Non-Atomic Payment Splitting in Channel Networks

Stefan Dziembowski and Paweł Kędzior
University of Warsaw

Abstract—Off-chain channel networks are one of the most promising technologies for dealing with blockchain scalability and delayed finality issues. Parties that are connected within such networks can send coins to each other without interacting with the blockchain. Moreover, these payments can be “routed” over the network. Thanks to this, even the parties that do not have a channel in common can perform payments between each other with the help of intermediaries.

In this paper, we introduce a new notion that we call Non-Atomic Payment Splitting (NAPS) protocols that allow the intermediaries in the network to split the payments recursively into several sub-payments in such a way that the payment can be successful “partially” (i.e. not all the requested amount may be transferred). This is in contrast with the existing splitting techniques that are “atomic” in the sense that they did not allow such partial payments (we compare the “atomic” and “non-atomic” approach in the paper). We define NAPS formally, and then present a protocol, that we call “ETHNA”, that satisfies this definition. ETHNA is based on very simple and efficient cryptographic tools, and in particular does not use any expensive cryptographic primitives. We implement a simple variant of ETHNA in Solidity and provide some benchmarks. We also report on some experiments with routing using ETHNA.

I. INTRODUCTION

Blockchain technology [26] allows a large group of parties to reach consensus about contents of an (immutable) ledger, typically containing a list of transactions. In blockchain’s initial applications these transactions were simply describing transfers of coins between the parties. One of the very promising extensions of the original Bitcoin ledger, are blockchains that allow to register and execute the so-called smart contracts (or simply “contracts”), i.e., formal agreements between the parties, written down in a programming language and having financial consequences (for more on this topic see, e.g., [6, 11, 21]). Probably the best-known example of such a system is Ethereum [34]. One of the main limitations of several blockchain-based systems is delayed finality, lack of scalability, and non-trivial transaction fees. For example, in Bitcoin it takes at least around 10 minutes to confirm a transaction, at most 7 transactions per second can be processed, and the average transaction fee is currently typically over 1 USD.

Off-chain channels [7, 30, 31] are a powerful approach for dealing with these issues. The simplest example of this technology are the so-called “payment channels”. Informally, such a channel between Alice and Bob is an object in which both parties have some coins. A channel has a corresponding smart contract on the blockchain that can be used for resolving conflicts between the parties. The parties open a channel by depositing some coins in it. They can later change the balance of the channel (i.e. information on how the channel’s coins are distributed between Alice and Bob, respectively) just by exchanging messages, and without interacting with the blockchain The channel can be closed by Alice or Bob, in which case the last channel’s balance is used to determine how many coins are transferred to each of them. Since updates do not require blockchain participation (they are done “off-chain”), each individual update is immediate (its time is determined by the network speed) and at essentially no cost. The only operations that involve blockchain are: “opening” and “closing” the channel. Hence, this approach also significantly improves scalability. All these advantages hold only if Alice and Bob are cooperating. In the “pessimistic” case (when one of them is malicious) there are no benefits of using this technology, and the only thing that is guaranteed is that the honest party does not lose her coins. This is ok, since in practice, it is expected that in a vast majority of cases the parties are cooperating (i.e. “behaving optimistically”). We provide more background on the off-chain channels in the next section. As we explain there, channels can form networks which can serve for sending coins between the parties that do not have a channel between each other. The main contribution of this work is a novel algorithm for sending such payments.

II. BACKGROUND AND OUR CONTRIBUTION

In order to explain our contribution we need to provide an introduction to channel networks. This is done in Sec. II-A. Readers familiar with this topic can go quickly over it, just paying attention to some terminology and notation that we use (in particular: “pushing”, “acknowledging” payments, “cash functions”, “nEC”, “P ↔ P’”). We then outline our contribution in Sec. II-B. In this informal description we assume that the maximal blockchain reaction time is 1 hour (we often write “1h” for an hour).

A. Introduction to channel and their networks

As mentioned above, a payment channel is opened when Alice and Bob deploy a smart contract on the ledger, and deposit some number of coins (say: x, and y, respectively) into it. The initial balance of this channel is: “xEC in Alice’s account, yEC in Bob’s account” (or [Alice ↔ x, Bob ↔ y]) for short. We model amounts of coins as non-negative integers, and write “nEC” to denote n coins. This balance can be updated (to some new balance [Alice ↔ x', Bob ↔ y'], such that x' + y' = x + y) by just exchanging messages between the parties. The corresponding smart contract guarantees that each party can at any time close the channel and get the money that correspond to her latest balance. Only the opening and closing operations require interaction with the blockchain. For more on how it is done see, e.g., [10]).

Now, suppose we are given a set of parties P1, . . . , Pn and channels between some of them. These channels naturally form an (undirected) channel graph, which is a tuple
This is possible thanks to the way in which the *n hours* deadlines in the channels $P_1 \leftrightarrow P_2$ and $P_2 \leftrightarrow P_3$ are chosen. An interesting feature of this protocol is that proof π serves not only for internal purposes of the routing algorithm, but can also be viewed as the output of the protocol which can be used by P_1 as a receipt that she transferred some coins to P_4. In other words: P_1 can use π to resolve disputes between with P_4, either in some smart contract (that was deployed earlier, and uses the given PCN for payments), or outside of the blockchain.

B. Our contribution

One of the main problems with the existing PCNs is that sending a payment between two parties requires a path from the sender to the receiver that has sufficient capacity. This problem is amplified by the fact that capacity of potential paths can change dynamically, as several payments are executed in parallel. Although usually the payments are very fast, in the worst case they can be significantly delayed since each “hop” in the network can take as long as the pessimistic blockchain reaction time. Therefore it is hard to predict exactly what will be the capacity of a given path even in very close future. This is especially a problem if capacity of a given channel is close to being completely exhausted (i.e. it is close to zero, because of several ongoing payments). Some research [8] suggests that while Lightning is very efficient in transferring small amount of coins, transferring the larger ones is much harder, and in particular transfers of coins worth $200 succeed with probability 1%. A natural idea for solving this problem is to split the payments along the way into several sub-payments. This was described in several recent papers (see, e.g., [12, 13, 27, 28, 32]). However, up to our knowledge all these papers considered so-called “atomic payment splitting”, meaning that either all the sub-payments got through, or none of them. In this paper we prove a new, alternative technique that we call “non-atomic payment splitting” that does not have this feature, and hence is more flexible. (We provide a comparison between atomic and non-atomic splitting in Sec. III-2.) More concretely, our contribution can be summarized as follows.

1) We introduce the concept of non-atomic payment splitting by defining formally a notion of Non-Atomic Payment Splitting (NAPS) protocols. In our definition we require that splitting is done ad-hoc by the intermediaries, possibly in a reaction to dynamically changing capacity of the paths, or to the fees. Perhaps the easiest way to describe NAPS is to look at the payment networks as tools for outsourcing payment delivery. For example, in the scenario from Sect. II-A party P_1 outsources to P_2 the task of delivering $6c$ to P_3, and gives P_2 three hours to complete it (then P_2 outsources this task to P_3 with a more restrictive deadline). The sender might not be interested in how this money is transferred, and the only thing that matters to her is that it is indeed delivered to the receiver, and that she gets the receipt. In particular, the sender may not care if the money gets split on the way to the receiver, i.e., if the coins that he sends are divided into smaller amounts that are transferred independently over different paths. In many cases the sender may also be OK with

Recall that Lightning is built over Bitcoin, which has a very limited “smart contract” support, hence these “smart contracts” are different that the ones considered in this paper, see [30].
not all the money being transferred at once. More precisely, suppose that he intends to transfer $u \notin \mathbb{N}$ to the receiver. Then he can also accept the fact that $v < u$ coins were transferred (due to network capacity limitations), and try to transfer the remaining $u - v$ coins later (in another “installments”). Also, in many cases (e.g. BitTorrent-type file sharing) the goods that the seller delivers in exchange for the payment can be divided into very small units, and sent to the buyer depending on how many coins have been transferred so far. Finally, in several cases (e.g. depositing coins in so-called “cryptocurrency exchanges”) uploading a non-full amount is “better than nothing”. NAPS protocol permits such recursive non-atomic payment splitting into “sub-payments” and partial transfers of the coins.

2) We construct a protocol that we call ETHNA (see Appx. A for an explanation of this name choice) that satisfies the NAPS definition. In ETHNA the “sub-receipts” for sub-payments are aggregated by the intermediaries into one short sub-receipt, so that their size does not grow with the number of aggregated sub-receipts. This is done very efficiently, and in particular avoiding using advanced and expensive techniques such as non-interactive zero knowledge or homomorphic signature schemes and hash functions. Instead, we rely on a technique called “fraud proofs” in which an honest behavior of parties is enforced by a punishing mechanism (this method was used before, e.g., in [11, 17, 29, 33]). We stress that the amount of data that is passed between two consecutive parties on the path does not depend on the number of sub-payments in which the payment is later divided. The same applies to the data that these two parties send to the blockchain in case there is a conflict between them. We summarize the complexity of ETHNA in Sec. VI-B.

3) We provide a formal security analysis of ETHNA. More precisely we prove that ETHNA satisfies the the NAPS definition. We also analyze ETHNA’s complexity.

4) We also implement ETHNA contracts in Solidity (the standard language for programming smart contracts in Ethereum), and we provide some routing experiments. We describe this implementation and provide some benchmarks in Sec. VII-1. We stress, however, that routing algorithms are not the main focus of this work, and further research on designing algorithm that exploit non-atomicity of payment splitting.

C. Other related work and organization of the paper

Some of the related work was mentioned already before. Off-chain channels are a topic of intensive research, and there is no space here to describe all the recent exciting developments [1, 4, 9, 10, 11, 13, 14, 19, 20, 22, 23, 24, 25] in this area. The reader can also consult SoK papers on off-chain techniques [15, 16]. Partial coin transfers were considered in [28], but with no aggregation techniques and ad-hoc splitting.

In a recent, very interesting paper Bagaria et al. [2] proposed a Boomerang system which allows to split the payments (by the sender) into multiple parts in a “redundantly” and tolerate the fact that only some of them succeed. The papers [2, 12, 28] focus on routing techniques, which is not the main focus of the paper.

Organization of the rest of the paper: The next two section contain an informal description of our ideas: in Sec. III we provide an overview of NAPS definition, and in Sec. IV we describe the main design principles of ETHNA. Then, in Sec. V we provide the formal NAPS definition, and in Sec. VI the detailed description of ETHNA, together with security proof. Hence, in some sense Sec. V contains the “formal details” of Sec. III, and Sec. VI – the details corresponding to Sec. IV. An overview of our implementation and the simulations is presented in Sec. VII.

Notation: For standard definitions of cryptographic algorithms such as signature schemes or hash functions, see, e.g., [18]. When we say that a message is “signed by some party” we mean that it was signed using some fixed signature scheme that is existentially unforgeable under chosen-message attack. Natural numbers are denoted with \mathbb{N}. We will also use the notion of nonces. Their set is denoted with \mathcal{N}. We assume that $\mathcal{N} = \mathbb{N}$. We use some standard notation for functions, string operations, and trees. For completeness it is presented in Appx. B.

