
Non-Atomic Payment Splitting in Channel
Networks
Stefan Dziembowski !

University of Warsaw and IDEAS NCBR

Paweł Kędzior !

University of Warsaw

Abstract
Off-chain channel networks are one of the most promising technologies for dealing with blockchain

scalability and delayed finality issues. Parties connected within such networks can send coins to
each other without interacting with the blockchain. Moreover, these payments can be “routed” over
the network. Thanks to this, even the parties that do not have a channel in common can perform
payments between each other with the help of intermediaries.

In this paper, we introduce a new notion that we call Non-Atomic Payment Splitting (NAPS)
protocols that allow the intermediaries in the network to split the payments recursively into several
subpayments in such a way that the payment can be successful “partially” (i.e. not all the requested
amount may be transferred). This contrasts with the existing splitting techniques that are “atomic”
in that they did not allow such partial payments (we compare the “atomic” and “non-atomic”
approaches in the paper). We define NAPS formally and then present a protocol that we call
“EthNA”, that satisfies this definition. EthNA is based on very simple and efficient cryptographic
tools; in particular, it does not use expensive cryptographic primitives. We implement a simple
variant of EthNA in Solidity and provide some benchmarks. We also report on some experiments
with routing using EthNA.

2012 ACM Subject Classification Security and privacy → Systems security

Keywords and phrases Blockchain, Payment Channels Networks

Related Version This is an extended version of a paper that appeared at the 5th Conference on
Advances in Financial Technologies (AFT 2023).

Funding This result is part of a project that received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 innovation program (grant PROCONTRA-885666).
It was also party financed by the Foundation for Polish Science under grant TEAM/2016-1/4 founded
within the UE 2014–2020 Smart Growth Operational Program and by the Ethereum Foundation
grant FY18-0023.

1 Introduction

Blockchain technology allows a large group of parties to reach a consensus about the contents
of an (immutable) ledger, typically containing a list of transactions. In blockchain’s initial
applications, these transactions described transfers of coins between the parties. One of the
very promising extensions of the original Bitcoin ledger is blockchains that allow to register and
execute the so-called smart contracts (or simply “contracts”), i.e., formal agreements between
the parties, written down in a programming language and having financial consequences (for
more on this topic see, e.g., [13, 7]). Probably the best-known example of such a system
is Ethereum. Several blockchain-based systems’ main limitations are delayed finality, lack
of scalability, and non-trivial transaction fees. Off-chain channels [19, 4] are a powerful
approach for dealing with these issues. The simplest examples of this technology are the
so-called “payment channels”. Informally, such a channel between Alice and Bob is an object
in which both parties have some coins that they can freely transfer without interacting with

mailto:stefan.dziembowski@crypto.edu.pl
https://orcid.org/0000-0002-6914-6425
mailto:Pawel.Kedzior@crypto.edu.pl
https://orcid.org/0000-0003-2270-8694

2 Non-Atomic Payment Splitting in Channel Networks

the blockchain (“off-chain”). We explain this in Sec. 1.1 below. Readers familiar with this
topic can go quickly over it, just paying attention to some terminology and notation that we
use

1.1 Background
Assume that the maximal blockchain reaction time is ∆. We model amounts of coins as
non-negative integers and write “n¢” to denote n coins. A payment channel is opened when
Alice and Bob deploy a smart contract on the ledger and deposit some number of coins (say:
x, and y, respectively) into it. The initial balance of this channel is: “x¢ in Alice’s account,
y¢ in Bob’s account” (or [Alice 7→ x,Bob 7→ y] for short). This balance can be updated (to
some new balance [Alice 7→ x′,Bob 7→ y′], such that x′ + y′ = x+ y) by exchanging messages
between the parties. The corresponding smart contract guarantees that each party can at
any time close the channel and get the money corresponding to her latest balance. Only the
opening and closing operations require interaction with the blockchain. Since updates do not
require blockchain participation, each update is immediate (the network speed determines
its time) and at essentially no cost.

Now, suppose we are given a set of parties P1, . . . , Pn and channels between some of them.
These channels naturally form an (undirected) channel graph, which is a tuple G = (P, E ,Γ)
with the set of vertices P equal to {P1, . . . , Pn} and set E of edges being a family of two-
element subsets of P . The elements of P will be typically denoted as “Pi � Pj” (instead of
{Pi, Pj}). Every Pi � Pj represents a channel between Pi and Pj , and the cash function Γ
determines the number of coins available for the parties in every channel. More precisely,
every Γ(Pi � Pj) is a function f of a type f : {Pi, Pj} → Z≥0. We will often write ΓPi�Pj

to denote this function. The value ΓPi�Pj (P) denotes the amount of coins that P has in
her account in channel Pi � Pj . A path (in G) is a sequence Pi1 _ · · ·_ Pit

such that for
every j we have Pij � Pij+1 ∈ E . In the formal part of the paper (see Sec. 3.1), we will
also include “nonces” in the paths, but in this informal description, we ignore them. In this
paper, for the sake of simplicity, we assume that (a) the channel system is deployed with
some initial value of Γ, which evolves over time, (b) once a channel system is established, no
new channels are created, and no channels are closed (i.e., E remains fixed), and (c) no coins
are added to the existing channels, i.e., the total amount of coins available in every channel
e = Pi � Pj never exceeds the total amount available in it initially.

Channel graphs can serve for secure payment sending. Let us recall how this works in the
most popular payment channel networks, such as Lightning or Raiden. Our description is
very high-level (for the details, see, e.g., [19]). Consider the following example: we have three
parties: P1, P2, and P3 and two channels: P1 � P2 and P2 � P3 between them. Now,
suppose the sender P1 wants to send v¢ to the receiver P3 over the path P1 _ P2 _ P3, with
P2 being an intermediary that routes these coins. This is done as follows. First, party P1 asks
P2 to forward v¢ in the direction of P3 (we call such a request pushing coins from P1 to P2).
The receipt from P3 confirming that she received these coins has to be presented by P2 within
2∆ (denote this receipt with ρ). If P2 manages to do it by this deadline, she gets these coins
in her account in the channel P1 � P2. To guarantee this, P1 initially blocks these coins in
the channel P1 � P2. These coins can be claimed back by P1 if time 2∆ have passed, and
P2 did not claim them. In a similar way, P2 pushes these coins to P3, i.e., she offers P3 to
claim (by providing proof ρ within ∆ time) v¢ in the channel P3 � P4. Now suppose that
party P3 claims her v¢ in channel P2 � P3. This can only be done by providing a receipt
ρ confirming that she received these coins. We call this process acknowledging payment.
Party P2 can now claim her coins in channel P1 � P2 by submitting an acknowledgment

S. Dziembowski and P. Kędzior 3

containing the receipt ρ. In the above example, the number of coins that can be pushed via
a channel Pi � Pi+1 is upper-bounded by the number of coins that Pi has in this channel.
Therefore the maximal amount of coins that can be pushed over path P1 _ P2 _ P3 is equal
to the minimum of these values. We will call this value the capacity of a given path.

On the technical level, in the Lightning network, the receipt ρ is constructed using
so-called hash-locked transactions and “smart contracts” that guarantee that nobody loses
money. This is possible thanks to how the n∆ deadlines in the channels P1 � P2 and
P2 � P3 are chosen. An exciting feature of this protocol is that receipt ρ serves not only
for internal purposes of the routing algorithm but can also be viewed as the output of the
protocol, which can be used by P1 as a receipt that she transferred some coins to P4. In other
words: P1 can use ρ to resolve disputes with P4, either in some smart contract (deployed
earlier and using the given PCN for payments) or outside the blockchain. The notion of
payment channels can be generalized to “state channels”. Informally, such channels can serve
not only for payments between the parties but also for executing contracts within them. For
more on this, see, e.g., [7, 16, 3].

1.2 Our contribution and related work
One of the main problems with the existing PCNs is that sending a payment between
two parties requires a path from the sender to the receiver with sufficient capacity. This
problem is amplified by the fact that the capacity of potential paths can change dynamically
as several payments are executed in parallel. Although usually, the payments are swift,
in the worst case, they can be significantly delayed since each “hop” in the network can
take as long as the pessimistic blockchain reaction time. Therefore it is hard to predict
a given path’s capacity even in the very near future. This is especially a problem if the
capacity of a given channel is close to being completely exhausted (i.e. it is close to zero
because of several ongoing payments). A natural solution for solving this problem is to split
the payments into several subpayments. This was described in several recent papers (see,
e.g., [17, 18, 21, 8]). However, up to our knowledge, all these papers considered so-called
“atomic payment splitting”, meaning that either all the subpayments got through or none of
them. In this paper, we prove a new, alternative technique that we call “non-atomic payment
splitting” that does not have this feature and hence is more flexible. (We compare atomic
and non-atomic splitting in Sec. 2.1.2.) More concretely, our contribution can be summarized
as follows.

NAPS definition. We introduce the concept of non-atomic payment splitting by defining
formally a notion of Non-Atomic Payment Splitting (NAPS) protocols. In our definition, we
require that splitting is done ad-hoc by the intermediaries, possibly in reaction to dynamically
changing the capacity of the paths or fees. Perhaps the easiest way to describe NAPS is
to look at payment networks as tools for outsourcing payment delivery. For example, in
the scenario from Section 1.1 party P1 outsources to P2 the task of delivering v¢ to P4, and
gives P2 time 2∆ to complete it (then P2 outsources this task to P3 with a more restrictive
deadline). The sender might not be interested in how this money is transferred, and the only
thing that matters to her is that it is indeed delivered to the receiver and that she gets the
receipt. In particular, the sender may not care if the money gets split on the way to the
receiver, i.e., if the coins that he sends are divided into smaller amounts that are transferred
independently over different paths. In many cases, the sender may also be ok with not all
money being transferred at once. NAPS protocol permits such recursive non-atomic payment
splitting into “subpayments” and partial transfers of coins. This splitting can be done in

4 Non-Atomic Payment Splitting in Channel Networks

an ad-hoc way. Moreover, the users can try to route the same payment over the same path
multiple times (hoping that some more capacity becomes available in the meantime). We
present a UC-like definition of NAPS. An additional advantage of our contribution is that our
definition can be easily adapted to cover the atomic payment splitting protocols [18, 1, 20, 8].

EthNA construction. We construct a protocol that we call EthNA that satisfies the NAPS
definition. We call our protocol EthNA, in reference to Etna, one of the highest active
volcanos in Europe. This is because the coin transfers in EthNA resemble a lava flood
(with large streams recursively bifurcating into small substreams). The letter “h” is added
so that the prefix “Eth-” is reminiscent of ETH, the symbol of Ether (the currency used in
Ethereum), and “NA” stands for “Non-Atomic”.

In EthNA the “subreceipts” for subpayments are aggregated by the intermediaries into
one short subreceipt so that their size does not grow with the number of aggregated subreceipts.
This is done efficiently, particularly by avoiding advanced and expensive techniques such
as noninteractive zero knowledge or homomorphic signature schemes and hash functions.
Instead, we rely on a technique called “fraud-proofs” in which an honest behavior of parties is
enforced by a punishing mechanism (this method was used before, e.g., in [22, 7]). We stress
that the amount of data that is passed between two consecutive parties on the path does
not depend on the number of subpayments in which the payment is later divided. The same
applies to the data these two parties send to the blockchain if they conflict. We summarize
the complexity of EthNA in Sec. 3.3.

Security analysis and implementation. We provide a formal security analysis of EthNA.
More precisely, we prove that EthNA satisfies the NAPS definition. We also analyze
EthNA’s complexity. We also implement EthNA contracts in Solidity (the standard
language for programming the smart contracts in Ethereum), and we provide some routing
experiments. We describe this implementation and provide some benchmarks. We stress,
however, that routing algorithms are not the main focus of this work and further research on
designing algorithms that exploit the non-atomicity of payment splitting.

Possible applications of NAPS. As mentioned above, one obvious application of NAPS is
to help efficiently send one big payment by dividing it into several ad-hoc installments: if it
is impossible to route the total amount u, then the client can accept the fact that v < u coins
were transferred (due to network capacity limitations), and try to transfer the remaining
u− v coins later (in another installment). The same applies to other situations, e.g., when
the user wants to exchange coins for another currency. Ideally, he would like to exchange the
entire amount u, but exchanging v < u is better than nothing. A related scenario is making
a partial “bank deposit” when the user wants to deposit as much money as possible but no
more than u.

