Arguments of Knowledge via hidden order groups

Steve Thakur

Abstract

We study non-interactive arguments of knowledge (AoKs) for commitments in groups of hidden order. We provide protocols whereby a Prover can demonstrate certain properties of and relations between committed sets/multisets, with succinct proofs that are publicly verifiable against the constant-sized commitments. In particular, we provide AoKs for the disjointness of committed sets/multisets in cryptographic accumulators, with a view toward applications to verifiably outsourcing data storage and sharded stateless blockchains.

Recent work ([DGS20]) suggests that the hidden order groups need to be substantially larger in size that previously thought in order to ensure the desired security level. Thus, in order to keep the communication complexity between the Prover and the Verifier to a minimum, we have designed the protocols so that the proofs entail a constant number of group elements, independent of the number of the committed sets/multisets rather than just independent of the sizes of these sets/multisets.

If the underlying group of hidden order is an appropriate imaginary quadratic class group or a genus three Jacobian, the argument systems are transparent. Furthermore, since all challenges are public coin, the protocols can be made non-interactive using the Fiat-Shamir heuristic. We build on the techniques from [BBF19] and [Wes18].

1 Introduction

A commitment scheme is a fundamental cryptographic primitive which is the digital analog of a sealed envelop. Committing to a message m is akin to putting m in the envelop. Opening the commitment is like opening the envelop and revealing the content within. Commitments are endowed with two basic properties. The hiding property entails that a commitment reveals no information about the underlying message. The binding property ensures that one cannot alter the message without altering the commitment. A cryptographic accumulator is a succinct binding commitment to a set or a multiset. A Prover with access to the set/multiset can prove membership or non-membership of an element with a proof verifiable against the succinct commitment held by a Verifier.

Finite abelian groups of hidden order have seen a surging interest within cryptography in the last few years. The adaptive root and strong RSA assumptions in such groups yield a cryptographic accumulator which is universal and dynamic with batchable membership and non-membership proofs ([BBF19]). One of the best known verifiable delay functions is that constructed in ([Wes18]), which can be instantiated with any group of unknown order in which the adaptive root assumption holds. Such groups also form the basis for the transparent polynomial commitment constructed in ([BFS19]). This is a polynomial commitment with logarithmic sized proofs and verification time and yields the first known transparent ZK-SNARK.

In this paper, we explore non-interactive arguments of knowledge in groups of hidden order. We provide protocols whereby a Prover who stores data in the form of sets/multisets can prove relationships between these sets/multisets with communication complexity independent of the size of this data. These proofs can be publicly verified against the constant-sized commitments held
by the Verifier. Our primary goal is to provide protocols for proofs of disjointness of committed sets/multisets in cryptographic accumulators. The primary use cases for these AoKs are potential applications to sharded stateless blockchains and to verifiable outsourcing of data.

As was the case with previously studied arguments of knowledge in hidden order groups ([BBF19] [CFGNK20] etc.), the proofs consist of elements of the group G and λ-bit integers, where λ is the security parameter. Recent work ([DGS20]) suggests that the hidden order groups need to be substantially larger in size than previously thought, in order to ensure the desired security level. Furthermore, the two known candidates for transparent hidden order groups - imaginary quadratic class groups and genus three Jacobians - are not as well studied as RSA groups when it comes to potential attacks against the adaptive root and strong-RSA assumptions. Hence, it is conceivable that these groups might need to be even larger than presently believed. Bearing this in mind and with a view toward keeping the communication complexity between the Prover and the Verifier to a minimum, we have designed the protocols so that the proofs consist of a constant number of group elements, independent of the number of committed sets/multisets involved, rather than just independent of the sizes of these sets/multisets.

1.1 Structure of the paper

In section 2, we go over some notations, background and a few lemmas we will need repeatedly in the subsequent sections. In section 3, we provide protocols for aggregating the knowledge of multiple discrete logarithms in hidden order groups. This is equivalent to AoKs for multiple committed sets/multisets, the proofs for which can be publicly verified against the succinct commitments.

In section 4, we provide protocols whereby a Prover holding the data can demonstrate the pairwise disjointness of multiple data sets/multisets with proofs publicly verifiable against the commitments. While a straightforward approach would entail proofs with $O(n^2)$ group elements to prove pairwise disjointness of n committed sets/multisets, we provide protocols to do so with $O(1)$ group elements and $n + O(1) \lambda$-bit integers.

In section 5, we discuss some applications such as verifiable outsourcing of data. The protocols allow a client node to outsource data sets/multisets to an untrusted server node who can verifiably demonstrate properties of and relations between these data sets/multisets with succinct proofs that can be publicly verified against the commitments held by the client node. The section also contains protocols whereby the server node can verifiably identify the committed multiset with the highest/lowest frequency of a batch of elements. We also briefly discuss how our protocols for arguments of disjointness might have applications to sharded stateless blockchains instantiated with hidden order groups.

We have put a few other protocols such as those demonstrating relations between the underlying sets of committed multisets in the appendix. We also discuss a minor generalization of Wesolowski’s proof of exponentiation in Appendix C. This helps reduce the Verifier’s work in some of our protocols in Sections 3 and 4.

2 Preliminaries

We first state some definitions and notations used in this paper.

Notations: We denote the security parameter by λ and the set of all polynomial functions by $\text{poly}(\lambda)$. A function $\epsilon(\lambda)$ is said to be negligible - denoted $\epsilon(\lambda) \in \text{negl}(\lambda)$ - if it vanishes faster than the reciprocal of any polynomial. An algorithm \mathcal{A} is said to be a probabilistic polynomial
time (PPT) algorithm if it is modeled as a Turing machine that runs in time \(\text{poly}(\lambda) \). We denote by \(y \leftarrow A(x) \) the process of running \(A \) on input \(x \) and assigning the output to \(y \). For a set \(S \), \(\#S \) or \(|S| \) denotes its cardinality and \(x \xleftarrow{\$} S \) denotes selecting \(x \) uniformly at random over \(S \). For a positive integer \(n \), we write \(\{0, 1, \ldots, n-1\} \). \text{NextPrime}(n) \) denotes the smallest prime \(\geq n \).

For statements \(A, B \) we say that \(A \implies B \) with overwhelming probability (denoted by \(A \implies B \)) if \(1 - \Pr[B \mid A] = \text{negl}(\lambda) \).

\(H_{FS,\lambda} \) denotes the hashing algorithm used by the Fiat-Shamir-heuristic. It generates \(\lambda \)-bit primes.

2.1 Candidates for hidden order groups

At the moment, there are only three known families of finite abelian groups of unknown order. We briefly discuss them here.

1. **RSA groups:** For distinct 1536-bit primes \(p, q \), define \(N := pq \). The group \((\mathbb{Z}/N\mathbb{Z})^*\) has order \(\phi(N) = (p-1)(q-1) \) which can only be computed by factorizing \(N \). The strong-RSA assumption is believed to hold in the RS group. However, the group does contain the element \(-1 \mod N\) of a known order 2. For the adaptive root assumption to hold, the group has to be replaced by its quotient group \((\mathbb{Z}/N\mathbb{Z})^*/\{\pm 1\}\) of order \((p-1)(q-1)/2 \).

 The RSA groups suffer from the need for a trusted setup. In practice, this can be mitigated by a one-time secure multi-party computation. At the moment, a 3300-bit RSA modulus yields a security level of 128-bits.

2. **Class groups:** Computing the class group of a number field is a long-standing problem in algorithmic number theory. Hence, class groups are natural candidates for hidden order groups. At the moment, the only class groups that allow for efficient group operations are those of imaginary quadratic fields.

 For a square-free integer \(d > 0 \), the field \(\mathbb{Q}(\sqrt{-d}) \) has a class group of size roughly \(\sqrt{d} \). This group is believed to fulfill the strong-RSA assumption. Furthermore, if \(d \) is a prime \(\equiv 3 \mod 4 \), the 2-torsion group is trivial, which eliminates the possibility of known elements of order 2. Such a group is believed to fulfill the strong-RSA, low order and \{2\}-fractional root assumptions unless the integer \(d \) lies within a certain thin set of integers.

 A 6656-bit discriminant \(d \) yields a security level of 128-bits at the moment. Unlike RSA groups, class groups allow for a transparent (trustless) setup. The downside is that for the same level of security, the group operations are roughly 10 times slower than modular multiplication.

3. **Jacobians:** Recently, the group of \(\mathbb{F}_p \)-valued points of the Jacobian of a genus three hyperelliptic curve over a prime field \(\mathbb{F}_p \) has been proposed as a candidate [DGS20]. While this idea needs more scrutiny, it seems promising because of the transparent setup, the smaller key sizes and the fact that the group operations are 28 times faster than those in class groups for the same level of security.

 For an irreducible polynomial \(f(X) \in \mathbb{Z}[X] \) of degree 7 with Galois group \(S_7 \) and a prime \(p \) such that \(f(X) \mod p \) is separable, the hyperelliptic curve \(C : Y^2 = f(X) \) over \(\mathbb{F}_p \) yields a Jacobian that is resistant to the known attacks. At the moment, such a genus three hyperelliptic Jacobian over a prime field \(\mathbb{F}_p \) of bit-size 1100 allows for a security level of 128-bits. This group \(\text{Jac}(C)(\mathbb{F}_p) \) is roughly of size \(p^3 \).

 Unfortunately, the adaptive root assumption fails in the group \(\text{Jac}(C)(\mathbb{F}_p) \). However, the group obtained by replacing it by an appropriate quotient group appears to satisfy the adaptive root assumption and the weaker assumptions such as the fractional root and low order assumptions.
2.2 Argument Systems

An argument system for a relation $R \subseteq X \times W$ is a triple of randomized polynomial time algorithms $(\mathsf{PGen}, \mathcal{P}, \mathcal{V})$, where PGen takes an (implicit) security parameter λ and outputs a common reference string (CRS) pp. If the setup algorithm uses only public randomness we say that the setup is transparent and that the CRS is unstructured. The prover \mathcal{P} takes as input a statement $x \in X$, a witness $w \in W$, and the CRS pp. The verifier \mathcal{V} takes as input pp and x and after interactions with \mathcal{P} outputs 0 or 1. We denote the transcript between the prover and the verifier by $\langle \mathcal{V}(pp, x) \rangle$ and $\langle \mathcal{P}(pp, x, w) \rangle$ and write $V(pp, x) = 1$ to indicate that the verifier accepted the transcript. If \mathcal{V} uses only public randomness we say that the protocol is public coin.

We now define soundness and knowledge extraction for our protocols. The adversary is modeled as two algorithms A_0 and A_1, where A_0 outputs the instance $x \in X$ after PGen is run, and A_1 runs the interactive protocol with the verifier using a state output by A_0. In a slight deviation from the soundness definition used in statistically sound proof systems, we do not universally quantify over the instance x (i.e. we do not require security to hold for all input instances x). This is due to the fact that in the computationally-sound setting the instance itself may encode a trapdoor of the common reference string, which can enable the adversary to fool a verifier. Requiring that an efficient adversary outputs the instance x prevents this. In our soundness definition the adversary A_1 succeeds if he can make the verifier accept when no witness for x exists. For the stronger argument of knowledge definition we require that an extractor with access to A_1’s internal state can extract a valid witness whenever A_1 is convincing. We model this by enabling the extractor to rewind A_1 and reinitialize the verifier’s randomness.

Definition 2.1. We say an argument system $(\mathsf{PGen}, \mathcal{P}, \mathcal{V})$ for a relation R is **complete** if for all $(x,w) \in R$,
$$\Pr[\langle \mathcal{V}(pp, x), \mathcal{P}(pp, w) \rangle = 1 : pp \xleftarrow{\$} \mathsf{PGen}(\lambda)] = 1.$$

Definition 2.2. We say an argument system $(\mathsf{PGen}, \mathcal{P}, \mathcal{V})$ is **sound** if \mathcal{P} cannot forge a fake proof except with negligible probability.

Definition 2.3. We say a sound argument system is an argument of knowledge if for any polynomial time adversary A, there exists an extractor \mathcal{E} with access to A’s internal state that can, with overwhelming probability, extract a valid witness whenever A is convincing.

Definition 2.4. An argument system is **non-interactive** if it consists of a single round of interaction between \mathcal{P} and \mathcal{V}.

The Fiat-Shamir heuristic ([FS87]) can be used to transform interactive public coin argument systems into non-interactive systems. Instead of the Verifier generating the challenges, this function is performed by a public hashing algorithm agreed upon in advance.

2.3 Cryptographic assumptions

The cryptographic protocols make extensive use of groups of unknown order, i.e., groups for which the order cannot be computed efficiently. Concretely, we require groups for which two hardness assumptions hold. The Strong RSA Assumption ([BP97]) roughly states that it is hard to take arbitrary roots of random elements. The much newer Adaptive Root Assumption ([Wes19]) is the dual to the Strong RSA Assumption and states that it is hard to take random roots of arbitrary group elements. Both of these assumptions are believed to hold in generic groups of hidden order ([Wes18] [BBF19] [DGS20]).
Assumption 2.1. We say that the adaptive root assumption holds for a group \mathbb{G} if there is no efficient probabilistic polynomial time (PPT) adversary $\mathcal{A}_0, \mathcal{A}_1$ that succeeds in the following task. \mathcal{A}_0 outputs an element $w \in \mathbb{G}$ and some state. Then a random prime ℓ is chosen and $\mathcal{A}_1(\ell, \text{state})$ outputs $w^{1/\ell} \in \mathbb{G}$.

Assumption 2.2. For a set S of rational primes, we say \mathbb{G} satisfies the S-strong RSA assumption if given a random group element $g \in \mathbb{G}$ and a prime $\ell \notin S$, no PPT algorithm \mathcal{A} is able to compute (except with negligible probability) the ℓ-th root of a chosen element $w \in \mathbb{G}$. When $S = \emptyset$, it is called the strong RSA assumption.

Assumption 2.3. We say \mathbb{G} satisfies the low order assumption if no PPT algorithm can generate (except with negligible probability) an element $a \in \mathbb{G} \setminus \{1\}$ and an integer $n < 2^{\text{poly}(\lambda)}$ such that $a^n = 1 \in \mathbb{G}$.

Assumption 2.4. For a set S of rational primes, we say \mathbb{G} satisfies the S-fractional root assumption if for a randomly generated element $g \in \mathbb{G}$, no PPT algorithm can output $h \in \mathbb{G}$ and $d_1, d_2 \in \mathbb{Z}$ such that

$$g^{d_1} = h^{d_2} \land \gcd(d_1, d_2) = 1 \land d_2 \text{ has a prime divisor outside } S$$

except with negligible probability. When $S = \emptyset$, it is called the fractional root assumption.

Clearly, if $S_0 \subseteq S$, the S_0-fractional root assumption implies the S-fractional root assumption. For instance, class groups of imaginary quadratic fields are believed to fulfill the 2-fractional root assumption although they do not fulfill the (stronger) fractional root assumption. This is because there is a well-known algorithm to compute square roots in imaginary quadratic class groups $[\text{BS96}]$. The assumptions bear the following relations:

$$\{\text{Adaptive root assumption}\} \Rightarrow \{\text{Low order assumption}\},$$

$$\{\text{Low order assumption}\} \land \{S\text{-Strong-RSA assumption}\} \Rightarrow \{S\text{-Fractional root assumption}\}.$$ We refer the reader to the appendix of $[\text{BBF19}]$ for further details.

Definition 2.5. For elements $a, b \in \mathbb{G}$ and a rational $\alpha \in \mathbb{Q}$, we say $a^\alpha = b$ with respect to a PPT algorithm \mathcal{A} if \mathcal{A} can generate integers $d_1, d_2 \in \mathbb{Z}$ such that:

- $\alpha = d_1 d_2^{-1}$
- $a^{d_1} = b^{d_2}$
- $|d_1|, |d_2| < 2^{\text{poly}(\lambda)}$.

Note that if a PPT algorithm \mathcal{A} generates an element $a \in \mathbb{G}$ and distinct rationals $d_1 d_2^{-1}, d_3 d_4^{-1}$, $(d_i \in \mathbb{Z})$ such that

$$a^{d_1 d_2^{-1}} = a^{d_3 d_4^{-1}} \in \mathbb{G},$$

then $a^{d_1 d_4 - d_2 d_3} = 1$ and $d_1 d_2 - d_2 d_3 \neq 0$. So the low order assumption implies that \mathcal{A} cannot generate such a tuple $(a, d_1, d_2, d_3, d_4) \in \mathbb{G} \times \mathbb{Z}^4$, except with negligible probability. Furthermore, by Shamir’s trick, $a^\alpha = b$ is equivalent to \mathcal{A} being able to generate an element $a_0 \in \mathbb{G}$ and co-prime integers d_1, d_2 such that

$$\alpha = d_1 d_2^{-1}, \quad a_0^{d_1} = a, \quad a_0^{d_2} = b.$$

2.3.1 Generic group models for hidden order groups

We will use the generic group model for groups of unknown order as defined by $[\text{DK02}]$ and $[\text{BBF19}]$. The group is parametrized by two integer public parameters A, B. The order of
the group is sampled uniformly from the interval $[A, B]$. The group G is defined by a random injective function $\sigma : \mathbb{Z}_G \rightarrow \{0, 1\}^n$ for some $n >> \log_2(|G|)$. A generic group algorithm A is a probabilistic algorithm. Let L be a list that is initialized with the encodings given to A as input. The algorithm can query two generic group oracles:

- O_1 samples a random $r \in \mathbb{Z}_G$ and returns $\sigma(r)$, which is appended to the list L of encodings.
- When L has size q, the second oracle $O_2(i, j, \pm)$ takes two indices $i, j \in \{1, \cdots, q\}$ and a sign bit and returns $\sigma(x_i \pm x_j)$ which is appended to L.

2.4 Multiset notations and operations

We first recall/introduce a few basic definitions and notations concerning multisets. For a multiset M, we denote by $\text{Set}(M)$ the underlying set of M. For any element x, we denote by $\text{mult}(M, x)$ the multiplicity of x in M. Thus, $M = \{\text{mult}(M, x) \times x : x \in \text{Set}(M)\}$. For brevity, we write

$$\Pi(M) := \prod_{x \in \text{Set}(M)} x^{\text{mult}(M, x)}.$$

For two multisets M, N, we have the following operations:

- The sum $M + N := \{\text{mult}(M, x) + \text{mult}(N, x) \times x : x \in \text{Set}(M) \cup \text{Set}(N)\}$
- The union $M \cup N := \{\max(\text{mult}(M, x), \text{mult}(N, x)) \times x : x \in \text{Set}(M) \cup \text{Set}(N)\}$
- The intersection $M \cap N := \{\min(\text{mult}(M, x), \text{mult}(N, x)) \times x : x \in \text{Set}(M) \cup \text{Set}(N)\}$
- The difference $M \setminus N := \{\min(\text{mult}(M, x) - \text{mult}(N, x), 0) \times x : x \in \text{Set}(M) \cup \text{Set}(N)\}$.

The function $\Pi(\cdot)$ clearly has the following properties:

- $\Pi(M + N) = \Pi(M) \cdot \Pi(N)$
- $\Pi(M \cup N) = \text{lcm}(\Pi(M), \Pi(N))$
- $\Pi(M \cap N) = \text{gcd}(\Pi(M), \Pi(N))$
- $\Pi(M \setminus N) = \Pi(M)/\Pi(M \cap N)$

Multiset Commitments: For a multiset M represented by λ-bit primes and a hidden order group G, a G-commitment to a multiset M is a pair $(g, h) \in G^2$ such that $g^{\Pi(M)} = h$. The hardness of the discrete logarithm problem implies that this commitment is computationally hiding in the sense that no PPT algorithm can compute M from the pair $[g, h]$. The low order assumption implies that it is computationally binding in the sense that no PPT algorithm can compute another multiset M' with the same commitment.

2.5 Cryptographic Accumulators

A cryptographic accumulator [Bd94] is a primitive that produces a short binding commitment to a set (or multiset) of elements together with short membership and/or non-membership proofs for any element in the set. These proofs can be publicly verified against the commitment. Broadly, there are three known types of accumulators at the moment:

- Merkle trees
- pairing-based (aka bilinear) accumulators
- accumulators based on groups of unknown order, which we study in this paper.

Let G be a group of hidden order and fix an element $g \in G$. Let M be a multiset of λ-bit primes. For each $x \in M$, let $\text{mult}(M, x)$ denote the multiplicity of x in M. The accumulated digest or accumulated state of M is given by
\[
\text{Acc}(\mathcal{M}) := \text{Com}(g, \mathcal{M}) = g^{\Pi(\mathcal{M})} \in \mathbb{G},
\]

where

\[
\Pi(\mathcal{M}) := \prod_{x \in \text{Set}(\mathcal{M})} x^{\text{mult}(\mathcal{M}, x)}.
\]

Let \(\mathcal{M}_0 \) be a multiset contained in \(\mathcal{M} \), so that \(\text{mult}(\mathcal{M}_0, x) \leq \text{mult}(\mathcal{M}, x) \forall x \). The element

\[
w(\mathcal{M}_0) := g^{\prod_{x \in \text{Set}(\mathcal{M})} x^{\text{mult}(\mathcal{M} \setminus \mathcal{M}_0, x)}} \in \mathbb{G}
\]

is called the membership witness of \(\mathcal{M}_0 \). Given this element, a Verifier can verify the membership of \(\mathcal{M}_0 \) in \(\mathcal{M} \) by verifying the equation

\[
w(\mathcal{M}_0)^{\Pi(\mathcal{M}_0)} \equiv \text{Acc}(\mathcal{D}) \in \mathbb{G}.
\]

When the multiset \(\mathcal{M}_0 \) is large, this verification can be sped up using Wesolowki’s Proof of Exponentiation (PoE) protocol [Wes18].

Shamir’s trick allows for aggregation of membership witnesses in accumulators based on hidden order groups. This is not possible with Merkle trees, which is the primary reason other families of accumulators have been explored as authentication data structures for stateless blockchains. With bilinear accumulators, aggregation of membership witnesses has a linear runtime complexity, which is impractical for most use cases. Thus, accumulators based on hidden order groups have a major advantage in this regard.

These accumulators also allow for non-membership proofs ([LLX07]). In [BBF19], the authors used a non-interactive argument of knowledge to compress batched non-membership proofs into constant-sized proofs, i.e. independent of the number of elements involved. This yields the first known Vector Commitment with constant-sized openings as well as constant-sized public parameters.

Hashing the data to primes: The security of cryptographic accumulators and vector commitments hinges on the assumption that for disjoint data sets \(\mathcal{D}, \mathcal{E} \), the integers \(\Pi(\mathcal{D}), \Pi(\mathcal{E}) \) are relatively prime. The easiest way to ensure this is to map the data elements to distinct \(\lambda \)-bit primes. This is usually done by hashing the data to \(\lambda \)-bit integers and subjecting the output to a probabilistic primality test such as the Miller-Rabin test. The prime number theorem states that the number of primes less than \(n \) is \(\Theta \left(\frac{n}{\log(n)} \right) \) and hence, implies that the expected runtime for finding a prime is \(\Theta(\lambda) \).

Dirichlet’s theorem on primes in arithmetic progressions combined with the prime number theorem implies that for relatively prime integers \(k, r \) and an integer \(n \), the number of primes less than \(n \) that are \(\equiv r \mod k \) is roughly \(\frac{n}{\varphi(k)} \). Thus, we can modify the hashing algorithm so that for any element inserted into the accumulator, the prime reveals the position in which it was inserted. We proceed as follows.

1. Fix a prime \(p \) of size \(\frac{\lambda}{2} \).
2. For a string inserted in position \(i \), we map the string to the first prime of size \(\lambda \) which is \(\equiv i \mod p \). This (pseudo-)prime is obtained by subjecting the integers \(\{pk + i : k \in \mathbb{Z}\} \) to the probabilistic Miller-Rabin test.

The number of such primes is roughly \(\frac{2^\lambda}{\lambda(p-1)} \) and hence, the expected runtime is \(\Theta(\lambda) \).
2.6 Aggregating and disaggregating membership witnesses

Shamir’s trick: Given elements $a_1, a_2, A \in \mathbb{G}$ and integers d_1, d_2 such that $d_1 d_2 = 2$, Shamir’s trick allows us to compute the lcm(d_1, d_2)-th root of A as follows.
1. Compute integers e_1, e_2 such that $e_1 d_1 + e_2 d_2 = \text{gcd}(d_1, d_2)$
2. Set $a_{1,2} := a_1^{e_2} a_2^{e_1} \in \mathbb{G}$.

Then
\[
a_{1,2}^{d_1 d_2} = A^{d_2 e_2 + d_1 e_1} = A^{\text{gcd}(d_1, d_2)}
\]
and hence,
\[
a_{1,2}^{\text{lcm}(d_1, d_2)} = A.
\]

More generally, given elements a_1, \ldots, a_n such that
\[
a_1^{d_1} = \cdots = a_n^{d_n} = A,
\]
we can use Shamir’s trick repeatedly to compute an element $a \in \mathbb{G}$ such that $a^{\text{lcm}(d_1, \ldots, d_n)} = A$.