III. OVERVIEW OF THE NAPS DEFINITION

Let us now explain informally the NAPS protocol features (for a formal definition see Sec. V). As highlighted above, the main advantage of NAPS protocols over the existing PCNs is that they allow ad-hoc splitting of a payment into sub-payments Throughout this paper we use the following convention: our protocols are run by a set of parties denoted $\mathcal{P} = \{P_1, \ldots, P_n\}$, where P_1 be the sender, P_2, \ldots, P_{n-1} be the intermediaries, and P_n be the receiver. Moreover, let v be the amount of coins that P_1 wants to send to P_n, and let t be the maximal time until when the transfer of coins should happen. Since in general P_1 can perform multiple payments to P_n, we assume that each payment comes with a nonce $\mu \in \mathcal{N}$ that can be later used to identify this payment. Sometimes we will simply call it “payment μ”. In this paper we present our protocol in a stand-alone way, i.e., we do not take into account possible parallel executions of the same protocol (e.g., with P_2 being the sender and P_3 being one of the intermediaries) and other ones. This is done purely for the sake of simplicity, and we conjecture that our protocol satisfies such stronger “composability” [3] properties. We leave analyzing this as an open research direction.

1) NAPS behavior when everybody is honest: For simplicity we start with an informal description of how NAPS protocols operate when all the parties are honest. The security properties (taking into account malicious behavior of the parties) are described informally in Sec. III-3, and formally defined in Sec. V. The easiest way to understand NAPS is to look a the example on Fig. 1. We provide a more general description below. Let us start by describing how the protocol looks like from the point of view of the sender P_1. Let P_{i_1}, \ldots, P_{i_m} be the neighbors of P_1, i.e., parties with which P_1 has channels. Suppose the balance of each channel $P_i \Rightarrow P_j$ is $[P_1 \rightarrow x_i, P_j \rightarrow y_j]$ (meaning that P_1 and P_j have x_i and y_j coins in their respective accounts in this channel). Now, P_1 chooses to push some amount v_j of coins to P_n via some
P_{ij}$, and set up a deadline t_j for this (we will also call v_j a sub-payment of payment μ). This results in: (a) the balance $[P_1 \mapsto x_i, P_{ij} \mapsto y_j]$ changing to $[P_1 \mapsto x_i - v_j, P_{ij} \mapsto y_j]$, (b) the amount of coins that P_1 still wants to transfer to P_n being decreased as follows: $v := v - v_j$, and (c) P_1 holding “v_j coins that she should transfer to P_n within time t_j.

It is also OK if P_{ij} transfers only some part $v_j' < v_j$ of this amount (this can happen, e.g., if the paths that lead to P_n via P_j do not have sufficient capacity). In this case, P_1 has to be given back the remaining (“non-transferred”) amount $r = v_j - v_j'$. More precisely, before time t_j comes, party P_{ij} acknowledges the amount v_j' that she managed to transfer. This results in (1) changing the balance of the channel $P_1 \mapsto P_j$ by crediting v_j' coins to P_{ij}’s account in it, and (2) r coins to P_3’s account. Moreover (3) P_1 adds back the non-transferred amount r to v, by letting $v := v + r$. Here (1) corresponds to the fact that P_{ij} has to be given the coins that she transferred (and hence “lost” in the other channels), and (2) comes from the fact that not all the coins were transferred (if P_{ij} managed to transfer all the coins, then, of course, $r = 0$). Finally, (3) is used for P_1’s “internal bookkeeping” purposes, i.e., P_1 simply writes down the fact that r coins “were returned” and still need to be transferred.

While party P_1 waits for P_{ij} to complete the transfer that it requested, she can also contact some other neighbor P_{ik} asking her to transfer some other amount v_k to P_n. This is done in exactly the same way as transferring coins via P_{ij} (described above). In particular, the effects on the balance of the channel $P_1 \mapsto P_{ik}$ are as before (with subscript “j” replaced with “k”). In the example on Fig. 1 party P_1 splits 7 coins into 6 (that she pushes to P_2) plus 1 that she pushes to P_3. In more advanced cases several such transfers can be done in parallel with other neighbors of P_1. Moreover, P_1 can push several sub-payments (of payment μ) to one neighbor. For example, P_1 can push again some new amount to P_{ij} hoping that maybe this time there will be more capacity available for routing payments via this party.

This process can be repeated by the intermediaries. Let P be a party that holds some coins that were “pushed” to it by some P' (and that originate from P_1 a have to be delivered to P_n). Now, P can split them further, and moreover she can decide on her own how this splitting is done depending, e.g., on the current capacity of the possible paths leading to P_n. For instance, P_{ij} can decide to split v_j further to between its neighbors in the same way as P_1 split u between its neighbors. The payment splitting can be done in an arbitrary way, except of two following restrictions. First of all, we do not allow are “loops” (i.e. paths that contain the same party more than once), as it is hard to imagine any application of such a feature. In the basic version of the protocol we assume that the number of times a given payment sub-payment is split by a single party P is bounded by a parameter $\delta \in \mathbb{N}$, called arity (for example arity on Figs. 1 is at most 2). In Appx. E2 we present an improved protocol where δ is unbounded (at a cost of a mild increase of the pessimistic number of rounds of interaction). As already mentioned, the most important feature of NAPS is the non-atomicity of payments. We discuss it further below.
2) Atomic vs. non-atomic payment splitting: As already highlighted in Sec. II-B the previous protocols on payment splitting always required payments to be atomic, meaning that in order for a payment to succeed all the sub-payments had to reach the receiver. Technically, this means that in order to issue a receipt for \textit{any} of the sub-payments (this receipt is typically a pre-image of a hash function, see, e.g., [12]) all of them need to reach the receiver. This has several disadvantages: (1) the coins remain blocked in every path at least until the last sub-payment arrives to the receiver, (2) the success of a given sub-payment depends not only on the subsequent intermediaries, but also on the other “sibling” paths (this problem was observed in [12] where it is argued that this risk may lead to intermediaries rejecting sub-payments that were split before, see Sec. 3.1 of [12]). Finally, atomic payments may result in the “deadlock” situations in the network. Since this may be of independent interest, we describe it in more detail below. Consider a channel graph as below (for simplicity we do not specify the coin amounts on the right-hand-sides of the channels, as they are irrelevant to this example).

\begin{center}
\includegraphics[width=0.5\textwidth]{channel_graph.png}
\end{center}

Now suppose that P_1 and P_2 decide to send 2\(\epsilon\) each to P_5 via P_3 and P_4. If now P_1 pushes 1\(\epsilon\) to P_3 and at the same time P_2 pushes 1\(\epsilon\) to P_4, then none of the payments can be completed (since the channels $P_3 \leftrightarrow P_5$ and $P_2 \leftrightarrow P_4$ do not have sufficient capacity). On the other hand: if we allow \textit{non-atomic} payments then each payment will partially succeed (i.e. each sender will send 1\(\epsilon\) to the receiver P_3). They may then try to send the remaining amounts after some time when new capacity in these channels is available. This is of course a very simple scenario, but it can be generalized to much larger graphs, and to more complicated “deadlocks”.

On the other hand, “atomicity” and even “fine grained atomicity” can be also obtained in ETHNA by a small modification of the protocol. We write more about it in Sec. E1. Let us also remark that atomic payment splitting in general seems to be easier to achieve, which is probably the reason why there has been more focus on them in the literature (with papers focusing more on other aspects of this problem, such as routing algorithms, e.g. [12]). Finally, let us stress that we do not claim that non-atomicity is in any way superior to atomicity. We think that both solutions have their advantages and disadvantages, and there exist applications where each of them is better than the other one.

3) \textbf{NAPS security properties:} In the description in Sec. III-1 we assumed that all the parties are behaving honestly. Like all the other PCNs, we require that NAPS protocols work also if the parties are malicious, and in particular, no honest party P can loose money, even if all the other parties are not following the protocol and are working against P. The corrupt parties can act in a coalition, which is modeled by an adversary Adv. For the sake of simplicity we assume synchronous network, with Adv being rushing. Formal security definition appears in Sec. V Let us now informally list the security requirements, which are quite standard, and hold for most PCNs (including Lightning).

The first property is called “fairness for the sender”. To define it, note that as a result of payment μ (with timeout t), the total amount of coins that each party P has in the channel with other parties typically changes. Let $\text{net}_\mu(P)$ denote the amount of coins that P gained in all the channels. Of course $\text{net}_\mu(P)$ can be negative if P lost $-\text{net}_\mu(P)$ coins. We require that by the time t an honest P_1 holds a receipt of a form

$$\text{"an amount } v \text{ of coins has been transferred from } P_1 \text{ to } P_n \text{ as a result of payment } \mu$$,

with $v \leq u$. Moreover, under normal circumstances, i.e. when everybody is honest, v is equal to $-\text{net}_\mu(P_1)$ (i.e. the sum of the amounts that P_1 lost in the channels). In case some parties (other than P_1) are dishonest, the only thing that they can do is to behave irrationally, and let $v \geq -\text{net}_\mu(P_1)$, in which case P_1 holds a receipt for transferring \textit{more} coins than she actually lost in the channels. Note that introducing receipts makes our model stronger than the models that have no receipts (e.g. [30]). This is because the “no receipts” settings makes sense only under the assumption that the sender and the receiver trust each other, and in particular the receiver is not corrupt (which is is a stronger security assumption that the one that we use in our paper). A receipt can be later used in another smart contract (e.g., a contract that delivers some digital goods whose amount depends on v). “Fairness for the receiver” is defined analogously, i.e.: if P_1 holds a receipt (1) then typically $v = \text{net}(P_n)$, and if some parties (other than P_n) are dishonest, then they can make $v \leq -\text{net}_\mu(P_n)$. In other words, P_1 cannot get a receipt for an amount that is higher than what P_n actually received in the channels. Finally, we require that the following property called “balance neutrality for the intermediaries” holds: for every honest $P \in \{P_2, \ldots, P_{n-1}\}$ we have that $\text{net}_\mu(P_n) \geq 0$. Again: if everybody else is honest then we have equality instead of inequality.

IV. OVERVIEW OF THE ETHNA PROTOCOL

After presenting NAPS definition, let us now explain the main ideas behind the protocol ETHNA protocol that realizes it (for a formal description of the construction see Sec. VI, and for an overview of the implementation see Sec. VII-1). A very important feature of ETHNA is that it permits “sub-receipt aggregation”, by which we mean the following. Consider some payment μ. Each time after P_n receives some sub-payment v that reached it via some path $\Pi = P_1 \cdots \rightarrow P_{n-1}$, it issues a sub-receipt and sends it to P_{n-1}. Each intermediary that received more than one sub-receipt can aggregate them into one short sub-receipt that she sends further in the direction of P_1. Finally, P_1 also produces one short receipt for the entire payment. This results in small communication complexity, and in particular, the pessimistic gas costs are low. We discuss this in more detail in Secs. VI-B and VII-1. One option for doing this would be to let the sub-receipt be signed using a homomorphic signature scheme, and then exploit this homomorphism to aggregate the sub-receipts. In this paper we use a simpler solution that can be efficiently and easily implemented in the current smart-contract platforms.
Very informally speaking, we ask P_n to perform the “sub-payment aggregation herself” (this is done at the moment of signing a sub-receipt, and does not require any further interaction with P_n). Then, we just let the other parties verify that this aggregation was performed correctly. If any “cheating by P_n” is detected (i.e. some party discovers that P_n did not behave honestly) then a proof of this fact (called a “fraud proof”) will count as a receipt that a full amount has been transferred to P_n. From the security point of view this is ok, since an honest P_n will never cheat (and hence, no “fraud proof” against him will ever be produced). Thanks to this approach, we completely avoid using any expensive advanced cryptographic techniques (such as homomorphic signatures, or non-interactive proofs). Below we explain the main idea of ETHNA by considering the example from Fig. 1.