Moreover, in many cases, the goods the seller delivers in exchange for the payment can
be divided into tiny units and sent to the buyer depending on how many coins have been
transferred. One example is battery charging, where charging, say 1/2 of the battery is much
better than having the battery dead. This applies both to mobile phones and to IoT devices
that can trade energy with each other. Let us also mention applications like file sharing,
where the client typically connects to several servers and tries to download as much data as
possible from each. NAPS can be an attractive way to perform payments in this scenario.
Note also that NAPS can be combined with other means of payment. If a user manages to
send only u < v coins via NAPS, then she can decide to send the rest (v − u) in some more

S. Dziembowski and P. Kędzior 5

expensive way (this makes sense, especially in systems where the fee depends on the amount
being transferred, e.g., in the credit card payments).

Related work. Some of the related work was mentioned already before. Off-chain channels
are a topic of intensive research, and there is no space here to describe all recent exciting
developments [9, 16, 14, 7, 5, 6, 11, 15, 3] in this area. The reader can also consult SoK
papers on off-chain techniques (e.g. [10]). Partial coin transfers were considered in [18], but
with no aggregation techniques and ad-hoc splitting. Atomic payment splitting has been
considered in [18, 1, 20, 8]. All of these papers focus on routing techniques, which is not the
main topic of this paper.

Organization and notation. Sec. 2 contains an informal description of our ideas. Then, in
Sec. 3, we provide the formal NAPS definition and the detailed description of EthNA and
its security properties. An overview of our implementation and simulations is presented in
Sec. 3.3. When we say that a message is “signed by some party”, we mean that it is signed
using some fixed signature scheme that is existentially unforgeable under a chosen-message
attack. Natural numbers are denoted with N. We will also use the notion of nonces. Their set
is denoted with N . We assume that N = N. We use some standard notations for functions,
string operations, and trees. By [ai 7→ x1, . . . , am 7→ xm] we mean a function f : {ai, . . . , am}
→ {x1, . . . , xm} such that for every i we have f(ai) := xi. Let A be some finite alphabet.
Strings δ ∈ A∗ are frequently denoted using angle brackets: δ = ⟨δ1, . . . , δm⟩. Let δ be a
string ⟨δ1, . . . , δn⟩. For i = 1, . . . , n let δ[i] denote δi. Let ε denote an empty string, and “||”
denote the concatenation of strings. We overload this symbol, and write δ||a and a||δ to
denote δ||⟨a⟩ and ⟨a⟩||δ, respectively (for δ ∈ A∗ and a ∈ A). For k ≤ n let δ|k denote δ’s
prefix of length k. A set of prefixes of δ is denoted prefix(δ) (note that it includes ε).

We define trees as prefix-closed sets of words over some alphabet A. Formally, a tree is
a subset T of A∗ such that for every δ ∈ T we have that any prefix of δ is also in T . Any
element of T is called a node of this tree. For two nodes δ, β ∈ T such that β = δ||a (for
some a) we say that δ is the parent of β, and β is a child of δ. A labeled tree over A is a pair
(T,L), where T is a tree over A, and L is a function from T to some set of labels. For δ ∈ T
we say that L(δ) is the label of δ.

2 Informal description

Below, in Sec. 2.1 we provide an overview of NAPS definition, and in Sec. 2.2 we informally
describe EthNA.

2.1 Overview of the NAPS definition
Let us now explain the NAPS protocol features informally (for a formal definition, see
Sec. 3.1). Throughout this paper, we use the following convention: our protocols are run
by a set of parties denoted P = {P1, . . . , Pn}, where P1 be the sender, P2, . . . , Pn−1 be the
intermediaries, and Pn is the receiver. A message m signed by a party Pi will be denoted
*m+Pi

. Let v be the number of coins that P1 wants to send to Pn, and let t be the maximal
time until the transfer of coins should be completed. Since, in general, P1 can perform
multiple payments to Pn, we assume that each payment comes with a nonce µ ∈ N that can
be later used to identify this payment. Sometimes we will simply call it “payment µ”. For
simplicity, we start with an informal description of how NAPS protocols operate when all
parties are honest. The security properties (taking into account the malicious behavior of

6 Non-Atomic Payment Splitting in Channel Networks

the parties) are described informally in Sec. 2.1.1, and formally defined in Sec. 3.1. Before
proceeding with the description of EthNA the reader may look at the example in Fig. 1.

To describe the protocol more generally, let us start by presenting it from the point of
view of the sender P1. Let Pi1 , . . . , Pit

be the neighbors of P1, i.e., parties with which P1 has
channels. Suppose the balance of each channel P1 � Pij is [P1 7→ xi, Pij 7→ yj] (meaning
that P1 and Pij

have xi and yj coins in their respective accounts in this channel). Now,
P1 chooses to push some amount vj of coins to Pn via some Pij

, and set up a deadline
tj for this (we will also call vj a subpayment of payment µ). This results in: (a) balance
[P1 7→ xi, Pij

7→ yj] changing to [P1 7→ xi − vj , Pij
7→ yj], (b) the number of coins that P1

still wants to transfer to Pn is decreased as follows: v := v− vj , and (c) Pij holding “vj coins
that she should transfer to Pn within time tj .

It is also ok if Pij transfers only some part v′
j < vj of this amount (this can happen, e.g.,

if the paths that lead to Pn via Pj do not have sufficient capacity). In this case, P1 has to be
given back the remaining (“non-transferred”) amount r = vj−v′

j . More precisely, before time
tj comes, party Pij

acknowledges the amount v′
j that she managed to transfer. This results

in (1) changing the balance of the channel P1 � Pij by crediting v′
j coins to Pij ’s account in

it, and (2) r coins to P1’s account. Moreover, (3) P1 adds back the non-transferred amount
r to v, by letting v := v + r. Above (1) corresponds to the fact that Pij

has to be given the
coins that she transferred, and (2) comes from the fact that not all the coins were transferred
(if Pij

managed to transfer all the coins, then, of course, r = 0). Finally, (3) is used for P1’s
“internal bookkeeping” purposes, i.e., P1 simply writes down that r coins “were returned”
and still need to be transferred. While the party P1 waits for Pij

to complete the transfer
that it requested, she can also contact some other neighbor Pik

asking her to transfer some
other amount vk to Pn. This is done in the same way as transferring coins via Pij

.
The intermediaries can repeat this process. Let P be a party that holds some coins that

were “pushed” to her by some P ′ (which originate from P1 and must be delivered to Pn).
Now, P can split them further, and moreover, she can decide on her own how this splitting
is done depending, e.g., on the current capacity of the possible paths leading to Pn. The
payment splitting can be done arbitrarily, except for the two following restrictions. First, we
do not allow “loops” (i.e. paths containing the same party more than once), as it is hard to
imagine any application of such a feature. In the basic version of the protocol, we assume
that the number of times a given payment subpayment is split by a single party P is bounded
by a parameter δ ∈ N, called arity (for example arity on Figs. 1 is at most 2). In Sec. 5.2 we
present an improved protocol where δ is unbounded (at the cost of a mild increase of the
pessimistic number of rounds of interaction). As mentioned, the essential feature of NAPS is
the non-atomicity of payments. We discuss it further below.

2.1.1 NAPS security properties
In the description in Sec. 2.1 we assumed that all parties behaved honestly. Like all other
PCNs, we require that NAPS protocols work if the parties are malicious. In particular, no
honest party P can lose money, even if all the other parties are not following the protocol and
are working against P . The corrupt parties can act in a coalition modeled by an adversary
A. Formal security definition appears in Sec. 3.1. Let us now informally list the security
requirements, which are pretty standard and hold for most PCNs (including Lightning).
Below, let u denote the total amount of coins P1 wants to transfer to Pn within some
payment µ.

The first property is called fairness for the sender. To define it, note that as a result of
payment µ (with timeout t), the total amount of coins that each party P has in the channels

S. Dziembowski and P. Kędzior 7

P1 P2

P3

P4

P5

P610 1
1

1

3
1

3 1 2 1

2

1

10

1

(a) The channel graph with the initial coin distribution.

(1)

(2) (3)

(4)

(5)

(6)

(7)
(8)

P1 P2

P3

P4

P5

P64 16¢, 3∆
0

1
1¢, 2∆

0

1
3¢, 2∆

0 13¢, 2∆

9

1

1¢,∆

3 0 13¢,∆

0

1

2¢,∆

(b) The sender P1 wants to send 7¢ to the receiver P6. She splits these coins into two
amounts: 6¢ pushed to P2 and 1¢ pushed to P3. This is indicated with labels (1) and (2),
respectively. Then (3) party P3 simply pushes 1¢ further to P6. Party P2 splits 6¢ into
3¢ + 3¢, and pushes 3¢ to both P4 (4) and P5 (5). Path P4 _ P6 initially had capacity
2 only (see Fig. (a) above), but luckily in the meanwhile 1¢ got unlocked (6) for P4 in
channel P4 � P6, and hence (7) party P4 pushes all 3¢ to P6. Party P5 pushes only 2¢
to P6 (8). The channel balances correspond to the situation after the coins are pushed
(except of channel P4 � P6 where we also indicated the fact that 1¢ got unlocked (6)).
Each party P can also decide on her own about the timeout t of each subpayment she
pushes (this timeout is indicated with “x∆”). The only restriction is that t has to come
at least ∆ before the time she has to acknowledge that subpayment back. This is because
P needs this “safety margin” of ∆ in case P ′ is malicious, and the acknowledgment has
to be done “via the blockchain”.

P1 P2

P3

P4

P5

P65 6ack. 5¢
0

2
ack. 1¢

1

3
ack. 2¢

0 4ack. 3¢

9

2

ack. 1¢

0 4ack. 3¢

0

3
ack. 2¢

(c) Party P6 acknowledges subpayment of 1¢ to P3, which, in turn acknowledges it to P1.
Party P6 also acknowledges subpayment of 3¢ to P4 and 2¢ to P5, who later acknowledge
them to P2. Once P2 receives both acknowledgments, she “aggregates” them into a single
acknowledgment (for 5¢) and sends it to P1. As a result 5¢ + 1¢ = 6¢ are transferred
from P1 to P6. The channel balances correspond to the situation after the coins were
acknowledged.

Figure 1 An example of a NAPS protocol execution. An edge “ Pi Pjx y ” denotes the fact
that there exists a channel between Pi and Pj , and the parties have x and y¢ in it, respectively.

8 Non-Atomic Payment Splitting in Channel Networks

with other parties typically changes. Let netµ(P) denote the number of coins that P gained
in all channels. Of course netµ(P) can be negative if P lost −netµ(P) coins. We require
that by the time t an honest Pi holds a receipt of a form Receipt(µ, v) :=“an amount v of
coins has been transferred from P1 to Pn as a result of payment µ”. Moreover, under normal
circumstances, i.e. when everybody is honest, v is equal to −netµ(P1) (i.e. the sum of the
amounts that P1 lost in the channels). In case some parties (other than P1) are dishonest,
the only thing that they can do is to behave irrationally and let v ≥ −netµ(P1), in which
case P1 holds a receipt for transferring more coins than she actually lost in the channels.
A receipt can be later used in another smart contract (e.g., a contract that delivers some
digital goods whose amount depends on v). Fairness for the receiver is defined analogously,
i.e.: if P1 holds a receipt Receipt(µ, v) then typically v = net(Pn), and if some parties (other
than Pn) are dishonest, then they can make v ≤ netµ(Pn). In other words, P1 cannot get a
receipt for an amount higher than what Pn actually received in the channels. Finally, we
require that the following property called balance neutrality for the intermediaries holds: for
every honest P ∈ {P2, . . . , Pn−1} we have that netµ(P) ≥ 0. Again: if everybody else is also
honest, then we have equality instead of inequality.

2.1.2 Atomic vs. non-atomic payment splitting
As already highlighted in Sec. 1.2, the previous protocols on payment splitting always required
payments to be atomic, meaning that for a payment to succeed, all the subpayments had to
reach the receiver. Technically, this means that to issue a receipt for any of the subpayments
(this receipt is typically a preimage of a hash function, see, e.g., [8]) all of them need to reach
the receiver. This has several disadvantages: (1) the coins remain blocked in every path at
least until the last subpayment arrives to the receiver, (2) the success of a given subpayment
depends not only on the subsequent intermediaries but also on the other “sibling” paths
(this problem was observed in [8] where it is argued that this risk may lead to intermediaries
rejecting subpayments that were split before, see Sec. 3.1 of [8]). Finally, atomic payments
may result in “deadlock” situations in the network where two competing payments can
prevent each other from being executed.

