network restoration, and Trojan bypass
schemes. We outline each in turn.
3.1 Neural Network Verification
By verifying the efficacy of a neural network, any anomaly

created by a neural Trojan can be identified. However, due the
extremely specific triggers of most neural Trojans, neural verifi-
cation schemes must be quite exact to detect Trojans. Several
techniques have been proposed aiming at this goal, namely
[2, 22]. Baluta et al. develops PAC-style soundness guarantees
for neural networks [2]. To do so, a tool known as ”NPAQ" was
developed which, given a set of trained neural networks (N) and
a property (P), determines how well P holds over N. Therefore,
if a neural Trojan is identified, NPAQ can be used to provably
verify that retraining removes the Trojan by ensuring that the

property which induces the Trojan, P, no longer holds over the
network, N.
He et al. takes a different approach to neural verification

known as Sensitive-Sample Fingerprinting [22]. In this work,
the authors develop a methodology to construct a small set
of ”sensitive-samples" for a trained neural network that are
extremely sensitive to a model’s parameters. By querying the
network with these sensitive-samples and verifying their classi-
fication, one can dynamically verify that the tested network has
not been maliciously modified to include neural Trojans.

3.2 Trojan Trigger Detection
Similar to neural verification techniques, the specificity of

most Trojan triggers makes detection extremely challenging.
A wide array of techniques to do this have been proposed
[3, 7, 10, 16, 35]. Liu et. al showed that by using trained state-
of-the-art anomaly detection classifiers, neural Trojans triggers
could be detected albeit at the cost of a high false alarm rate
[33]. In [3, 7, 35], the authors detect Trojan triggers by evalu-
ating the effect of training inputs on the accuracy of a neural
model. In the most recent of these works, Baracaldo et al. uses
so-called ”provenance data", essentially meta-data associated
with each data point, to group training data by the probability
of being either a Trojan trigger or poisonous input [3]. The
data in each grouping is then evaluated by comparing network
accuracy when training with and without each group. By doing
so, neural Trojans, which degrade the efficacy of a network,
can be identified and removed from the training data set. Other
methods, such as artificial brain simulation (ABS) [31], Reject
on Negative Impact (RONI) [35], and Probability of Sufficiency
(PS) [7], operate similarly. However, instead of using groups of
data points when evaluating network accuracy, RONI and PS
use individual data points. This approach sacrifices scalability
for precision.
Alternatively, Chen et al. proposes DeepInspect which per-

forms Trojan detection with minimal prior knowledge of the
model and no need for training data [10]. DeepInspect detects
Trojans with 3 steps. 1) The neural model is inverted to recover
a substitute training dataset. 2) A conditional Generative Ad-
versarial Network (GAN) is used to reconstruct likely Trojan
triggers. 3) An anomaly detection measurement is calculated for
each identified trigger, which identifies the likelihood of a data
point belonging to a class other than the classification returned
by the neural network. Any highly anomalous data points are
likely to be neural Trojans and can be flagged for further review.

Gao et al. proposes STRong Intentional Perturbation (STRIP)
as a runtime Trojan detection scheme [15, 16]. STRIP duplicates
each neural input and applies a series of different strong pertur-
bations. The classification entropy caused by the set of strong
perturbations applied to each input is then measured. Any input
which retains the same classification, regardless of the strong
perturbation applied, is extremely likely to be a Trojan trig-
ger. These inputs can be flagged for inspection. On the other
hand, inputs displaying a degree of classification variance when
strongly perturbed are likely to be benign.
Kolouri et al. introduces the concept of Universal Litmus

Patterns (ULPs) to detect Trojan attacks against Convolutional
Neural Networks (CNNs) [25]. ULPs are basically optimized
input images for which a network’s output can be used as an in-
dicator to classify the network as clean or contains Trojans. This
approach enables a fast Trojan detection mechanism without
requiring access to any training data.

Xu et al. proposes a novel framework called Meta Neural Tro-
janed model Detection (MNTD) which uses meta neural analysis
techniques to detect Trojans[48]. Two techniques are presented
to train a meta-classifier are presented: one-class learning which
fits a detection meta-classifier using only benign neural net-
works and jumbo learning which approximates a general distri-
bution of Trojaned models and samples a “jumbo” set of such
models to train a meta-classifier.