A. The “everybody is honest” case

Again, we start with describing how the protocol works when everybody is honest, and then (in Sec. IV-B) we show how the malicious behavior is prevented.

1) Invoice sending: The protocol starts with the receiver P_n sending to P_1 an “invoice” that specifies (among other things) the identifier μ of the payment, and the maximal amount v of coins that P_n is willing to accept. As we explain below, this invoice may be later used together with “proofs” to produce a proof that all the v coins were transferred to P_n (if she proves to be malicious).

2) Pushing sub-payments: Pushing sub-payments is done by sending messages containing information about the path that the sub-payment “travelled” so far (together with the amount of coins to be pushed and a timeout information), and simultaneously blocking coins in the underlying channels. The messages sent between the parties on Fig. 1a are presented on the picture below.

Whenever a message “(push, π, v, t)” is sent from P to P', the party P blocks v coins in channel $P \rightarrow P'$ for time t. These coins can be claimed by P' or is she provides a corresponding sub-receipt within time t. Otherwise it can be reclaimed back by P.

3) Acknowledging sub-payments by the receiver: The receiver P_6 acknowledges that sub-payments by sending signed sub-receipts back to the intermediaries, and simultaneously claiming the coins that were blocked in the corresponding channels. Simultaneously the receiver P_6 creates a graph called “payment tree” that is stored locally by P_6 and grows with each acknowledged sub-payment. Consider now Fig. 1c. As explained before, the order of message acknowledgment can be arbitrary. In what follows we assume that P_6 first acknowledges the sub-payment that came along the path $P_1 \rightarrow P_3 \rightarrow P_6$. This means that P_6 “accepts” that 1ζ will be transferred to her from P_1 via path $P_1 \rightarrow P_3 \rightarrow P_6$, or, in other words: 1ζ will be “passed” through each of P_1, P_3, and P_6 (note that we included here the sender P_1 and the receiver P_6). This can be depicted as the following graph that consists of a single path that we denote α:

\[
\begin{tikzpicture}
 \node (P1) at (0,0) {ζ};
 \node (P2) at (2,0) {ζ};
 \node (P3) at (4,0) {ζ};
 \node (P4) at (6,0) {ζ};
 \node (P5) at (8,0) {ζ};
 \node (P6) at (10,0) {ζ};
 \draw (P1) -- (P2) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P2) -- (P3) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P3) -- (P4) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P4) -- (P5) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P5) -- (P6) node[midway, above] {ζ} node[midway, below] {ζ};
\end{tikzpicture}
\]

In order to acknowledge the sub-payment that was pushed along the path $P_1 \rightarrow P_3 \rightarrow P_6$ party P_6 signs α and sends it to P_3. Such signed information (in a slightly generalized form) will be called a “sub-receipt” (see Sec. VI). By providing this sub-receipt party P_6 also gets 1ζ in the $P_3 \approx P_1$ (that were blocked by P_3 in this channel when the “push” message was sent). The graph from Eq. (2) is the first version of the payment tree that, as mentioned above, the receiver P_6 stores locally.

Now, suppose the next sub-payment that P_6 wants to acknowledge is the one that came along the path $P_1 \rightarrow P_2 \rightarrow P_4 \rightarrow P_6$, i.e., P_6 accepts that 3ζ will be transferred to her from P_1 via path $P_1 \rightarrow P_2 \rightarrow P_4 \rightarrow P_6$. The receiver P_6 now modifies the payment tree as follows:

\[
\begin{tikzpicture}
 \node (P1) at (0,0) {ζ};
 \node (P2) at (2,0) {ζ};
 \node (P3) at (4,0) {ζ};
 \node (P4) at (6,0) {ζ};
 \node (P5) at (8,0) {ζ};
 \node (P6) at (10,0) {ζ};
 \draw (P1) -- (P2) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P2) -- (P3) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P3) -- (P4) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P4) -- (P5) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P5) -- (P6) node[midway, above] {ζ} node[midway, below] {ζ};
\end{tikzpicture}
\]

Analogously to what we saw before, this tree represents the total amounts of coins that will be “passed” through different parties from P_1 to P_6 after the acknowledgment of this sub-payment is completed. On Eq. (3) the thick line (denoted β) corresponds to the “new” path, and the thin one is taken from Eq. (2), except that P_1 is labeled with “4ζ”. This is because the total amount of coins that will be passed through P_1 is equal to the sum of the coins passed before (1ζ) and now (3ζ). Observe also that P_6 appears in “two copies” on Eq. (3). The is because the graph that we construct is a tree (actually every leaf of a payment tree will be labeled by the receiver). Party P_6 now signs path β to create a sub-receipt that she sends to P_4 in order to claim 3ζ in the channel $P_4 \approx P_6$.

Finally, P_6 acknowledges the sub-payment that came along the path $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_6$. This is done similarly to what we did before. The resulting tree is now as follows.

\[
\begin{tikzpicture}
 \node (P1) at (0,0) {ζ};
 \node (P2) at (2,0) {ζ};
 \node (P3) at (4,0) {ζ};
 \node (P4) at (6,0) {ζ};
 \node (P5) at (8,0) {ζ};
 \node (P6) at (10,0) {ζ};
 \draw (P1) -- (P2) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P2) -- (P3) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P3) -- (P4) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P4) -- (P5) node[midway, above] {ζ} node[midway, below] {ζ};
 \draw (P5) -- (P6) node[midway, above] {ζ} node[midway, below] {ζ};
\end{tikzpicture}
\]

Note that we performed “summing” in two places on Eq. (4): at the node P_5 (where we computed 6ζ as $4\zeta + 2\zeta$) and an P_2 (where $5\zeta = 2\zeta + 3\zeta$). Labeled path γ is now signed by P_6 and sent to P_5 as sub-receipt in order to claim 2ζ.

The payment trees whose examples we saw on Eqs. (2)–(4) are defined formally (in a slightly more general version) in Sec. VI-A2 on p. 11. Their main feature is that value of coins in the label on each node is equal to the sum of the labels of the children of P. By a standard recursive application of this observation this implies that the coin value in a label of P is equal to the sum of labels in the leaves of the sub-tree rooted in P. In particular: the label in the root of the entire tree is equal to the sum of the values in the leaves.
4) Acknowledging sub-payments by the intermediaries: We now show how the intermediaries P_2, \ldots, P_5 acknowledge the sub-payments. On a high level this is done by propagating the sup-receipts (issued by P_6) from right to left. Note, that each party may receive several such sub-receipts (if she decided to split a given sub-payment). Let S be the set of such sub-receipts (such sets will be called “payment reports”, see Sec. VI for their formal definition). When a party P wants to acknowledge the sub-payment she chooses (in a way that we explain below) one of the sub-receipts ζ from her set S. She then forwards it back in the left direction to the party P' that pushed the given sub-payment to her. As a result P gets $v\zeta$ in the channel $P' \leftrightarrow P$. To determine the value of $v\zeta$ the following rule is used: it is defined to be the label of P on the path ζ. Given this, the rule for choosing $\zeta \in S$ is pretty natural: P simply chooses such the ζ that maximizes v. Such ζ will be called a “leader” of S (at node P). See Sec. VI for the formal definition of this notion. To illustrate it let us look again at an example from Fig. 1.

First, observe that P_3 holds only one sub-receipt (i.e.: the signed path α). She simply forwards it to P_1 and receives 1ζ in the channel $P_1 \leftrightarrow P_3$. Note that this is exactly equal to the value that she “lost” in the channel $P_3 \leftrightarrow P_6$, and hence the balance neutrality property holds. The situation is a bit more complicated for P_2 since she holds two paths signed by the receiver: β (defined on Eq. (3)) and γ (from Eq. (4)). By applying the rule described above P_2 chooses the leader ζ at P_2 to be equal to γ (since $5\zeta > 3\zeta$). This is depicted below (the shaded area indicates the labels that are compared).

$$\beta = \begin{array}{c}
\zeta & P_1 & \alpha & \zeta & P_2 & \alpha & \zeta & P_3 & \alpha & \zeta & P_4 & \alpha & \zeta & P_5 & \alpha & \zeta & P_6
\end{array}$$

$$\gamma = \begin{array}{c}
\zeta & P_1 & \alpha & \zeta & P_2 & \alpha & \zeta & P_3 & \alpha & \zeta & P_4 & \alpha & \zeta & P_5 & \alpha & \zeta & P_6
\end{array}$$

What remains is to argue about balance neutrality for P_2, i.e. that number of coins received by P_2 in the channel $P_1 \leftrightarrow P_2$ is equal to the sum of coins that she “lost on the right-hand side”. In this particular example it can be easily verified just by looking at Eq. (5) (5ζ are “gained”, and $2\zeta + 3\zeta$ are “lost”). In the general case the formal proof is based on the property that that value of coins in the label on each node P in a payment tree is equal to the sum of the labels of the children of P. See Sec. VI, and particular Claim 1, for the details.

5) Final receipt produced by P_1: Once all the sub-payments are over P_3 decides to conclude the procedure and obtain the final receipt for the entire payment (see Eq. (1) on page 5). Again, P_1 holds a “payment report” S, i.e. a set of paths signed by P_6. In the case of our example these paths are: α (sent to P_1 by P_3) and γ (sent by P_2). Party P_1 chooses her “receipt” in a similar way as the intermediaries choose which sub-receipt to forward. More precisely, let κ be the path that is the leader of S at node P_1. This path becomes the final receipt. The amount of coins that are transferred is equal to the label of P_1 in κ. In our case, the leader ζ is clearly γ (since its label at P is “6\zeta”, while the label of γ at P is “1\zeta”, cf. Eqs (2) and (4)). Hence, γ becomes the final receipt for the payment of 6 coins.

“Fairness for the sender” follows from the same argument as the “balance neutrality for the intermediaries”. For “fairness for the receiver” observe that ζ is signed by the receiver, and is taken from the payment tree (created and maintained by the receiver). To finish the argument recall that: (a) as observed before the label in the root of such a tree is always equal to the sum of the labels in its leaves, and (b) this sum is exactly equal to the total amount of coins that the receiver received from its neighbors during this payment procedure. For the details see Lemma 2 on page 12.

B. Dealing with malicious behavior

The main type of malicious behavior that we have to deal with is cheating by the receiver P_n whose goal could be to get more coins than appears on the final receipt held by the sender P_1. This could potentially be done at the cost of P_1 or some of the intermediaries. So far, we have not described how to guarantee that P_n produces the sub-receipts correctly. As already highlighted, our trick is to let the malicious P_n produce the sub-receipts in an arbitrary way, and later let other parties verify P_n’s operation. This is based on the idea of “fraud proofs”: if an intermediary P finds a proof that P_n is cheating she can automatically claim all the coins that were pushed to her by forwarding this proof “to the left”. In this way the cheating proof reaches the sender P_1 who can now use it as the receipt for transferring the full amount that was requested (recall that P_1 holds an “invoice” from P_n).

