
Neural Aided Statistical Attack for
Cryptanalysis

No Author Given

No Institute Given

Abstract. In Crypto’19, Gohr proposed the first deep learning-based
key recovery attack on 11-round Speck32/64, which opens the direction
of neural aided cryptanalysis. Until now, neural aided cryptanalysis still
faces two problems: (1) the attack complexity estimations rely purely on
practical experiments. There is no theoretical framework for estimating
theoretical complexity. (2) it does not work when there are not enough
neutral bits that exist in the prepended differential. To the best of our
knowledge, we are the first to solve these two problems. In this paper, we
propose a Neural Aided Statistical Attack (NASA) that has the follow-
ing advantages: (1) NASA supports estimating the theoretical complex-
ity. (2) NASA does not rely on any special properties including neutral
bits. (3) NASA is applicable to large-size ciphers. Moreover, we propose
three methods for reducing the attack complexity of NASA. One of the
methods is based on a newly proposed concept named Informative Bit
that reveals an important phenomenon.
Four attacks on 9-round or 10-round Speck32/64 are executed to verify
the correctness of NASA. To further highlight the advantages of NASA,
we have performed a series of experiments. At first, we apply NASA
and Gohr’s attack to round reduced DES. Since NASA does not rely
on neutral bits, NASA breaks 10-round DES while Gohr’s attack breaks
8-round DES. Then, we compare the time consumption of attacks on 11-
round Speck32/64. When the newly proposed three methods are used,
the time consumption of NASA is almost the same as that of Gohr’s
attack. Besides, NASA is applied to 13-round Speck32/64. At last, we
introduce how to analyze the resistance of large-size ciphers with respect
to NASA, and apply NASA to 14-round Speck96/96. The code of this
paper is available at https://github.com/AI-Lab-Y/NASA. Our work
arguably raises a new direction for neural aided cryptanalysis.

Keywords: Cryptanalysis · deep learning · Informative Bit · Bayesian

1 Introduction

Deep learning has received much expectation in the cryptography community
since the last century. Rivest in [17] reviewed various connections between ma-
chine learning and cryptography. Some possible directions of research in crypt-
analytic applications of machine learning were also suggested. Greydanus proved
that a simplified version of Enigma can be simulated by recurrent neural net-
works [14].

https://github.com/AI-Lab-Y/NASA

Although deep learning has shown its superiorities in various fields such as
computer vision [16], natural language processing [3], and smart medical [8], its
application in the field of conventional cryptanalysis has been stagnant. A few
valuable applications are only concentrated in the side-channel analysis [7, 15].

In Crypto’19, Gohr proposed a deep learning-based distinguisher [13] that is
also called neural distinguisher (ND). By placing a differential before ND, Gohr
developed a key recovery attack on 11-round Speck32/64, which shows consid-
erable advantages in terms of attack complexity over the differential attack [5].
In Eurocrypto’20, Benamira et al [2] presented a deeper analysis of ND.

In [13], each key guess corresponds to a key rank score that is directly de-
termined by the output of ND. A key guess is returned as a candidate when
its key rank score exceeds a threshold. Since the output of ND is unpredictable
and the threshold is set without any theoretical basis, the adversary does not
foresee the required data complexity to attack a specific cipher. As a result, the
estimation of the attack complexity and success rate must rely on practical ex-
periments that are finished within an acceptable runtime. This is unfavorable
for evaluating the security of ciphers against machine learning. Besides, when
a differential is placed before ND, enough neutral bits [4] must exist in this
prepended differential. Otherwise, the attack in [13] does not work.

In this paper, we have explored neural aided cryptanalysis and made contri-
butions as follows.

– We propose a Neural Aided Statistical Attack (NASA) which supports the-
oretical complexity estimation and does not rely on neutral bits. NASA
is based on a neural aided statistical distinguisher. And the key recovery is
transformed into the distinguishing between two normal distributions, which
tells the required data complexity of NASA. Four attacks on 9-round or 10-
round Speck32/64 proves the correctness of NASA. Experiments on round
reduced DES further prove that NASA has more potential than Gohr’s at-
tack when there are not enough neutral bits.

– We propose three methods to reduce the attack complexity of NASA. The
first one is reducing the key space by building ND on partial ciphertext bits.
This method comes from the truth that only partial ciphertext bits have a
significant influence on ND. We call these bits informative bits and propose
a Bit Sensitivity Test to identify them. The initial ND proposed by Gohr
takes the complete ciphertext pair as input, which forces the adversary to
guess all the key bits simultaneously. By building ND on partial informative
bits, the adversary guesses partial key bits at a time. The second one is a
highly selective Bayesian key search algorithm. It allows the adversary to
search for the most promising key guesses instead of traversing all the key
guesses. The third one is reducing the data complexity by exploiting neutral
bits. When there are available neutral bits, the data complexity of NASA
can be reduced. When these three methods are adopted, the average time
consumption of NASA on 11-round Speck32/64 is almost the same as that
of Gohr’s attack.

2

– At last, we introduce how to analyze the resistance of large-size ciphers with
respect to NASA by applying NASA to 14-round Speck96/96. A practical
attack on 10-round Speck96/96 is provided together.

Organization Sections 3, 4 presents the neural aided statistical distin-
guisher and NASA respectively. The three optimization methods are introduced
in sections 5, 6, 7. Applications to DES, Speck32/64, and Speck96/96 are pre-
sented in sections 8, 9, 10. At last, we summarize this paper and provide more
discussion.

2 Related Work

Let (P0, P1) denote a plaintext pair with difference ∆P . The corresponding in-
termediate states, ciphertexts are (S0, S1), (C0, C1).

2.1 Neutral Bit

Consider a differential ∆P → ∆S. Let E denote the encryption function covering
the differential. We denote the probability that the following condition holds as
the neutrality of the j-th bit

E(P0 ⊕ ej)⊕ E(P1 ⊕ ej) = ∆S, ej = 1� j,

where (P0, P1) stands for plaintext pairs conforming to the differential. If the
neutrality is 1, the j-th bit is called a neutral bit [4].

Based on k neutral bits {j1, · · · , jk} and a plaintext pair (P0, P1)|P0 ⊕ P1 =
∆P , we can generate a plaintext structure consisting of 2k plaintext pairs. Once
(P0, P1) satisfies the differential, the remaining 2k−1 plaintext pairs also conform
to the differential.

2.2 Neural Distinguisher

The target of ND [13] is to distinguish two classes of ciphertext pairs

Y (C0, C1) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

, (1)

where Y = 1 or Y = 0 is the label of (C0, C1). If the difference between S0 and
S1 is the target difference ∆S, the pair (C0, C1) is regarded as a positive sample
drawn from the target distribution. Otherwise, (C0, C1) is regarded as a negative
sample that comes from a uniform distribution.

A neural network is trained over N
2 positive samples and N

2 negative samples.
The neural network can be used as an ND if the distinguishing accuracy over a
testing database is higher than 0.5. The training pipeline refers to [13].

Given a sample (C0, C1), ND will output a score Z which is used as the
posterior probability

Pr{Y = 1 |(C0, C1)} = Z = ND(C0, C1), 0 6 Z 6 1 (2)

When Z > 0.5, the predicted label of (C0, C1) is 1 [13]. In this paper, let NDh
denote an h-round neural distinguisher.

3

2.3 Gohr’s Key Recovery Attack

Algorithm 1 summarizes the core idea of the basic version (unaccelerated version)
of Gohr’s key recovery attack [13].

Algorithm 1 Basic version of Gohr’s key recovery attack

Require: k neutral bits that exist in ∆P → ∆S; An ND built over ∆S;
A key rank score threshold, c1; A maximum number of iterations.

Ensure: A possible key candidate.
1: repeat
2: Random generate a plaintext pair (P 1

0 , P
1
1)|P 1

0 ⊕ P 1
1 = ∆P ;

3: Create a plaintext structure consisting of 2k plaintext pairs by k neutral bits;
4: Collect corresponding ciphertext pairs, (Ci

0, C
i
1), i ∈ {1, · · · , 2k};

5: for each key guess kg do
6: Partially decrypt 2k ciphertext pairs with kg;
7: Feed decrypted ciphertext pairs to ND and collect the outputs;
8: Calculate the key rank score vkg based on collected outputs

vkg =

2k∑
i=1

log2

(
Zi

1− Zi

)
, (3)

where Zi is the output of ND.
9: if vkg > c1 then

10: stop the key search and return kg as the key candidate;
11: end if
12: end for
13: until a key candidate is returned or the maximum number of iterations is reached.