More precisely, consider a channel graph as below (for simplicity, we do not specify the
coin amounts on the right-hand sides of the channels, as they are irrelevant to this example).

P1 P3

P5

P4P2

2¢

2¢

1

1
1

1

1

1

Now suppose that P1 and P2 decide to send 2¢ each to P5 via P3 and P4. If now P1 pushes 1¢
to P3 and at the same time P2 pushes 1¢ to P4, then none of the payments can be completed
(since the channels P3 � P5 and P4 � P5 do not have sufficient capacity). On the other
hand: if we allow non-atomic payments, then each payment will partially succeed (i.e. each
sender will send 1¢ to the receiver P5). They may then try to send the remaining amounts
after some time when new capacity in these channels is available. This can be generalized to
larger graphs and more complicated “deadlocks”.

Let us also remark that “atomicity” and even “fine-grained atomicity” can also be obtained
in EthNA by a small protocol modification. We write more about it in Sec. 5.1. Let us also
remark that atomic payment splitting, in general, seems to be easier to achieve, which is
probably the reason why there has been more focus on them in the literature (with papers

S. Dziembowski and P. Kędzior 9

focusing more on other aspects of this problem, such as routing algorithms, e.g. [8]). Finally,
let us stress that we do not claim that non-atomicity is superior to atomicity. We think
both solutions have advantages and disadvantages, and there exist applications where each is
better than the other.

2.2 Overview of the EthNA protocol
After presenting the NAPS definition, let us now explain the main ideas behind the EthNA
protocol that realizes it. An essential feature of EthNA is that it permits “subreceipt
aggregation”, by which we mean the following. Consider some payment µ. Once Pn receives
some subpayment v that reached it via some path π = P1 _ Pi1 _ · · ·Pik

_ Pn she issues
a subreceipt for this payment and sends it to Pik

. Each intermediary that receives more than
one subreceipt can aggregate them into one short subreceipt that she sends further in the
direction of P1. Finally, P1 also produces one short receipt for the entire payment. This
results in small communication complexity, and in particular, the pessimistic gas costs are
low (we discuss this in more detail in Sec. 4. One option would be to let the subreceipt
be signed using a homomorphic signature scheme and then exploit this homomorphism to
aggregate the subreceipts. This paper uses a simpler solution that can be efficiently and
easily implemented in the current smart contract platforms.

Very informally speaking, we ask Pn to perform the “subpayment aggregation herself”
(this is done when signing a subreceipt and does not require any further interaction with Pn).
Then, we let the other parties verify that this aggregation was performed correctly. If any
“cheating by Pn” is detected (i.e. some party discovers that Pn did not behave honestly),
then proof of this fact (called a “fraud-proof”) will count as a receipt that a total amount
has been transferred to Pn. From the security point of view, this is ok since an honest Pn

will never cheat (hence, no fraud-proof against him will ever be produced). Thanks to this
approach, we avoid entirely using any expensive advanced cryptographic techniques (such
as homomorphic signatures or noninteractive proofs). Below we explain the main idea of
EthNA by considering the example from Fig. 1. Again, we start by describing how the
protocol works when everybody is honest, and then (in Sec. 2.2) we show how the malicious
behavior is prevented.

Invoice sending. The protocol starts with the receiver Pn sending to P1 an “invoice” that
specifies (among other things) the identifier µ of the payment, and the maximal amount u
of coins that Pn is willing to accept. As we explain below, this invoice may be later used
together with fraud-proofs to produce proof that all u coins were transferred to Pn (if she
turns out to be malicious).

Pushing subpayments. Pushing subpayments is done by sending messages containing
information about the path that the subpayment “traveled” so far (together with the number
of coins to be pushed and timeout information) and simultaneously blocking coins in the
underlying channels. The messages sent between P1, P3 and P6 in Fig. 1 (a)) are presented
in the picture below.

P1 P3 P6
(push, P1 _ P3,

1¢, 2∆)
(push, P1 _ P3
_ P6, 1¢,∆)

Whenever a message (push, π, v, t) is sent from P to P ′, the party P blocks v coins in channel
P � P ′ for time t. These coins are claimed by P ′ if she provides a corresponding subreceipt
within time t. Otherwise, they are claimed back by P .

10 Non-Atomic Payment Splitting in Channel Networks

Acknowledging subpayments by the receiver. The receiver Pn acknowledges the subpay-
ments by replying with a signed subreceipt and claiming the coins blocked in the corresponding
channels. At the same time, the receiver Pn constructs a labeled graph called the “payment
tree” that is stored locally by Pn and grows with each acknowledged subpayment.

Let us now explain how the payment tree is constructed. Consider again Fig. 1 (c). As
explained before, the order of message acknowledgment can be arbitrary. In what follows, we
assume that the receiver P6 first acknowledges the subpayment that came along the path
P1 _ P3 _ P6. This means that P6 “accepts” that 1¢ will be transferred to her from P1 via
path P1 _ P3 _ P6, or, in other words: 1¢ will be “passed” through each of P1, P3, and P6
(note that we included here the sender P1 and the receiver P6). This can be depicted as the
following graph that consists of a single path that we denote α:

P1 P3 P6 =: α1¢ 1¢ 1¢ (1)

To acknowledge the subpayment that was pushed along the path P1 _ P3 _ P6 party P6
signs α and sends it to P3. Such signed information will be called a “subreceipt” and denoted
*α+Pn

. By providing this subreceipt, party P6 also gets 1¢ in the P3 � P6 (these coins were
blocked by P3 in this channel when the “push” message was sent). The graph from Eq. (1) is
the first version of the payment tree that, as mentioned above, the receiver P6 stores locally.

Now, suppose the next subpayment that P6 wants to acknowledge is the one that came
along the path P1 _ P2 _ P4 _ P6, i.e., P6 accepts that 3¢ will be transferred to her from
P1 via path P1 _ P2 _ P4 _ P6. The receiver P6 now modifies the payment tree as follows:

P1 P34¢

P2 P4 P6

P61¢ 1¢

=: β3¢ 3¢ 3¢ (2)

Analogously to what we saw before, this tree represents the total amount of coins that will
be “passed” through different parties from P1 to P6 after acknowledging this subpayment is
completed. In Eq. (2) the thick line (denoted β) corresponds to the “new” path, and the
thin one is taken from Eq. (1), except that P1 is labeled with “4¢”. This is because the total
amount of coins that will be passed through P1 is equal to the sum of the coins passed before
(1¢) and now (3¢). Party P6 now signs path β to create a subreceipt that she sends to P4 to
claim 3¢ in the channel P4 � P6.

Finally, P6 acknowledges the subpayment along the path P1 _ P2 _ P5 _ P6. This is
done similarly to what we did before. The resulting tree is now as follows.

P1 P36¢

P2 P4 P6

P61¢ 1¢

3¢ 3¢

P5 P6

5¢

2¢ 2¢ =: γ

(3)

Note that we performed “summing” in two places on Eq. (3): at the node P1 (where we
computed 6¢ as 4¢ + 2¢) and an P2 (where 5¢ = 2¢ + 3¢). Labeled path γ is now signed by
P6 and sent to P5 as subreceipt in order to claim 2¢.

The payment trees whose examples we saw in Eqs. (1)–(3) are defined formally (in a
slightly more general version) in Sec. 3.2. Their main feature is that the value of coins in
the label of each node P is equal to the sum of the labels of the children of P . A recursive
application of this observation implies that the coin value of a label of P is equal to the sum
of labels in the leaves of the subtree rooted in P . In particular: the label on the root of the
entire tree equals the sum of the values in the leaves.

S. Dziembowski and P. Kędzior 11

Acknowledging subpayments by the intermediaries. We now show how the intermediaries
P2, . . . , Pn−1 acknowledge the subpayments. On a high level, this is done by propagating the
subreceipts (issued by Pn) from right to left. Each party may receive several such subreceipts
(if she decides to split a given subpayment). Let W be the set of such subreceipts (such sets
will be called “payment reports”, see Sec. 3.2 for their formal definition). When a party P
wants to acknowledge the subpayment, she chooses (in a way that we explain below) one of
the subreceipts ζ from her set W . She then forwards it back in the left direction to the party
P ′ that pushed the given subpayment to her. As a result P gets v¢ in the channel P ′ � P .
To determine the value of v¢ the following rule is used: it is defined as the label of P on the
path ζ. Given this, the rule for choosing ζ ∈ W is pretty natural: P simply chooses such the
ζ that maximizes v. Such ζ will be called a “leader” of W (at node P). See Sec. 3.2 for the
formal definition of this notion. To illustrate it, let us look again at our example from Fig. 1.

First, observe that P3 holds only one subreceipt (i.e., the signed path α). She simply
forwards it to P1 and receives 1¢ in the channel P1 � P3. Note that this is exactly equal to
the value that she “lost” in the channel P3 � P6, and hence the balance neutrality property
holds. The situation is a bit more complicated for P2 since she holds two paths signed by
the receiver: β (defined on Eq. (2)) and γ (from Eq. (3)). By applying the rule described
above, P2 chooses the leader ζ at P2 to be equal to γ (since 5¢ > 3¢). This is depicted below
(the shaded area indicates the labels that are compared).

P14¢ P2 P4 P6β = 3¢ 3¢ 3¢

P16¢ P2 P5 P65¢ 2¢ 2¢γ = (4)

What remains is to argue about balance neutrality for P2, i.e., that number of coins received
by P2 in the channel P1 � P2 is equal to the sum of coins that she “lost on the right-hand
side”. In this particular example, it can be easily verified just by looking at Eq. (4) (5¢
are “gained”, and 2¢ + 3¢ are “lost”). In the general case, the formal proof is based on the
property that the value of coins in the label of each node P in a payment tree is equal to the
sum of the labels of the children of P . See Sec. 3.2 for the details.

Final receipt produced by P1. Once all subpayments are completed, P1 decides to conclude
the procedure and obtain the final receipt for the entire payment (see Sec. 2.1.1). Again, P1
holds a “payment report” W, i.e. a set of paths signed by P6. In the case of our example,
these paths are α (sent to P1 by P3) and γ (sent by P2). Party P1 chooses her “receipt”
similarly as the intermediaries choose which subreceipt to forward. More precisely, let ζ
be the path that is the leader of W at node P1. This path becomes the final receipt. The
amount of transferred coins equals the label of P1 in ζ. In our case, the leader ζ is clearly γ
(since its label at P is “6¢”, while the label of γ at P is “1¢”, cf. Eqs (1) and (3)). Hence, γ
becomes the final receipt for the payment of 6 coins.

“Fairness for the sender” follows the same argument as “balance neutrality for the
intermediaries”. For “fairness for the receiver,” observe that ζ is signed by the receiver and
is taken from the payment tree (created and maintained by the receiver). To finish the
argument, recall that: (a) as observed before, the label in the root of such a tree is always
equal to the sum of the labels in its leaves, and (b) this sum is exactly equal to the total
amount of coins that the receiver received from its neighbors during this payment procedure.
For the details see Lemma 2.