Suppose, e.g., that in our scenario P_6 cheats by sending to P_5, instead of γ (see Eq. (4)), the following sub-receipt:

$$\gamma := \begin{array}{c}
P_1 & \alpha & P_2 & \alpha & P_3 & \alpha & P_4 & \alpha & P_5 & \alpha & P_6
\end{array}$$

The receiver does it in order to make P_1 hold a receipt for 5ζ, while in fact receiving 6ζ. Party P_5 has no way to discover this fraud attempt (since from her local perspective everything looks ok), so 2ζ get transferred to P_6 in the channel $P_5 \leftrightarrow P_6$. Party P_5 forwards γ to P_2 and gets 2ζ in the channel $P_2 \leftrightarrow P_5$ (hence the “balance neutrality” property for her holds). Now look at this situation from the point of view of P_2. In addition to γ she got one more sub-receipt, namely β (see, e.g., Eq. (5)). Party P_2 preforms a “consistency check” by combining γ and β. This is done by trying to locally reconstruct the part of the payment tree that concerns P_2. This is done as follows. First observe that the value on the label of P_1 in β is 4ζ, which is smaller than the label of P_1 in γ (which is equal to 5ζ). This means that β had to be signed by P_1 before she signed γ. Hence P_2 first writes down β, and then on top of it she writes γ (possibly overwriting some values). Normally (i.e. when P_6 is honest) this should result in a sub-tree of the tree from Eq. (4). However, since P_6 was cheating the resulting graph is different. Namely, P_2 reconstructs the following:

$$\begin{array}{c}
P_1 & \alpha & P_2 & \alpha & P_3 & \alpha & P_4 & \alpha & P_5 & \alpha & P_6
\end{array}$$

It is now obvious that P_6 is cheating, since the labels on the children of P_2 sum up to 5ζ, which is larger than 4ζ (the label of P_2). This “inconsistency” is marked as a shaded region on Eq. (7). Hence the set $\{\beta, \gamma\}$ is a “fraud proof” against P_6. As described above, once we get such a proof we are “done”:
simply each intermediary can use it to claim all the money that was blocked for her, and the receiver can use it as a receipt that *all* the coins were transferred. Let us stress that, of course, none of the parties knows a priori if \(P_0 \) is cheating or not, and therefore in reality the above "consistency check" is performed always.

V. NAPS FORMAL SECURITY DEFINITION

We now proceed to the formal exposition of the ideas already presented informally in Sec. III. Below \(\Delta \) denotes maximal blockchain reaction time (typically: \(\Delta \gg 1 \)).

1) Payment routes: We start with defining a generalization of the term “payment paths” that were introduced in Sec. III. As already explained, to be as general as possible, the NAPS definition permits that several sub-payment of the same payment \(\mu \) are routed via the same party independently. Moreover, we allow using the same path for more than one sub-payment of the same payment. Consider, e.g., the following scenario: 3\(\epsilon \) is sent on a path \(P_1 \rightarrow P_2 \rightarrow P_3 \). This amount is first split by \(P_1 \) as: 2\(\epsilon \)C + 1\(\epsilon \). The 2\(\epsilon \)C is split again as: 1\(\epsilon \)C and sent to \(P_3 \), while 1\(\epsilon \)C is just delivered directly to \(P_3 \) without being split further. Pictorially:

\[
\begin{array}{c}
3\epsilon \\
P_3 \\
P_1 \\
P_2 \\
1\epsilon \\
1\epsilon \\
1\epsilon
\end{array}
\]

Obviously all the 3 coins above traveled along the same path, but nevertheless they have to be considered as separate sub-payments. In order to uniquely identify each of them, we introduce a concept of “payment routes” that are very similar to “payment paths”, except that they contain additional information that makes them unique (in the situations as above). More concretely, a "route" is a "path" with nonces added in every hop. For example, the nonces added to the scenario above are as follows:

\[
\begin{array}{c}
3\epsilon \\
P_1 \\
P_2 \\
P_3 \\
1\epsilon \\
1\epsilon \\
1\epsilon
\end{array}
\]

This results in the following routes:

\[
\langle (P_1, \mu_1), (P_2, \mu_2), (P_3, \mu_3) \rangle, \quad \langle (P_1, \mu_1), (P_2, \mu_2), (P_3, \mu_3') \rangle, \quad \langle (P_1, \mu_1), (P_2, \mu_2), (P_3, \mu_3'') \rangle.
\]

We can think of every \(\mu_i \) as being “contributed” by \(P_i \). Moreover, we assume that \(\mu_1 \) (“contributed” by the sender \(P_1 \)) is equal to the nonce that identifies the entire payment. Formally, for a channel graph \(G = (P, E, \Gamma) \) a string \(\pi = ((P_1, \mu_1), \ldots, (P_{|\pi|}, \mu_{|\pi|}) \rangle \) is a payment route over \(G \) for payment \(\mu \) if each \(\mu_i \in \Omega \) is a nonce and \(P_1 \rightarrow \cdots \rightarrow P_{|\pi|} \) is a path in \(G \) that has at least two elements, its first element is equal to \(P_1 \), its last element is equal to \(P_n \), and it has no loops (i.e. every element from \(\Pi \) appears in \(\pi \) at most once). We assume that a payment route corresponding to a payment \(\mu \) will always start with \((P_1, \mu) \) (hence, as already mentioned above \(\mu_1 := \mu \)). We say that \(P \) is a payment prefix (over \(G \)) and \(\pi' \) is a prefix of some payment path over \(G \).

2) Modeling parties and channels: Suppose \(G = (P, E, \Gamma) \) is a channel graph. In our formal modeling every edge \(e = P \rightarrow P' \in E \) has a corresponding machine denoted \(C^e \). We assume that \(C^e \) has two special registers denoted \(C^e.cash(P) \) and \(C^e.cash(P') \). The values in these registers are non-negative integers, and \(C^e.cash(P) \) denotes the amount of coins that \(P \in e \) has in her account in \(C^e \). Recall also that \(C^{P \rightarrow P'}.cash \) can be viewed as a function \(C^{P \rightarrow P'}.cash : \{P, P'\} \rightarrow \mathbb{Z}_{\geq 0} \). Channel machines can interact with \(P \) and \(P' \), and have a state (for this reason we will refer to the as “state channels”). See, e.g., [5, 11] (or ETHNA implementation described in Sec. VII-1) on how to implement state channels in real life.

Another “special” machine is the receipt verification machine \(RVM \). The role of \(RVM \) is to model the fact that the receipts produced by \(P_1 \) need to be publicly-verifiable, so, e.g., they can be used later in another smart contract, see Sec. III-3 (it plays a role similar to the so-called “validation function” defined in Sec. 2.3 of [12]). We stress that the RVM has very limited interaction with the other machines. In fact, the only interaction that happens is: \(P_1 \) sends a message to \(RVM \), and \(RVM \) decides if it is a valid receipt and outputs information on how many coins were transferred within a given payment. Hence, we can think of \(RVM \) as an efficiently computable (“non-interactive”) function.

3) The adversary and the environment: The protocol is attacked by a polynomial-time rushing adversary \(Adv \) who can corrupt some parties (when a party is corrupt \(Adv \) learns all its secrets and takes a full control over it). The adversary can also send messages to the honest parties that influence their behavior in the protocol, and receive messages from them. A party that has not been corrupt is called honest. We assume that \(Adv \) gets \(G \) as input.

To model the fact that the parties can make internal decisions about the protocol actions we use a concept of an environment [3] that is responsible for “orchestrating” the execution. We model it by a poly-time interactive machine \(Env \). The party machines interact with the environment \(Env \) via messages starting with “env-” prefix. The environment sends the following messages to the parties: “env-send” and “env-receive” — sent simultaneously to \(P_1 \) and \(P_n \) (respectively) and used to initiate a payment \(\mu \), messages “env-push” — to push sub-payments further, and messages “env-acknowledge” — to acknowledge a payment. The parties respond with messages “env-pushed” and “env-acknowledge”— to signal that a sub-payment was pushed and acknowledged (respectively). The reason to have the env-pushed and env-acknowledged messages is purely technical\(^2\) For reference, these messages and their syntax are summarized on a cheat sheet on Fig. 4 (see p. 16). We assume that the environment gets the channel graph \(G \) as input. The environment \(Env \) is called admissible if it satisfies certain criteria presented on Fig. 2.

It maintains a set \(\Omega \) of “open push requests” (see Fig. 2) and functions \textit{sent}, \textit{value}, and \textit{timeout} that are used to store information about these requests. We say that a party \(P \) has an open push request if there exists \(\pi \in \Omega \) such that \(P \) appears

\(^2\) Under the normal circumstances, if \(Env \) asked to push a sub-payment to \(P' \), then in the next round she will receive an "env-pushed" message from \(P' \). Of course, this does not need to be the case when \(P \) or \(P' \) are corrupt and hence the the "env-pushed" message is needed. The same applies to "env-acknowledge" and "env-acknowledged".
Env takes as input a channel graph $\mathcal{G} = (\mathcal{P}, \mathcal{E}, \Gamma)$, where Γ will be treated as a variable that will be changing throughout the execution of Env (the values \mathcal{P}, \mathcal{E} will remain constant). It also defines the following variables:

- Ω — a set of payments routes (initially empty) called the open push requests. When we say that we open a push request π, we mean that we add π to Ω. When we say that we close a push request π we mean that we remove π from Ω.
- $\text{sent}, \text{value}, \text{timeout}$ — functions of a type $\Omega \to \mathbb{Z}_{\geq 0}$.

The environment interacts with the parties in an arbitrary way, as long as certain restrictions are satisfied. We specify "conditions" on when a message that Env receives is valid (if they are not met, then the message is ignored). Both the outgoing and incoming messages can result in modifications of the variables (we call these modifications the "side effects").

- Env sends a (env-send, v, μ, t) to P_1 and (env-receive, v, μ, t) to P_n.

Restrictions: (a) these messages have to be sent simultaneously, (b) the nonce μ has not been used before in the env-send and env-receive messages.
- Env receives (env-pushed, $(\pi, |(P, \mu), v, t)$) from a party P. Restrictions: $t > \tau$, where τ is the current time.
- Env receives (env-acknowledged, $(\pi, |(P, \mu), (P', \mu'), v)$) from a party P. Restrictions: $t > \tau$, where τ is the current time.

Condition: a push request $(\pi, |(P, \mu), (P', \mu'))$ is open. Side effects: (a) at most $\delta - 1$ requests-env-pushed with the argument $(\pi, |(P, \mu), (P', \mu'))$ have been sent before, (b) a push request $(\pi, |(P, \mu), (P', \mu'))$ is open, (c) at most $\delta - 1$ requests-env-pushed with the argument $(\pi, |(P, \mu), (P', \mu'))$ have been sent before, (d) $t \leq \text{timeout}((\pi, |(P, \mu), (P', \mu')) - \Delta$, (e) $v \leq \text{value}((\pi, |(P, \mu), (P', \mu')) - \text{sent}((\pi, |(P, \mu)), (P', \mu'))$, and (f) $v \leq \Gamma_{P \to P'}(P')$.

Side effects: let $\Gamma_{P \to P'}(P') := \Gamma_{P \to P'}(P) - v$.
- Env sends (env-acknowledged, $(\pi, |(P, \mu), (P', \mu'))$) to a party P'. Restriction: a push request $(\pi, |(P, \mu), (P', \mu'))$ is open. No push request $(\pi, |(P, \mu), (P', \mu')) | (P' \neq \pi')$ is open. Side effects: close this push request.