The rank score vkg is likely to exceed c1 only when the plaintext structure
passes the prepended differential and kg is the right key. If the plaintext structure
does not pass the differential or the key guess is wrong, the rank score should
be very low. Thus, the right key can be identified by comparing the rank score
with a threshold. When the performance of ND is weak, 2k needs to be large.
Then more neutral bits are required.

2.4 Distinguishing between Two Normal Distributions

Consider two normal distributions: N (µr, σr), and N (µw, σw). A sample s is
sampled from either N (µr, σr) or N (µw, σw). We have to decide if this sample
is from N (µr, σr) or N (µw, σw).

The decision is made by comparing the value s to some threshold t. Without
loss of generality, assume that µr > µw. If s > t, the decision is s ∈ N (µr, σr).
If s < t, the decision is s ∈ N (µw, σw). Then there are error probabilities of two
types:

βr = Pr {N (µw, σw) |s ∈ N (µr, σr)} ,
βw = Pr {N (µr, σr) |s ∈ N (µw, σw)} .

(4)

4

When a sample s is sampled from N (µr, σr), the probability that the decision
is s ∈ N (µw, σw) is βr.

Here a condition is given on µr, µw, σr, σw such that the error probabilities
are βr and βw. The proof can refer to related research [11,12].

Proposition 1. For the test to have error probabilities of at most βr and βw, the
parameters of the normal distribution N (µr, σr) and N (µw, σw) with µr 6= µw
have to be such that

z1−βr × σr + z1−βw × σw
|µr − µw|

= 1 (5)

where z1−βr and z1−βw are the quantiles of the standard normal distribution.

3 Neural Aided Statistical Distinguisher

3.1 A Chosen Plaintext Statistical Distinguisher

Consider a cipher E and a differential ∆P
p0−→ ∆S where ∆P,∆S ∈ Fm2 and p0 is

the transition probability. Build an ND over ∆S. Randomly generate N plain-
text pairs with a difference ∆P and collect corresponding ciphertext pairs. The
adversary needs to distinguish between this cipher and a random permutation.

The concrete process is as follows. For each ciphertext pair
(
Ci0, C

i
1

)
, i ∈

{1, · · · , N}, the adversary feeds it into theND and obtains its output Zi. Setting
a threshold value c2, the adversary calculates the statistic T

T =

N∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

. (6)

When p0 > 2−m holds, it’s expected that the value of the statistic T for the
cipher is higher than that for a random permutation. In a key recovery setting,
the right key will result in the statistic T being among the highest values for all
candidate keys if N is large enough. Next, we give this a theoretical analysis.

3.2 Distribution of the Statistic under Right and Wrong keys

First, we regard a ciphertext pair as a point in a high-dimensional space. For a
given threshold c2, it is equivalent to creating a stable classification hyperplane in
this space using an ND. Thus the classification over a ciphertext pair is modeled
as a Bernoulli experiment. It provides us with a theoretical analysis framework.

According to the key recovery process, there are four possible situations when
we decrypt a ciphertext pair with a key guess kg as shown in Fig. 1:

· Decrypting a positive sample with the right key: the ciphertext pair
satisfies the differential and the key guess is right.
· Decrypting a positive sample with wrong keys: the ciphertext pair

satisfies the differential but the key guess is wrong.

5

Fig. 1. Four situations of decrypting a ciphertext pair with a key guess.

· Decrypting a negative sample with the right key: the ciphertext pair
does not satisfy the differential but the key guess is right.
· Decrypting a negative sample with wrong keys: the ciphertext pair

does not satisfy the differential and the key guess is wrong.

Given an ND, we denote the probability of Z > c2 as p1, p2, p3, p4 for the
four situations respectively. Then the distributions of the statistic (formula 6)
in these four situations are

T1 ∼ N (µ1, σ1), µ1 = N1 × p1, σ1 =
√
N1 × p1(1− p1)

T2 ∼ N (µ2, σ2), µ2 = N2 × p2, σ2 =
√
N2 × p2(1− p2)

T3 ∼ N (µ3, σ3), µ3 = N3 × p3, σ3 =
√
N3 × p3(1− p3)

T4 ∼ N (µ4, σ4), µ4 = N4 × p4, σ4 =
√
N4 × p4(1− p4)

(7)

if N1, N2, N3, N4 are high enough. N (µi, σi) is a normal distribution with mean
µi and standard deviation σi, i ∈ {1, 2, 3, 4}. An empirical condition is

Ni × pi > 5, Ni × (1− pi) > 5, i ∈ {1, 2, 3, 4}.

If the probability of the differential ∆P → ∆S is p0 and N ciphertext pairs
are collected randomly, then

N1 = N2 = N × p0, N3 = N4 = N × (1− p0) . (8)

Besides, the distributions of the statistic (formula 6) under the right key and
wrong keys are both a mixture of two normal distributions.

Right key guess This case contains two situations in which corresponding
distributions are N (µ1, σ1) and N (µ3, σ3). Since a mixture of two independent
normal distributions is still a normal distribution, the distribution of the statistic
(formula 6) under the right key guess is:

Tr = T1 + T3 ∼ N (µr, σr) (9)

µr = N × (p0p1 + (1− p0) p3) (10)

σr =
√
N × p0 × p1 (1− p1) +N (1− p0) p3 (1− p3) (11)

6

Wrong key guess This case also contains two situations in which corresponding
distributions are N (µ2, σ2) and N (µ4, σ4). Then the distribution of the statistic
(formula 6) under wrong key guesses is:

Tw = T2 + T4 ∼ N (µw, σw) (12)

µw = N × (p0p2 + (1− p0) p4) (13)

σw =
√
N × p0 × p2 (1− p2) +N (1− p0) p4 (1− p4) (14)

Negative samples in the high-dimensional space approximately obey uniform
distribution, thus p3 = p4 holds theoretically and experiments also verify it.
Since the accuracy of ND is higher than 0.5, p1 > p2 also holds with a high
probability. When we set c2 = 0.5, we ensure p1 > p2. Thus µr > µw also holds.

Since the distributions of Tr, Tw are different, the right key can be recovered
based on Proposition 1.

3.3 Data Complexity of the Statistical Distinguisher

Based on Proposition 1, one obtains the condition:

z1−βrσr + z1−βwσw
µr − µw

= 1 (15)

where the values of µr, σr, µw, σw refer to formula 10, 11, 13, 14 respectively.
In a key recovery setting, 1− βr is the minimum probability that the right key
survives, βw is the maximum probability that wrong keys survive.

Since we do not know the real classification hyperplane learned by ND, p1,
p2, p3, and p4 are estimated experimentally. Then the estimated values of p3 and
p4 will be slightly different even they should be theoretically equal. When the
probability p0 of the differential is very low, the slight distinction p3 − p4 may
dominate µr − µw, which is wrong. Thus we neglect the minor difference and
replace p3, p4 with pn.

Then the condition (formula 15) is simplified as

√
N =

z1−βr ×
√
p0a1 + (1− p0)a3 + z1−βw ×

√
p0a2 + (1− p0)a3

(p1 − p2)× p0
, (16)

where

a1 = p1(1− p1), a2 = p2(1− p2), a3 = pn(1− pn). (17)

The decision threshold t is:

t = µr − z1−βrσr = µw + z1−βwσw. (18)

The data complexity N is directly calculated when βr and βw are set. The
impacts of p0, p1, p2, pn on N are about O(p−20), O((p1 − p2)−2), O(pn) respec-
tively. The proof is presented in Appendix A.

7

3.4 Estimation of p1, pn

Consider an ND against a cipher, the values of p1, pn are estimated as:

1. Randomly generate M positive/negative samples and decrypt them for 1
round with the right/wrong subkeys.

2. Feed partially decrypted samples into ND.
3. Calculate the final ratio of Z > c2.

The ratio is the statistical expectation of p1 or pn. A large M can make the
statistical expectation accurate enough.

3.5 Further Analysis and Estimation of p2

When we decrypt a positive sample with a wrong key guess (Fig. 1(2)), the final
value of p2 is related to the Hamming distance between the wrong key guess and
the right key. Such a phenomenon is based on Property 1 and Property 2.

Property 1. Decrypt a ciphertext for one round with two different subkeys,

C1
h−1 = DecOneRound(Ch, kg1)

C2
h−1 = DecOneRound(Ch, kg2).

If kg1 and kg2 are only different at a few bits (e.g. just 1 bit or 2 bits), the
Hamming distance between C1

h−1 and C2
h−1 will be very small in high probability.