Dealing with malicious behavior. The primary type of malicious behavior that we have to
deal with is cheating by the receiver Pn, whose goal could be to get more coins than appears

12 Non-Atomic Payment Splitting in Channel Networks

on the final receipt held by the sender P1. This could potentially be done at the cost of
P1 or some of the intermediaries. So far, we have not described how to guarantee that Pn

produces the subreceipts correctly. As already highlighted, our trick is to let a malicious Pn

arbitrarily produce the subreceipts and later let other parties verify Pn’s operation. This
is based on the idea of fraud-proofs: if an intermediary P finds proof that Pn is cheating,
she can automatically claim all coins that were pushed to her by forwarding this proof “to
the left”. In this way, the cheating proof reaches the sender P1, who can now use it as the
receipt for transferring the total amount that was requested (recall that P1 holds an “invoice”
from Pn). Suppose, e.g., that in our scenario P6 cheats by sending to P5, instead of γ (see
Eq. (3)), the following subreceipt:

P1γ̂ := 5¢ P2 P5 P64¢ 2¢ 2¢ (5)

The receiver does it to make P1 hold a receipt for 5¢, while in fact receiving 6¢. Party P5 has
no way to discover this fraud attempt (since from her local perspective everything looks ok),
so 2¢ get transferred to P6 in the channel P5 � P6. Party P5 forwards γ̂ to P2 and gets 2¢
in the channel P2 � P5 (hence the “balance neutrality” property for her holds). Now look
at this situation from the point of view of P2. In addition to γ̂ she got one more subreceipt,
namely β (see, e.g., Eq. (4)). Party P2 preforms a “consistency check” by combining γ̂ and β.
This is done by trying to locally reconstruct the part of the payment tree that concerns P2.
This is done as follows. First observe that the value on the label of P1 in β is 4¢, which is
smaller than the label of P1 in γ̂ (which is equal to 5¢). This means that β had to be signed
by P6 before she signed γ̂. Hence P2 first writes down β, and then on top of it she writes γ̂
(possibly overwriting some values). Normally (i.e. when P6 is honest), this should result in
a subtree of the tree from Eq. (3). However, since P6 was cheating the resulting graph is
different. Namely, P2 reconstructs the following:

P15¢ P2 P4 P63¢ 3¢

P5 P6

4¢

2¢
2¢

(6)

It is now obvious that P6 is cheating since the labels on the children of P2 sum up to 5¢,
which is larger than 4¢ (the label of P2). This “inconsistency” is marked as a shaded region
on Eq. (6). Hence the set {β, γ̂} is a fraud-proof against P6. As described above, once we get
such proof, we are “done”: each intermediary can claim all money that was blocked for her,
and the receiver can use it as a receipt that all the coins were transferred. Let us stress that,
of course, none of the parties assumes a priori that P6 is honest, and hence the “consistency
check” is always performed.

3 Technical details

We now proceed to the formal exposition of the ideas already presented informally in
Sec. 2. We start with defining a generalization of the term “paths” that were informally
introduced before. As already explained, to be as general as possible, the NAPS definition
permits that several subpayment of the same payment µ are routed via the same party
independently. Consider, e.g., the following scenario: 2¢ is sent from P1 to P4 via a path
P1 _ P2 _ P3 _ P4. This amount is first split by P2 as: 1¢ + 1¢, and each 1¢ coin
is pushed to P3, who, in turn, pushes each of them further to P4. Obviously, both 1¢
coins traveled along P1 _ P2 _ P3 _ P4, but nevertheless, they have to be considered as
separate subpayments. In order to uniquely identify each of them, we augment the definition

S. Dziembowski and P. Kędzior 13

of “path” to include also “nonces” that will make them unique (in the abovementioned
situations). To distinguish such paths from those we used in the informal part we denoted
them as strings of pairs (party,nonce). A nonce is added in every hop. For example, in the
above scenario: the (augmented) paths are as follows ⟨(P1, µ1), (P2, µ2), (P3, µ3), (P4, µ4)⟩
and ⟨(P1, µ1), (P2, µ2), (P3, µ

′
3), (P4, µ

′
4)⟩ (where for both i = 3, 4 we have that µi and µ′

i are
distinct). Moreover, we assume that µ1 (“contributed” by the sender P1) is equal to the
nonce that identifies the entire payment.

Formally, for a channel graph G = (P, E,Γ) a string π = ⟨(Pi1 , µ1), . . . , (Pi|π| , µ|π|)⟩ is a
path over G (for payment µ) if each µi ∈ N is a nonce, each Pij

� Pij+1 is an edge in G,
and Pi1 = P1. We also assume that a path corresponding to a payment µ always starts with
(P1, µ). We say that P appears on π (at position j) if we have that P = Pij

. We assume
that every P appears at most once on π, or, in other words: the paths have no loops. In
the sequel, every party or functionality is modeled as poly-time interactive Turing machine.
Throughout this section, P denotes a party, u, v and w are non-negative integers denoting
the amounts of coins, µ is a nonce, π is a path over G, and t is time. For reference, the
notation used in this section is summarized in Fig. 11 in the appendix.

3.1 NAPS formal security definition

The protocol is parameterized with a security parameter 1κ known to all machines. The
protocol is executed by parties P1, . . . , Pn, who know each other’s public keys (this is easy
to achieve in real life using existing underlying blockchain infrastructure). The protocol
also comes with an incorruptible party RVM called receipt verification machine. The role
of this machine is to verify a receipt issued by Pn for payment µ. If this machine outputs
(i-sent, µ, w) to Z then we consider payment µ to be completed with the total amount of
w coins transferred from P1 to Pn. It models that the receipts produced by P1 need to be
publicly verifiable, so, e.g., they can be used later in another smart contract, see Sec. 2.1.1.
Following the tradition in formal cryptography, we first describe how network communication
is organized. Then we introduce the notions of “adversary” and “environment”. Afterward,
we specify the security requirements of the protocol by describing the “ideal” and “real”
models. Finally, we define security by comparing these two models. Both the ideal and the
real model come with a functionality AccountsG . This functionality (depicted on Fig. 2) is
used to model the amounts of coins that the parties have in the channels. It is initialized
with G and accepts messages (trans, Pi, Pj , v) that are used to transfer v coins from Pi to Pj

in channel Pi � Pj .

Fig. 2: The functionality AccountsG

The functionality AccountsG is initialized with a channel graph G = (P, E ,Γ).

Upon receiving a message of a form (trans, Pi, Pj , v) (with v ≤ ΓPi�Pj (Pi)) from an ideal
functionality NAPSδ

G or from a state channel machine ΓPi�Pj — decrease ΓPi�Pj (Pi) by
v and increase ΓPi�Pj (Pj) by v.

We assume that if P is corrupt then for every channel P � P ′ and every v ≥ ΓP�P ′(P)
the simulator can at any moment decrease ΓP�P ′(P) by v and increase some other
ΓP ′�P ′′(P ′) by v. The state of Γ is visible to Z.

14 Non-Atomic Payment Splitting in Channel Networks

The network model. We assume a synchronous communication network, i.e., the execution
of the protocol happens in rounds. The notion of rounds is just an abstraction that simplifies
our model and has been used frequently in this area in the past (see, e.g., [6, 7]). Whenever
we say that some operation (e.g. sending a message or simply staying in idle state) takes
between τ and τ ′ rounds, we mean that it is up to the adversary to decide how long this
operation takes (as long as it takes between τ and τ ′ rounds). The same convention applies
to statements like “it takes at most/at least τ rounds”. We assume that every machine
is activated in each round. The communication between every two parties P and P ′ and
between a party and an ideal functionality takes 1 round. The adversary can delay messages
sent between other machines by at most ∆ rounds. This will always be stated explicitly. The
links between all the entities in the system are secure (encrypted and authenticated). To
avoid replay attacks, we assume that every party (both in the ideal and real scenario) rejects
a message m if she already received m before. Messages are tuples starting with keywords
written in sans-serif. We also use the following convention. When we say that a party waits
to receive a “message m of a form F”, we mean that all messages of a different form are
ignored. For example, if form F is (i-push, (π||⟨(P, µ), (P ′, µ′)⟩, v, t) this means that m has to
start with an “i-push” keyword, followed by a parameter denoting a path that ends with two
elements (denoted (P, µ) and (P ′, µ′) for future reference), parameter v denoting a number
of coins, and t denoting time.

The adversary and the environment. The protocol is attacked by a poly-time rushing
adversary A who can corrupt some parties (when a party is corrupt A learns all its secrets
and takes complete control over it). A party that has not been corrupt is called honest. To
model that honest parties can make internal decisions about the protocol actions, we use
the concept of an environment. This notion is taken from the UC framework; however, to
keep things simple, we do not provide a complete UC-composable analysis of our protocol
(in particular: since we do not aim at proving composability, we do not have the “session
ids,” and we use a simplified modeling of time). The environment and the adversary take
as input G and the security parameter. The environment and the adversary can freely read
the state of the AccountsG functionality. Additionally, we allow the ideal-model adversary to
transfer coins from a dishonest party to an honest one. This corresponds to the fact that we
allow corrupt parties to behave irrationally and lose coins. A and Z can communicate. At
the end of its execution, Z produces an output.

The ideal model. Following the conventions of the UC framework, we assume that in the
ideal model, the parties simply forward to the ideal functionality the messages that they
receive from Z. For a NAPS protocol with arity δ executed over graph G the corresponding
ideal functionality is denoted NAPSδ

G and presented on Fig. 3.
The messages exchanged in the ideal model are indicated with a prefix “i-”. Let us now

discuss the messages exchanged between the parties and the ideal functionality parties (for
reference, these messages and their syntax are summarized on a cheat sheet on Fig. 9, in the
appendix, see p. 29). Note that this functionality does not explicitly send any messages to
the simulator. The simulator interacts with the ideal functionality via the corrupt parties
she controls. To initiate a new payment µ parties P1 and Pn send respectively a message
i-send(µ, v, t) to P1 and i-receive(µ, v, t) to Pn. We require that these messages have to be
sent simultaneously by P1 and Pn. This corresponds to an assumption that the parties
P1 and Pn agreed on transferring the coins beforehand. Once the transfer is finished,
party RVM receives a message i-acknowledged(⟨(P, µ)⟩, s) from the ideal functionality. The

S. Dziembowski and P. Kędzior 15

Fig. 3: The ideal functionality NAPSδ
G

The ideal functionality NAPSδ
G is parametrized by a channel graph G = (P, E ,Γ) and an

arity parameter δ. It maintains a cash function Γ̂ initially equal to Γ and a set Ψ initially
equal to ∅. Function Γ̂ is used to denote the current amount of coins available in the
channels and set Ψ containing all open push requests. Moreover, the ideal functionality
maintains a function remaining : Ψ→ Z≥0. It proceeds as follows.

Upon receiving a message of a form (i-send, µ, u, t) from P1 and (i-receive, µ, u, t) from Pn

(in the same round) – check if the following holds:
Correctness condition: (a) you have not received an “i-send” or an “i-receive” message
with this µ before and (b) the current time is greater than t−∆.

If it does not hold, then ignore this message. Otherwise (a) add (⟨(P, µ)⟩, u, t) to Ψ and
(b) let remaining(⟨(P, µ)⟩, u, t) := v.

Upon receiving a message of a form (i-push, (π||⟨(P, µ), (P ′, µ′)⟩), v, t) from P — check if
the following holds:
Correctness condition: (a) you have not received an “i-pushed” message with this
⟨(P, µ), (P ′, µ′)⟩ before, (b) P ′ � P ∈ E , (c) v ≤ Γ̂P�P ′(P), (d) the number of elements
(π||⟨(P, µ), (P ′, µ′), (P ′′, µ′′)⟩), v′, t′) in Ψ (for any P ′′, µ′′, v′, and t) is less than δ, (e) the
current time is greater than t − ∆, and (f) if P is honest then (π||⟨(P, µ)⟩) ∈ Ψ and
remaining(π||⟨(P, µ)⟩) ≥ v.

If it does not hold, then ignore this message. Otherwise: (a) add
(π||⟨(P, µ), (P ′, µ′)⟩), v, t) to Ψ, (b) decrement remaining(π||⟨(P, µ)⟩), v, t) by v, (c) let
remaining(π||⟨(P, µ), (P ′, µ′)⟩), v, t) := v, (d) decrement Γ̂P�P ′(P) by v, and (e) in the
next round send a message (i-pushed, (π||⟨(P, µ), (P ′, µ′)⟩), v, t)) to P ′.
If time t + ∆ comes and ((π||⟨(P, µ), (P ′, µ′)⟩), v, t)) is still in Ψ then behave as if you
received a message (i-acknowledge, (π||⟨(P, µ), (P ′, µ)⟩)) from P ′ (see below).

Upon receiving a message of a form (i-acknowledge, (π||⟨(P, µ)⟩)) from P — check if the
following holds:
Correctness condition: (a) (π||⟨(P, µ)⟩, t, v) ∈ Ψ (for some v and t), and (b) there does
not exist a push request ((π||⟨(P, µ)⟩||⟨(P ′, µ′)⟩), v′, t′) in Ψ (for any P ′, µ′, v′, t′).

If it does not hold, then ignore this message. Otherwise let v be the value from the
“Correctness condition” and let s be the sum of the v′ values in all the messages i
-acknowledged((π||⟨(P, µ)⟩||⟨(P ′, µ′)⟩)), v′) (for any (P ′, µ′)) that were ever sent to P . If
Pn is corrupt, allow the simulator to increase the value of s to any amount at most v.
Consider the following cases:
• P = P1 (note that in this case π is empty) — then in the next round send i-sent(⟨(P, µ)⟩, s)
to RVM .