The runtime for this algorithm is $O(\log(D) \cdot \log(\log(D)))$ where $D := \prod_{i=1}^n d_i$.

The most important special case is when A is the accumulated digest $g^{\Pi(M)}$ for a set or multiset M and u_1, \ldots, u_n are membership witnesses for sets/multisets $M_1, \ldots, M_n \subseteq M$. Shamir’s trick allows us to compute a membership witness for the union $\bigcup_{i=1}^n M_i$.

The RootFactor Algorithm: Given elements $a, A \in \mathbb{G}$ and integers d_1, \ldots, d_n, D such that
\[
D = \prod_{i=1}^n d_i \text{, } a^D = A,
\]
the RootFactor algorithm \cite{BBF19, STY01} allows us to compute elements $a_1, \ldots, a_n \in \mathbb{G}$ such that
\[
a_1^{d_1} = \cdots = a_n^{d_n} = A
\]
in runtime $O(\log(D) \cdot \log(\log(D)))$. Naively, this would take runtime $O(\log^2(D))$, which would be impractical for many applications.

2.7 $\mathbb{Z}_{(\lambda)}$-integers

Localization at a set of primes: For a set S of rational primes, we denote by \mathbb{Z}_S the localization
\[
\mathbb{Z}_S := \left\{ a \cdot \prod_{p \in S} p^{e_p} : a \in \mathbb{Z}, \ e_p \in \mathbb{Z}, \ e_p = 0 \text{ for all but finitely many } p \right\}
\]
of \mathbb{Z} at all primes in S. This is a principal ideal domain whose prime ideals are those generated by rational primes outside the set S. The group of units of \mathbb{Z}_S is given by
\[
\mathbb{Z}_S^\times := \left\{ \pm \prod_{p \in S} p^{e_p} : e_p \in \mathbb{Z}, \ e_p = 0 \text{ for all but finitely many } p \right\}.
\]

For an element $\alpha \in \mathbb{Z}_S$, we may uniquely write α as
\[
\alpha = \alpha_1 \alpha_2^{-1} \text{ where } \alpha_1, \alpha_2 \in \mathbb{Z}, \ \alpha_2 > 0, \ \gcd(\alpha_1, \alpha_2) = 1.
\]

Similarly, for two elements, α, β, we write
\[
\alpha = \alpha_1 \alpha_2^{-1}, \beta = \beta_1 \beta_2^{-1} \text{, } \alpha_1, \beta_1 \in \mathbb{Z}, \ \alpha_2, \beta_2 \in \mathbb{Z} \cap \mathbb{Z}_S^\times
\]
and define $\gcd_S(\alpha, \beta) := \gcd(\alpha_1, \beta_1)$. Thus, $\gcd_S(\alpha, \beta)$ is the unique non-negative integer that has no prime divisors in S and generates the ideal $\mathbb{Z}_S \alpha + \mathbb{Z}_S \beta \subseteq \mathbb{Z}_S$.
Note: The localization \(\mathbb{Z}_S \) is not to be confused with the non-archimedean completion of the localization.

Definition 2.6. An integer is said to be **\(\lambda \)-smooth** if all of its prime divisors are \(\leq 2^{\lambda-1} \). An integer is said to be **\(\lambda \)-rough** if all of its prime divisors are \(> 2^{\lambda-1} \). We say a set/multiset \(\mathcal{M} \) of primes is \(\lambda \)-rough if the integer \(\Pi(\mathcal{M}) \) is \(\lambda \)-rough.

Clearly, \(\mathcal{M} \) being \(\lambda \)-rough is equivalent to each prime of \(\mathcal{M} \) being larger than \(2^{\lambda-1} \). The properties of \(\lambda \)-smoothness and \(\lambda \)-roughness are clearly preserved under products, greatest common divisors and least common multiples. Furthermore, any positive integer \(n \) is uniquely expressible as a product \(n_{\lambda,s}n_{\lambda,r} \) of a \(\lambda \)-smooth integer \(n_{\lambda,s} \geq 0 \) and a \(\lambda \)-rough integer \(n_{\lambda,r} \geq 0 \).

Definition 2.7. For a security parameter \(\lambda \), we denote by \(\mathbb{Z}_{(\lambda)} \) the integral domain obtained by localizing \(\mathbb{Z} \) at all primes \(\leq 2^{\lambda-1} \).

Thus,
\[
\mathbb{Z}_{(\lambda)} = \{ \alpha\beta^{-1} : \alpha, \beta \in \mathbb{Z}, \gcd(\alpha, \beta) = 1, \beta \text{ is } \lambda\text{-smooth} \}.
\]

Note that \(\mathbb{Z}_{(\lambda)} \) inherits the structure of a principal ideal domain. The group of units of \(\mathbb{Z}_{(\lambda)} \) is given by
\[
\mathbb{Z}_{(\lambda)}^\times := \{ \alpha\beta^{-1} : \alpha, \beta \in \mathbb{Z}, \gcd(\alpha, \beta) = 1, \alpha, \beta \text{ are } \lambda\text{-smooth} \}.
\]

The prime ideals of \(\mathbb{Z}_{(\lambda)} \) are the principal ideals generated by rational primes larger than \(2^{\lambda-1} \).

2.8 Some preliminary lemmas

We will need the next two lemmas repeatedly in the subsequent protocols. We briefly explain the motivation for these lemmas here and provide further details in the next section. As before, for a set \(S \) of rational primes, we denote by \(\mathbb{Z}_S \) the localization
\[
\mathbb{Z}_S := \left\{ a \cdot \prod_{p \in S} p^{e_p} : a \in \mathbb{Z}, e_p \in \mathbb{Z}, e_p = 0 \text{ for all but finitely many } p \right\}
\]
of \(\mathbb{Z} \) at all primes in \(S \). This is a principal ideal domain and, in particular, is integrally closed.

Consider a setting where a Verifier possesses commitments \(a_i = g^{d_i} \) to \(\mathbb{Z}_S \)-integers \(d_i \) where \(a \in G \) is the common base and \(S \) is a set of rational primes. Suppose the Prover - who stores these integers - needs to demonstrate that the \(d_i \) are integers rather than merely rationals. A straightforward way to do this would be for the Prover to send the elements \(g^{d_i} \) along with proofs that the discrete logarithm between \(g \), \(g^{d_i} \) is the same as that between \(a \), \(a_i \). The \(S \)-fractional root assumption would then imply that the \(d_i \) are \(\mathbb{Z}_S \)-integers.

But such a proof would entail \(O(n) \) elements of \(G \). Since the group elements are rather large, we would prefer to send a proof that contains a constant number of group elements. To this end, the Prover can instead demonstrate that for a randomly generated integer \(\gamma \), the rational \(\sum_{i=1}^n d_i^k \gamma^i \) is an element of \(\mathbb{Z}_S \) for some \(k \geq n\lambda \). The next two lemmas show that this implies that all the \(d_i \) are elements of \(\mathbb{Z}_S \), except with negligible probability.

Lemma 2.1. Let \(p \) be a prime and let \(f(X) \) be a monic univariate degree \(n \) polynomial in \(\mathbb{Z}[X] \). For a randomly generated integer \(\gamma \), the probability that \(f(\gamma) \equiv 0 \pmod{p^{\lambda n}} \) is negligible.

Proof. Let \(F \) be a splitting field of \(f(X) \), \(\mathcal{O}_F \) its ring of integers and let
\[
f(X) = \prod_{i=1}^n (X - \alpha_i)
\]
be the factorization of \(f(X) \) over \(F \). Let \(p_1, \ldots, p_g \) be the distinct primes of \(F \) lying over \(p \). Since the extension \(F/\mathbb{Q} \) is Galois, we have
\[
pO_F = \prod_{i=1}^{g} p_i^{e_i} = \bigcap_{i=1}^{g} p_i^{e_i}
\]
where \(e \geq 1 \) is the ramification degree and the Galois group \(\text{Gal}(F/\mathbb{Q}) \) acts transitively on the set \(\{ p_1, \ldots, p_g \} \).

We note that for any integer \(k \geq 1 \), \(\mathbb{Z} \cap \mathbb{Q} \) is obvious. For the reverse inclusion, let \(e \cap p_i^{e_k} \) be the least common denominator for \(p_i \). For any index \(i \), there exists an automorphism \(\sigma_i \in \text{Gal}(F/\mathbb{Q}) \) such that \(\sigma_i(p_1) = p_i \). So \(x = \sigma(x) \in p_i^{e_k} \). Hence, \(x \in \prod_{i=1}^{g} p_i^{e_k} = p^{e_k} \). Thus, \(p_i^{e_k} \cap \mathbb{Z} = p^{e_k} \).

For any two integers \(x_1, x_2 \in \mathbb{Z} \), we have
\[
x_1 - x_2 \in p_i^{e_k} \iff x_1 - x_2 \in p_i^{e_k} \cap \mathbb{Z}.
\]
Hence, the set \(S_\lambda := \{ x + p_i^{e_k} : x \in \mathbb{Z} \} \subseteq O_F/p_i^{e_k} \) has cardinality \(p^\lambda \). Now, for any integer \(\gamma \in \mathbb{Z} \),
\[
f(\gamma) \equiv 0 \pmod{p^\lambda} \iff f(\gamma) \equiv 0 \pmod{p_1^{e_1}} \quad \text{(since } \mathbb{Z} \cap \mathbb{Q} = \mathbb{Z} \).
\]
\[\iff \gamma \equiv a_i \pmod{p_1^{e_k}} \text{ for at least one index } i \quad \text{(pigeonhole principle).}
\]
Since \(\gamma \) is randomly generated, \(\gamma \) (mod \(p_1^{e_k} \)) is randomly and uniformly distributed over the set \(S_\lambda \). Hence,
\[
\text{Pr}[f(\gamma) \equiv 0 \pmod{p_1^{e_k}}] \leq \frac{n}{p^\lambda} = \text{neg}1(\lambda),
\]
which completes the proof. \(\square \)

Lemma 2.2. (i). For rationals \(d_1, \ldots, d_n \in \mathbb{Q} \) and a randomly generated \(\lambda \)-bit integer \(\gamma \), if
\[
\sum_{i=1}^{n} d_i \gamma^i \in \mathbb{Z}(\lambda),
\]
then with overwhelming probability, the tuple \((d_1, \ldots, d_n) \in \mathbb{Z}(\lambda)^n \).

(ii). Let \(k \) be any integer \(\geq n\lambda \). Let \(S \) be a set of rational primes and let \(\mathbb{Z}_S \) be the localization of \(\mathbb{Z} \) at all primes in \(S \). For rationals \(d_1, \ldots, d_n \in \mathbb{Q} \) and a randomly generated \(\lambda \)-bit integer \(\gamma \), if
\[
\sum_{i=1}^{n} d_i^k \gamma^i \in \mathbb{Z}_S,
\]
then with overwhelming probability, the tuple \((d_1, \ldots, d_n) \in \mathbb{Z}_S^n \).

Proof. (i). We show that if \((d_1, \ldots, d_n) \notin \mathbb{Z}(\lambda)^n \), then with overwhelming probability, \(\sum_{i=1}^{n} d_i \gamma^i \notin \mathbb{Z}(\lambda) \) for a randomly generated \(\lambda \)-bit integer \(\gamma \). Let \(D \) be the least common denominator for \(d_1, \ldots, d_n \) and write
\[
d_i = \frac{c_i}{D}, \quad c_i \in \mathbb{Z} \quad (i = 1, \ldots, n).
\]
Suppose, by way of contradiction that \((d_1, \ldots, d_n) \notin \mathbb{Z}_S^n \). Then there exists a rational prime \(p < 2^{\lambda-1} \) that divides \(D \) but not all of the integers \(c_1, \ldots, c_n \). Now, the polynomial \(\sum_{i=1}^{n} c_i X^i \pmod{p} \in \mathbb{F}_p[X] \) has at most \(n \) distinct zeros in \(\mathbb{F}_p \) and since \(\gamma \) is randomly and uniformly distributed modulo \(p \),
\[
\text{Pr}[f(\gamma) \equiv 0 \pmod{p}] = \text{neg}1(\lambda),
\]
which completes the proof.

(ii). We show that if \((d_1, \ldots, d_n) \notin \mathbb{Z}_S^n \), then with overwhelming probability, \(\sum_{i=1}^{n} d_i^k \gamma^i \notin \mathbb{Z}_S \) for a randomly generated \(\lambda \)-bit integer \(\gamma \). Let \(D \) be the least common denominator for \(d_1, \ldots, d_n \) and write
In particular,

\[d_i = \frac{c_i}{D} \quad (c_i \in \mathbb{Z}) \quad \text{for } i = 1, \ldots, n. \]

Suppose, by way of contradiction that \((d_1^k, \ldots, d_n^k) \notin \mathbb{Z}_S^k\). Then there exists a rational prime \(p \notin \mathcal{S}\) that divides \(D\) but not all of the integers \(c_1, \ldots, c_n\). Let \(I \subseteq \{1, \ldots, n\}\) be the non-empty subset of indices such that \(c_i \notin p\mathbb{Z}\) or equivalently, \(c_i^k \notin p^k\mathbb{Z}\). Then

\[
\sum_{i \in I} c_i^k \gamma^i \equiv 0 \pmod{p^k}.
\]

Now, the polynomial \(f(X) := \sum_{i \in I} c_i^k X^i \in \mathbb{Z}[X]\) has degree \(\leq n\) and none of its coefficients are divisible by \(p\). By lemma 2.1,

\[
\Pr\left[f(\gamma) \equiv 0 \pmod{p^k}\right] = \text{negl}(\lambda).
\]

Thus, with overwhelming probability, the rationals \(d_i^k\) lie in \(\mathbb{Z}_S\). Since the integral domain \(\mathbb{Z}_S\) is integrally closed, this implies that the \(d_i\) lie in \(\mathbb{Z}_S\).

In particular,

\[
\Pr\left[(d_1, \ldots, d_n) \notin \mathbb{Z}_S^n \left| \sum_{i=1}^n d_i \gamma^i \in \mathbb{Z} \right. \right] = \text{negl}(\lambda).
\]

Similarly,

\[
\Pr\left[(d_1, \ldots, d_n) \notin \mathbb{Z}_S^n \left| \sum_{i=1}^n d_i^k \gamma^i \in \mathbb{Z} \right. \right] = \text{negl}(\lambda) \quad \text{for any } k \geq n\lambda.
\]

In a setting where we are dealing with accumulators and the accumulation of primes \(< 2^{\lambda-1}\) is disallowed, it suffices for the Prover to show that the rational \(\sum_{i=1}^n d_i \gamma^i\) is an element of \(\mathbb{Z}_S\) for most applications. This places a much lower computational burden on the Prover. While we haven’t used this for the protocols in the paper, we have explored this a bit further in appendix D.

2.8.1 Representations of group elements

Lemma 2.3. *(Element representation [Sho97])* Let \(G\) be a generic group and \(A\) a generic algorithm that makes \(q_1\) queries to \(O_1\) and \(q_2\) queries to \(O_2\). Let \(\{g_1, \ldots, g_k\}\) be the outputs of \(O_1\). There is an efficient algorithm \(\text{Ext}\) that given as input the transcript of \(A\)’s interaction with the generic group oracles, produces for every element \(u \in G\) that \(A\) outputs, a tuple \((\alpha_1, \ldots, \alpha_m) \in \mathbb{Z}^m\) such that \(u = \prod_{i=1}^m g_i^{\alpha_i}\) and \(|\alpha_i| \leq 2^{q_2}\).

DLOG: Following the terminology of [BBF19] the event \(\text{DLOG}\) refers to a generic PPT algorithm \(A\) generating random elements \(g_1, \ldots, g_n\) by making queries to the group oracle \(O_1\) and generating integers \(x_1, \ldots, x_n\) such that

\[
\prod_{i=1}^n g_i^{x_i} = 1 \in G.
\]

The adaptive root assumption implies that \(\text{DLOG}\) occurs with at most negligible probability.

Lemma 2.4. Let \(a, b\) be elements of a generic hidden order group \(G\). Let \(A\) be a generic PPT algorithm that succeeds at the following task:

1. The hashing algorithm \(H_{G, \lambda}\) generates a \(\lambda\)-bit prime \(\ell\).
2. \(A\) generates an element \(Q \in G\) and an integer \(r \in [\ell]\) such that \(Q^r a^r = b\).

Then there exists an extractor \(E\) that, if given as input the transcript of \(A\)’s interaction with the group oracles, efficiently extracts integers \(d_1, d_2\) bounded by \(2^{\text{poly}(\lambda)}\) such that
\[a^{d_1} = b^{d_2} \land d_1 \equiv rd_2 \pmod{\ell}. \]

Proof. By the element representation lemma of [Sho97], for every element \(\mathcal{A} \) obtains in response to an \(\mathcal{O}_2 \) query, an extractor \(\mathcal{E} \) succeeds with overwhelming probability at the task of expressing that element as a linear combination \(\prod_{i=1}^{k} g_i^{x_i} \) where the group elements \(\{g_1, \ldots, g_k\} \) are the responses to \(\mathcal{A} \)'s queries to the oracle \(\mathcal{O}_1 \) and the \(x_i \) are integers bounded by \(2^{\text{poly}(\lambda)} \). Let

\[
\begin{align*}
a &= \prod_{i=1}^{k} g_i^{\alpha_i}, & b &= \prod_{i=1}^{k} g_i^{\beta_i}, & (\alpha_i, \beta_i \in \mathbb{Z}, |\alpha_i|, |\beta_i| < 2^{\text{poly}(\lambda)})
\end{align*}
\]

Now, for a randomly generated \(\lambda \)-bit prime \(\ell \), \(\mathcal{A} \) is able to output \((Q, r) \in \mathbb{G} \times [\ell] \) such that \(Q^\ell a^r = b \in \mathbb{G} \). Hence, with probability \(1 - \Pr[\text{DLOG}] \),

\[
\beta_1 \alpha_1^{-1} \equiv \cdots \equiv \beta_k \alpha_k^{-1} \equiv r \pmod{\ell}.
\]

Since the \(\lambda \)-bit prime \(\ell \) was randomly generated, this implies that with overwhelming probability,

\[
\beta_1 \alpha_1^{-1} = \cdots = \beta_k \alpha_k^{-1}.
\]

Thus, \(a^{\beta_i} = b^{\alpha_i} \).

\[\square \]

Lemma 2.5. Let \(a, b_1, \ldots, b_n \) be elements of a generic hidden order group \(\mathbb{G} \). Let \(\mathcal{A} \) be a generic PPT algorithm that succeeds at the following task:

1. The hashing algorithm \(\mathcal{H}_{\mathcal{F}, \lambda} \) generates a \(\lambda \)-bit prime \(\ell \).
2. \(\mathcal{A} \) sends a tuple \(r = (r_1, \ldots, r_n) \in [\ell]^n \).
3. The hashing algorithm \(\mathcal{H}_{\mathcal{F}, \lambda} \) generates a \(\lambda \)-bit challenge \(\gamma \).
4. \(\mathcal{A} \) generates an element \(Q \in \mathbb{G} \) such that

\[
Q^\ell a^r = \prod_{i=1}^{n} b_i^{r_i} \quad \text{where} \quad r := \sum_{i=1}^{n} r_i \gamma^i \pmod{\ell}.
\]

Then there exists an extractor \(\mathcal{E} \) that, if given as input the transcript of \(\mathcal{A} \)'s interaction with the group oracles, extracts rationals \(d_1, \ldots, d_n \in \mathbb{Q} \) such that the numerators/denominators of the \(d_i \) are bounded by \(2^{\text{poly}(\lambda)} \) and

\[
a^{d_i} = b_i \land d_i \equiv r_i \pmod{\ell} \forall i.
\]

Proof. As before, the extractor \(\mathcal{E} \) extracts integers \(\alpha_j \ (j = 1, \ldots, k), \beta_{i,j} \ (i = 1, \ldots, n, j = 1, \ldots, k) \) such that

\[
a = \prod_{j=1}^{k} g_j^{\alpha_j}, & b_i = \prod_{j=1}^{k} g_j^{\beta_{i,j}}, & (\alpha_i, \beta_{i,j} \in \mathbb{Z}, |\alpha_i|, |\beta_{i,j}| < 2^{\text{poly}(\lambda)})
\]

where \(\{g_1, \ldots, g_k\} \) are the \(\mathbb{G} \)-elements obtained from queries to the oracle \(\mathcal{O}_1 \). Now, in response to a \(\lambda \)-bit challenge \(\gamma \), \(\mathcal{A} \) generates \(Q \in \mathbb{G} \) such that \(Q^\ell a^r = \prod_{i=1}^{n} b_i^{r_i} \), where \(r := \sum_{i=1}^{n} r_i \gamma^i \pmod{\ell} \). By lemma 2.4, \(\mathcal{E} \) can generate a rational \(\tilde{d} = \tilde{d}_1 \tilde{d}_2^{-1} \) (\(\tilde{d}_1, \tilde{d}_2 \in \mathbb{Z} \)) with \(\tilde{d}_1, \tilde{d}_2 \) bounded by \(2^{\text{poly}(\lambda)} \) and

\[
\prod_{j=1}^{k} \tilde{g}_j^{\tilde{d}_j} = a^{\tilde{d}} = \prod_{i=1}^{n} b_i^{r_i} = \prod_{j=1}^{k} \tilde{g}_j^{\tilde{d}_j} \gamma^i \in \mathbb{G}.
\]

Since the event \(\text{DLOG} \) occurs with at most negligible probability, it follows that
\[
\bar{d} = \sum_{i=1}^{n} (\beta_{i,j} \alpha_{j}^{-1}) \gamma_{i} \quad \text{for} \quad j = 1, \cdots, k.
\]

Since \(\gamma \) is randomly generated, it follows that with overwhelming probability,

\[
\beta_{i,1} \alpha_{1}^{-1} = \cdots = \beta_{i,k} \alpha_{k}^{-1} \quad \text{for} \quad i = 1, \cdots, n.
\]

Setting \(d_{i} := \beta_{i,1} \alpha_{1}^{-1} \) yields \(a^{d_{i}} = b_{i} \forall i \).

Now, if \(\sum_{i=1}^{n} d_{i} \gamma_{i} \not\equiv r \pmod{\ell} \), the extractor \(E \) could efficiently extract an \(\ell \)-th root of \(a \), which would violate the adaptive root assumption. Hence, with overwhelming probability,

\[
\sum_{i=1}^{n} d_{i} \gamma_{i} \equiv r \equiv \sum_{i=1}^{n} r_{i} \gamma_{i} \pmod{\ell}.
\]

Since the \(\lambda \)-bit integer \(\gamma \) was randomly generated after the tuple \((r_{1}, \cdots, r_{n}) \) was sent, the Schwartz-Zippel lemma implies that with overwhelming probability, \(d_{i} \equiv r_{i} \pmod{\ell} \forall i \). \(\square \)

We will need the following basic fact repeatedly in the subsequent protocols to bridge the gap between sound argument systems and arguments of knowledge.

Fact 2.1. Chinese remainder theorem (CRT): Let \(\ell_{1}, \cdots, \ell_{n} \) be pairwise co-prime integers and let \(r_{1}, \cdots, r_{n} \) be arbitrary integers. Then there is a unique integer \(x \) such that \(0 \leq 2|x| < \prod_{i=1}^{n} \ell_{n} \) and \(x \equiv r_{1} \pmod{\ell_{1}} \forall i \). Furthermore, there is an efficient algorithm for computing \(x \).

Consider an argument system where a Prover \(P \) claims knowledge of an integer \(d \) that satisfies certain properties and is bounded by \(2^{\text{poly}(\lambda)} \). Suppose the proof of knowledge sent by \(P \) contains the remainder \(r := d \pmod{\ell} \) for a \(\lambda \)-bit prime \(\ell \) randomly generated by the Verifier or by a Fiat-Shamir heuristic in a non-interactive system. An extractor \(E \) can query \(P \) for \(N \) accepting transcripts for a sufficiently large integer \(N \). If \(\ell_{1}, \cdots, \ell_{N} \) are the \(\lambda \)-bit primes and \(r_{i} := d \pmod{\ell_{i}} \) are the resulting remainders in the accepting transcripts, \(E \) can use the Chinese remainder theorem to compute the unique integer \(d' \) such that

\[
d' \equiv r_{i} \pmod{\ell_{j}} \forall i \quad , \quad 2|d'| < \prod_{i=1}^{N} \ell_{i}.
\]

If \(N \) is large enough so that \(2^{N\lambda} > |d| \), then with overwhelming probability, \(d = d' \). Thus, assuming the integer \(d \) exists, \(E \) can extract it in expected polynomial runtime.

3 Arguments of Knowledge

In this section, we discuss succinct arguments of the knowledge of exponents in hidden order groups and of relations between these exponents. This is equivalent to the knowledge of relations between the committed sets or multisets. The proofs can be publicly verified against the succinct commitments held by the Verifier.

3.1 Preliminaries

We briefly review the protocol \(\text{PoKE} \) (from [BBF19]) which we will need repeatedly in this paper.