Property 2. Consider a neural network F (·). If two input samples s1, s2 are very
close to each other in the input space, two outputs F (s1), F (s2) of the neural
network may satisfy F (s1) ≈ F (s2) in high probability.

Although the distance metric in the input space of neural networks is complex
and unknown, the Hamming distance is a good alternative. Thus, it is expected
that p2 is related to the Hamming distance between the right key and wrong key
guesses.

Suppose we decrypt a positive sample (Ch+x,0, Ch+x,1) with x subkey guesses
simultaneously

Ch+j−1,0/1 = DecOneRound(Ch+j,0/1, kgh+j), j ∈ {1, · · · , x}

where kgh+j is the subkey guess of the (h+ j)-th round. (Ch,0, Ch,1) is fed into
an ND for estimating the probability of Z > c2.

When the last x − 1 subkey guesses kgh+j , j ∈ [2, · · · , x] are all right,
(Ch+1,0, Ch+1,1) is still a positive sample. Then the final probability of Z > c2
would be high if kgh+1 is different from the right subkey at few bits. However, if
kgh+j , j ∈ {2, · · · , x} are not all right, (Ch+1,0, Ch+1,1) is not a positive sample
anymore. Then the final probability of Z > c2 is closer to pn.

Thus, we consider x Hamming distances for estimating p2 at first. Let dj
denotes the Hamming distance between the right subkey and subkey guess in the

8

Algorithm 2 Estimation of p2|d1,··· ,dx
Require: a cipher with a subkey size of m; an NDh built over ∆P ;

M random plaintext pairs, (P i
0 , P

i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ {1, · · · ,M};

M random master keys, MKi, i ∈ {1, · · · ,M}; a threshold c2.
Ensure: p2|d1,··· ,dx .
1: Encrypt each plaintext pair (P i

0 , P
i
1) with a master key MKi for h+ x rounds;

2: Save the ciphertext pair (Ci
0, C

i
1) and subkeys skih+j , j ∈ {1, · · · , x};

3: for d1 = 0 to m, · · · , dx = 0 to m do
4: for i = 1 to M do
5: Randomly draw x subkey guesses kgij , j ∈ {1, · · · , x} where the Hamming

distance between kgij and skih+j is dj ;

6: Decrypt (Ci
0, C

i
1) with kgij , j ∈ {1, · · · , x} for x rounds;

7: Feed the decrypted ciphertext pair into NDh and save the output as
Zi|d1,··· ,dx ;

8: end for
9: Count the number of Zi|d1,··· ,dx > c2, and denote it as Td1,··· ,dx ;

10: Save p2|d1,··· ,dx =
Td1,··· ,dx

M
.

11: end for

(h+ j)-th round, and p2|d1,··· ,dx denotes the probability of Z > c2. Algorithm 2
is proposed to estimate p2|d1,··· ,dx .

Verification. Gohr providedND5,ND6,ND7,ND8 against Speck32/64 [13],
which are built over a plaintext difference (0x0040, 0). We have performed tests
on these four distinguishers. Let M = 107, Table 1 and Table 2 show the esti-
mation results of p2|d1 and p2|d1,d2 respectively.

Table 1. The estimation of p2|d1 of 4 neural distinguishers against round reduced
Speck32/64. For ND5, ND6, ND7, c2 = 0.55. For ND8, c2 = 0.5. p2|d1=0 = p1. Only
four decimal places are presented in this paper. Actually, we kept more decimal places
during follow-up experiments.

ND5
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.8889 0.5151 0.3213 0.2168 0.1556 0.1189 0.0956 0.08 6 0.0694

ND6
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.6784 0.4430 0.3135 0.2394 0.1958 0.1691 0.1522 0.1410 6 0.1336

ND7
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.4183 0.3369 0.2884 0.2607 0.2442 0.234 0.2276 0.2236 6 0.2211

ND8
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.5183 0.5056 0.4993 0.4958 0.4939 0.4927 0.4925 0.4918 6 0.4917

The test results have verified the analysis of p2. When two subkeys are guessed
simultaneously, p2|d1,d2 decreases sharply even if the subkey guess of the last
round is wrong at only 1 bit.

9

Table 2. the estimation of p2|d1,d2 of ND7 against Speck32/64. c2 = 0.55. the columns
correspond to d2. the rows correspond to d1. all results only retain two decimal places.
the same value is replaced by an uppercase letter. Y = 0.21, E = 0.22, J = 0.23,
U = 0.25, and V = 0.26.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.42 V E E Y Y Y Y Y Y Y Y Y Y Y Y Y

1 0.33 U E Y Y Y Y Y Y Y Y Y Y Y Y Y E

2 0.29 J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

3 V J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

4 J J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

5 E E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

6 E Y E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

7 E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y E

8 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

9 ∼ 16 6 Y

Thus, the choice of p2 depends on the target of the key recovery
attack. If we think the attack is successful as long as the Hamming distance
between the subkey guess and the right subkey does not exceed a threshold d,
the value of p2 should be

p2 = max
{
p2|d1,··· ,dx |d1 + · · ·+ dx > d

}
(19)

This choice is based on the following truth. By setting a proper threshold c2
such as c2 > 0.5, we ensure

p2|d1,··· ,dx 6 0.5, if d1 + · · ·+ dx > d. (20)

According to formula 16, the higher p2 is, the higher the required data complexity
is. The decision threshold also increases when p2 increases. Thus we only need
to focus on the highest data complexity required for filtering wrong keys.

Take ND7 as an example. Let d = 2, it means that the attack is successful
if the recovered subkey is different from the right subkey at most 2 bits. Then
p2 = p2|3 = 0.2607 or p2 = p2|0,1 = p2|3,0 = 0.26.

4 Neural Aided Statistical Attack

4.1 Key Recovery Attack Model

This neural aided statistical distinguisher is used to determine whether a key
guess may be the right key. This is done by the Statistical Test as shown in Algo-
rithm 3. Algorithm 4 summarizes the Neural Aided Statistical Attack (NASA)
based on the statistical distinguisher.

10

Algorithm 3 Statistical test for a key guess

Require: An ND; A key guess, kg;
A posterior probability threshold, c2; The decision threshold, t;
N ciphertext pairs (Ci

0, C
i
1) encrypted from (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ [1, N].

1: Decrypt N ciphertext pairs with kg;
2: Feed decrypted ciphertext pairs into ND, and collect the outputs Zi, i ∈ [1, N];
3: Calculate the statistic T in formula 6;
4: if T > t then
5: Return kg as a key candidate.
6: end if

Algorithm 4 Neural Aided Statistical Attack

Require: The attacked cipher;
The differential with a probability of p0, ∆P

p0−→ ∆S;
Two maximum error probabilities, βr, βw;
A posterior probability threshold, c2.

Ensure: All possible key candidates.
1: Train an ND over ∆S;
2: Estimate p1, pn, p2 using ND (Section 3.4, Algorithm 2);
3: Calculate the data complexity N and the decision threshold t (Section 3.3);
4: Randomly generate N plaintext pairs (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ {1, · · · , N};

5: Collect corresponding N ciphertext pairs, (Ci
0, C

i
1), i ∈ {1, · · · , N};

6: for each key guess kg do
7: Perform the statistical test (Algorithm 3);
8: end for
9: Test surviving key candidates against a necessary number of plaintext-ciphertext

pairs according to the unicity distance for the attacked cipher.

4.2 Verification of the Key Recovery Attack Model

Four practical attacks on h-round Speck32/64 are performed to verify NASA.
The target is to recover the last subkey skh. It’s expected that returned subkey
guesses are different from skh at most d = 2 bits.

NASA should work as long as the adopted ND has a distinguishing accuracy
higher than 0.5. Besides, the data complexity should be correctly estimated once

∆P
p0−→ ∆S,ND, d, βr, and βw are provided. Thus, different settings about these

factors are considered.
Four distinguishersND5,ND6,ND7,ND8 provided by Gohr [13] are adopted.

Table 3 shows two different differentials adopted in the verification. Since no key
addition happens in Speck before the first nonlinear operation, these two differ-
entials can be extended to a 2/3-round differential respectively.

The verification plan consists of three steps:

1. Set the value of βr, βw. Calculate the data complexity N (formula 16).
2. Perform NASA 100 times with N samples.
3. Check the following observation indexes:

(a) The ratio that the right subkey (d1 = 0) survives.

11

Table 3. two options of the prepended differential of Speck32/64. nr is the number of
encryption rounds covered by the differential.