• P ∈ {P2, . . . , Pn−1} — then let (Pk, µk) be the last element of π and then within
time ∆ (a) send a message (trans, Pk, P, s) to AccountsG , (b) increment Γ̂Pk�P (Pk) by
v− s, (c) increment Γ̂Pk�P (P) by s, (d) increment remaining(π, v, t) by v− s, (e) remove
(π||⟨(P, µ)⟩) from Ψ, and (f) send i-acknowledged((π||⟨(P, µ)⟩), s) to Pk.

• P = Pn — then let (Pk, µk) be the last element of π and then within time ∆ (a) send
a message (trans, Pk, P, v) to AccountsG , (b) increment Γ̂Pk�P (Pk) by v, (c) remove
(π||⟨(P, µ)⟩) from Ψ, and (d) send i-acknowledged((π||⟨(P, µ)⟩), s) to Pk.

16 Non-Atomic Payment Splitting in Channel Networks

functionality NAPSδ
G maintains a set Ψ that contains all the push requests that have not

yet been acknowledged. By push requests we mean tuples (π, v, t) such that some party
sent (i-push, π, v, t) to the functionality. If such a push request is in Ψ then we say it is
open. This indicates that the functionality is currently working on pushing v coins that
already “traveled” along the path π, and the deadline for this is t. The amount of coins
still waiting to be delivered is maintained using the function remaining. The push requests
are created recursively. Suppose there is an open push request (π||⟨(P, µ)⟩, v, t). To push
it to a party P ′ party P sends a message (i-push, (π||⟨(P, µ), (P ′, µ′)⟩), v′, t′) to NAPSδ

G .
Once the transfer is finished, party P is informed about how many coins were transferred
within this push request. This is done via a message i-acknowledged(⟨(P, µ), (P ′, µ′)⟩), v′′),
where v′′ specifies the amount of coins that were transferred. If there are no open push
requests of a form (π||⟨(P, µ), (P ′, µ′)⟩, v, t) then a party P can decide to close a given
push request by sending a message i-acknowledge((π||⟨(P, µ), (P ′, µ′)⟩, v, t) to NAPSδ

G . The
function remaining and the accounts in the P � P ′ channels are updated accordingly (by
sending messages to the AccountsG functionality). If P1 wants to finish processing given
payment µ (this is possible only if there are no open push requests corresponding to µ other
than the request (⟨(P, µ)⟩, v, t)) then she sends an acknowledge message to NAPSδ

G . The
“ideal model” adversary will also be called the simulator and denoted S. We assume that S
has access to the ideal functionality. The output of the ideal execution of NAPSδ

G against S
and Z with security parameter 1κ is a random variable Ideal(NAPSδ

G ,S,Z, 1κ) denoting the
output of Z.

It is easy to see that the informal properties from Sec. 2.1.1 are implied by this ideal
functionality. To see why, look at the “Upon receiving a message of a form (i-acknowledge)...”
part of Fig. 3. Recall that s denotes the sum of all the coins a given party “lost” in the
channels. From the construction of the ideal functionality, P1 sends to RVM a receipt for
exactly s coins (hence the “fairness for the sender” holds). Moreover, every intermediary Pi

gets back exactly s coins in the channel that she has with Pk (this implies “balance neutrality
for the intermediaries”). Finally, to see why “fairness for the receiver” holds, observe, by
looking recursively at the flow of the financial transfers, that P1 will never get a receipt for a
value higher than the sum of the amounts of coins that the receiver “gained” in her channels.

The real model. In the real model, the parties communicate with the environment and inter-
act with each other directly. Before the protocol starts, we generate a (public key, secret key)
pair for each Pi and give to Pi its secret key as input. Moreover, all parties (including RVM
and A) get the public keys of the other parties. For each pair {Pi, Pj} such that Pi � Pj ∈ E
the parties Pi and Pj also have access to an uncorruptible state channel machine CPi�Pj ,
which in turn, has access to AccountsG (the parties do not have a direct access to AccountsG).
Sending messages to AccountsG takes time at most ∆. The state channel machines and the
parties know the public keys of all the parties. Altogether, a NAPS protocol for a channel
graph G with arity δ is a tuple of machines Πδ

G := (RVM , P1, . . . , Pn, {CPi�Pj}Pi�Pj∈E).
The output of the real execution of Π with security parameter 1κ is a random variable
Real(Πδ

G ,A,Z, 1κ) denoting the output of Z. We define security by requiring that no envir-
onment can distinguish between the ideal and the real model. In the definition, we use the
concept of computational indistinguishably. From the construction of the ideal functionality,
it is easy to see that all the informal security properties (fairness to the sender and the
receiver and the balance neutrality) hold for EthNA.

▶ Definition 1. A tuple Πδ
G is a secure Non-Atomic Payment Splitting (NAPS) protocol

for G and δ if for every adversary A there exists a simulator S such that and every Z

S. Dziembowski and P. Kędzior 17

the families of random variables {Ideal(NAPSδ
G ,S,Z, 1κ)}κ and {Real(Πδ

G ,A,Z, 1κ)}κ are
computationally indistinguishable

3.2 Formal description of EthNA
Let us start by providing formal definitions of some of the terms already informally introduced
in Sec. 2.2. For a graph G and a nonce µ, a subreceipt (over G, for payment µ) is a pair
*π, λ+Pn signed by Pn such that π is a path over G (for payment µ) with Pn appearing on the
last position of π, and λ is a non-increasing sequence of positive integers, such that |λ| = |π|.
A payment report for µ is a set W of subreceipts for µ such that π identifies a member of W
uniquely, i.e.: (*π, λ+Pn ∈ W and * π, λ′+Pn ∈ W) implies λ = λ′. For example, α, β, and γ

in Sec. 2.2 are subreceipts, and the set {β, γ} (see Eq. (4)) is a payment report (except that
in that informal description, we omitted the nonces). For a payment report W a subreceipt
*(π, λ+Pn

is a leader of W at node P if P appears on π at some position i, and for every
*π′, λ′+Pn ∈ W we have that λ[i] ≥ λ′[i]. This notion was already discussed in Sec. 2.2, where
in particular, we said that the leader of a payment report {α′, γ} (on Eq. (4)) is γ. In normal
cases (i.e. if Pn is honest), the leader is always unique and is equal to the last subreceipt
of a from *(π||σ′), λ′+Pn signed by Pn, however in general this does not need to be the case.
When we talk about the leader of W at P we mean the leader that is the smallest according
to some fixed linear ordering.

As mentioned in Sec. 1.2, EthNA is constructed using fraud-proofs. Formally, a fraud-
proof (for µ) is a payment report Q for µ of a form Q = {*(σ||πi), λi+}m

i=1, where all the
πi[1]’s are pairwise distinct, such that the following condition holds: maxi:=1,...,m λi[|σ|] <∑m

i:=1 λi[|σ| + 1]. For an example of a fraud-proof (with nonce missing from the picture)
see Eq. (6). If EthNA has arity at most δ (see Sec. 2.1), then we require that m ≤ δ.
Informally speaking, these conditions mean simply that in Q the largest label of σ is smaller
than the sum of all labels of σ’s children. If none of the subsets of a payment report W is a
fraud-proof, then we say that W is consistent. As we show later, if Pn is honest, then W is
always consistent. Note that the description of set Q as defined above can be quite large (it
is of size O(δ · (ℓ+ κ)), where δ is EthNA’s arity, ℓ is the maximal length of paths, and κ is
the security parameter (we need this to account for the signature size). Luckily, there is a
simple way to “compress” it to O(δ · κ) (where κ is the security parameter) by exploiting the
fact that the only values that are needed to prove cheating are the positions on the indices
|σ| and |σ|+ 1 of the λ’s. We describe the compression ideas in Sec. 5.2.

The formal description of EthNA appears on Figs. 4, 5, and 6. It uses a subroutine
algorithm AddΦ that we describe in a moment. We outsource some of the protocol to a
procedure handle-path (depicted in the same figure) to avoid repeating the same instructions.
The receipt verification machine RVM is presented in Fig. 7

The parties receive the “ideal model” messages (starting with a prefix “i-”) from Z.
By saying that a message (received from Z) is admissible, we mean that it satisfies the
“correctness conditions” from Fig. 3. The push requests are executed by direct communication
between the parties, and the payment acknowledgment is done via the state channel machines.
Let us comment on the types of messages that are sent within the protocol (see also the cheat
sheet on Fig. 10 on p. 30 in the appendix). The messages that are used are: “push” to push a
subpayment (the corresponding message sent by the channel to the other party is “pushed”),
“acknowledge” to acknowledge a subpayment (the corresponding message is “acknowledged”).
The value R contains either a subreceipt (this is the most common case), or a fraud-proof, or
a message “‘empty” denoting the fact that no subpayments have been acknowledged by Pn.

18 Non-Atomic Payment Splitting in Channel Networks

Fig. 4: The EthNA protocol for the parties

Party P1

Upon receiving an admissible message of a form (i-send, µ, u, t) from the environment Z
and in the next round a message (invoice, *µ, u, t+Pn

) from Pn — store this message, and
execute the handle-path(P1, ⟨(P1, µ)⟩, v, t) procedure presented on Fig. 5. Let (R, v) be
the output of this procedure. Send (acknowledged, µ, (*u, µ, t+Pn

, R)) to RVM .

Party Pi for i = 2, . . . , n− 1
Upon receiving a message of a form (push, (*(π||⟨(P, µ), (P ′, µ′)⟩), v, t+P) from some party
P — ignore this message if at least one of the following happens: (a) P ′ ̸= Pi or
(b) t > τ + ∆ (where τ is the current time). Otherwise run the path handling procedure
handle-path(Pi, (π||⟨(P ′, µ′), (P, µ)⟩), v, t) presented on Fig. 5. Let (R, v′) be the output
of this procedure and send (acknowledge, *(π||⟨(P ′, µ′), (P, µ)⟩), v, t+Pj

, R) to CP�Pi .

Party Pn

Wait to receive admissible messages of a form (i-receive, µ, u, t) from the environment Z.
Handle each of them as follows.

Otherwise let βµ be an integer variable initially equal to u and send a message
(invoice, *µ, u, t+Pn

) to P1. Let Φµ be a variable containing a payment report that
is initially empty. Then wait (until time t comes) to receive messages of the following
form:

Message (push, *(π||⟨(P, µ), (Pn, µ
′)⟩), v, t′+P) from some party P (with t′ ≤ t) — send

a message (pushed, (π||⟨(P, µ), (Pn, µ
′)⟩), v, t′) to Z.

If within time t you receive a message (i-acknowledge(π||⟨(P, µ), (Pn, µ
′)⟩) from Z and

v > βµ then execute AddΦµ((π||⟨(P, µ), (Pn, µ
′)⟩), v). Let λ be the output of this

procedure. Send a message (acknowledge, *(π||⟨(P, µ), (Pn, µ
′)⟩), v, t′+P , *(π||⟨(P, µ),

(Pn, µ
′)⟩), λ+Pn) to RVM .