Fig. 2: Admissible Env for ETHNA with arity δ.

on π. The main idea behind the "admissible environment" is that it restricts us to the environments that satisfy some natural correctness requirements, such as "do not push more coins than you hold in a given sub-payment". These conditions are called "restrictions". Most of the actions result in some modification of the internal variables of Env. These restrictions are called "side effects". The environment is also responsible for terminating the protocol. More concretely, we say that the protocol terminated is Env stops. The environment can only do it if there are no open push requests.

4) The network model: We assume a synchronous communication network, i.e., the execution of the protocol happens in rounds. The notion of rounds is just an abstraction which simplifies our model, and was used frequently in this area in the past (see, e.g., [10, 11]). Whenever we say that some operation (e.g. sending a message or simply staying in idle state) takes at most $\tau \in \mathbb{N} \cup \{\infty\}$ rounds we mean that it is up to the adversary to decide how long this operation takes (as long as it takes at most τ rounds). We assume that every machine is activated in each round. The communication between each two parties P and P' takes 1 round. Communicating with the state channel machines is a bit more subtle and it is therefore described in a separate section below.

5) Immediate vs. non-immediate messages to the state channel machines: One subtle point in modeling the state channels as machines is their response time. In real life executing state channel machines is done via an update procedure (see, e.g., [11]) where the parties mutually sign the new state of the channel. This procedure takes two rounds of communication in the optimistic case (i.e. when both parties are honest). The pessimistic case is a bit more tricky, since in general each update may require interacting with the blockchain. In some cases however, even in the pessimistic case we can think of the update as being immediate. This happens when a party P updates the channel $P \rightsquigarrow P'$ in a way that is beneficial for P' (e.g., P transfers money to P'). In this case P just sends a new signed state of the channel and she does not need to wait for P''s confirmation (and therefore the whole update procedure takes just 1 round, even if P' is dishonest P'). The same situation happens in channels. In particular, if P pushes a sub-payment to P' she does not need to hold a confirmation that P' received this message. In the worst case (if P' is dishonest) simply this sub-payment not result in any coins being transferred. The situation is of course different for acknowledgments: here P' needs to get a confirmation from P that she received the acknowledgment. It is therefore convenient to distinguish between immediate and non-immediate updates to a channel $P \rightsquigarrow P'$. The "immediate" take 1 round (since no confirmation is needed), and the "non-immediate" ones take 2 rounds if both parties are honest, and they may take up to Δ rounds if one of $\{P, P'\}$ is dishonest.

6) The definition: A Non-Atomic Payment Splitting (NAPS) protocol Π for a channel graph $\mathcal{G} = (\mathcal{P}, \mathcal{E}, \Gamma)$ is a tuple consisting of: the party machines P_1, \ldots, P_n, the state channel machines C^e (for every $e \in \mathcal{E}$), and the receipt verification machine RVM that for every A and Env satisfy the functionality and security requirements described below.

Functionality requirements: The following must hold for every NAPS protocol with overwhelming probability. Guaranteed sending: Suppose P_1 and P_n are honest, and they both simultaneously receive messages (env-send, v, μ, t) and (env-receive, v, μ, t) respectively from Env. Then in the next round P_1 sends (env-pushed, $(P, \mu), v, t$) to Env. Guaranteed pushing: Suppose P and P' are honest, and P receives a message (env-pushed, $(\pi, |(P, \mu), (P', \mu'), v, t)$ from Env (for some π, v, t, μ, μ'). Then in the next round P' sends a message (env-pushed, $(\pi, |(P, \mu), (P', \mu'), v, t)$ to Env. This is the only case when P' sends an env-pushed message to Env with this route prefix. Guaranteed acknowledgment by $P' \in \{P_2, \ldots, P_n\}$: Suppose P and P' are honest, and P' receives
VI. FORMAL DESCRIPTION OF THE ETHNA PROTOCOL

Let us start with providing formal description of some of the terms that where already informally introduced in Sec. IV. For a graph G and a nonce μ, a sub-receipt (over G, for payment μ) is a pair (π, λ) signed by P_n such that π is a payment route over G (for payment μ), and λ is a non-increasing sequence of positive integers, such that $|\lambda| = |\pi|$. We will denote it with $[\pi, \lambda]$. A payment report for μ is a set S of sub-receipts for μ such that π identifies a member of S uniquely, i.e., $([\pi, \lambda] \in S$ and $[\pi, \lambda'] \in S)$ implies $\lambda = \lambda'$. For example, α, β, γ and δ in Sec. IV-A are sub-receipts, and the set $\{ \beta, \gamma \}$ (see Eq. (5)) is a payment report (except that in that informal description we omitted the nonces). For a payment report S a sub-receipt $[\pi, \lambda]$ is a leader of S at node P if P appears on π at some position i, and for every $[\pi', \lambda'] \in S$ we have that $|\lambda'| \geq |\lambda[i]|$. This notion was already discussed in Sec. IV, where in particular we said that the leader of a payment report $\{ \alpha, \gamma \}$ (on Eq. (5)) is γ. In normal cases (i.e. if P_n is honest) the leader is always unique, and is equal to the last sub-receipt of from $[\pi \mid \sigma]$, λ signed by P_n, however in general this does not need to be the case. When we talk about the leader of S at P we mean $([\pi \mid \sigma] \mid \lambda)$ that is the smallest according to some fixed linear ordering.

As already mentioned in Sec. II-B, EthNA is constructed using “fraud proofs”. Formally, a fraud proof (for μ) is a payment report Q for a form $Q = \{ [\sigma[i], \lambda[i]] \}_{i=1}^n$, where all the $\pi[i]$’s are pairwise distinct, such that the following condition holds: $\max_{i=1,...,m} \pi[i] < \sum_{i=1}^n |\sigma[i] + 1|$ For an example of a fraud proof (with nonce missing from the picture) see Eq. (7). If ETHNA has arity at most δ (see Sec. III) then we require that $m \leq \delta$. Informally speaking this conditions means simply that in Q the largest label of σ is at smaller than the sum of all labels of σ’s children. If none of the subsets of a payment report S is a fraud proof then we say that S is consistent. As we show later (cf. Lemma 1) if P_n is honest then S is always consistent.

1) Size of the fraud proofs: Note that the description of set Q as defined above can be quite large (it is of size $O(\delta \cdot (\ell + \kappa))$, where δ is ETHNA’s arity, ℓ is the maximal length of payment routes, and κ is the security parameter (we need this to account for the signature size). Luckily, there is a simple way the “compress” it to $O(\delta \cdot \kappa)$ (where κ is the security parameter) by exploiting the fact that the only values that are needed to prove cheating are the positions on the indices $|\sigma|$ and $|\sigma| + 1$ of the λ’s. We describe further compression ideas in Appx. E2.

A. The actual protocol

The formal description of ETHNA appears on Figs. 3 (it uses a sub-routine algorithm Addδ that we describe below). Let us first comment on the types of messages that are sent within the protocol (see also the cheat sheet on Fig. 4 on p. 16 in the appendix). The parties communicate with each other only via the state channels (except of the first “invoice” message sent from P_n to P_1). The messages that are used are: “push” to push a sub-payment (the corresponding message sent by the channel to the other party is “pushed”), “acknowledge” to acknowledge a sub-payment (the corresponding message is “acknowledged”), and “fraud-signal” to signal fraud (the corresponding message is “fraud-signalled”). The messages sent by P_1 to the RVM are either “acknowledge” (if everything went ok), or “fraud-signalled”. Let us now describe the individual procedures. In our description we make several simplifications, e.g., we ignore some special, but rare cases (like P_n not acknowledging some payments at all). If P_n is honest then nobody can produce a valid fraud proof (we prove it in Lemma 1). Therefore the punishment for cheating can be arbitrarily severe. As explained before, in our settings we simply let a fraud proof serve as a receipt (see Eq. (1)) that all the coins were transferred.

Going a bit more into the details, the protocol for every new payment μ of value v starts when P_1 and P_n receive “env-send” and “env-receive” messages from the environment (with parameters $v, \mu,$ and $t,$ where t specifies the maximal
time when the payment has to be completed). As a reaction P_n sends a signed pair (invoice, μ, u, t) (called an invoice) to P_1. If later P_1 obtains a fraud proof Q for μ then (invoice, μ, u, t) together with Q will serve as a receipt that all the $u\epsilon$ were transferred in payment μ. This is ok, since the protocol is constructed in such a way that P_n never pushes more coins than u to her neighbors (within payment μ). Let us now provide some more information on how the coins are pushed and acknowledged.

1) Pushing payments.: Initially no coins have been transferred within payment μ, so P_1 holds all u of them. Pushing payments is done in a recursive way. Suppose P holds some number v of coins that were pushed to P via some path π (in case $P = P_1$ this path is simply $\langle (P_1, m) \rangle$). Let t be the deadline until this payment has to be completed. Party P holds a variable S^π that she uses for bookkeeping purposes. Variable S^π contains a payment report and is initially empty. Upon receiving a message env-push(π($|\pi^\prime|$(P^\prime, μ^\prime), v^\prime, t^\prime)) from the environment party P pushes v^\prime to a neighbor P^\prime of hers. This is done by sending a push message in the state channel $P \leftarrow P^\prime$ and blocking v^\prime of P in it. This message comes with a parameter ($|\pi^\prime|$(P^\prime, μ^\prime)) (where μ^\prime is some fresh nonce) and a deadline $t^\prime < t - \Delta$ until when this payment has to be completed. As in the case of Lightning (see Sec. II-A) this message is immediate since it imposes no commitments on P^\prime. Before describing how the payments are acknowledged by the intermediaries, and how the final receipt is produced by P_1 let us present the procedure for the receiver P_n.

2) Payment acknowledgment by P_n: For every payment μ party P_n maintains a payment tree Φ^μ that is initially empty. Payment trees were already discussed in Sec. IV-A (in particular: Eqs. (2)–(4) on p. 6 contain examples of such trees). For a formal definition consider some fixed G and μ. During the execution of ETHNA for G and μ, several sub-payments are delivered to P_n. Let π^1, \ldots, π^t denote the consecutive paths over which these sub-payments go (of course they need to be distinct), and let $v^i \in \mathbb{Z}_{>0}$ be the amount of coins transmitted with each π^i. Let $R := \{(v^i, v^i)\}_{i=1}^t$. Formally a payment tree $\text{tree}(R)$ is a pair (T, L), where T is the set of all prefixes of the π^i’s, i.e., $T := \bigcup_j \text{prefix}(\pi^j)$, (for the standard notation for the trees see Appx. B). If ETHNA has arity δ then the arity of T in every node $\pi_i | (P, \mu_i)$ is at most δ. Then for every $\pi \in T$ we let $\mathcal{L}(\pi) := \sum_{i = 0}^{\infty} \mathcal{L}(\pi_i)^{v^i}$. In other words: every payment route prefix π gets labeled by the arithmetic sum of the value of the pathways that were “passed through it”. Obviously, the label $\mathcal{L}(\epsilon)$ of the root node of $\text{tree}(R)$ is equal to the sum of all v^i’s, and hence it is equal to the total number of coins transferred by the sub-payments in R. We also have that for every payment route prefix $\pi \mathcal{L}(\sigma) = \sum_{\pi_i \in \sigma} \mathcal{L}(\pi_i)$. It is also easy to see that $\text{tree}(R)$ can be constructed “dynamically” by processing elements of R one after another. More precisely, this is done as follows. We start with an empty tree Φ, and then iteratively apply the algorithm AddΦ (see Alg. 1) for $(\pi^1, v^1), (\pi^2, v^2), \ldots$. From the construction of the algorithm it follows immediately that of P_n starts with Φ being an empty tree, and then iteratively applies AddΦ to (π^i, v^i)’s for $i = 1, \ldots, t$, then the final state of Φ is equal to $\text{tree}(R)$. For example, if P_n applies this procedure to the situation on Fig. 1c she obtains the trees depicted on Eqs. (2)–(4). For a payment tree $\Phi = (T, \text{L})$ and $\pi \in T$ define labels(Φ, π) as the sequence (of length $|\pi|$) of all labels leading from the tree root to π, i.e., for every $i = 1, \ldots, |\pi|$ let labels(Φ, π)[i] := $\mathcal{L}(\pi_i)$. The following lemma (whose proof appears in Appx. C) shows that if P_n applies the AddΦ algorithm correctly, then the resulting sets \mathcal{S} are never inconsistent (and hence no “fraud proof” will ever be produced against an honest P_n).