ID ∆P → ∆S p0 nr

1 (0x2800, 0x10)→ (0x0040, 0) 2−2 1

2 (0x211, 0xa04)→ (0x0040, 0) 2−6 2

(b) The average number of surviving subkey guesses in 100 trails.
(c) The ratio that the number of surviving subkeys does not exceed the

expected upper bound.

Table 4 summarizes the settings related to four attacks. Table 1 shows the
estimations of p2|d1 related to ND5, ND6, ND7, ND8. The value of p2 is p2|d1=3

in four attacks.

Table 4. Settings of the four attacks on round reduced Speck32/64. DID is the dif-
ferential’s ID in Table 3.

Attack ID Attack rounds ND DID p0 c2 p1 d p2 pn βr βw

1 9 ND5 2 2−6 0.55 0.8889 2 0.2168 0.0384 0.005 2−16

2 9 ND6 1 2−2 0.55 0.6784 2 0.2394 0.1162 0.005 2−16

3 10 ND7 1 2−2 0.55 0.4183 2 0.2607 0.2163 0.005 2−16

4 10 ND8 - 1 0.5 0.5183 2 0.4958 0.4914 0.001 2−16

Attack 1: recover sk9 of 9-round Speck32/64 In the first attack setting,
we get N = 15905 ≈ 213.957 (see formula 16). The decision threshold is t = 758.
The right subkey (d1 = 0) should survive with a 1 − βr = 0.995 probability
at least. Wrong subkey guesses (d1 > 3) should survive with a βw = 2−16

probability at most. The number of surviving subkey guesses should not exceed
137 + (216 − 137)× 2−16 = 137.998.

After performing this attack 100 times, we find:

– The right key (d1 = 0) has survived in all the 100 experiments.
– The average number of surviving subkey guesses is 18.41.
– The number of surviving subkey guesses does not exceed 137.998 in 100

experiments.

Attack 2: recover sk9 of 9-round Speck32/64 In the second attack setting,
N = 475 ≈ 28.893 and t = 101. The number of surviving subkey guesses should
not exceed 137 + (216 − 137)× 2−16 ≈ 137.998.

After performing this attack 100 times, we find:

– The right subkey has survived in all the 100 experiments.
– The average number of surviving subkey guesses is 33.43.
– The number of surviving subkey guesses does not exceed 137.998 in 100 ex-

periments.

12

Attack 3: recover sk10 of 10-round Speck32/64 In the third attack setting,
N = 5272 ≈ 212.364 and t = 1325. The number of surviving subkey guesses
should not exceed 137 + (216 − 137)× 2−16 ≈ 137.998.

After performing this attack 100 times, we find:

– The right subkey (d1 = 0) has survived in 99 experiments.
– The average number of surviving subkey guesses is 63.54.
– The number of surviving subkey guesses does not exceed 137.998 in 98 ex-

periments.

Attack 4: recover sk10 of 10-round Speck32/64 ND8 is a very weak
distinguisher. Its distinguishing accuracy is only about 0.518. In the fourth attack
setting, N = 25680 ≈ 214.65 and t = 13064. The number of surviving subkey
guesses should not exceed 137 + (216 − 137)× 2−16 ≈ 137.998.

After performing this attack 100 times, we find:

– The right subkey (d1 = 0) has survived in all the 100 experiments.
– The average number of surviving subkey guesses is 77.47.
– The number of surviving subkey guesses does not exceed 137.998 in 85 ex-

periments. In the other 15 experiments, the ratio that subkey guesses with
d1 = 3 survive is a little higher than that in the 85 experiments.

It’s clear that these four attacks 1 have achieved the most important two
targets of NASA. This proves the Hamming distance is a good distance metric
for estimating p2. The correctness of NASA is also well verified.

5 Reduce the Key Space

So far we need to guess all the bits of the subkey simultaneously since ND takes
the complete ciphertext pairs (C0, C1) as input. When the subkey has a large
size, this is a serious bottleneck.

5.1 An Intuitive Method for Reducing the Key Space

An intuitive method for reducing the key space is building ND on partial ci-
phertext bits

Ci = Ci[L− 1]|| · · · ||Ci[0], i ∈ [0, 1] (21)

Γ = {x1, x2, · · · , xk}, x1 > · · · > xk, k <= L (22)

ϕ(Ci, Γ) = Ci[x1]||Ci[x2]||Ci[xk], i ∈ [0, 1] (23)

1 It takes about 10 hours to 2 days to execute any one of the four attacks 100 times
when a graphics card is used. To facilitate readers to perform the experiment, we
provide accelerated versions, which are completed within 1 hour to 4 hours.

13

Y (ϕ(C0, Γ), ϕ(C1, Γ)) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(24)

Pr{Y = 1 |(ϕ(C0, Γ), ϕ(C1, Γ))} = ND(ϕ(C0, Γ), ϕ(C1, Γ)) (25)

where Ci[0] is the least significant bit of the ciphertext Ci, Γ is the subscript set
of selected ciphertext bits.

Such a method significantly reduces the key space to be searched. But which
ciphertext bits should we select for building ND? Can we develop a
generic and efficient framework for guiding this selection? In order to
better introduce our work for solving these problems, three new concepts are
proposed first.

Definition 1 An informative bit is the ciphertext bit that is helpful to distin-
guish between the cipher and a pseudo-random permutation.

Definition 2 For a cipher reduced to h rounds, the neural distinguisher trained
on the complete ciphertexts (C0, C1) is denoted as the teacher distinguisher
NDth, the neural distinguisher trained on partial ciphertext bits (ϕ(C0, Γ), ϕ(C1, Γ))
is denoted as the student distinguisher NDsh. The teacher distinguisher is
viewed as a special student distinguisher.

5.2 Identify Informative Bits by Bit Sensitivity Test

It’s clear that student distinguishers should be built on informative bits. How-
ever, it’s hard to identify informative bits according to Definition 1. Thus we
propose an approximate definition of the informative bit.

Definition 3 For an NDt, if the distinguishing accuracy is significantly affected
by the j-th bit of C0 or C1, the j-th ciphertext bit is an informative bit.

AnNDt works since it has learned knowledge from ciphertext bits. According
to Definition 1, only informative bits provide knowledge. Thus the ciphertext
bit that has a significant influence on the distinguishing accuracy of NDt must
be an informative bit.

Definition 3 does not ensure each informative bit that obeys Definition 1 is
identified successfully. But we only care about informative bits that are captured
by an NDt. This approximate definition helps develop a simple but effective
framework for identifying informative bits.

The proposed framework is named Bit Sensitivity Test (BST). Its core
idea is to test whether the distinguishing accuracy of an NDt drops after we
remove some knowledge related to the specific bit.

Gohr in [13] has proved that NDth, h ∈ {5, 6, 7, 8} against Speck32/64 cap-
tures the knowledge about the ciphertext difference and some unknown features.
Consider the j-th ciphertext bit. We remove the knowledge about the j-th ci-
phertext bit difference by

C0 = C0 ⊕ (η � j) or C1 = C1 ⊕ (η � j) (26)

14

where η is a random mask that could be 0 or 1.
We have performed an extreme test onNDth, h ∈ {5, 6, 7, 8} against Speck32/64.

If we XOR each bit of C0 or C1 with a random mask, NDth, h ∈ {5, 6, 7, 8} can
not distinguish positive samples and negative samples anymore. These tests im-
ply that knowledge about unknown features is also removed by one of the two
operations presented in formula 26.

After the knowledge related to a ciphertext bit is removed, the accuracy
decrease of NDt is named Bit Sensitivity, which is used to identify informative
bits. Algorithm 5 summarizes the BST.

Algorithm 5 Bit Sensitivity Test

Require: a cipher with a block size of m;
an NDt against this cipher;
a test dataset consisting of M

2
positive samples and M

2
negative samples.

Ensure: An array sen that saves the bit sensitivity of m ciphertext bits.
1: Test the distinguishing accuracy of NDt on the test dataset. Save it to sen[m];
2: for j = 0 to m− 1 do
3: for i = 1 to M do
4: Generate a random mask η ∈ {0, 1};
5: Ci,new

0 = Ci
0 ⊕ (η � j);

6: Feed the new sample (Ci,new
0 , Ci

1) to NDt;
7: end for
8: Count the current accuracy cp;
9: sen[j] = sen[m]− cp;

10: end for

Examples and analysis. We have applied the BST to NDth, h ∈ {5, 6, 7}
against Speck32/64. The results of the BST under three scenarios are shown in
Fig. 2 and Fig. 3 respectively.