As described above, the main tasks of each party Pi (for i = 2, . . . , n− 1) are: (a) receive
push requests from some P , (b) forward corresponding push request in the direction of Pn,
(c) receive information about how many coins were transferred, and (d) once you are done
with handling all push requests: check if you received or you can find a fraud-proof – if yes,
then forward this information back to P (via the state channel), and if not, then choose the
leader of the set of receipts and forward it back to P (via the state channel). The procedure
for P1 is similar, except that P1 is activated by a “send” message from Z, and waits of the
invoice from Pn. It then communicates with the receipt verification machine defined on
Fig. 7 (see p. 20 in the appendix). Probably the most interesting part is the instructions
for Pn. First, Pn (upon receiving an i-receive(µ, u, t) message from Z) sends an invoice to
P1. For every payment, µ party Pn maintains a payment tree Φµ that is initially empty.
Payment trees were already discussed in Sec. 2.2. For a formal definition, consider some fixed
µ and G. During the execution of EthNA for G and µ, several subpayments are delivered
to Pn. Let π1, . . . , πt denote the consecutive paths over which these subpayments go (of
course, they need to be distinct), and let vi ∈ Z>0 be the number of coins transmitted with
each πi. Let W := {(πi, vi)}t

i=1. Formally, a payment tree tree(W) is a labeled tree (T,L),
where T is the set of all prefixes of the πi’s, i.e., T :=

⋃
i prefix(πi). . If EthNA has arity

S. Dziembowski and P. Kędzior 19

Fig. 5: Path handling procedure handle-path(P, π, v, t)
Let Wπ be a variable containing a set of subreceipts that initially is empty and let ωπ := δ.
Send (i-pushed, π, v, t) to Z and wait for the following messages forms from Z:

Message (i-push, (π||⟨(P, µ), (P ′, µ′)⟩, v′, t′) (for some v′ ≤ απ and µ and µ′ and P ′ such
that P � P ′ ∈ E) — handle each such a message as follows. If ωπ = 0 then ignore
this message. Otherwise let απ := απ − v′ and decrease ωπ by 1. Then send a message
(push, *(π||⟨(P ′, µ′)⟩), v′, t′+P) to P ′ and wait until round t to receive a message od one of
the following forms:
• (acknowledged, (π||⟨(P ′, µ′)⟩), empty) from CPi�P ′ — then let απ := απ + v′ and send
a message (i-acknowledged, (π||⟨(P ′, µ′)⟩), 0) to Z,

• (acknowledged, (π||⟨(P ′, µ′)⟩), *ψ, λ+Pn), where ψ is such that (π||⟨(P ′, µ′)⟩) is a prefix
of ψ — then store *ψ, λ+Pn

in Wπ by letting Wπ :=Wπ ∪ {*ψ, λ+Pn
}.

Let v̂ := λ[|π|+ 1]. Let απ := απ + v′ − v̂ and send (i-acknowledged, (π||⟨(P ′, µ′))⟩, v̂) to
Z, or
• (acknowledged, (π||⟨(P ′, µ′)⟩), (fraud-proof, w)) — then store (fraud-proof, w) and send a
message (i-acknowledged, (π||⟨(P ′, µ′)⟩), v′) to Z.

Message (i-acknowledge, π) (or time t comes) — if you are still waiting in the procedure of
handling some “i-push” message (see above), then ignore this message. Otherwise, do the
following
• If you stored (fraud-proof, w) (for some (P ′, µ′)) or if Wπ is inconsistent and w is the
fraud-proof — then output ((fraud-proof, w), v).

• Otherwise: if Wπ is empty then output empty.
• Otherwise let *ψ, λ+Pn

be the leader ofWπ at P̃ , where P̃ is the last party on π. Output
(*ψ, λ+Pn

, λ(|π|)).

Fig. 6: The EthNA state channel machine CPi�Pj

Recall that the values of registers ΓPi�Pj (Pi) and ΓPi�Pj (Pj) are pre-loaded before the
execution started. Wait for messages from Pi and Pj .

Upon receiving a message of a form (acknowledge, *π, v, t+Pk
, empty) from a party P (such

that {Pk, P} = {Pi, Pj}) — send (acknowledged, π, empty) to Pk.

Upon receiving a message of a form (acknowledge, *π, v, t+Pk
, *ψ, λ+Pn

) from a party P where
(a) current time is at most t, (b) π is a path with a suffix ⟨(Pk, µ), (P, µ′)⟩ (for some µ
and µ′), (c) π is a prefix of ψ, (d) λ[|π|] ≤ ΓPi�Pj (Pk), and (e) {Pk, P} = {Pi, Pj}

— then send a message of a form (trans, Pk, P, λ[|π|]) to AccountsG and a message
(acknowledged, π, *ψ, λ+Pn

) to Pk.

Upon receiving a message of a form (acknowledge, *π, v, t+Pk
, (fraud-proof, w)) from a party

P where (a) current time is at most t, (b) π is a path with a suffix ⟨(Pk, µ), (P, µ′)⟩ (for
some µ, µ′ and Pk), (c) v ≤ ΓPi�Pj (Pk), and (d) w is a fraud-proof — then send a message
(trans, Pk, P, v) to AccountsG and send a message (acknowledged, π, (fraud-proof, w)) to Pk.

20 Non-Atomic Payment Splitting in Channel Networks

Fig. 7: Receipt Verification Machine RVM
Upon receiving a message (acknowledged, µ, (*u, µ′, t+Pn

, R)) from P1 (such that µ = µ′

and you have not received an “acknowledged” message with this µ from P1 before) — let

w :=


u if R = (fraud-proof, w),
0 if R = empty
λ[1] if R = *acknowledge, ψ, λ+Pn

,

where w is a fraud-proof. Send (i-sent, µ, w) to Z

δ then the arity of T in every node (π||⟨(P, µ)⟩) is at most δ. Then for every π ∈ T we
let L(π) :=

∑
i:π∈prefix(πi) v

i. In other words: every path π gets labeled by the arithmetic
sum of the value of the payments that were “passed through it”. Clearly, the label L(ε)
of the root node of tree(W) is equal to the sum of all vi’s, and hence it is equal to the
total number of coins transferred by the subpayments in W. We also have that for every
path σ L(σ) =

∑
π is a child of σ L(π). It is also easy to see that tree(W) can be constructed

“dynamically” by processing elements of W one after another. More precisely, this is done
as follows. We start with an empty tree Φ, and then iteratively apply the algorithm AddΦ
(see Alg. 1) for (π1, v1), (π2, v2), From the construction of the algorithm, it follows

Algorithm 1 AddΦ(π, v)
This algorithm operates on a global state Φ = (T,L). Its side effect is a change of the global
state. We assume that v ∈ Z>0 and π ̸∈ T .
for j = 1, . . . , |π| do

if π|j ∈ T then
let L(π|j) := L(π|j) + v

else
let T := T ∪ {π|j} let L(π|j) := v

output ⟨L(π[1]), . . . ,L(π|π|)⟩ (the labels on path π)

immediately that if Pn starts with Φ being an empty tree, and then iteratively applies AddΦ
to (πi, vi)’s for i = 1, . . . , t, then the final state of Φ is equal to tree(W). For example, if Pn

applies this procedure to the situation in Fig. 1 she obtains the trees depicted on Eqs. (1)–(3).
It is easy to see that if Pn applies the AddΦ algorithm correctly, then the resulting sets W
are never inconsistent (and hence no fraud-proof will ever be produced against an honest
Pn). Formally, this is proven in Fact 1.

The formal security analysis of this protocol is given in the proof of the following lemma.

▶ Lemma 2. Assuming that the underlying signature scheme is existentially unforgeable
under a chosen-message attack, EthNA is a secure NAPS protocol for every G and δ.

Proof. To prove that EthNA is a secure NAPS scheme, fix a channel graph G = ({P1, . . . , Pn},
E ,Γ) and an adversary A. We need to construct a simulator S such that the real and ideal
executions are indistinguishable for every environment Z.

Construction of the simulator. The simulator gets as input the security parameter 1κ and
starts simulating the adversary A with this input. She also generates (public key, secret key)
pairs for all Pi’s and sends the public keys to the adversary. The simulator S checks which

S. Dziembowski and P. Kędzior 21

parties are corrupt by A and corrupt the same parties in the ideal model. She also passes
to A all the secret keys of the corrupt parties. Recall that the honest parties are executed
according to the EthNA protocol. The simulator maintains a “simulated copy” of each Pi,
denoted P̂i. She passes 1κ and the secret and public keys to the P̂i’s. She also maintains a
“simulated copy” of each state channel machine CPi�Pj (denoted ĈPi�Pj) and a simulated
copy of the receipt verification machine (denoted R̂VM). Then the simulator performs the
execution of simulated A against the honest parties. This simulation proceeds in rounds.
Whenever the adversary A sends (in the name of some corrupt Pi) a message m to an honest
Pj , the simulator forwards this message to P̂j . If P̂j ignores this message, then the simulator
does nothing. Otherwise, consider the following cases:

m = (invoice, *u, µ, t+Pn
) (this happens only if Pi = Pn and Pj = P1) and in the

same round P1 sent a message i-send(µ, u, t) to the ideal functionality — then send i
-receive(µ, u, t) to the ideal functionality (in the name of Pn).
m = (push, *(π||⟨(Pi, µ), (Pj , µ

′)⟩), v, t+Pi) — then send a message (i-push, (π||⟨(Pi, µ), (Pj ,

µ′)⟩), v, t) to the ideal functionality (in the name of Pi).
Now consider the state channel machine CPi�Pj (recall that we assumed that it is incor-
ruptible) and suppose the adversary A sends to it (in the name of a corrupt Pi) a message
(acknowledge, *π, v, t+, R). Then forward this message to ĈPi�Pj and observe its reaction. It
is easy to see that the only interesting case is when the other user of this channel (Pj) is honest.
Recall that the execution of CPi�Pj can result both in the change the AccountsG functionality
(via the trans messages) and in sending acknowledged messages to Pj . Handle this as follows.
The trans messages are simply forwarded to CPi�Pj . For each (acknowledged, π,R) message
first send a message (i-acknowledge, π) to the ideal functionality (in the name of P1), and
then consider the following cases: (a) if R = empty then send a message (acknowledged, π, 0)
to P̂j , (b) if R = (acknowledged, π, *ψ, λ+Pn) then send (acknowledged, π, λ[1]) to P̂j , and
(c) if R = (acknowledged, π, (fraud-proof, w)) then send a message (acknowledged, π, v) to P̂j

(where v is taken from the signed tuple *π, v, t+Pj in the code of CPi�Pj). Recall that all
messages sent by CPi�Pj can be delayed by some time ∆′ ≤ ∆. The simulator delays
the messages she sends by the same time. Finally, consider the RVM machine (again, we
assumed it is incorruptible). In this case, the simulator simply forwards to R̂VM every
message (acknowledge, *π, v, t+, R) that it receives from the adversary A (in the name of some
corrupt party).

Analysis of the simulator – the honest Pn case. We now proceed to the analysis of the
simulator S constructed above. We start with the case when Pn is honest. We first show a
fact that essentially states that if Pn is honest, no fraud-proof will ever be produced.

▶ Fact 1. Suppose a party Pn executes AddΦ multiple times (for some payment µ, starting
from Φ = ∅) and signs every output. Let W be the set of subreceipts signed by party Pn

during the execution of the AddΦ algorithm. Then W is consistent.

Proof. Take an arbitrary path σ and an arbitrary set Q ⊆ W that has a form Q =
{*(σ||πi), λi+Pn}m

i=1. Without loss of generality, assume paths in Q are sorted according to the
time the paths in this set were signed (starting from the first). From the fact that in the Add
algorithm, the values in the labels can only increase, we get that maxi=1,...,m λi[|σ|] = λm[|σ|].
From the fact that L(σ) =

∑
π is a child of σ L(π) (see Sec. 3.2) we know that the time when

path *(σ||πm), λm+Pn
was signed all the children on σ in the tree T were labeled by values that

sum up to λm[|σ|]. The sum
∑m

j:=1 λi[|σ|+1] is at most equal to this value. This is because (a)
it is a subset of the set of all children of σ, and (b) these paths were signed earlier than when

22 Non-Atomic Payment Splitting in Channel Networks

*(σ||πm), λm+Pn is signed (here we again use the fact that in the Add algorithm the values in
the labels can only increase). Altogether we get that maxi:=1,...,m λi[|σ|] ≥

∑m
i:=1 λi[|σ|+ 1],

and hence Q cannot be a fraud-proof (see Sec. 3.2 for the definition of fraud-proofs). Therefore
W does not have fraud-proofs, so it is consistent.

◀

Hence, no valid (acknowledge, *π, v, t+Pk
, (fraud-proof, w)) message will be very sent to any

state channel machine. The only things that a corrupt party P can do are: (a) send a
message (acknowledge, *π, v, t+, empty) to the state channel machine while in fact your set
Wπ was not empty, or (b) send a message (acknowledge, *π, v, t+, *ψ, λ+Pn), where *ψ, λ+Pn

is chosen in some other way than described in the protocol. It is easy to see that in both
cases, P acts “against her own financial interest”. First, in the case of (a), party P claims 0
coins in the corresponding channel, while she might have lost some coins (corresponding to
the same payment µ) in other channels. Second, in case of (b) the only thing that P can do
is to send some other *ψ′, λ′+Pn

∈ Wπ. However, since we assumed that Pn is honest and
that an honest P chooses *ψ, λ+Pn

that maximizes her gain, this can only lead to losing coins
by P . Observe that this may lead to the situation in which the honest parties gain more
coins in the real model than in the ideal model, meaning that Z can distinguish between bot
models. To remedy this, we use the feature of the AccountsG functionality that the simulator
(in the ideal model) can always transfer some coins from a corrupt party to an honest one.
Thanks to this, we can “correct” balances in AccountsG (in the ideal model) so that they are
the same in both models.