Protocol 3.1. Proof of Knowledge of the Exponent (PoKE)
Claim: The Prover possesses an integer x such that $u^x = w$.

1. The Prover \mathcal{P} computes $z := g^x$ and sends z to the Verifier \mathcal{V}.
2. The hashing algorithm $H_{FS, \lambda}$ generates a λ-bit prime ℓ.
3. \mathcal{P} computes the integers q, r such that $x = q \cdot \ell + r$, $r \in [\ell]$.
4. \mathcal{P} computes $Q := u^q$, $Q' = g^q$ and sends (Q, Q', r) to \mathcal{V}.
5. \mathcal{V} accepts if and only if $r \in [\ell]$, $Q^q u^r = w$, $Q'^q g^r = z$.

The protocol PoKE is an argument of knowledge for the relation
\[R_{\text{PoKE}} := \{(u, w) \in \mathbb{G} ; x \in \mathbb{Z} ; w = u^x \in \mathbb{G}\}. \]

The part where \mathcal{P} computes g^x and sends it to \mathcal{V} before receiving the challenge ℓ is necessary for the security of the protocol. Without this step, a malicious Prover could convince the Verifier that x is an integer, which might not necessarily be the case.

Clearly, the relation R_{PoKE} is transitive in the sense that for elements $a_1, a_2, a_3 \in \mathbb{G}$, if a prover \mathcal{P} possesses integers d_1, d_2 such that $a_1^{d_1} = a_2$, $a_2^{d_2} = a_3$, then he possesses the integer $d_1 d_2$ which fulfills the equation $a_1^{d_1 d_2} = a_3$. Henceforth, we denote the proof of knowledge of the discrete logarithm between $a, b \in \mathbb{G}$ by $\text{PoKE}[a, b]$.

The knowledge of exponents can easily be aggregated when they share a common base. Given elements
\[a \in \mathbb{G}, \ (b_1, \ldots, b_n) \in \mathbb{G}^n, \]

and a randomly generate integer γ, if the Prover possesses a rational \tilde{d} such that $a^{\tilde{d}} = \prod_{i=1}^n b_i^{d_i}$, then the Prover, with overwhelming probability, possesses rationals d_i such that $a^{d_i} = b_i \forall i$. In the special case where $a = g$, a randomly generated element of the group \mathbb{G}, the fractional root assumption implies that the d_i must be integers. In the more general case, we use Lemma 2.2 to show that the d_i are integers rather than merely rationals.

We now start out with a fairly simple protocol. We show how a Prover could probabilistically demonstrate that two discrete logarithms are equal, with a constant-sized proof. In other words, the protocol allows a Prover to show that two pairs $[a_1, b_1], [a_2, b_2]$ of \mathbb{G}-elements are commitments to the same set/multiset. We provide an argument of knowledge for the following relation:
\[\mathcal{R}_{\text{EqDLog}}([a_1, b_1], (a_2, b_2]) = \left\{ \begin{array}{l}
\{(a_1, b_1), (a_2, b_2) \in \mathbb{G}^2 \} \\
d \in \mathbb{Z} : \\
(b_1, b_2) = (a_1^d, a_2^d)
\end{array} \right\} \]

The protocol hinges on the observation that for two integers d_1, d_2, if we have $d_1 \equiv d_2 \pmod{\ell}$ for a randomly generated λ-bit prime ℓ, then with overwhelming probability, $d_1 = d_2$.

Protocol 3.2. Proof of equality of discrete logarithms (PoEqDLog):

Parameters: $\mathbb{G} \overset{\$}{\leftarrow} \text{GGen}(\lambda), \ g \in \mathbb{G}$.

Input: $a_1, a_2, b_1, b_2 \in \mathbb{G}$.

Claim: The Prover possesses an integer d such that $a_1^d = b_1$ and $a_2^d = b_2$.

1. The Prover \mathcal{P} sends $\tilde{g} := g^d$ to the Verifier \mathcal{V}.
2. The hashing algorithm $H_{FS, \lambda}$ generates a λ-bit prime ℓ.
3. \mathcal{P} computes the integers q, r such that $d = q \cdot \ell + r$, $r \in [\ell]$ and the group elements
We can also generalize the protocol EqDLog to

\[Q_1 := a_1^q, \quad Q_2 := a_2^q, \quad \tilde{g} := g^q \in \mathbb{G} \]

and sends \((Q_1, Q_2, \tilde{g}, r) \in \mathbb{G}^3 \times [\ell] \) to \(V \).

4. \(V \) verifies the equations

\[r \in [\ell], \quad Q_1^r a_1^i = b_1, \quad Q_2^r a_2^i = b_2, \quad (\tilde{g})^r g^r = \tilde{g} \]

and accepts if and only if all equations hold. \(\square \)

Thus, the proof consists of four \(\mathbb{G} \)-elements and one \(\lambda \)-bit integer. In a setting where the base of the commitment to a set/multiset needs to be changed, the Prover can verifiably send the new commitment using this protocol. The Verifier does not need to access the data to verify that the new commitment is the correct.

Proposition 3.3. The protocol EqDLog\([((a_1, b_1), (a_2, b_2))]\) is an argument of knowledge for the relation \(R_{\text{EqDLog}} \) in the generic group model.

Proof. An extractor \(E \) can simulate the extractors for the subprotocols PoKE\([a_i, b_i] \) \((i = 1, 2)\) to extract integers \(d_1, d_2 \) such that \(a_1^{d_1} = b_1, a_2^{d_2} = b_2 \). The low order assumption implies that the pair \((d_1, d_2)\) is unique except with negligible probability.

Now, for an accepting transcript, the equations \(Q_i^r a_i^i = b_i \) imply that either \(a_i \equiv r \) \((\text{mod} \ \ell)\) or \(E \) can efficiently extract an \(\ell \)-th root of \(a_i \). Since the \(\lambda \)-bit prime was \(\ell \) randomly generated, the latter event would violate the adaptive root assumption. So, with overwhelming probability, \(d_1 \equiv r \equiv d_2 \) \((\text{mod} \ \ell)\). Since the \(\lambda \)-bit prime was randomly generated, this implies that with overwhelming probability, \(d_1 = d_2 \). \(\square \)

We can also generalize the protocol EqDLog as follows. For a public polynomial \(f(X) \in \mathbb{Z}[X] \), an honest Prover can provide a constant-sized proof that he possesses integers \(d_1, d_2 \) such that

\[a_1^{d_1} = b_1, \quad a_2^{d_2} = b_2, \quad f(d_1) = d_2. \]

We provide an argument of knowledge for the relation

\[R_{\text{PolyDLog}}\([(a_1, b_1), (a_2, b_2), f]]\]

\[
\{ ((a_1, b_1), (a_2, b_2) \in \mathbb{G}^2, f \in \mathbb{Z}[X]) ; \\
(d_1, d_2) \in \mathbb{Z}^2) ; \\
b_1 = a_1^{d_1} \land b_1 = a_1^{d_1} \land d_2 = f(d_1) \}
\]

Protocol 3.4. Proof of Polynomial relation between discrete logarithms (PoPolyDLog):

Parameters: \(\mathbb{G} \) \(\lambda \) \(\text{GGen}(\lambda) \), \(g \in \mathbb{G} \).

Input: Elements \(a_1, b_1, a_2, b_2 \in \mathbb{G} \), a public polynomial \(f(X) \in \mathbb{Z}[X] \).

Claim: The Prover possesses integers \(d_1, d_2 \) such that:

- \(a_1^{d_1} = b_1, \quad a_2^{d_2} = b_2 \)
- \(f(d_1) = d_2 \)

1. The Prover \(\mathcal{P} \) computes \(\tilde{g}_1 := g^{d_1}, \quad \tilde{g}_2 := g^{d_2} \in \mathbb{G} \) and sends them to the Verifier \(V \).
2. The hashing algorithm \(H_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit prime \(\ell \).
3. \(\mathcal{P} \) computes the integers \(q_1, q_2, r_1, r_2 \) such that

\[d_1 = q_1 \cdot \ell + r_1, \quad d_2 = q_2 \cdot \ell + r_2, \quad r_1, r_2 \in [\ell]. \]

4. \(\mathcal{P} \) computes the elements \(Q_1 := a_1^{q_1}, \quad Q_2 := a_2^{q_2}, \quad g_1 := g^{q_1}, \quad g_2 := g^{q_2} \in \mathbb{G} \) and sends them to \(V \) along with the integer \(r_1 \).
5. \(\mathcal{V} \) verifies that \(r_1 \in [\ell] \) and computes \(r_2 := f(r_1) \pmod{\ell} \).
6. \(\mathcal{V} \) verifies the equations
 \[
 Q_1^1 a_1^{r_1^1 b_1} \land Q_2^2 a_2^{r_2^2 b_2} \land (g_1)^{r_1^1} g_1 = (g_2)^{r_2^2} g_2
 \]
 and accepts the validity of the claim if and only if all equations hold.

Thus, the proof consists of six elements of \(\mathbb{G} \) and one \(\lambda \)-bit integer.

Proposition 3.5. The protocol PoPolyDLog is an argument of knowledge for the relation \(R_{\text{PolyDLog}} \) in the generic group model.

Proof. This is a special case of the protocol \(\text{PoMultPolyDLog} \) which we provide a security proof for in the next section.

If a Verifier holds commitments to two multisets \(\mathcal{M}, \mathcal{N} \), a Prover with access to these multisets can use the protocol PoPolyDLog to show whether or not the underlying sets \(\text{Set}(\mathcal{M}), \text{Set}(\mathcal{N}) \) coincide or if one is contained in the other. We have described these protocols in the appendix. The proofs are constant-sized and are public verifiable against the commitments.

3.2 Aggregating the knowledge of multiple exponents

In this section, we discuss protocols for aggregating the proofs of knowledge of multiple exponents and proofs of certain relations between these exponents. This amounts to demonstrating relations between multiple sets/multisets through non-interactive proofs that can be publicly verified against the commitments to these sets/multisets. The proofs consist of elements of the hidden order \(\mathbb{G} \) and \(\lambda \)-bit integers arising from the remainders of the exponents modulo the prime challenges. Using lemma 2.2 and a few more techniques, we have designed the protocols so that the number of \(\mathbb{G} \)-elements is constant and hence, independent of the number of exponents involved. The proof sizes are \(O(n) \) since they consist of \(O(n) \) \(\lambda \)-bit integers. However, in practice, this is a lot more efficient in terms of the communication complexity than proofs with \(O(n) \) group elements.

The first protocol in this section allows us demonstrate the knowledge of multiple integer exponents when they share a common base. We call this protocol the Proof of Aggregated Knowledge of the Exponents 1 or PoAggKE-1 for short. We provide an argument of knowledge for the relation:

\[
R_{\text{AggKE-1}}[a, a'] = \left\{ \begin{array}{l}
(a \in \mathbb{G}, a = (a_1, \ldots, a_n) \in \mathbb{G}^n); \\
(d_1, \ldots, d_n) \in \mathbb{Z}^n; \\
a_i = a_i^{d_i} \forall i
\end{array} \right\}
\]

In addition to the cryptographic assumptions for generic groups, the security of the protocol hinges on the Schwartz-Zippel lemma, which we state here.

Lemma 3.6. (Schwartz-Zippel) : Let \(F \) be a field and let \(f \in F[X_1, \ldots, X_n] \) be a polynomial. Let \(r_1, \ldots, r_n \) be selected randomly and uniformly from a subset \(S \subseteq F \). Then

\[
\Pr[f(r_1, \ldots, r_n) = 0] \leq \frac{\deg(f)}{|S|}.
\]

Protocol 3.7. Proof of aggregated knowledge of exponents 1 (PoAggKE-1):

Parameters: \(\mathbb{G} \xleftarrow{\$} \text{GGen}(\lambda), g \in \mathbb{G} \).
Input: Elements \(a \in \mathbb{G}, (b_1, \cdots, b_n) \in \mathbb{G}^n \) for some integer \(n \geq 1 \).

Claim: The Prover possesses \(d := (d_1, \cdots, d_n) \in \mathbb{Z}^n \) such that \(a^{d_i} = b_i \) for \(i = 1, \cdots, n \).

1. The hashing algorithm \(\mathbb{H}_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit challenge \(\gamma \).
2. The Prover \(\mathcal{P} \) computes
 \[
 p := \text{NextPrime}(n\lambda), \quad \bar{g} := g^{\sum_{i=1}^{n} d_i \gamma_i} \in \mathbb{G}
 \]
 and sends \(\bar{g} \) to the Verifier \(\mathcal{V} \).
3. The hashing algorithm \(\mathbb{H}_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit prime \(\ell \neq 1 \pmod{p} \).
4. \(\mathcal{P} \) computes the integers \(r_i := d_i \pmod{\ell} \) and sends the tuple \((r_1, \cdots, r_n) \in [\ell]^n \) to \(\mathcal{V} \).
5. \(\mathcal{P} \) computes the integers \(\bar{q}, \bar{r} \) such that
 \[
 \sum_{i=1}^{n} d_i \gamma_i i = \bar{q} \cdot \ell + \bar{r}, \quad \bar{r} \in [\ell]
 \]
 and sends \(\bar{g} := g^\bar{q} \in \mathbb{G} \) to \(\mathcal{V} \).
6. The hashing algorithm \(\mathbb{H}_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit prime \(\gamma_0 \).
7. \(\mathcal{P} \) computes integers \(q_0, r_0 \) such that
 \[
 \sum_{i=1}^{n} d_i \gamma_0 i = q_0 \cdot \ell + r_0, \quad r_0 \in [\ell]
 \]
 and sends \(Q_0 := a^{q_0} \in \mathbb{G} \) to \(\mathcal{V} \).
8. \(\mathcal{V} \) verifies that \((r_1, \cdots, r_n) \in [\ell]^n \) and computes
 \[
 b := \prod_{i=1}^{n} b_i^{r_i} \cdot b_0 := \prod_{i=1}^{n} b_i^{\gamma_0} \in \mathbb{G}, \quad \bar{r} := \sum_{i=1}^{n} r_i \gamma_0 i \pmod{\ell}, \quad r_0 := \sum_{i=1}^{n} r_i \gamma_0 i \pmod{\ell}.
 \]
9. \(\mathcal{V} \) verifies the equations
 \[
 (Q_0)^{\ell} a^{r_0} \equiv b_0 \quad \text{and} \quad (\bar{g})^\ell \bar{r} \equiv \bar{g}.
 \]
 and accepts the validity of the claim if and only if both equations hold. \(\square \)

Thus, the proof consists of three \(\mathbb{G} \)-elements and \(n \lambda \)-bit integers. In particular, the number of \(\mathbb{G} \)-elements is constant-sized and independent of the number of exponents. For the security of the protocol, it is necessary that the challenge \(\gamma_0 \) is generated after the remainders \(r_1, \cdots, r_n \) have been committed. In a non-interactive setting, this means the hashing algorithm that generates \(\gamma_0 \) takes the tuple \(r := (r_1, \cdots, r_n) \in [\ell]^n \) of remainders modulo \(\ell \) as one of its inputs. Hence, the remainders \(r_i := d_i \pmod{\ell} \) must be honestly computed by the Prover in order to succeed at the additional task of computing the element \(Q_0 \in \mathbb{G} \) such that \((Q_0)^{\ell} a^{r_0} = b_0 \).

In the special case where \(a \) is randomly generated by the oracle, the subprotocol where the Prover computes the element \(\bar{g} \) and sends it to the Verifier is redundant. So the proof would be smaller and the Prover’s computational burden would be substantially lower in this special case.

When \(a \in \mathbb{G} \) is not a randomly generated element, the most expensive part of the proof generation is computing the element \(\bar{g} \). The effective runtime for this can be mitigated by the Prover pre-computing the set
 \[
 \{g^{2^i} : 1 \leq i \leq N\} \subseteq \mathbb{G}
 \]
 for some appropriately large integer \(N \).
The Verifier’s work can be further reduced by the Prover sending succinct proofs of
(multi-)exponentiation for the equations
\[b := \prod_{i=1}^{n} b_i^{\gamma_i}, \quad b_0 := \prod_{i=1}^{n} b_i^{\gamma_0} \in \mathbb{G}, \]
instead of the Verifier independently performing these computations. We have described this
minor generalization of Wesolowski’s protocol in Appendix C.

Theorem 3.8. The protocol $\text{PoAggKE} - 1$ is an argument of knowledge for the relation
$R_{\text{AggKE} - 1}$ in the generic group model.

Proof. The low order assumption implies that except with overwhelming probability, any PPT
algorithm can generate at most a unique tuple $(x_1, \ldots, x_n) \in \mathbb{Q}^n$ such that $a^{x_i} = b_i$. We
first show that the protocol is sound, i.e. if the Prover sends an accepting transcript, then with
overwhelming probability, he possesses integers d_i bounded by $2^{poly(\lambda)}$ such that $a^{d_i} = b_i \forall i$. We
then show how an extractor \mathcal{E} could extract the integers d_i in expected polynomial runtime by
applying the Chinese remainder theorem to a sufficiently large number of accepting transcripts.

Since the equation $Q_0^*a^{x_0} = b_0$ holds, lemma 2.5 implies that with overwhelming probability,
\mathcal{P} can generate rationals d_1, \ldots, d_n with numerators/denominators bounded by $2^{poly(\lambda)}$ such that
\[a^{d_i} = b_i, \quad \sum_{i=1}^{n} d_i \gamma_0 \equiv \sum_{i=1}^{n} r_i \gamma_0 (\text{mod } \ell), \]
where exponentiation to these rational powers is defined in Definition 2.5. Since the λ-bit
challenge γ_0 is randomly generated after the tuple $(r_1, \ldots, r_n) \in [\ell]^n$ has been sent by the Prover,
the Schwartz-Zippel lemma implies that with overwhelming probability, $d_i \equiv r_i (\text{mod } \ell) \forall i$.

Furthermore, since the λ-bit prime ℓ is randomly generated after the Prover sends \tilde{g}, the
$\tilde{g} = (\tilde{g})^\ell g^\tilde{r}$ and lemma 2.4 imply that with overwhelming probability, \mathcal{P} possesses a rational \tilde{d}
such that
\[\tilde{g} = g^{\tilde{d}}, \quad \tilde{d} \equiv \tilde{r} \equiv \sum_{i=1}^{n} r_i^\ell \gamma_i \equiv \sum_{i=1}^{n} d_i^\ell \gamma_i (\text{mod } \ell). \]
The fractional root assumption then implies that with overwhelming probability, $\tilde{d} \in \mathbb{Z}$. Since ℓ
is randomly generated after \tilde{g} has been sent,
\[\tilde{d} \equiv \sum_{i=1}^{n} d_i^\ell \gamma_i (\text{mod } \ell) \overset{0.R.}{\Rightarrow} \tilde{d} = \sum_{i=1}^{n} d_i^\ell \gamma_i. \]
Since $p > n\lambda$, lemma 2.2 now implies that with overwhelming probability, $d_i \in \mathbb{Z} \forall i$. This
completes the proof of the soundness of the protocol.

Let N be the (polynomially bounded) number of queries from \mathcal{A} to the group oracles $\mathcal{O}_1, \mathcal{O}_2$.
With overwhelming probability, $2^N \geq \max\{2|d_i| : 1 \leq i \leq n\}$. An extractor \mathcal{E} can extract the
tuple $(d_1, \ldots, d_n) \in \mathbb{Z}^n$ as follows.

\mathcal{E} makes queries to \mathcal{A}, keeping the γ fixed and sampling the ℓ randomly and uniformly from
the set of λ-bit primes. Let ℓ_1, \ldots, ℓ_k denote the prime challenges in the first k accepting transcripts
and let $r_j \in [\ell_j]^n$ denote the tuple of remainders modulo ℓ_j in the j-th accepting transcript. \mathcal{E}
uses the Chinese remainder theorem to efficiently compute the unique tuple $e = (e_1, \ldots, e_n) \in \mathbb{Z}^n$
such that
\[e \equiv r_j (\text{mod } \ell_j) \forall j, \quad 2|e_i| < \prod_{j=1}^{k} \ell_j \forall i. \]
After receiving a new accepting transcript and updating the tuple e, the extractor E checks whether $a^{e_i} = a_i$ for $i = 1, \ldots, n$. If so, he halts the process. Otherwise, he queries for another accepting transcript and continues to update e by applying the Chinese remainder theorem to the updated list of accepting transcripts.

When the number of accepting transcripts is $N + 1$, we have

$$\max\{2|d_i| : 1 \leq i \leq n\} < 2^{N+1} < \prod_{j=1}^{N+1} \ell_j$$

except with negligible probability. Thus, with overwhelming probability, $e_i = d_i$ for all i at this point. Thus, E extracts the d_i in expected polynomial runtime.

In the next protocol, we generalize the protocol PolyDLog to multiple discrete logarithms. We provide an argument of knowledge for the relation:

$$R_{\text{MultPolyDLog}}[a, (b_1, \ldots, b_n), (f_1, \ldots, f_k)] = \begin{cases} (a \in \mathbb{G}, (b_1, \ldots, b_n) \in \mathbb{G}^n); \\ (f_1, \ldots, f_k) \in \mathbb{Z}[X_1, \ldots, X_n]^{k}; \\ (d_1, \ldots, d_n) \in \mathbb{Z}^n : \\ b_i = a^{d_i} \forall i \land \\ f_j(d_1, \ldots, d_n) = 0 \forall j \end{cases}$$

Protocol 3.9. Proof of multivariate polynomial relations between discrete logarithms (PoMultPolyDLog):

Parameters: $\mathbb{G} \leftarrow \text{GGen}(\lambda)$, $g \in \mathbb{G}$.

Input: Elements $a \in \mathbb{G}$, $(b_1, \ldots, b_n) \in \mathbb{G}^n$ for some integer $n \geq 1$; public n-variate polynomials $f_1, \ldots, f_k \in \mathbb{Z}[X_1, \ldots, X_n]$.

Claim: The Prover possesses integers d_1, \ldots, d_n such that:
- $a^{d_i} = b_i$ for $i = 1, \ldots, n$.
- $f_j(d_1, \ldots, d_n) = 0$ for $j = 1, \ldots, k$.

1. The hashing algorithm $H_{\text{FS}, \lambda}$ generates a λ-bit integer γ.
2. The Prover P computes

$$p := \text{NextPrime}(n\lambda), \quad \tilde{g} := \sum_{i=1}^{n} d_i^\gamma i \in \mathbb{G}$$

and sends \tilde{g} to the Verifier V.
3. The hashing algorithm $H_{\text{FS}, \lambda}$ generates a λ-bit prime $\ell \neq 1 \pmod{p}$.
4. P computes the integers $r_i := d_i \pmod{\ell}$ ($i = 1, \ldots, n$) and the integers \tilde{q}, \tilde{r} such that

$$\sum_{i=1}^{n} d_i^\gamma i = \tilde{q} \cdot \ell + \tilde{r}, \quad \tilde{r} \in [\ell]$$

and sends $(r_1, \ldots, r_n) \in [\ell]^n$ to V.
5. P computes $\tilde{\gamma} := \tilde{g}^\tilde{r} \in \mathbb{G}$ and sends $\tilde{\gamma}$ to V.
6. The hashing algorithm $H_{\text{FS}, \lambda}$ generates a λ-bit prime γ_0.
7. P computes the integers q_0, r_0 such that
\[\sum_{i=1}^{n} d_i \gamma_0^i = q_0 \cdot \ell + r_0, \ r_0 \in [\ell]. \]

He computes \(Q_0 := a^{q_0} \in G \) and sends \(Q_0 \) to \(V \).

8. \(V \) verifies that \((r_1, \cdots, r_n) \in [\ell]^n \) and computes

\[
\begin{align*}
 b := \prod_{i=1}^{n} b_i^\gamma_i, \ b_0 := \prod_{i=1}^{n} b_i^{\gamma_0^i} \in G, \ &\tilde{r} := \sum_{i=1}^{n} r_i^{p \gamma_i} \pmod{\ell}, \ r_0 := \sum_{i=1}^{n} r_i^{\gamma_0^i} \pmod{\ell}.
\end{align*}
\]

9. \(V \) verifies the equations

\[
(Q_0^\ell a^{r_0} \equiv b_0 \land (\tilde{g}^\ell g^{\tilde{r}} \equiv \tilde{g} \land (\bigwedge_{j=1}^{k} f_j(r_1, \cdots, r_n) \equiv 0 \pmod{\ell}))
\]

and accepts the validity of the claim if and only if all equations hold.

Thus, the proof consists of four \(G \)-elements and \(n \) \(\lambda \)-bit integers. We note that the additional challenge \(\gamma_0 \) is necessary for the security of the protocol. A malicious Prover \(P_{\text{mal}} \) could forge a fake proof as follows.

1. \(P_{\text{mal}} \) computes integers \(r_1, \cdots, r_n \in [\ell] \) such that

\[
\sum_{i=1}^{n} d_i \gamma_0^i \equiv \sum_{i=1}^{n} r_i \gamma_0^i \pmod{\ell}, \ \bigwedge_{j=1}^{k} f_j(r_1, \cdots, r_n) \equiv 0 \pmod{\ell}
\]

but \(d_i \neq r_i \pmod{\ell} \) for some or all indices \(i \). The malicious Prover can succeed in this task with non-negligible probability.