Xiang et al. outlines an unsupervised anomaly detection (AD)
methodology of Trojans in DNN image classifiers [47]. Such
a technique aims to detect Trojans in the post-training phase
where the defender doesn’t have access to the poisoned train-
ing set, but only possesses the trained classifier itself and clean
(unpoisoned) examples from the classification domain. The pro-
posed AD involves learning the minimum size perturbation
required to induce the classifier to misclassify examples from
one class to another.
3.3 Restoring Compromised Neural Models

In this section we detail two types of approaches for restoring
compromised neural models: model correction and trigger-based
Trojan reversing. The former includes generic methods to mod-
ify neural networks in order to eliminate Trojan functionalities
whereas the latter first finds Trojan trigger and patch the neural
networks accordingly.
3.3.1 Model Correction Retraining and pruning techniques to
correct Trojan-infected neural networks have been explored.
Note that retraining a model from scratch is not considered
feasible for an MLaaS user because otherwise she would have
trained the neural model all by herself without oursourcing
to MLaaS. Liu et. al. propose retraining the Trojan-infected
neural network on a small subset of properly labeled training
data to render Trojans ineffective [33]. This has the advantage
of reduced expense compared to the original training of the
network.
Pruning a neural network removes less important neurons

from a network. A pruned neural network has a reduced compu-
tational complexity and size compared to the original network.
Zhao et. al. proposed a hardening scheme against neural Trojan
attack by pruning a neural network such that accuracy is not
significantly affected but increases the difficulty of adding mali-
cious functionality to the trained network significantly [53]. A
model with most of its neurons pruned demonstrates the most
resilience against Trojan infection attack as pruning works to
remove extra capacity in a network. Liu et. al. showed that prun-
ing may fail to defend against Trojan infection attacks if the
attacker is aware of the pruning defense [29]. By pruning a
trained network before training on Trojan trigger inputs, activa-
tions for clean and malicious inputs can be mapped to the same
neurons. They also demonstrate that fine tuning and retraining
is not effective against Trojans since clean input activations
generally do not depend on backdoor neurons. They propose
instead Fine-Pruning to restore a Trojaned neural network. By
pruning and then fine-tuning a neural network, a pruning aware
attack becomes ineffective. Any neuron that contributes to the
Trojan’s functionality in a pruning aware attack is mapped to
a neuron that is used by clean inputs as well. Fine-tuning can
then eliminate the Trojans in these mixed neurons.
3.3.2 Trigger-based Trojan Reversing In Neural-Cleanse,Wang
et al. first detect and identify backdoor triggers by using an op-
timization scheme to find the smallest perturbation required to
transform inputs of all classes to a target class (e.g. the smallest
set of pixels required) [46]. A perturbation is likely a backdoor

trigger if it is small. The Trojaned network can be patched using
the reverse engineered trigger by retraining the network on le-
gitimate inputs with the trojan applied to remove the backdoor.
In TABOR [21], Guo et. al. demonstrate that Neural-Cleanse
fails when backdoors can take on variable size, shape, and lo-
cation. They propose a Trojan detection method which uses a
non-convex optimization-theoretic formulation guided by ex-
plainable AI and other heuristics to increase detection accuracy.
Chen et al. proposes a technique for Trojan removal in ad-

dition to a Trojan detection scheme [9]. Their work explores
Trojan detection through the observation of neuron activation
in the final hidden layer of a network. The authors demonstrate
that neural Trojan triggers exhibit a distinctly different pattern
of neuron activation compared to benign inputs in this layer.
This observation is then exploited for Trojan detection. Specifi-
cally, the authors propose flattening the final hidden layer, reduc-
ing its dimensionality, and then performing clustering. Based
on abnormal clustering characteristics, Trojan triggers can be
identified. Chen et al. then demonstrates exclusionary reclas-
sification, where the neural model is retrained excluding the
abnormal cluster, to remove an identified Trojan while retaining
accuracy.
3.4 Bypassing Neural Trojans

There have also been studies onways to bypass neural Trojans
that are already present within a neural network. The methods
discussed below involve an input preprocessor, which removes
Trojan triggers in the input before the input is sent to the neural
network.