Analysis of the simulator – the corrupt Pn case. Now consider the case when Pn is corrupt.
Let Φ̂µ be the set of all signed tuples *ψ, λ+Pn

that Pn ever sent to other parties (for payment
µ). Clearly, the only interesting case is when Φ̂µ is inconsistent (otherwise, we can use the
same reasoning as in the “honest Pn case”). Suppose some honest intermediary P finds
inconsistency proof. Then she can claim the full amount v of coins that she was supposed to
push. Since she never pushes further a total amount higher than v she can only gain coins
from this. Again, we handle this in the ideal model by transferring coins from corrupt Pn to
P . If P receives an inconsistency proof due to one of her push requests, then by a similar
argument, P can only “gain” coins (which we can handle by transferring coins from corrupt
Pn to P). It is also easy to see that honest P1 cannot lose coins if she finds or receives
fraud-proof for similar reasons. The complete security proof will be provided in the full
version of this paper.

◀

3.3 Efficiency analysis
We consider separately the optimistic scenario (when the parties are cooperating) and the
pessimistic one when the malicious parties slow down the execution. In the optimistic case,
the payments are almost immediate. It takes 1 round for a payment to be pushed and 2
rounds to be acknowledged (due to the communication with the state channel machine).
Hence, in the most optimistic case, the time for executing a payment is 3 · ℓ (where ℓ is the
depth of the payment tree). During the acknowledgment, every malicious party can delay the
process by time at most ∆. Hence, the maximal pessimistic time is (1 + ∆) · ℓ. The second
important measure is the blockchain costs, i.e., the fees that the parties need to pay. Below
we provide a “theoretical” analysis of such costs. For the results of concrete experiments, see
Sec. 4. Note that in the optimistic case, the only costs are channel opening and closing, and

S. Dziembowski and P. Kędzior 23

hence they are independent of the tree depth and of its arity. In the pessimistic case, all
messages in state channels must be sent “via the blockchain”. Let us consider two cases. In
the first case, there is no fraud-proof. Then, the only message that is sent via the blockchain
is acknowledge(*ϕ, λ+Pn), which has size linear O(ℓ+ κ) (where ℓ is as above, and κ is the
security parameter and corresponds to space needed to store a signature). The situation is
a bit different if a fraud-proof appears. As remarked in Sec. 3.2 the size of a fraud-proof
is O(δ · (ℓ + κ)), where δ is EthNA’s arity, ℓ is the maximal length of paths, and κ is
the security parameter. Note that the fraud-proof is “propagated”, i.e., even if a given
intermediary decided to keep its arity small (i.e., not to split her subpayments into too many
subpayments), she might be forced to pay fees that depend on some (potentially larger)
arity. This could result in griefing attacks, which is why we introduced a global limit on
the arity. There are many ways around this. First, we could modify the protocol so that
the fraud-proofs by Pn are posted directly in a smart contract on a blockchain so that all
other parties do not need to re-post and can just refer to it. Moreover, the proof size can be
significantly reduced (see Sec. 5.2).

4 Practical aspects

δ path
length

constructor close addState addChea-
tingProof

addComple-
tedTransa-
ction

close-
Disagree-
ment

5 10 2,391 14 93 1,053 155 14
5 5 2,249 14 94 871 145 14
2 5 2,088 14 93 779 145 14
2 3 2,191 14 93 590 140 14

(a)

(b) (c)

Figure 8 Experimental results.

Let us now we provide information about practical experiments of EthNA implementation.
We implemented a simple version of EthNA in Solidity. The source code is available at
github.com/Sam16450/NAPS-EthNA. The table in Fig. 8 (a) summarizes the execution
costs in terms of thousands of gas, and depending on the arity δ and the maximal path
length. The constructor denotes the procedure for deploying a channel, close corresponds
to closing a channel without disagreement, addState is used to register the balance in case of
disagreement, addCheatingProof is used to add a fraud-proof, addCompletedTransaction

— to add a subreceipt when no cheating was discovered, and closeDisagreement – to finally
close a channel after disagreement.

Although routing algorithms are not the main topic of this work, we also performed
some experiments with a routing algorithm built on top of EthNA. We took the net-
work graph in our experiments from the Lightning network (from the website gitlab.tu-

https://github.com/Sam16450/NAPS-EthNA
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data

24 Non-Atomic Payment Splitting in Channel Networks

berlin.de/rohrer/discharged-pc-data) with approx. 6K nodes and 30K channels. Channel’s
capacities are chosen according to the normal distribution N (200, 50). Each transaction
was split by applying the following rules. The sender and the intermediaries look at the
channel graph and search for the set X of shortest paths that lead to the receiver (and have
different first elements). Then they split the payment into values proportional to the capacity
of the first channel in the path. In our simulations, we performed 100K transaction. The
results appear in Fig. 8. The “success ratio” denotes the probability of complete success of
an average payment. Each transaction had to be completed in a maximum of 50 rounds.
“Lightning” refers to standard Lightning routing, and “Lightning+” refers to the Lightning
algorithm that attempts to push payments multiple times. Transaction values are chosen
uniformly from set (x0, x1), while in (b) we have (x0, x1) = (10, 500) and in (c) we have
x0 := 150, 200, 300, 400 and x1 := 500. Our experiments show that even this simple routing
algorithm for EthNA works much better than Lightning.

5 Extensions

In this section, we show some extensions of EthNA. The formal proof that such “extended
EthNAs” satisfy the NAPS definition will be presented in the full version of this paper.

5.1 Obtaining atomicity and partial atomicity in EthNA
EthNA can be easily converted into a payment system for atomic payments in the following
way. Consider some payment µ for v¢. We simply let any subreceipt for a subpayment
count as the receipt for the entire payment µ, and at the same time, we instruct the receiver
Pn to start acknowledging payments, i.e., signing such receipts only if she receives all the
subpayments (for the full amount v). This works since (a) as long as Pn did not receive the
full amount, there is no receipt that she received any coins, and (b) once she does it, it is in
her own best interest to acknowledge all subpayments (and claim all coins). This can be
naturally generalized further to obtain “partial atomicity” where, e.g., the receiver can either
receive 0¢, v/2¢, or the full amount of v¢. This way of obtaining atomicity may be used in
the applications like the one described very recently in [8], where, in Sec. 3.1, we describe a
way to obtain “unlinkability” in atomic payment splitting. The main idea here is to hide
that a given payment has already been split. The “atomic EthNA” satisfies this property
while avoiding using homomorphic hash functions (used in [8]). We leave a full comparison
of these two approaches as a direction for future work.

5.2 Reducing the size of the fraud-proofs
Recall that a fraud-proof is a payment report Q of a form. Q = {*(σ||πi), λi+Pn}m

i=1, all the
πi[1]’s are pairwise distinct, such that the following condition holds:

max
i:=1,...,m

λi[|σ|] <
m∑

i:=1
λi[|σ|+ 1]. (7)

Hence, in the most straightforward implementation, it is of length Ω(δ · (ℓ+ κ)), where δ is
EthNA’s arity, ℓ is the maximal length of paths, and κ is the security parameter.

We now show how to reduce this to O(δ · κ). We do it by designing an algorithm that
signs the subreceipts *ϕ, λ+Pn

differently. Let H be a collision-resistant hash function, and
let (KGen,Sig,Vf) be a signature scheme. Suppose (sk, pk) ←$ KGen(1κ) is the key pair
of Pn. To sign (ϕ, λ) we define a new signature scheme (KGen,Sig,Vf) (i.e. we later let

https://gitlab.tu-berlin.de/rohrer/discharged-pc-data
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data

S. Dziembowski and P. Kędzior 25

*ϕ, λ+Pn := ((ϕ, λ), σ), where σ := Sig′
sk((ϕ, λ))). Let KGen′ := KGen. To define Sig((ϕ, λ))

first define ⟨h1, . . . , h|ϕ|⟩ recursively as:

h1 := H(ϕ[1]),

and for j := 2, . . . , |ϕ|:
hj := H(ϕ[j], hj−1).

Then let Sig((ϕ, λ)) := ⟨σ1, . . . , σ|ϕ|⟩, where for each j we have:

σj := Sigsk(hj , λ[j])

Verification of this signature is straightforward. It is also easy to see that if (KGen,Sig,Vf) is
existentially unforgeable under chosen message attack, then so is (KGen′,Sig′,Vf′), assuming
the signed messages are of a form (ϕ, λ), where ϕ is the path1. For a message M let {M}Pn

denote M signed with (KGen′,Sig′,Vf′). It is easy to see that now a fraud-proof from Eq. (7)
can be compressed to a sequence{({

h
|σ|
i , λi[|σ|]

}
Pn

, πi[1],{
h

|σ|+1
i , λi[|σ|+ 1]

}
Pn

)}m

i=1
.

(8)

such that Eq. (7) holds (above “πi[1]” is needed to check correctness of h|σ|+1
i). Since all

signed values are of size linear in the security parameter, and m ≤ δ we get that Eq. (8) is
O(δ · κ). Note that this requires the parties (and, pessimistically, the state channel contract)
to verify m signatures. This can be reduced to 1 signature by using signature aggregation
techniques, the simplest one being the Merkle trees technique, where we hash all pairs
(hj , λ[j]) using Merkle hash and sign only the top of the tree. Note that this introduces
additional data costs of size O(κ · log δ).

Further proof size reduction using “bisection”. Finally, let us remark that the proof Eq. (8)
can be further compressed by allowing interaction between the party that discovered cheating
(denote it P) and Pn. This is similar to the bisection technique [22]. Suppose P realizes that
Eq. 7 does not hold. She can then divide the set of paths in Q into two halves. Suppose m
is even and let

A :=
m/2∑
i:=1

λi[|σ|+ 1],

and
B :=

m∑
i:=m/2+1

λi[|σ|+ 1].

P can now challenge Pn (on the blockchain) to provide her own calculations of the above
sums2. Let A′ and B′ be Pn respective answers. Then one of the following has to hold:

maxi:=1,...,m λi[|σ|] < A′ +B′ – then P obtains the fraud-proof and we are done.
A′ < A or B′ < B – then we can apply this procedure recursively.

1 This assumption is needed since paths have a clearly marked “ending”, namely they have to finish with
(Pn, µn), for some µn Otherwise it would be possible to attack this scheme by taking a prefix of a signed
message and a prefix of its signature.

2 Since elements of Q can be sorted, such a challenge is short.

26 Non-Atomic Payment Splitting in Channel Networks

It is easy to see that in the logarithmic number of rounds, P obtains a fraud-proof. Note
that this fraud-proof is short, so it can be easily propagated to other parties (who do not
need to repeat the above “game” with Pn).

6 Conclusions and future work

We have introduced a Non-Atomic Payment Splitting (NAPS) technique for the payment
networks, constructed the EthNA protocol that uses it, and proven its security. Due to
the limited space, we focused only on introducing the payment-splitting technique. This
paper opens several exciting questions for future research. First, it would be interesting to
develop routing algorithms that use this feature. Secondly, we did not address privacy and
anonymity in this setting, and it would be interesting to explore this topic. Our solution
strongly relies on the Turing completeness of the underlying blockchain platform. It would
be interesting to examine if NAPS schemes can be implemented Non-Atomic also over legacy
blockchains such as Bitcoin possibly using techniques such as “scriptless scripts” (see, e.g.,
[23]), see also [2], or those of [12]). Another important question is to examine if one can
reduce the pessimistic payment acknowledgment time from linear to constant analogously to
the “Sprites” method [16].

References

1 Vivek Kumar Bagaria, Joachim Neu, and David Tse. Boomerang: Redundancy improves
latency and throughput in payment-channel networks. In Joseph Bonneau and Nadia Heninger,
editors, Financial Cryptography and Data Security - 24th International Conference, FC 2020,
Kota Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of
Lecture Notes in Computer Science, pages 304–324. Springer, 2020. URL: https://doi.org/
10.1007/978-3-030-51280-4_17, doi:10.1007/978-3-030-51280-4_17.