2. \(P_{\text{mal}} \) then sends \((r_1, \cdots, r_n) \) to the Verifier.

3. The Verifier is thus tricked into believing that \(f_j(d_1, \cdots, d_n) = 0 \), which might not necessarily be the case.

Now, in our protocol, \(\gamma_0 \) is randomly generated by the Fiat-Shamir heuristic after the Prover sends \((r_1, \cdots, r_n) \). In a non-interactive setting, this means the hashing algorithm that generates the challenge \(\gamma_0 \) takes the \(\lambda \)-bit integers \((r_1, \cdots, r_n) \) as one of its inputs. Hence,

\[
\Pr \left[\sum_{i=1}^{n} d_i \gamma_0^i \equiv \sum_{i=1}^{n} r_i \gamma_0^i \pmod{\ell} \Big| d_i \neq r_i \pmod{\ell} \text{ for some } i \right] = \text{negl}(\lambda).
\]

So the elements \((r_1, \cdots, r_n) \) must be honestly computed in order to succeed at the additional task of computing the element \(Q_0 \) such that

\[
(Q_0^\ell a^{r_0}) = \prod_{i=1}^{n} a_i^{\gamma_0^i}
\]

with non-negligible probability. A special case that we will need repeatedly in the subsequent protocols is where \(f \) is the \((n+1) \)-variate polynomial

\[
f(X_1, \cdots, X_n, X_{n+1}) := (\prod_{i=1}^{n} X_i) - X_{n+1}.
\]

We will need this case for some of the subsequent protocols for demonstrating pairwise disjointness of committed data sets/multisets.

As was the case with \(\text{AggKE-1} \), in the special case where \(a = g \), the subprotocol where the
Prover computes the element \(\tilde{g} \) and sends it to the Verifier is redundant. So the proof would be smaller and the Prover’s computational burden would be substantially lower in this special case.

Proposition 3.10. The protocol \(\text{PoMultPolyDLog} \) is an argument of knowledge for the relation \(\text{MultPolyDLog} \) in the generic group model.

Proof. The low order assumption implies that except with negligible probability, any PPT algorithm can output at most a unique tuple \((d_1, \cdots, d_n) \in \mathbb{Q}^n \) such that \(a^{d_i} = b_i \). We first show that the protocol is sound, i.e. in case of an accepting transcript, the Prover possesses integers \(d_i \) such that

\[
a^{d_i} = b_i \quad \forall i \quad \bigwedge \quad f_j(d_1, \cdots, d_n) = 0 \quad \forall j
\]

except with negligible probability. We then show that an extractor \(\mathcal{E} \) can efficiently extract the integers \(d_i \) from sufficiently many accepting transcripts in expected polynomial runtime, using the Chinese remainder theorem.

Since the equation \(Q_0^\ell a^\gamma_0 = \prod_{i=1}^{n} b_i^{\gamma_i} \) holds, lemma 2.5 implies that with overwhelming probability, the Prover can generate rationals \(d_1, \cdots, d_n \) with numerators and denominators bounded by \(2^{\text{poly}(\lambda)} \) such that

\[
a^{d_i} = b_i \text{ for } i = 1, \cdots, n \quad \bigwedge \quad \sum_{i=1}^{n} d_i \gamma_0^i = \sum_{i=1}^{n} r_i \gamma_0^i \pmod{\ell}.\]

Since the challenge \(\gamma_0 \) is randomly generated after the Prover has sent \((r_1, \cdots, r_n), \gamma_0 \) is randomly and uniformly distributed modulo \(\ell \). Hence, the Schwartz-Zippel lemma implies that with overwhelming probability, \(d_i \equiv r_i \pmod{\ell} \) for every index \(i \). Now, since the \(\lambda \)-bit prime \(\ell \) is randomly generated,

\[
\Pr\left[f_j(d_1, \cdots, d_n) \equiv 0 \pmod{\ell} \mid f_j(d_1, \cdots, d_n) \neq 0 \right] = \text{negl}(\lambda).
\]

Hence, a union bound over the \(f_j \) show that if \(f_j(d_1, \cdots, d_n) \equiv 0 \pmod{\ell} \forall j \), then \(f_j(d_1, \cdots, d_n) = 0 \forall j \) except with negligible probability.

It remains to argue that the rationals \(d_i \) are integers. In the protocol, the Verifier independently computes

\[
\bar{r} := \sum_{i=1}^{n} r_i^p \gamma_i^i \in [\ell]
\]

So, the equation \(\tilde{g} = (\bar{g})^\bar{r} \) and lemma 2.4 imply that the Prover can generate a rational \(\tilde{d} \) with its numerator and denominator bounded by \(2^{\text{poly}(\lambda)} \) and such that

\[
\tilde{g} = \tilde{g}^{\tilde{d}} \quad , \quad \tilde{d} \equiv \bar{r} \equiv \sum_{i=1}^{n} r_i^p \gamma_i^i \equiv \sum_{i=1}^{n} d_i^p \gamma_i^i \pmod{\ell}.
\]

If \(\tilde{d} \notin \mathbb{Z} \), the tuple \((g, \tilde{g}, \tilde{d}) \in G^2 \times (\mathbb{Q} \setminus \mathbb{Z}) \) would violate the fractional root assumption. So \(\tilde{d} \) is an integer, except with negligible probability. Since the \(\lambda \)-bit prime \(\ell \) is randomly generated after \(\tilde{g} \) has been sent by the Prover, the congruence

\[
\tilde{d} \equiv \sum_{i=1}^{n} d_i^p \gamma_i^i \pmod{\ell}
\]

implies that with overwhelming probability, \(\bar{d} = \sum_{i=1}^{n} d_i^p \gamma_i^i \). Hence, \(\sum_{i=1}^{n} d_i^p \gamma_i^i \in \mathbb{Z} \) and lemma 2.2 then implies that \(d_i \in \mathbb{Z} \forall i \), except with negligible probability.
Let N be the (polynomially bounded) number of queries from A to the group oracles O_1, O_2. With overwhelming probability, $2^N \geq \max\{2|d_i| : 1 \leq i \leq n\}$. An extractor E can extract the tuple $(d_1, \cdots, d_n) \in \mathbb{Z}^n$ as follows.

E makes queries to A, keeping the γ fixed and sampling the ℓ randomly and uniformly from the set of λ-bit primes. Let ℓ_1, \cdots, ℓ_k denote the prime challenges in the first k accepting transcripts and let $r_j \in [\ell_j]^n$ denote the tuple of remainders modulo ℓ_j in the j-th accepting transcript. E uses the Chinese remainder theorem to efficiently compute the unique tuple $(e_1, \cdots, e_n) \in \mathbb{Z}^n$ such that

$$e \equiv r_j \pmod{\ell_j} \forall j, \quad 2|e_i| < \prod_{j=1}^k \ell_j \forall i.$$

After receiving a new accepting transcript and updating the tuple e, the extractor E checks whether $a^{e_i} = a_i$ for $i = 1, \cdots, n$. If so, he halts the process. Otherwise, he queries for another accepting transcript and continues to update e by applying the Chinese remainder theorem to the updated set of accepting transcripts.

When the number of accepting transcripts is $N + 1$, we have

$$\max\{2|d_i| : 1 \leq i \leq n\} < 2^{N+1} < \prod_{j=1}^{N+1} \ell_j$$

except with negligible probability. Thus, with overwhelming probability, $e_i = d_i \forall i$ at this point. Thus, E extracts the d_i in expected polynomial runtime. \hfill \qed

We now discuss a relation (and its argument of knowledge) that is a dual to the relation AggKE-1. Instead of the multiple exponents having a common base, we consider the case where they exponentiate to the same power. We provide an argument of knowledge for the following relation:

$$\mathcal{R}_{\text{AggKE-2}}[(a_1, \cdots, a_n), A] = \left\{ \begin{array}{l}
((a_1, \cdots, a_n) \in \mathbb{G}^n, \ A \in \mathbb{G}) \\
(d_1, \cdots, d_n) \in \mathbb{Z}^n : \\
A = a_i^{d_i} \forall i
\end{array} \right\}$$

The most important special case is when $A \in \mathbb{G}$ is the accumulated digest of a data set and the a_i are membership witnesses of subsets. In this case, the protocol allows a Prover to show that he possesses certain data sets inserted in to the accumulator, the membership witnesses for which are held by the Verifier.

Given elements $a_1, \cdots, a_n, A \in \mathbb{G}$ such that

$$A = a_1^{d_1} = \cdots = a_n^{d_n}$$

where the integers d_i are known to him, the Prover can efficiently compute $D := \text{lcm}(d_1, \cdots, d_n)$ and using Shamir’s trick, an element $a \in \mathbb{G}$ such that $a^D = A$ in runtime $O(n \log(n))$. Now, the protocols $\text{PoAggKE-1}[a, (a_1, \cdots, a_n)]$ and $\text{PoKE}[a, A]$, when combined, would demonstrate that the Prover possesses the integers \hat{d}_i, D such that $a^{\hat{d}_i} = a_i, a^D = A$ and hence, can generate the discrete logarithms $D\hat{d}_i^{-1}$ between a_i and A for every i. However, these protocols do not prove that these discrete logarithms are, in fact, integers. To that end, the Prover needs to demonstrate that the rationals $D\hat{d}_i^{-1}$ $(i = 1, \cdots, n)$ are integers. This can be addressed by the Prover verifiably sending the element

$$\overline{g} := \sum_{i=1}^n (D\hat{d}_i^{-1})^{\alpha_{\gamma_i}} \in \mathbb{G}.$$
for some randomly generated \(\lambda \)-bit integer \(\gamma \). Lemma 2.2 and the fractional root assumption then imply that with overwhelming probability, the \(Dd_i^{-1} \) are integers.

Protocol 3.11. Proof of aggregated knowledge of exponents 2 (PoAggKE-2):

Parameters: \(\mathbb{G} \leftarrow \text{GGen}(\lambda) \), \(g \in \mathbb{G} \)

Input: \((a_1, \cdots, a_n) \in \mathbb{G}^n \), \(A \in \mathbb{G} \).

Claim: The Prover possesses integers \(d_1, \cdots, d_n \) such that \(a_i^{d_i} = A \).

1. The Prover \(\mathcal{P} \) computes the integers
 \[
 D := \text{lcm}(d_1, \cdots, d_n) \; , \; \hat{d}_i := D \cdot d_i^{-1} \; (i = 1, \cdots, n).
 \]
 Using Shamir's trick, he computes an element \(a \in \mathbb{G} \) such that \(a^D = A \) and sends \(a \) to the Verifier \(\mathcal{V} \) along with a non-interactive \(\text{PoKE}[a, A] \).

2. The hashing algorithm \(h_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit integer \(\gamma \).

3. \(\mathcal{P} \) computes
 \[
 p := \text{NextPrime}(n\lambda) \; , \; \tilde{g} := g^{\sum_{i=1}^n d_i \gamma^i} \in \mathbb{G}
 \]
 and sends it to the Verifier \(\mathcal{V} \).

4. \(\mathcal{P} \) generates a non-interactive proof for \(\text{AggKE-1}[a, (a_1, \cdots, a_n)] \) and sends it to \(\mathcal{V} \).

5. The hashing algorithm \(h_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit prime \(\ell \neq 1 \pmod{p} \).

6. \(\mathcal{P} \) computes \(R := D \pmod{\ell} \), \(\tilde{a} := a^{(D-R)/\ell} \) and sends \((\tilde{a}, R) \in \mathbb{G} \times [\ell] \) to \(\mathcal{V} \).

7. \(\mathcal{P} \) computes the integers \(\tilde{r}_i := \hat{d}_i \pmod{\ell} \; (i = 1, \cdots, n) \) and sends \((\tilde{r}_1, \cdots, \tilde{r}_n) \in [\ell]^n \) to \(\mathcal{V} \).

8. \(\mathcal{P} \) computes the integers \(r_i := d_i \pmod{\ell} \; (i = 1, \cdots, n) \) and the integers \(\tilde{q}, \tilde{r} \) such that
 \[
 \sum_{i=1}^n d_i^p \gamma^i = \tilde{q} \cdot \ell + \tilde{r} \; , \; \tilde{r} \in [\ell]
 \]
 and sends \(\tilde{g} := g^\tilde{q} \in \mathbb{G} \) to \(\mathcal{V} \).

9. The hashing algorithm \(h_{\text{FS}, \lambda} \) generates a \(\lambda \)-bit prime \(\gamma_0 \).

10. \(\mathcal{P} \) computes the integers \(\tilde{q}_0, \tilde{r}_0 \) such that
 \[
 \sum_{i=1}^n \hat{d}_i \gamma^i = \tilde{q}_0 \cdot \ell + \tilde{r}_0 \; , \; \tilde{r}_0 \in [\ell]
 \]
 and sends \(\tilde{Q}_0 := a^{\tilde{q}_0} \in \mathbb{G} \) to \(\mathcal{V} \).

11. \(\mathcal{V} \) verifies that \((\tilde{r}_1, \cdots, \tilde{r}_n, R) \in [\ell]^{n+1} \) and computes
 \[
 r_i \equiv \tilde{r}_i^{-1}R \pmod{\ell} \; (i = 1, \cdots, n) \; , \; \tilde{r} := \sum_{i=1}^n r_i^p \gamma^i \pmod{\ell} \; , \; \tilde{r}_0 := \sum_{i=1}^n \tilde{r}_i \gamma_0^i \pmod{\ell}.
 \]

12. \(\mathcal{V} \) verifies the equations
 \[
 (\tilde{a})^f a^R \equiv A \land (\tilde{Q}_0)^f a^{\tilde{r}_0} \equiv \prod_{i=1}^n a_i^{\gamma_0^i} \land (\tilde{g})^f \tilde{g} \equiv \tilde{g}.
 \]
 He accepts the validity of the claim if and only if all three equations hold and the proofs for \(\text{PoKE}[a, A], \text{AggKE-1}[a, (a_1, \cdots, a_n)] \) are valid.
Thus, the proof consists of a constant number of G-elements and $2n + \mathcal{O}(1)$ λ-bit integers. We note that the additional challenge γ_0 is necessary for the security of this protocol. The Prover commits the integer $\sum_{i=1}^{n} d_i^0 \gamma^i$ by computing $\tilde{g} := \sum_{i=1}^{n} d_i^0 \gamma^i$ and sending it to the Verifier before the challenge ℓ is generated by the Fiat-Shamir heuristic. However, a malicious Prover \mathcal{P}_{mal} could forge a fake proof as follows:

1. \mathcal{P}_{mal} chooses integers e_1, \ldots, e_n and sends $\sum_{i=1}^{n} e_i \gamma^i$ to the Verifier instead of $\sum_{i=1}^{n} d_i^0 \gamma^i$.
2. \mathcal{P}_{mal} chooses integers $r_1, \ldots, r_n \in [\ell]$ such that
 $$\sum_{i=1}^{n} (D d_i^{-1}) \gamma^i \equiv \sum_{i=1}^{n} (D r_i^{-1}) \gamma^i \pmod{\ell}, \quad \sum_{i=1}^{n} e_i \gamma^i \equiv \sum_{i=1}^{n} r_i \gamma^i \pmod{\ell},$$
 but $d_i \not\equiv r_i \pmod{\ell}$ for some or all indices i. The Prover \mathcal{P}_{mal} can do so with non-negligible probability.
3. Thus, the Verifier is tricked into believing that $\sum_{i=1}^{n} d_i^0 \gamma^i$ is an integer, which might not necessarily be the case. In fact, even if the Fiat-Shamir heuristic outputs the additional challenge γ_0 before the remainders (r_1, \ldots, r_n, R) are committed, \mathcal{P}_{mal} can forge a fake proof with non-negligible probability.

To address this, γ_0 is randomly generated by the Fiat-Shamir heuristic after the Prover sends the tuple $(\tilde{r}_1, \ldots, \tilde{r}_n, R) \in [\ell]^{n+1}$. Hence, we have

$$\Pr \left[\sum_{i=1}^{n} d_i \gamma_0^i \equiv \sum_{i=1}^{n} r_i \gamma_0^i \pmod{\ell} \mid d_i \not\equiv r_i \pmod{\ell} \text{ for some } i \right] = \negl(\lambda).$$

Hence, the elements (r_1, \ldots, r_n) must be honestly computed in order to succeed at the additional challenge of computing the element \tilde{Q}_0 such that

$$\tilde{Q}_0^\ell a^{\gamma_0} = \prod_{i=1}^{n} a_i^{\gamma_0^i}$$

with non-negligible probability.

The most expensive part of the proof generation is computing the element \tilde{g}. The effective runtime of this part could be reduced if the Prover pre-computes the set

$$\{g^{2^i} : 1 \leq i \leq N\}$$

for an appropriately large integer N. The Verifier’s work can be reduced by the Prover sending a succinct proof of (multi-)exponentiation for the computation $\prod_{i=1}^{n} a_i^{\gamma_0^i}$, instead of the Verifier independently performing this computation.

Theorem 3.12. The protocol PoAggKE-2 is an argument of knowledge for the relation $\mathcal{R}_{\text{AggKE-2}}$ in the generic group model.

Proof. The low order assumption implies that except with negligible probability, any PPT algorithm can output at most a unique tuple $(d_1, \ldots, d_n) \in \mathbb{Q}^n$ such that $a_i^{d_i} = A$. We first show that the protocol is sound, i.e. in case of an accepting transcript, the Prover possesses integers d_i such that $a_i^{d_i} = A \lor i$ except with negligible probability. We then show that an extractor \mathcal{E} can efficiently extract the integers d_i from sufficiently many accepting transcripts using the Chinese remainder theorem, in expected polynomial runtime.
The subprotocol PoAggKE-1[\(\pi, (a_1, \ldots, a_n)\)] demonstrates that with overwhelming probability, the Prover can generate integers \(\hat{d}_1, \ldots, \hat{d}_n\) bounded by \(2^{\text{poly}(\lambda)}\) such that
\[a_i = a_{\hat{d}_i} \quad (i = 1, \ldots, n).\]
The low order assumption implies that the tuple \((\hat{d}_1, \ldots, \hat{d}_n)\) is unique except with negligible probability. Furthermore, since the equation
\[Q_i^\ell a_0 = \prod_{i=1}^{n} a_i^{\gamma_i} = a_0^{\sum_{i=1}^{n} \hat{d}_i^{\gamma_i}} \in G\]
holds, it follows that either
\[\sum_{i=1}^{n} \hat{r}_i \gamma_i \equiv \sum_{i=1}^{n} \hat{d}_i \gamma_i (\text{mod } \ell)\]
or the Prover can efficiently extract an \(\ell\)-th root of \(a \in G\). Since the \(\lambda\)-bit prime is randomly generated after \(a \in G\) has been sent by the Prover, the latter event would violate the adaptive root assumption. So, with overwhelming probability, \(\sum_{i=1}^{n} \hat{r}_i \gamma_i \equiv \sum_{i=1}^{n} \hat{d}_i \gamma_i (\text{mod } \ell)\). Now, since the \(\lambda\)-bit challenge \(\gamma_0\) is randomly generated after the Prover sends the tuple \((\hat{r}_1, \ldots, \hat{r}_n, R) \in [\ell]^{n+1}\), the Schwartz-Zippel lemma implies that with overwhelming probability, \(\hat{r}_i \equiv \hat{d}_i (\text{mod } \ell) \ \forall \ i\), which completes the proof of soundness.

The equation \((\hat{a})^\ell \equiv A\) and lemma 2.4 imply that with overwhelming probability, the Prover possesses a rational \(D \equiv R (\text{mod } \ell)\) such that \(a^D = A\). Thus, with overwhelming probability, the rationals \(D\hat{d}_1^{-1}, \ldots, D\hat{d}_n^{-1}\) satisfy
\[D\hat{d}_i^{-1} \equiv R\hat{r}_i^{-1} (\text{mod } \ell) \ \forall \ i\].

Now, \(a_i^D = a^D\hat{d}_i = A\hat{d}_i\) for every \(i\). In the protocol, the Verifier independently computes the \(\lambda\)-bit integers
\[r_i := R\hat{r}_i^{-1} \equiv D\hat{d}_i^{-1} (\text{mod } \ell) \quad (i = 1, \ldots, n), \quad \bar{r} := \sum_{i=1}^{n} r_i^p \gamma_i \equiv \sum_{i=1}^{n} (D\hat{d}_i^{-1})^p \gamma_i (\text{mod } \ell).\]
Hence, the equation \((\bar{g})^\bar{r} = \bar{g}\) and lemma 2.5 imply that with overwhelming probability, the Prover possesses a rational \(\bar{d}\) such that \(\bar{g} = g^{\bar{d}}\). If \(\bar{d} \not\equiv \bar{r} (\text{mod } \ell)\), the Prover could efficiently extract an \(\ell\)-th root of \(a \in G\), thus violating the adaptive root assumption. Hence, with overwhelming probability,
\[\bar{d} \equiv \bar{r} \equiv \sum_{i=1}^{n} r_i^p \gamma_i \equiv \sum_{i=1}^{n} (D\hat{d}_i^{-1})^p \gamma_i (\text{mod } \ell).\]
Since the \(\lambda\)-bit prime \(\ell\) is randomly generated after the element \(\bar{g} \in G\) has been sent by the Prover, it follows that with overwhelming probability,
\[\bar{d} = \sum_{i=1}^{n} (D\hat{d}_i^{-1})^p \gamma_i.\]
Now, if \(\bar{d}\) were not an integer, the tuple \((g, \bar{g}, \bar{d})\) would violate the fractional root assumption. Thus, with overwhelming probability, \(\bar{d}\) is an integer and since \(p > n\lambda\), lemma 2.2 then implies that with overwhelming probability, the rationals \(D\hat{d}_i^{-1}\) are integers.
Now, an extractor E can simulate the extractors for $\text{PoAggKE-1}[a, (a_1, \cdots, a_n)]$ and $\text{PoKE}[a, A]$ to extract integers $\hat{e}_1, \cdots, \hat{e}_n$, E such that $a_i \hat{e}_i = a_i$ ($i = 1, \cdots, n$) and $a^E = A$ in expected polynomial runtime. Setting $c_i := E \cdot \hat{e}_i^{-1}$ yields $a_i^{c_i} = A$. Since we showed that the protocol is sound, the low order assumption implies that with overwhelming probability, the e_i are integers.