In [14], Doan et al. propose a framework dubbed “Februus” to
bypass input-agnostic trigger patterns in images. Here, the input
image gets passed through the Februus system, where Trojan
trigger patterns are found and removed before they are sent to
the neural network itself. The neural Trojans get neutralized
through a three-step process. First, there is visual explanation,
where the Trojan is detected using a logit score-based approach;
if the trigger is present, it will have the most impact on the
input’s classification into the targeted class. The Trojan is then
removed during masking, and lastly, the input is restored to a
benign image using an inpainting technique. This input cleans-
ing framework can act as a black-box between the input and the
neural network, without degrading the classification accuracy
of benign inputs.

Liu et al. [33] describe another input preprocessing technique
that uses an autoencoder. This autoencoder is a neural network
that is trained with legitimate input data only, which is placed
between the input and the compromised neural network. Its
operation involves minimizing the mean-squared error between
the training set images and the reconstructed images, so any
illegitimate inputs would be poorly reconstructed and thus not
trigger the Trojan.

Udeshi et al. presents a model agnostic framework called NEO
to detect as well as mitigate Trojan attacks in image classifier
models [45]. NEO mitigates Trojan attacks by determining the
correct prediction outcomes of the poisoned images and also
diminishes the stealthy nature of such attacks by reconstructing
the backdoor triggers.
4 Using Neural Trojans for Good

The idea of using ‘Trojans’ to protect the intellectual property
of neural networks is also explored. In [1], Adi et al. proposed a
backdoor-based neural network watermarking scheme to pro-
tect the neural network’s intellectual property. The Trojan’s
functionality is defined by a well known type of cryptographic

primitive called commitment schemes which is a way to send a
secret message to an exclusive receiver in a secure vault. Special
input samples are crafted to verify the watermark functionality
of the neural network. Similarly ideas have been proposed in
[20]. Shan et al. developed a trapdoor-based adversarial attack
detection scheme. In this scheme, the weights in the neural
network are tuned to make gradient-descent-based adversarial
example generation algorithms converge at the trapdoor ad-
versarial examples [41]. If the trapdoor examples are present
during the deployment of the neural network, the neural net-
work owner will know that an adversarial example attack has
been conducted.
5 Conclusion and Discussion
In this paper, we summarize both attack and defense tech-

niques of neural Trojans. Such attacks are often conducted by
untrusted parties in the machine learning supply chain such as
the MLaaS provider and are of real concern to any end customer
of MLaaS. Most of the research in this field was done in the last 3
years, and the battle between the neural Trojan attacker and de-
fender is likely to continue. Moving forward, a defense solution
against neural Trojans with high success rate, low false alarm,
and low complexity must be developed in order to restore the
trust of the MLaaS supply chain. Existing defense techniques
often rely on training a separate machine learning model to
detect, restore, or bypass neural Trojans (or its triggers). This
requires significant computation effort on the defender’s side
and diminishes the benefit of MLaaS (which is offloading compu-
tation to the service provider). An approach that might be worth
considering is using hardware. For example, there has been a
huge body of work on logic obfuscation (which is well surveyed
in [8]). Such techniques makes circuit functionality dependent
on a key, hence the output may be incorrect if the correct key
is not given. This kind of techniques may also be developed to
defend neural Trojans. The authors hope that this paper will
make the readers be aware of the threat of neural Trojans and
have a comprehensive overview of the current status of this
threat. This would be an important step towards solving the
problem.
References
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph

Keshet. 2018. Turning your weakness into a strength: Watermarking deep
neural networks by backdooring. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1615–1631.

[2] Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S Meel, and Prateek
Saxena. 2019. Quantitative Verification of Neural Networks And its Security
Applications. arXiv preprint arXiv:1906.10395 (2019).

[3] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Amir Safavi, and Rui
Zhang. 2018. Detecting Poisoning Attacks on Machine Learning in IoT
Environments. In 2018 IEEE International Congress on Internet of Things
(ICIOT). IEEE, 57–64.

[4] Mauro Barni, Kassem Kallas, and Benedetta Tondi. 2019. A new Backdoor
Attack in CNNs by training set corruption without label poisoning. arXiv
preprint arXiv:1902.11237 (2019).