We observe that sen0 ≈ sen1. This proves that C0⊕ (η � j) is equivalent to
C1 ⊕ (η � j). Besides, we know

– If sen0[j] > 0, the j-th ciphertext bit is an informative bit.
– If sen0,1[j] > 0, the j-th ciphertext bit provides some useful unknown fea-

tures. Since the knowledge about the bit difference is not removed, then only
useful unknown features can lead to a decrease in the accuracy.

– If sen0[j] ≈ sen0,1[j], the j-th ciphertext bit difference has little influence
on NDth.

Reverse verification about identified informative bits. To further
verify Definition 3, a reverse verification about identified informative bits is
performed. First, select some informative bits. Second, train an NDs on selected
informative bits and observe the distinguishing accuracy.

Taking NDt7 against Speck32/64 as an example, we have performed the re-
verse verification based on results in Fig. 3(b). Table 5 shows the distinguishing
accuracies under two settings. For Speck32/64, the j-th and (j + 16)-th bit are

15

Fig. 2. Results of BST of NDt
5 against Speck32/64, M = 106. sen0 is the results of

performing C0 ⊕ (η � j), sen1 is the results of performing C1 ⊕ (η � j), sen0,1 is
the results of performing two operations simultaneously, j ∈ {0, · · · , 31}. Only three
decimal places are kept.

(a) (b)

Fig. 3. Results of BST of NDt
6 (a) and NDt

7 (b) against Speck32/64, M = 106.

directly related to the same subkey bit. Thus the 8-th and 1st ciphertext bits
are also considered.

Table 5. accuracies of neural distinguishers trained on selected ciphertext bits

Γ Accuracy

{30 ∼ 23, 14 ∼ 7} 0.5414

{30 ∼ 23, 21 ∼ 17, 14 ∼ 7, 5 ∼ 1} 0.6065

{31 ∼ 0} 0.6067

The accuracy of NDt7 is 0.6067. When all the identified informative bits are
considered, the resulted NDs7 obtains a distinguishing accuracy of 0.6065, which
is almost the same as 0.6067. Such an experiment shows that Definition 3 can
help identify all the ciphertext bits that have a significant influence on teacher
distinguishers.

Once informative bits are identified by the Bit Sensitivity Test, the whole
key space can be divided into several subspaces. In each subspace, NASA is
performed to recover specific key bits. This informative-bit-based method is the
first generic technique for reducing the attack complexities of NASA.

16

6 Selective Key Search

In Algorithm 4, each possible key guess kg is tested. Inspired by the analysis of
p2 in Section 3.5, we develop a highly selective key search strategy for further
reducing the attack complexity.

Specifically, we do not need to traverse all the key guesses. Some key guesses
that are most likely to be the right key are recommended based on the key
guesses that have been tested.

6.1 Distribution of the Statistic Under Different Keys

We discuss the distribution of the statistic (formula 6) under different keys again.
We still take Fig. 1 as an example.

Suppose that the size of the key guess kg is m. According to the analysis in
Section 3.5, we know there are the following m+ 1 probabilities

p2|d1 = Pr{z > c2|S0 ⊕ S1 = ∆S}, d1 ∈ {0, · · · ,m},

where d1 is the Hamming distance between kg and the right key.

Then there are m+ 1 distributions of the statistic (formula 6)

Td1 ∼ N (µd1 , σd1), (27)

µd1 = N × (p0 × p2|d1 + (1− p0)pn),

σd1 =
√
N × p0 × p2|d1

(
1− p2|d1

)
+N (1− p0) pn (1− pn).

The parameters of these m + 1 distributions are obtained offline. These distri-
butions are used as prior knowledge to develop a Bayesian key search strategy.

6.2 Bayesian Key Search Strategy

Algorithm 6 summarizes the newly proposed Bayesian key search algorithm,
which is the second technique for reducing the attack complexities of NASA.

7 Reduce the Data Complexity

Consider the prepended differential ∆P
p0−→ ∆S. As we have presented in sec-

tion 3.3, the impact of p0 on the data complexity is about O(p−20).

Neutral bits seldom exist in a long differential characteristic. But there usu-
ally are numerous neutral bits in a short differential characteristic. This section
shows how to reduce the data complexity of NASA by neutral bits.

17

Algorithm 6 Bayesian Key Search Algorithm

Require: Ciphertext pairs, (Ci
0, C

i
1), i ∈ {1, · · · , N};

A neural distinguisher, ND;
Prior knowledge µd1 and σd1 , d1 ∈ {0, · · · ,m};
The number of key guess candidates to be generated within each iteration, ncand;
The number of iterations, niter.

Ensure: The list L of tuples of recommended key guesses and statistics.
1: K = {kg1, · · · , kgcand} ← choose ncand values at random without replacement from

the set of all subkey candidates.
2: L← {}
3: for t = 1 to niter do
4: for each kg ∈ K do
5: for i = 1 to N do
6: Decrypt Ci

0, C
i
1 with kg.

7: Feed partially decrypted ciphertext pair into ND.
8: Collect the output Zi,kg of ND.
9: end for

10: Compute the statistic (formula 6), T kg ;
11: L← L||(kg, T kg).
12: end for
13: for sk ∈ {0, · · · , 2m − 1} do
14: λsk =

∑
kg∈K

(
T kg − µhd(kg⊕sk)

)2
/σ2

hd(kg⊕sk).
/* hd(kg ⊕ sk) is the Hamming distance between kg and sk */

15: end for
16: K ← argsortsk(λ)[0 : ncand − 1].

/* Pick ncand key guesses with the ncand smallest score to form the new set of
key guess candidates K */

17: end for
18: Return L

7.1 Improved Neural Aided Statistical Attack

We still take the key recovery attack with 1-round decryption as an example to
introduce the improved NASA.

Its core idea is to divide the long differential into two short ones: ∆P
q−→ ∆B,

and ∆B
p−→ ∆S where p0 = q × p. The statistical distinguisher only covers the

second differential ∆B → ∆S. Neutral bits that exist in the first part ∆P → ∆B
are exploited. Algorithm 7 summarizes the details of the improved NASA.

Now, only the impact of p on the total data complexity is O(p−2). The
impact of q on the total data complexity is O(q−1). Thus, the total impact of
the prepended differential is O(q−1p−2) instead of O(p−20) = O(q−2p−2). The
data complexity is reduced by a factor of about q−1.

7.2 Further Improvement Based On Early Stopping

In Algorithm 7, 1
q plaintext structures are generated. But only one plaintext

structure P is expected to satisfy the differential ∆P → ∆B.

18

Algorithm 7 Improved neural aided statistical attack

Require: The attacked cipher;
The prepended differential, ∆P

q−→ ∆B
p−→ ∆S;

Neutral bits that exist in ∆P → ∆B;
Two maximum error probabilities, βr, βw;
A posterior probability threshold, c2.

Ensure: All possible key candidates.
1: Train an ND over ∆S;
2: Estimate p1, pn, p2 using ND (Section 3.4, Algorithm 2);
3: Calculate the data complexity N1 based on p, p1, pn, p2 (Section 3.3);
4: for j from 1 to 1

q
do

5: Based on ∆P and neutral bits, randomly generate a plaintext structure P con-
sisting of N1 plaintext pairs.

6: Perform the basic NASA based on P (Algorithm 4).
7: end for
8: Test surviving key candidates against a necessary number of plaintext-ciphertext

pairs according to the unicity distance for the attacked cipher.

This plaintext structure is called valid plaintext structure while other plain-
text structures are called invalid plaintext structures. If a valid plaintext struc-
ture is identified once it arises, Algorithm 7 can be early stopped at step 4.

We propose an identification method that does not change the process of
Algorithm 7. At a high level, the identification method is as follows:

1. Generate a plaintext structure P consisting of M plaintext pairs.
2. Filter key guesses based on the statistic T (formula 6) and a decision thresh-

old tM .
3. If the number of surviving key guesses exceeds a threshold tP , P is a valid

plaintext structure.

By setting proper parameters tM , the number of surviving key guesses exceeds
tP only when P is a valid plaintext structure.

Next, we present a theoretical analysis of M, tM , tP . For convenience, we
rewrite the statistic T (formula 6) as

T =

M∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

. (28)

The four situations as shown in Fig. 1 also exist in this identification process.
The following notations are adopted again:

– p2|d1 : the probability Pr{Z > c2|S0⊕S1 = ∆S} when the Hamming distance
between the key guess and the right key is d1 ∈ {0, · · · ,m}.

– pn : the probability Pr{Z > c2|S0 ⊕ S1 6= ∆S}.

Distribution of the statistic under valid plaintext structures When P
is a valid plaintext structure that satisfies ∆P → ∆B, there are M × p positive
samples and M × (1− p) negative samples.