Lemma 1. Suppose a party P_n executes AddΦ multiple times (for some payment μ, and starting from $\Phi = \emptyset$) and signs every output. Let \mathcal{S} be the set of sub-receipts signed by party P_n during the execution of the AddΦ algorithm. Then \mathcal{S} is consistent.

Party P_n waits for push requests. Each such a message arrives from one of P_n’s neighbors in \mathcal{G} and is transmitted via some state channel $P \leftarrow P_n$ of \mathcal{G}. They all come with parameters π, v, and t, where π is a payment route (starting with (P_1, μ) and with P_n appearing as its last element), v is the number of pushed coins, and t is a timeout for this sub-payment. The receiver now decides on the number $v' \leq v$ of coins that she is willing to accept from this sub-payment. She then runs Add$\Phi_\mu(\pi, v')$. Recall that this results in updating state Φ_μ and producing an output λ (equal to the labels on path π after updating the state). Party P_n acknowledges the sub-receipt of $v' \epsilon$ by sending a signed pair $[\pi, \lambda]$ back to the state channel $P \leftarrow P_n$ and claims $v' \epsilon$ from the amount locked in $P \leftarrow P_n$ by P_n. As in Lightning, this message is not immediate. Party P_n learns $[\pi, \lambda]$ within 1 hour. Observe that from the fact that $\mathcal{L}(\lambda) = \sum_{\pi \epsilon \text{a child of } \sigma} \mathcal{L}(\pi)$ (see above) we get that $\lambda[1]$ is equal to the sum of all the coins that were so far transmitted to P_n within payment μ.

3) Payment acknowledgment by the intermediaries.: Let us now go back to party P that pushed some coins to P' via channel $P \leftarrow P'$ and waits receive acknowledgment from P' (via the same channel). For a moment suppose the P is an intermediary. Let P'' be the party that earlier pushed $v \epsilon$ to P. In the most likely case P receives some $[\phi, \lambda]$ (with π being a prefix of ϕ). In this case she adds $[\phi, \lambda]$ to S^Φ. The state channel is constructed in such a way that ϕ($|\pi| + 1$) coins (from those that were locked by P') are transferred to P'', while the rest goes back to P. Once P gets an (env -acknowledge, π) message (this can only happen if there are

<table>
<thead>
<tr>
<th>Algorithm 1: Add$\Phi(\pi, v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>assumption: $v \in \mathbb{Z}_{>0}$ and $\pi \notin T$</td>
</tr>
<tr>
<td>This algorithm operates on a global state $\Phi = (T, \mathcal{L})$. Its side effect is a change of the global state.</td>
</tr>
<tr>
<td>**for $j = 1, \ldots,</td>
</tr>
<tr>
<td>if $\pi_j \in T$ then</td>
</tr>
<tr>
<td>let $\mathcal{L}(\pi_j) := \mathcal{L}(\pi_j) + v$</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>let $T := T \cup {\pi_j}$ let $\mathcal{L}(\pi_j) := v$</td>
</tr>
<tr>
<td>output $\langle \mathcal{L}(\pi[1]), \ldots, \mathcal{L}(\pi[</td>
</tr>
</tbody>
</table>
no open push request for sub-payments of π) she looks at S^π. If it is consistent then she finds the leader $[(\pi || \sigma), \lambda]$ of this set at P. Party P acknowledges π by sending back $[(\pi || \sigma), \lambda]$ to $P'' \Leftarrow P$. At the same time she claims $\lambda[\pi || \zeta]$ from the coins locked in this channel. Observe that since S^π is consistent, thus $\lambda[\pi || \zeta]$ is at least as large as the sum $\sum_{(\pi || \sigma), \lambda \in S^\pi} \lambda[\pi || 1]$, and this sum is exactly equal to the total number of coins that P "payed" to the parties to which she pushed this payment. Hence she never looses money.

The second option is that S^π is inconsistent. Let w be the fraud proof. Party P simply sends w back to P'' (over the channel $P'' \Leftarrow P$). Think of it as "throwing an exception" in recursive application of "pushing" procedure. In some sense w is a "wild card" that allows to claim all $w \zeta$ that were pushed to a party that presents it. Since it works "universally" no honest party looses money. In particular, although P'' has to accept that all the coins were "transferred" to P, she can later use the same w to claim all the coins that were blocked by the party that pushed this payment to her.

4) Receipt by the sender.: For the sender P_1 the protocol works similarly, except that P_1 does not "push" messages back, simply outputs them as a receipt. More precisely if P'' is produced, so this mechanism constitutes no risk to the fairness in Lemma 1, if P_1 does not "push" messages back and simply outputs them as a receipt. More precisely if $S^{(P_1, \nu)}$ is consistent and no fraud proof have been received, then let $[(\zeta, \lambda)]$ be the leader of $S^{(P_1, \nu)}$ at P_1. In this case case party P_1 concludes that $\lambda[\zeta]$ were transferred, and $[(\zeta, \lambda)]$ is the receipt. Otherwise let w be the fraud proof. Then P_1 concludes that all $w \zeta$ were transferred and a pair $(w, [(\mu, u)])$ is the receipt (the "$[(\mu, u)]$" component is needed to demonstrate what was the maximal transmitted value that P_n agreed for).

B. Analysis

We already argued informally about ETHNA’s security while presenting it. Formal security analysis of this protocol is given in the proof of the following lemma.

Lemma 2. Assuming that the underlying signature scheme is existentially unforgeable under a chosen message attack, the ETHNA is a Non-Atomic Payment Splitting protocol for every channel graph $\mathcal{G} = (P, E, \Gamma)$.

Proof sketch. We show that the functionality and security requirements from Sec. V hold in presence of an arbitrary adversary Adv and any admissible Env. The functionality requirements follow easily from the construction of the protocol, so it remains is to argue about the security requirements. First, it is easy to see that at a moment if some party P gets a "fraud proof" (either by finding it herself, or because of receiving it from some other party) then her security is guaranteed. This is because if such a P is an intermediary, then she can claim all the coins that were pushed to her (and she never pushes forward more coins than this), so balance neutrality holds for her. If P is the sender, then she simply uses this proof as her receipt that all the coins were transferred, and therefore fairness for the sender holds. On the other hand, as proven in Lemma 1, if P_n is honest then no fraud proof will ever be produced, so this mechanism constitutes no risk to the fairness of the receiver. Hence, for every P we can assume that she does not get a fraud proof. For $P \neq P_n$ this means that the part of the payment report that she gets is always consistent, which means that what she transfer in the sub-payments to the other parties is at most what she gets herself (for the party that pushed a given sub-payment to her). Hence balance neutrality for the intermediaries holds. Using a very similar argument we can show that fairness for the sender is also provided. Fairness for the receiver follows from the fact that in the payment tree the label in the root is equal to the sum of the labels in the leaves (which is equal total amount of coins that P_n “looses” in the channels). The complete proof is moved to Appx. D.

When analyzing security of the off-chain protocols one typically considers the optimistic scenario (when the parties are cooperating) and the pessimistic one when the malicious parties slow down the execution.

Time complexity: In the optimistic case the payments are almost immediate. It takes 1 for a payment to be pushed, and 2 rounds to be acknowledged (since for acknowledgment the messages sent to state channels are not immediate). Hence in the most optimistic case the time for executing a payment is $3 \cdot \ell$ (where ℓ is the depth of the payment tree). During the acknowledgment every malicious party can delay the process by time at most Δ. Hence, the maximal pessimistic time is $(1 + \Delta) \cdot \ell$.

Blockchain costs: The second important measure are the blockchain costs, i.e., the fees that the parties need to pay. Below we provide a “theoretical” analysis of such costs (by this we mean that we abstract away from practical features of Ethereum). For results of concrete experiments see VII-1. Note that in the optimistic case these the only costs are channel opening and closing, and hence they are independent of the tree depth and of its arity. In the pessimistic case all the messages in state channels need to be sent “via the blockchain”. This is especially unpleasant, since its not clear whose fault it was, and who should pay the fees (in other words: this fault is “non-uniquely attributable" and can lead to “griefing”, see, e.g. [10, 13] for an explanation of these notions). Let us consider two cases. In the first case there is no fraud proof. Then, the only message that is sent via the blockchain is acknowledge([δ, λ]), which has size linear $O(\ell + \kappa)$ (where ℓ is as above, and κ is the security parameter, and corresponds to space needed to store a signature). The situation is a bit different if a fraud proof appears. As remarked in Sec. VI-1 the size of a fraud proof is $O(\delta \cdot (\ell + \kappa))$, where δ is ETHNA’s arity, ℓ is the maximal length of payment routes, and κ is the security parameter. Note that the fraud proof is “propagated”, i.e., even if a given intermediary decided to keep its arity small (i.e.: not to split her sub-payments in too many sub-payments), she may be forced to pay fees that depend on some (potentially larger) arity. This could result in grieving attacks and it is the reason why we introduced a global bound on the arity. There are many ways around this. First of all, we could modify the protocol in such a way that the fraud proofs by P_n are posted directly in a smart contract on a blockchain in such a way that all the other parties do not need to re-post it, and can just refer to it. This would mean that the fees are payed only by the first party that discovers the fraud proof. She could then be compensated from a deposit put aside before the
protocol starts. Moreover, the proof size can be significantly reduced using techniques described in Appx. E2.

VII. PRACTICAL ASPECTS

In this section we provide information about practical experiments of ETHNA implementation. The source code is available at github.com/Sam16450/NAPS-EthNA.

1) Implementation in Solidity: We implemented a simple version of ETHNA in Solidity. Compared to the version described in this paper, this preliminary version lacks the ability to add nonces. The following table summarizes the execution costs in terms of thousands of gas, and depending on the arity and the maximal path length.