[5] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2013. Security evaluation
of pattern classifiers under attack. IEEE transactions on knowledge and data
engineering 26, 4 (2013), 984–996.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks
against support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[7] Aleksandar Chakarov, Aditya Nori, Sriram Rajamani, Shayak Sen, and
Deepak Vijaykeerthy. 2016. Debugging Machine Learning Tasks.
arXiv:cs.LG/1603.07292

[8] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran,
Yuntao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivastava,
Yang Xie, Muhammad Yasin, and Michael Zuzak. 2019. Keynote: A Disqui-
sition on Logic Locking. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2019).

http://arxiv.org/abs/cs.LG/1603.07292

[9] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Ben-
jamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. 2018. De-
tecting backdoor attacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728 (2018).

[10] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. 2019. DeepIn-
spect: A Black-box Trojan Detection and Mitigation Framework for Deep
Neural Networks. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence. AAAI Press, 4658–4664.

[11] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
arXiv preprint arXiv:1712.05526 (2017).

[12] Joseph Clements and Yingjie Lao. 2018. Backdoor Attacks on Neural Net-
work Operations. In 2018 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). IEEE, 1154–1158.

[13] Joseph Clements and Yingjie Lao. 2018. Hardware trojan attacks on neural
networks. arXiv preprint arXiv:1806.05768 (2018).

[14] Bao Gia Doan, Ehsan Abbasnejad, and Damith Ranasinghe. 2019. Deep-
Cleanse: A Black-box Input SanitizationFramework Against Backdoor
Attacks on DeepNeural Networks. arXiv preprint arXiv:1908.03369 (2019).

[15] Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, Gongxuan Zhang,
Surya Nepal, Damith C Ranasinghe, and Hyoungshick Kim. 2019. Design
and Evaluation of a Multi-Domain Trojan Detection Method on Deep
Neural Networks. arXiv preprint arXiv:1911.10312 (2019).

[16] Yansong Gao, Chang Xu, DeruiWang, Shiping Chen, Damith C Ranasinghe,
and Surya Nepal. 2019. STRIP: A Defence Against Trojan Attacks on Deep
Neural Networks. arXiv preprint arXiv:1902.06531 (2019).

[17] Arturo Geigel. 2013. Neural network trojan. Journal of Computer Security
21, 2 (2013), 191–232.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[19] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019.
BadNets: Evaluating Backdooring Attacks on Deep Neural Networks. IEEE
Access 7 (2019), 47230–47244.

[20] Jia Guo and Miodrag Potkonjak. 2018. Watermarking deep neural net-
works for embedded systems. In 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–8.

[21] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019. TA-
BOR: A Highly Accurate Approach to Inspecting and Restoring Trojan
Backdoors in AI Systems. arXiv preprint arXiv:1908.01763 (2019).

[22] Zecheng He, Tianwei Zhang, and Ruby Lee. 2019. Sensitive-Sample Finger-
printing of Deep Neural Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4729–4737.

[23] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein,
and JD Tygar. 2011. Adversarial machine learning. In Proceedings of the
4th ACM workshop on Security and artificial intelligence. ACM, 43–58.

[24] Yujie Ji, Xinyang Zhang, and Ting Wang. 2017. Backdoor attacks against
learning systems. In 2017 IEEE Conference on Communications and Network
Security (CNS). IEEE, 1–9.

[25] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann.
2019. Universal Litmus Patterns: Revealing Backdoor Attacks in CNNs.
arXiv preprint arXiv:1906.10842 (2019).

[26] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali Kaafar,
and Haojin Zhu. 2019. Invisible Backdoor Attacks Against Deep Neural
Networks. arXiv preprint arXiv:1909.02742 (2019).

[27] Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang, Qi Wei, Yu Wang,
and Huazhong Yang. 2018. Hu-fu: Hardware and software collaborative
attack framework against neural networks. In 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 482–487.

[28] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David Miller.
2018. Backdoor embedding in convolutional neural network models via
invisible perturbation. arXiv preprint arXiv:1808.10307 (2018).

[29] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning:
Defending against backdooring attacks on deep neural networks. In In-
ternational Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 273–294.

[30] Tao Liu, Wujie Wen, and Yier Jin. 2018. SIN 2: Stealth infection on neural
network—a low-cost agile neural trojan attack methodology. In 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 227–230.