\section{Protocols for arguments of disjointness}

The goal of this section is to provide protocols for demonstrating disjointness of multiple data sets/multisets. The proofs can be publicly verified against the succinct commitments to these multisets. To that end, we first describe a protocol whereby an honest Prover can show that the GCD of two discrete logarithms equals a third discrete logarithm while keeping the communication complexity constant. One obvious application is proving disjointness of sets/multisets in accumulators instantiated with hidden order groups. We formulate an argument of knowledge for the relation

\[R_{\text{GCD}}[(a_1, b_1), (a_2, b_2), (a_3, b_3)] = \{(a_i, b_i \in \mathbb{G}); d_i \in \mathbb{Z}) : \ b_i = a_i^{d_i}, \ \gcd(d_1, d_2) = d_3 \}. \]

We construct a protocol that has communication complexity independent of the elements a_i, b_i. The protocol rests on the basic fact that

\[d_3 = \pm \gcd(d_1, d_2) \iff (d_1 \equiv d_2 \equiv 0 \pmod{d_3}) \bigwedge \left(\exists \ (x_1, x_2) \in \mathbb{Z}^2 : d_3 = x_1 d_1 + x_2 d_2 \right). \]

\begin{protocol}
\textbf{Parameters:} $\mathbb{G} \leftarrow \text{GGen}(\lambda), \ g \in \mathbb{G}$.
\textbf{Input:} Elements $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{G}$.
\textbf{Claim:} The Prover possesses integers d_1, d_2, d_3 such that:
- $a_1^{d_1} = b_1, a_2^{d_2} = b_2, a_3^{d_3} = b_3$
- $\gcd(d_1, d_2) = \pm d_3$

1. The Prover P computes $b_{1,2} := a_1^{d_2}, b_{1,3} := a_1^{d_3} \in \mathbb{G}$ and sends them to the Verifier V. 2. P generates non-interactive proofs for $\text{EqDLog}[(a_2, b_2), (a_1, b_{1,2})], \text{EqDLog}[(a_3, b_3), (a_1, b_{1,3})]$ and sends them to V.
3. P generates non-interactive proofs for $\text{PoKE}[b_{1,3}, b_1]$ and $\text{PoKE}[b_{1,3}, b_{1,2}]$ and sends them to V.
4. P uses the Euclidean algorithm to compute integers e_1, e_2 such that

\[e_1 d_1 + e_2 d_2 = d_3, \ |e_1| < |d_2|, \ |e_2| < |d_1|. \]

5. P computes

\[\bar{b}_1 := b_{1,1}^{e_1}, \ \bar{b}_{1,2} := b_{1,2}^{e_2} \in \mathbb{G} \]

and sends them to V along with non-interactive proofs for $\text{PoKE}[b_1, \bar{b}_1]$ and $\text{PoKE}[b_{1,2}, \bar{b}_{1,2}]$.
6. V verifies all of the proofs he receives in addition to the equation $\bar{b}_1 \cdot \bar{b}_{1,2} = b_{1,3}$. He accepts the validity of the claim if and only if all of these proofs are valid.
\end{protocol}

\begin{theorem}
The Protocol PoGCD is an argument of knowledge for the relation R_{GCD} in the generic group model.
\end{theorem}

\begin{proof}
Since we showed that PoEqDLog is an argument of knowledge for the relation R_{EqDLog}, we may assume without loss of generality that - with notations as in the protocol PoGCD.
\end{proof}
\[a_1 = a_2 = a_3, \ b_{1,2} = b_2, \ b_{1,3} = b_3, \ \tilde{b}_2 = \tilde{b}_{1,2}. \]

An extractor \(\mathcal{E} \) can simulate the extractors for the subprotocols \(\text{PoKE}[a_i, b_i] (i = 1, 2, 3) \), \(\text{PoKE}[b_i, b_i] (i = 1, 2) \) to extract integers \(d_1, d_2, d_3, e_1, e_2 \) such that
\[a_i^{d_i} = b_i \in \mathbb{G} (i = 1, 2, 3), \ b_i^{e_i} = \tilde{b}_i \in \mathbb{G} (i = 1, 2). \]

Since the \(\text{PoKE} \) extractors run in expected polynomial runtime, the same holds for \(\mathcal{E} \). Now, the equation \(\tilde{b}_1 \cdot \tilde{b}_2 = b_3 \in \mathbb{G} \) and the low order assumption imply that with overwhelming probability, \(d_3 = d_1 e_1 + d_2 e_2 \) and hence, \(d_3 \) is divisible \(\gcd(d_1, d_2) \). On the other hand, the subprotocols \(\text{PoKE}[b_3, b_1], \text{PoKE}[b_3, b_2] \) and the low order assumption imply that with overwhelming probability, \(d_3 \) divides both \(d_1 \) and \(d_2 \) and hence, divides \(\gcd(d_1, d_2) \). This forces the equality \(\gcd(d_1, d_2) = d_3. \)

An important special case is where \(\gcd(d_1, d_2) = 1 \). In this case, Step 3 is redundant and hence, the proof size is smaller. We call this special case the Protocol for Relatively Prime Discrete Logarithms or \(\text{RelPrimeDLog} \) for short:
\[
\mathcal{R}_{\text{RelPrimeDLog}}[(a_1, b_1), (a_2, b_2)] = \{ ((a_i, b_i \in \mathbb{G}); d_i \in \mathbb{Z}) : b_i = a_i^{d_i}, \gcd(d_1, d_2) = 1 \}.
\]

Protocol 4.3. Proof of Relatively Prime Discrete Logarithms (PoRelPrimeDLog):

Parameters: \(\mathbb{G} \xleftarrow{\$} \text{GGen}(\lambda), g \in \mathbb{G}. \)

Input: Elements \(a_1, a_2, b_1, b_2 \in \mathbb{G}. \)

Claim: The Prover possesses integers \(d_1, d_2 \) such that:
- \(a_1^{d_1} = b_1, a_2^{d_2} = b_2 \)
- \(\gcd(d_1, d_2) = 1 \)

1. The Prover \(\mathcal{P} \) computes \(b_{1,2} := a_1^{d_2} \) and sends it to the Verifier \(\mathcal{V} \) along with a non-interactive proof for \(\text{EqLog}[(a_2, b_2), (a_1, b_{1,2})] \).
2. \(\mathcal{P} \) uses the Euclidean algorithm to compute integers \(e_1, e_2 \) such that \(e_1 d_1 + e_2 d_2 = 1 \).
3. \(\mathcal{P} \) computes
\[
\tilde{b}_1 := b_1^{e_1}, \quad \tilde{b}_{1,2} := b_{1,2}^{e_2} \in \mathbb{G}
\]
and sends them to \(\mathcal{V} \) along with non-interactive proofs for \(\text{PoKE}[b_1, \tilde{b}_1] \) and \(\text{PoKE}[b_{1,2}, \tilde{b}_{1,2}] \).
4. \(\mathcal{V} \) verifies the equation \(\tilde{b}_1 \cdot \tilde{b}_{1,2} = a_1 \in \mathbb{G} \) and the proofs for \(\text{EqLog}[(a_2, b_2), (a_1, b_{1,2})], \text{PoKE}[b_1, \tilde{b}_1] \) and \(\text{PoKE}[b_{1,2}, \tilde{b}_{1,2}] \). He accepts the validity of the claim if and only if all of these proofs are valid.

Proposition 4.4. The Protocol \(\text{PoRelPrimeDLog} \) is an argument of knowledge for the relation \(\mathcal{R}_{\text{RelPrimeDLog}} \) in the generic group model.

Proof. This is a special case of Proposition 4.2.

It is easy to see that the protocol \(\text{PoGCD} \) may be combined with the protocol \(\text{PoMultPolyDLog} \) to provide an argument of knowledge for the relation
\[
\mathcal{R}_{\text{LCM}}[(a_1, b_1), (a_2, b_2), (a_3, b_3)] = \{ ((a_i, b_i \in \mathbb{G}); d_i \in \mathbb{Z}) : b_i = a_i^{d_i}, \text{lcm}(d_1, d_2) = d_3 \}.
\]

This argument of knowledge can demonstrate that for data sets/multisets \(D_1, D_2, D_3 \), we have
\[
D_3 = D_1 \cup D_2.
\]
by setting
\[d_i = \prod_{d \in D_i} x \quad (i = 1, 2, 3). \]

4.1 Protocols for aggregated arguments of disjointness

We now use the protocols \text{PoAggKE-1} and \text{PoAggKE-2} and a few more techniques to generalize the protocol \text{PoRelPrimeDLog} to multiple discrete logarithms. Consider a setting where we have \(n \) accumulators \(\text{Acc}_1, \ldots, \text{Acc}_n \) instantiated in the same group \(G \) and with the common genesis state \(g \in G \). Let \(D_i \) denote the data inserted into \(\text{Acc}_i \) and let \(A_i \) denote the accumulated digest of \(\text{Acc}_i \). Thus,
\[A_i = \text{Com}(g, D_i) = g^{\Pi(D_i)}. \]

Suppose a Prover needs to demonstrate to a Verifier (with access to the accumulated digests) that the data sets/multisets \(D_i \) are pairwise disjoint, while keeping the communication complexity to a bare minimum. In particular, the Verifier should not need to access the data sets/multisets \(D_i \) which might be too large for the storage capacity of the verifying node. A straightforward way would be to provide the \(\binom{n}{2} \) proofs of pairwise disjointness using the protocol \text{PoRelPrimeDLog}. But this would entail \(O(n^2) \) group elements and \(O(n^2) \) \(\lambda \)-bit integers, which we would like to avoid. Instead, we provide a protocol whereby the Prover can demonstrate the pairwise disjointness with a constant number of \(G \)-elements and \(2n + O(1) \) \(\lambda \)-bit integers.

We call the next protocol the \text{Aggregated Knowledge of Relatively Prime Exponents} 1 or \text{AggRelPrimeDLog-1} for short. We provide an argument of knowledge for the relation:
\[R_{\text{AggRelPrimeDLog-1}}[a, A] = \left\{ \begin{array}{l}
(a \in G, \ a := (a_1, \ldots, a_n) \in \mathbb{G}^n); \\
(d_1, \ldots, d_n) \in \mathbb{Z}^n): \\
a_i = a^{d_i} \forall i, \gcd(d_i, d_j) = 1 \forall i \neq j
\end{array} \right\} \]
The protocol rests on the following elementary lemma.

Lemma 4.5. Let \(d_1, \ldots, d_n \) be non-zero integers. Set
\[D := \prod_{i=1}^{n} d_i, \quad \hat{d}_i := Dd_i^{-1} \quad (i = 1, \ldots, n), \quad \hat{D} := \sum_{i=1}^{n} \hat{d}_i. \]
Then
\[\gcd(d_i, d_j) = 1 \forall i \neq j \iff \gcd(D, \hat{D}) = 1. \]

Proof. First, suppose there exists a pair \(i, j \) such that \(\gcd(d_i, d_j) > 1 \). Then \(\gcd(d_i, d_j) \) divides \(\hat{d}_k \) for every index \(k \) and in particular, \(\gcd(d_i, d_j) \) divides \(D \). Hence, \(\gcd(D, \hat{D}) \) is divisible by \(\gcd(d_i, d_j) \).

Conversely, suppose \(\gcd(d_i, d_j) = 1 \forall i \neq j \). Then for every index \(i \), \(\hat{D} \equiv \hat{d}_i \pmod{d_i} \) and hence, \(\gcd(\hat{D}, d_i) = \gcd(\hat{d}_i, d_i) = 1 \). Thus, \(\gcd(D, \hat{D}) = 1. \)

Recall that given integers \(d_1, \ldots, d_n \) and elements \(a, A \in G \) such that
\[a^D = \prod_{i=1}^{n} d_i = A, \]
the \text{RootFactor} algorithm allows us to compute elements \(a_i \) such that \(a_i^{d_i} = A \) in runtime \(O(\log(D) \cdot \log(\log(D))) \), whereas the naïve approach would take runtime \(O(\log^2(D)) \). Thus, a Prover can compute the element.
\[\hat{A} := \prod_{i=1}^{n} a_i \in G \]

in runtime \(O(\log(D)\cdot\log(\log(D)))\) with the \texttt{RootFactor} algorithm followed by \(n\) group multiplications.

Protocol 4.6. Proof of Aggregated Knowledge of Relatively Prime Discrete Logarithms

(PoAggRelPrimeDLog-1):

Parameters: \(G \xrightarrow{\$} \text{GGen}(\lambda), g \in G\).

Input: Element \(a \in G\), \((a_1, \cdots, a_n) \in G^n\).

Claim: The Prover possesses integers \(d_1, \cdots, d_n\) such that:
- \(a^{d_i} = a_i\) for \(i = 1, \cdots, n\).
- \(\gcd(d_i, d_j) = 1\) for every pair \(i \neq j\).

1. The Prover \(P\) computes the integers \(D := \prod_{i=1}^{n} d_i\), \(\hat{D} := \sum_{i=1}^{n} (D \cdot d_i^{-1})\).
2. \(P\) computes \(A := a^D, \quad \hat{A} := a^{\hat{D}} \in G\) (the latter using the \texttt{RootFactor} algorithm) and sends \(A, \hat{A}\) to the Verifier \(V\).
3. \(P\) generates a non-interactive proof for \(\text{MultPolyDLog}[a, \,(a_1, \cdots, a_n, A, \hat{A}), \,(f, \hat{f})]\) where
 \[f(X_1, \cdots, X_{n+2}) := \left(\prod_{i=1}^{n} X_i \right) - X_{n+1}, \quad \hat{f}(X_1, \cdots, X_{n+2}) := \left(\sum_{i=1}^{n} \prod_{1 \leq j \leq n, j \neq i} X_j \right) - X_{n+2} \]

 and sends the proof to \(V\).
4. \(P\) generates a non-interactive proof for \(\text{RelPrimeDLog}[(a, A), \,(a, \hat{A})]\) and sends it to \(V\).
5. \(V\) verifies the three proofs and accepts the validity of the claim if and only if all proofs are valid.

Recall that the protocol \(\text{PoMultPolyDLog}[a, \,(a_1, \cdots, a_n, A, \hat{A}), \,(f, \hat{f})]\) contains \(\text{PoAggKE-1}[a, \,(a_1, \cdots, a_n)]\) as a subprotocol. So the protocol \(\text{PoAggRelPrimeDLog-1}\) demonstrates that there exist \(n\) integers \(d_i\) such that \(a^{d_i} = a_i\) and the product \(\prod_{i=1}^{n} d_i\) is relative prime with the integer given by the \((n-1)\)-th elementary symmetric function

\[\sum_{i=1}^{n} \prod_{1 \leq j \leq n, j \neq i} d_j. \]

By lemma 4.5 this is equivalent to the integers \(d_i\) being pairwise co-prime. Thus, the proof consists of a constant number of \(G\)-elements and \(2n + O(1)\) \(\lambda\)-bit integers.

In the special case where \(a\) is an element randomly generated by the oracle, the fractional root assumption implies that it is infeasible to compute any roots of \(a\). Hence, the subprotocol of \(\text{PoAggKE-1}\) or \(\text{PoMultPolyDLog}\) where the Prover computes the element

\[\bar{g} := g^{\sum_{i=1}^{n} d_i a_i} \in G \]

and sends it to the Verifier is redundant. So the proof would be a bit smaller and the Prover’s computational burden would be substantially lower in this special case.

Theorem 4.7. The protocol \(\text{PoAggRelPrimeDLog-1}\) is an argument of knowledge for the relation \(R_{\text{AggRelPrimeDLog-1}}\) in the generic group model.
Proof. An extractor E can, with overwhelming probability, simulate the extractor for the subprotocol PoMultPolyDLog to extract integers D, \hat{D}, d_1, \ldots, d_n such that

$$D = \prod_{i=1}^{n} d_i, \quad \hat{D} = \sum_{i=1}^{n} \frac{D}{d_i}, \quad a^{d_i} = a_i \forall i, \quad a^D = A, \quad a^{\hat{D}} = \hat{A}$$

in expected polynomial runtime. Furthermore, the subprotocol $\text{PoRelPrimeDLog}(a, A, (a, \hat{A}))$ implies that with overwhelming probability, $\gcd(D, \hat{D}) = 1$. Hence, by Lemma 4.5, the integers d_i are pairwise co-prime.

Given elements $a_1, a_2 \in \mathbb{G}$, $(b_1, \cdots, b_m) \in \mathbb{G}^m$, $(c_1, \cdots, c_m) \in \mathbb{G}^n$ and equations

$$a_1^{d_1} = b_1, \ldots, a_1^{d_m} = b_m, \quad a_2^{e_1} = c_1, \ldots, a_2^{e_n} = c_n,$$

a Prover may provide a proof that he possesses the integers d_1, \ldots, d_m, e_1, \ldots, e_n and that every pair d_i, e_j is relatively prime. Our primary use case is demonstrating the disjointness of two families of accumulators. Clearly, the latter part is equivalent to the two integers $d := \prod_{i=1}^{m} d_i$, $e := \prod_{j=1}^{n} e_j$ being relatively prime. Our approach is to first compute the elements $B = a_1^{d_1}, C := a_2^e$. We then use the protocol RelPrimeDLog to show that $\gcd(d, e) = 1$.

We call the next protocol the Aggregated Knowledge of Relatively Prime Exponents 2 or AggRelPrimeDLog-2 for short. We provide an argument of knowledge for the following relation:

$$\mathcal{R}_{\text{AggRelPrimeDLog-2}}[a_1, a_2, b, c] = \left\{ \begin{array}{l}
((a_1, a_2) \in \mathbb{G}^2), \\
(b := (b_1, \cdots, b_m) \in \mathbb{G}^m), \quad (c := (c_1, \cdots, c_n) \in \mathbb{G}^n); \\
((d_1, \cdots, d_m) \in \mathbb{Z}^m), \quad (e_1, \cdots, e_n) \in \mathbb{Z}^n) : \\
(b_i = a_1^{d_i} \land c_j = a_2^{e_j} \land \gcd(d_i, e_j) = 1) \forall i, j \end{array} \right\}$$

Parameters: $\mathbb{G} \xrightarrow{\$} \text{GGen}(\lambda), \ g \in \mathbb{G}$.

Input: Elements $a_1, a_2 \in \mathbb{G}$; Elements $b = (b_1, \cdots, b_m) \in \mathbb{G}^m$, $c = (c_1, \cdots, c_n) \in \mathbb{G}^n$.

Claim: The Prover possesses integers d_1, \cdots, d_m, e_1, \cdots, e_n such that:

- $a_1^{d_i} = b_i$ for $i = 1, \ldots, m$.
- $a_2^{e_j} = c_j$ for $j = 1, \ldots, n$.
- $\gcd(d_i, e_j) = 1$ for every pair i, j.

1. The Prover \mathcal{P} computes the integers $d := \prod_{i=1}^{m} d_m, \ e := \prod_{j=1}^{n} e_n$.
2. \mathcal{P} computes $B := a_1^d$, $C := a_2^e \in \mathbb{G}$ and sends B, C to the Verifier \mathcal{V}.
3. \mathcal{P} generates a non-interactive proof for $\text{MultPolyDLog}[a_1, (b_1, \cdots, b_m, B), f_1]$ where

$$f_1(X_1, \cdots, X_{m+1}) := (\prod_{i=1}^{m} X_i) - X_{m+1}$$

and sends it to \mathcal{V}.
4. \mathcal{P} generates a non-interactive proof for $\text{MultPolyDLog}[a_2, (c_1, \cdots, c_n, C), f_2]$ where

$$f_2(X_1, \cdots, X_{n+1}) := (\prod_{j=1}^{n} X_j) - X_{n+1}$$
and sends it to V.
5. P generates a non-interactive proof for $\text{RelPrimeDLog}[[a_1, B], (a_2, C)]$ and sends it to V.
6. V accepts the validity of the claim if and only if all three proofs are valid.

Thus, the proof consists of a constant number of G-elements and $2(m + n) + O(1) \lambda$-bit integers. We now prove the security of the protocol.

Proposition 4.9. The Protocol AggRelPrimeDLog_2 is an argument of knowledge for the relation $\mathcal{R}_{\text{AggRelPrimeDLog}_2}$ in the generic group model.

Proof. An extractor E can simulate the extractors for the subprotocols

$$\text{PoMultPolyDLog}[a_1, (b_1, \ldots, b_m, B), f_1] \land \text{PoMultPolyDLog}[a_2, (c_1, \ldots, c_n, C), f_2]$$

to extract integers $d_1, \ldots, d_m, e_1, \ldots, e_n$ such that

$$a_1^{d_i} = b_i, \quad a_2^{e_j} = c_j, \quad a_1^{-1} \prod_{i=1}^{m} d_i = B, \quad a_2^{-1} \prod_{j=1}^{n} e_j = C, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n.$$

Furthermore, the subprotocol $\text{PoRelPrimeDLog}[(a_1, B), (a_2, C)]$ and the low order assumption imply that with overwhelming probability, $\gcd(\prod_{i=1}^{m} d_i, \prod_{j=1}^{n} e_j) = 1$. This, in turn, implies that $\gcd(d_i, e_j) = 1$ for every pair i, j. \hfill \square

4.2 Protocols for disjointness of sets/multisets in a single accumulator

We now discuss a dual to the protocol $\text{PoAggRelPrimeDLog}_1$. Consider a setting where we have data sets/multisets D_1, \ldots, D_n inserted into an accumulator. Let A denote the accumulated digest, w the witness for D_i and $d_i := \Pi(D_i)$. Suppose a Prover needs to demonstrate that the multisets D_i are pairwise disjoint to a Verifier who has access to the witnesses w_1, \ldots, w_n but not the data multisets. A straightforward approach would be to provide a proof for the relation $\text{RelPrimeDLog}[[w_i, A], (w_j, A)]$ for each pair i, j. But such a proof would entail $O(n^2)$ G-elements and $O(n^2) \lambda$-bit integers, which is impractical for larger values of n.

Instead, we provide a protocol whereby the proof consists of a constant number of G-elements and $n \lambda$-bit integers. The protocol rests on two simple observations. First, note that for integers d_1, \ldots, d_n,

$$\gcd(d_i, d_j) = 1 \land i \neq j \iff \prod_{i=1}^{n} d_i = \text{lcm}(d_1, \ldots, d_n),$$

as can be easily proved by induction. Secondly, if an element $w \in G$ can be expressed in the form

$$w = \prod_{i=1}^{n} w_i^{x_i}, \quad (x_1, \ldots, x_n) \in \mathbb{Z}^n,$$

then

$$w^{\text{lcm}(d_1, \ldots, d_n)} = A^k \quad \text{where } k := \sum_{i=1}^{n} x_i \frac{\text{lcm}(d_1, \ldots, d_n)}{d_i}.$$

Furthermore, the Prover can efficiently compute the integers

$$d := \prod_{i=1}^{n} d_i = \text{lcm}(d_1, \ldots, d_n), \quad \hat{d}_i := \prod_{1 \leq j \leq n, j \neq i} d_j \quad (i = 1, \ldots, n), \quad \hat{d} := \sum_{i=1}^{n} \hat{d}_i,$$

31
Now, d is relatively prime to \hat{d} by lemma 4.5. Hence, the Prover can efficiently compute integers e, \hat{e} such that
\[
de + \hat{d}\hat{e} = 1, \quad A^e \cdot \prod_{i=1}^n w_i^{\hat{e}} = w.
\]
In particular, since $\prod_{i=1}^n w_i$ is publicly computable, the Prover can demonstrate - with constant communication complexity - that w is expressible as a product $\prod_{i=1}^n w_i^{x_i}$, where the x_i are integers known to him. If the Prover can also demonstrate that $w \prod_{i=1}^n d_i = A$, (with a subprotocol virtually identical to MultPolyDLog), then this implies that $\text{lcm}(d_1, \cdots, d_n)$ divides the product $\prod_{i=1}^n d_i$, which forces equality between these two integers. In what follows, we provide an argument of knowledge for the relation
\[
R_{\text{AggRelPrimeDLog-3}}[(w_1, \cdots, w_n), A] = \begin{cases}
(A \in \mathbb{G}, (w_1, \cdots, w_n) \in \mathbb{G}^n); \\
((d_1, \cdots, d_n) \in \mathbb{Z}^n) : \\
w_i^{d_i} = A \forall i \land \gcd(d_i, d_j) = 1 \forall i, j : i \neq j
\end{cases}
\]

(PoAggRelPrimeDLog-3):

Parameters: $\mathbb{G} \leftarrow \text{GGen}(\lambda), g \in \mathbb{G}$.

Input: Elements $(w_1, \cdots, w_n) \in \mathbb{G}^n$, $A \in \mathbb{G}$

Claim: The Prover possesses integers d_1, \cdots, d_n such that:
- $w_i^{d_i} = A$ for $i = 1, \cdots, n$.
- $\gcd(d_i, d_j) = 1$ for every pair $i \neq j$.

1. The Prover P computes the integers
\[
D := \prod_{i=1}^n d_i, \quad \hat{d}_i = \prod_{1 \leq j \leq n, j \neq i} d_j \quad (i = 1, \cdots, n), \quad \hat{D} := \sum_{i=1}^n \hat{d}_i.
\]

2. Using Shamir’s trick, P computes an element $w \in \mathbb{G}$ such that $w^D = A$ and sends w to the Verifier V.

3. P uses the Euclidean algorithm to compute integers e, \hat{e} such that
\[
e \cdot D + \hat{e} \cdot \hat{D} = \gcd(D, \hat{D}) = 1 , \quad |e| < |D|, \quad |\hat{e}| < |D|.
\]

4. P computes the elements
\[
\tilde{A} := A^e, \quad W := \left(\prod_{i=1}^n w_i \right)^{\hat{e}} \in \mathbb{G}
\]
and sends \tilde{A}, W to V along with non-interactive proofs for PoKE[A, \tilde{A}] and PoKE[$\prod_{i=1}^n w_i$, W].

5. The hashing algorithm HFS_λ generates a λ-bit prime γ.

6. P computes
\[
p := \text{NextPrime}(n\lambda), \quad \tilde{g} := \sum_{i=1}^n d_i^{\gamma^i} \in \mathbb{G}
\]
and sends \tilde{g} to V.

7. The hashing algorithm $H_{FS,\lambda}$ generates a λ-bit prime $\ell \not\equiv 1 \pmod{p}$.

8. P computes
 \[R := D \pmod{\ell}, \quad \tilde{w} := w^{(D - R)/\ell} \]
 and sends $\tilde{w} \in G$ to V.

9. P computes the integers
 \[\tilde{r}_i := d_i \pmod{\ell}, \quad r_i := d_i \pmod{\ell} \]
 and sends the tuple $(r_1, \ldots, r_n) \in [\ell]^n$ to V.

10. P computes the integers \tilde{q}, \tilde{r} such that
 \[n \sum_{i=1}^{n} d_i^p \gamma_i = \tilde{q} \cdot \ell + \tilde{r}, \quad \tilde{r} \in [\ell] \]
 and sends $\tilde{g} := g^\tilde{q} \in G$ to V.

11. The hashing algorithm $H_{FS,\lambda}$ generates a λ-bit prime γ_0.

12. P computes the integers \tilde{q}_0, \tilde{r}_0 such that
 \[\sum_{i=1}^{n} \tilde{d}_i \gamma_i = \tilde{q}_0 \cdot \ell + \tilde{r}_0, \quad \tilde{r}_0 \in [\ell] \]
 and sends $\tilde{Q}_0 := w^{\tilde{q}_0} \in G$ to V.