<table>
<thead>
<tr>
<th>Arity</th>
<th>Push Length</th>
<th>Constructor</th>
<th>Clock</th>
<th>Add State</th>
<th>Add Acknowledge</th>
<th>Add Compose</th>
<th>Close Output</th>
<th>CloseStorage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2,191</td>
<td>14</td>
<td>93</td>
<td>1,053</td>
<td>145</td>
<td>14</td>
<td>590</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>2,349</td>
<td>14</td>
<td>72</td>
<td>871</td>
<td>145</td>
<td>14</td>
<td>590</td>
<td>140</td>
</tr>
</tbody>
</table>

Fig. 3: The EthNA protocol
Above, constructor denotes the procedure for deploying a channel, close corresponds to closing a channel without disagreement, addState is used to register the balance in case of disagreement, addCheatingProof is used to add a fraud proof, addCompletedTransaction — to add a sub-receipt when no cheating was discovered, and closeDisagreement — to finally close a channel after disagreement. Assuming cost 1,000 gas $= 0.00018 \text{ (according to ethgasstation.info) this is the average rate as of Jan 21st, 2020)}$ we get that the most expensive action (deploying a channel, addCheatingProof) costs 0.43.

2) Simulation results: Although routing algorithms are not the main topic of this work, we also performed some experiments with a routing algorithm built on top of EthNA. In our experiments we used the following approach. The network graph was taken from the Lightning network (from the website gitlab.tu-berlin.de/rohrer/discharged-pc-data) with approx. 6,000 nodes and 30,000 channels. Channel’s capacities are chosen according to the normal distribution $\mathcal{N}(200, 50)$. Each transaction was split by applying the following rules. The sender and the intermediaries look at the channel graph and search for the set \mathcal{X} of shortest paths that lead to the receiver (and have different first element). Then they split the payment in values that are proportional to the capacity of the first channel in the path. In our simulations we performed 100,000 transaction. The results are below.

Above, the “success ratio’ denotes the probability of success of an average payment. “Lightning” refers to standard Lightning routing, and “Lightningx” to the Lightning algorithm that attempts to push payments multiple time. Transaction values are chosen uniformly from set (x_0, x_1), where in (a) we have $(x_0, x_1) = (10, 500)$ and in (b) we have $x_0 = 150, 200, 300$, and 400 and x_1 always set to 500. Our experiments show that for such large payments even this simple routing algorithm for EthNA works much better than Lightning. We leave designing better routing algorithms for EthNA as an direction for future work.

ACKNOWLEDGMENTS

This work was supported by the Foundation for Polish Science Team grant 2016/1/4) co-financed with the support of the EU Smart Growth Operational Programme (PO IR) and by the Ethereum Foundation grant FY18-0023.

REFERENCES

Appendix

A. ETHNA’s name explanation

We call our protocol ETHNA, in reference to Etna, one of the highest active volcanoes in Europe. This is because the coin transfers in ETHNA resemble a lava flood (with large streams recursively bifurcating into small sub-streams). The letter “h” is added so that the prefix “Eth” is reminiscent of ETH, the symbol of Ether (the currency used in Ethereum), and “NA” stands for “Non-Atomic”.

B. Standard function and string notation

By \([a_1 \mapsto x_1, \ldots, a_m \mapsto x_m]\) we mean a function \(f : \{a_1, \ldots, a_m\} \to \{x_1, \ldots, x_m\}\) such that for every \(i\) we have \(f(a_i) := x_i\). Let \(A\) be some finite alphabet. Strings \(\delta \in A^*\) are frequently denoted using angle brackets: \(\delta = (\delta_1, \ldots, \delta_m)\). Let \(\delta\) be a string \((\delta_1, \ldots, \delta_n)\). For \(i = 1, \ldots, n\) let \(\delta[i]\) denote \(\delta_i\). Let \(\varepsilon\) denote an empty string, and “\(\|\)“ denote concatenation of strings. We overload this symbol, and write \(\delta|a\) and \(a|\delta\) to denote \(\delta||\{a\}\) and \(\{a\}||\delta\), respectively (for \(\delta \in A^*\) and \(a \in A\)).

For \(k \leq n\) let \(\delta[k]\) denote \(\delta\)'s prefix of length \(k\). A set of prefixes of \(\delta\) is denoted prefix(\(\delta\)) (note that it includes \(\varepsilon\)).

We define trees as prefix-closed sets of words over some alphabet \(A\). Formally, a tree is a subset \(T\) of \(A^*\) such that for every \(\delta \in T\) we have that any prefix of \(\delta\) is also in \(T\). Any element of \(T\) is called a node of this tree. For two nodes \(\delta, \beta \in T\) such that \(\beta = \delta|a\) (for some \(a\)) we say that \(\delta\) is the parent of \(\beta\), and \(\beta\) is a child of \(\delta\). A labeled tree over \(A\) is a pair \((T, \mathcal{L})\), where \(T\) is a tree over \(A\), and \(\mathcal{L}\) is a function from \(T\) to some set of labels. For \(\delta \in T\) we say that \(\mathcal{L}(\delta)\) is the label of \(\delta\).
Types of variables
- v — a positive integer denoting amounts of coins,
- μ — a nonce,
- π — payment path prefix over G, and
- t — time.

Messages exchanged between the parties and the state channel machines
The parties send the following messages to the state channel machines:
- (push, π, v, t),
- $(\text{acknowledge}, R)$, where R is either equal to (π, empty) (where “empty” is a keyword) or it is equal to $[\psi, \lambda]$, where (ψ, λ) is a sub-receipt over G, and
- $(\text{fraud-signal}, w)$, where w is a fraud proof.

The state channel machines send the following messages to the parties:
- $(\text{acknowledged}, R)$, where R is as above, and
- $(\text{fraud-signalled}, w)$, where w is a fraud proof.

Messages sent and received by Env
The environment Env sends the following messages to the parties:
- $(\text{env-send}, v, \mu, t)$ (this message is sent only to P_1),
- $(\text{env-receive}, v, \mu, t)$,
- $(\text{env-push}, \pi, v, t)$, and
- $(\text{env-acknowledge}, \pi)$.

The environment Env also receives the following messages from the parties:
- $(\text{env-pushed}, \pi, v, t)$, and
- $(\text{env-acknowledged}, \pi, v)$.

Messages exchanged between the parties
Party P_n sends to party P_1 a message:
- $(\text{invoice}, \mu, u, t)$ (signed by P_n).

Messages send by P_1 to RVM
Party P_1 sends the following messages to the receipt verification machine RVM:
- $(\text{acknowledged}, R)$, where R is as above, and
- $(\text{fraud-signal}, w, \{\mu, u\})$, where w is a fraud proof.

Fig. 4: The flow of messages exchanged in the system, and their syntax.
C. Proof of Lemma 1

Take an arbitrary payment route prefix \(\sigma \) and an arbitrary set \(Q \subseteq S \) that has a form \(Q = \{ (|\sigma|, \pi, \lambda) \}_{j=1}^{m} \). Without loss of generality assume paths in \(Q \) are sorted according to the time by which the paths in this set were signed (starting from the first). From the fact that in the Add algorithm the values in the labels can only increase we get that

\[
\max_{i=1,\ldots,m} \lambda_i[|\sigma|] = \lambda_m[|\sigma|].
\]

From the fact that \(\mathcal{L}(\sigma) = \sum_{i=1}^{m} \lambda_i[|\sigma|] \) is a child of \(\mathcal{L}(\pi) \) (see Sec. VI-A2) we know that the time when path \((|\sigma|, \pi, \lambda) \) was signed all the children on \(\sigma \) in the tree \(T \) were labeled by values that sum up to \(\lambda_m[|\sigma|] \). The sum \(\sum_{j=1}^{m} \lambda_i[|\sigma| + 1] \) is at most equal to this value. This is because (a) it is a subset of the set of all children of \(\sigma \), and (b) these paths were signed earlier than when \(\mathcal{L}(\pi) \) is signed (here we again use the fact that in the Add algorithm the values in the labels can only increase). Altogether we get that

\[
\max_{i=1,\ldots,m} \lambda_i[|\sigma|] \geq \sum_{i=1}^{m} \lambda_i[|\sigma| + 1],
\]

and hence \(Q \) cannot be a fraud proof (see Sec. VI for the definition of fraud proofs). Therefore \(S \) does not have fraud proofs, and hence it is consistent.

\[\square\]

D. Proof of Lemma 2

We need to show that the functionality and security requirements from Sec. V hold in presence of an arbitrary adversary \(\text{Adv} \) and any admissible \(\text{Env} \).

The functionality requirements follows easily from the construction of the protocol. Let us now argue about the security requirements. We start with showing the balance neutrality for the intermediaries. Suppose an honest party \(P_i \in \{ P_2, \ldots, P_{n-1} \} \) starts a handle-route(\(\pi, v, t \)) procedure (see Fig. 3). During this execution she initiates a number of handle-push procedures. Let us look at the execution of some handle-push(\((\pi, (P', \mu)), v', t' \)) procedure. At the beginning \(P_i \) sends a message \(\text{env-push}(\pi, (P', \mu), v', t') \) to \(C^{P \to P'} \). As a result, \(C^{P \to P'} \) removes \(\mu \) coins from \(P_i \)’s account. From the construction of the state channel machine it is clear that in time \(t' + \Delta \) the latest party receives one of the following messages back from \(C^{P \to P'} \) (each of them results in transferring back to her account in \(C^{P \to P'} \) some amount \(z \) of coins):

- a message \(\text{(acknowledged, } (\pi, (P', \mu)), \text{ empty)} \) — in this case \(z = v \),
- a message \(\text{(acknowledged, } (\psi, \lambda)) \) (where \(\pi \) is a prefix of \(\psi \)) — in this case \(z \) is equal to the last element of \(\lambda \).
- a message \(\text{(fraud-signalled, } w) \) — in this case \(z = 0 \).

Call \((v - z) \) the coins gained by \(P_i \) in effect of the handle-push procedure and denote it with \(\text{gained}_P(\pi) \).

The handle-route(\(\pi, v, t \)) procedure ends when \(P_i \) receives a message \(\text{(env-acknowledge, } \pi) \) from \(\text{Env} \) (from the construction of \(\text{Env} \) it follows that this message must be sent by \(\text{Env} \) in time \(t \) the latest). Once this happens, party \(P_i \) sends one of the following messages to \(C^{P \to P_i} \) (each of them results in transferring to her account in \(C^{P \to P_i} \) some amount of \(y \) coins):

- a message \(\text{(fraud-signal, } w) \) — in this case \(y = v \),
- a message \(\text{(acknowledge, } \pi, \text{ empty)} \) — in this case \(y = 0 \),
- a message \(\text{(acknowledged, } (\psi, \lambda)) \) — in this case \(y = \hat{v} \),

where \(\hat{v} \) is equal to the last element of \(\lambda \).

We will call \(y \) the coins lost by \(P_i \) in effect of the handle-push procedure and denote it with \(\text{lost}_P(\pi) \).