[31] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning Neural Networks for Back-doors
by Artificial Brain Stimulation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1265–1282.

[32] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. 2018. Trojaning attack on neural networks.
Network and Distributed Systems Security (NDSS) Symposium 2018 (2018).

[33] Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017. Neural trojans. In 2017
IEEE International Conference on Computer Design (ICCD). IEEE, 45–48.

[34] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify
Optimal Training-Set Attacks on Machine Learners.. In AAAI. 2871–2877.

[35] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Ben-
jamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. D. Tygar, and Kai Xia.
2009. Misleading Learners: Co-opting Your Spam Filter. 17–51.

[36] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transfer-
ability in machine learning: from phenomena to black-box attacks using
adversarial samples. arXiv preprint arXiv:1605.07277 (2016).

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 506–519.

[38] Nicolas Papernot, PatrickMcDaniel, Somesh Jha,Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. 2016. The limitations of deep learning in
adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 372–387.

[39] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. TBT: Targeted
Neural Network Attack with Bit Trojan. arXiv preprint arXiv:1909.05193
(2019).

[40] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2019.
Hidden Trigger Backdoor Attacks. arXiv preprint arXiv:1910.00033 (2019).

[41] Shawn Shan, Emily Willson, Bolun Wang, Bo Li, Haitao Zheng, and Ben Y
Zhao. 2019. Using Honeypots to Catch Adversarial Attacks on Neural
Networks. arXiv preprint arXiv:1904.08554 (2019).

[42] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199 (2013).

[43] Te Juin Lester Tan and Reza Shokri. 2019. Bypassing Backdoor Detection
Algorithms in Deep Learning. arXiv preprint arXiv:1905.13409 (2019).

[44] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral signatures
in backdoor attacks. In Advances in Neural Information Processing Systems.
8000–8010.

[45] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth Rawshan,
and Sudipta Chattopadhyay. 2019. Model Agnostic Defence against Back-
door Attacks in Machine Learning. arXiv preprint arXiv:1908.02203 (2019).

[46] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,
Haitao Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. Neural Cleanse: Identifying
and Mitigating Backdoor Attacks in Neural Networks (2019), 0.

[47] Zhen Xiang, David J Miller, and George Kesidis. 2019. Revealing Backdoors,
Post-Training, in DNN Classifiers via Novel Inference on Optimized Pertur-
bations Inducing Group Misclassification. arXiv preprint arXiv:1908.10498
(2019).

[48] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo
Li. 2019. Detecting AI Trojans Using Meta Neural Analysis. arXiv preprint
arXiv:1910.03137 (2019).

[49] Chaofei Yang, Beiye Liu, Hai Li, Yiran Chen, Wujie Wen, Mark Barnell,
Qing Wu, and Jeyavijayan Rajendran. 2016. Security of neuromorphic
computing: thwarting learning attacks using memristor’s obsolescence
effect. In Proceedings of the 35th International Conference on Computer-Aided
Design. ACM, 97.

[50] Chaofei Yang, QingWu, Hai Li, and Yiran Chen. 2017. Generative Poisoning
Attack Method Against Neural Networks. arXiv preprint arXiv:1703.01340
(2017).

[51] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. 2019.
Design of intentional backdoors in sequential models. arXiv preprint
arXiv:1902.09972 (2019).

[52] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent
Backdoor Attacks on Deep Neural Networks. (2019).

[53] Bingyin Zhao and Yingjie Lao. 2018. Resilience of Pruned Neural Net-
work Against Poisoning Attack. In 2018 13th International Conference on
Malicious and Unwanted Software (MALWARE). IEEE, 78–83.

	Abstract
	1 Introduction
	2 Neural Trojan Attacks
	2.1 Training Data Poisoning
	2.2 Altering Training Algorithms
	2.3 Binary-Level Attacks
	2.4 Comparison with Other Attacks

	3 Defense Techniques
	3.1 Neural Network Verification
	3.2 Trojan Trigger Detection
	3.3 Restoring Compromised Neural Models
	3.4 Bypassing Neural Trojans

	4 Using Neural Trojans for Good
	5 Conclusion and Discussion
	References