2 Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge contin-
gent payments in cryptocurrencies without scripts. In Ioannis G. Askoxylakis, Sotiris Ioannidis,
Sokratis K. Katsikas, and Catherine A. Meadows, editors, Computer Security - ESORICS 2016
- 21st European Symposium on Research in Computer Security, Heraklion, Greece, Septem-
ber 26-30, 2016, Proceedings, Part II, volume 9879 of Lecture Notes in Computer Science,
pages 261–280. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-45741-3_14,
doi:10.1007/978-3-319-45741-3_14.

3 Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos
Kiayias, and Alexander Russell. Fast isomorphic state channels. In Nikita Borisov and Claudia
Díaz, editors, Financial Cryptography and Data Security - 25th International Conference,
FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II, volume 12675 of
Lecture Notes in Computer Science, pages 339–358. Springer, 2021. URL: https://doi.org/
10.1007/978-3-662-64331-0_18, doi:10.1007/978-3-662-64331-0_18.

4 Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Andrzej Pelc and Alexander A. Schwarzmann, editors,
Stabilization, Safety, and Security of Distributed Systems - 17th International Symposium,
SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings, volume 9212 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2015. URL: https://doi.org/10.1007/
978-3-319-21741-3_1, doi:10.1007/978-3-319-21741-3_1.

5 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina Hostáková. Multi-
party virtual state channels. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume

https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-662-64331-0_18
https://doi.org/10.1007/978-3-662-64331-0_18
https://doi.org/10.1007/978-3-662-64331-0_18
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1

S. Dziembowski and P. Kędzior 27

11476 of Lecture Notes in Computer Science, pages 625–656. Springer, 2019. URL: https:
//doi.org/10.1007/978-3-030-17653-2_21, doi:10.1007/978-3-030-17653-2_21.

6 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 106–123. IEEE, 2019. doi:
10.1109/SP.2019.00020.

7 Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel networks.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 949–966. ACM, 2018. doi:10.1145/
3243734.3243856.

8 Lisa Eckey, Sebastian Faust, Kristina Hostáková, and Stefanie Roos. Splitting payments
locally while routing interdimensionally. IACR Cryptol. ePrint Arch., 2020. URL: https:
//eprint.iacr.org/2020/555.

9 Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies.
In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 473–489. ACM, 2017.
doi:10.1145/3133956.3134093.

10 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.
Sok: Layer-two blockchain protocols. In Joseph Bonneau and Nadia Heninger, editors,
Financial Cryptography and Data Security - 24th International Conference, FC 2020, Kota
Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture
Notes in Computer Science, pages 201–226. Springer, 2020. URL: https://doi.org/10.1007/
978-3-030-51280-4_12, doi:10.1007/978-3-030-51280-4_12.

11 Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. A composable security treatment of
the lightning network. In 33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, June 22-26, 2020, pages 334–349. IEEE, 2020. doi:10.1109/CSF49147.
2020.00031.

12 Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. Elmo: Recursive virtual payment
channels for bitcoin. IACR Cryptol. ePrint Arch., page 747, 2021. URL: https://eprint.
iacr.org/2021/747.

13 Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 839–858. IEEE Computer Society, 2016. doi:10.1109/SP.2016.55.

14 Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi.
Concurrency and privacy with payment-channel networks. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 455–471. ACM, 2017. doi:10.1145/3133956.3134096.

15 Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and in-
teroperability. In 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society, 2019. URL: https://www.ndss-symposium.org/ndss-paper/
anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/.

16 Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry. Sprites
and state channels: Payment networks that go faster than lightning. In Ian Goldberg and Tyler
Moore, editors, Financial Cryptography and Data Security - 23rd International Conference, FC
2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers, volume

https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856
https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2020/555
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1109/CSF49147.2020.00031
https://eprint.iacr.org/2021/747
https://eprint.iacr.org/2021/747
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/3133956.3134096
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/

28 Non-Atomic Payment Splitting in Channel Networks

11598 of Lecture Notes in Computer Science, pages 508–526. Springer, 2019. URL: https:
//doi.org/10.1007/978-3-030-32101-7_30, doi:10.1007/978-3-030-32101-7_30.

17 Olaoluwa Osuntokun. [lightning-dev] amp: Atomic multi-path payments over lightning.
https://tinyurl.com/29m2d7wr, 2018.

18 Dmytro Piatkivskyi and Mariusz Nowostawski. Split payments in payment networks. In Joaquín
García-Alfaro, Jordi Herrera-Joancomartí, Giovanni Livraga, and Ruben Rios, editors, Data
Privacy Management, Cryptocurrencies and Blockchain Technology - ESORICS 2018 Interna-
tional Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018, Proceed-
ings, volume 11025 of Lecture Notes in Computer Science, pages 67–75. Springer, 2018. URL:
https://doi.org/10.1007/978-3-030-00305-0_5, doi:10.1007/978-3-030-00305-0_5.

19 Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments, 2016.

20 Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Parimarjan
Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh. High throughput
cryptocurrency routing in payment channel networks. In Ranjita Bhagwan and George Porter,
editors, 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, pages 777–796. USENIX Association,
2020. URL: https://www.usenix.org/conference/nsdi20/presentation/sivaraman.

21 Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic locks for
scalability in payment channel hubs. In 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 1834–1851. IEEE, 2021. doi:
10.1109/SP40001.2021.00111.

22 Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains.
CoRR, abs/1908.04756, 2019. URL: http://arxiv.org/abs/1908.04756, arXiv:1908.04756.

23 Sri Aravinda Krishnan Thyagarajan and Giulio Malavolta. Lockable signatures for blockchains:
Scriptless scripts for all signatures. In 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 937–954. IEEE, 2021. doi:
10.1109/SP40001.2021.00065.

https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://tinyurl.com/29m2d7wr
https://doi.org/10.1007/978-3-030-00305-0_5
https://doi.org/10.1007/978-3-030-00305-0_5
https://www.usenix.org/conference/nsdi20/presentation/sivaraman
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
http://arxiv.org/abs/1908.04756
http://arxiv.org/abs/1908.04756
https://doi.org/10.1109/SP40001.2021.00065
https://doi.org/10.1109/SP40001.2021.00065

S. Dziembowski and P. Kędzior 29

P1RVM · · · Pi Pi+1 · · · Pn

functionality NAPSδ
G

i-acknowledged

i-push

i-a
ck

no
wl

ed
ge

i-p
us

he
d

i-pushed

i-acknowledged

i-send

i-push

i-acknowledge

i-p
us

he
d

i-s
en

d
i-a

ck
no

wl
ed

ge

i-sent

functionality AccountsG

trans

Types of variables:
• v, u — positive integers denoting amounts of coins,
• µ — a nonce,
• π — path over G, and
• t — time.

Messages

The parties send to the NAPSδ
G functionality messages of the following form:

• (i-send, µ, u, t) (such messages are sent only to P1),
• (i-receive, µ, u, t) (such messages are sent only to Pn),
• (i-push, π, v, t), and
• (i-acknowledge, π).
The NAPSδ

G functionality sends to the parties messages of the following forms:
• (i-sent, µ, receipt) (such messages are sent only by P1, in case of EthNA receipt has a
form (*u, µ, t+Pn , R)) (see Fig. 10),

• (i-pushed, π, v, t), and
• (i-acknowledged, π, v).

Figure 9 Messages and variables exchanged in the ideal execution NAPSδ
G (assuming the payment

path is P1 _ · · · _ Pn).

30 Non-Atomic Payment Splitting in Channel Networks

P1RVM · · · Pi Pi+1 · · · Pn

environment Z

state channel
machine CPi�Pi+1

.state channel
machine CPn−1�Pn

state channel
machine CP1�P2

functionality AccountsG

. . . .

push push push pushpush

i-p
us

h
i-a

ck
no

wl
ed

ge
d

i-pushed
i-acknowledge

acknowledged ac
kn

ow
led

ge

. .
. .

i-s
en

d
i-p

us
h

i-a
ck

no
w

le
dg

e

i-p
us

he
d

i-a
ck

no
w

le
dg

ed

i-send
i-acknow

ledge

i-pushed

invoice

i-se
nt

acknowledge

trans tra
ns

trans

Types of variables

v, u — positive integers denoting amounts of coins,
µ — a nonce,
π, ψ — path over G, and
t — time.
R has one of the following forms:
• R = empty (where “empty” is a keyword),
• R = *ψ, λ+Pn (where (ψ, λ) is a subreceipt), or
• R = (fraud-proof, w), where w is an fraud-proof.

Messages exchanged between the parties

Party Pn sends to party P1 a messages of a from
(invoice, *µ, u, t+Pn).
Each party P sends to other parties messages of a form
(push, *π, v, t+P).
Party P1 sends to RVM a message of a form
(acknowledged, µ, (*u, µ, t+Pn , R))

Messages exchanged between the parties and the
state channel machines
The parties send to the state channel machines messages of
a form (acknowledge, *ψ, λ, t+Pn , R).
The state channel machines send the parties messages of a
form (acknowledged, π, R).

Messages sent and received by Z

The environment Z sends the parties messages of the follow-
ing forms:
• (i-send, µ, u, t) (such messages are sent only to P1),
• (i-receive, µ, u, t) (such messages are sent only to Pn),
• (i-push, π, v, t), and
• (i-acknowledge, π).
The parties send to Z messages of the following forms:
• (i-sent, µ, receipt) (such messages are sent only by P1, in
case of EthNA receipt has a form (*u, µ, t+Pn , R)),

• (i-pushed, π, v, t), and
• (i-acknowledged, π, v).

Figure 10 The messages exchanged in EthNA (assuming the payment path is P1 _ · · · _ Pn).

S. Dziembowski and P. Kędzior 31

Summary of notation and terminology
*m+P – a message m together with a signature of P on m.

A channel graph is a tuple G = (P, E ,Γ) with the set of vertices P = {P1, . . . , Pn} and set
E of edges being a family of two-element subsets of P. The elements of P are denoted
as “Pi � Pj” (instead of {Pi, Pj}). Every Pi � Pj represents a channel between Pi and
Pj . The cash function Γ determines the number of coins available for the parties in every
channel: every Γ(Pi � Pj) is a function f of a type f : {Pi, Pj} → Z≥0. We often write
ΓPi�Pj to denote this function. The value ΓPi�Pj (P) denotes the amount of coins that P
has in her account in channel Pi � Pj .

For a channel graph G = (P, E,Γ) a string π = ⟨(Pi1 , µ1), . . . , (Pi|π| , µ|π|)⟩ is a path over G
(for payment µ) if each µi ∈ N is a nonce, each Pij

� Pij+1 is an edge in G, and Pi1 = P1
such that a path corresponding to a payment µ always starts with (P1, µ).

For a channel graph G and a nonce µ, a subreceipt (over G, for payment µ) is a pair *π, λ+Pn

signed by Pn such that π is a path over G (for payment µ) with Pn appearing on the last
position of π, and λ is a non-increasing sequence of positive integers, such that |λ| = |π|.

A payment report for µ is a set W of subreceipts for µ such that π identifies a member of
W uniquely, i.e.:

(*π, λ+Pn
∈ W and * π, λ′+Pn

∈ W) implies λ = λ′.

For a payment report W a subreceipt *(π, λ+Pn is a leader of W at node P if P appears
on π at some position i, and for every *π′, λ′+Pn

∈ W we have that λ[i] ≥ λ′[i]. When we
talk about the leader of W at P we mean the leader that is the smallest according to some
fixed linear ordering.

A fraud-proof (for µ) is a payment report Q for µ of a form Q = {*(σ||πi), λi+}m
i=1,

where all the πi[1]’s are pairwise distinct, such that the following condition holds:
maxi:=1,...,m λi[|σ|] <

∑m
i:=1 λi[|σ|+ 1].

A payment tree tree(W) is a pair (T,L), where T is the set of all prefixes of the πi’s, i.e.,

T :=
⋃

i

prefix(πi),

and for every π ∈ T we let
L(π) :=

∑
i:π∈prefix(πi)

vi.

Figure 11 Summary of notation

	1 Introduction
	1.1 Background
	1.2 Our contribution and related work

	2 Informal description
	2.1 Overview of the NAPS definition
	2.1.1 NAPS security properties
	2.1.2 Atomic vs. non-atomic payment splitting

	2.2 Overview of the EthNA protocol

	3 Technical details
	3.1 NAPS formal security definition
	3.2 Formal description of EthNA
	3.3 Efficiency analysis

	4 Practical aspects
	5 Extensions
	5.1 Obtaining atomicity and partial atomicity in EthNA
	5.2 Reducing the size of the fraud-proofs

	6 Conclusions and future work