13. V verifies that $(r_1, \ldots, r_n) \in [\ell]^n$ and computes the λ-bit integers
 \[R := \prod_{i=1}^{n} r_i \pmod{\ell}, \quad \tilde{r}_i = R \cdot r_i^{-1} \pmod{\ell} \quad (i = 1, \ldots, n), \]
 \[\tilde{r} := \sum_{i=1}^{n} r_i^p \gamma_i \pmod{\ell}, \quad \tilde{r}_0 := \sum_{i=1}^{n} \tilde{r}_i \gamma_i \pmod{\ell}. \]

14. V computes the elements $\prod_{i=1}^{n} w_i, \prod_{i=1}^{n} w_i^{\tilde{r}_i}, \prod_{i=1}^{n} w_i^{\tilde{r}_0} \in G$.

15. V verifies the equations
 \[(\tilde{Q}_0)^{\ell} w^{\tilde{q}_0} = \prod_{i=1}^{n} w_i^{\tilde{r}_0} \wedge \tilde{A} \cdot W = w \wedge (\tilde{w})^{\ell} w^{R} = A \wedge (\tilde{g})^{\ell} \tilde{r} = \tilde{g} \]
 and the two PoKEs from Step 4. He accepts if and only if all four equations hold and the two PoKEs are valid.

The proof consists of $O(1)$ G-elements and $n + O(1) \lambda$-bit integers. The most expensive part of the proof generation is computing the element \tilde{g}. The effective runtime can be reduced if the Prover pre-computes the set
\[\{g^{2^i} : 1 \leq i \leq N\} \subseteq G \]
for an appropriately large integer N. If n is large, the Verifier’s work can be reduced by the Prover sending succinct proofs of multi-exponentiation for the computations $\prod_{i=1}^{n} w_i^{\tilde{r}_i}, \prod_{i=1}^{n} w_i^{\tilde{r}_0}$ instead of the Verifier computing them independently.
Theorem 4.11. The protocol PoAggRelPrimeDLog−3 is an argument of knowledge for the relation RAggRelPrimeDLog−3 in the generic group model.

Proof. The low order assumption implies that except with negligible probability, any PPT algorithm can generate at most a unique tuple \((d_1, \ldots, d_n) \in \mathbb{Q}^n\) such that \(w_i^{d_i} = A\). We first show that the protocol is sound, i.e. in case of an accepting transcript, the Prover can generate integers \(d_i\) bounded by \(2^{\text{poly}(\lambda)}\) such that

\[
w_i^{d_i} = A \forall i \land \text{gcd}(d_i, d_j) = 1 \forall i, j,
\]

except with negligible probability. We then show that an extractor \(E\) can efficiently extract the integers \(d_i\) from sufficiently many accepting transcripts using the Chinese remainder theorem, in expected polynomial runtime.

Since the \(\lambda\)-bit challenge \(\gamma_0\) is generated after the Prover sends the tuple \((r_1, \cdots, r_n) \in [\ell]^n\), the equation

\[
(Q_0)^{\ell} w^{\tilde{r}_0} = \prod_{i=1}^{n} w_i^{\gamma_0^i},
\]

and lemma 2.5 imply that with overwhelming probability, the Prover possesses rationals \(\tilde{d}_1, \cdots, \tilde{d}_n\) such that \(w_i^{d_i} = w_i \in G\), \(\tilde{d}_i \equiv \tilde{r}_i \pmod{\ell}\) for every \(i\). Furthermore, the equation \((\tilde{w})^{\ell} w^R = A\) implies that with overwhelming probability, the Prover possesses a rational \(D\) such that \(D \equiv R \pmod{\ell}, w^D = A\). Now,

\[
D \equiv R \equiv \prod_{i=1}^{n} r_i \equiv \prod_{i=1}^{n} d_i \pmod{\ell}
\]

and since the \(\lambda\)-bit prime \(\ell\) is randomly generated after the Prover sends \(w\), it follows that with overwhelming probability, \(D = \prod_{i=1}^{n} D d_i^{-1}\). Setting \(d_i := D d_i^{-1}\) yields \(w_i^{d_i} = A\), \(D = \prod_{i=1}^{n} d_i\).

The equation \((\tilde{g})^{d} \tilde{g}^\gamma = \tilde{g}\) and lemma 2.4 imply that with overwhelming probability, the Prover possesses a rational \(d\) such that

\[
\tilde{g} = g^d, \quad \tilde{d} \equiv \tilde{r} \equiv \sum_{i=1}^{n} r_i^p \gamma^i \equiv \sum_{i=1}^{n} d_i^p \gamma^i \pmod{\ell}.
\]

Since the \(\lambda\)-bit prime \(\ell\) is randomly generated after \(\tilde{g}\) has been sent by the Prover, it follows that with overwhelming probability,

\[
\tilde{d} = \sum_{i=1}^{n} d_i^p \gamma^i.
\]

The fractional root assumption implies that \(\tilde{d}\) is an integer except with negligible probability. So \(\sum_{i=1}^{n} d_i^p \gamma^i \in \mathbb{Z}\) and lemma 2.2 then implies that with overwhelming probability, the \(d_i\) are all integers.

Furthermore, since the equation \(\tilde{A} \cdot W = w \in G\) and the proofs for PoKE\([A, \tilde{A}]\) and PoKE\([\prod_{i=1}^{n} w_i], W\] are valid, it follows that, in particular, \(w\) is expressible as a product

\[
w = \prod_{i=1}^{n} w_i^{x_i}, \quad (x_1, \cdots, x_n) \in \mathbb{Z}^n, |x_i| < 2^{\text{poly}(\lambda)}.
\]

for some tuple \((x_1, \cdots, x_n)\) known to the Prover. Hence,

\[
w^{\text{lem}(d_1, \cdots, d_n)} = A^k = \prod_{i=1}^{k} d_i \in G
\]

for some integer \(k\) known to the Prover. Now, the low order assumption implies that with
overwhelming probability, \(\text{lcm}(d_1, \cdots, d_n) \) is divisible by the product \(\prod_{i=1}^{n} d_i \), which forces equality between these two integers. Hence, the integers \(d_i \) are pairwise co-prime. This completes the proof of the soundness of the protocol.

Let \(N \) be the (polynomially bounded) number of queries from \(A \) to the group oracles \(O_1, O_2 \). With overwhelming probability, \(2^N \geq \max\{2|d_i| : 1 \leq i \leq n\} \). An extractor \(\mathcal{E} \) can extract the tuple \((d_1, \cdots, d_n) \in \mathbb{Z}^n \) as follows.

\(\mathcal{E} \) makes queries to \(A \), keeping the \(\gamma \) fixed and sampling the \(\ell \) randomly and uniformly from the set of \(\lambda \)-bit primes. Let \(\ell_1, \cdots, \ell_k \) denote the prime challenges in the first \(k \) accepting transcripts and let \(r_j \in [\ell_j]^n \) denote the tuple of remainders modulo \(\ell_j \) in the \(j \)-th accepting transcript. \(\mathcal{E} \) uses the Chinese remainder theorem to efficiently compute the unique tuple \(\mathbf{e} = (e_1, \cdots, e_n) \in \mathbb{Z}^n \) such that

\[
e \equiv r_j \quad (\text{mod } \ell_j) \quad \forall j, \quad 2|e_i| < \prod_{j=1}^{k} \ell_j \quad \forall i.
\]

After receiving a new accepting transcript and updating the tuple \(\mathbf{e} \), the extractor \(\mathcal{E} \) checks whether \(d_i^{e_i} = A \) for \(i = 1, \cdots, n \). If so, he halts the process. Otherwise, he queries for another accepting transcript and continues to update \(\mathbf{e} \) by applying the Chinese remainder theorem to the updated list of accepting transcripts.

When the number of accepting transcripts is \(N + 1 \), we have

\[
\max\{2|d_i| : 1 \leq i \leq n\} < 2^{N+1} < \prod_{j=1}^{N+1} \ell_j
\]

except with negligible probability. Thus, with overwhelming probability, \(e_i = d_i \forall i \) at this point. Thus, \(\mathcal{E} \) extracts the \(d_i \) in expected polynomial runtime.

Next, we discuss a dual to the Protocol AggRelPrimeDLog-2. Given elements \(B, C \in \mathbb{G} \) and subsets \(b = \{b_1, \cdots, b_m\} \in \mathbb{G}^m, \quad c = \{c_1, \cdots, c_n\} \in \mathbb{G}^n \), an honest Prover may provide a proof that he possesses integers \(\{d_1, \cdots, d_m\}, \{e_1, \cdots, e_n\} \) such that \(b_i^{d_i} = B, \quad c_j^{e_j} = C \) and every pair \(d_i, e_j \) is relatively prime. We call this relation the Aggregated Relatively Prime Discrete Logarithms 4 or AggRelPrimeDLog-4 for short. We provide an argument of knowledge for the following relation:

\[
\mathcal{R}_{\text{AggRelPrimeDLog-4}}[b, c, B, C] = \begin{cases}
((B, C) \in \mathbb{G}^2, & b = (b_1, \cdots, b_m) \in \mathbb{G}^m, \quad c = (c_1, \cdots, c_n) \in \mathbb{G}^n); \\
((d_1, \cdots, d_m) \in \mathbb{Z}^m, (e_1, \cdots, e_n) \in \mathbb{Z}^n) : \\
(B = b_i^{d_i}, \quad C = c_j^{e_j} \land \gcd(d_i, e_j) = 1) \forall i, j
\end{cases}
\]

An example: Consider the case where \(B, C \in \mathbb{G} \) are accumulated digests for accumulators \(\text{Acc}_1 \) and \(\text{Acc}_2 \) respectively. Let \(D_1, \cdots, D_m \) and \(E_1, \cdots, E_m \) be data sets/multisets inserted into the two accumulators. Let \(w_i, u_j \) denote the membership witnesses for \(D_i, E_j \) and let \(d_i, e_j \) denote the products of elements of \(D_i, E_j \) respectively \((1 \leq i \leq m, 1 \leq j \leq n) \). Then

\[
w_i^{d_i} = B, \quad u_j^{e_j} = C.
\]

Suppose a Prover needs to prove the disjointness of the unions

\[
\begin{aligned}
\end{aligned}
\]
Similarly, extract integers d_i for every pair d_i, e_j using the protocol PoRelPrimeDLog. But such a proof would entail $O(mn)$ elements of G in addition to $O(mn)$ λ-bit integers. Instead, the Prover could simply send a non-interactive proof for the relation $AggRelPrimeDLog-4(W, B, (U, C))$. The proof consists of a constant number of G-elements and $2(m + n) + O(1)$ λ-bit integers. The protocol hinges on the simple observation that the following are equivalent:

- $\gcd(d_i, e_j) = 1$ for every pair i, j.
- $\gcd(\text{lcm}(d_1, \ldots, d_m), \text{lcm}(e_1, \ldots, e_n)) = 1$

Protocol 4.12. *Proof of Aggregated Knowledge of Relatively Prime Discrete Logarithms* 4 ($\text{PoAggRelPrimeDLog-4}$)

Parameters: $G \leftarrow \text{GGen}(\lambda), g \in G$.

Input: Elements $B, C \in \mathbb{G}$, $b = (b_1, \ldots, b_m) \in \mathbb{G}^m$, $c = (c_1, \ldots, c_n) \in \mathbb{G}^n$.

Claim: The Prover possesses integers d_1, \ldots, d_m, e_1, \ldots, e_n such that:

1. Using Shamir's trick, P computes elements $b, c \in \mathbb{G}$ such that

 $$b^\text{lcm}(d_1, \ldots, d_m) = B, \quad c^\text{lcm}(e_1, \ldots, e_n) = C$$

 and sends b, c to the Verifier V.

2. P generates non-interactive proofs for $\text{AggKE-2}[b, B]$ and $\text{AggKE-2}[c, C]$ and sends the proofs to V.

3. P generates non-interactive proofs for $\text{AggKE-1}[b, B]$ and $\text{AggKE-1}[c, C]$ and sends the proofs to V.

4. P generates a non-interactive proof for $\text{RelPrime}[(b, B), (c, C)]$ and sends the proof to V.

5. V verifies all of these proofs and accepts the validity of the claim if and only if all proofs are valid.

Thus, the proof for AggRelPrimeDLog-4 consists of a constant number of \mathbb{G}-elements and $2(m + n) + O(1)$ λ-bit integers.

Proposition 4.13. The protocol AggRelPrimeDLog-4 is an argument of knowledge for the relation $\mathcal{R}_{\text{AggRelPrimeDLog-4}}$ in the generic group model.

Proof. An extractor E can simulate the extractors for $\text{AggKE-2}[b, B]$ and $\text{AggKE-1}[b, B]$ to extract integers $d, d_1, \ldots, d_m, \hat{d}_1, \ldots, \hat{d}_m$ such that

$$b^d = B, \quad b^{\hat{d}_i} = b_i, \quad b_i^{d_i} = B \forall i.$$

Similarly, E can simulate the extractors for $\text{AggKE-2}[c, C]$ and $\text{AggKE-1}[c, C]$ to extract integers $e, e_1, \ldots, e_n, \hat{e}_1, \ldots, \hat{e}_n$ such that
\[c^e = C, \quad \hat{c}^j = c_j, \quad \hat{c}^\hat{j} = C \forall j. \]

The low order assumption implies that with overwhelming probability,
\[d_i \cdot \hat{d}_i = d \forall i, \quad e_j \cdot \hat{e}_j = e \forall j \]
and in particular, \(d, e \) are divisible by \(\text{lcm}(d_1, \ldots, d_m), \text{lcm}(e_1, \ldots, e_n) \) respectively. Lastly, the proof for \(\text{RelPrimeDLog}((b, B), (c, C)) \) implies that with overwhelming probability, \(\gcd(d, e) = 1 \).

This implies that the integers \(\text{lcm}(d_1, \ldots, d_m), \text{lcm}(e_1, \ldots, e_n) \) are relatively prime and hence with overwhelming probability, \(\gcd(d_i, e_j) = 1 \) for each pair \(i, j \).

5 Applications

In this section, we discuss two potential applications of the techniques developed in this paper: verifiable outsourcing of data and sharded stateless blockchains.

5.1 Verifiably outsourcing storage

The protocols we have developed so far allow us to build a mechanism whereby a client can verifiably outsource data multisets to a server node. The client stores constant-sized commitments to these multisets and can query the server for information regarding these data sets. The server node, in turn, submits this information with proofs that can be publicly verified against the constant-sized commitments stored by the client.

As before, \(G \) is a group of hidden order in which we assume the adaptive root and strong-RSA assumptions to hold. The (fixed) element \(g \in G \) is a randomly generated element of \(G \). For a multiset \(M \), the commitment to \(M \) is given by the element
\[\text{Com}(g, M) := g^{\Pi(M)} \in G \]
where \(\Pi(M) \) is the product of all elements of \(M \), with the appropriate multiplicities.

Proof of storage: To ask the server \(P \) to prove that he is storing the data multiset \(M \), the client \(V \) can generate a random element \(g_1 \in G \) and ask the server to provide the element
\[\text{Com}(g_1, M) := g_1^{\Pi(M)} \in G \]
along with a non-interactive proof for \(\text{EqDLog}((g, \text{Com}(g, M)), (g_1, \text{Com}(g_1, M))) \). The communication complexity is constant and in particular, is independent of the size of \(M \).

If the client needs the proof of storage for multiple data multisets \(M_1, \ldots, M_n \), they may proceed as follows:

1. The hashing algorithm \(H_{FS, \lambda} \) generates a \(\lambda \)-bit prime \(\gamma \) and a group element \(g_1 \).
2. The Prover \(P \) computes
 \[h := \prod_{i=1}^{n} \text{Com}(g, M_i)^{\gamma_i}, \quad h_1 := g_1^{\sum_{i=1}^{n} \Pi(M_i) \gamma_i} \]
 and sends \(h_1 \) to the Verifier \(V \) along with a non-interactive proof for \(\text{EqDLog}((g, h), (g_1, h_1)) \).
3. \(V \) independently computes \(h \) along with a non-interactive proof for \(\text{EqDLog}((g, h), (g_1, h_1)) \).

Thus, the proof is constant-sized irrespective of the number of data sets/multisets or their sizes.

Updates: When the data multiset is to be updated, the client sends the changes to the server.
The server stores these changes and sends back the updated commitment to the multiset, along with a non-interactive proof of exponentiation (PoE) so that the client can efficiently verify that the new commitment is the correct one.

Multiset sums: For multisets \(\mathcal{M}_1, \cdots, \mathcal{M}_n \), the server node can verifiably send the client the commitment \(A_\Sigma \) for the sum
\[
\sum_{i=1}^n \mathcal{M}_i := \left\{ \left(\sum_{i=1}^n \text{mult}(\mathcal{M}_i, x) \right) \times x : x \in \bigcup_{i=1}^n \text{Set}(\mathcal{M}_i) \right\}
\]
using the Protocol \(\text{PoMultPolyDLog}[g, (A_1, \cdots, A_n, A_\Sigma), (\prod_{i=1}^n X_i) - X_{n+1}] \).

The proof consists of a constant number of \(G \)-elements and \(2n \lambda \)-bit integers.

Multiset differences: For multisets \(\mathcal{M}, \mathcal{N} \), the difference \(\mathcal{M} \setminus \mathcal{N} \) has commitment
\[
\text{Com}(g, \mathcal{M} \setminus \mathcal{N}) = g_{\Pi(M)}^{\mathcal{N} \setminus \mathcal{M}}.
\]
So the Prover can combine the Protocols \(\text{PoGCD} \) and \(\text{PoMultPolyDLog} \) to verifiably send the commitment to \(\mathcal{M} \setminus \mathcal{N} \).

Disjointness: The server node can verifiably demonstrate that the multisets \(\mathcal{M}_1, \cdots, \mathcal{M}_n \) are pairwise disjoint using the protocol \(\text{AggRelPrimeDLog-1}[g, (A_1, \cdots, A_n)] \). Similarly, for any subset \(I \subseteq \{1, \cdots, n\} \) of indices, the server node can use the protocol \(\text{AggRelPrimeDLog-2} \) to verifiably show that the multisets
\[
\tilde{\mathcal{M}}_1 = \bigcup_{i \in I} \mathcal{M}_i \quad \text{and} \quad \tilde{\mathcal{M}}_2 = \bigcup_{j \in \{1, \cdots, n\} \setminus I} \mathcal{M}_j
\]
are disjoint. In both cases, the proofs consist of \(O(1) \) group elements and \(2n + O(1) \lambda \)-bit integers.

Underlying sets: Given commitments to two multisets \(\mathcal{M}, \mathcal{N} \), if the client needs to know whether the underlying sets coincide or if one is contained in the other, the server node can demonstrate this using the protocol \(\text{PoConSets} \) or \(\text{PoNonConSets} \). The proof is constant-sized in each case.

5.1.1 Multiset intersections

Consider a setting where a client \(V \) who stores commitments \(A_i := \text{Com}(g, \mathcal{M}_i) \) for data multisets \(\mathcal{M}_1, \cdots, \mathcal{M}_n \) needs a commitment \(\text{Com}(g, \mathcal{M}_\cap) \) to the intersection
\[
\mathcal{M}_\cap := \bigcap_{i=1}^n \mathcal{M}_i.
\]
In keeping with the rest of this paper, we would like to design a protocol that allows the Prover to do so while keeping the communication complexity to a minimum. Note that
\[
d = \gcd(d_1, \cdots, d_n) \iff (d|d_i \forall i) \land \exists (e_1, \cdots, e_n) \in \mathbb{Z}^n : \sum_{i=1}^n e_i d_i = d.
\]
Furthermore,
\[d = \gcd(d_1, \ldots, d_n) \iff (d_1d^{-1}, \ldots, d_nd^{-1}) \in \mathbb{Z}^n \bigwedge \gcd(d_1d^{-1}, \ldots, d_nd^{-1}) = 1. \]
Hence, by changing the base from \(g \) to \(a := g^d \), we can reduce this to the case where the GCD of the \(n \) integers is 1. So, the Prover can verifiably send the commitment for \(M_\cap \) as follows:

Protocol 5.1. Protocol for the intersection of multisets.

Parameters: \(\mathbb{G} \leftarrow \mathsf{GGen}(\lambda), \ g \in \mathbb{G}. \)

Input: Commitments \(A_i = \text{Com}(g, M_i) := g^{\prod(M_i)} \) for multisets \(M_i \); an element \(A_\cap \in \mathbb{G} \)

Claim: \(A_\cap = \text{Com}(g, \bigcap_{i=1}^{n} M_i) := g^{\prod(\bigcap_{i=1}^{n} M_i)}. \)

1. The Prover \(P \) computes the integers \(d_i := \frac{\prod(M_i)}{\prod(\bigcap_{i=1}^{n} M_i)} \) \((i = 1, \ldots, n). \)

2. \(P \) generates a non-interactive proof for \(\text{AggKE-1}[A_\cap, (A_1, \ldots, A_n)] \) and sends it to the Verifier.

3. \(P \) uses the Euclidean algorithm to compute integers \(e_1, \ldots, e_n \) such that \(\sum_{i=1}^{n} e_id_i = 1. \)

4. \(P \) computes the elements \(\tilde{A}_i := a^{e_i} \) \((i = 1, \ldots, n) \) and sends them to \(V. \)

5. \(P \) generates a non-interactive proof for \(\text{MultPolyDLog}[A_\cap, (A_1, \ldots, A_n, \tilde{A}_1, \ldots, \tilde{A}_n), f] \) where
\[
 f(X_1, \ldots, X_{2n}) := \sum_{i=1}^{n} X_iX_{n+i} - 1
\]

and sends the proof to \(V. \)

6. \(V \) verifies the proofs and accepts if and only if they are all valid. \(\square \)

This proof entails \(n + O(1) \) group elements and \(O(n) \) \(\lambda \)-bit integers. As before, we would like to keep the number of group elements constant. To this end, the Prover can sample \(\lambda \)-bit integers \(\gamma \) until he finds one such that \(\gcd(\sum_{i=1}^{n} d_i\gamma^i, d_1) = 1. \) He can then send a non-interactive proof for

\[
\text{RelPrimeDLog}([A_\cap, \prod_{i=1}^{n} A_i^{\gamma^i}, (A_\cap, A_1)].
\]

When the elements of the multisets \(M_i \) are all \(\lambda \)-bit primes, the integers \(\prod(M_i) \) are \(\lambda \)-rough and hence, finding an appropriate \(\gamma \) takes runtime \(O(1). \) This is because for an arbitrary \(\gamma \) and any \(\lambda \)-bit prime \(p, \) the Schwartz-Zippel lemma implies that

\[
\Pr\left[\sum_{i=1}^{n} d_i\gamma^i \equiv 0 \pmod{p} \right] = \text{negl}(\lambda).
\]

As before, we say a multiset \(M \) is \textbf{\(\lambda \)-rough} if the integer \(\prod(M) \) is \(\lambda \)-rough or equivalently, if all elements of \(M \) are primes \(> 2^{\lambda-1}. \)

Protocol 5.2. Protocol for the intersection of \(\lambda \)-rough multisets.

Parameters: \(\mathbb{G} \leftarrow \mathsf{GGen}(\lambda), \ g \in \mathbb{G}. \)

Input: Commitments \(A_i = \text{Com}(g, M_i) := g^{\prod(M_i)} \) for \(\lambda \)-rough multisets \(M_i \) whose elements are \(\lambda \)-bit primes; an element \(A_\cap \in \mathbb{G}. \)

Claim: \(A_\cap = \text{Com}(g, \bigcap_{i=1}^{n} M_i) := g^{\prod_{i=1}^{n}(M_i)}. \)
1. The Prover \mathcal{P} computes the integers $d_i := \frac{\Pi(M_i)}{\Pi(\bigcap_{i=1}^{n} M_i)}$ \hspace{1pt} (i = 1, \cdots, n).

2. \mathcal{P} generates non-interactive proofs for $\text{AggKE-1}[\mathcal{A}_\cap, \ (A_1, \cdots, A_n)]$, $\text{PoKE}[g, \ A_\cap]$ and sends them to the Verifier \mathcal{V}.

3. \mathcal{P} samples λ-bit primes γ until he finds one such that $\text{gcd}(\prod_{i=1}^{n} d_i, \prod_{i=1}^{n} d_i \gamma^j) = 1$ and sends the integer γ to \mathcal{V}.

4. \mathcal{P} computes $\tilde{A} := g^{(\prod_{i=1}^{n} d_i)} \in G$ and sends \tilde{A} to \mathcal{V} along with a non-interactive proof for $\text{MultPolyDLog}[\mathcal{A}_\cap, \ (A_1, \cdots, A_n, \tilde{A}), \ (\prod_{i=1}^{n} X_i) - X_{n+1}]$.

5. \mathcal{P} generates a non-interactive proof for the relation $\text{RelPrimeDLog}[(\mathcal{A}_\cap, \tilde{A}), \ (\mathcal{A}_\cap, \prod_{i=1}^{n} A_i^{\gamma_i})]$ and sends it to \mathcal{V}.