19

At first, we do not set d1 clearly and denote p2|d1 as pV . The distribution of
the statistic(formula 28) is

TV ∼ N (µV , σV), (29)

µV = M [p× pV + (1− p)pn], (30)

σV =
√
M × p× pV (1− pV) +M(1− p)pn(1− pn). (31)

Select a specific d1, we have pV = p2|d1 . Let KV denote the set of key guesses
with a Hamming distance d1 from the right key. Then only kg ∈ KV makes the
above TV hold.

Distribution of the statistic under invalid plaintext structures When
P is an invalid plaintext structure, all the M samples are negative samples.

The distribution of the statistic(formula 28) is

TI ∼ N (µI , σI) (32)

µI = M × pn, σI =
√
M × pn(1− pn) (33)

Let K denote the set of all possible key guesses. Then any kg ∈ K makes the
above TI hold.

Distinguishing between TV and TI Since TV and TI are two different
normal distributions, the technique in Section 2.4 is used to distinguish these
two distributions. According to Proposition 1, the condition for distinguishing
TV and TI is

z1−βV × σV + z1−βI × σI
µV − µI

= 1 (34)

where

βV = Pr {N (µI , σI) |s ∈ N (µV , σV)} ,
βI = Pr {N (µV , σV) |s ∈ N (µI , σI)} ,

(35)

and s stands for a sample.
We present a deeper explanation about the two error probabilities βI , βV .

When P is an invalid plaintext structure, the maximum probability that key
guesses kg ∈ K survive the attack is βI . When P is a valid plaintext structure,
the minimum probability that key guesses kg ∈ KV survive the attack is 1−βV .

By simplifying formula 34, we know that the required data complexity M is

aV = pV (1− pV), an = pn(1− pn), (36)

√
M =

z1−βV ×
√
p× aV + (1− p)an + z1−βI ×

√
an

(pV − pn)× p
. (37)

And the decision threshold tM is

tM = µV − z1−βV σV = µI + z1−βIσI , (38)

where z1−βV and z1−βI are the quantiles of the standard normal distribution.

20

Identify valid plaintext structures by counting surviving keys When
P is a valid plaintext structure, The lower bound of the number of surviving
subkeys is |KV | × (1−βV). When P is an invalid plaintext structure, The upper
bound of the number of surviving subkeys is |K| × βI .

By setting two proper error probabilities βV , βI , we ensure the following
condition always holds

|KR| × (1− βV)� |K| × βI . (39)

Let tP satisfy the following condition

|KR| × (1− βV) > tP � |K| × βI , (40)

where x � y means that x is much larger than y here. Then valid plaintext
structures is identified by by comparing the number of surviving subkey guesses
with tP

2.

Algorithm 8 Identify valid plaintext structures

Require: a plaintext structure P with a size of M(formula 37);
an ND trained over ∆S;
the posterior probability threshold c2;
a decision threshold tM for filtering subkey guesses;
a decision threshold tP for identifying valid plaintext structures.

Ensure: the classification of P.
1: Collect the M ciphertext pairs corresponding to P;
2: Initialize a counter cp← 0;
3: for each possible subkey guess kg do
4: Decrypt M ciphertext pairs with kg;
5: Feed partially decrypted ciphertext pairs into ND;
6: Save the outputs of ND, Zi, i ∈ [1,M];
7: Count the number of Zi > c, and denote it as TM ;
8: if TM > tM then
9: cp← cp+ 1;

10: end if
11: end for
12: if cp > tP then
13: Return 1 (P is a valid plaintext structure).
14: else
15: Return 0 (P is an invalid plaintext structure).
16: end if

Algorithm 8 summarizes the concrete identification process. Since the iden-
tification is based on the same statistic as the key recovery, Algorithm 8 and
Algorithm 7 are able to be performed simultaneously. The necessary condition
is that the size of a plaintext structure P should exceed N1 and M .

2 We provide the code to verify Algorithm 8. The identification success rate over valid
plaintext structures is 100%.

21

Further analysis about pV . The data complexity M is related to pV . And
pV is related to the Hamming distance d1.

When pV increases, M (Equation 37) decreases since

√
M =

z1−βV ×
√
p× aV + (1− p)an + z1−βI ×

√
an

(pV − pn)× p

=
z1−βV ×

√
p(1− pV) + (1−p)an

pV
+

z1−βI×
√
an

pV

(
√
pV − pn√

pV
)× p

.

If pV increases, the numerator will decrease and the denominator will increase.
Then M will decrease.

When the Hamming distance d1 decreases, p2|d1 will increase in high probabil-
ity. But the number of subkey guesses in the subspace may decrease sharply when
d1 decreases, which may make the condition (formula 39) not hold. Thus, there
is a trade-off. As long as the condition (formula 39) holds, we advise pV = p2|d1
where d1 should be as small as possible.

8 Application to DES

This section proves that NASA has more potential than Gohr’s attack when
enough neutral bits do not exist in the prepended long differential.

DES [9] is a block cipher with a block size of 64 bits. The structure of DES
is the classical Feistel structure. Its round function f is given by eight different
S-boxes. More details refer to [9], please. We perform key recovery attacks on
round reduced DES.

8.1 Prepended Differentials

Two optimal 2-round iterative differentials found in [6] are

0x19600000/0
Pr= 1

234−−−−−→ 0x19600000/0,

0x1B600000/0
Pr= 1

234−−−−−→ 0x1B600000/0.
(41)

Based on these 2-round differentials, we can get longer iterative differentials.
These iterative differentials are used as the prepended differential ∆P → ∆S for
attacking round reduced DES.

According to the definition of the neutral bit, We measure the neutrality of
each ciphertext bit experimentally. We find that 18 neutral bits {33, · · · , 50} exist
in the above 2-round iterative differentials. As for 4-round iterative differentials,
no neutral bits exist anymore.

22

8.2 Build Neural Distinguishers Against DES

Let ∆S = 0x19600000/0, we build teacher distinguishers against DES up to 5
rounds. The distinguishing accuracy of the 5-round teacher distinguisher is 0.58.

Based on the BST, we find that 4 bits {39, 50, 56, 61} related to the fifth S-box
S5 and 4 bits {59, 37, 43, 49} related to the eighth S-box S8 are all informative
bits.

In order to introduce the next experiment more clearly, we focus on the
student distinguisher NDs5 built over the bits {39, 50, 56, 61} for now. Let the
posterior probability threshold be c2 = 0.5, we get p1 = 0.6041 and pn = 0.4890.
Table 6 shows the estimation of p2|d1 .

Table 6. The estimation of p2|d1 of NDs
5 against round reduced DES. c2 = 0.5. NDs

5

is built over 4 bits {39, 50, 56, 61}.

d1 0 1 2 3 4 5 6

p2|d1 0.6041 0.5042 0.5065 0.5083 0.5113 0.5043 0.4957

8.3 Attack DES with Gohr’s Attack

By placing the 2-round differential 0x19600000/0
234−1

−−−−→ 0x19600000/0 before
NDs5, with the help of the 18 neutral bits {33, · · · , 50}, 8-round DES is broken
by Gohr’s attack. The 6 key bits related to S5 of the last round are recovered.

Since no neutral bits exist in the 4-round differential 0x19600000/0
234−2

−−−−→
0x19600000/0, 10-round DES can not be broken by Gohr’s attack under
the current setting.

8.4 Neural Aided Statistical Attack on DES

Consider the basic NASA (Algorithm 4) on 10-round DES 3. We also adopt the

4-round prepended differential 0x19600000/0
234−2

−−−−→ 0x19600000/0 and NDs5.

Let d = 0, we have p2 = 0.5113 based on Table 6. Besides, let βr = 0.005,
and βw = 2−6. Since p0 = 234−2, the required data complexity is N = 240.824

chosen plaintext pairs.

Since the output of an S-box only contains 4 bits, we build a look-up table
offline for saving the tuple ((C0, C1),NDs5(C0, C1)). Then the time complexity is
not related to NDs5 anymore. In other words, the time complexity of this attack
is N×2×26 = 247.824. Thus, 10-round DES is broken by the basic NASA
under the same setting.

3 A practical attack on 6-round DES is first executed to confirm that the Hamming
distance is a good distance metric for NDs

5 and NASA is applicable.

23

9 Application to Speck32/64

Consider the prepended differential ∆P
p0−→ ∆S. For Gohr’s attack, the impact

of p0 on the data complexity is only O(p−10). For the basic NASA, the impact of
p0 on the data complexity is O(p−20).