Claim 1. For every honest \(P \in \{ P_2, \ldots, P_{n-1} \} \) let \(\pi \) be some payment route such that a handle-route(\(\pi, v, t \)) procedure has been executed (for some \(v \) and \(t \)), and let \(\Pi \) be the set of all payment routes \((\pi, (P', \mu)) \) such that handle-push((\(\pi, (P', \mu)) \), \(v', t' \)) had been executed. Then we have

\[
gained_P(\pi) \geq \sum_{\pi' \in \Pi} \text{lost}_P(\pi')
\]

Proof. First, observe that if \(P_i \) sends to \(C^{P \to P_i} \) a message \((\text{fraud-signal, } w) \) then Eq. (8) must hold, because in this case \(\text{gained}_P(\pi) = y \), while \(\sum_{\pi' \in \Pi} \text{lost}_P(\pi') \leq v \) (this follows from the fact that an admissible \(\text{Env} \) never asks \(P_i \) to push more coins in total than \(v \), see Fig. 2). Hence, what remains is to consider the case when no cheating was detected by \(P_i \) and in particular \(S^\pi \) is consistent. Let \(S = \{ (\phi_i, \lambda_i) \}_{i=1}^{m} \). From the construction of the protocol we get that

\[
gained_P(\pi) = \lambda(\pi),
\]

where \(\lambda(\pi) \) is the leader of \(S^\pi \) at \(P_i \). This, from the consistency of \(S^\pi \) is at least equal to

\[
\sum_{j=1}^{m} \lambda_j[|\sigma| + 1],
\]

which, in turn is equal to \(\text{lost}_P(\pi') \). This finishes the proof of the claim.

\[\square\]

Let us now go back to the proof of Lemma 2. It is easy to see that for every \(P \in \{ P_1, \ldots, P_{n-1} \} \) we have that

\[
\text{net}(P) = \sum_{\pi} \text{gained}_P(\pi) - \sum_{\sigma} \text{lost}_P(\sigma),
\]

where the sums are taken over all \(\pi \)’s such that handle-route((\(\pi, (P', \mu) \), v, t) for some \(v \) and \(t \) has been executed, and all \(\sigma \)’s such that handle-push((\(\pi, (P', \mu) \), v, t) for some \(v \) and \(t \), and \(P' \)) has been executed. Hence, by applying Claim 1 we obtain that \(\text{net}(P) \geq 0 \), and the balance neutrality holds.

To show fairness for the sender observe that the procedure for \(P_1 \) is very similar to the procedure for the intermediaries. Essentially, the only differences are as follows. First of all \(P_1 \), instead of receiving an \((\text{pushed, } \pi, v, t) \) message from a state channel machine, receives an \((\text{env-send, } \nu, \mu, t) \) message from \(\text{Env} \) and (in the next round) a signed message \((\text{invoice, } \mu, u, t) \) from \(P_n \). Secondly, the fraud-signal message has a different syntax (see Fig. 3 (a)). Thirdly, \(\text{RVM} \) does not transfer any coins to \(P_1 \)’s account (in fact, there are not “accounts” in this machine). Instead \(\text{RVM} \) outputs \((\mu, y) \). Despite of these differences, the proof is essentially the same as the one for the intermediaries. The main difference is that the \(\text{gained}_P \) is now defined with respect to the values output by the receipt
verification machine RVM. Namely, once this machine outputs
\((v, \mu)\) we let
\[
gained_P_i((P_1, \mu)) := (\mu, v)
\]
(while the definition of lost\(P_i\) remains as for the other \(P_i\)'s).
We can show that for every \(\mu\) the total sum of coins that \(P_1\) loses as a result of executing handle-route\((P_1, \mu, v, t)\) in his channels with other parties, is not greater than \(v'\), where \((\mu, v')\) is the value output by RVM. This, of course, implies that the total amount of coins that \(P_1\) loses cannot be larger than the value of transmitted. The proof goes along the same lines as above. In particular we use the fact that the \(P_1\) cannot lose more coins that \(v\) (this follows the construction of Env), and therefore if \(P_1\) detects incoherence, the fairness for \(P_1\) is guaranteed to hold, as \(P_1\) can always make RVM output \((v, \mu)\), by sending to it the inconsistency proof together with (invoice, \(\mu, v, t\)).

To show fairness for the receiver, consider some nonce \(\mu\) such that \(P_n\) received a message \((env\text{-}receive, v, \mu, t)\) from Env (for some \(v\) and \(t\)). Recall (see Fig. 3 (a)) that \(P_n\) constructs a payment tree \(\Phi^{\mu}\) by executing Add\(_{SP}((\pi, v'))\) each time it receives a message \((env\text{-}acknowledge, \pi, v')\). By Lemma 1 \(\Phi^{\mu}\) is always consistent. Recall also that \(P_n\) sends a message \((\text{acknowledge}, \pi, \lambda)\) to \(C^{P_{1}\rightarrow P_n}\) (for some \(P\)). We have that \(\lambda[\pi] := v\), and therefore \(P_n\) gains \(v\lambda\) in the channel \(C^{P_{1}\rightarrow P_n}\). The following invariant has to be held. Let \(S^\mu\) be equal to the total amount of coins that \(P_n\) gained this way, and let \(\hat{\lambda}\) be the leader of \(\Phi^{\mu}\) at \(P_n\). Then
\[
S^\mu = \hat{\lambda}[n].
\]
Hence, no matter what a (potentially malicious) \(P_1\) sends to the receipt verification machine RVM, this machine will never output \((v, \mu)\), with \(v > S^\mu\). Hence, the fairness for the receiver holds.

Finally, it is also easy to see that the “no money printing” holds for every state channels machine \(C^{P_{1}\rightarrow P_j}\). This is because each such a machine will add at most \(v\lambda\) to the accounts of \(P_1\) and \(P_j\), and this will happen only after deducing \(v\lambda\) from an account of one of them.

\[\square\]

E. Extensions

In this section we show some extensions of ETHNA. Formal proof that such “extended ETHNA’s” satisfy NAPS definition is will be presented in the full version of this paper.

1) Obtaining atomicity and partial atomicity in ETHNA: ETHNA can be easily converted into a payment system for atomic payments in the following way. Consider some payment \(\mu\) for \(v\lambda\). We simply let any sub-receipt for a sub-payment count as the receipt for the entire payment \(\mu\), and at the same time we instruct the receiver \(P_n\) to start acknowledging payments, i.e., signing such receipts only if she receives all the sub-payments (for the full amount \(v\)). This works since (a) as long as \(P_n\) did not receive the full amount, there is no receipt that she receive any coins, and (b) once she does it is in her own best interest to acknowledge all sub-payments (and claim all the coins). This can be naturally generalized further to obtain “partial atomicity” where, e.g., the receiver can either receive \(0\), \(v/2\lambda\), or the full amount of \(v\lambda\). This way of obtaining atomicity may be used in the applications like the one described very recently in [12], where in Sec. 3.1 describe a way to obtain “unlinkability” in atomic payment splitting. The main idea there is to hide the fact that a given payment has already split. The “atomic ETHNA” satisfies this property, while avoiding using homomorphic hash functions (used in [12]). We leave a full comparison of these two approaches as a direction for future work.

2) Reducing the size of the fraud proofs: Recall that a fraud proof is a payment report \(Q\) of a form \(Q = \{(\sigma[\pi], \lambda)\}_{i=1}^m\), all the \(\pi_i[1]\)’s are pairwise distinct, such that the following condition holds:
\[
\max_{i=1,\ldots,m} \lambda_i[[\sigma]] < \sum_{i=1}^m \lambda_i[[\sigma]] + 1.
\]
Hence, in the most straightforward implementation it is of length \(\Omega(\delta \cdot (\ell + \kappa))\), where \(\delta\) is ETHNA’s arity, \(\ell\) is the maximal length of payment routes, and \(\kappa\) is the security parameter.

We now show how to reduce this to \(O(\delta \cdot \kappa)\). We do it by designing an algorithm that signs the sub-receipts \([(\phi, \lambda), \sigma]\) in a different way. Let \(H\) be a collision-resistant hash function, and let \((KGen, Sig, Vf)\) be a signature scheme. Suppose \((sk, pk) \leftarrow KGen(1^n)\) is the key pair of \(P_n\). To sign \((\phi, \lambda)\) we define a new signature scheme \((KGen, Sig, Vf)\) (i.e. we later let \([\phi, \lambda] := ((\phi, \lambda), \sigma)\), where \(\sigma := Sig_{sk}((\phi, \lambda))\). Let \(KGen' := KGen\). To define \(Sig((\phi, \lambda))\) first define \((h^1, \ldots, h^{\phi})\) recursively as:
\[
h^1 := H(\phi[1]),
\]
and for \(j := 2, \ldots, |\phi|:\n\]
\[
h^j := H(\phi[j], h^{j-1}).
\]
Then let \(Sig((\phi, \lambda)) := (\sigma^1, \ldots, \sigma^{|\phi|})\), where for each \(j\) we have:
\[
\sigma^j := Sig^{sk}(h^j, \lambda[j]).
\]
Verification of this signature is straightforward. It is also easy to see that if \((KGen, Sig, Vf)\) is existentially unforgeable under chosen message attack, then so is \((KGen', Sig', Vf')\), assuming the signed messages are of a form \((\phi, \lambda)\), where \(\phi\) is the payment path\(^4\). For a message \(M\) let \(\{M\}_{P_n}\) denote \(M\) signed with \((KGen', Sig', Vf')\). It is easy to see that now a fraud proof from Eq. (9) can be compressed to a sequence
\[
\left\{ \left(\left(h_i^{[\sigma]}, \lambda_i[[\sigma]] \right) \right)_{P_n, \pi_i[1]}, \left(h_i^{[\sigma]+1}, \lambda_i[[\sigma]] + 1 \right)_{P_n} \right\}_{i=1}^m.
\]
such that Eq. (9) holds (above “\(\pi_i[1]\)” is needed to check correctness of \(h_i^{[\sigma]+1}\)). Since all the signed values are of size linear in the security parameter, and \(m \leq \delta\) we get that Eq. (10) is \(O(\delta \cdot \kappa)\). Note that this requires the parties

\(^4\) This assumption is needed since payment paths have a clearly marked “ending”, namely they have to finish with \((P_n, m_v)\), for some \(m_v\). Otherwise it would be possible to attack this scheme by taking a prefix of a signed message and a prefix of its signature.
(and, pessimistically, the state channel contract) to verify m signatures. This can be reduced to 1 signature by using signature aggregation techniques, the simplest one being the Merkle trees technique, where we hash all pairs $(h^j, \lambda[j])$ using Merkle hash and sign only the top of the tree. Note that this introduces additional data costs of size $O(\kappa \cdot \log \delta)$.

Further proof size reduction using “bisection”: Finally, let us remark that the proof Eq. (10) can be further compressed by allowing interaction between the party that discovered cheating (denote it P) and P_n. This is similar to the bisection technique [17, 33]. Suppose P realized that Eq. 9 does not hold. She can then divide the set of paths in Q into two halves. For convince suppose m is even and let

$$A := \sum_{i=1}^{m/2} \lambda_i[|\sigma| + 1],$$

and

$$B := \sum_{i=m/2+1}^{m} \lambda_i[|\sigma| + 1].$$

P can now challenge P_n (on the blockchain) to provide her own calculations of the above sums. Let A' and B' be P_n respective answers. Then one of the following has to hold:

- $\max_{i=1,...,m} \lambda_i[|\sigma|] < A' + B'$ – then P obtains the fraud proof and we are done.
- $A' < A$ or $B' < B$ – then we can apply this procedure recursively.

It is easy to see that in logarithmic number of rounds P obtains a fraud proof. Note that this fraud proof is short, so it can be easily propagated to other parties (who do not need to repeat the above “game” with P_n).

Since elements of Q can be sorted such a challenge is short.