6. \mathcal{V} verifies all the proofs he receives and accepts if and only if they are all valid. \hfill \square

Thus, the proof consists of a constant number of G-elements and $2n + O(1)$ λ-bit integers.

5.1.2 Multiset unions

The techniques in the last protocol also allow a server node to verifiably send over a commitment for the union of multisets M_1, \cdots, M_n. The proof that this commitment is valid can be publicly verified against the commitments $\text{Com}(g, M_i) \ (i = 1, \cdots, n)$ which the client stores. The basic idea here is as follows.

Lemma 5.3. For integers d_1, \cdots, d_n, set $\tilde{d}_j := \prod_{1 \leq i \leq n \atop i \neq j} d_i$ \hspace{1pt} (j = 1, \cdots, n). Then we have

$$\text{lcm}(d_1, \cdots, d_n) \cdot \text{gcd}(\tilde{d}_1, \cdots, \tilde{d}_n) = \prod_{i=1}^{n} d_i.$$

We omit the proof since it is straightforward. Thus, the following are equivalent:

- $\text{lcm}(d_1, \cdots, d_n) = d$
- $d_i | d \ \forall \ i$ and there exist integers $\tilde{e}_1, \cdots, \tilde{e}_n$ such that $\prod_{i=1}^{n} d_i = d \cdot \sum_{i=1}^{n} \tilde{e}_i \tilde{d}_i$.
- The rationals dd_i^{-1} are integers and $\text{gcd}(dd_1^{-1}, \cdots, dd_n^{-1}) = 1$.

Protocol 5.4. Protocol for the union of multisets.

Parameters: $G \overset{\$}{\leftarrow} \text{GGen}(\lambda), \ g \in G$.

Input: Commitments $A_i = \text{Com}(g, M_i) := g^{\Pi(M_i)}$; an element $A_\cup \in G$

Claim: $A_\cup = \text{Com}(g, \bigcup_{i=1}^{n} M_i) := g^{\Pi(\bigcup_{i=1}^{n} M_i)}$.

1. The Prover \mathcal{P} computes the integers $d := \Pi\left(\bigcup_{i=1}^{n} M_i\right)$, \hspace{1pt} $\tilde{d}_i := \frac{d}{\Pi(M_i)} \ (i = 1, \cdots, n)$.
2. \mathcal{P} generates a non-interactive proof for the relation $\text{AggKE-2}[(A_1, \cdots, A_n), \ A_\cup]$ and sends it to the Verifier \mathcal{V}.
3. \mathcal{P} uses the Euclidean algorithm to compute integers $\tilde{e}_1, \cdots, \tilde{e}_n$ such that $\sum_{i=1}^{n} \tilde{e}_i \tilde{d}_i = 1$.
4. \mathcal{P} computes the elements $\tilde{A}_i := g^{\tilde{e}_i}$ and sends them to \mathcal{V}.
5. \mathcal{P} generates a non-interactive proof for $\text{MultPolyDLog}[g, \ (A_1, \cdots, A_n, \tilde{A}_1, \cdots, \tilde{A}_n, A_\cup), \ \tilde{f}]$ where
\[\tilde{f}(X_1, \cdots, X_{2n+1}) := X_{2n+1} \left(\sum_{i=1}^{n} X_{n+i} \prod_{1 \leq j \leq n, j \neq i} X_j \right) - \prod_{i=1}^{n} X_i \]

and sends the proof to \(V \).

6. \(V \) verifies all of the proofs he receives and accepts if and only if they are valid. \(\square \)

The proof entails \(n + O(1) \) group elements and \(2n + O(1) \lambda \)-bit integers. As was the case with multiset intersections, when the multisets are \(\lambda \)-rough, the protocol can be modified so that the number of group elements is constant.

Protocol 5.5. Protocol for the union of \(\lambda \)-rough multisets.

Parameters: \(G \leftarrow \$ \text{GGen}(\lambda), \ g \in G \).

Input: Commitments \(A_i = \text{Com}(g, M_i) := g^{\Pi(M_i)} \) for \(\lambda \)-rough multisets \(M_i \); an element \(A_\cup \in G \)

Claim: \(A_\cup = \text{Com}(g, n \bigcup_{i=1}^{n} M_i) := g^{\Pi(\bigcup_{i=1}^{n} M_i)} \).

1. The Prover \(P \) computes the integers \(d := \Pi(\bigcup_{i=1}^{n} M_i), \ d_i := \frac{d}{\Pi(M_i)} \) \((i = 1, \cdots, n) \).

2. \(P \) generates a non-interactive proof for the relation \(\text{AggKE-2}[(A_1, \cdots, A_n), A_\cup] \) and sends it to the Verifier \(V \).

3. \(P \) samples \(\lambda \)-bit integers \(\gamma \) until he finds one such that \(\gcd(d, \sum_{i=1}^{n} d_i \gamma^i) = 1 \) and sends \(\gamma \) to \(V \).

4. \(P \) computes
\[\tilde{A} := \sum_{i=1}^{n} d_i \gamma^i \in G \]

and sends \(\tilde{A} \) to \(V \) along with a non-interactive proof for \(\text{MultPolyDLog}[g, (A_1, \cdots, A_n, A_\cup, \tilde{A}, \tilde{f})] \) where
\[\tilde{f}(X_1, \cdots X_{n+2}) := X_{n+1} \left(\sum_{i=1}^{n} \gamma^i \prod_{1 \leq j \leq n, j \neq i} X_j \right) - X_{n+2} \prod_{i=1}^{n} X_i. \]

5. \(P \) generates a non-interactive proof for \(\text{RelPrimeDLog}[(g, A_\cup), (g, \prod_{i=1}^{n} A_i^*)] \) and sends it to \(V \).

6. \(V \) verifies all the proofs he receives and accepts if and only if they are all valid. \(\square \)

The proof consists of a constant number of \(G \)-elements and \(2n + O(1) \lambda \)-bit integers. A server node storing the data multisets \(M_i \) can use this protocol to verifiably send the succinct commitment for the union \(\bigcup_{i=1}^{n} M_i \). The validity of this commitment can be verified against the commitments to the \(M_i \) held by the client.

Thus, to summarize, the protocols in this paper allow the server node to verifiably send the client succinct commitments to unions, intersections, sums (and combinations thereof) of multisets for which the client holds succinct commitments.

5.1.3 Frequencies of elements

Consider a setting where a client node needs to keep track of the occurrences of a certain keyword or certain blocks of keywords in the files that he stores for a client node. If the client node suffers from a low storage capacity or weak computational power, he would prefer to outsource the files to an untrusted server node. As before, he stores succinct commitments to the data.
sets/multisets derived from hashing the files. This allows the server node storing the data to send publicly verifiable proofs about the occurrences of batches of elements in the data sets/multisets.

Let $\mathcal{M}_1, \ldots, \mathcal{M}_n$ be data multisets and let

$$A_i := \text{Com}(g, \mathcal{M}_i) = g^{\Pi(\mathcal{M}_i)} \ (i = 1, \ldots, n)$$

be the commitments with the same base $g \in \mathbb{G}$. Suppose the server node storing the data for the client needs to identify the data multiset with the highest frequency in a data set \mathcal{D}. The protocols we have developed so far allows him to do so with a proof that the client can verify against the commitments A_1, \ldots, A_n.

The protocol hinges on the basic fact that for integers d, d_1, d_2, the following are equivalent:
1. For every prime p dividing d, $\text{val}_p(d_1) > \text{val}_p(d_2)$, where $\text{val}_p(x)$ is the largest integer k such that p^k divides x.
2. There exists an integer e such that de divides d_1 and $\gcd(de, d_2) = e$.

Protocol 5.6. Protocol for the frequency of elements 1.

Parameters: $\mathbb{G} \triangleq \text{GGen}(\lambda), \ g \in \mathbb{G}$.

Input: Commitments $A_i := g^{\Pi(\mathcal{M}_i)}$ for multisets \mathcal{M}_i; a data set \mathcal{D}.

Claim: Each element of \mathcal{D} occurs with a higher frequency in \mathcal{M}_1 than in $\mathcal{M}_i \ \forall \ i \geq 2$.

1. The Prover \mathcal{P} computes
 $$\hat{A}_1 := g^{\Pi(\bigcup_{i=2}^{n} \mathcal{M}_i)} \in \mathbb{G}$$
 and sends it to the verifier \mathcal{V} along with a non-interactive proof for $\text{AggKE-2}(\{A_2, \ldots, A_n\}, \hat{A}_1)$.

2. The Prover computes the group elements
 $$B_1 := \prod_{x \in \mathcal{D}} \text{mult}(\bigcup_{i=1}^{n} \mathcal{M}_i, x), \ B_2 := B_1^{\Pi(\mathcal{D})} \in \mathbb{G}.$$

3. \mathcal{P} sends B_1, B_2 to \mathcal{V} along with a non-interactive PoE for the equation $B_2 = B_1^{\Pi(\mathcal{D})}$.

4. \mathcal{P} generates non-interactive proofs for $\text{PoKE}[B_2, A_1], \text{PoGCD}[(g, \hat{A}_1), (g, B_2), (g, B_1)]$ and sends them to \mathcal{V}.

5. \mathcal{V} verifies the three proofs and accepts if and only if all of them are valid. \qed

Proposition 5.7. The Protocol for the frequency of elements 1 is secure in the generic group model.

Proof. Write $d := \Pi(\mathcal{D})$ for brevity. The subprotocols

$$\text{PoGCD}[(g, \hat{A}_1), (g, B_2), (g, B_1)] \land \text{PoE}[B_1, d, B_2]$$

imply that with overwhelming probability, the Prover possesses integers \hat{m}_1, e such that

$$g^{\hat{m}_1} = \hat{A}_1, \ g^e = B_1, \ g^{ed} = B_2, \ \gcd(\hat{m}_1, ed) = e.$$

The subprotocol $\text{PoKE}[B_2, A_1]$ implies that with overwhelming probability, ed divides $\Pi(\mathcal{M}_1)$.

Furthermore, the subprotocol $\text{PoAggKE-2}(\{A_2, \ldots, A_n\}, \hat{A}_1)$ implies that with overwhelming probability, the integer $\text{lcm}(\Pi(\mathcal{M}_2), \ldots, \Pi(\mathcal{M}_n))$ divides \hat{m}_1. Hence, for any prime p dividing d and any index $i \geq 2$,

$$\text{val}_p(\Pi(\mathcal{M}_i)) \leq \text{val}_p(\hat{m}_1) < \text{val}_p(ed).$$

On the other hand, ed divides d_1 and hence, $\text{val}_p(ed) \leq \text{val}_p(d_1)$.
Thus, for any prime \(p \in \mathcal{D} \), \(\text{val}_p(\Pi(M_1)) > \max\{\text{val}_p(\Pi(M_2)), \ldots, \text{val}_p(\Pi(M_n))\} \), which completes the proof.

Similarly, the following protocol allows the server to prove that every element of a certain data set \(\mathcal{D} \) occurs with a lower frequency in \(M_1 \) than in any of the multisets \(M_2, \ldots, M_n \).

Protocol 5.8. Protocol for the frequency of elements 2.

Parameters: \(G \xleftarrow{\$} \text{GGen}(\lambda), \ g \in G \).

Input: Commitments \(A_i := g^{\Pi(M_i)} \) for multisets \(M_i \); a data set \(\mathcal{D} \).

Claim: Each element of \(\mathcal{D} \) occurs with a lower frequency in \(M_1 \) than in \(M_i \ \forall \ i \geq 2 \).

1. The Prover \(\mathcal{P} \) computes
\[
B_1 := g \prod_{x \in \mathcal{D}} x^{\text{mult}(M_1, x)} \quad B_2 = B_1^{\Pi(\mathcal{D})} \in G.
\]
2. \(\mathcal{P} \) sends \(B_1, B_2 \) to \(\mathcal{V} \) along with a non-interactive PoE for the equation \(B_2 = B_1^{\Pi(\mathcal{D})} \).
3. \(\mathcal{P} \) generates non-interactive proofs for \(\text{AggKE-1}[B_2, (A_2, \ldots, A_n)] \) and \(\text{PoGCD}[(g, A_1), (g, B_2), (g, B_1)] \) and sends them to \(\mathcal{V} \).
4. \(\mathcal{V} \) verifies the three proofs and accepts if and only if they are all valid.

We omit the security proof since it is virtually identical to the last one. The next two protocols are duals to the last two. They allow the server node to verifiably identify the multiset with the highest/lowest occurrence of a data set in a setting where the client stores the membership witnesses for the multisets with respect to a single accumulated digest.

Protocol 5.9. Protocol for the frequency of elements 3.

Parameters: \(G \xleftarrow{\$} \text{GGen}(\lambda), \ g \in G \).

Input: Membership witnesses \(w_i \) for multisets \(M_i \) with respect to an accumulated digest \(A_1 \); a data set \(\mathcal{D} \).

Claim: Each element of \(\mathcal{D} \) occurs with a higher frequency in \(M_1 \) than in \(M_i \ \forall \ i \geq 2 \).

1. The Prover \(\mathcal{P} \) uses Shamir’s trick to compute an element \(\tilde{w}_1 \in G \) such that
\[
\prod_{i=2}^{\mathcal{D}} w_i \prod_{x \in \mathcal{D}} x^{\text{mult}(M_1, x)} = A
\]
and sends it to the Verifier \(\mathcal{V} \).
2. \(\mathcal{P} \) computes the elements
\[
\tilde{w}_1 := \prod_{x \in \mathcal{D}} x^{\text{mult}(\bigcup_{i=2}^{\mathcal{D}} M_i, x)} \quad \tilde{w}_1^{\Pi(\mathcal{D})} \in G
\]
and sends them to \(\mathcal{V} \) along with a non-interactive PoE\[\text{PoE}[ilde{w}_1, \Pi(\mathcal{D}), \tilde{w}_1^{\Pi(\mathcal{D})}]\].
3. \(\mathcal{P} \) generates a non-interactive proof for \(\text{AggKE-1}[\tilde{w}_1, (w_2, \ldots, w_n)] \) and sends it to \(\mathcal{V} \).
4. \(\mathcal{P} \) generates non-interactive proofs for \(\text{PoGCD}[(\tilde{w}_1, A), (w_1, \tilde{w}_1^{\Pi(\mathcal{D})}), (w_1, \tilde{w}_1)] \) and \(\text{PoKE}[\tilde{w}_1^{\Pi(\mathcal{D})}, A] \) and sends them to \(\mathcal{V} \).
5. \(\mathcal{V} \) verifies the three proofs and accepts if and only if they are all valid.

Proposition 5.10. The Protocol for the frequency of elements 3 is secure in the generic group model.
Proof. Set \(d := \Pi(D) \). The subprotocols

\[
\text{PoGCD}[(\tilde{w}_1, A), (w_1, \tilde{w}_1^{\Pi(D)}), (w_1, \tilde{w}_1)] \ \land \ \text{PoE}[\tilde{w}_1, \Pi(D), \tilde{w}_1^{\Pi(D)}]
\]

imply that with overwhelming probability, the Prover possesses integers \(e, \hat{m}_1 \) such that

\[
\tilde{w}_1^{\hat{m}_1} = A, \quad w_1^e = \tilde{w}_1, \quad \gcd(ed, \hat{m}_1) = e.
\]

The subprotocol \(\text{PoAggKE-1}[\tilde{w}_1, (w_2, \ldots, w_n)] \) implies that with overwhelming probability, \(\hat{m}_1 \) is divisible by \(\text{lcm}(\Pi(M_2), \ldots, \Pi(M_n)) \). So, for any prime \(p \) dividing \(d \) and any index \(i \geq 2 \), we have

\[
\text{val}_p(\Pi(M_i)) \leq \text{val}_p(\hat{m}_1) < \text{val}_p(ed).
\]

On the other hand, the subprotocol \(\text{PoKE}[\tilde{w}_1^{\Pi(D)}, A] \) implies that with overwhelming probability, \(ed \) divides \(\Pi(M_1) \). Hence, \(\text{val}_p(ed) \leq \text{val}_p(\Pi(M_1)) \).

Thus, for any prime \(p \in D \), \(\text{val}_p(\Pi(M_1)) > \max(\text{val}_p(M_2), \ldots, \text{val}_p(\Pi(M_n))) \), which completes the proof.

\[\square\]

Parameters: \(G \leftarrow \text{GGen}(\lambda), \ g \in G \).

Input: Membership witnesses \(w_i \) for multisets \(M_i \) with respect to an accumulated digest \(A \); a data set \(D \).

Claim: Each element of \(D \) occurs with a lower frequency in \(M_1 \) than in \(M_i \ \forall \ i \geq 2 \).

1. The Prover \(\mathcal{P} \) computes an element \(\hat{w}_1 \in G \) such that

\[
\tilde{w}_1^{\hat{m}_1} := A
\]

and sends \(\hat{w}_1 \) to the Verifier \(\mathcal{V} \) along with a non-interactive proof for \(\text{AggKE-2}[(w_2, \ldots, w_n), \hat{w}_1] \).

2. \(\mathcal{P} \) computes

\[
\hat{A} := \tilde{A}_1^{\prod_{x \in \mathcal{D}} \text{mult}(M_1, x)}, \quad \hat{A}^{\Pi(D)} \in G
\]

and sends them to \(\mathcal{V} \) along with a non-interactive PoE for the exponentiation \(\hat{A}^{\Pi(D)} \).

3. \(\mathcal{P} \) generates non-interactive proofs for \(\text{PoKE}[\tilde{w}_1^{\Pi(D)}, A] \) and \(\text{PoGCD}[(w_1, A), (w_1, \hat{A}^{\Pi(D)}), (w_1, \hat{A})] \) and sends them to \(\mathcal{V} \).

4. \(\mathcal{V} \) verifies the three proofs and accepts if and only if they are all valid.

We omit the security proof since it is virtually identical to the last one. In all four cases of the protocols for frequency, the proof consists of \(\mathcal{O}(1) \) \(G \)-elements and \(n + \mathcal{O}(1) \lambda \)-bit integers.

5.1.4 Updates

We briefly discuss a few ways to handle updates and the tradeoffs between them. As before, let \(M_1, \ldots, M_n \) be multisets a client \(\mathcal{V} \) outsources to a server node \(\mathcal{P} \). The client stores succinct commitments

\[
\text{Com}(g, M_i) = g^{\Pi(M_i)}
\]

where \(g \) is a randomly generated element of \(G \). The multisets are dynamic and hence, the commitments need to be updated in response to changes.
Inserts: When the multiset \mathcal{M}_1 changes to $\mathcal{M}_1 + \mathcal{M}_1'$, the server changes the commitment from $[g, g^{\Pi(\mathcal{M}_1)}]$ to $[g, g^{\Pi(\mathcal{M}_1 + \mathcal{M}_1')}]$. He sends $g^{\Pi(\mathcal{M}_1 + \mathcal{M}_1')}$ to the client along with a non-interactive PoE for the equation

$$(g^{\Pi(\mathcal{M}_1)})^{\Pi(\mathcal{M}_1')} = g^{\Pi(\mathcal{M}_1 + \mathcal{M}_1')}).$$

Deletes: Let \mathcal{M}_1' be a multiset contained in \mathcal{M}_1 and suppose \mathcal{M}_1' is to be deleted from \mathcal{M}_1. Broadly there are three ways of handling deletes, each with some tradeoffs. We discuss them here.

1. The server node changes the commitment from $[g, g^{\Pi(\mathcal{M}_1)}]$ to $[g, g^{\Pi(\mathcal{M}_1) \setminus \mathcal{M}_1'}]$. He sends $g^{\Pi(\mathcal{M}_1) \setminus \mathcal{M}_1'}$ to the client along with a non-interactive PoE for the equation

$$g^{\Pi(\mathcal{M}_1) \setminus \mathcal{M}_1'} \Pi(\mathcal{M}_1') = g^{\Pi(\mathcal{M}_1)}.$$

While this is probably the simplest way of handling deletions, the computational burden is linear in the size of $\mathcal{M}_1 \setminus \mathcal{M}_1'$.

2. The server node changes the commitment from $[g, g^{\Pi(\mathcal{M}_1)}]$ to $[g^{\Pi(\mathcal{M}_1')}, g^{\Pi(\mathcal{M}_1)}]$. He sends $g_{\text{new}} := g^{\Pi(\mathcal{M}_1')}$ to the client along with a non-interactive PoE for the equation

$$g^{\Pi(\mathcal{M}_1')} = g_{\text{new}}.$$

The advantage is that the runtime complexity is $O(\#\mathcal{M}_1')$. The downside is that the client needs to keep track of the different bases for the commitments as opposed to a single base g. This increases the communication complexity and the Prover’s work when the client asks for an argument of knowledge for any relation between the multisets $\mathcal{M}_1, \cdots, \mathcal{M}_n$.

3. The server node changes the commitment for \mathcal{M}_1 from $[g, g^{\Pi(\mathcal{M}_1)}]$ to $[g^{\Pi(\mathcal{M}_1')}, g^{\Pi(\mathcal{M}_1)}]$. Furthermore, he updates the commitments for \mathcal{M}_i ($i = 2, \cdots, n$) from $[g, g^{\Pi(\mathcal{M}_i)}]$ to $[g^{\Pi(\mathcal{M}_i')}, g^{\Pi(\mathcal{M}_i + \mathcal{M}_1')}].$ He sends

$$g_{\text{new}} := g^{\Pi(\mathcal{M}_1')}, g^{\Pi(\mathcal{M}_i + \mathcal{M}_1')} \ (i = 2, \cdots, n)$$

to the client along with the relevant non-interactive PoEs.

This preserves a common base for the n commitments. The runtime complexity is $O(n \cdot \#\mathcal{M}_1')$, but the n exponentiations are completely parallelizable.

5.2 Sharded stateless blockchains

We briefly discuss the concept of a stateless blockchain and the need for it. Currently, in every existing blockchain, every full node in the system needs to store the entire state of the blockchain in order to validate incoming transactions. This has already become cumbersome as the size of the state grows. To this end, [Tod16] suggested the concept of a stateless blockchain. In this proposed model, every node stores the data relevant to itself and the accumulated digest. The miners no longer need to store the state since the concerns of state storage and consensus are decoupled.

Recently, the idea of introducing shards has been gaining ground within the blockchain ecosystem. While a sharded blockchain would theoretically have a higher throughput, it would be less secure since each individual shard would have fewer validators than the entire blockchain. To prevent collusion, an idea that has been floated is to periodically switch the validators assigned to the shards. Such a model makes stateless validation highly desirable since a stateful model would make it cumbersome for a validator to download the data for a new shard he gets assigned.
While this stateless model would drastically alleviate the problem of state bloat, the big tradeoff would be that in such a model, a node sending over transactions must also send over proofs attesting to the validity of these transactions. At the moment, the authentication data structure used by blockchains is that of a Merkle tree and the membership proofs are what we call Merkle branches/paths. Despite the several advantages that Merkle trees provide, a drawback is that the membership proofs cannot be batched or aggregated. Thus, a stateless model that continues to use Merkle trees as the accumulator would suffer from a bandwidth bottleneck.

To address this problem, [BBF19] etc. have proposed using a cryptographic accumulator with batchable/aggregable membership and non-membership proofs for a UTXO model. An accounts based model such as Ethereum could use a Vector Commitment with similar properties. In this regard, accumulators hinging on groups of unknown order have an important advantage over bilinear accumulators in that they are dynamic (constant runtime updates), have constant-sized public parameters and are transparent if the underlying hidden order group is a class group or a genus three Jacobian.

Consider the setting of a stateless sharded blockchain that, instead of a Merkle tree, hinges on a cryptographic accumulator instantiated with a hidden order group G. Let g be a randomly selected element of G and S_1, \cdots, S_n the distinct shards. Let D_i denote the data in shard S_i and $D := \bigcup_{i=1}^n D_i$. Then the accumulated digest (the analog of the Merkle root hash) of S_i is given by

$$A_i := \text{Com}(g, D_i) = g^{\Pi(D_i)} \in G.$$

The accumulated digest of the blockchain is given by

$$A := \text{Com}(g, D) = g^{\Pi(D)} \in G.$$

In order to demonstrate that the data sets in distinct shards are pairwise disjoint, a Prover (such as a miner or an untrusted server node) can provide a non-interactive proof for the relation $\text{PoAggRelPrimeDLog-1}([a, (A_1, \cdots, A_n)])$. The proof consists of $O(1)$ G-elements and $2n + O(1)$ λ-bit integers.

Disjointness verifiable against membership witnesses: Now consider the setting of a single shard. Let V_1, \cdots, V_n be verifiers (such as light nodes) on the network. Let E_i denote the data set corresponding to V_i. Suppose the verifiers need to verify that the data sets E_i are pairwise disjoint, but do not have access to the data sets outside their shards. A Prover P (such as a miner or an untrusted server node) can prove this pairwise disjointness as follows.

1. V_i ($i = 1, \cdots, n$) broadcasts the membership witness w_i for D_i to the other $n - 1$ nodes V_j ($j \neq i$).
2. V_i sends the data D_i to the prover P.
3. P computes

$$d_i := \prod_{d \in D_i} d \quad (i = 1, \cdots, n)$$

and generates a non-interactive proof for the protocol $\text{PoAggRelPrimeDLog-3}([w_1, \cdots, w_n], A)$ which he then broadcasts to the Verifiers.