In this section, we prove that NASA can achieve competitive performance
when the three optimization techniques introduced in sections 5, 6, 7 are avail-
able. Speck32/64 is one variant of the Speck family that is designed by the NSA
Research Directorate [1]. Its round function is

CL = (CL≪ 7)� CR,
CL = CL ⊕ sk,

CR = (CR≫ 2)⊕ CL.

where CL||CR is the input / output, and sk is the subkey.

9.1 Prepended Differential

To attack 11-round Speck32/64, Gohr adopted a 2-round prepended differential

∆P = (0x211, 0x204)
p0=2−6

−−−−−→ ∆S = (0x40, 0x0).

There are only 3 neutral bits {20, 21, 22} that exist in ∆P → ∆S. Besides, there
are 2 high probabilistic neutral bits {14, 15} whose neutrality exceeds 0.95.

Dividing this differential into two 1-round differentials

∆P = (0x211, 0x204)
q=2−4

−−−−→ ∆B = (0x2800, 0x10)
p=2−2

−−−−→ ∆S = (0x40, 0),

we measure the neutrality of each ciphertext bit. For ∆P → ∆B, there are 8
neutral bits {0, 11, 14, 15, 20, 21, 22, 26}. Moreover, there are 8 high probabilistic
neutral bits {1, 3, 4, 5, 23, 24, 27, 28} whose neutrality exceeds 0.95.

9.2 Build Neural Distinguishers Against Speck32/64

Two teacher distinguishers NDt6,ND
t
7 built by Gohr over ∆S = (0x40, 0) are

adopted in this section. Table 1 shows the estimation of p2|d1 of NDt6,ND
t
7 when

c2 = 0.55.
Based on the BST results ofNDt6,ND

t
7 as shown in Fig. 3, we build 2 student

distinguishers NDs6,ND
s
7 by setting Γ = {30 ∼ 23, 14 ∼ 7}. These 16 ciphertext

bits are related to the least significant 8 subkey bits. Later, NDs6,ND
s
7 are used

to recover sk10[7 ∼ 0] and sk11[7 ∼ 0] respectively.
Let c2 = 0.55, Table 7 shows the estimation of p2|d1 of NDs6,ND

s
7. Ta-

ble 8 summarizes the estimation of p1, pn of NDs6, NDs7, NDt6, NDt7 against
Speck32/64.

24

Table 7. The estimation of p2|d1 of NDs
6,NDs

7 against Speck32/64. c2 = 0.55. The
subscript set of selected ciphertext bits is Γ = {30 ∼ 23, 14 ∼ 7}

NDs
6

d1 0 1 2 3 ∼ 8

p2|d1 0.5132 0.4057 0.3402 6 0.3025

NDs
7

d1 0 1 2 3 ∼ 8

p2|d1 0.3576 0.3232 0.3036 6 0.2940

Table 8. The estimation of p1, pn of NDs
6,NDs

7,NDt
6,NDt

7 against Speck32/64. c2 =
0.55.

NDs
6 NDs

7 NDt
6 NDt

7

p1 0.5132 0.3575 0.6784 0.4183

pn 0.2604 0.2863 0.1162 0.2163

9.3 Gohr’s Attack on Speck32/64

Based on the 2-round prepended differential ∆P → ∆S and NDt7, NDt6, Gohr
presented a key recovery attack (Algorithm 1) on 11-round Speck32/64. Besides,
Gohr provided some optimization techniques for accelerating it.

The target is to recover the last two subkeys sk10, sk11. Gohr counted a key
guess as successful if the last subkey was guessed correctly and if the second
subkey was at Hamming distance at most two of the real key sk10. Finally, the
success rate of Gohr’s attack is about 52%.

We have performed this accelerated attack again based on the code provided
by Gohr. By adopting an Intel(R) Core(TM) i5-7500 CPU and one graphics card
(NVIDIA GeForce GTX 1060(6GB)), we find that the average time consumption
of performing this attack one time is about 70 seconds.

9.4 Neural Aided Statistical Attack on Speck32/64

At first, we consider the neural aided statistical attack on 11-round Speck32/64.
At a high level, the attack contains five stages:

– stage 1: Identify the valid plaintext structure P that satisfies ∆P → ∆B by
NDs7 (Algorithm 8). The subkey to be searched is sk11[7 ∼ 0].

– stage 2: Recover sk11[7 ∼ 0] by NDs7 (Algorithm 4).
– stage 3: Recover sk11 by NDt7 (Algorithm 4).
– stage 4: Recover (sk11, sk10[7 ∼ 0]) by NDs6 (Algorithm 4).
– stage 5: Recover (sk11, sk10) by NDt6 (Algorithm 4).

In stage 1, we set pV = p2|d1=1, βV = 0.1, βI = 2−8. It means that the
number of surviving subkey guess kg11[7 ∼ 0] should exceed 8× (1− 0.1) = 7.2
when P is a valid plaintext structure. Otherwise, the number of surviving subkey
should not exceed 28×2−8 = 1. Based on this setting, each plaintext structure P
should contain M = 37938 ≈ 215.211 plaintext pairs. The decision threshold for
filtering subkey guesses is tM = 11103. When the number of surviving subkey
guess exceeds 7 (tP = 8), P is a valid plaintext structure.

25

In stage 2, we set p2 = p2|d1=3, βr = 0.005, βw = 2−8. The required data
complexity is N = 22586 ≈ 214.463 plaintext pairs, and the decision threshold
for filtering subkey guess is t = 6690.

In stage 3, we filter kg11 based on each surviving kg11[7 ∼ 0]. Let p2 =
p2|d1=3, βr = 0.005, βw = 2−16, we have N = 5271 ≈ 212.364, t = 1325.

In stage 4, we filter (kg10[7 ∼ 0], kg11) based on each surviving kg11. Let
p2 = p2|d1=2, βr = 0.001, βw = 2−14, we have N = 5228 ≈ 212.36, t = 1589.

In stage 5, we filter (kg10, kg11) based on each surviving (kg10[7 ∼ 0], kg11).
Let p2 = p2|d1=2, βr = 0.001, βw = 2−16, we have N = 829 ≈ 29.697, t = 180.

We use 16 high probabilistic neutral bits {0, 1, 3 ∼ 5, 11, 14, 15, 20 ∼ 24, 26 ∼
28} that exist in ∆P → ∆B to generate plaintext structures P consisting of M =
37938 plaintext pairs with a difference ∆P = (0x211, 0xa04). The probability
that P is a valid plaintext structure is about 2−4.2. In stage 1, if no valid plaintext
structures occur after 24 plaintext structures are generated, the attack is stopped
and viewed as a failure.

Once one valid plaintext structure P is found, the remaining 4 stages are
performed based on this structure P. Moreover, 22586, 5271, 5228, 829 plaintext
pairs are selected from this valid plaintext structure respectively. In stage 1 ∼ 5,
the proposed Bayesian key search strategy (Algorithm 6) is applied in each stage.

The settings related to the Bayesian key search strategy are as follows. In
stage 1 and stage 2, the number of iterations is niter = 3. For each iteration, we
search ncand = 32 subkey guesses. In stage 3, we set niter = 4, ncand = 32. In
stage 4 and stage 5, we set niter = 3, ncand = 32.

We count a key guess as successful if the right subkey pair (sk10, sk11) sur-
vives. We have performed 500 experiments under the same hardware environ-
ment used in section 9.3, . Valid plaintext structures occurred in 339 experiments
and were all identified successfully. The attack was successful in 265 out of 339
trials. Besides, the attack was successful in 4 out of the remaining 161 trials. We
find that the invalid plaintext structure in the 4 trials contains many plaintext
pairs that pass the differential ∆P → ∆B. The average numbers of surviving key
guesses in the last four stages were 8.2, 32.9, 14.8, 11.1 respectively. The average
number of generated plaintext structures is 10.73. The average time consumption
of this attack is about 77.9 seconds, which is very close to the time consumption
of Gohr’s attack.

According to the attack settings in stages 2 ∼ 5, the probability that the right
keys survive should be (1 − 0.005)2 × (1 − 0.001)2 ≈ 0.988. We argue that the
reason why the attack failed in 74 out of 339 experiments is that the sampling
randomness is destroyed by neutral bits. To verify this argument, we randomly
generate 22586 plaintext pairs with a difference ∆B to form a plaintext structure
and have performed the attack 100 times again. The attack was successful in 99
out of 100 trials.