The proof consists of $O(1)$ G-elements and $2n + O(1)$ λ-bit integers. In particular, the Verifiers do not need access to the data sets D_i to verify this proof of disjointness.

Pre-computation: Although the argument systems in this paper have certain advantages such
as transparency and succinctness, an important drawback is that the Prover’s computational burden is rather high. This is primarily because exponentiations in hidden order groups are expensive. Furthermore, these exponentiations are conjectured to be almost purely sequential, which means there is no way to make them faster, aside from better hardware. However, the effective runtime in several cases can be reduced using pre-computations on the Prover’s part. In most of the protocols, the most expensive part is the computation

$$\tilde{g} := \sum_{i=1}^{n} d_i^{\lambda \gamma_i} \in G$$

where the d_i are usually the products $\Pi(M_i)$ of all elements of a data set/multiset and γ is a λ-bit integer randomly generated by the Fiat-Shamir heuristic. We use this step in quite a few of the protocols in this paper with the sole purpose of demonstrating that the d_i are integers rather than merely rationals. The Prover can reduce the effective runtime of this computation by pre-computing and storing the set $\{g^{2^i} : 1 \leq i \leq N\}$ for an appropriately large integer N. In certain settings such as an accumulator, this part can be circumvented by disallowing accumulation of primes $< 2^{\lambda-1}$.

6 Conclusion

We hope that at least some of the techniques will find more applications than what we have discussed in this paper. Several open questions remain, the foremost of which is whether the computational burden of the Prover can be alleviated. Furthermore, most of our proofs consist of a constant number of group elements and $O(n)$ λ-bit integers, where n is the number of committed sets/multisets involved. It would be desirable to compress the proof sizes further so that the proofs are genuinely constant-sized, independent of n.

The protocols involving disjointness of the committed sets/multisets inherently rely on the Prover having access to the entirety of the data. It would be interesting to see if we can modify the protocols so that they are more amenable to proof generation in a distributed setting where multiple Provers can only access some of the data.

A closely related line of research is to further explore class groups and Jacobians as candidates for transparent hidden order groups. The adaptive root assumption in these groups and the weaker assumptions such as low order and fractional root need further scrutiny.

Acknowledgements: The author thanks Benedikt Bünz and Dimitris Kolonelos for helpful feedback on previous drafts.

References

[Th20] Steve Thakur, *Constructing hidden order groups using genus three Jacobians*, Preprint

Steve Thakur
Cryptography research and audits group
Least Authority
Email: stevethakur01@gmail.com
A List of symbols/abbreviations

G: a group of hidden order in which we assume the adaptive root and strong-RSA assumptions to hold.
λ: The security parameter
\text{negl}(\lambda): The set of functions negligible in \lambda.
[n]: The set of integers \{0, 1, \cdots, n - 1\}
NextPrime(\cdot): the smallest prime \geq \cdot
PPT: Probabilistic Polynomial Time
\text{negl}(\lambda): The set of functions negligible in \lambda.

B List of Protocols:

The following is a list of the protocols in this paper and the relations that the protocols are arguments of knowledge for, in the generic group model. In each of the protocols, we may replace \mathbb{Z} by the localization \mathbb{Z}_S at any set S of rational primes.

1. \text{PoEqDLog} (Proof of equality of discrete logarithms)
\mathcal{R}_{\text{EqDLog}}([(a_1, b_1), (a_2, b_2)] = \left\{ (a_1, b_1), (a_2, b_2) \in \mathbb{G}^2 \mid \begin{array}{l} (d \in \mathbb{Z}) : \\
(b_1, b_2) = (a_1^d, a_2^d) \end{array} \right\}
2. PoPolyDLog (Proof of polynomial relation between (two) discrete logarithms)

\[R_{\text{PolyDLog}}[(a_1, b_1), (a_2, b_2), f] = \begin{cases} ((a_1, b_1), (a_2, b_2) \in \mathbb{G}^2, f \in \mathbb{Z}[X]); \\ (d_1, d_2) \in \mathbb{Z}^2: \\ b_1 = a_1^{d_1} \land b_1 = a_2^{d_1} \land d_2 = f(d_1) \end{cases} \]

3. PoAggKE-1 (Proof of aggregated knowledge of exponents-1)

\[R_{\text{AggKE-1}}[a, (a_1, \ldots, a_n)] = \begin{cases} (a \in \mathbb{G}, (a_1, \ldots, a_n) \in \mathbb{G}^n); \\ (d_1, \ldots, d_n) \in \mathbb{Z}^n: \\ a_i = a^{d_i} \land i \end{cases} \]

4. PoAggKE-2 (Proof of aggregated knowledge of exponents-2)

\[R_{\text{AggKE-2}}[(a_1, \ldots, a_n), A] = \begin{cases} ((a_1, \ldots, a_n) \in \mathbb{G}^n, A \in \mathbb{G}) \\ (d_1, \ldots, d_n) \in \mathbb{Z}^n: \\ A = a_i^{d_i} \land i \end{cases} \]

5. PoMultPolyDLog (Proof of multivariate polynomial relations between discrete logarithms)

\[R_{\text{MultPolyDLog}}[a, (b_1, \ldots, b_n), (f_1, \ldots, f_k)] = \begin{cases} (a \in \mathbb{G}, (b_1, \ldots, b_n) \in \mathbb{G}^n); \\ (f_1, \ldots, f_k) \in \mathbb{Z}[X_1, \ldots, X_n]^k; \\ (d_1, \ldots, d_n) \in \mathbb{Z}^n: \\ b_i = a^{d_i} \land i \\ f_j(d_1, \ldots, d_n) = 0 \land j \end{cases} \]

6. PoGCD (Proof of GCD)

\[R_{\text{GCD}}[(a_1, b_1), (a_2, b_2), (a_3, b_3)] = \{((a_i, b_i) \in \mathbb{G}); \ d_i \in \mathbb{Z}) : b_i = a_i^{d_i}, \gcd(d_1, d_2) = \pm d_3 \}

7. PoRelPrimeDLog (Proof of relatively prime discrete logarithms; special case of PoGCD)

\[R_{\text{RelPrimeDLog}}[(a_1, b_1), (a_2, b_2)] = \{((a_i, b_i) \in \mathbb{G}); \ d_i \in \mathbb{Z}) : b_i = a_i^{d_i}, \gcd(d_1, d_2) = 1 \} \]

8. PoAggRelPrimeDLog-1 (Aggregated proof of relatively prime discrete logarithms-1)

\[R_{\text{AggRelPrimeDLog-1}}[a, A] = \begin{cases} (a \in \mathbb{G}, a := (a_1, \ldots, a_n) \in \mathbb{G}^n); \\ (d_1, \ldots, d_n) \in \mathbb{Z}^n: \\ a_i = a_i^{d_i} \land i \land \gcd(d_i, d_j) = 1 \land i \neq j \end{cases} \]

9. PoAggRelPrimeDLog-2 (Aggregated proof of relatively prime discrete logarithms-2)

\[R_{\text{AggRelPrimeDLog-2}}[a_1, a_2, b, c] = \begin{cases} ((a_1, a_2) \in \mathbb{G}^2, \\ b := (b_1, \ldots, b_m) \in \mathbb{G}^m, c := (c_1, \ldots, c_n) \in \mathbb{G}^n); \\ (d_1, \ldots, d_m) \in \mathbb{Z}^m, (e_1, \ldots, e_n) \in \mathbb{Z}^n: \\ (b_i = a_1^{d_i} \land c_j = a_2^{e_j} \land \gcd(d_i, e_j) = 1) \land i, j \end{cases} \]

10. PoAggRelPrimeDLog-3 (Aggregated proof of relatively prime discrete logarithms-3)

\[R_{\text{AggRelPrimeDLog-3}}[(w_1, \ldots, w_n), A] = \begin{cases} (A \in \mathbb{G}, (w_1, \ldots, w_n) \in \mathbb{G}^n); \\ (d_1, \ldots, d_n) \in \mathbb{Z}^n: \\ w_i^{d_i} = A \land i \land \\ \gcd(d_i, d_j) = 1 \land i, j : i \neq j \end{cases} \]
11. PoAggRelPrimeDLog-4 (Aggregated proof of relatively prime discrete logarithms-4)

\[\mathcal{R}_{\text{AggRelPrimeDLog-4}}[b, c, B, C] = \left\{ \begin{array}{l} ((B, C) \in \mathbb{G}^2, \\
 b = (b_1, \ldots, b_m) \in \mathbb{G}^m, \\
 c = (c_1, \ldots, c_n) \in \mathbb{G}^n); \\
 ((d_1, \ldots, d_m) \in \mathbb{Z}^m, \\
 (e_1, \ldots, e_n) \in \mathbb{Z}^n); \\
 (B = b_i^{d_i}, C = c_j^{e_j} \land \text{gcd}(d_i, e_j) = 1) \forall i, j \end{array} \right\} \]

12. Protocol for the intersection of multisets

\[\mathcal{R}_\cap[a, (A_1, \ldots, A_n), A_\cap] = \left\{ \begin{array}{l} (a \in \mathbb{G}; \\
 (A_1, \ldots, A_n) \in \mathbb{G}^n, A_\cap \in \mathbb{G}; \\
 ((d_1, \ldots, d_n, d_\cap) \in \mathbb{Z}^{n+1}); \\
 A_i = g^{d_i} \forall i, A_\cap = g^{d_\cap} \\
 \text{gcd}(d_1, \ldots, d_n) = d_\cap \end{array} \right\} \]

13. Protocol for the union of multisets

\[\mathcal{R}_\cup[a, (A_1, \ldots, A_n), A_\cup] = \left\{ \begin{array}{l} (a \in \mathbb{G}; \\
 (A_1, \ldots, A_n) \in \mathbb{G}^n, A_\cup \in \mathbb{G}; \\
 ((d_1, \ldots, d_n, d_\cup) \in \mathbb{Z}^{n+1}); \\
 A_i = g^{d_i} \forall i, A_\cup = g^{d_\cup} \\
 \text{lcm}(d_1, \ldots, d_n) = d_\cup \end{array} \right\} \]

14. Proof of the containment/non-containment of the underlying sets

\[\mathcal{R}_\text{ConSets}[(a_1, A_1), (a_2, A_2)] = \left\{ \begin{array}{l} (a_1, a_2, A_1, A_2 \in \mathbb{G}; \\
 (d_1, d_2, N) \in \mathbb{Z}^3); \\
 d_1^{a_1} = A_1 \land a_2^{d_2} = A_2 \\
 \land d_2^N \equiv 0 \text{ (mod } d_1) \end{array} \right\} \]

\[\mathcal{R}_\text{NonConSets}[(a_1, A_1), (a_2, A_2)] = \left\{ \begin{array}{l} (a_1, a_2, A_1, A_2 \in \mathbb{G}; \\
 (d_1, d_2, p) \in \mathbb{Z}^3); \\
 d_1^{a_1} = A_1 \land a_2^{d_2} = A_2 \land \\
p | d_2 \land p | d_1 \land p \neq \pm 1 \end{array} \right\} \]

15. Protocol for the highest/lowest frequency of elements

If the Verifier has access to the commitments \(\text{Com}(g, M_i) = g^{\Pi(M_i)} \) to multisets \(M_1, \ldots, M_n \) and a data set \(D \), the Prover can show that every element of \(D \) occurs with a higher/lower frequency in \(M_1 \) than in any \(M_i \) for \(i \geq 2 \).

Similarly, given a single accumulated digest \(A \) and witnesses \(w_i \) for multisets \(M_i \) such that \(w_i^{\Pi(M_i)} = A \), the Prover can show that every element of \(D \) occurs with a higher/lower frequency in \(M_1 \) than in any \(M_i \) for \(i \geq 2 \).
Proof of multi-exponentiation

As before, let \(\mathcal{G} \) be a generic hidden order group for which we assume the adaptive root and strong-RSA assumptions to hold. Consider an equation \(\prod_{i=1}^{n} a_i^{e_i} = b \), where the \(e_i \in \mathbb{Z} \) are public integers and \(a_1, \ldots, a_n, b \) are elements of \(\mathcal{G} \). Wesolowski’s PoE protocol \([\text{Wes18}]\) can be slightly generalized so as to reduce the Verifier’s burden of computation for this equation.

Protocol C.1. Proof of multi-exponentiation

Parameters: \(\mathcal{G} \xleftarrow{\$} \text{GGen}(\lambda) \), \(g \in \mathcal{G} \)

Input: \((a_1, \ldots, a_n) \in \mathcal{G}^n; b \in \mathcal{G}; (e_1, \ldots, e_n) \in \mathbb{Z}^n\)

Claim: \(\prod_{i=1}^{n} a_i^{e_i} = b \).

1. The hashing algorithm \(\mathcal{H}_{\mathcal{F}_S, \lambda} \) generates a \(\lambda \)-bit prime \(\ell \).
2. The Prover \(\mathcal{P} \) computes integers \(q_i, r_i \) such that \(e_i = q_i \cdot \ell + r_i \), \(r_i \in [\ell] \).
3. \(\mathcal{P} \) computes \(Q := \prod_{i=1}^{n} a_i^{q_i} \in \mathcal{G} \) and sends \(Q \) to the Verifier \(\mathcal{V} \).
4. \(\mathcal{V} \) computes \(r_i := e_i \) (mod \(\ell \)) and verifies the equation \(Q^\ell \prod_{i=1}^{n} a_i^{r_i} \equiv b \) and accepts if and only if the equation holds.

Thus, the proof consists of a single element \(\mathcal{G} \)-element \(Q \). The Verifier’s work is thus reduced to \(n + 1 \) parallelizable \(\lambda \)-bit exponentiations in \(\mathcal{G} \).

Soundness of the protocol: Suppose the Prover \(\mathcal{P} \) sends an element \(Q \in \mathcal{G} \) such that

\[
Q^\ell \prod_{i=1}^{n} a_i^{r_i} = b , \quad r_i := e_i \text{ (mod } \ell) \]

for a randomly generated \(\lambda \)-bit prime \(\ell \). Let \(\{g_1, \ldots, g_k\} \in \mathcal{G} \) be the responses to the queries from \(\mathcal{A} \) to the oracle \(\mathcal{O}_1 \). With overwhelming probability, \(\mathcal{A} \) is able to extract integers \(\alpha_{i,j} \) (1 \(\leq i \leq n \), 1 \(\leq j \leq k \)), \(\beta_1, \ldots, \beta_k \) bounded by \(2^{\text{poly}(\lambda)} \) such that

\[
b = \prod_{j=1}^{k} g_j^{\beta_j} , \quad a_i = \prod_{j=1}^{k} g_j^{\alpha_{i,j}} .
\]

Since the equation \(Q^\ell \prod_{i=1}^{n} a_i^{r_i} = b \) holds, the adaptive root assumption implies that with overwhelming probability, \(\beta_j = \sum_{i=1}^{n} e_i \alpha_{i,j} \) (mod \(\ell \)) \(\forall j \). Since the \(\lambda \)-bit prime \(\ell \) was randomly generated, it follows that with overwhelming probability, \(\beta_j = \sum_{i=1}^{n} e_i \alpha_{i,j} \) \(\forall j \) and hence, \(b = \prod_{i=1}^{n} a_i^{e_i} \).

Z(λ)-integers and the equivalence relation \((\equiv_\lambda)\)

Definition D.1. For \(\mathbb{Z}_{(\lambda)} \)-integers \(d_1, d_2 \) we say \(d_1 \equiv_\lambda d_2 \) if \(d_1 d_2^{-1} \) is a unit in \(\mathbb{Z}_{(\lambda)} \).

This is clearly a homomorphic equivalence relation.

Definition D.2. For \(\mathbb{Z}_{(\lambda)} \)-integers \(d_1, d_2 \), we denote by \(\text{gcd}_\lambda(d_1, d_2) \) the largest \(\lambda \)-rough integer that divides both \(d_1 \) and \(d_2 \) in the principal ideal domain \(\mathbb{Z}_{(\lambda)} \). Similarly, we denote by \(\text{lcm}_\lambda(d_1, d_2) \) the smallest \(\lambda \)-rough integer divisible by \(d_1 \) and \(d_2 \) in \(\mathbb{Z}_{(\lambda)} \).

Definition D.3. For elements \(a, b \) in a hidden order group \(\mathcal{G} \), we say \(a \equiv_\lambda b \) with respect to a PPT algorithm \(\mathcal{A} \) if \(\mathcal{A} \) can verifiably generate relatively prime \(\lambda \)-smooth integers \(d_1, d_2 \) such that \(a^{d_1} = b^{d_2} \in \mathcal{G} \) and \(|d_1|, |d_2| < 2^{\text{poly}(\lambda)} \).

53
Because of Shamir’s trick, this is equivalent to P being able to generate an element $a_0 \in G$ and relatively prime λ-smooth integers d_1, d_2 such that $a_0^{d_2} = a$, $a_0^{d_1} = b$. It is easy to see that this an equivalence relation.

Proposition D.1. The relation (\equiv_λ) is an equivalence relation.

Proof. Since the reflexivity and the symmetry are obvious, it suffices to show that the relation is transitive.

(Transitivity): Suppose $a \equiv_\lambda b$ and $b \equiv_\lambda c$ for elements $a, b, c \in G$. Then P possesses λ-smooth integers d_1, d_2, d_3, d_4 such that

$$a^{d_1} = b^{d_2}, \quad b^{d_3} = c^{d_4}, \quad \gcd(d_1, d_2) = \gcd(d_3, d_4) = 1.$$

Now,

$$a^{d_1 d_3} = b^{d_2 d_3} = c^{d_2 d_4},$$

and clearly, the integers $d_1 d_3, d_2 d_4$ are λ-smooth. Set $d := \gcd(d_1 d_3, d_2 d_4)$ and $e_1 := d_1 d_3/d$, $e_2 := d_2 d_4/d$. Then e_1, e_2 are co-prime and λ-smooth and

$$a^{e_1} = c^{e_2}.$$

Thus, $a \equiv_\lambda c$. \qed

For elements $a, b \in G$ the following are equivalent:

1. $a^d \equiv_\lambda b$ for some integer d.
2. $a^d \equiv_\lambda b$ for some λ-rough integer d.
3. $b = a^{d_1}$ for some $\mathbb{Z}(\lambda)$-integer d_1.

Furthermore, if a PPT algorithm is able to output an element $a \in G$ and integers d_1, d_2 such that $a^{d_1} \equiv_\lambda a^{d_2}$, then with overwhelming probability, $d_1 d_2^{-1} \in \mathbb{Z}_\lambda^\times$. In particular, no PPT algorithm can output an element $a \in G$ and distinct λ-rough integers d_1, d_2 such that $a^{d_1} \equiv_\lambda a^{d_2}$.

We note, however, that the relation (\equiv_λ) is not homomorphic, meaning that $a_1 \equiv_\lambda a_2, b_1 \equiv_\lambda b_2$ does not imply $a_1 a_2 \equiv_\lambda b_1 b_2$. But the relation is partly homomorphic in the sense that for any integer d,

$$a \equiv_\lambda b \iff a^d \equiv_\lambda b^d.$$

Non-membership proofs in accumulators: The best-known application of the knowledge of exponent protocol is constant-sized batched non-membership proofs in accumulators [BBF19]. We briefly discuss the implications of replacing equality of G-elements with the equivalence relation \equiv_λ in this regard.

Let $g \in G$ denote the genesis state of the accumulator, D the inserted data set and $A = g^{\Pi(D)}$ the accumulated digest. Given a data set D_0 disjoint with D, the Prover demonstrates non-membership for all elements of D_0 by sending the following to the Verifier:

- Elements $w, A_1 \in G$ such that $w^{\Pi(D_0)} A_1 = g$.
- A non-interactive proof for PoKE[A, A_1].

Suppose, instead of PoKE[A, A_1], the Prover proves the weaker statement that he possesses an integer k such that $A^k \equiv_\lambda A_1$. By definition, there exist an integer k and a λ-smooth integer e such that $\gcd(k, e) = 1$ and $A^k = A_1^e$. Write $w = g^x$. Then

$$x \cdot \Pi(D_0) + \frac{k \cdot \Pi(D)}{e} = 1$$

54
and hence,
\[e \cdot x \Pi(D_0) + k \cdot \Pi(D) = e. \]
Thus, \(\gcd(\Pi(D_0), \Pi(D)) \) divides \(e \) which is a \(\lambda \)-smooth integer. Since each element of \(D \) is a \(\lambda \)-bit prime, it follows that \(D \cap D_0 = \emptyset \), despite \(k/e \) possibly not being an integer. Thus, the equivalence relation \(\equiv_\lambda \) is compatible with the nonmembership protocol of [BBF19].

E Underlying sets of committed multisets

Let \(a_1, a_2 \) be elements of \(G \). Let \(M, N \) be multisets of rational primes. Let
\[A_1 := \text{Com}(g, M) = a_1^{\Pi(M)}, \quad A_2 := \text{Com}(g, N) = a_2^{\Pi(N)} \in G \]
be the commitments to \(M, N \) with bases \(a_1, a_2 \in G \).

Clearly, the relation \(N \subseteq M \) can be demonstrated by the protocol \(\text{PoKE}[A_2, A_1] \). We now show that the protocol \(\text{PolyDLog} \) allows a Prover to succinctly demonstrate the following relations between the underlying sets of \(M, N \), the proofs for which can be publicly verified against the commitments to \(M \) and \(N \).

1. \(\text{Set}(M) \subseteq \text{Set}(N) \).
2. \(\text{Set}(M) \nsubseteq \text{Set}(N) \).
3. \(\text{Set}(M) = \text{Set}(N) \).

Before we describe the protocols, we note a few basic facts. Clearly, we have
\[\text{Set}(M) = \text{Set}(N) \iff \text{Set}(M) \subseteq \text{Set}(N) \land \text{Set}(N) \subseteq \text{Set}(M). \]

Furthermore, with notations as before, we have
\[\text{Set}(M) \subseteq \text{Set}(N) \iff \exists N \in \mathbb{Z} : \Pi(M)^N \equiv 0 \pmod{\Pi(N)}. \]

Likewise, to show that \(\text{Set}(M) \nsubseteq \text{Set}(N) \), it suffices to show that there exists an integer \(p \) such that
\[p \notin \{-1, 1\} \land \Pi(M) \equiv 0 \pmod{p} \land \gcd(\Pi(N), p) = 1. \]

Protocol E.1. Protocol for the containment of underlying sets (PoConSets).

Parameters: \(\mathbb{G} \xleftarrow{\$} \text{GGen}(\lambda), \ g \in \mathbb{G} \).

Input: Elements \(a_1, a_2 \in \mathbb{G} \); commitments \(A_1 := \text{Com}(a_1, M) = a_1^{\Pi(M)}, \ A_2 := \text{Com}(a_2, N) = a_2^{\Pi(N)} \) to multisets \(M, N \).

Claim: \(\text{Set}(N) \subseteq \text{Set}(M) \).

1. The Prover \(P \) computes \(N := \max\{\text{mult}(N, x) : x \in N\} \) and
\[A_3 := a_1^{\Pi(M)^N}. \]

He sends \(A_3 \) and \(N \) to the Verifier \(V \).
2. \(P \) generates a non-interactive proof for \(\text{PoPolyDLog}[(a_1, A_1), (a_2, A_3), X^N] \) and sends it to \(V \).
3. \(P \) generates a non-interactive proof for \(\text{PoKE}[A_2, A_3] \) and sends it to \(V \).
4. \(V \) verifies the two proofs and accepts if and only if both are valid.

Protocol E.2. Protocol for the non-containment of underlying sets (PoNonConSets).

Parameters: $\mathbb{G} \leftarrow \text{GGen}(\lambda)$, $g \in \mathbb{G}$.

Input: Elements $a_1, a_2 \in \mathbb{G}$; commitments $A_1 := \text{Com}(a_1, M) = a_1^{\Pi(M)}$, $A_2 := \text{Com}(a_2, N) = a_2^{\Pi(N)}$ to multisets M, N.

Claim: $\text{Set}(M) \nsubseteq \text{Set}(N)$.

1. The Prover chooses an integer p such that $p \in \text{Set}(M) \setminus \text{Set}(N)$, and computes $b_1 := a_1^p$. He sends b_1 to the Verifier V along with a non-interactive proof for $\text{PoKE}[b_1, A_1]$.

2. P generates a non-interactive proof for $\text{RelPrimeDLog}([(a_1, b_1), (a_2, A_2)])$ and sends it to V.

3. V verifies that $b_1 \notin \{a_1, a_1^{-1}\}$ and the proofs for $\text{PoKE}[b_1, A_1], \text{RelPrimeDLog}([(a_1, b_1), (a_2, A_2)])$. He accepts if and only if both proofs are valid. \hfill \square

In both cases, the proofs consists of a constant number of \mathbb{G}-elements and λ-bit integers. In particular, the proof size is independent of the sizes of M and N.