We wonder how many rounds NASA could attack at most. By adopting
NDt8 (let p2 = p2|d1=3) and 19 neutral bits, we guess and recover sk13, sk12
simultaneously. The theoretical data complexity is about 222.73 chosen-plaintext
pairs, which is lower than the data complexity (225 chosen plaintexts) of the

26

previous best attack [10] on 13-round Speck32/64. For NASA, the basic operation
contains two steps: (1) partially decrypt a ciphertext pair with a subkey guess,
(2) feed the decrypted ciphertext pair into ND and obtain the output. Under
the hardware environment used in section 9.3, it takes about 2.8 seconds to
perform 220 basic operations with NDt8. As a comparison, it takes about 0.28
seconds to process 220 key guesses by force key search. Thus, the theoretical time
complexity is about δ×222.73+32 where δ = 2.8

0.28 = 10, and 13-round Speck32/64
is broken by NASA 4.

10 Application to Speck96/96

NASA can be used to analyze the resistance of large-size ciphers with respect
to deep learning. We introduce the general idea by adopting the application to
Speck96/96 [1] as an example.

First, we train a student distinguisher NDs7 over ∆S = (0x80, 0) by setting
Γ = {69 ∼ 56, 21 ∼ 8}. Second, a practical attack 5 based on NDs7 is performed
to confirm that NASA is applicable. More precisely, the practical attack is used
to verify whether the Hamming distance is a good distance metric for estimating
p2 related toNDs7. Third, estimate the theoretical complexity of NASA on round
reduced Speck96/96.

By placing a prepended 6-round differential extended from the 5-round dif-

ferential ∆P = (0x900900480001, 0x11003084008)
2−32

−−−→ ∆S = (0x80, 0), we find
that the theoretical data complexity for recovering 14 subkey bits sk14[13 ∼ 0]
of 14-round Speck96/96 is 270.22 chosen plaintext pairs. Thus, the theoretical
time complexity is δ×270.22+14 where δ ≈ 4.85 under the hardware environment
used in section 9.3.

11 Conclusion

In this article, we propose a Neural Aided Statistical Attack (NASA) and three
methods for reducing the complexity of NASA. NASA recovers the right key
based on distinguishing between two different normal distributions. NASA is
the first deep learning-based cryptanalysis technique that supports theoretical
complexity estimation and does not rely on any special properties such as neutral
bits. Applications to round reduced DES, Speck32/64, and Speck96/96 prove the
superiorities of NASA.

Our work in this article also provides many inspirations for neural aided
cryptanalysis. First, if we replace the neural network with other machine learn-
ing models, NASA still works. Thus, it is possible to further accelerate NASA by
adopting other machine learning-based distinguishers. Second, when we try to
reduce the key space, we find that ciphertext bits have a different influence on the

4 The code of NASA on 12-round Speck32/64 is provided. The average runtime is
under two hours on a GeForce GTX 1080 Ti GPU.

5 The code of practical NASA on 10-round Speck96/96 is provided.

27

neural distinguisher. This finding is not only useful for neural aided cryptanaly-
sis. The traditional differential attack may be improved by exploiting knowledge
extracted from neural distinguishers. Third, the data complexity for distinguish-
ing two normal distributions is very high, which makes the data complexity of
basic NASA is also high. If some new probability distributions are more suitable
for simulating the key recovery process, new neural aided attacks with a lower
complexity are able to be developed. Fourth, if a distance metric is better than
the Hamming distance, NASA would give more accurate estimations. At last,
the negative influence of neutral bits needs to be further explored.

A Analysis of the Data Complexity of Basic NASA

The data complexity of NASA is related to ND and the prepended differential.
In this appendix, we present the analysis of each part’s impact on the data
complexity.

A.1 The Differential’s Impact on the Data Complexity

According to formula 16, the data complexity N is affected by the probability
p0 of the prepended differential as

√
N =

z1−βr
√
p0a1 + (1− p0)a3 + z1−βw

√
p0a2 + (1− p0)a3

(p1 − p2)× p0

∝
z1−βr

√
a3 + (a1 − a3)p0 + z1−βw

√
a3 + (a2 − a3)p0

p0

∝
√
a3 + (a1 − a3)p0 + a4 ×

√
a3 + (a2 − a3)p0

p0

where a4 =
z1−βw
z1−βr

. We further know

N ∝ p−20

[
a3 + a2

4a3 + (a1 − a3 + a24a2 − a24a3)p0 + a5
]

where a5 = 2 × a4 ×
√
a3 + (a1 − a3)p0 ×

√
a3 + (a2 − a3)p0. Thus the impact

of the probability p0 of the differential is O(p−20).

A.2 The Neural Distinguisher’s Impact on the Data Complexity

Three probabilities p1, p2, pn are related to the neural distinguisher. Since pn is
related to negative samples and p1, p2 are related to positive samples, we discuss
pn separately.

28

The impact of pn In formula 16, only a3 is related to pn.

√
N =

z1−βr
√
p0a1 + (1− p0)a3 + z1−βw

√
p0a2 + (1− p0)a3

(p1 − p2)× p0
∝
√
p0a1 + (1− p0)a3 + a4 ×

√
p0a2 + (1− p0)a3

⇒ N ∝ p0 × a1 + a24 × p0 × a2 + (1− p0)(1 + a24)a3 + a5

Next, we focus on attack scenarios where the p0 is low. This makes the
discussion easier and more concise. This simplification is also reasonable. Because
when we attack a cipher for more rounds, the probability of the differential is
generally low.

When p0 → 0, a5 → 2×a4×a3. Thus the impact of a3 on the data complexity
is O(a3). Since pn < 1 always holds and a3 = pn − p2n, the impact of pn on the
data complexity is also O(pn).

The impact of p1, p2 In formula 16, a1, a2 are related to p1, p2 respectively.
The impacts of a1, a2 are adjusted by p0.

Due to this property, we also focus on attack scenarios where p0 → 0.

√
N =

z1−βr
√
p0a1 + (1− p0)a3 + z1−βw

√
p0a2 + (1− p0)a3

(p1 − p2)× p0

≈
z1−βr

√
(1− p0)a3 + z1−βw

√
(1− p0)a3

(p1 − p2)× p0
∝ (p1 − p2)−1

Thus the impact of p1, p2 on the data complexity is O((p1 − p2)−2).

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, June 7-11, 2015.
pp. 175:1–175:6. ACM (2015)

2. Benamira, A., Gérault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. In: Canteaut, A., Standaert, F. (eds.) Advances in
Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17-21, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12696,
pp. 805–835. Springer (2021)

3. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In:
Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Pro-
cessing Systems 13, Papers from Neural Information Processing Systems (NIPS)
2000, Denver, CO, USA. pp. 932–938. MIT Press (2000)

4. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M.K. (ed.) Advances
in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference,
Santa Barbara, California, USA, August 15-19, 2004, Proceedings. Lecture Notes
in Computer Science, vol. 3152, pp. 290–305. Springer (2004)

29

5. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1990, Proceedings. Lecture Notes in Computer Science, vol. 537, pp.
2–21. Springer (1990)

6. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017)

8. Chen, Y., Yu, L., Ota, K., Dong, M.: Robust activity recognition for aging society.
IEEE J. Biomed. Health Informatics 22(6), 1754–1764 (2018)

9. Davies, D.W.: Some regular properties of the ’data encryption standard’ algorithm.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology: Pro-
ceedings of CRYPTO ’82, Santa Barbara, California, USA, August 23-25, 1982.
pp. 89–96. Plenum Press, New York (1982)

10. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A.,
Youssef, A.M. (eds.) Selected Areas in Cryptography - SAC 2014 - 21st Interna-
tional Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8781, pp. 147–164. Springer (2014)

11. Feller, W.: An introduction to probability theory and its applications. vol. ii. Pop-
ulation 23(2), 375 (1968)

12. Gisselquist, R., Hoel, P.G., Port, S.C., Stone, C.J.: Introduction to probability
theory. American Mathematical Monthly 81(9), 1041 (1974)

13. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol.
11693, pp. 150–179. Springer (2019)

14. Greydanus, S.: Learning the enigma with recurrent neural networks. CoRR
abs/1708.07576 (2017)

15. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 148–179 (2019)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States. pp. 1106–1114 (2012)

17. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Mat-
sumoto, T. (eds.) Advances in Cryptology - ASIACRYPT ’91, International Confer-
ence on the Theory and Applications of Cryptology, Fujiyoshida, Japan, November
11-14, 1991, Proceedings. Lecture Notes in Computer Science, vol. 739, pp. 427–
439. Springer (1991)

30

	Neural Aided Statistical Attack for Cryptanalysis

